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Foreword

As part of its on-going activities to foster research in undergraduate mathematics education and the

dissemination of such research, the Special Interest Group of the Mathematical Association of America on

Research in Undergraduate Mathematics Education (SIGMAA on RUME) held its nineteenth annual Con-

ference on Research in Undergraduate Mathematics Education in Pittsburgh, Pennsylvania from February

25 - 27, 2016. The conference is a forum for researchers in collegiate mathematics education to share results

of research addressing issues pertinent to the learning and teaching of undergraduate mathematics. The

conference is organized around the following themes: results of current research, contemporary theoretical

perspectives and research paradigms, and innovative methodologies and analytic approaches as they pertain

to the study of undergraduate mathematics education. The program included plenary addresses by Dr. Sean

Larsen, Dr. Peg Smith, and Dr. David Stinson and the presentation of over 160 contributed, preliminary,

and theoretical research reports and posters.

The Proceedings of the 19th Annual Conference on Research in Undergraduate Mathematics Education

are our record of the presentations given and it is our hope that they will serve both as a resource for future

research, as our field continues to expand in its areas of interest, methodological approaches, theoretical

frameworks, and analytical paradigms, and as a resource for faculty in mathematics departments, who wish

to use research to inform mathematics instruction in the university classroom. The RUME COnference

Proceedings include conference papers hat underwent a rigorous review by two or more reviewers. These

papers represent current work in the field of undergraduate mathematics education and are elaborations of

selected RUME Conference Reports.

The proceedings begin with the winner of the best paper award and the papers receiving honorable

mention and the pre-journal award winner. These awards are bestowed upon papers that make a substantial

contribution to the field in terms of raising new questions or providing significant or unique insights into

existing research programs. RUME Conference Reports, includes the Poster Abstracts and the Contributed,

Preliminary and Theoretical Research Reports that were presented at the conference and that underwent

a rigorous review by at least three reviewers prior to the conference. Contributed Research Reports discuss

completed research studies on undergraduate mathematics education and address findings from these stud-

ies, contemporary theoretical perspectives, and research paradigms. Preliminary Research Reports discuss

ongoing and exploratory research studies of undergraduate mathematics education. Theoretical Research

Reports describe new theo- retical perspectives and frameworks for research on undergraduate mathematics

education. Poster Reports were quite varied and described curriculum, research and theoretical contributions.

The conference was hosted by West Virginia Univerisity. Their faculty and student provided many hours

of volunteer work that made the conference possible and pleasurable, we greatly thank the faculty, students

and institution for their support.

Last but not least, we wish to acknowledge the conference program committee and reviewers for their

substantial contributions to RUME and our institutions, for their support, the conference would not exist

without you.

Sincerely,

Tim Fukawa-Connelly, RUME Conference Chairperson

Nicole Engelke Infante, RUME Conference Local Organizer

Megan Wawro, RUME Program Chair

Stacy Brown, RUME Coordinator

September 2, 2016

Philadelphia
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Students’ Meanings of a (Potentially) Powerful Tool for Generalizing in Combinatorics 
 

Elise Lockwood  Zackery Reed 
Oregon State University 

 
In this paper we provide two contrasting cases of student work on a series of combinatorial 

tasks that were designed to facilitate generalizing activity. These contrasting cases offer two 
different meanings (Thompson, 2013) that students had about what might externally appear to be 
the same tool – a general outcome structure that both students spontaneously developed. By 
examining the students’ meanings, we see what made the tool more powerful for one student than 
the other and what aspects of his combinatorial reasoning and his ability to generalize prior 
work were efficacious. We conclude with implications and directions for further research. 
 
Key Words: Combinatorics, Generalization, Counting problems, Mathematical meanings 

 
Introduction and Motivation 

Generalization is a fundamental mathematical activity with which students at all levels 
engage (Amit & Klass-Tsirulnikov, 2005; Lannin, 2005; Peirce, 1902), and yet there is still much 
to learn about ways to foster productive generalizing activity. In particular, most of the work on 
generalization has been with younger children, commonly in algebraic settings (Amit & Neria, 
2008; Becker & Rivera, 2006; Cooper & Warren, 2008; Ellis, 2007b; Mulligan & Mitchelmore, 
2009; Radford, 2006; Rivera, 2010; Steele, 2008). In the context of a larger study, we sought to 
better understand students’ generalization in the domain of combinatorics which involves the 
solving of counting problems and provides students with opportunities to engage with accessible 
yet challenging tasks (e.g., Kapur, 1970; Tucker, 2002). In this paper, we compare and contrast 
two students’ work on a series of combinatorial tasks, during which they each spontaneously 
introduced a potentially powerful tool for generalization in the combinatorial setting. Each of 
these students used this new tool, but they varied in the meaning they seemed to make it. As a 
result, they differed in how effective they were able to be in using the tool generally and solving 
combinatorial tasks. We seek to answer the following research question: What meaning do 
students make of the same spontaneously generated tool (which we refer to as the 11xx 
structure), and what do these meanings suggest about students’ generalization in combinatorial 
contexts? The results in this paper help to inform research on students’ meanings in the context 
of both their generalizing activity and their combinatorial thinking.    

 
Literature Review and Theoretical Perspective 

Generalization. The act of generalizing is a key aspect of students’ mathematical 
development, and both mathematics education researchers (e.g., Amit & Klass-Tsirulnikov, 
2005; Davydov, 1972/1990; Ellis, 2007b; Vygotsky, 1986) and policy makers emphasize its 
importance (the Common Core State Standards highlight generalization in both the content and 
the practice standards; Council of Chief state School Officers, 2010). We seek to extend the 
current work on generalization by focusing on undergraduate students in the context of 
combinatorics. The tasks were designed with the overall aim of facilitating students’ generalizing 
activity, and for this purpose we follow Ellis (2007a) (who drew on Kaput, 1999) in defining 
generalization as “engaging in at least one of three activities: a) identifying commonality across 
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cases, b) extending one’s reasoning beyond the range in which it originated, or c) deriving 
broader results about new relationships from particular cases” (p. 444).  

We also think of generalization as being closely tied to notions of abstraction laid out by 
Piaget, especially reflecting abstraction, which “projects and reorganizes, on another conceptual 
level, a coordination or pattern of the subject’s own activities or operations” (von Glasersfeld, 
1995, p. 105). We additionally consider generalization in terms of reflected abstraction, which 
“also involves patterns of activities or operations, but it includes the subject’s awareness of what 
has been abstracted” (p. 105). Broadly, these terms and these notions of reflective abstraction 
frame the students’ generalizing activity we describe in this study. 

Combinatorial Reasoning. We chose the context of combinatorics in part to examine 
generalization in a novel context, but we were also motivated to contribute to previous work on 
students’ combinatorial thinking. There is evidence that students struggle with solving counting 
problems correctly (e.g., Batanero, Navarro-Pelayo, & Godino, 1997; Hadar & Hadass, 1981), 
and we hope to contribute to the existing literature by providing instances of meaningful 
combinatorial reasoning that might ultimately inform instruction. More specifically, we use the 
idea of a set-oriented perspective (Lockwood, 2014), in which we view attending to sets of 
outcomes as an intrinsic component of solving counting problems. Other prior research has 
shown the value of focusing on sets of outcomes, including demonstrating that listing outcomes 
is positively correlated with correctly solving counting problems (Lockwood & Gibson, 2016) 
and that outcomes may help students avoid problematic issues in counting such as order and 
overcounting (e.g., Lockwood, 2013). In our current study, adopting such a perspective means 
that we value students’ work with outcomes and feel that focusing students’ attention on 
outcomes can be a productive way to help foster rich combinatorial meaning. 

Students’ Meanings. We draw on Thompson’s (2013) notions of meanings in this paper. He 
argues for the importance of developing meaning of the idea of meaning (p. 57) and that a 
greater emphasis on mathematical meaning could contribute to a more coherent educational 
experience for students overall. Thompson surveys different meanings of “meaning,” and we 
adopt his Piagetian view of meaning as assimilating a scheme (p. 60). Thompson notes that, 
“From a Piagetian viewpoint, to construct a meaning is to construct an understanding – a 
scheme, and to construct a scheme requires applying the same operation of thought repeatedly to 
understand situations being made meaningful by that scheme” (p. 61). Also, importantly, 
Thompson emphasizes meaning from the students’ perspective:  

“The meanings that matter at the moment of interacting with the students are the meanings 
that students have, for it is their current meanings that constitute the framework within they 
operate and it is their personal meanings that we hope students will transform” (p. 62).  

For this reason, in this paper we seek to understand and interpret students’ meanings in order to 
gain insight about what made their work particularly productive (or unproductive) in the 
contrasting cases. We use this notion of meanings in this paper because we have a situation in 
which two students introduce and use a tool that externally seems very similar, but their 
respective meanings of that tool cause them to use it differently. We thus find it useful to discuss 
the variety of meanings students had about what appears to be a very similar mathematical 
phenomenon.  
 

Methods 
In this study we conducted a set of single, individual, hour-long interviews with nine calculus 

students as they worked through a series of tasks we call the Passwords Activity, and in this 
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paper we report on two contrasting cases of students’ work. We report on these students who had 
not been taught combinatorics formally at the college level, who we chose with the hope that we 
could capture their initial reasoning about accessible yet novel tasks. The main goal of the tasks 
was to put students in a situation in which we could evaluate their generalizing activity as well as 
gain insight into their combinatorial reasoning. We begin this section with a mathematical 
discussion of the tasks, and then we discuss the data analysis.  

The Passwords Activity. By offering the trajectory of the Passwords Activity, we hope to 
highlight how the tasks serve to facilitate generalization in a combinatorial setting, and we also 
hope to prepare the reader for subsequent discussion of student work.  

First, we had students solve the problem, How many 3-character passwords can be made 
using the letters A and B?, and we explicitly directed them to organize their work by completing 
tables according to the number of As in the password (Table 1).  

 
Number of As Number of Passwords 

0 1 
1 3 
2 3 
3 1 

Table 1 – The 3-character A,B table 
 

Students may fill out the entries in the table in a couple of ways. One possibility is simply to 
list the passwords for each row (or to read the respective numbers of passwords from a 
previously generated list). The patterns of the respective tables come up in subsequent work, (1, 
3, 3, 1 for 3-character passwords, 1, 4, 6, 4, 1 for 4-character passwords, 1, 5, 10, 10, 5, 1 for 5-
character passwords, etc.1), and students can use previously created tables in subsequent work to 
engage in both combinatorial reasoning and generalization. Although students need not be 
familiar with binomial coefficients to fill out these tables, another possible way of generating the 

table is to recognize that the entries in the rows of the table are binomial coefficients (
3
k
!

"
#
$

%
&  for k = 

0, 1, 2, 3). This is true because for a given number of As in a password, we may choose the 
positions in which the As will go. The placement of the As determines the password since there 
are only Bs remaining to fill the empty slots. Once students have completed the 3-character 
passwords problem, we have them repeat this process for passwords of length 4 and 5, 
generating Tables 2 and 3 below. There were some opportunities to observe generalization in 
building up these cases, as students could observe relationships and similarities among the tables 
or could make combinatorial observations that held across cases. We wanted the students to 
build (typically through partial or complete listing) the tables to see how they would use them as 
we progressed to the next part of the tasks.  

 
 
 
 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Again, we recognize that these numbers are rows in Pascal’s Triangle, but pursuing the relationship with Pascal’s 
Triangle is not our goal. 
2 We did not push him on this or investigate his understanding of the multiplication principle. This is a potentially 
important aspect of his combinatorial reasoning and his generalizing activity, but it is tangential to the focus of this 
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Number of As Number of Passwords 

0 1 
1 4 
2 6 
3 4 
4 1 

Table 2 – The 4-character A,B table 
 

Number of As Number of Passwords 
0 1 
1 5 
2 10 
3 10 
4 5 
5 1 

Table 3 – The 5-character A,B table 
 

Then, we can have students move on to passwords involving the number 1, and the letters A 
and B. We had students make tables for 3-character and 4-character passwords, organized 
according to the number of 1s in the passwords (the 4-character A,B,1 table is in Table 5). Note 
that we can use the previous tables in the following way: we can think first of determining 
positions for the 1s (which the previous A,B table provides), and then the problem is reduced to 
counting passwords involving only As and Bs. For example, in making a table for the number of 
4-character passwords with 1, A, and B, for each respective row of the table (0, 1, 2, 3, or 4 1s), 
we can first think of counting the number of ways of placing the 1s. There are 1, 4, 6, 4, 1 
respective ways of doing this, which is reflected in the previous 4-character A,B table. The 
reason these numbers are the same is that there are the same number of placing, say, two As in a 
4-character password as there are to place two 1s. Once this is established, note that for each row 
in the table, once the ones are placed it is just a matter of counting passwords of length 3 using 
only As and Bs, reducing the problem to a previous problem (specifically, there are 23 such 
passwords).  

 
Number of 1s Number of Passwords 

0 1⋅24  
1 4 ⋅23  
2 6 ⋅22  
3 4 ⋅21  
4 1⋅20  

Table 5 – The 4-character A,B,1 table 
 

The point is that it is possible, with some combinatorial insight and understanding of the 
outcomes’ structure, to leverage the previous work from the A,B passwords in the more 
complicated A,B,1 passwords case. Again, in this case if the students do not yet have a formula 
for binomial coefficients, they can still engage with the task and engage in generalization. They 
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can look back at tables created for 3, 4, or 5-character A,B passwords and use those numerical 
results for the first stage in the counting process. They can also recognize that for any of the 
positions that are not 1s, they are simply creating A,B passwords, and again they can leverage 
previous results to complete current tables.  

In order to see the motivation for this set of tasks, and to see where the tasks could ultimately 
lead, we describe further stages of the task that involve passwords with multiple letters and 
multiple numbers (although most students did not proceed beyond A,B,1 passwords). We 
consider one particular example of 5-character passwords consisting of the letters A, B, or C, and 
the numbers 1 or 2, which we call 5-character A,B,C,1,2 passwords. As before, students could 
count the total number of such passwords in two ways – first by simply computing the total by 
arguing about the number of choices for each position, and second by making a table, this time 
according to number of numbers. There are 55 total passwords, because there are five choices (3 
letters and 2 numbers) for each of the five positions. The table can be filled out as in Table 6. 

 
Number of 
Numbers 

Number of Passwords 

0 1⋅25 ⋅30  
1 5 ⋅24 ⋅31  
2 10 ⋅23 ⋅32  
3 10 ⋅22 ⋅33  
4 5 ⋅21 ⋅34  
5 1⋅20 ⋅35  

Table 6 - A 5-character A,B,C,1,2 table 
 

To justify the table entries, let us consider one of the rows – the fourth row that counts the 5-
character A,B,C,1,2 passwords that have exactly 3 numbers. We can first select places that will 

be numbers (there are 
5
3
!

"
#
$

%
&ways to do this, which is 10), and then we can fill in each of those 

number places with either 1 or 2, giving us 23. Then we know that the remaining two positions 
must be letters, and there are 32 ways to filling those positions with A, B, and/or C. The same 
line of reasoning holds for any of the rows, and summing the rows (which count disjoint cases of 
how many numbers are in the passwords) yields the total number of passwords. 

This line of reasoning can be extended to a general case of counting n-length passwords 
consisting of x numbers and y letters. In this way, we achieve a general statement of the binomial 
theorem, which is the potential culmination of the Passwords Activity: 

 

x + y( )n =
n
k
!

"
#
$

%
&xkyn−k

k=0

n

∑ . 

We had only one student made it to the end of this sequence of tasks (he was a more advanced 
student is not discussed in this paper), but engagement with the activity still served to facilitate 
combinatorial reasoning and generalizing activity among all of the students. 

Data Analysis. The interviews were videotaped and transcribed, and overall the videos and 
transcripts were analyzed so as to construct a narrative about the teaching experiment (Auerbach 
& Silverstein, 2003). We discussed the two contrasting cases with the entire research team and 

19th Annual Conference on Research in Undergraduate Mathematics Education 5

19th Annual Conference on Research in Undergraduate Mathematics Education 5



together formulated hypotheses about the students’ meaning in each case via repeated viewings 
of video and reading of enhanced transcripts. In particular, we looked for instances in which 
students’ generated the certain tool (the 11xx structure described below) and discussed and 
analyzed what caused students to interact with and use the tool in different ways. 

 
Results 

In presenting our results, we describe two different students’ meanings of the same 
phenomenon. We highlight these results both to show an interesting phenomenon that 
emphasizes a potentially powerful tool toward meaningful combinatorial generalization and to 
suggest that ascribing certain meanings to such tools may help students leverage them in 
impactful ways. In this section we describe their work and present the major findings, and we 
compare and contrast the students’ work in the Discussion section. 

 
Example 1 – Tyler. We begin with Tyler, who demonstrated an ability to reason 

comfortably and easily with outcomes. His method of solving the tasks typically involved some 
organized listing. For example, in trying to determine the number of 4-character A,B passwords 
with exactly two As, Tyler made the list in Figure 1 and gave the following explanation: 

 
Tyler: Um. Yeah I guess I started with the first one being A um, and then I did like 2 A’s 

consecutively and then B’s, and then moved the B over one, and then, um, moved the next 
B over one… And then, after that I just start with the B and kind of did the same thing.  

 

      
Figure 1      Figure 2 

 
He ultimately correctly created the table for 3, 4 (Figure 2), and 5-character AB passwords. Here 
we highlight Tyler’s willingness and ability to engage with organized listing activity in creating 
the tables, which suggests to us that he attended to outcomes. 

Early in the interview, Tyler had established that there were a total of 2n n-length passwords 
using only As and Bs. He established this primarily through noticing a numerical correlation 
after giving the totals for 3, 4, and 5-length passwords, read from his empirical tables (noticing 
the 3-character AB passwords table had 1+3+3+1 = 8 total passwords). He went on to write the 
relationship “n length = 2n combos,” but we suspect that he did not meaningfully understand the 
multiplication principle as a combinatorial way of explaining the expression 2n.2  

We then moved on to counting passwords that consist of characters 1, A, or B. Tyler felt that 
there was more to keep track of, but he persisted with listing outcomes and filling out the table as 
he had in the previous situations. He managed to list the entire table for the 3-character A,B,1 
passwords, and again he used systematic listing used to do so, and he seemed to maintain a 
combinatorial understanding of the entries in his tables. 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 We did not push him on this or investigate his understanding of the multiplication principle. This is a potentially 
important aspect of his combinatorial reasoning and his generalizing activity, but it is tangential to the focus of this 
paper and thus we do not address it here.   
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Next, we asked him with to fill out a table with the four-character A,B,1 passwords 
(organized according to number of 1s). He got started but paused and said, “I can’t really think 
of any pattern,” and he seemed to realize that this table would be more difficult to work out than 
the previous case. We directed him to perhaps start thinking about the rows for zero and one 1’s 
(starting from that end of the table). Tyler then did something unexpected – he introduced a way 
of describing a general outcome involving 1s and xs. Specifically, he wrote out four general 
outcomes 1xxx, x1xx, xx1x, and xxx1 (Figure 3), and he used that reasoning to fill out the table he 
was working on. He discussed his reasoning in the following exchange, and we highlight that he 
referred back to his 4-character A,B table in Figure 4. 

 
Tyler:  Yeah. Ok so the 0 [row] was gonna be, what did I come up with here [refers back to the 

4-character AB table] 10, 15, 16 if uses, um. And then the 1, so what I was thinking, what 
I was saying earlier. How there is only a certain amount of spots for it, like it has to be, 
like I’m just gonna use x cause, um, has to be in one of these spots... [draws Figure 3] 

Int.:  Great. 
Tyler:  So there’s, now there’s just 3 x’s um, and I know that for…3 spots with 2 different letters 

there’s going to be 8 different ways to do it [points back to the previous 3-character AB 
table, see Figure 4]…Um so I guess 8…there’s 8 different of each of those just using this 
same table umm, there’s just 32 so I want to say there’s gonna be, um, 32 for just the 1. 

Int.:  Okay and you got, you’re thinking of that as kind of the 4 times 8?  
Tyler:  Yeah I, just adding them all up. 
 

    
Figure 3      Figure 4 
 

This was a key moment in Tyler’s work. He spontaneously introduced a very powerful tool 
for how to count desirable passwords in the form of a general structure consisting of xs and 1s. 
(For ease of communication, we hereafter refer to the tool as “the 11xx structure,” which is 
meant to suggest the introduction of the variable of x as a means of representing a more general 
outcome.) We contend that this was a general representation of an outcome (a password), 
perhaps a product of his rich facility with listing. He realized that in each case where there was a 
1 with three xs, there would be 8 such possibilities (because there were 8 total 3-character A,B 
passwords), and his total would be 32. He was thus able to recognize that he could use his 
previous case as a part of the more complicated new situation. We can further explore this 
moment of insight as he continued to use the 11xx structure in filling out the rest of the 40-
character A,B,1 table. Figure 5 shows his listing of x’s and 1’s in the four-character A,B,1 case, 
with exactly two 1’s. There are exactly 6 of them, and the following exchange demonstrates 
Tyler’s meaning of those six general outcomes as they relate back to his previous work. 
Specifically, note that he understands why 6 such outcomes would make sense, because he can 
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understand that he is in a situation of arranging two distinct objects, which is what his previous 
work involving A,B passwords also entailed. He continued to work in a similar fashion for the 
case of three 1s, and he ultimately arrived at the correct table for 4-character A,B,1 passwords 
(Figure 6).  

 
Tyler:  Yeah there you go. Is that all of them? Yeah so 6, ‘cause that would make sense... 
Int.:  Does that 6 make sense?  
Tyler:  Does it? Uh, well that would that’s um, 2 variables like instead of doing 3 things there’s 

2 umm, with the 4 combo, so 2, was 6 over here [points back to the 6 in the correct entry 
of the 4 character AB password table], so that’s why I thought it made sense. 

 

    
      Figure 5                          Figure 6 

 
Tyler went on to use the same tool in subsequent cases involving 5-character A,B,1 

passwords. Although we do not have space to detail all of his subsequent work, we provide one 
excerpt to highlight another important aspect of his activity. Specifically, we asked Tyler about 
creating another table of A,B,1 passwords that are 5 characters long. In the following excerpt he 
indicates that he would use the previous table that involved the coefficients 1, 5, 10, 10, 5, 1. In 
the underlined portion of the following excerpt we see that Tyler can think of the A,B,1 and the 
A,B situations as fundamentally similar because they are both involving combinations of two 
“things that are changing.” We will argue that this is an important aspect of his productive 
generalizing activity. Tyler seemed to have a robust understanding of how he could use the tool 
to solve password problems involving more characters and more letters. And, more importantly, 
he was able to recognize two situations as being “the same.” 

 
Int.:  Um, what if I asked, so this same question like one 1, 10 letters but now a length 5 

password. Like, what would the total number be? 
Tyler:  Um, I would use 1, 5, 10, 10, 5, 1. 

 … 
Int.:  And why did you go to that 1, 5, 10, 10, 5, 1… 
Tyler:  Um well these are all the number of combinations I  can do, um, with 2 different, 2 things 

that are changing and this number of letters.  
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Figure 8 

 
We point out a couple of important features of Tyler’s work. First, it is noteworthy that Tyler 

spontaneously introduced a new, general structure that appropriately represented the situation 
and the outcomes he was trying to count. This is in and of itself impressive, and his work 
demonstrates an existence proof of the kind of thinking the Password Activity fostered in terms 
of combinatorial generalization. Second, Tyler was able to relate that new structure to his 
combinatorial activity to that point, and this relationship to prior work played a key role in him 
ultimately being able to solve more problems correctly. Importantly, he seemed to preserve the 
combinatorial meaning of the tasks and the situations as he related the 11xx structure with his 
previous work. In terms of Tyler’s meanings, we interpret that he understood the 11xx structure 
as a general structure of the outcomes he had been working with, allowing him to relate back to a 
previous combinatorial situation involving just two objects (specifically, As and Bs). Although 
he did not demonstrate a deep combinatorial, multiplicative meaning of 2n, he could recognize 
the 2n as being numerically equivalent to a previous case, which he used effectively.  

 
Example 2 – Richie. We now contrast Tyler’s work with another calculus student, Richie. 

Richie, too, spontaneously introduced the 11xx structure, but we highlight a key difference in 
that Richie was less successful in leveraging the new tool by relating it to previous 
circumstances. When making the tables for the A,B passwords tasks, Richie correctly filled out 
the tables, often using some listing, but it seemed as though he was more attuned to the 
numerical patterns he observed than in finding a combinatorial explanation that made sense. For 
example, when making a table for the 5-characer A,B passwords, we had the following 
exchange. Notice that his justification for why certain entries were in the table was based on the 
patterns he’d observed. This is not in and of itself problematic, but it shows perhaps that he was 
not establishing a robust combinatorial meaning but that his meaning was based on observed 
numerical regularity. 

 
Richie: So when you get to like the -- the second one, or it’s not even like the second one, it’s 

more like the one in the middle of 0 and 5 is going to be the most possibilities. And in 
previous problems it’s been like 2 more than the preceding one. 

Int.: Okay. Sure.   
Richie: And I’m just assuming that this is 5, because the previous pattern’s like increasing by 1.   
 

When we moved on to the A,B,1 passwords case, Richie, like Tyler, spontaneously moved 
toward a new structure involving 1s and xs. Figure 9 shows his drawing of the six ways to 
arrange two 1s and two xs. Again, it was somewhat surprising and impressive to us that a student 
independently generated this general outcome structure.  
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Richie: I’m just trying to think of all the different configurations – that 1s can [inaudible] – so 
like they can be starting with x, or just like that. Or like this or like this. Or like this.  And 
then it could be 1 inside. 

Int.: Perfect.  
Richie: So, 1, 2, 3, 4, 5, 6.  There’s 6 different possibilities for that.  And then each of these can 

have 4 different configurations. 
 

   
Figure 9          Figure 10 
 

Richie then checked his work and reasoned that for each of those possibilities there would be 
four possibilities, running through BB, AA, AB, and BA. He concluded, “So 6 times 4 would be 
– it would be like 6 times all of these really [referring to the six configurations]…Yeah, okay.  
So I guess they would be 24.  So it would be 24 possibilities.” Richie then continued to work, 
and as he progressed to other rows in the table he made more diagrams involving 1s and xs. 

We then had him move to the 5-character 1, A, B password, and I asked him to start making 
the table. Here again he made a similar diagram with 1’s and x’s, but here his work departed 
from Tyler’s. Richie was able to think about there being a certain number of options for each 
case (each arrangement of the x’s), and he knew there were two options for each  x (A and B), 
but he added instead of multiplied the number of options, yielding 8 rather than 16 possibilities.  

 
Richie: So for 5 it would be 32. Same thing. And then for 1 there would be – (writes Figure 8 

without the *8’s) and so those would each have – this could be A or B, so that would be 2 
for that, 2 for that, 2 for that, so these would each have 8 different possibilities [writes 
the *8’s in Figure 8].  So it would be 5 – 5 times – it would be 40 for 1. 

 
In asking Richie to explain this work, we gain insight into his meaning of the diagram. He 

made no explicit connection to the previous tables or situations as Tyler had.  
  

Richie: This, like I made I want to say like a diagram basically of a position so 1 can be.  And 
then I put Xs in for the – where the As and Bs could be, because those are variables that 
can be either A or B. And then I noticed that for every X it has 2 possibilities, either being 
A or B, and there’s 4 Xs…So then I just multiply that by 2 to get 8.  So each – for each 1 
position there’s 8 different possibilities for the password. And that’s how I got 40. 

 
Richie continued his work and listed out all 10 of the configurations of two ones in a 5-

character password. He demonstrated a consistent meaning by again adding the options – saying 
there were 6 passwords for each configuration, which is 2*3 rather than 23 = 8. At first blush it 
seems that perhaps Richie simply made a mistake, adding instead of multiplying the options, but 
we do not feel that he simply made a numerical error. Rather, the evidence seems to point to the 
fact that he did not make meaning of the new structure as being related to the previous case, at 
least not directly to the previous tables. Unlike Tyler, he did not recognize that the power of the 
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11xx structure is that it can be very clearly related to the previous situation. There are two 
potential points of connection to the prior A,B tables (relating the placement of the ’s to the rows 
of the AB tables, such as 1, 4, 6, 4, 1, and realizing the totals in the previous tables represent the 
possible number of passwords of a given length), both of which Tyler recognized, and neither of 
which Richie recognized. 

This is not to say that Richie’s meanings were unreasonable or that they did not make sense 
to him – indeed they did. His introduction of the 11xx structure seemed to serve as a way of 
simplifying and organizing the problem so he could better break it down, but not in a way that 
facilitated rich connections to the previous problem. Indeed, we asked him how and why he 
came up with the structure, and he suggested that he was motivated by efficiency: “I started to 
write here different configurations for where the 1s could be and where the Bs and As could be, 
and I noticed that basically the As and Bs were just switching places for wherever the amount of 
1s were. So I started putting xs there just so I wouldn’t have to write as much.” Thus, while 
Richie was motivated by the efficiency, which is justifiable, he did not realize that he could 
leverage his previous work in order to take full advantage of the tool he had developed. 

 
Discussion 

In this section we compare and contrast Tyler and Richie’s work, highlighting some salient 
similarities and differences. We feel that our results offer a theoretical contribution to the 
research on generalization (by introducing a notion of recursive embedding), and we also 
connect these findings to students’ combinatorial reasoning. 

First, we highlight what was similar in Tyler and Richie’s work. It is noteworthy that they 
both came up with the 11xx structure, spontaneously and independently. This tool seemed to be 
motivated by efficiency for both of them, which suggests that efficiency may be an effective 
pedagogical idea for facilitating generalization. Also, their generation of this tool suggests a solid 
fluency with outcomes, which affirms combinatorial research that emphasizes the importance of 
students’ set-oriented perspectives toward counting (e.g., Lockwood, 2013; 2014). Finally, both 
Tyler and Richie seemed to understand that there were a certain number of passwords “for each” 
11xx outcome they could write. While they used this idea differently (with Tyler using it 
correctly and Richie incorrectly), this suggests perhaps that they had at least some informal but 
accurate notion of the multiplication principle in this particular instance. 

What, then, set these students apart in their abilities to more (and less) effectively leverage 
their 11xx tool? We argue that there are two key differences that explain this phenomenon, and 
they each have implications in terms of generalization and in terms of combinatorial reasoning. 
First, Tyler engaged in what we call recursive embedding, and second Tyler was able to view 
AABB and 11xx as essentially “the same” – simply arrangements of two kinds of objects. We 
describe each of these below. 

Recursive embedding. By recursive embedding, we mean that Tyler reflected on prior 
activity and applied that activity (not just the results of that activity) into a new situation. 
Specifically, recognized the xs in the 11xx structure in the A,B,1 situation as representing 
placeholders into which he could embed a previous situation (A,B passwords, for example). 
Figure 11 demonstrates what we interpret to be involved in recursive embedding in Tyler’s work. 
Note that the xs in the problem are replaced with AB passwords, and the prior work is used 
productively in a new situation. 
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Figure 11 

 
Viewing two combinatorial situations as similar. Another important aspect of Tyler’s work is 

that he was able to recognize similarities between two situations in a way that Richie did not 
seem to observe. Specifically, Tyler extrapolated a similarity between arranging AABB and 
11xx, as he recognized that ultimately he was just rearranging two kinds of things – it didn’t 
matter if they are As and Bs or 1s and xs. This was a key element of him being able to connect 
back to prior work and to successfully leverage the 11xx structure. 

In sum, Tyler’s activity of recursive embedding and of recognizing key situations as similar 
has important implications for generalization. In particular, his activity suggests an instance of 
generalization that is based in reflective abstraction. By embedding results of his prior activity 
into a new situation, Tyler is projecting and reorganizing, “on another conceptual level, a 
coordination or pattern of [his] own activities or operations” (von Glasersfelt, 1995, p. 105). This 
underscores that Tyler’s powerful generalization is rooted in reflective abstraction, and it also 
suggests that fostering reflective abstraction may be a key aspect of helping students to engage in 
meaningful and effective generalizing activity. 
 

Conclusion and Implications 
By examining two students’ meanings of the same tool that they each spontaneously 

developed, we gain insight both into students’ generalizing activity and their combinatorial 
reasoning. Ultimately, we want to help students be more effective in creating productive 
generalizations, and we want to learn more about how students might effectively solve counting 
problems. We feel that Tyler’s work – not only his production of the 11xx structure but also his 
ability to make meaning of it in light of prior activity – is a powerful example of a student-
generated general structure that led to progress in challenging combinatorial tasks. Set in contrast 
to Richie’s work (which was also impressive in that he generated the 11xx structure, but was 
limited in its lack of combinatorial meaning and connection to the previous situations), we can 
examine what aspects of Tyler’s work and meanings were so efficacious.  

The contrasting cases of 11xx structure shed some light on generalization. We see that the 
desire for efficiency may motivate generalization, and that reflection on prior activity (and the 
ability to use that prior activity) was a distinguishing feature of Tyler’s work. Specifically, 
recursive embedding and viewing AABB and 11xx as the same were aspects of his activity that 
facilitated effective generalization. Tyler’s case provides an encouraging example of what might 
be attained through reflective abstraction. 
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Combinatorially, this is an example of the kind of thinking we want to foster. Tyler’s 
association of AABB and 11xx as being the same is hugely important for productive 
combinatorial reasoning, as we want students to be able to draw out some structure that is not 
dependent on particulars. The structure of the outcome seems to be important to facilitate this 
association and connection. Indeed, one aspect of his work that was powerful was that he 
remained grounded in his prior activity, and he had a rich combinatorial meaning of those prior 
situations. The AB tables Tyler made were combinatorially meaningful for him, in the sense that 
he reasoned about outcomes and did not lose sight of the combinatorial context. This is in line 
with previous work that emphasizes the importance of outcomes (e.g., Lockwood, 2013; 2014). 
We suspect that because Tyler had such a strong sense of outcomes (as seen through his listing 
activity in his creation of AB tables), the 11xx structure really did represent to him a more 
general form of an outcome. It resembled a password (still a sequence of characters on the page), 
and we posit that this enabled him to maintain his reasoning about the structure of his outcomes 
and thus a connection to the previous combinatorial situation.  

In terms of implications, our findings suggest that students can, on their own, produce 
potentially powerful tools involving general structures. However, this alone is not sufficient for 
productive generalizing or counting activity, and these contrasting cases show some of the other 
reasoning necessary to make full use of such tools. A pedagogical implication is that teachers 
may need to be vigilant in helping students maintain contact their with their prior activity, as 
reflecting on one’s prior activity seems to be a potentially productive way to facilitate 
generalization. To engender productive generalizations, we may direct students to reflect on their 
prior work by having them make explicit connections and statements of similarity or by 
answering meta-cognitive questions about their activity. 

Specifically, in combinatorics this might mean that even as students notice patterns, teachers 
should help them to connect those patterns to the combinatorial context and not simply to 
numerical regularity. Combinatorially, another implication of the work is that this sequence of 
tasks does seem to be potentially useful in helping students to reason about the binomial theorem 
(or at least its initial stages). Tasks like these could be leveraged to introduce and teach 
combinatorial identities, which is a building block toward the learning of combinatorial proof. 

Our findings show an example of rich generalizing activity in a combinatorial context. These 
findings emerged in a single interview, but we hope to extend this work through teaching 
experiments in which students’ meanings can be developed and examined over time. Next 
research steps also include an investigation into more specific instructional interventions that 
might foster the kind of meanings that proved beneficial for students like Tyler. 
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We report on clinical interviews to describe U.S. undergraduate students’ ways of thinking for 
graphs as representations of measurable attributes of dynamic situations (e.g., a road trip or an 
amusement park ride). In particular, we describe students’ actions that we interpret to be 
habitual to their uses of graphs. By habits, we refer to specific schemes and actions constituting 
students’ ways of thinking through which they routinely assimilate their graphing activity. Some 
habits were problematic in that they inhibited the students’ abilities to represent covariational 
relationships they had conceived to constitute some dynamic situation. For example, we 
illustrate that some students’ ways of thinking for graphs resulted in their experiencing 
perturbations if neither quantity’s value increased or decreased monotonically.  
 
Keywords: Graphing, Covariational Reasoning, Quantitative Reasoning, Cognition, Function 

  
 Researchers have persistently suggested that educators take seriously students’ graphing 

activities given the difficulties students have with topics (e.g., function and rate of change) that 
involve the significant use of graphs (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Johnson, 2012; 
Thompson, 1994). More pointedly, researchers have illustrated that student difficulties in 
mathematics relate to students having impoverished experiences reasoning covariationally 
(Carlson, 1998; Oehrtman, Carlson, & Thompson, 2008; Thompson & Carlson, in press). We 
respond to the need to better understand students’ covariational reasoning by describing 
undergraduate students’ ways of thinking for graphs relative to the extent that they were 
productive when constructing graphs to represent measurable attributes of a dynamic situation. 
Specifically, we characterize two categories of students’ ways of thinking for graphs. We 
contend that some students’ ways of thinking for graphs entailed habits based in figurative 
thought (Piaget, 2001) that often inhibited their representing a covariational relationship that they 
conceived to constitute some situation. In contrast, we describe students’ ways of thinking for 
graphs based in operative thought (Piaget, 2001), in which students exhibited a sustained focus 
on coordinating quantities’ magnitudes when constructing a graph with figurative aspects of the 
trace being subordinate to this coordination. 

 
Covariational Reasoning, Magnitudes, and Shape Thinking 

Covariational reasoning is “the cognitive activities involved in coordinating two varying 
quantities while attending to the ways in which they change in relation to each other” (Carlson et 
al., 2002, p. 354). Whereas some researchers have described covariational reasoning in terms of 
patterns in successive, corresponding numerical values of two sets (see Confrey & Smith, 1995), 
our approach to covariation adopts Thompson’s (2011) description of quantity. Thompson 
(2011) described quantity as an attribute a person conceives to constitute some situation such that 
the person understands and anticipates the attribute as having a measurable magnitude (i.e., 
amount-ness).1 We draw attention to Thompson’s distinction between a quantity’s magnitude 
                                                
1 We point the reader to Steffe and Olive (2010) and Thompson, Carlson, Byerley, and Hatfield 
(2014) for detailed characterizations of different conceptualizations of magnitudes. 
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and a quantity’s measure (or value) because it enables us to describe a person’s covariational 
reasoning in terms of her simultaneously coordinating (continuous) magnitudes in flux (Saldanha 
& Thompson, 1998). For instance, in a situation involving two corresponding lengths, a person 
can imagine two lengths in flux while anticipating that these lengths have specific measures 
(with an associated unit) at any instantiation of the covariation. 

We do not intend our focus on the covariation of magnitudes to diminish the importance 
of reasoning with specified measures and patterns. Such reasoning is important for the 
construction of function classes, quantification of rate of change, and reasoning about limits (see 
Confrey & Smith, 1995; Ellis, Özgür, Kulow, Williams, & Amidon, 2015; Johnson, 2015; 
Oehrtman, 2008). Approaching covariation in terms of coordinating magnitudes, however, 
provides a complementary focus that researchers have found useful in characterizing how 
students might construct images of covariation that are productive for their reasoning about 
relationships between quantities in ways not confined to, but instead working in tandem with, 
reasoning about specified measures (see Carlson et al., 2002; Thompson, 1994, 2011).  

Extending the aforementioned research on covariational reasoning, Moore and Thompson 
(2015) characterized students’ static shape thinking and emergent shape thinking. The authors 
described that a student engaging in static shape thinking operates on a graph as an object in and 
of itself (i.e., graph-as-wire), basing her actions on perceptual cues and the physical features of a 
graph. Moore and Thompson (2015) provided an example of a student’s static shape thinking in 
the form of a student associating rate of change or slope with properties of direction (e.g., a 
student reasoning that a graph of y = 3x unquestionably implies a line sloping upward left-to-
right regardless of coordinate system or orientation). In contrast to a student assimilating a graph 
as an object in and of itself, Moore and Thompson (2015) characterized that a student engaging 
in emergent shape thinking conceptualizes a graph as a locus or trace that is produced by 
coordinating two quantities’ magnitudes simultaneously. They explained, “emergent shape 
thinking entails assimilating a graph as a trace in progress (or envisioning an already produced 
graph in terms of replaying its emergence), with the trace being a record of the relationship 
between covarying quantities” (Moore & Thompson, 2015, p. 785). Although this way of 
thinking requires conveying magnitudes in flux, we provide instantiations of covariation in 
Figure 1 that are associated with Part II of the task in Figure 2 to illustrate this way of thinking. 

A person thinking emergently in response to GAG Part II 2 might proceed as follows:  
(1) The person conceives that the car starts at a magnitude of zero from Atlanta (||Y|| = 0) and 

some non-zero magnitude from Gainesville (||X|| > 0). The person represents these 
attributes by plotting a point that simultaneously represents both magnitudes (Figure 1a).  

(2) The person conceives that, over the first portion of the trip, for any particular magnitude 
increase in the distance from Atlanta, the car’s distance from Gainesville simultaneously 
decreases by that magnitude (i.e. |∆||X||| = |∆||Y|||). The person conceives the distance 
from Atlanta increases at a constant rate as the car’s distance from Gainesville decreases. 

(3) The person represents the relationship constructed in (2) by constructing and imagining 
two magnitudes covarying along the axes in a way that maintains (2), with a point 
moving correspondingly to represent simultaneously both magnitudes (Figure 1b-1d).  

(4) The person imagines the point leaving a trace representing all instantiated pairs of 
covarying magnitudes (Figure 1e).  

(5) And so on (Figure 1f). 

                                                
2 GAG is a modification (see Task Design) of Saldanha and Thompson’s (1998) task. 
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(a)    (b)    (c) 

 

 
(d)    (e)    (f)  

Figure 1a-f. A graph as a coordination of two magnitudes for the trip there and back. 

 
Figure 2. The Going Around Gainesville (GAG) task. 
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Figure 3a-b. A magnitude graph (a) and a values graph (b) representing a multiplicative object. 

A person’s actions are not likely to proceed in such a linear progressions, yet this 
example illustrates that thinking emergently involves sustaining an image of a graph as a uniting 
of two coordinated magnitudes. Hence, the graph emerges as a locus of points representing a 
multiplicative object—an “operation of having in mind two attributes of an object 
simultaneously” (Thompson, 2011, p. 48)—whose magnitudes and properties are equivalent to 
those of the multiplicative object the person conceives to constitute the situation. 

Adopting the notation Thompson (2011) used to represent covariation as a multiplicative 
object, we can model a person’s conception of a graph as an emergent trace with (||X(t)||, ||Y(t)||), 
which represents the uniting of two quantities’ magnitudes, ||X|| and ||Y||, so that these 
magnitudes are understood as varying simultaneously with respect to conceptual or experiential 
time, t (Figure 3a).3 Upon choosing unit magnitudes for each quantity, a person can determine 
specified values that represent relative comparisons between these unit magnitudes and each 
quantity’s magnitude at every instantiation of covariation. The result of comparisons between 
magnitudes and unit magnitudes enables the person to represent the attributes of the 
multiplicative object in terms of corresponding values, x and y (with associated unit magnitudes), 
thus representing the multiplicative object in terms of the points (x(t), y(t)) (Figure 3b, with an 
associated unit of miles). We emphasize that a person with sophisticated ways of thinking for 
magnitudes (see Thompson et al., 2014) understands the covariational relationship, and hence the 
multiplicative object, as remaining invariant among unit choices; that person understands that the 
choice of unit influences how one partitions the respective axes, the numerical values defining 
coordinate pairs, and the measures of particular relationships between quantities’ values (e.g., 
∆y/∆x), but this understanding is subordinate to the person’s understanding that the displayed 
graph conveys a relationship between quantities’ magnitudes invariant among unit magnitudes.  

 
Ways of Thinking and Habits 

We are interested in characterizing students’ ways of thinking for graphs with sensitivity 
to their covariational reasoning, and thus it is necessary that we describe our use of ways of 
thinking and the associated terms meaning and habit. We follow Thompson and Harel’s system 
of knowing, as reported by Thompson et al. (2014), which has its basis in Piagetian notions 
                                                
3 See Thompson and Carlson (in press) and Stalvey and Vidakovic (2015) for discussions on 
conceptual and experiential time that are beyond the scope of this work.  

19th Annual Conference on Research in Undergraduate Mathematics Education 19

19th Annual Conference on Research in Undergraduate Mathematics Education 19



including schemes, operations, images, assimilation, and accommodation. Thompson and Harel 
define meaning as the space of implications that results from assimilation (Thompson et al., 
2014); it is the system of schemes and operations brought forth (which may be carried out or 
merely anticipated) in assimilation. For example, in a case that a student assimilates two marks 
as lines defining coordinate axes, this moment of assimilation might correspond to the student 
anticipating drawing a number of memorized shapes, plotting points, making a map, etc. 
Moreover, in assimilating a trace on a page as a displayed graph, the student might anticipate a 
particular coordinate system, making tables of values, coordinating covarying magnitudes, etc. 

Thompson and Harel use ways of thinking to refer to a student’s meanings that have been 
repeatedly constructed to organize her experiences to the extent that the meanings have become 
habitual. In many cases, students’ ways of thinking are habitual to the extent that they are 
essentially a subconscious response or pattern of actions brought forth in the moment of 
assimilation. Moreover, a student might bring to bear, without perturbation, a way of thinking 
that an observer perceives as incompatible with the situation at hand. If a student perceives this 
incompatibility, she experiences a perturbation that might require significant effort (e.g., an 
accommodation) on the student’s part to reconcile. In these ways we describe a student’s way of 
thinking as entailing particular habits: (mental or physical) actions and schemes that a student 
essentially subconsciously enacts, or actions and schemes that a student might find difficult not 
to bring to bear on associated situations despite experienced perturbations. As an example 
detailed in our results, a student might develop ways of thinking for graphs that entail particular 
habits with respect to how a graph is drawn (e.g., a graph is drawn from left-to-right) so that she 
has difficulty accommodating situations she perceives as incompatible with these actions.  

We find Piaget’s (2001) distinctions between figurative and operative thought useful 
when characterizing particular actions and schemes (i.e., habits) that constitute a student’s ways 
of thinking for graphs. Piaget distinguished thought based in and constrained to perception and 
sensorimotor activity from thought based in operational intelligence in which figurative elements 
are subordinate to mental operations. That is, figurative meanings or ways of thinking are 
dominated by re-presentations of perceptual material or sensorimotor experience (von 
Glasersfeld, 1995). In contrast, operative meanings or ways of thinking are not constrained to 
specific perceptual material or sensorimotor experience; they are meanings dominated by the 
coordination of mental actions (von Glasersfeld, 1995). 

Returning to students’ static or emergent shape thinking (Moore & Thompson, 2015), we 
interpret students’ static shape thinking as an example of figurative thought, as such thinking is 
subordinate to perceptual (figurative) properties of shape. On the other hand, students’ emergent 
shape thinking foregrounds the coordination of actions—specifically that of covarying 
magnitudes, which Thompson (1994) described as operative—so that figurative elements of their 
activity are subordinate to that coordination. Further illustrating the distinction between 
figurative and operative thought in the context of static and emergent shape thinking, Moore and 
Thompson (2015) argued that in the former case, mathematical objects (e.g., rate of change) 
become properties of or subordinate to perceptual features (e.g., direction of a line—the graphs 
in Figure 4 unquestionably imply a positive and negative rate of change, respectively, because 
the lines slope upward left-to-right and downward left-to-right, respectively). In the latter case, 
mathematical objects become properties of or subordinate to the coordination of actions (e.g., 
rate of change as a measure of how quantities change—the graphs in Figure 4 unquestionably 
imply ∆y = 3∆x because x and y are simultaneously increasing such that the change in y is three 
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times as large as the change of x). We expand on these notions to describe the extent students’ 
actions are subordinate to figurative or operative elements of thought. 

 
Figure 4. Graphs of y = 3x.  

 
Participants, Setting, and Methods 

Our participants were 10 prospective secondary mathematics teachers (hereafter referred 
to as students) enrolled in an undergraduate secondary mathematics education program in the 
southeastern U.S. The students were juniors to seniors in credits taken and had completed at least 
one mathematics course past an undergraduate calculus sequence. We chose the students on a 
volunteer basis and selected volunteers based on their availability. We conducted three 
approximately 75-minute semi-structured clinical interviews (Ginsburg, 1997) with each student 
facilitated by the lead author and another member of the research team. Each interview included 
tasks designed using the principles we describe below. Successive interviews occurred 
approximately 1.5 months apart over the course of a semester. The time between the interviews 
enabled us to design subsequent interviews based on retrospective analyses of prior interviews.  

We video- and audio-recorded all interviews and digitized student work after each 
interview. The lead author and fellow interviewer recorded observation notes after each 
interview. We analyzed the data with selective open and axial methods (Corbin & Strauss, 2008) 
and conceptual analyses–building models of students’ mental actions that explain their 
observable activity and interactions (von Glasersfeld, 1995). Members from the research team 
(the author team and additional mathematics educators) identified instances that provided 
insights into each student’s thinking. The research team then viewed these selected instances in 
order to build models of the student’s thinking, which they also compared to the observation 
notes captured after each interview. As the research team developed these characterizations, they 
continually returned to previously identified instances (across all students) to revise or provide 
alternative characterizations based on interpretations of latter instances. This iterative process 
generated themes among characterizations of students’ ways of thinking—those meanings that 
we interpreted to be habitual as defined above—several of which we report in this paper. 

 
Task Design 

We designed a series of six tasks (two per interview) that: (1) provided a dynamic, albeit 
often simplified, situation through video; (2) did not include numerical values for attributes of 
the situation; (3) prompted the student to graph a relationship between two quantities; and (a 
majority of which) (4) prompted the student to create a second graph, either between similar 
quantities or the same quantities under different axes orientations. To illustrate, we used GAG 
(Figure 2) during the second interview with each student. GAG entails a video depicting a point 
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representing a car traveling back and forth on a simplified path between Atlanta and Tampa. 
Reflecting (1) and (2), the task involves a dynamic situation depicted by a video without 
numerical information. Part I prompts the student to graph a particular relationship between two 
quantities (i.e., (3)). Part II, which we presented after the student completed Part I, uses the same 
video and the student graphs a similar relationship with an imposed axes orientation (i.e., (4)). 

In general, (1)-(3) reflects Saldanha and Thompson’s (1998) description of covariational 
reasoning with particular attention to students (potentially) simultaneously coordinating 
magnitudes in the context of both graphs and situations. Slightly modifying Saldanha and 
Thompson’s task, we designed several of our tasks (including GAG) to more likely afford 
students coordinating amounts of change (see Carlson et al., 2002, mental actions) between the 
quantities’ magnitudes. Our decision to design tasks based on principle (4) stems from findings 
from our previous work (Moore, Silverman, Paoletti, & LaForest, 2014) where we identified that 
students’ ways of thinking for functions and their graphs led to perturbations when graphing 
equivalent or related relationships in different axes orientations, or when graphing relationships 
that are non-canonical (e.g., neither quantity monotonically increasing or decreasing) with 
respect to U.S. curricular approaches to functions and their graphs.  
 

Results 

We structure the results around several interrelated habits that constituted students’ ways 
of thinking for graphs. When describing a particular habit, we do not imply that the student 
brought to bear those actions on all graphing situations. Rather, we remind the reader that habits 
are (mental or physical) actions and schemes that a student subconsciously enacts in some (and 
possibly related) situations, or actions and schemes that a student might find difficult not to bring 
to bear on associated situations despite experienced perturbations. 
 
Graphs ‘starting’ along the vertical axis 

Several students constructed a graph by first determining a point along the vertical axis 
and drawing a graph emanating from that point. Often, upon reflecting on their drawn graphs, the 
students conceived their graphs as incompatible with the relationships they intended the graph to 
represent. However, in the moment of drawing the graph, a student ‘starting’ her graph along the 
vertical axis often described her graphing activity in ways that contradicted the relationship we 
perceived the drawn graph to represent (e.g., the student describing that some quantity decreases 
while drawing a graph that we perceived to represent that quantity increasing). 

As an example, we return to GAG Part II (Figure 2).4 Some students immediately marked 
a point on the vertical axis and anticipated drawing a graph from that point (Excerpts 1).  
Excerpts 1. Two students ‘starting’ graphs along the vertical axis. 
[Both Patricia and Andrea have constructed normative graphical solutions to GAG Part I.] 
Patricia: Your distance from Athens starts at zero [plots point at origin] because you’re in 

Athens. Um, so as you get. Mmm, no, you’re gonna start up here [plots point on 
vertical axis but not at origin to represent a non-zero distance from Gainesville as 
Excerpts 2 indicates]. Ignore that [covering origin]. ‘Cause, oh wait, no, stop [crosses 
out second plotted point]. No, you’re here [points to origin]. 

                                                
4 One version of the task used Athens in place of Atlanta as a starting city.  
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Andrea:  We’re in Athens [moves to paper and motions along the vertical axis, marks point at 
origin], as we’re moving away from Athens we're getting closer to Gainesville [draws 
segment starting at the origin moving up and to the right, Figure 5, and explains that 
the quantities change at a constant rate with respect to each other]. 

A notable feature of both students’ actions is that they plotted an initial point by focusing on one 
quantity’s initial magnitude and identifying a point on the vertical axis based on that magnitude. 
Patricia alternated which quantity she considered when plotting the point while maintaining the 
initial point along the vertical axis. Andrea maintained an explicit focus on the distance from 
Athens in determining her initial point. As both students continued, and although they both had 
in mind a (correct) relationship with respect to the situation, they experienced perturbations due 
to their action of ‘starting’ the graph along the vertical axis. We explain Patricia’s sustained 
perturbation in the subsequent section (Excerpts 2). 

 
Figure 5. Andrea’s drawn graph. 

 
Graphs drawn or read left-to-right 

Some students’ ways of thinking entailed the habit of drawing or reading graphs left-to-
right. When constructing a graph, students drew or imagined drawing graphs by ‘starting’ at a 
point (predominantly along the vertical axis) and exclusively moving their pen to the right while 
allowing for vertical movements. The students’ vertical pen movements were either to connect 
previously plotted points (regardless of the order that these points were plotted) or to capture 
variation in one quantity. To illustrate, we present two students’ activities in Excerpts 2. Karen 
was working the task presented by Saldanha and Thompson (1998), which includes graphing 
how a traveler’s distances from two cities covary (see Figure 6 for animation and a sketch of a 
normative graph). Patricia’s condensed work is a continuation of that in Excerpts 1.  

  
Figure 6. City Travels animation and sketched graph (modified from Saldanha and Thompson, 

1998), an alternative of which used Dekalb in place of Decatur. 
Excerpts 2. Two students drawing graphs left-to-right. 
[Karen has plotted five points corresponding to locations during the trip. She plotted the points 
in the order we have annotated in Figure 7a.] 
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Karen:  Okay, wait. This one [pointing at the leftmost point she plotted] was when he’s closest 
to Lawrenceville, which happens first [labels the point ‘1’], then this one [labels the 
next leftmost point ‘2’, moves pen to the third leftmost point] so it’s something like 
that [making a sweeping motion indicating a curve connecting the points from left-to-
right in the manner we have annotated in Figure 7b]. 

Patricia:  [Patricia has now determined an initial point that is not at the origin but is along the 
vertical axis. She motions as if drawing a segment sloping downward left to right 
from this point that she later crosses out—see the crossed out point on vertical axis in 
Figure 7c] I wanted to show that the distance was decreasing [motioning down and to 
the right from the point plotted on the vertical axis], but that means that your distance 
from Athens is decreasing [tracing vertical axis from the initial point to the 
origin]…But your distance from Athens is growing. But your distance from 
Gainesville is decreasing. So, if that’s growing and that’s decreasing, so [draws an 
arrow pointing downward beside horizontal axis label and then an arrow pointing 
upwards beside the vertical axis label, Patricia then works for six additional minutes 
without making progress before having an insight]…Oh, what if I started it like here 
[plots point on the right end of the horizontal axis]. Okay…but I don’t want to start 
like, like I don’t like starting graphs. You know, I don’t know. Work backwards. 
That’s weird…[in the next minute and a half Patricia draws in what we perceive to 
be a correct initial segment of the graph]… my graph is from right-to-left, which is 
probably not right…Backwards is traveling from right-to-left. But I think my graph is 
just, I think I’m just not clicking. I think I’m missing something.  

We highlight Karen’s immediate move to imagine connecting the points from left to right after 
ordering two points from left to right (Figure 7b), an order that contradicts the order she created 
the points (Figure 7a) and the order with respect to the animation. Karen did not show signs of 
considering how the quantities’ magnitudes vary between those paired magnitudes (within the 
situation or graph). Upon plotting the points, Karen’s activity shifted from representing paired 
magnitudes to producing a trace that figuratively joined the plotted points from left-to-right.  

 
(a)     (b)    (c) 

Figure 7a-c. Karen’s annotated work (a-b) on the City Travels task and Patricia’s work (c) for the 
first portion of GAG Part II. 

Whereas Karen did not appear to hold in mind a covariational relationship that she 
intended her graph to represent, Patricia had a developed image of how the two relevant 
quantities’ magnitudes covaried with respect to the situation. However, she experienced a 
sustained state of perturbation in creating her graph. On one hand, after nearly ten minutes of 
careful activity (which is notable due to her graphing a similar relationship in an alternative 
orientation on Part I that she recalled and reproduced in the lower right of Figure 7c), Patricia 
produced what we perceived to be a correct graph by thinking of the graph emergently (Figure 
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7c). On the other hand, she reluctantly drew her final graph and then remained perturbed by her 
completed graph due to figurative aspects (e.g., where the graph “started” and having to “work 
backward” or “right-to-left”) that were not compatible with her ways of thinking for graphs. 
 
Graphs pass the ‘vertical line test’ 

Related to researchers’ (Carlson, 1998; Leinhardt, Zaslavsky, & Stein, 1990) 
observations that students’ predominant meaning for function in the context of graphs is the 
vertical line test, some students’ ways of thinking for graphs involved students anticipating that 
their drawn graph must pass the vertical line test (i.e., a graph such that each abscissa value or 
magnitude only corresponds to only one ordinate value or magnitude). In some cases, the 
students’ anticipations were related to drawing graphs exclusively left-to-right. The students 
understood that drawing a graph exclusively from left-to-right necessarily produces a graph that 
passes the vertical line test. However, anticipating a graph as satisfying the vertical line test also 
emerged when students could anticipate graphs as being drawn left-to-right or right-to-left. To 
illustrate, consider Tara’s and Alisha’s work on GAG, Part II (Excerpts 3).  
Excerpts 3. Two students considering graphs that do not pass the vertical line test. 
Tara:  [Referring to traveling on the semicircular path] Your distance from Gainesville isn’t 

changing but your distance from Athens is [silence for 10 seconds]. That makes me 
uncomfortable [laughs]. 

Int.: What makes you uncomfortable?  
Tara: ‘Cause right here [motioning at the car as it moves around the semicircular arc] your 

distance from Gainesville isn’t changing but your distance from Athens is 
changing…I’m gonna have to like [making vertical motion representing having to 
draw a vertical segment]. I know it’s not supposed to be a function and it doesn’t 
matter but it still makes me uncomfortable [laughs] to graph things all weird on the 
vertical axis. [Hesitantly draws dots aligned vertically, but not a continuous segment, 
see Figure 8a]  

[Alisha has plotted five points with three points corresponding to positions on the semicircular 
path, see Figure 8b.] 
Alisha:  So, that’s weird [motions pen indicating segment that would be drawn if she 

connected the three points]. I don’t wanna connect those dots, but, [laughs softly] I 
really don’t like that…I just don’t like that [connects all the points of the graph in 
order from start of trip to end of trip, see Figure 8c] my graph looks like this…I 
dunno. If I was taking a test and I drew that [quickly motions the pen over the graph 
in the direction she had connected the points] I’d feel like my answer was wrong. 

 
(a)        (b)    (c) 

Figure 8a-c. Tara (a) and Alisha (b-c) creating graphs with a vertical segment. 
Both students had in mind relationships they intended to represent (i.e., the distance from 
Gainesville remaining constant as the distance from Athens increases), but their ways of thinking 
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for graphs entailed some habit that they found difficult not to bring to bear when constructing a 
graph containing a vertical segment. Both students ended the task unable to reconcile the conflict 
they experienced between thinking that the graphs represented the correct relationship and 
thinking that the graph entailed figurative aspects that they considered to be incorrect. 
 
Graph features representing some perceived aspect or phenomenon 

Iconic interpretation refers to a student associating the physical appearance of a situation 
with the physical appearance of a graph (Leinhardt et al., 1990). More generally, students in our 
study frequently sought to represent some perceptual aspect or physical experience associated 
with the situation using figurative aspects of their graphs. At times, students’ associations were 
iconic in nature (e.g., drawing a graph curved because a Ferris wheel is curved). At other times, 
students’ associations were based in some perceived phenomenon or attribute of the situation 
that often involved attributes of motion (but not based in the explicit coordination of varying 
quantities). Thompson (2015) referred to these as thematic associations. A notable example is 
that many students drew a graph composed of linear segments to represent an object traveling at 
a constant speed despite their identifying that neither axes represents elapsed time (see GAG); 
these students argued that they needed to change drawn graphs (e.g., either the slope or 
curvature) if the speed of the car changed. A second example entailed students creating graphs 
that included perceptual records (e.g., a horizontal segment) of an object pausing in motion 
despite neither axis representing elapsed time. Patricia explained, “I wanna say kinda like the 
curved one, kinda like that one [her graph corresponding to the situation of the ride without 
pauses], but I just want like, breaks, like breaks in the graph.” Patricia then sought to create a 
graph with visual “breaks” in order to convey the “breaks” in motion.  

 
Graphs as emergent traces of covariation 

Another way of thinking that some students brought to bear repeatedly (although not 
exclusively; see Tara, Excerpts 3) entailed conceptualizing graphs in terms of emergent traces of 
covariation; their ways of thinking for graphs entailed the habit of coordinating and uniting two 
magnitudes represented along the axes so that figurative elements entailed in drawing a graph 
were secondary to their reasoning covariationally. Excerpts 4 provide two examples of students 
envisioning graphs as emergent traces. Amy and Tara are both constructing a graph after 
conceiving how the surface area and height of a growing and shrinking cone covary (Figure 9). 

 
Figure 9. The changing cone.  

Excerpts 4. Students thinking of graphs as traces of covariation. 
Amy: [Amy has draw diagrams illustrating how the surface area changes for successive 

equal changes in height, Figure 10a-b]. So that means for equal changes in height, the 
change in surface area increases. [Amy draws axes labeled as depicted in Figure 10c]. 
So for equal changes in height [marks equal changes along horizontal axis and draws 
a curve], I want to see [draws in vertical segments to verify changes in the vertical 
quantity increasing for corresponding successive changes along the horizontal axis, 
Figure 10c] increased changes in surface area. 
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Tara: So, for some change of height [marks point on horizontal axis; see Figure 11a, it 
changes like, let’s make that smaller [marks point closer to the origin on horizontal 
axis]. It changes some. And then we have like another change in height, and it’s 
gonna grow a lot more. So, there’s where it is [draws a point on her graph and 
connects the point with line from the origin as in Figure 11a]. And then for another 
change in height [adds a tick mark along horizontal axis], it’s gonna grow a lot more 
[plots second point on graph] and a lot more [adding another mark along horizontal 
axis and then another point above it in her graph, Figure 11b]. So I think it would 
look something like concave up [connects her points and makes sweeping concave up 
motion with hand, Figure 11c].  

 
(a)                                  (b)                                   (c) 

Figure 10a-c. Amy’s  emergent traces of covariation. 

 
(a)                                  (b)                                   (c) 
Figure 11a-c. Tara’s emergent traces of covariation. 

We note a few important features of each student’s actions that we take to indicate her thinking 
about her graphs in terms of covarying magnitudes. First, Amy and Tara focused on coordinating 
magnitudes among different instantiations of the situation to draw conclusions about how the 
quantities change in tandem. They then drew a graph while focusing on how their graph 
represented a relationship within its respective coordinate system equivalent to that they 
conceived as constituting the situation. Second, neither student’s understanding of her graph was 
mediated by reasoning about specified values or formulas. Rather, they both exhibited actions 
that suggest their reasoning about quantities’ magnitudes within the respective representational 
contexts (e.g., the situation and the graph). Lastly, any indication to a figurative aspect of their 
graphs only occurred in reference to representing some identified relationship; the figurative 
aspects of their graphs were implications of and subordinate to their conceived relationships. 
  

Discussion 

Notably, the students’ difficulties rarely stemmed from underdeveloped images of 
situations as some researchers have reported elsewhere (see Carlson et al., 2002; Moore & 
Carlson, 2012). Instead, the students’ difficulties more frequently stemmed from their ways of 
thinking for graphs limiting their ability to represent relationships they conceived to constitute 
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some situation. Carlson et al. (2002) alluded to a similar observation relative to calculus 
students’ covariational reasoning, explaining, “We have provided examples of students who 
appeared to be able to apply covariational reasoning…in a kinesthetic context but who were 
unable to use the same reasoning patterns when attempting to construct a graph…for these 
situations” (p. 376). Our results provide insights into particular ways of thinking that can lead to 
students experiencing difficulties graphing relationships they have conceived constituting some 
situation; students’ ways of thinking for graphs can entail problematic habits rooted in figurative 
elements of thought. 

In some cases, students’ figurative elements of thought entailed issues of perceptual 
shape (e.g., a graph is not composed of a vertical segment). In other cases, students’ elements of 
thought were dominated by the sensorimotor experiences of drawing a graph (e.g., a graph is 
drawn or read from left-to-right). Regardless, we interpret these instances to be compatible with 
Moore and Thompson’s (2015) description of students’ static shape thinking. That is, a student 
thinking of a graph figuratively entails her assimilating a graph as an object in and of itself, thus 
foregrounding perceptual properties and sensorimotor experience. This thinking stands in 
contrast with a student maintaining an image of a graph as an emergent trace constituted 
simultaneously by two attributes with properties of shape and sensorimotor experience merely 
being a product of uniting those attributes. Our results corroborate researchers’ (Carlson et al., 
2002; Moore & Thompson, 2015) conjecture that ways of thinking that foreground 
understanding graphs as emergent traces of covarying quantities are more productive for 
accommodating novel situations and relationships than those ways of thinking that foreground 
figurative thought. The mental operations that constitute thinking emergently are, at their most 
fundamental bases, akin regardless of the produced trace and properties of its shape (Thompson, 
2011). On the other hand, ways of thinking for graphs that foreground recalling a repertoire of 
memorized shapes and properties of figurative thought (e.g., graphs passing the vertical line test 
or graphs being traced left-to-right) are constrained to those situations that are compatible with 
these shapes and properties.   

Another notable finding that underlies several of the habits provided above is students’ 
propensity to focus on one quantity’s magnitude without a persistent and explicit focus on a 
second quantity’s magnitude. For instance, a student ‘starting’ her graph along the vertical axis 
typically entailed her considering one quantity’s magnitude when determining the ‘starting’ point 
(see Patricia and Andrea, Excerpts 1), with Patricia alternating between which quantity she 
considered when determining the point. In the case of drawing or reading a graph left-to-right, 
several students’ activities implied their having an explicit focus on variation in one quantity’s 
magnitude (i.e., the quantity represented along the vertical axis) without attending to explicit 
variations in the other quantity’s magnitude (i.e., the quantity represented along the horizontal 
axis). Covariational reasoning entails the formation of a multiplicative object through the explicit 
and persistent tracking of two quantities’ magnitudes so that these magnitudes are understood as 
varying simultaneously (Carlson et al., 2002; Saldanha & Thompson, 1998; Thompson, 2011). 
Our observations of the aforementioned habits suggest these students did not maintain an explicit 
and persistent image that a change in one quantity necessitated a change in another quantity, or 
that a particular magnitude in one quantity necessarily implied a particular (or possibly several) 
magnitude(s) in another quantity. 

Lastly, we find the results notable given the extent that some students were unable to 
reconcile perturbations that stemmed from their constructing a graph they conceived to represent 
an intended relationship that simultaneously contradicted ways of thinking for graphs based in 
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figurative thought. In these cases, the students questioned the correctness of their graphs (see 
Patricia, Excerpts 2; Tara and Alisha, Excerpts 3). Piaget (2001) described that a key feature of 
operational intelligence is that it dominates and transforms elements of sensorimotor experience. 
Thus, we find the students’ difficulties in reconciling their states of perturbation significant and 
illustrative of the extent that particular perceptual features and sensorimotor experiences were 
habitual (i.e., durable and somewhat implicit) to their use of graphs. 

 
Closing Remarks 

A limitation of the present study is that it was conducted with 10 undergraduate students. 
We suggest that researchers investigate other populations’ responses to tasks designed like the 
ones in this manuscript. The results of such investigations will not only provide insights into 
those populations’ ways of thinking for graphs, but they will also provide points of comparison 
for our reported findings. Second, we suggest that researchers both within the U.S. and 
internationally investigate similar populations to the one reported on here. Researchers who 
extend this work will provide insights into ways of thinking including comparisons to and 
extensions of those ways of thinking and habits reported here. One interesting point of 
comparison would include characterizing differences and similarities among students in various 
countries, demographics, and academic experience. 
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Reinventing the Multiplication Principle 
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Counting problems offer opportunities for rich mathematical thinking, yet students struggle 

to solve such problems correctly. In an effort to better understand students’ understanding of a 
fundamental aspect of combinatorial enumeration, we had two undergraduate students reinvent 
a statement of the multiplication principle during an eight-session teaching experiment. In this 
presentation, we report on the students’ progression from a nascent to a sophisticated statement 
of the multiplication principle, and we highlight two key mathematical issues that emerged for 
the students through this process. We additionally present potential implications and directions 
for further research. 
 
Key Words: Combinatorics, Reinvention, Counting problems, Teaching experiment 

 
Introduction and Motivation 

The multiplication principle (MP), called by some “The Fundamental Principle of 
Counting” (e.g., Richmond & Richmond, 2009), is a fundamental aspect of combinatorial 
enumeration. Broadly, it is the idea that for independent stages in a counting process, the number 
of options at each stage can be multiplied together to yield the total number of outcomes of the 
entire process. It is foundational to many of the counting formulas students learn and is also a 
much-needed source of justification for why these counting formulas work as they do. In spite of 
its importance, little has been studied about the MP in and of itself. In order to better understand 
student thinking about the MP, we had two undergraduate students reinvent a statement of the 
MP over the course of an eight-session teaching experiment (Steffe & Thompson, 2000). In this 
paper, we describe their overall reinvention process, presenting their progression of statements. 
We also introduce and discuss a handful of mathematical issues that are entailed in the MP and 
that arose for the students (specifically, the independence of stages in a counting process and the 
need to count distinct composite outcomes). We seek to address the following research goals:  

1. Describe a pair of students’ trajectory as they reinvent a statement of the MP, and, in so 
doing,  

2. Present mathematical issues in the MP to which the students attended as they reinvented 
the statement. 

 
Research about the MP in Combinatorics Education Literature 

Previous work has demonstrated the importance of the MP in counting (e.g., Lockwood & 
Caughman, 2015; Lockwood, Swinyard, & Caughman, 2015), and the lack of a well-developed 
understanding of the MP appears to be a significant problem and hurdle for students, particularly 
in terms of their ability to justify or explain formulas. We have found that students can easily 
assume that they understand the MP in counting because multiplication is a familiar operation for 
them. As a result, they use the operation frequently but without careful analysis, and they tend 
not to realize when simple applications of the operation are problematic. Kavousian (2008) 
suggested that students may conflate operations like addition and multiplication. Although her 
work does not speak directly to the multiplication principle, it gives evidence that students 
perhaps do not necessarily understand appropriate operations to use, and this suggests that their 
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understanding of the multiplication principle is not robust. In addition, a number of authors have 
documented issues that students face in determining the appropriate combinatorial operation, 
such as permutations or combinations, to use in a given situation (e.g., Batanero, Navarro-
Pelayo, & Godino, 1997; Dubois, 1994; Fischbein & Gazit, 1988). Given that the multiplication 
principle is an underlying component of each of these formulas again suggests, even obliquely, 
that the lack of a solid understanding of the MP could negatively affect understanding of these 
broader formulas.  

Lockwood, Swinyard, & Caughman (2015) conducted a study in which students reinvented 
basic counting formulas, and the students in that study did not appear to have a solid 
understanding of the MP. They worked with outcomes empirically but lacked the understanding 
of how those outcomes related to the underlying counting process involved with the MP. These 
authors concluded that their findings indicate that, “the students’ work was, surprisingly, not 
based on the multiplication principle, but instead it was almost entirely based on empirical 
patterning” (p. 56). In addition, Lockwood, Reed, and Caughman (2015) recently conducted a 
textbook analysis that examined statements of the MP in university combinatorics and discrete 
mathematics textbooks (relevant details are outlined in the Mathematical Discussion section 
below). This study revealed a variety of statement types, raising questions about necessary 
components of the MP and what kind of statement might be most effective pedagogically for 
students. All of the studies mentioned above emphasize that the MP is an important aspect of 
counting and suggest the need for more research that targets students’ understanding of the MP 
as a fundamental counting process. 

 
Theoretical Perspectives 

In this section we first discuss reinvention and our general adherence to a view that values 
students’ mathematics. Then, we explore mathematical issues related to the MP in order to 
provide motivation for our study and to facilitate subsequent discussions of student reasoning 
about the MP. 

Reinvention. Gravemeijer, Cobb, Bowers, and Whitenack (2000) describe the heuristic of 
guided reinvention as “a process by which students formalize their informal understandings and 
intuitions” (p. 237). From this perspective, students can formalize ideas through generalization of 
their previous mathematical activity. We had students reinvent statements of the MP because we 
felt this would allow students to meaningfully understand and articulate a statement, giving us 
insight into how students come to understand the MP. This is a different approach than first 
teaching them about the MP and then asking them questions about it. We adopt this approach 
because we value how students reason about mathematical ideas, and we feel we can learn about 
students’ reasoning by observing how they come to reason initially about an idea. This is in line 
with other researchers who have used principles of reinvention to gain insight into students’ 
reasoning about a particular concept or definition (e.g., Larsen, 2013; Oehrtman, Swinyard, & 
Martin, 2014; Swinyard, 2011). 

Mathematical Discussion. Lockwood, Reed, and Caughman (2015) studied 64 different 
textbooks and found a wide variety of statements of the MP (Figures 1, 2, and 3 below all 
represent differing formulations of the MP), and this variety is surprising given how fundamental 
the MP is to counting. The wide range of statements raises questions about what mathematical 
issues should be handled by a statement of the MP, whether various statements are 
mathematically equivalent, and whether or not there is a particular MP statement (or kind of 
statement) that would be most appropriate for students to be taught.  

19th Annual Conference on Research in Undergraduate Mathematics Education 32

19th Annual Conference on Research in Undergraduate Mathematics Education 32



Generalized Product Principle: Let be finite sets. Then the number of k-tuples (x1, 
x2,…, xk) satisfying   is . 

Figure 1 – Bona’s (2007) statement of the MP 
The Product Rule: Suppose that a procedure can be broken down into tasks. If there are n1 
ways to do the first task and n2 ways to do the second task after the first task has been done, then 
there are n1n2 ways to do the procedure. 

Figure 2 – One of Rosen’s (2007) statements of the MP 
The Multiplication Principle: Suppose a procedure can be broken down into m successive 
(ordered) stages, with r1 different outcomes in the first stage, r2 different outcomes in the second 
stage, …, and rm different outcomes in the mth stage. If the number of outcomes at each stage is 
independent of the choices in the previous stages, and if the composite outcomes are all distinct, 
then the total procedure has  different composite outcomes. 

Figure 3 – Tucker’s (2002) statement of the MP 
Statement types. Lockwood, Reed, and Caughman (2015) identified three different kinds of 

statements: structural, operational, and bridge statements. This categorization is based on 
Sfard’s (1991) distinction between structural and operational conceptions. In terms of the MP, 
Lockwood, Reed, et al. (2015) defined a structural statement as a statement that “characterizes 
the MP as involving counting structural objects (such as lists or k-tuples)” (p. 20). Bona (2007), 
Figure 1, is an example of a structural statement, because k-tuples are being counted and there is 
no explicit connection to a process that generates the k-tuples. An operational statement is 
defined as a statement that “characterizes the MP as determining the number of ways of 
completing a counting process” (p. 20), because the things that are being counted are operational, 
like ways of completing a process or procedure. Rosen (2007), Figure 2, is an example of an 
operational statement, because the nature of what is being counted in this statement is the “ways 
of completing a procedure.” Finally, a bridge statement is a statement in which the nature of 
what is being counted list structural, but there is a clear link in the statement to a process that 
generates those objects. Specifically, such statements simultaneously characterize the MP “as 
counting structural objects and specifies a process by which those objects are counted” (p. 20). 
Tucker (2002), Figure 3, is a bridge statement because it counts outcomes and yet clearly 
connects those outcomes to a procedure that generates them.  

The distinction between these three statement types is relevant because there are 
mathematical implications for statements that are strictly structural or operational statements. 
While we do not delve into the details of these implications, here we emphasize that bridge 
statements are our preferred statement type. Indeed, although bridge statements may initially 
seem overly complicated or wordy, they can be appropriately applied to a wide variety of 
problems while avoiding issues of overcounting. Part of the motivation for the current study, 
then, is to build upon the textbook analysis by actually studying how students think about 
mathematical issues that arose in the textbook statements of the MP. The findings from 
Lockwood, Reed, and Caughman (2015) framed and informed the mathematical issues we 
pursued with the students, and the following section we discuss these key mathematical issues. 

Key mathematical issues in the MP. In the textbook study, there were also a handful of 
mathematical issues that emerged in the statements of the MP. Here we briefly describe two 
mathematical issues in the MP. In the Results section we will describe the students’ reasoning 
about these key ideas, and so we briefly introduce them here to facilitate subsequent discussion. 
First, there is the notion of independence of stages in the counting process, which captures the 

X1,X2,...,Xk  
xi ∈ Xi X1 × X2 ×...× Xk

r1 × r2 ×...× rm
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idea that a choice of options at a given stage does not affect the number of outcomes in any 
subsequent stage. Independence is a necessary condition in order to apply the MP, or else 
overcounting may occur. To see this, we can consider the Language Books problem: You have 4 
different Russian books, 5 different French books, and 6 different Spanish books on your desk. In 
how many ways can you take two of those books with you, if the two books are not in the same 
language?. It may be tempting to solve the problem in two stages: first pick a first book, and 
then pick a second book. Note, however, that in this problem, one cannot simply consider that 
there are just 15 options for the first book in the pair (from 4+5+6 = 15 total books), because 
subsequent books might depend on what language the first book was. To handle this, a correct 
solution may break down the problem into cases according to which pair of languages are being 
chosen. In order to fix this, one can break the problem into cases according to which language 
book was first, arriving at the correct answer or 4*5 + 4*6 + 5*6 = 74). 

Another mathematical issue that arose from the textbook study is that the MP must yield 
distinct composite outcomes, which means that when applying the MP we want to ensure that 
there are no duplicate outcomes. This qualification, too, prevents instances of overcounting. 
Specifically, we need to make sure that there are not multiple counting processes that actually 
yield the same outcome. A problem that highlight this issue is the 3-letter sequences problem 
(found in Tucker, 2002): How many 3-letter sequences made of the letters a, b, c, d, e, f contain 
the letter e, where repetition of letters is allowed?. Note that a tempting (but incorrect) answer is 
to specify a 3-stage process – first, pick where the e can go (3 options), second, since now we are 
guaranteed to have an e, fill in the next available position with any of the 6 letters (6 options), 
and third, fill in the last available position with 6 letters (6 options). There are 3*6*6 = 108 total 
ways to complete the process. However, there is not a 1-1 correspondence between ways to 
complete the process and the number of desirable outcomes. The process overcounts the total 
number of desirable outcomes. For example, consider the sequence eae. It was counted once 
when an e is placed in the first position in the first stage, then the password is filled out with a 
then e. However, it is also counted when e is placed in the last position in the first stage, then the 
password is filled out with e then a. Thus, overcounting can occur if there is not care to have 
distinct composite outcomes of the counting process generated by the MP. These examples point 
to the mathematical subtleties in statements of the MP. 

 
Methods 

Data Collection. We conducted a teaching experiment (Steffe & Thompson, 2000) in which 
a pair of undergraduate students solved counting problems over eight hour-long sessions. The 
sessions were video and audio-recorded. The students were enrolled in vector calculus in a large 
university in the western United States, and they were chosen because they had not been 
explicitly taught about the MP in their university coursework (and thus would not simply try to 
recall a statement of the MP). The interviews took place outside of class time over a period of 
four weeks, with approximately two sessions per week. The students worked together at a 
chalkboard while the researcher and a witness posed problems and, at times, asked clarifying 
questions. The students were encouraged to talk and work together, and they quickly established 
a rapport where they could ask each other questions and probe each other’s thinking.  

The overall structure of the teaching experiment was first to have the students solve a series 
of counting problems. They were then asked to write down and characterize when they were 
using multiplication as they solved these problems, and they wrote down several iterations of 
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statements of the MP throughout the teaching experiment. In the last session they were also 
asked to evaluate textbook statements and compare them with their final statement. 

Broadly, the students engaged in four kinds of activities throughout the teaching experiment 
(summarized in Table 1). First, students solved a set of initial counting problems that involve 
multiplication. The aim was to have them engage in some joint solving of counting problems that 
involved multiplication so they could reflect on when and why they multiplied This occurred 
during Sessions 1 and 2. Second, at the end of Session 2, students were asked to articulate an 
initial statement of the MP – specifically, how they might characterize when to multiply when 
solving counting problems. This resulted in an initial statement of the MP. Then, in Sessions 3 
through 7, the students solved more counting problems and engaged in iteratively refining their 
statements of the MP. During these sessions, the overall aim was to have the students develop 
more sophisticated and rigorous statements of the MP. To facilitate this, the researchers gave 
students new problems in order to target mathematical issues, they asked students to explain their 
thinking, and they encouraged students to use more general language. Then, finally, during 
Session 8, the students were asked to evaluate given textbook statements of the MP.  

Session Emphasis of Session 
1 – 2 Solving initial set of counting problems that involve multiplication 

End of Session 2 Articulating an initial statement of the MP 
3 – 7 Iteratively refining statement of the MP 

8 Evaluating given textbook statements 
Table 1 – Overall structure of the teaching experiment 

 
Data Analysis. The research team transcribed the sessions, and we made enhanced 

transcripts in which images from the video are embedded into the text. The videos and transcripts 
were analyzed so as to construct a narrative about the teaching experiment (Auerbach & 
Silverstein, 2003). Specifically, we read back through the enhanced transcripts multiple times, 
recorded the progression of the actual statements themselves, and documented how they had 
evolved over the sessions. Then, we used prior understanding of the MP that had emerged from 
the textbook analysis to guide our focus of particular mathematical issues, including 
independence and distinct composite outcomes. Key episodes involving mathematical issues 
were flagged and reviewed, and we scrutinized the students’ statements of the MP and their 
explanations for insights about their reasoning. We also examined students’ initial work in the 
sessions prior to articulating their first statement of the MP, with the aim of better understanding 
how they thought about multiplication prior to being asked to characterize when they multiply.  

 
Results 

We organize the results chronologically. We begin by characterizing students’ initial 
conceptions of multiplication during initial problem solving sessions. We then discuss the 
students’ articulation and iterative refinement of statements of the MP in Sessions 3 through 7 
(due to space, we emphasize Sessions 4 and 6). In so doing, we highlight the development of key 
mathematical issues of independence and being attuned to overcounting. Due to space we do not 
share results from Session 8 of evaluating existing textbook statements. 

Students’ initial conceptions of multiplication (Sessions 1 and 2). In Sessions 1 and 2, the 
students were given a number of counting problems that involved multiplication in a variety of 
contexts. During these sessions, we were able to observe the students using multiplication and 
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describing why they were multiplying. In this section, then, we provide evidence of a couple of 
conceptions about multiplication that they respectively possessed.  

The very first problem states, A student is going to complete a True/False quiz with 5 
questions. How many different possible outcomes are there for how the quiz could be answered? 
In answering this question the students almost immediately recognized the answer to be 2^5 = 
32, and we asked how they got the answer. Pat used branching language and a tree diagram to 
reason through why they should multiply. Pat said, “Yeah so you branch, you take the first one 
and you can have two possibilities and each of those possibilities will have two possibilities, 
each of those will have two possibilities,” and he drew out the tree in Figure 4. For Pat, a tree 
representation and the notion of branching was a natural to think about multiplication, and he 
would describe having “options” for different stages in the counting process.  

 
Figure 4 – Pat’s initial branching idea 

Caleb seemed to focus on a different perspective of multiplication, and he brought up the 
notion of multiplication as involving groups, which elicits ideas related to multiplication as 
repeated addition. As evidence of this, we consider the following exchange about the problem 
How many ways are there to arrange 4 people in a line? 
Caleb: I think it's multiplied because they're like groups. So you have your first group and then 

it's like it could be one and two and then that'd be a group (in the first two positions), and 
then one and two here (in the first and third positions) would be another group. So each 
time you go like into another level (he made a gesture like he was alluding to the tree 
diagram) you are grouping them a different way. 

Int.: Ok, and so why does multiplication get at that grouping? Or, why when you're having 
those groups, why multiply? 

Caleb:  I mean multiplication, isn't that just putting things together in groups? 
Thus, we see that options and tree branches were key for Pat, while the idea of groups was 

important for Caleb. These ideas were important for them as they considered and used 
multiplication. They seemed open to each other’s ideas and language, however, and there were 
instances in which the students merged their two ideas together. 

Initial ideas about independence and overcounting. In the first two sessions, there were 
also three issues that started to emerge involving independence and overcounting. These issues 
are central to their refinement of statements of the MP, and we discuss them in more detail 
throughout the paper. However, it is important to highlight some of their initial ways of thinking 
about these mathematical issues early on to get a sense of how they were developed.  

Independence. As noted above in the mathematical discussion section, independence of 
stages in a counting process is a key aspect of a statement of the MP (especially an operational or 
a bridge statement). This came up for students in the Language Book problem discussed above. 
The students started to reason about whether they could just consider 15 options for which book 
is first in the pair, but they soon realized that they could not simply multiply 15 by anything to 
get the answer. As the exchange below shows, they became aware of the issue of dependence. In 
order to fix this, they broke the problem into cases according to which language book was first, 
arriving at the correct answer or 4*5 + 4*6 + 5*6 = 74). 
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Int.: Um so why... so I think I don't, I mean I think your idea of like the fifteen options for the 
first one, why did that break, which I think is a good idea, but what, what about the 
problem made it so you couldn't just do like fifteen times something? 

Pat:  Um because the, whatever you select for the first one, then determines what kind of book 
you can select for the next one.  

Int.:  Okay.   
Pat:  So there are, technically there are fifteen options for the first book, but you have no way 

of knowing if they selected a Russian, French, or Spanish. And so then you don't know if 
you have four times five, or five times six, or six times four as your next option. 

Caleb:  Yeah. 
We will continue to revisit their reasoning of independence and their treatment of it in their 
statements of the MP. The point here is that they had a meaningful experience early on in a 
problem in which independence was introduced, and they seemed to realize the importance of 
accounting for independence in their statement of the MP.  

Overcounting. A second mathematical issue that arose even within the first session was 
overcounting (also described above). In particular, the students were made aware of an 
overcounting error on a problem that states, How many ways are there to place two different-
colored rooks in a common row or column of an 8x8 chessboard? To solve this problem, there 
are 64 options for where to place the white rook, and then there are 14 other spaces for the black 
rook to go.1 Note that in this problem, the fact that the rooks are distinct is important, but the 
choice for whether to start with the white or the black rook does not need to be taken into 
account in the final solution. We can decide either to place the white rook first and then the black 
rook, or vice versa, and in either case the answer will be the same. It might be tempting to 
multiply the answer by 2 to account for whether or not the white or the black rook is first, but 
that is not necessary and in fact will overcount. As we will see in Pat’s discussion below, this is 
difficult to see. Specifically, in this problem, they had correctly considered options for placing 
the rooks, but Pat had multiplied by an additional factor of two for which colored rook was 
placed first. However, the additional multiplication by 2 is not necessary and thus would 
overcount. We brought this to their attention fairly explicitly, and after quite a bit of reasoning 
they did have the following realization: 
Pat: That's a good point. Cause if you're saying you put white rook here, and then selecting to 

put the black rook here, but that would be the same as if saying I selected to put the black 
rook first here and put the white rook there. So it is, everything is being counted twice 
this way. 

There is further evidence that this experience of overcounting was meaningful for them, as 
they subsequently referred to it on other problems. For example, another problem says How 
many different numbers can be formed by various arrangements of the six digits 1, 1, 1, 2, 3?. 
The students referred back to the Rooks problem, which suggests that they were being careful 
about overcounting. 
Pat:  I feel like that's a way to go. Just thinking about it. Cause the 1's are gonna be the same... 
Caleb:  Yeah exactly. So we have how many spots to put a 2 and a 3 that are different?  
Pat:  Yeah, uh… 
Caleb:  Five spots originally then uh four. So five times four?   

																																																								
1 An equivalent is to first select one of 8 rows and then to select one of 8 columns in which to place the white rook. 
Then, there are 14 remaining positions in that row and column for the black rook to go. 

19th Annual Conference on Research in Undergraduate Mathematics Education 37

19th Annual Conference on Research in Undergraduate Mathematics Education 37



Pat:  That equals twenty. Yeah, yeah, that sounds right. That's, uh, will we get the counting 
twice thing like we did with the chess pieces? 

Caleb:  Uh no. Because if we put whatever number it is, so like say we put a 2 here, here, here, 
here, here, then we have to, we have five. 

In sum, the students had a formidable experience in which they were exposed to the issue of 
overcounting. This proved to be a salient point for them to which they returned throughout the 
teaching experiment. We introduce it here to show the genesis of their reasoning about 
overcounting. 

Articulating and refining statements of the MP – An iterative process involving key 
mathematical ideas. We now present work that occurred between the end of Session 2 through 
the end of Session 7. In these sessions the students articulated and then iteratively refined a 
statement of the MP. We describe this process, and we highlight the progression of statements 
and the mathematical issues that arose for students. For the sake of space, we focus primarily on 
Sessions 4 and 6, as these are where most of the development occurred.  

Initial Articulation of a Statement of the MP (Session 2). At the end of Session 2, we asked 
them the following: “So, I'm curious if you can take a stab at characterizing for me, like when 
you use multiplication when you're solving these problems? Um and actually maybe a more 
precise way to ask that is let's say you had to write a rule like you're writing a textbook and 
you're going write a rule for when you're going use multiplication to solve counting problems 
like this.” We encouraged the students to write down a statement, and they each independently 
wrote statements on the board. After some time, Caleb wrote an initial statement (Figure 5): Use 
multiplication in counting problems when…there is a certain statement shown to exist and what 
follows has to be true as well. He explained his work by saying, “Basically I thought it would be 
useful to write big words, I was like you know I'll try that. So I'm saying basically that if you set 
like parameters or something that's shown to exist, like you have something and then you want to 
add on to that. You have to multiply them if you're saying the first one is true.” We observe that 
this statement is a reasonable first step but is far from a rigorous statement of the MP.  

 
Figure 5 – Caleb Statement 1 

 
After the students had written statements in Session 2, we decided to have them solve 

problems involving addition/case breakdowns in Session 3. The goal was that the students would 
be able to make a contrast between problems involving addition and problems involving 
multiplication. The major reason that we wanted to highlight this, though, was because we were 
anticipating that independence would be an important mathematical issue that should be 
incorporated into their statement, and these addition problems highlight the need for 
independence. While we do not provide examples due to space, the students were able to think 
about adding and how it related to an operation like multiplication, and they were able to realize 
that a case breakdown was an effective means by which one could handle issues of 
independence. 

Refining the statement (Session 4). In Session 4, Caleb and Pat spent a good deal of time on 
a particular problem, and they drew heavily on a representation of tree diagrams to reason 
through the problems and to articulate a statement at the end of the session. This enabled them, 
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for the first time, to articulate a mathematically correct insight about why multiplication works. 
As we will see, however, although they made progress toward a rigorous statement there were a 
couple of problematic issues with their statement. Thus, Session 4 represents some significant 
progress wherein they clearly articulated when it is appropriate to multiply, but they struggled to 
identify language that would be meaningful for them. Specifically, Session 4 involved three 
aspects of their reinvention – understanding multiplication as involving equal sized groups, 
struggling with language, and addressing overcounting.  

Understanding multiplication as involving equal sized groups. We began Session 4 by giving 
them the following problem: How many ways are there to flip a coin, roll a die, and select a 
card from a standard deck? Pat connected a solution to his initial views of multiplication, which 
involved options.  
Pat:  I feel like, I feel as if options leading to other options is the way I'm thinking about it.  
Int.:  Ok. So say more about options leading to other options.  
In response, Pat wrote a tree diagram in Figure 6, which shows branching and options leading to 
other options. He and Caleb both seemed to understand that the branching in the tree diagram 
represented the different options for coins, dice, and cards. 
Pat:  Well I think of, you have your initial condition of flipping a coin, which has two 

outcomes, you know heads or tails. And for each time you do that, you then have a dice 
roll no matter what, for each of those dice rolls you have six options. And off of those six 
possible options there will be 52 options for what cards you can pull from a deck. Uh we 
won't do those, but there are options there.  

Int.:  Ok, and 52 for each of those?  
Pat:  Yeah. 
Caleb:  Yes. 

 
Figure 6 – Part of a tree diagram that Pat drew  

 
We interpret that this tree diagram and their discussion surrounding it established a powerful, 
shared representation of multiplication, and they seemed to agree on how this representation 
could be useful in describing when to use multiplication when counting. An interesting 
discussion emerged about the nature of multiplication and how and why it worked on that 
problem. As seen in the exchange below, Caleb noticed an important distinction between 
addition and multiplication. He drew a tree diagram (Figure 7) that has one branch with 5 and the 
other with 6. He noted that this situation would not by symmetric and would thus entail addition 
instead of multiplication. 
Caleb: The way you did this, I don't know this might be towards addition, I was thinking like if 

you have two outcomes that are different, like say so this side there's one and then say 
you have a five sided dice and a six sided dice or something, if it doesn't have symmetry 
then you do addition.  
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Pat:  Ok that's fair.  
Caleb: So like 1, 2, 3, 4, 5, 6. And then there's, it's not symmetrical on either side, so you have to 

end up doing this one plus this one.  
Pat:  Yeah okay. 
Caleb: If that makes sense.  
Pat:  I like that.  
Caleb: So it might have to do with like reflecting or like…(trails off) 
Int.:  Ok awesome.  
Pat:  Yeah I like that. So multiplication is when all groups... 
Caleb:  Are equal.  
Pat:  When all the groups you're talking about are equivalent. Whereas addition is when you 

have you know non equal groups. Different groups.  

 
Figure 7 – A diagram showing non-symmetric branching  

 
This was an important moment for them because it established for them mathematically when 
(and why) it might make sense to multiply versus add (noted in the bold sections of the previous 
excerpt). We then asked them to articulate their ideas into a refined statement, and this proved to 
be challenging for them.  

Struggling with language. The students recognized that they would want to incorporate this 
idea of equal groups into their statement. Notice again they reiterate that they associate equal 
groups with multiplying (in the first bold section). Then, notice that they try to determine if 
groups are equal or not, and they try to articulate some particular language. The second 
underlined passage highlights that they found this to be a difficult task.  
Caleb:  So let's, we've definitely come to the conclusion that if their groups are equal we 

multiply.  
Pat:  If we're, if we're combing equal, if we're combing equal groups we're multiplying.  
Caleb:  Yes. 
Pat:  And if we're combing non equal groups it's mult... 
Caleb:  It's addition.  
Pat:  Yeah addition.  
Caleb:  So for multiplication. How would we decide if they're equal or not?  
Pat:  Ok um. If, if for every possible selection, or for every possible outcome there's the same 

choices after that, for that. 
Caleb:  For every time? 
Pat:  For every possible outcome. Like for, like for the die. For every possible outcome of the 

die there is the same number of cards to select. And the same cards themselves. So like, I 
can, I can figure out how to say the first part.   

Caleb:  Yeah that's exactly, that's how I feel.  
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The students then proceeded to engage in more discussion related to refining of their statements. 
Articulating an appropriate statement for when to multiply continued to be very difficult for 
them, and Caleb noted at one point, “It's so hard to think about. It’s just something we naturally 
do.” They struggled to articulate language and could not come up with a statement they were 
happy with after several stops and starts. Given this difficulty with the language, it is perhaps not 
surprising that they turned to language involving pathways, which was tied to a meaningful 
representation for them. Caleb said, “Um. What about, let's incorporate the pathway in this one. 
So for every possible outcome there's a pathway leading to it.” Caleb then worked on writing 
down a particular statement, and he wrote what is written in Figure 8.  
Caleb:  Alright that's kind of what I'm thinking now. So for each possible pathway to an outcome, 

there's an equal number of options leading to that path.  

 
Figure 8 – The students’ statement involving pathways 

 
At this point, the students had come to an understanding of when multiplication might be 
appropriate in terms of groups, and although they struggled to articulate language, they arrived at 
a statement involving “pathways” language. However, there was still more for them to consider 
in refining their statement.  

Addressing overcounting. The statement in Figure 8 addresses some issues but was still 
susceptible to overcounting, as there is nothing in the statement that would prevent them from 
overcounting on the Language Books problem, for example. To address this, I asked them to 
revisit the Language Books problem. This had the effect of highlighting overcounting, and the 
following exchange suggests that they did not want to allow for outcomes to be counted more 
than once. 
Caleb:  Alright, well I mean that would be without repeating the same pathway. But we still have 
to talk about how the pathway is multiple different outcomes. But. 
Int.:  [to Pat] Do you see what he's saying there? 
Pat:  Yeah I see what's going on.  

 
Figure 9 – The students’ pathways statement after considering overcounting 
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There are a couple of conclusions to draw from Session 4. First, in terms of them actually 
really reasoning about multiplication and why it works, they made good progress due to the tree 
representation. The idea that multiplication could be thought of as entailing equal groups seemed 
to be solidified for them, and they wanted to consider an equal number of options as they 
progressed through. We would argue that the representation itself was an important part of them 
coming to reason about multiplication in this way. However, in spite of the progress they made 
during this session their struggle to come up with particular language or terminology seemed to 
hinder their progress. So they emerged with a statement that was understandably specifically tied 
to the given representation, but one with which we were not ultimately satisfied.2  

Developing a mathematically rigorous statement (Sessions 6 and 7). In Session 6, the 
students made substantial progress toward a correct and rigorous statement of the MP. There are 
two things that happened in Session 6 that we feel contributed to their refinement of their 
statement.  First, we explicitly asked the students to be more general in their language (moving 
away from “pathways” language of Session 4). This led them to almost immediately come up 
with language of options, selections, and outcomes, which they were able to clearly define and 
use. We pushed them to articulate what they meant by these terms at each step along the way, 
and this difficult yet valuable refinement of language proved to be helpful for them. Second, the 
students wrestled through the mathematical idea of independence, in particular a distinction 
between independence of the number of options and not necessarily the options themselves. This 
engagement with powerful and nuanced mathematical ideas seemed to help solidify their 
understanding of the statement of the MP and how and why it might need to be refined. Through, 
they produced the following statement at the end of Session 6 (Figure 10): “If for every selection 
towards a specific outcome, there is no difference in the number outcome, regardless of the 
previous selections, then you multiply the number of all the options in each selection together to 
get the total number of possible outcomes.” 

 
Figure 10 – The students’ statement at the end of Session 6 

 
Then, in Session 7 we asked the students for further clarification of language. This led them to 
offer definitions for “selection,” “option” and “outcome,” which was very productive. 
Specifically, they defined selection as “when a choice has to be made”; option as “one of the 
possible choices for a selection”; and outcome as “one unique combination of all chosen 
options.” This language, which they continued to use consistently throughout the rest of the 
teaching experiment, was helpful as they continued to reason about their statement. Figure 11 
shows how they see the relationship between selections, options, and outcomes.  
																																																								
2 We do not discuss Session 5 in depth, in part because we are restricted by space, and also because it is tangential to 
the story of the students’ the reinvention of the MP. After the students had made significant progress in Session 4, 
we expected that we could give them a couple of additional tasks that would help to generalize their language 
(beyond the pathways language). However, we went down an unexpected rabbit trail in this session, as the students 
focused on order and introduced a less productive representation of the MP. Session 5 came and went with no 
change to their statement of the MP.  
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Figure 11 – The interaction between selections, options, and outcomes 

 
Finally, in Session 7 they arrived at the last statement, given in Figure 12. They added the word 
“unique” after we prompted them again to consider how overcounting might occur. Specifically, 
we had them revisit a problem that involved overcounting (the 3-letter sequences problem), and 
they realized that they wanted their statement to explicitly account for potential overcounting. 
We had the following exchange, and they added the word “unique” to their previous statement. 
This is a way of taking care of the overcounting issues. 
Caleb:  We could say without any repeated outcomes.  
Int.:  Ok. Say more about that.  
Caleb:  So our problem here is where we're getting like a repeated outcome. If we say um.  
Pat:  Oh hey we already have specific outcome in there.  
Caleb:  Yeah. 
Pat:  So how about we say specific unique outcome? 
Caleb:  Yeah.  

 
Figure 12 – The students’ final statement 

 
 
With this work, Pat and Caleb arrived at a final statement of the MP. In terms of the statement 
types identified in Lockwood, Reed, and Caughman (2015) this is a bridge statement, because 
they are counting something structural (“the total number of possible unique outcomes”), and yet 
those outcomes are tied to a process of making selections. Thus, we note that the students’ 
statement aligned with a bridge statement. And, although we do not have time to provide details, 
the students were able to make sense of a number of statements we gave to them. In particular, 
they interpreted Tucker’s (2002) bridge statement, from Figure 3 above. They were able to make 
sense of the statement and relate it to theirs. Caleb said, “That kinda gets back to ours. It 
addresses the independent choices and the unique outcomes.” And said “ So each R1 would be 
the selection and then the sub N M and yeah that's what they used, are like the sub things, would 
be their options. So this stage would be their selections, and the outcomes in this stage are the 
options.” He concluded by saying “I think   if we broke down each of ours we could basically 
reword them to be the same.”  

19th Annual Conference on Research in Undergraduate Mathematics Education 43

19th Annual Conference on Research in Undergraduate Mathematics Education 43



 
Conclusion and Implications 

To summarize our findings, we present the students’ broad progression of statements of the 
MP (Table 2). They key sessions in their reinvention were 2, 4, and 6-7.  

Session Statement 
 

2 
#1 – Use multiplication in counting problems when… there is a certain 
statement shown to exist and what follows has to be true as well.  

 
4 

#2 – For each possible pathway to an outcome there is an equal number 
of options leading to that path but without repeating the same pathway 
more than once.  

 
 

6-7 
 

 #3 – If for every selection towards a specific outcome, there is no 
difference in the number outcome, regardless of the previous selections, 
then you multiply the number of all the options in each selection together 
to get the total number of possible unique outcomes. 

Table 2 – The students’ progression toward a statement of the MP 
By having students reinvent a statement of the MP, and by closely analyzing aspects of 
multiplication to which they attend, we gain insight both into how students reason about the MP, 
and also how productive reasoning about the MP might be developed. In particular, by engaging 
with particular tasks, the students we worked with were able to come to reason about key 
mathematical aspects of the MP (such as independence and unique outcomes) that they wanted to 
include in their statement of the MP. In addition to insights about how they come to understand 
particular mathematical ideas, we can draw a couple of key conclusions from their overall 
progression from to a final statement.  

First, we have an existence proof that it is possible for students to develop, through guided 
reinvention, a mathematically rigorous statement of the MP. It is not trivial to characterize many 
of the subtle mathematical details of the MP, and it is impressive that the students were able to 
do so. Second, we see that although they were able to accomplish this task, characterizing when 
to use multiplication in solving counting problems was not a straightforward activity. This is 
demonstrated most clearly in their first statement, which shows that even after they had 
successfully used multiplication in counting problems for two sessions, they still struggled with 
articulating a formal/general statement about it.  

Our findings suggest a couple of implications. First, as a fundamental aspect of counting, the 
MP is invaluable, yet potentially challenging, for students to understand well. Although it deals 
with a familiar operation, it entails subtle mathematical features, which might take time and 
effort for students to learn. In terms of research, we plan to continue to explore what might be 
entailed in a robust understanding of the MP, which includes interviews with more students and 
also with mathematicians. Based on our findings from this study, especially insights about 
understanding independence and distinct composite outcomes, we can look to design 
instructional interventions that might draw students’ attention toward such ideas. 

Pedagogically, more work is needed to more carefully evaluate how best to teach the MP to 
students in a classroom setting, but our findings suggest that it may be worthwhile to unpack 
some key mathematical issues of the MP with students. Instructors should appreciate and seek to 
understand the mathematical details in the MP and should help students think carefully about 
when multiplication properly applies in counting situations. 
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Developing mathematical knowledge for teaching in content courses for pre-service 
elementary teachers 
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Abstract.  The article reviews efforts of three iterations over the course of three semesters in 
developing a written assessment of the mathematical knowledge for teaching (MKT) of pre-
service elementary teachers enrolled in a course on number and operations.  Content addressed in 
the items discussed in the article include discourse knowledge (DK) coupled with specialized 
content knowledge (SCK).  Results show that the pre-service teachers can engage in reasoning 
and justification up to a point and use their discourse knowledge in novel ways and situations, 
though there appear to be limits in their constructive process. 
 
Key Words: Mathematical Knowledge for Teaching, Mathematical Discourse, Reasoning, 
Justification 
 
Background and Research Questions 
          A central tenet of teacher education research has long been identifying the types of 
knowledge that teachers need to know in order to teach mathematics.  Such attempts date back to 
Shulman’s (1986) original proposal of a new type of knowledge that he called pedagogical 
content knowledge (PCK), defined as “the particular form of content knowledge that embodies 
the aspects most germane to its teachability” (p. 9).  Since then, research teams such as Hill, Ball 
and Schilling (2008) and Hauk, Toney, Jackson, Nair, and Tsay (2014) have worked to 
conceptualize PCK.  Ball and company have developed typologies for the much broader realm of 
mathematical knowledge for teaching (MKT), shown in figure 1, for which PCK is a 
subconstruct.  Note that the left half of the oval consists of subject matter knowledge (SMK) 
which they claim requires no knowledge of students, thereby distinguishing it from the right half 
which is PCK.  It is worth noting that the Ball model is specifically designed for the K-8 setting; 
this is important because as Speer, King, and Howell (2014) note, generalizability comes into 
question when trying to apply the model outside of the K-8 context. 
 Within the Hill, Ball, and Schilling (2008) model, common content knowledge (CCK) is 
defined as “knowledge that is used in the work of teaching in ways in common with how it 
is used in many other professions or occupations that also use mathematics”(p.6). 
In contrast, specialized content knowledge (SCK) is specialized in the sense that it is specific 
to the task of teaching.  SCK includes various ways to represent mathematical ideas, provide 
mathematical explanations for rules and procedures, and examine and understand innovative 
solution strategies (Hill et al., 2008, p.377).  As an example, consider fraction division.  Most 
middle school graduates can readily use the invert-and-multiply algorithm to divide fractions. 
Thus, this piece of knowledge is CCK.  Yet, few can explain to a novice learner why the 
algorithm exists in school mathematics nor why it is justified, thereby making this particular 
piece of knowledge SCK.  Within the realm of PCK are knowledge of content and students 
(KCS) and knowledge of content and teaching (KCT).  KCS is  
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 Figure 1.  Domain Map for MKT (Hill et al, 2008) 
 
“content knowledge intertwined with knowledge about how students think about, learn, or know 
this particular content” (p. 375), while they define KCT as a knowledge of teaching moves.  So, 
using our division of fractions example again, a teacher who is aware that students often invert 
the dividend instead of the divisor is demonstrating KCS, and might use fraction diagrams as a 
way of scaffolding student understanding of division of fractions by using her KCT. 

Implicit in the use of KCS and KCT is an awareness of the words, grammar, syntax, and 
forms of standard mathematical language in use – what Gee (1996) calls the “little d” discourse 
of mathematics. Also at work in the teaching of mathematics are nuances about what is valued in 
mathematical discourse in a mathematics class (as opposed to mathematics in a physics or 
biology class), the socio-mathematical norms for questions and answering, and myriad other 
interactions that make a mathematics lesson recognizable in an instant (e.g., by someone 
listening in or looking through the window of a classroom for just a few seconds). This kind of 
situated “little d” discourse is what Gee called “big D” Discourse. Hauk, Toney, Jackson, Nair, 
and Tsay (2014) have brought these ideas into a further unpacking of the components of PCK. 
The extended model, shown in Figure 2, adds a fourth dimension to PCK called Knowledge of 
Discourse (KD).  Hauk et al. argue that effective teaching of mathematics includes facilitating 
student learning of mathematical discourse (along with other discourses), which we define as 
Discourse about mathematics that is enacted in the classroom when students and teacher engage 
in mathematically appropriate, accurate, and effective communication situated in the context of 
reasoning and justification of mathematical ideas.  Clearly, a rich and textured Knowledge of 
Discourse is required for teachers to use and promote the valued mathematical skill of 
justification: engaging in reasoning about and explaining how one knows something is true 
(Cioe, King, Ostien, Pansa, and Staples, 2015). 

Here, we use accuracy to denote that the statements in a declaration are in fact 
mathematically true, while effectiveness concerns the degree to which an explanation can fully 
demonstrate the necessary mathematical ideas and reach its intended audience (e.g. elementary 
students in the case of K-8 pre-service teachers).  Appropriateness takes into consideration the 
level of mathematical sophistication of the argument’s audience.  As an example, consider the 
case of a 3rd grade teacher Alicia who is working with her students on even and odd numbers.  
The students have noticed a pattern: when you add two even numbers, you get another even 
number.  To help the students understand why this is true, Alicia is considering the following 
two explanations: 
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Figure 2.  Tetrahedron Model of PCK (Hauk et al., 2014) 
 
Explanation 1: “If you think about it, every even number is 2 times another number: 

6=2x3, 8=2x4, and so on.  So let’s let the first even number we are adding be 2xm where m is 
some number.  Let’s let our second number be 2xn where n is some other number.  When we add 
them, we get 2 x m + 2 x n , but by the distributive property, we can say that 2 x m + 2 x m is the 
same thing as 2 x (m+n), so that the new number we get is also 2 x some number, so it must be 
even as well.’’ 

 
Explanation 2: “If you think about numbers as being sticks, then I can always put even 

numbers into bundles with 2 sticks in each bundle: for example 6 can be put into 3 bundles of 2 
sticks each, 8 can be placed into 4 bundles of 2 sticks each, and so on.  So if I am adding two 
even numbers, then the first number can be placed in bundles of 2 sticks each and so can the 2nd 
number.  But when I add up all the bundles of 2, I get a number that still is placed into bundles of 
2, so the number I get must also be even as well.” 

 
In the first explanation, we see that Alicia’s reasoning is certainly accurate.  However, for 

most 3rd graders, her explanation will neither be effective nor level appropriate as her audience 
has not developed facility with the concept of variable.  Contrast this to say an 8th grade audience 
where her first explanation is now accurate, effective, and appropriate as variable quantities arise 
in the course of solving linear equations, which is a 6th grade standard in the Common Core. As 
for the second explanation, if Alicia is speaking to 3rd graders, then she is now mathematically 
accurate, effective, and appropriate.  However, if she is teaching an 8th grade audience, the 
second argument will be accurate and effective, but not level appropriate as most of her students 
are able to reason with the concept of variable (i.e. her argument is now below the level of her 
students). 

It is worth noting that our notions of accuracy, effectiveness, and appropriateness are 
similar and related to the three components of a proof as expounded upon by Styliandes, 
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Styliandes, and Schilling-Traina (2013).  Though we distinguish here between a proof and 
justification with the latter being on a different level of rigor and generalization than that of the 
former, the two structures do serve the same purpose in teaching. This distinction between the 
two and their common goal in instruction is delineated in the third Standard of Mathematical 
Practice of the Common Core State Standards which states that students should be able to 
construct viable arguments and critique the reasoning of others.  Indeed, the authors note that  

...Elementary students can construct arguments using concrete referents such as objects, 
drawings, diagrams, and actions. Such arguments can make sense and be correct, even 
though they are not generalized or made formal until later grades. Later, students learn to 
determine domains to which an argument applies. Students at all grades can listen or read 
the arguments of others, decide whether they make sense, and ask useful questions to 
clarify or improve the arguments (CCSSO, p. 6-7). 
 

For Styliandes et al., proof does each of the following: 
 

• it uses a set of accepted statements in use by the classroom community that are 
true and available without further justification (our accuracy),  

• it employs modes of argumentation which are ways of reasoning that are valid, 
known to, and within the conceptual reach of the classroom community (our 
appropriateness), and 

• it utilizes modes of argument representation which are forms of communicated 
expressions that are appropriate, known to, and within the conceptual reach of the 
classroom community (i.e. our effectiveness). 
 

The available justifications a person could provide for an item of mathematical 
knowledge will be limited by the person’s ways of knowing that knowledge.  Balacheff and 
Gaudin (2010) use the term conception to model different ways of knowing. A conception has 
four primary components: a set of problems, a set of operators, a representation system, and a 
control structure.  The set of problems is a collection for which a conception can be utilized to 
determine their solution (which they call the sphere of practice of the conception), while the set 
of operators consists of those objects needed to transform and/or manipulate linguistic, symbolic, 
or graphical representations.  The representation system contains the linguistic, graphical, and 
symbolic means by which the person who holds the knowledge interacts with that particular 
piece of knowledge, while the control structure consists of all the means needed to make choices, 
to take decisions, and express judgment.  Of particular interest to us is the representation system 
because of its relevance to discourse knowledge.  Indeed, Balacheff and Gaudin (2010) note that 
“Whatever it is, depending on the state of the subject/milieu system, the representation system 
must be adequate to give account of the problems and to allow operators to perform” (p. 215).  In 
essence, a lack of a sufficient representation system, which includes an appropriate mathematical 
discourse that acts as a referent for the knower, will fail to allow the operators to perform.  For 
example, if a teacher tells her student that to solve the equation "# = 25, it is necessary to 
perform the inverse operation of taking the square root, such an action would have no meaning 
for the student if they lack an awareness and understanding of what is meant by “inverse,” and 
hence the student is hindered in her ability to take the action of performing the square root 
operation needed to solve the problem. 
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To measure PCK and MKT more generally, both the Ball and Hauk research teams 
developed multiple choice assessments designed for administration to in-service teachers 
receiving professional development for Ball’s team and completing a master’s degree for 
mathematics teachers in the case of Hauk’s team.  It should be noted that in the case of Hauk’s 
team, the focus was on the PCK development of teachers at the 7-12 level unlike Ball’s team.  
While items in the instrument developed by Hauk’s team measured in large extent the syntactic 
structure of KD and did attempt to measure the teachers’ ability to engage in proof validation, 
neither their instrument nor the items developed by Ball’s team measure the larger components 
of discourse required to engage in reasoning and justification: i.e., neither team tried to 
specifically measure mathematical discourse more generally.  Hence, the current project is 
designed to address three key missing ideas in the existing literature: (1) How might discourse 
knowledge development be characterized for pre-service elementary teachers (PSETs) during a 
semester long course on number and operations? (2) How can discourse skills support reasoning 
and justification among PSETs?  (3) What conceptions about number and operations do PSETs 
have as they enter a course on number and operations?, How prevalent are these notions among 
this group of PSETs?, How have these conceptions evolved by the end of the course? 
 
Research Methods 
          Beginning in the summer of 2011, an instrument was developed to begin measuring 
different aspects of MKT for PSETs with particular emphasis on items that require some 
combination of SCK, KCS, and KD.  Our emphasis for the current work is on the subset of items 
requiring a combination of SCK and KD to answer.  The teachers must engage in mathematical 
discourse to justify certain mathematical facts or procedures to answer these items.  Examples of 
the items from the most recent administration of the instrument are given below: 
 

• You have given the multiplication exercise in part (a) [i.e., compute 2.74 x 2.2] to your 
4th grade class.  Shonte, one of your students, says that she knows where the decimal 
goes, but she does not know why it goes there.  Give Shonte an explanation that she can 
understand for why the decimal is placed where it is. 

  
• John asks you in math class one day why 4( = 1 .  Give John an explanation that he can 

understand for why this is true. 
 

• Nancy, a student in your 5th grade math class, asks you day why she cannot divide 5 by 
0. That is, why she cannot do 5 ÷ 0. Give Nancy an explanation that she can understand 
for why she cannot do this. 

 
• Give an explanation for your 7th grade students that they can understand for why it is that 

*
+ ÷

#
- =

*
+×

-
#.  That is, why the invert-and-multiply algorithm works for division of 

fractions. 
 
          These items were chosen for inclusion in the instrument because it is well documented in 
the teacher education literature that the ideas needed for the items’ completion are ones with 
which both in-service and PSETs commonly struggle.  For instance, Levenson (2012) discusses 
in-service elementary teachers’ lack of ability to distinguish between definitions and theorems 
when considering the zero exponent.  Wheeler and Feghali (1983) and Russell and Chernoff 
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(2011) found that both PSETs and in-service teachers tend to have the same conceptualizations 
of zero as many children do, such as the notion that zero is not a number and/or it means nothing.  
Even and Tirosh (1995) found that many of their in-service teachers answered that 4 divided by 
zero is undefined, although none could explain why: most simply stated it is a mathematical rule.  
However, other researchers (e.g. Crespo & Nicol, 2006; Ball, 1990; Wheeler & Feghali, 1983) 
have found that many PSETs do not even know that the expression is undefined, let alone know 
how to explain why it is undefined.  Some PSETs remembered a rule of anything divided by 0 
being 0, while others reasoned that the answer should be 0 because you are dividing by nothing.  
Ma (1999) found that among the American in-service teachers she interviewed, only about half 
could perform the division of two fractions, while most could not create a word or story problem 
modeled by fraction division.  The ones who did perform the division correctly relied almost 
solely on the invert-and-multiply algorithm and none could explain why the algorithm works.  
Tirosh (2000) discusses the differences in “knowing that” something is true and “knowing why” 
something is true; the PSETs in her study also failed to explain why division of fractions behaves 
in the manner it does algorithmically.  Stacey et al. (2001) report an over reliance on rules and 
facts among PSETs when performing operations with decimals such as occurs in decimal 
placement in multiplication. 
          PSETs enrolled in a course on number and operations at a large public state university in 
the northeastern US were given the instrument upon entering the course as well as upon exiting 
in a standard pre-post format.  During the course, PSETs are expected to consistently engage in 
mathematical discourse.  This discourse generally occurs through reasoning and justification that 
is deemed as acceptable and appropriate for elementary aged children as this is a socio-
mathematical norm exercised in class and group discussions, online homework exercises, and on 
exams. The instrument contains 13 items (including the four mentioned previously), and the 
current report focuses on data collected from 6 sections of the course between Fall 2014 and Fall 
2015 semesters, with N=113 teachers.  In addition to administering the instrument, several 
teachers were interviewed during this time concerning their answers to 3 of the items to discern 
their abilities to communicate effectively orally in addition to written formats.  Participants were 
also presented with novel (to them) tasks during the interviews that gauged their abilities to 
engage in reasoning and justification more generally through proof validation by determining the 
accuracy of different explanations.  For instance, one of the items in the instrument asks for a 
justification of the invert-and-multiply algorithm.  During the interviews, the teachers discussed 
their own justifications for the algorithm and then were presented with justifications that had not 
been discussed during the course and were asked to discuss the appropriateness of the 
justification for an elementary classroom. 
          Each of the four items for all teachers were coded using a grounded theory approach by a 
research team consisting of a mathematician, a mathematics educator, and a graduate student 
enrolled in an education Master’s of Science program. Responses were assigned a triple of the 
form (T, E, A), where the T measures mathematical accuracy on a scale of 0-4, the E measures 
effectiveness on a scale of 0-2, and the A measures appropriateness also on a scale of 0-2.  Our 
rubric is summarized in Figure 3: note that Yumus (2001) provides a scale similar to ours in the 
accuracy construct. 
 
 

Data Analysis and Results 
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Figure 3.  Rubric for the discourse items 
 
 

After all items for each of the 113 PSETs who took both the pre and post assessment were coded, 
the intraclass correlation coefficient (ICC) for the items (excluding those coded (0,0,0): i.e. the 
ones for which responses were not given) was calculated for all three constructs in each item to 
determine the strength of inter-rater reliability.  These coefficients ranged from .842 to .924 in 
appropriateness, .845 to .947 in effectiveness, and .885 to .940 in accuracy.  Hence, good to 
excellent agreement in the rubric use between the three researchers existed on all four items and 
all three constructs.  The lowest coefficients among the three constructs all came from the item 
on fraction division.  Items were assigned a final code when at least two of the three team 
members agreed in their initial coding: for those responses for which none of the three 
researchers agreed, the item was discussed and the team came to a final consensus.  This 
occurred about 10% of the time. 
          A reliability analysis was also performed on the pre and post assessments for this group of 
PSETs.  Before stating the results, it is worth discussing the choices that the authors have made 
in their current analysis.  It has been well documented in the psychometric literature that 
Cronbach’s alpha, a favorite unit of analysis among social scientists, tends to be a biased 
estimator of reliability (Dunn, Baguley, and Brunsden, 2014; Green et al., 1977; Green & 
Hershberger, 2000; Green & Yang, 2009; Huysamen, 2006; Raykov, 1998; Sitsma, 
2009;Zimmerman et al., 1993; Zinbarg et al., 2005).  Even Cronbach (2004) himself, together 
with Shavelson, stated that “The numerous citations to my paper by no means indicate that the 
person who cited it had read it, and does not even demonstrate that he had looked at it” (p. 392).  
The use of alpha is appropriate when the assumptions of tau-equivalence are met, which requires 
that the items in a measurement essentially have standard deviations that are at least relatively 
close to one another, an assumption that is rarely met in most psychological measurements 
(Dunn, Baguley, and Brunsden, 2014).  Alpha also tends to be sensitive to normality assumptions 
in the data, with skewness affecting the resulting statistic (Sheng & Sheng, 2013).  Further 
complicating our current analysis is the fact that our data are ordinal, something which can 
further bias estimates of reliability by severely underestimating them, especially in the presence 
of skewness (Gadermann, Guhn, & Zumbo, 2012). 
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          In light of this, many psychometricians favor the use of McDonald’s omega (Dunn, 
Baguley, and Brunsden, 2014; Graham, 2006; McDonald, 1999; Revelle & Zinbarg, 2005; 
Zinbarg et al., 2005, 2006, 2007) over the use of Cronbach’s alpha, especially when data are 
congeneric rather than tau equivalent.  Given that our data are ordinal, skew (as is to be expected 
at least for the pre assessment), and not tau equivalent (i.e. the standard deviations of the items 
are significantly different from each other), we calculated McDonald’s omega for the current 
data set and found on the pre-assessment, /012 = .62 , while on the post-assessment, /0567 =
.73.  As is the case with Chronbach’s alpha in small N studies, values of .6 or higher are 
considered acceptable, and so we can be reasonably confident that the items are demonstrating 
unidimensionality.  
          As we coded the responses for the four discourse items discussed earlier, several themes 
about PSET conceptions emerged among them for each item.  These themes are summarized in 
Figures 4-7.  As expected, many PSETs entered the course with limited conceptions about the 
number 0, some thought that the decimal should be placed in the hundredths place in the 
multiplication exercise, and the few who attempted the fraction division item generally 
responded with a rule.  Thus, we see connections with the existing literature: however, we are 
also now getting a sense of just how pervasive these conceptions are, at least for this population 
of PSETs.  Note that each of the tables summarizes the frequency counts pre and post of PSETs 
who held those particular conceptions: this then means that the post counts will differ from the 
pre counts as many of the PSETs have changed their conceptions, usually to a conception more 
in line with what is presented in elementary curricula. 
 
 

 
 

Figure 4. Summary of themes for conceptualizations for the decimal item 
 
     Each item has its own interesting and intriguing conceptions.  For decimals, many PSETs 
generally entered the course by stating the rule for counting the number of places after the 
decimals in the problem and then placing the decimal that many places from the right in the 
answer.  Others made a vague reference to place value in saying that the decimal distinguishes 
the ones place from the tenths place.  Note that many of the 40 PSETs who mentioned place 
value in the post test also gave answers that were conceptually sound and therefore considered 
accurate, appropriate, and effective.   A few PSETs gave size arguments (i.e., the idea that the 
decimal must follow the 6 because 60.28 is too large since the answer should be close to 6), 
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while others thought that the numbers had to be lined up as they are in addition and subtraction, 
and then the decimal would be placed after the 0 since the answer will have hundredths. 
  

 
 

Figure 5. Summary of themes for the zero power item 
 

          In the zero power item, some PSETs exhibited ‘nothing; or ‘nonnumeric’ conceptions of 
zero.  This is of particular interest here because in terms of Balacheff and Gaudin’s (2010) 
framework, the PSETs’ representation systems seem to be impacting their understandings 
significantly.  If, because of linguistic constraints, I say that because 0 means the absence of 
something, or likewise that zero means nothing, then my cognition is going to be stable when I 
think of exponents as repeated multiplications: i.e., in Piaget’s terms, cognitive disequilibration 
does not automatically occur as I can give meaning to a mathematical idea that occurs on the 
boundary or at an extreme of applying a definition for exponents that seems to fit with my 
current understanding of what zero is.  Students in calculus courses face a similar issue in trying 
to understand infinite limits: in linguistic terms, if one says that a limit is infinite, then should not 
that limit exist?  Interestingly enough, many PSETs are faced with a challenge to this line of 
thinking about the zero exponent for the first time in these courses: it is not uncommon for one or 
more of their classmates to hear this line of reasoning and ask why the answer is not 0 then, 
which of course accounts for a few of the other responses given in the pre-assessment.  These are 
precisely the moments when cognitive disequilibrium first occurs for many of the PSETs, and 
they begin to realize that their representation system for the number 0 does not suffice to respond 
to such a challenge.  Blake and Verhille (1985) agree that the “zero is nothing” interpretation 
“effectively prevents the teaching of the deep, complex structure of zero” (p. 37) : this is due in 
large part, they claim, to the linguistic structure of the representation system for 0 (i.e. in 
particular the use of common language creates a superficial understanding of what zero actually 
is). 
          The division by zero item saw reinforcements of the notions that the number 0 is not a real 
number or that it means nothing, as expected.  However, we now have an idea of just how 
pervasive such conceptions are among this student population: of the N=113 PSETs who took 
the pre and post assessments, almost half (48.67%) mentioned these ideas in their responses.  
Such a finding clearly has implications for the teacher educator as it shows how important it is to 
help teachers redefine their representation system for the number zero as mentioned earlier.  
Several PSETs tried to use what Levenson (2009) calls practically based explanations (PBEs),  
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Figure 6.  Summary of the conceptional themes for the division by zero item 
 

where daily contexts and/or manipulatives “give meaning” to mathematical expressions.  PBEs 
are in contrast to mathematically based explanations (MBEs), which are based on mathematical 
definitions or previously learned mathematical properties and hence often use mathematical 
reasoning.  Levenson (2009) found that although in some instances 5th graders preferred PBEs, 
almost all unequivocally were capable of and actually produced MBEs.  Now, like Levenson, we 
do not argue that PBEs are not to be used in all cases, since as Dreyfus (1999) notes, “for 
mathematics educators there appears to be a continuum reaching from explanation via argument 
and justification to proof” (p. 102).  However, in the case of division by zero, PBEs can lead to 
problematic conceptions because many of these explanations often are based on the 
representation of zero as meaning nothing, which then leads to the belief that the answer should 
be 0 or 5, as we saw occurring in our data.  For example, consider the following explanation 
offered by one of our PSETs on the pre-assessment: 
 

 
 
This example brings out several intriguing points.  First, whereas Ma (1999) discusses the 
tendency of American elementary teachers to use circular foods when discussing fractions, 
similarly we found almost a fifth (22.12%) of our PSETs used a PBE that included some 
reference to apples, such as this student (who actually tended to be quite capable mathematically 
during the course interestingly enough).  Second, as Levenson (2009) and Levenson, Tsamir, and 
Tirosh (2007) note, a common response from elementary students could be that you did not 
actually divide in this case by this line of thinking so the answer should be 5, or some others 
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might say that you end up with 0 groups and so the answer should be 0.  Again, it is likely this 
line of reasoning that nine of the PSETs used when they indicated initially that the answer is 0 or 
5.  The division by zero item, unlike the other three items, also brought out new conceptions in 
the post assessments.  Some PSETs realized that understanding the division by zero item has 
something to do with connecting multiplication and division as inverses but failed to explain this 
connection in this particular instance, while others tried to use the notion that for an arithmetic 
expression to be defined, there should be one and only one value that can be assigned to that 
expression for consistency: they of course failed to see that while true, this idea does not apply in 
this particular case.  The team also found the following pre-response particularly intriguing: 
 

 
 

This is obviously a PBE that is essentially rule bound: however there is an attempt to explain and 
so we coded this response (2,0,0).  This PSET has a rather fascinating representation system for 
the problem: the division symbol represents the table top and the 0 is the egg.  For her, her 
conceptualization is adequate to convince a 5th grader of the inability to divide by zero.  She has 
not been challenged with the thought of the egg being extremely large and the table extremely 
small (say the size of a table in a dollhouse), so that one could indeed balance the table on top of 
the egg.  Thus again, cognitive disequilibration does not occur for her because her 
conceptualization makes sense to her and is hence very stable.  It is worth noting that as division 
by zero has become a rule for her, this rule is now an operator for her conceptualization. 
 

  
 

Figure 7. Summary of conceptualization themes for the fraction division item 
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Table 7 summarizes the different conceptions for the fraction division item.  Not surprisingly, 
this item proved to be the most challenging of the four items for the PSETs, both pre and post.  
Many of the PSETs chose not to complete the item, although about a third made an attempt in 
the post test.  Again, we see that some of the PSETs have rule bound conceptualizations in which 
the rules have become operators.  Some mentioned that multiplication and division are inverses, 
though they could not explain how this fact helps to reason about the invert-and-multiply 
algorithm. 
          Each of the four items were discussed during the course at some point, and so the PSETs 
were exposed to arguments for them that are commonly seen in elementary curricula.  The 
instructor at one point in the Fall 2015 semester decided to give an item as a bonus on the first 
exam that had not been discussed in class to see how many PSETs could use their discourse 
knowledge to reason in a novel (for them) situation.  To this end, the students were presented 
with the following: 
 

You	are	introducing	decimals	for	the	first	time	to	your	4th	grade	class.		As	the	class	talks	about	
the	place	values	of	digits	after	the	decimal,	Tomeka,	one	of	your	students,	asks	you	the	
following:	
	
“So	we	go	from	the	100s	place	to	the	10s	place	to	the	1s	place	to	the	10ths	place	to	the	100ths	
place.		Why	is	there	no	1ths	place?		I	mean,	to	the	left	of	the	decimal	we	went	from	10s	to	1s,	so	
why	do	we	go	from	1s	to	10ths;	why	not	go	from	the	1s	place	to	the	1ths	place?”	

	
													Give	Tomeka	a	mathematically	accurate,	effective,	and	level	appropriate	answer	for	why	there	is												
													no	1ths	place.	
	
Almost	20%	of	students	gave	explanations	that	were	considered	acceptable.		Two	of	the	representative	
responses	are	shown	below:	
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Of course, these responses only show that there is a possibility that these PSETs are reasoning in 
novel situations because it is quite possible that they had previously been exposed to this very 
situation and so were already aware of an appropriate, effective, and accurate response.  
However, at the very least the responses demonstrate that some PSETs are developing discourse 
knowledge and using it in commanding ways to communicate intricate ideas. 
          A paired samples t-test was performed on all four items for each of the three constructs to 
gauge changes in means.  Statistically significant learning gains occurred in all four items for 
each construct with all p-values of .000.  The largest gain in accuracy was in the zero power 
item, while the smallest gain in accuracy from pre to post was in the decimal item.  The largest 
gains in effectiveness and appropriateness were in the zero power item, while the smallest gain 
for these two constructs was in the fraction division item.  Hence as a whole group the 113 
PSETs showed growth in their ability to engage in mathematical discourse and use it to engage 
in reasoning and justification. 
 
Implications and Conclusions 
          PSETs have a myriad of conceptions when it comes to number and operations, especially 
about the number zero.  Our data suggest that these conceptions (which are well documented in 
the literature) are very prevalent among PSETs.  Courses for PSETs must include attention to 
helping PSETs redefine their representation systems as often times such courses will be the last 
chance many of these PSETs have to construct conceptions that are useful for the classroom 
before they actually begin teaching.  There appears to be some hope that such efforts can be 
successful as we saw that at least some of the PSETs moved away from conceptualizations in 
which rules acted as operators for them to conceptualizations in which a rich mathematical 
discourse knowledge allows them to justify claims, perhaps even in novel situations such as the 
oneths place example.  The data on decimals suggests an even more problematic concern in that 
it shows that some PSETs not only lack the SCK necessary to teach this topic, but they also lack 
the necessary CCK as they cannot actually do the multiplication upon entering the course, often 
lacking the awareness of where the decimal is placed in the answer, let alone why it goes there. 
           While our instrument is one of the first to try and measure discourse knowledge for 
PSETs, the items we included only measure one aspect of discourse knowledge: in particular, 
that part of knowledge that teachers “have” which is very stable and is very much in the sense of 
MKT that Hill, Ball, and Schilling (2008) discuss.  According to Hauk et al. (2014), there is also 
a more dynamic side to discourse knowledge that actually comes from attending to and being 
responsive to student productions and discourse that occurs in problem solving and justification.  
Hence, future item development should include attending to measuring this dynamic side of 
discourse knowledge in robust ways.  The importance of developing and measuring both facets 
of discourse knowledge becomes evident when one considers the vision of the mathematics 
classroom set forth in the Common Core Standards of Mathematical Practice. 
         Further analysis and consideration of PSETs’ conceptions based upon Balacheff and 
Gaudin’s (2010) framework is also needed.  Understanding the nature of these conceptions will 
be crucial for aiding teacher educators in creating learning environments that are conducive to 
helping PSETs reinvent those conceptualizations. 
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Given the prevalence of work in the RUME community to examine student thinking and develop 
instructional materials based on this research, we argue it is important to document the ways in 
which undergraduate mathematics instructors make sense of this research to inform their own 
teaching.  We draw on Horn’s notion of pedagogical reasoning in order to analyze video- 
recorded conversations of over twenty mathematicians who elected to attend a workshop on 
inquiry-oriented instruction at a large national mathematics conference. In this context, we 
examine the questions: (1) How do undergraduate mathematics instructors engage in efforts to 
make sense of inquiry-oriented instruction? (2) How does variation in facilitation relate to 
instructors’ reasoning about these issues?  Our findings suggest that the nature of participants’ 
engagement with the mathematics was related to their subsequent pedagogical reasoning, and 
that differences in facilitation appear to have played a role in how participants engaged in the 
mathematics. 
  
Key words: mathematicians, pedagogical reasoning, instructional change 
  

National organizations have called for instructional change in undergraduate Science, 
Technology, Engineering, and Mathematics (STEM) courses, relating poor instructional quality 
to a lack of student interest and persistence (e.g., Fairweather, 2008; PCAST, 2012; Rasmussen 
& Ellis, 2013). In response to this need, undergraduate mathematics education researchers have 
developed and documented student-centered instructional approaches that are related to greater 
conceptual learning gains, as well as the development of more productive and equitable student 
attitudes and dispositions when compared with classes in which lecture is the dominant form of 
instruction (e.g. Kogan & Laursen, 2013; Kwon, Rasmussen, & Allen, 2005; Larsen, Johnson, & 
Bartlo, 2013).  A recent meta-analysis of 225 studies in undergraduate STEM identified 
drastically different student outcomes between lecture-based courses and courses that actively 
involve students as learners; students in lecture-based classes were 1.5 times as likely to fail as 
students in classes with active learning, and students in active learning classes outperformed 
those in lecture-based classes on concept inventories by almost half a standard deviation 
(Freeman et. al., 2014).   

While these findings certainly create impetus for instructional change, the fact remains 
that instructional change is incredibly difficult to achieve at scale.  In fact, we posit that the 
question of how to achieve instructional change at scale is one of the most central, pressing 
questions facing mathematics education researchers today in both K-12 and undergraduate 
contexts.  The undergraduate context has the potential to provide fresh insights into this issue, as 
many of the challenges faced in the K-12 context (e.g. lack of instructor autonomy, weaknesses 
in content knowledge) are likely to be less of an issue when dealing with mathematics instructors 
at the undergraduate level.  Given the prevalence of work in the RUME community to examine 
student thinking and develop instructional materials based on this research (e.g. Wawro et. al., 
2013; Larsen, Johnson & Bartlo, 2013; Rasmussen & Kwon, 2007), we argue it is essential that 
our community consider issues related to the dissemination and use of findings from our research 
– with an eye toward engaging this broader question of how to achieve instructional change at 
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scale.  This work aims to serve that goal by examining our efforts to engage practitioners 
(instructors of undergraduate mathematics) in thinking about research-based, inquiry-oriented 
instructional materials for undergraduate mathematics courses.     

 
Literature 

It is well documented that instructional change is difficult to achieve at scale.  In 
particular, after reviewing 191 relevant articles, Henderson, Beach & Finkelstein (2011) 
highlight the fact that the development of research-based instructional materials is a common but 
ineffective way to support instructional change at scale, and argue that their review of the 
literature suggests that effective change strategies should be sustained over time and seek to align 
with or change individuals’ beliefs while taking into account their institutional setting.  We put 
these findings in conversation with the work of Nardi (2007). In the context of mathematics, 
Nardi (2007) suggests that one possible explanation for the disappointing adoption of such 
curricular materials and pedagogical techniques is the fragile relationship between the 
mathematics education researchers who develop the approaches and the mathematicians who 
might implement them.  On one hand, mathematics education researchers frequently draw on 
qualitative research methodologies, which can seem both methodologically and 
epistemologically distant from traditional mathematics research.  On the other hand, Ralston 
(2004) argues that mathematicians sometimes display negative attitudes regarding the 
mathematical background of mathematics education researchers.  Artigue (1998) contended that 
this tension can be heightened in that research in mathematics education “often exposes 
[mathematicians] to the weaknesses of [their] teaching and [their] complicity in the 
malfunctioning and ineffectiveness of the educational system” (p. 483).  
 Fortunately, in the years since Artigue’s claim, there is evidence (Hurtado, et al., 2012) 
that suggests a sizable number of faculty in undergraduate STEM fields are making efforts to 
offer their students the kinds of student-centered learning experiences supported by mathematics 
education research studies.  Indeed, though 61% of STEM faculty report they use extensive 
lecturing when they teach, a full 49% of STEM faculty report they incorporate cooperative 
learning into their courses (Hurtado et. al., 2012).  Brown (1998) proposed that a way to keep 
these doors of communication open was to talk to mathematicians about mathematics: “Apart 
from gaining credibility with mathematicians, mathematics education researchers who stay in 
touch with the subject are likely to maintain a more vivid sense of what the encounter with 
mathematics feels like and are thus in a good position to develop empathy with the learners their 
work is intended to support” (as quoted in Nardi, 2007, p.270).    
 Considering the rates at which STEM faculty now report use of cooperative learning in 
their instruction, we argue that there is a pressing need to document and leverage the pedagogical 
reasoning of those faculty who are working to implement these kinds of instructional approaches.  
The work described in this paper aligns with Henderson et. al’s (2011) recommendations by 
aiming to gain insights into the beliefs and reasoning of those who might implement research-
based curricular materials in undergraduate mathematics – in order to inform sustained efforts at 
providing a system of supports for instructional change organized around such content-specific 
instructional materials.  This work also aligns with Brown’s (1998) recommendation by 
engaging mathematicians in the curricular tasks and the mathematics underlying them; in this 
way workshop facilitators attempted to leverage mathematical conversations into pedagogical 
ones.  In this paper, we explore two research questions: (1) How do instructors of undergraduate 
mathematics (who are interested in inquiry-oriented instruction) reason about instructional 
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issues, particularly in the context of inquiry-oriented mathematics instruction? (2) How does 
variation in facilitation relate to the ways in which instructors engage in reasoning about these 
instructional issues? 

 
Theoretical Perspective 

To answer these questions, we follow Rasmussen & Kwon’s (2007) characterization of 
inquiry-oriented instruction in which students are actively inquiring into the mathematics (e.g., 
by developing, justifying, and generalizing their own solution methods to open ended problems) 
and instructors are actively inquiring into students’ thinking about the mathematics so as to build 
on students’ informal and intuitive ideas to help them make sense of and engage in more formal 
and conventional forms of mathematical reasoning. 

We take a situated perspective, in which we view knowledge and learning to be 
evidenced in the interactions among members of a community (Lave & Wenger, 1991) – in this 
case, the community of instructors of undergraduate mathematics.  As such, we look to 
document mathematicians’ pedagogical reasoning by examining their conversations about 
instruction.  We follow Horn’s (2007) characterization of pedagogical reasoning, considering it 
to be instructors’ reasoning about issues or questions about teaching “that are accompanied by 
some elaboration of reasons, explanations, or justifications” (p. 46).  Analytically, we draw on 
the vertices of the instructional triangle (teaching, students, and mathematics) as a conceptual 
tool for organizing our analysis of these conversations about instructional issues. 

 
Data Sources and Methods of Analysis 

The data under consideration in this study were collected from a workshop conducted as 
part of a national mathematics conference, and these data are part of a broader project that is 
developing and analyzing a set of ongoing instructional supports for undergraduate mathematics 
instructors interested in inquiry-oriented (IO) instruction.  The workshop was organized around 
research-based curricula that have been developed in the areas of linear algebra, abstract algebra, 
and differential equations.  The workshop lasted a total of four hours, which was split across two 
2-hour sessions on consecutive days.  On each day, about half of the time was devoted to 
content-specific work in breakout groups (self-selected by the participants), and the other half of 
the time was spent discussing issues of inquiry-oriented instruction that cut across all three 
curricula.  On Day 1, facilitators planned to engage participants with an overview of inquiry-
oriented instruction, followed by time to engage in mathematical tasks from the curricula in the 
area of participants’ selected breakout group.  On Day 2, the focus was to be on student thinking 
related to the Day 1 tasks and instructional moves intended to help instructors implement IO 
curricula. 

The workshop included 25 participants, 21 of which responded to a workshop pre-survey 
that provided us with information about their background and home institutions.  All participants 
except one were housed in mathematics departments, and the group represented a diverse set of 
institutions and positions (see Figure 1).  Less than a third of survey respondents reported that 
they prefer to lecture most of the time, more than 70% reported that they like to have students 
work in groups on problems in class, and more than 60% report they frequently ask students to 
explain their thinking to the whole class when they teach. This was significant to our research 
because it suggests our sample is part of the sizable subset of undergraduate STEM faculty 
working to teach in student-centered ways, and the choice to attend the workshop also points to 
an interest, outside the RUME community, in research-based instructional approaches.   
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Figure 1. Position and Institution Types of Survey Respondents 

 
In each of the two 2-hour workshop sessions, all whole-group and breakout segments 

were video- and/or audio-recorded for subsequent analysis.  Our first phase of analysis was to 
analyze recorded data by generating content logs to document the sequence of events in each 
segment of the workshop.  Each content log was organized in a table with four columns: 
timestamp, description of events, focus of talk, and other comments.  The ‘focus of talk’ column 
aimed to help us track whether the focus of talk was on the mathematics (M), the teacher (T), or 
students (S), and whether it was the facilitator or participants who were doing that talking.  From 
these content logs, we generated summaries of each session to describe the focus and use of the 
time along with initial characterizations of the participants’ pedagogical reasoning.  We noted 
stark differences in the conversations of the linear algebra breakout group as compared to those 
in the abstract algebra group, so we decided to conduct our analysis as a comparative case study 
of these two groups (Yin, 2003).     

In our second phase of analysis, we drew on our content logs to code talk into six 
categories: logistics (e.g., “Does everyone have a handout?”), participant introductions, 
implementation questions (e.g., “How many times a week does your class meet?”), pedagogical 
moves (e.g., “I have them present their work as soon as we finish a task”), discussing 
mathematics (e.g., “They [students] came to different conclusions based on whether or not they 
considered all linear combinations”), and doing mathematics (e.g., “We want to show the 
additive inverse we’d expect from the big group stays in the small group”). In this way, we 
quantified the conversational focus of each group in terms of the amount of time spent. 

In our third phase of analysis, we drew on content logs to identify conversational 
moments in which participants talk focused on the vertices of the instructional triangle: 
mathematics, students, or teaching.  These moments were transcribed for closer analysis in order 
to examine participants’ pedagogical reasoning, identify differences between the two groups.  In 
our fourth and final phase of analysis, we identified facilitator moves that may have contributed 
to differences observed between the two groups. 
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Mathematical Tasks in our Study Context 
The mathematical activities that were the focus of participants’ time during content-

specific breakout groups are research-based task sequences taken from the IOLA (Inquiry-
Oriented Linear Algebra; http://iola.math.vt.edu) and TAAFU (Teaching Abstract Algebra for 
Understanding; http://www.web.pdx.edu/~slarsen/TAAFU/home.php) materials.  More 
specifically, the abstract algebra group drew on the definition of “subgroup” (a subset of a group 
that is itself a group) in order to (1) show 5Z is a subgroup of Z (under addition), (2) find a 
simpler way than checking all the group criteria to check if a subset of a group is a subgroup, and 
(3) show the identity of a subgroup is the identity of the group.   

The linear algebra group worked on activities from a sequence of tasks set in a context 
intended to help students develop and coordinate geometric and algebraic ways of symbolizing 
linear combinations of vectors in order to support their learning about span and linear 
independence.  The context for this work is shown in Figure 2.  The sequence of four tasks 
entails (1) determining if and how a given pair of vectors in ℝ! can be weighted and combined to 
“reach” a particular location in the plane, (2) determining if there is any location in the plane that 
can’t be reached using that pair of vectors (to set up formalization of span), (3) determining if 
three given vectors in ℝ! can be combined to represent a journey that starts and ends at the 
origin (to set up formalization of linear independence), and (4) generating examples of sets of 
vectors that satisfy particular properties (e.g. give an example of a set of two vectors in ℝ! that 
form a linearly dependent set), as well as conjectures about generalizations that emerge from this 
example generation work. 

 

 
Figure 2: Context for the linear algebra group’s task sequence 

 
Findings 

         We found that there were marked differences in the conversational foci of the two groups 
– both in terms of how much time was spent focusing on particular topics and issues, and in the 
nature of talk.  In this section, we first provide examples of the way in which participants in each 
group talked about mathematics (M), students (S), and teaching (T).  We then describe facilitator 
moves that may have contributed to these differences.  Overall, we contend that the nature of 
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participants’ engagement with the mathematics was related to their subsequent pedagogical 
reasoning about student thinking and possible instructional moves, and that differences in 
facilitation appear to have played a role in how participants engaged in the mathematics. 

As previously mentioned, the facilitators of both the linear algebra and the abstract 
algebra group intended for the first day’s breakout group to be focused on working through the 
mathematics in the respective task sequences.  However, our content logs revealed the Abstract 
Algebra group spent a much larger portion of their hour-long breakout session on the this day of 
the workshop working through the math (86% of the time spent working through the math) than 
did the Linear Algebra group (30% of the time spent working through the math). Figure 3 
summarizes each breakout group’s conversational focus on during the first day’s breakout 
groups.  
 

 
Figure 3: Conversational focus during Day 1 Breakout Groups 

 
Trajectory of Participant Engagement: Abstract Algebra group  

In this section, we highlight how participants engaged in the mathematics, and argue that 
this initial, deeply focused mathematical engagement is related to participants’ subsequent 
reasoning about student reasoning and the role of the instructor.  In particular, we highlight a 
trajectory of talk in which participants first engage in the mathematics (single vertex M), then 
discuss students’ reasoning about that mathematics (two vertices M+S), and finally discuss 
moves they might make as an instructor in order to advance students’ thinking beyond how they 
are currently reasoning about the mathematics (all three vertices M+S+T).   

On the first day of the workshop, abstract algebra participants spent nearly the entire one-
hour breakout session discussing how to apply the definition of a 'subgroup' (i.e., a subset of a 
group that is itself a group) in various contexts.  First, they used the definition of 'subgroup' to 
demonstrate that 5Z is a subgroup of Z under addition. They then drew on this definition in order 
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to develop a different, more efficient method (i.e., the subgroup criterion) for deciding when a 
subset of a group is a subgroup.  An example of a quote that is typical of how participants 
engaged in reasoning through this math is, “I combined closure and inverses.  We need to check 
for all a in H that negative a is in H.  Negative a is in G because G is a group and it is unique, so 
just need to check it is in H.” Note that this highlights our previous distinction between ‘doing 
the math’ and ‘talking about the math’ -- the participant is actually reasoning through the math 
directly from his/her own point of view. 
 On the second day of the workshop, the abstract algebra breakout group was shown a 
video of students explaining their partial progress in thinking about ways to develop a more 
efficient way to check if a subset of a group is a subgroup.  Following this video, participants 
reasoned about how students in the video were making sense of the mathematics.  For example, 
one participant argued: 
 

The group was concerned about, is the identity the same? Are the inverses the 
same?  … Partial arguments were also generated for both including the inverse 
and closure gives you identity, and the identity of the subgroup has to be the 
identity of the group.  They weren’t full arguments, the students were just 
generating reasons that they thought that had to be. 
 

This comment highlights participant reasoning that coordinates two vertices of the instructional 
triangle: students reasoning about the mathematics.  While the comment doesn’t fully 
characterize the nature of these partial arguments that were generated, it does synthesize the 
participant’s assessment of students’ mathematical contributions and reasoning.  We note that the 
mathematics that is the subject of students’ reasoning is the same as the mathematics the 
participants had engaged in during the previous day of the workshop.   
 After discussing students’ reasoning about ways to develop a more efficient way to check 
if a subset of a group is a subgroup, workshop participants brainstormed what they would do 
next if they were the instructor and the whole class discussion they had just watched on video 
had just happened in their own classroom.  The comments made by several participants 
evidenced a layering of reasoning involving all three vertices of the instructional triangle: the 
mathematics, students’ reasoning about the mathematics, and what the teacher can do to help 
students advance their reasoning about the mathematics.  The exchange below highlights this 
layering of reasoning: 
 
Participant: I’m assuming they have already shown the identity is unique. 
Facilitator: They have shown the identity is unique. 
Participant: So, and I’m, if they haven’t shown that the inverse is unique, then I would ask can 

an element have more than one inverse.  And then I would ask what can you say 
about a subset of a group if it is closed under inverses. 

 
This participant’s comment shows evidence of pedagogical reasoning that attends to the 
mathematics (with a great degree of specificity), what students know, and what the instructor 
might do next to advance students’ reasoning about that mathematics.  We posit that participants’ 
own deep engagement with this mathematics themselves on the first day of the workshop 
supported this nuanced coordination of the vertices of the instructional triangle. 
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Trajectory of Participant Engagement: Linear Algebra group  
In addition to the fact that far less of the time of the Day 1 linear algebra breakout session 

was spent doing mathematics than the abstract algebra session, we observed that the nature and 
quality of mathematical and pedagogical conversations differed between these groups.  In 
abstract algebra conversations, the talk followed a clearly identifiable trajectory of discourse 
relative to the instructional triangle, beginning with a thorough exploration of the mathematics, 
followed by a structured discussion about how students reasoned about the mathematics in a 
video clip, and finally a discussion of possible in-the-moment instructional moves that might be 
productive based on how students were thinking about the mathematics in the video clip.  In 
contrast, Day 1 conversations in the linear algebra group did not follow this clear trajectory of 
topics, and repeatedly turned toward issues related to implementation.  Due to frequent shifts in 
the focus of conversation of the linear algebra group, our initial impression was that participants’ 
talk about mathematics (and consequently their subsequent talk about student reasoning about 
the math and possible instructional moves) was not at the same level of depth as that of the linear 
algebra group.  A more careful analysis revealed there were examples of participants engaging in 
mathematical talk, but this talk was less sustained and of a somewhat different nature. We also 
identified distinct examples of linear algebra group members discussing student reasoning and 
identifying potential instructional moves in the context of the mathematical tasks posed.  In this 
section, we highlight examples of talk from the linear algebra group that parallel examples 
presented for the abstract group – by first offering examples of the way in which participants 
talked about the mathematics, and then presenting examples of how participants reasoned about 
student thinking and possible instructional choices after watching a video clip of a classroom 
where students explained their approaches.  We then consider the facilitation moves that help 
explain these observed differences.        

Day 1: As previously mentioned, facilitators of the breakout groups collaborated to 
structure workshop activities so as to focus on each vertex of the instructional triangle in turn, 
starting with mathematics and building to consider student thinking and the role of the teacher, a 
structure that was reflected in the trajectory of conversation in the abstract algebra group.  As in 
the abstract group, linear algebra participants were asked to engage in specific tasks from the 
curricular materials and work through the math together on the first day of the workshop.  The 
first mathematical task the linear algebra participants were asked to engage in was whether it was 
possible to use two specific vectors (that were linearly independent) to “get everywhere” in the 
plane by “travelling” on each for different amounts of  “time.”  Here is how one participant 
spoke about possible solutions to the task: 
 

So what they can do is, once they get a parallelogram, they can generate a new 
vector that is on one of the opposite sides of the parallelogram, so they can 
generate all of these very easily because all they have to do is take this and add 
one of these, or they can do the same here... 

This participant’s strategy for finding a solution is valid, but it is interesting that he frames his 
response in terms of a student’s perspective without first discussing how he would himself solve 
the problem.  Though this demonstrates a connection between mathematics and students’ 
reasoning, it is framed hypothetically.  This is in contrast with the abstract algebra participant’s 
description of students’ mathematical contributions (partial arguments for including the inverse 
and closure) were framed in terms of the core mathematical issue with which students were 
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wrestling (is the identity the same) – though that comment was made after watching video of 
student reasoning, is perhaps unsurprising that the framing was not hypothetical.   
 Immediately following the parallelogram comment made by a participant in the linear 
algebra group, another participant shifted the focus somewhat, asked “Do they have problems 
dealing with the fractional?  Because it might be the case that they have to ride one for a 
fractional amount of time….” This seemed to move the group away from doing mathematics and 
toward a discussion of common student responses.  One participant who had previously used the 
materials described common student approaches, which led to a conversation of issues related to 
the different prerequisites for linear algebra in various departments. In an attempt to redirect the 
conversation and have people work through the mathematics, the facilitator once again invited 
participants to consider the mathematical task, this time explicitly from the perspective of a 
student.  The first response to this, however, was “I can’t think of any other way than how I 
would do it.”  
 Eventually, most members of the linear algebra group worked through the task more or 
less completely on Day 1.  They also came together for a more focused discussion about 
participants’ own mathematical strategies, and again the conversation turned toward issues of 
implementation as they related to student thinking. The following excerpt highlights one of the 
more extensive math-focused exchanges from the Day 1 linear algebra transcript.  It is 
noteworthy that the prompt by the facilitator at the outset of this conversation is the third such 
invitation for participants to share their mathematical thinking. 
 
Facilitator:   Let’s start by discussing strategies because they were actually different when  

people solved it for themselves. 
Participant 2:   I immediately put the numbers in a matrix and solved for an arbitrary vector (x, y) 
Participant 3:   So, I am rusty on my linear algebra so I went back to the analogy, if I am given a 

location (x, y) that I need to get to, how long using each mode of transportation.  
And so I built a linear combination and then turned it into a matrix and row-
reduced by hand. That way, given x and given y, I knew how long to ride this and 
how long to ride that. [...] 

Facilitator:   Were there other approaches when people solved it for themselves? [...] 
Participant 4:  Since the pre-req for my class is precalc and we go over systems of equations, I  

turned it into a system of equations, but I don’t think my students would do that 
because it is a system with two unknowns and that would probably freak them 
out. 

 
These quotes are indicative of the conversation and the types of comments heard across both 
days of the linear algebra breakout sessions in that when participants did speak about their own 
solutions to the mathematical tasks (which was infrequent compared with the abstract algebra 
group), their statements about math were often tied either to student thinking or to comments and 
questions about instructional decision-making.  In other words, participants in the linear algebra 
group rarely made comments that were located solely on the ‘math’ vertex of the instructional 
triangle.  Importantly, LA participants’ engagement with the mathematics tended to be framed in 
terms of what “they” (students) might do, rather than in terms of their own mathematical 
reasoning. This stands in contrast to mathematical comments made by abstract algebra 
participants, who talk directly about their own solutions to the tasks, rather than referencing 
hypothetical student solutions and course prerequisites.  While this may not in and of itself be a 
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bad thing, it certainly seems to be a pattern that impeded the linear algebra group’s deep, 
sustained engagement in the mathematics of the task sequence.   

Day 2: During the linear algebra breakout group on the second day of the workshop, 
participants examined artifacts of actual student work and watched video in which students 
explained their reasoning.  Participants were encouraged to consider pedagogical strategies in the 
context of teaching with these materials.  For example, a participant discussed students’ 
reasoning about three vectors in ℝ!: 

 
If they were relating to systems of equations, then they would recognize that they 
would have two unknowns and three equations and if they relate it back to that 
then they will think, ‘ok, if, assuming these aren’t all scalar multiples of each 
other, then I am already over-determined.’  Since we did systems of equations 
first, then they might already have some intuition about that if they relate it back 
to that. 

 
We interpret this quote as evidence that this participant is coordinating two vertices of the 
instructional triangle (mathematics and students’ reasoning). This quote was made shortly after 
the group viewed video clips of students talking about their solutions to this task, so it is 
interesting to note that the language used in this quote is hypothetical (“If they…, then they 
might…”).  One possible explanation for this disconnect is that, having not worked carefully 
through the mathematics from their own perspective, it may have been difficult for participants 
to make sense of students’ reasoning in the video if they were still thinking through the 
mathematics themselves as they watched. 

After watching this video, participants are asked to describe how they would introduce 
the concept of span if students were reasoning in the way shown in the video they had just 
watched.  One participant responded in terms of what conclusions the class had made about what 
locations in the plane you can reach with (linear combinations of) the given pair of vectors: 

 
If the consensus becomes ‘everything’ then you set the tone, you can go into the 
animation, and the definition can be using linear combinations and… all possible 
ways of scaling the first one and adding the second, and then scaling the second 
one and adding the first one… then you’re primed to talk about… all possible 
linear combinations and it spans ℝ! in this case. 

 
This participant’s comment involves all three vertices of the instructional triangle. Similar to the 
“next pedagogical move” quote provided the abstract algebra group, this participant frames the 
next pedagogical move in terms of a relevant mathematical consensus of the class.  This 
comment differs however, in that it is framed more in terms of what the instructor would tell the 
students rather than what the instructor would ask students to think about to move their reasoning 
forward.  
 Ultimately, then, there were two main points of contrast between abstract algebra and 
linear algebra participants’ contributions during the breakout sessions.  First is the clear 
difference in how breakout groups spent their time during sessions, with far more mathematical 
engagement evidenced from the abstract algebra participants.  Second, while abstract algebra 
participants’ conversation across the workshop cleanly mirrored the trajectory of the workshop 
activities themselves (mathematics, students’ reasoning, the role of the instructor in building on 
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students’ reasoning), linear algebra participants’ talk during the breakout sessions was more 
scattered.  In the linear algebra group, multiple vertices of the instructional triangle were present 
throughout their conversations in a way that suggested this group consistently reasoned from an 
instructional perspective.  We posit that this lens may have functioned to impede deep, sustained 
mathematical engagement among the linear algebra group and ultimately constrained an 
exploration of more nuanced mathematical issues as they relate to student thinking and 
pedagogical moves in the context of the content-specific instructional materials.  
 
Differences in Facilitation 

There were a number of differences in facilitation between the linear algebra group and 
the abstract algebra group, in particular with regard to the setup of participants’ initial 
engagement with the mathematics.  In this section, we detail differences we noted that might 
help explain differences in the nature of conversations (and thus pedagogical reasoning elicited) 
between the two groups.  A summary of these differences is shown below in Table 1. 
 

Linear Algebra Group Abstract Algebra Group 

Asked participants to introduce themselves and 
their teaching contexts 

No whole-group introductions; 
participants put in pairs to work 

Overview of instructional sequence given No overview of instructional sequence 

Began with second task in sequence Began with first task in sequence 

Engaged pedagogical questions throughout Postponed pedagogical questions ‘til end 

Table 1: Differences in set-up of mathematics 
 

Of particular note are differences in the way facilitators of the two groups asked 
participants to engage in the mathematics.  For instance, the linear algebra facilitator initiated the 
breakout group by asking participants to sit in a circle and introduce themselves and their 
teaching context, pointing out that “linear algebra courses differ widely by institution… if you 
have one that serves mostly engineers then the goal is different than one serving math majors.”  
After these introductions (which lasted about 6 ½ minutes), the facilitator offered an overview of 
the sequence of tasks (which lasted about 9 minutes), highlighting how the mathematics was 
intended to emerge from the sequence of tasks in the magic carpet ride context, before asking 
participants to begin by working through the second task in the instructional sequence: 

 
So, one of the things I wanted us to do was to dive in and solve Scenario 2 – not 
because it is particularly mathematically difficult, but so you could think about 
solving it and then think about it from the perspective of a student who has seen 
one day of linear algebra and seen linear combinations and turned it into a system 
of equations and solved it and that is the extent of his linear algebra – try to solve 
it from that perspective.  

 
This facilitator prompt marks a clear request to consider what students might do as they engage 
in the mathematics – which suggests that this trend in participant engagement is clearly tied to 
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the facilitator’s framing of their work with the mathematics.  Additionally, we argue that the 
facilitator fostered a setting that had the potential to create professional risk for participants by 
trivializing the mathematics involved in the activity.  This professional risk might have been 
amplified by the fact that participants were not provided with the opportunity to work through 
the mathematics in the first task of the sequence, which might have been important for 
participants to become familiar with the task setting.  
 In contrast, the abstract algebra facilitator initiated that breakout group by asking 
participants to sit with a partner and work through the mathematics, giving them a handout with 
the sequence of task statements.  Interestingly, the first question in the packet in some ways 
paralleled the introductions done in the linear algebra group. This question asked participants 
how they normally teach subgroups or were taught subgroups -- but this question was only 
answered individually or between partners (rather than discussed amongst the larger breakout 
group) and those captured on camera spent less than 3 minutes on this question.  The first 
interruption to this partner work came from the facilitator about 11 minutes into the breakout 
session: 
 

This is how we start the class.  A subgroup is a subset of a group that is itself a 
group.  Use this to prove 5Z is a subgroup of Z.  I get to assume 5Z is a subset.  
Fill in the proof.  

 
In this way, the facilitator clearly framed how participants were asked to engage in the 
mathematics – namely, from a mathematical perspective.  

One might conjecture that differences in participants’ engagement with the mathematics 
arises from differences in participants’ personalities, preferences, or experience with the 
mathematics.  However, we argue that the facilitator played an important role in framing the way 
participants were asked to engage in the mathematics.  In addition to the differences in how the 
two facilitators framed participants’ initial engagement with the mathematics, there is additional 
evidence that suggests differences in participant engagement was tightly linked to facilitator 
moves.  For example, after participants in the linear algebra group noted that they weren’t sure 
how their students would approach the mathematics in the given task, the facilitator suggested 
they solve the problem from their own point of view -- a suggestion that proved fruitful for 
participants’ mathematical engagement: 
 
Facilitator:   First why don’t we hear the strategies because they were actually different  

when people solved it for themselves… 
Participant 1:  I immediately put the numbers in a matrix and solved for an arbitrary vector xy 
Participant 2:   I am rusty on my linear algebra so I went back to the analogy, if I am given a  

location (x,y) that I want to get to, I want to know how long using each mode of 
transportation and so I built a linear combination and then turned it into a matrix 
and row-reduced by hand, that way given an x and given a y, I knew how long to 
ride this and how long to ride that… 

 
In contrast to the shifting expectation seen in the linear algebra group with regard to how 

participants should engage in the mathematics (e.g. as mathematicians or as instructors thinking 
from the perspective of students), the facilitator of the abstract algebra group maintained a 
consistent press on the first day of the workshop with regard to how participants were expected 
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to engage in the mathematics.  Examples of facilitator press that support this claim are shown 
below. 
 
Facilitator:  It doesn’t just have to be from a student’s perspective.  Why does a subgroup  

have to have the same identity as the one in the group? [Day 1, 48:03] 
[…] 
Facilitator:  I want to ask you as mathematicians… is your doubt removed?  [Day 1, 61:10] 
 
This sustained press to approach the tasks in the instructional materials from a mathematical 
perspective appears to have been a fruitful one, given the amount of time the abstract algebra 
group spent engaging deeply in the mathematics and the rich connections these participants were 
subsequently able to make with regard to student reasoning and pedagogical moves. 
 

Discussion 
Our findings suggest that when mathematicians’ pedagogical reasoning is engaged 

through a content-specific mathematical lens, rich and layered connections among their own 
mathematical reasoning, students’ mathematical reasoning, and possible instructional moves can 
be forged in a relatively short period of time.  In the context of our study, these forms of 
reasoning were most prominent when participants engaged deeply in particular mathematical 
tasks before watching video of students reasoning about those same tasks, and finally discussing 
possible in-the-moment instructional moves that could help students move forward their 
mathematical reasoning.  This is not to say that these conversations will lead to immediate or 
sustained shifts in practice, but it does suggest that mathematicians’ pedagogical reasoning is a 
complex, understudied resource that has great potential to advance efforts aimed at instructional 
change in both undergraduate and K-12 mathematics – as mathematicians are the people who 
most fundamentally shape students’ mathematical learning experiences in post-secondary 
educational settings.   

However, the differences we noted between the abstract algebra and linear algebra groups 
also suggest that the way in which mathematicians are positioned to engage in this pedagogical 
reasoning plays an important role in the kinds of reasoning that are developed, even within the 
context of a short, four-hour workshop spread across two days. Importantly, we argue that 
engaging mathematicians’ pedagogical reasoning through the lens of mathematics, rather than 
through the lens of instruction, draws on the unique strengths that mathematicians bring to the 
work of teaching – in particular, the resource of deep disciplinary knowledge.  As noted in our 
findings, the facilitator plays an important role in framing mathematicians’ engagement with the 
mathematics in a context such as the workshop in which our data were collected.  Additionally, 
the facilitator plays an important role in managing the professional risk that these settings like 
these workshops can entail for mathematicians who may not often work on unfamiliar 
mathematics problems in public spaces without first thinking about such problems privately. 

Nardi (2007) quoted Sfard’s call for this kind of work in mathematics education research: 
“Math ed research needs to study more extensively and more systematically the mathematician’s 
ways of thinking as they can be substantial and illuminating” (p. 265).  The data presented in this 
paper offers a glimpse into the thinking of mathematicians interested in instructional change, and 
points toward what is possible when mathematics education researchers work with such 
mathematicians. We further argue that a way to move toward achieving instructional change at 
scale is by forging sustainable alliances between mathematicians and mathematics education 
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researchers, and that these alliances should be structured so as to leverage mathematicians’ deep 
disciplinary knowledge and teaching experience in ways that support robust instructional change.  
If we can learn to productively build these kinds of relationships, we can reorganize our notion 
of unidirectional dissemination of findings from mathematics education research into a vision of 
a dialogue that has the potential to mutually inform the work of those who do the bulk of 
undergraduate mathematics teaching as part of their broader work as mathematicians and those 
who research issues of teaching and learning at the undergraduate level. Alliances with 
mathematicians have the potential to be drivers of instructional change, and if we as a field can 
learn to leverage the unique resources and insights brought to these alliances by both 
mathematicians and mathematics education researchers, we will be far better equipped to 
implement changes that will more effectively support the mathematical learning of students.   
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Recent studies in physics education research demonstrate that although physics 
students are generally successful executing mathematical procedures, they struggle 
with the use of mathematical concepts for sense making. In this paper we 
investigate student reasoning about negative numbers in contexts commonly 
encountered in calculus-based introductory physics through the lens of a cognitive 
blending framework.  We describe a cross-sectional study (N > 700) involving two 
introductory physics courses: calculus-based mechanics and calculus-based 
electricity and magnetism (E&M). We present data from assessment items that 
probe student understanding of negative numbers in physics contexts. Results 
suggest that even mathematically well-prepared students struggle with symbolizing 
in physics, and that the varied uses of the negative sign can present an obstacle to 
understanding that persists throughout the introductory sequence.  We discuss the 
implications for instruction and directions for future work. 

 
 
Keywords:  quantity, negativity, minus sign, integers, physics, mechanics, electricity, magnetism 
 
 
Introduction and Background 

In physics, signed numbers have varied meanings and carry rich information about physical 
context.  For students, the operations of addition and subtraction (represented by the symbols “+” 
and  “−”) can easily be confused with the descriptors, positive and negative, that characterize the 
opposite natures of a quantity (e.g. charge) or the value of a quantity relative to a reference (e.g., 
potential energy).   Furthermore, mathematical representations of the intricate relationships 
between quantities can involve multiple meanings of the negative sign in a single expression. 

Developing flexibility with negative numbers is a known challenge in math education. 
Vlassis used written diagnostic questions and interviews to investigate the understanding of 
negative numbers of Belgian algebra students (Vlassis, 2004).  She found that full understanding 
of the concept of a negative number required that students develop flexibility with the various 
ways negative numbers are used in context, i.e., with the “negativity” of the number. Vlassis 
created a “map” in tabular form that describes these different uses (reproduced in Table I.)  She 
based her map on one developed earlier (Gallardo & Rojano, 1994), and enhanced it by 
including additional signifiers from others’ work (Thompson & Dreyfus, 1988; Nunes, 1993).  
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Table I:  Negativity: A map of the different uses of the negative sign in elementary algebra; the 
triple nature of the minus sign. (Vlassis, 2004) 

Unary Binary Symmetrical 

Structural signifier Operational signifier Operational signifier 

Subtrahend 
Relative number 
Isolated number 
Formal concept of negative number 

Completing 
Taking away 
Difference between two numbers 
Movements on the number line 

Taking opposite of, or 
inverting, the operation 

 
Few studies have been published that focus on student understanding of negativity outside of 

mathematics courses.  We describe here the most relevant related studies that were done in the 
context of physics.  

Sherin observed patterns in student reasoning by studying successful problem solving 
behaviors of 3rd semester engineering students taking physics at a highly selective university 
(Sherin, 2001).   Regarding negativity, Sherin uses the symbolic form “competing terms cluster” 
to describe the quantification of opposites in physics. This form includes the notion of zero to 
represent balance, and positive and negative quantities as competing terms in an expression.  He 
observes that flexibility with the competing terms cluster is a feature of expert problem solving. 
We interpret use of this symbolic form as demonstrating flexibility with the symmetrical nature 
of the minus sign. 

Bajracharya and colleagues (Bajracharya, Wemyss, and Thompson, 2012) investigated 
student understanding of integration in the context of P-V diagrams in introductory physics. 
Their results suggest difficulties with the criteria that determine the sign of a definite integral.  
Students struggle with the concept of a negative area, and with positive and negative directions 
of single-variable integration.  We interpret this struggle to be rooted in an incomplete 
understanding of the symmetrical nature of the minus sign in the calculus context. 

These observations of advanced undergraduate physics students struggling with the nuances 
of negativity resonated with our own informal classroom observations, and led us to pose the 
research questions below.  The remainder of this paper describes our preliminary work in 
addressing these questions. 
 

1.  After instruction, what themes are evident in student understanding of the unary, binary 
and symmetrical ways that negative signs are used in the context of physics? 
2.  Are some contexts (e.g., nature of physical quantity, nature of the minus sign) more 
challenging for students than others? 

 
Theoretical Framework:  Cognitive Blending 

The theoretical framework of cognitive blending (Fauconnier & Turner, 2008; Bing & 
Redish 2007) supports our view that an interdependence of thinking about the mathematical and 
physical worlds is necessary for quantifying effectively with negative quantity in physics. Figure 
1 illustrates a double scope negative quantity reasoning blend, in which two distinct domains of 
thinking are merged to form a new cognitive space that is optimally suited for productive work. 
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We draw attention to prior work by Czocher (Czocher, 2013) who conducted a study of 

several engineering students enrolled in a 
differential equations course and observed 
them solving a variety of physics 
problems over the course of the 
semester.  She reports that successful 
students functioned most of the time in 
a “mathematically structured real-
world” in which they moved back and forth fluidly between physics ideas and mathematical 
concepts.  Czocher describes this space as being between the “real world” and the “math world”,  

We suggest that deep understanding in introductory physics is best supported through a 
completely homogeneous blend (as observed by Czocher), such that there is no distinction 
between the physics and the arithmetic worlds.  We propose a thinking space in which physical 
sensemaking is essential for, and integrated with, mathematical reasoning. Our experimental 
design and assessment item development emerge from a cognitive blend framework.  Correct 
responses depend on students reasoning about negativity correctly, with the further constraint 
that their response is also consistent with the real world.  We analyze our results using this 
framework and draw conclusions that can inform both instruction and curriculum development. 
 
Methods 

As part of a larger assessment project, we had access to two large-enrollment, introductory, 
calculus-based physics courses taught during Fall 2015.  To examine trends in student reasoning 
about the negative sign in physics contexts, we designed a set of six written questions and 
administered them at the end of the mechanics course, which students take as their first semester 
of physics, and the E&M (electricity and magnetism) course, which students take as their third 
semester of physics.  (No students saw the questions twice.)  The questions were ungraded, and 
bundled with concept inventories that are routinely given as part of end-of-semester assessment.  
A portion of the sample reported on here from each class received multiple-choice versions of 
the items (n=210 in Mechanics, n=402 in E&M), while the remainder received free-response 
versions (n=84 in mechanics, n=138 in E&M.)  The free-response versions allowed us to 
evaluate the extent to which the multiple-choice distractors are clear and aligned with student 
reasoning.  

The six items cluster into two sets of three, one set involving mechanics contexts and one 
involving E&M contexts.  Within each set, the first item probes student understanding of the 
unary nature of the negative sign, the second probes the symmetrical nature, and the third, the 
binary nature (see Table I).  On the first item of each set, students must interpret the sign of a 
vector component (either acceleration, for the mechanics context, or electric field, for the E&M 
context).  On the second item, which assesses the ability to quantify opposite actions, students 
must interpret the sign of either the work done by an agent (for the mechanics context) or the 
transfer of electric charge (for the E&M context). Finally, on the third item, designed to probe 
the ability to coordinate a measured quantity with its reference, students must interpret the sign 
of either position (mechanics) or potential difference (E&M). Table II presents all six items. We 
note on EM2 that the only physically correct answer is (a); only negatively charged particles 
transfer easily by rubbing matter - (II) makes mathematical sense, but not physical sense. 

Physically  
meaningful reasoning  

about quantity in 
introductory physics  

Conceptual 
understanding of 

arithmetic operations 
and quantity 

 
Connection to the 

physical world 

Figure 1: Double scope negative quantity reasoning blend 
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 Table II:  Multiple choice assessment items and the percentage of students who selected 

each answer.  The correct answers are in boldface type. 
Unary structural signifier 

 
Symmetrical operational 

signifier 
Binary operational signifier 

 

M
EC

H
AN

IC
S 

direction of a vector 
component 

signifying that work is done by the 
block as opposed to being done on 

the block 

position relative to an origin 

Mech 1: An object moves 
along the x-axis, and the 
acceleration is measured to 
be ax = – 8 m/s2.  Consider 
the following statements 
about the “–” sign in “ax = –8 
m/s2”. Pick the statement that 
best describes the 
information this negative 
sign conveys about the 
situation. 
a. The object moves in the 

negative direction. (8%) 
b. The object is slowing 

down(26%) 
c. The object accelerates in 

the  –x-direction (26%) 
d. Both a and b (6%) 
e. Both b and c (34%) 

Mech2: A hand exerts a force on a 
block as the block moves along a 
frictionless, horizontal surface. For 
a particular interval of the motion, 
the hand does W =  – 2.7 J of work. 
Consider the following statements 
about the “–” sign in the statement 
W = –2.7 J. The negative sign 
means: 
I. the work done by the hand is in 

the negative direction      
II. the force exerted by the hand is 

in the negative direction  
III. the work done by the hand 

decreases the mechanical 
energy associated with the 
block 

Which statements are true?     
a. I only (17%)   
b. II only (17%)    
c. III only (23%)  
d.  I and II only (29%)     
e.  II and III only (14%)  

Mech 3: A cart is moving along the x-
axis.  At a specific instant of time the 
cart is at a position x = –7 m.    
Consider the following statements 
about the “–” sign in “x = –7 m”.  Pick 
the statement that best describes the 
information this negative sign conveys 
about the situation. 
a. The cart moves in the negative 

direction (6%) 
b. The cart is to the negative 

direction from the origin (67%) 
c. The cart is slowing down (6%) 
d. Both a and b (19%) 
e. Both a and c (2%) 
 

EL
EC

TR
IC

IT
Y 

AN
D

 M
AG

N
ET

IS
M

 

direction of a vector 
component 

signifying a specific type of charge 
that is opposite of positive charge 

potential at one location relative to 
another 

EM 1:  At a location along 
the x-axis, the electric field 
is measured to be Ex = –10 
N/C.  Consider the following 
statements about the “–” sign 
in “Ex = –10 N/C”. Pick the 
statement that best describes 
the information this negative 
sign conveys about the 
situation. 
a. The test charge is negative 

(16%) 
b. The field is being created 

by negative charge (21%) 
c. The field points in the –x-

direction (36%) 
d. Both a and b (12%) 
e. Both b and c (14%) 

EM 2:  Valeria combs her hair in 
the winter and there is a transfer of 
charge such that ΔQcomb= –5 mC.   
Consider the following statements 
about the  “–”  sign in the 
mathematical statement       
ΔQcomb= –5 mC. The negative sign 
means: 

I. negative charge was added to 
the comb. 

II. charge was taken away from 
the comb. 

III. all of the electric charge in 
the comb is negative 

Which statements could be true? 
a. I only (33%) 
b. II only (28%) 
c. III only (18%) 
d. I and III only (15%) 
e. II and III only (5%) 

EM 3:  In physics lab, a student uses a 
voltmeter to measure the voltage 
across the terminals of a battery.  The 
voltmeter reads –5V.   
Consider the following statements 
about the “–” sign in the voltmeter 
reading “– 5V”. Pick the statement that 
best describes the information this 
negative sign conveys about the 
situation. 
a. the voltage is in the opposite 

direction as the current (32%) 
b. there are 5V of negative charge in the 

battery  (14%) 
c. the voltage is in the negative 

direction (18%) 
d. the voltage at one terminal is 5V 

less than the voltage at the other 
terminal  (33%) 

e. this battery has negative voltage (3%) 
 

19th Annual Conference on Research in Undergraduate Mathematics Education 79

19th Annual Conference on Research in Undergraduate Mathematics Education 79



 

Results 

Table II presents the fraction of students selecting each distractor on the multiple-choice 
versions of the questions.  Table III presents examples of student reasoning for each item, drawn 
from responses to the free-response versions.  Finally, Figure 2 summarizes the results reported 
in Table II by comparing the correct response rates on the multiple-choice versions. 
 
 Table III:  Sample incorrect student reasoning from the open-ended version of the 

assessment items.  
Unary structural signifier 

 
Symmetrical operational signifier Binary operational signifier 

 

M
E

C
H

A
N

IC
S 

direction of a vector 
component 

signifying that work is done by the 
block as opposed to being done on 

the block 

position relative to an origin 

Mech 1:  
“It means that the 
acceleration of magnitude 8 
m/s2 is acting in the opposite 
direction to the direction of 
the motion the object 
currently has” 

“This negative sign means the 
opposite of an increasing 
speed so a decreasing speed” 

Mech2:  
“A negative simply means that the 
block is going in the negative 
direction” 

“the hand is applying … a force to 
the block towards the left” 

“the work was done using negative 
force -  a force that goes against 
positive force” 

Mech 3:  
“It is moving in the opposite 
direction. If moving right indicates 
+7 m, then this cart is moving left.” 

“That means it is traveling left or 
the cart is starting from a distance > 
-7 and is going right (-7 away from 
origin)” 
 

E
 &

 M
 

direction of a vector 
component 

signifying a specific type of charge 
that is opposite of positive charge 

potential at one location relative to 
another 

EM 1:   
“The electric field is moving 
in the negative x-direction” 

“every Coulomb of charge 
experiences 10 N of force in 
negative direction”  

 

EM 2:   
“The charge from the electrons that 
transferred from the comb gives 
Valeria's hair a negative charge” 

“charge has been transferred from 
comb to hair. Comb lost 5 uC of 
charge.” 

EM 3:   
“The voltage moves from the 
negative terminal to the positive” 

“The negative signifies the direction 
of the voltage” 

“The voltmeter is attached 
backwards” 

 
 
 
Figure 2:  The percentage correct for 
each multiple-choice item, grouped by 
the nature of the minus sign and by 
course. Error bars represent standard 
error of the mean for binomial 
variables. 
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Discussion 

We discuss the results in the context of the research questions: 

RQ1:  After instruction, what themes are evident in student understanding of the unary, 
binary and symmetrical ways that negative signs are used in the context of physics?   
We observe from the free response answers that students seemed to struggle less with 
unary natures than with binary or symmetrical.  Their answers suggest intuition on unary 
items, but the reasoning is not robust.  Strong multiple-choice distractors can derail 
reasoning, which we believe explains the low unary correct response rates seen in Figure 
2.  We consider students’ cognitively blended conceptual understanding on unary items 
to be emerging, but tenuous, as can be seen in the fact that 3rd semester students are 
statistically better than their first semester counterparts in the face of strong distractors at 
recognizing the meaning of the negative sign that can be part of a vector component.  We 
observe both in the multiple choice and free response versions that students struggle 
especially with the symmetrical uses in physics and note that this is the use that Sherin 
(Sherin, 2001) observed as being a hallmark of successful problem solvers in physics.  
RQ2:  Are some contexts more challenging than others? 
We see three important trends that emerge relating to the cognitive blend of negativity 
and physics from our results.  We observe that, even after instruction, introductory 
physics students often erroneously associate negativity with an action (e.g. moving, 
pushing.)  They also struggle to make sense of negative scalar quantities (e.g., work, 
voltage.)  They commonly assign a direction to a negative scalar quantity (e.g. the work 
is acting in the negative direction.)  In the context of work they typically associate 
negativity with the direction of one or both of the vectors that combine to create a scalar 
product (e.g. negative work is done using a negative force.)  In the context of voltage, 
they commonly treat voltage as having a “direction”, confounding it with current or 
electric field.  And lastly, we observed significant struggle to combine more than one 
nature of negativity in a single calculation (e.g., removing negative charge.)    The 
students were prone to associate the negative sign with “taking away ” in that context. 

In general, the students struggle with negativity in the ways that it is typically and commonly 
used in physics for quantification.  We observe that student interpretations of negative numbers 
are often associated with negative position.  We note that by comparison to the other physics 
contexts, students did anomalously well on item Mech3 that asks about one-dimensional position 
– which is essentially the number line context seen in pre-algebra.  In the next section we discuss 
the need for a cognitively blended learning space in which negativity, and its varied uses, 
continues to be part of the discussions both in mathematics courses beyond pre-algebra and in 
physical science courses.  We also discuss, through example, some implications of the challenges 
posed by combining multiple natures of negativity in a typical physics context. 
 
Implications for instruction 

We interpret student responses to physics questions through a lens of the three natures of the 
minus sign, emphasizing that sensemaking with the physical quantities involved is neither 
entirely physics cognition nor entirely mathematics cognition.  A deep understanding requires 
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thinking in a blended cognitive space in which students use conceptual understanding in each 
domain to fully understand the nature of the physical quantity.   

Seen through the lens of the three natures of the minus sign, we can see the complexity of the 
symbolizing that is a normal part of physics instruction and the additional cognitive load it places 
on students.   Negativity is deeply embedded in the meaning of physical quantities, and the 
negative sign takes on varied meanings in context.  Oftentimes physical quantities are 
constructed using multiple negativities in the same statement, and we’ve seen that this practice is 
not readily assimilated or appreciated by the students.  Take for example electric potential energy, 
U(r), of two particles separated by distance r.  Electric potential energy is an extremely 
important quantity in E&M: 

  U(r)  =   (a physical constant) • (charge 1) • (charge 2)   + any constant 

      r2 
• As r increases, the interaction force does negative work if the interaction is attractive 

(opposite electric charges), and does positive work if the interaction is repulsive (like 
charges) 

• Thus U increases with r for attractive interactions and decreases with r for repulsive 
interactions 

• By convention, U(r) = 0 when r = ∞ for both types of interaction, implying that if U(r) is 
non-zero it is negative for attracting particles and positive for repelling particles 

Note the cognitive blend associated with the distinct uses of the negative sign: a negative scalar 
quantity (energy) measured relative to a reference point (binary operational signifier), involving 
other negative quantities (charges) associated with the quantification of opposites (symmetric 
operational signifier) 

We find that at the end of calculus-based physics courses, students commonly both 
appropriately and inappropriately associate the negative sign with spatial direction or opposition, 
but do so without the nuance and flexibility characteristic of expert practice exemplified above – 
they appear to be associating meaning to the negative sign perhaps based on contexts learned in 
their pre-algebra courses.  We observe that, in general, they struggle to interpret signed quantities 
in new physics contexts, even after relevant physics instruction that is focused on learning the 
quantities. 

While experts interpret negative flexibly while symbolizing, many students are unable to do 
so, even after taking introductory physics. Instruction that explicitly targets student ability to 
distinguish the three natures of the negative sign, and to make symbolizing decisions using signs, 
could enhance students’ quantification in physical science. Such instruction would be most likely 
to succeed if it is intentionally distributed and coordinated between mathematics courses and 
physics courses. Without such explicit attention to negativity, our results suggest that students 
may not spontaneously adopt an expert perspective.  Instruction should challenge students to 
make sense of varied uses of the negative sign in a variety of physical contexts, and to blend 
multiple natures of the negative sign in the same overall mathematical context. 

This paper describes a preliminary investigation.  We intend to conduct individual student 
interviews and classroom observations to further explore the associations students seem to make 
between some sort of action or movement and negativity.  We plan to repeat the current study 
using positive quantities to determine the extent to which student difficulties are associated with 
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negativity, per se, or with signed numbers in general.  Ultimately, we hope to explore, develop, 
and classroom test instructional interventions, both in the context of mathematics courses and 
physics courses, that can help students develop the blended thinking space necessary to make 
sense of signed physical quantities. 
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Why research on proof-oriented mathematical behavior should attend to the role of 
particular mathematical content 

 
Paul Christian Dawkins Shiv Smith Karunakaran 

Northern Illinois University Washington State University 
 
Because proving characterizes much mathematical practice, it continues to be a prominent focus 
of mathematics education research. Aspects of proving, such as definition use, example use, and 
logic, act as subdomains for this area of research. To yield content-general claims about these 
subdomains, studies often downplay or try to control for the influence of particular mathematical 
content (analysis, algebra, number theory etc.) and students’ mathematical meanings for this 
content. In this paper, we consider the possible negative consequences for mathematics 
education research of adopting such a content-general characterization of proving behavior. We 
do so by comparing content-general and content-specific analyses of two proving episodes taken 
from prior research of the two authors and by re-analyzing the data and results presented in one 
instance of research from the field. We intend to sensitize the research community to the role 
particular mathematical content can and should play in research on mathematical proving.  
 
Keywords: Proving, mathematical meanings, comparative analyses 

 
Since at least the time of Euclid’s geometry, proving has been understood to characterize 

mathematics as a discipline. Inasmuch as mathematics educators endeavor to engage students in 
authentic mathematical activity, they have expended much effort to provide students with 
meaningful proving experiences and document the emergence of proving as a mathematical 
practice among novices. While we certainly endorse this agenda for instruction and research, we 
are concerned that framing mathematical proving as a single, content-general practice may 
inappropriately downplay the role particular mathematics content plays therein. We observe two 
trends in the research literature on mathematical proving: 1) making content-independent claims 
about mathematical proving using data from a particular mathematical context (i.e. analysis, 
algebra, number theory, geometry) or 2) eliciting the proving behavior of the same students in 
multiple mathematical contexts in order to make content-independent claims about proving. In 
this paper, we consider the possible consequences for research on mathematical proving of 
downplaying the role of particular mathematical content. We do not at all intend to deny the 
validity or value of prior research framed in a content-independent manner (some of which we 
authored), but rather seek to sensitize the community to possible blind spots induced by common 
lenses applied to research data and to endorse a research agenda focused on the interplay 
between proving and particular mathematical content. Furthermore, if we are to advance the 
agenda of proof as a process through which students develop key mathematical understandings 
(Reid, 2011; Stylianides, Stylianides, & Weber, in press), our research lenses for mathematical 
proving must accommodate the specific mathematics being learned.  

To portray such blind spots induced by a research lens, this paper presents dual analysis of 
three proving episodes taken from prior studies. One episode presents our analysis of another 
researchers’ data and the other two episodes each appear in one of the two authors’ prior 
research, respectively. In each case, we compare 1) a content-general analysis focused on 
common constructs from proof-oriented mathematics education research – example use, 
definition use, proof production, logic – with 2) a content-specific analysis focused on explaining 
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students’ proving behavior in situ. We use these comparative analyses to reflect on researchers’ 
interpretive process itself and how the framing of research questions non-trivially influences the 
nature of the phenomena observed and the results of such research on proof-oriented behavior.  

Motivating trends and questions 
It is common to frame both the research questions and findings using these content-

independent constructs such that they form informal subdomains of proof-oriented research. One 
can find numerous examples of studies on proof-oriented mathematical activity that make 
content-independent claims about  

• example use – Alcock & Inglis, 2008; Karunakaran, 2014; Sandefur, Mason, Stylianides, 
& Watson, 2013,  

• definition use – Alcock & Simpson, 2002; Ouvrier-Buffett, 2011,  
• proof production – Dawkins, 2012; Raman, et al., 2009; Stylianides & Stylianides, 2009, 
• logic – Epp, 2003; Selden & Selden, 1995, and  
• understanding of proof – Sowder & Harel, 2003; Stylianou, Blanton, & Rotou, 2015. 

It is not our goal to critique these studies per se, but rather to sensitize mathematics education 
researchers to the consequences of consistently investigating proving while downplaying the 
mathematical meanings that populate the arguments that students produce.  

Why do many proof-oriented studies downplay mathematics content? Even if this question 
had one answer, no available evidence reveals it. Nevertheless, we proffer some possible 
explanations. One explanation is psychological. Proof’s role in mathematics as a discipline and 
the mathematics education community’s emphasis on mathematical process both lead researchers 
themselves to conceptualize proving in real analysis as one instantiation of a broader 
phenomenon. Because we as experts see consistencies across our broad experiences with 
proving, we assimilate instances of proving into our general understanding. Dewey (1902) 
similarly described the asymmetry between experts’ and novices’ perspectives of academic 
disciplines. While adults recognize the internal structure of and distinctions between disciplines, 
children may learn them in an integrated way. Dewey emphasized that these structures are the 
results of learning, but may not appropriately describe the process of learning itself.  

A second explanation involves empirical findings. The growing body of evidence of 
students’ difficulties interpreting, producing, and assessing proofs compels mathematics 
educators to improve proof-oriented instruction. Students perceive the transition into proof-
oriented courses as a difficult transition, so it seems natural to partition such courses apart from 
other aspects of the curriculum (though we agree with Reid’s, 2011, argument that proving 
should become and is becoming integrated as a ubiquitous means of mathematics teaching and 
learning). Because students’ patterns of proving behavior that diverge from mathematical 
practice can be documented within multiple mathematical domains (i.e. the problems are 
content-general), we may falsely assume that these challenges can and should be addressed 
independent of particular content (the solutions are content-general).   

A third explanation relates to the analytic process itself. Mathematics educators frequently 
use localized data to make analytic generalizations (Firestone, 1993) by constructing frameworks 
and in-depth characterizations of relatively few cases. While such studies rarely make explicit 
claims to sample-to-population generalizations (or even claims that the same student would 
exhibit similar patterns of proving behavior on a different proving task), it remains unclear how 
to situate the resulting empirical claims about student behavior. Our first dual analysis of a 
proving episode exemplifies this tension. Case studies are instances, but it is up to researchers 
and readers to determine what they instantiate.  
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Comparative analysis 1: Indirect proof in planar geometry 
Antonini (2003) presented findings suggesting conditions under which students may 

spontaneously produce proofs by contradiction (or indirect proofs more generally), which 
previous studies report that students find particularly challenging. He draws upon the Cognitive 
Unity (Mariotti et al., 1997) theoretical framework, which characterizes students’ proving by 
attending to interplay between informal arguments and proofs. Antonini (ibid.) further highlights 
the form of the task as an influential factor in the emergence of indirect proof (“given an 
hypothesis A what can you deduce?”, p. 50). The data presented in the paper are limited to 
students’ exploration of a geometric conjecture involving transversal configurations (two lines 
intersected by a third line), but the author nevertheless frames his research hypothesis in the 
following way:  

In task like “given A what can you deduce?” the conjecture can be produced via the 
analysis of a non-example. The argumentation that justifies the fact that the generated 
example is a non-example can be re-elaborated and become part of the argumentation of 
the conjecture. In this case, the argumentation takes an indirect form. (Antonini, 2003, p. 
50) 

We find this hypothesis striking in its generality. While we do not intend to devalue Antonini’s 
characterization of a phenomenon of proving behavior, we question how researchers should 
interpret the scope and purpose of such characterizations. Is Antonini’s hypothesis merely a 
description of an (possibly general) indirect proving phenomenon that others may call upon to 
characterize other episodes, or does it purport to be an explanation of why the argumentation 
took an indirect form? Over the course of this paper, we shall elaborate this dichotomy between 
general(izable) descriptions of proving phenomena and explanations for particular instances of 
those phenomena. To motivate our distinction in the case of Antonini’s data, we propose an 
alternative, content-specific explanation for the reasoning pattern he observed.  
Episode 1: Classifying relationships between pairs of lines 

The task presented to Antonini’s (2003) research subjects was, “Two lines r and s on a plane 
have the following property: each line t intersecting r, intersect s too. Is there anything you can 
say about the reciprocal position of r and s? Why?” (p. 51). The given property (which the author 
abbreviates as “A”) is equivalent to saying that lines r and s are parallel. The two students 
featured in the paper (Valerio and Christina, age 13) justified this by showing that the lines r and 
s cannot be perpendicular or intersecting, because in those cases there would be a line t that 
intersected r but not s. Valerio and Christina seem convinced of the generality of their claims 
regarding perpendicular and intersecting lines and justified that the lines r and s must be parallel 
because they cannot be intersecting.  
Content-specific analysis of Episode 1 

How might the geometric context, and transversal configurations in particular, influence the 
emergence of this indirect line of reasoning? Certainly it was easy for the pair to generate and 
test cases by visualizing and rotating lines, but we notice another aspect of this context that we 
hypothesize as relevant to the emergence of indirect proof. In school mathematics, there are three 
basic relationships between two non-identical coplanar lines: parallel, intersecting, and 
perpendicular. Two of these properties are implicitly negations of one another. To be non-
intersecting is to be parallel and vise versa. Valero and Christina may have been taught that 
parallel means “non-intersecting,” or they may have a less formal meaning thereof. Inasmuch as 
indirect proof entails negating mathematical conditions, we hypothesize that it was important in 
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Antonini’s (2003) proving episode that Christina and Valerio were familiar with properties that 
exactly characterized the pairs of lines exhibiting property A and those not exhibiting A.  

In recent studies on students’ reinvention of truth-functional logic, Dawkins and Cook (2015) 
documented some students’ reluctance to reason about negative properties (not [X]); such 
students instead exhibited preference for familiar categories. This was especially true in 
geometric contexts where students often paraphrased “[a triangle] is not acute” by saying “it is 
obtuse” or “[a quadrilateral] is not a rectangle” with “it is a parallelogram.” In the former case, 
obtuse is a familiar category of triangles that has empty intersection with but is not the 
complement of the class of acute triangles (i.e. obtuse is not a proper negation of acute, but all 
obtuse triangles are “not acute”). In the latter case, the set of parallelograms is neither mutually 
exclusive to the set of rectangles nor equivalent to the complement of the set of rectangles. It is 
important to note that in neither case is there a familiar (non-negative) category that corresponds 
to the given negative property. Dawkins and Cook (2015) hypothesized that this pattern of 
behavior revealed 1) an aversion to describe geometric shapes according to properties they 
lacked and 2) an implicit reliance on the familiar organization of these shapes according to 
categories taught in school (“acute, right, and obtuse” rather than “acute and not-acute”).  

Both of the patterns of students’ reasoning about geometry Dawkins and Cook (2015) 
hypothesized are relevant to Antonini’s (2003) proving task. First, students’ preference for 
familiar categories (if applied to Antonini’s subjects) suggests that Valerio and Christina 
explored perpendicular and intersecting lines because they are two of the three familiar relations 
between two lines. Furthermore, we have no evidence whether their initial investigation of these 
two properties, rather than parallel, was strategic or idiosyncratic. This suggests that they may 
not have been asking the question Antonini (2003) cites as central to indirect argumentation: 
“...if it were not so, it would happen that...” (p. 49). It seems implausible that Christina and 
Valerio first investigated perpendicular lines as non-examples of property A because they were 
unfamiliarity with property A. We hypothesize they merely explored the familiar properties of 
pairs of lines – perpendicular, intersecting, and parallel – in that order.  

Second, the availability of two properties that corresponded perfectly with A and not-A 
allowed the students to use indirect argumentation without using negative properties. If these or 
other students were working on a similar task whose solution depended upon the properties 
rectangle and non-rectangle, would indirect proof have emerged as easily or at all? For instance, 
consider the similarly framed task “Given that a quadrilateral has congruent diagonals that bisect 
each other, what can you conclude? Why?” Students may begin the task by exploring the 
diagonals of familiar shapes, but none of those classes of shapes would correspond to non-
rectangles to afford a contrapositive argument similar to the one developed by Christina and 
Valerio. We acknowledge that this analysis of Antonini’s data relies on a generalization of 
reasoning phenomena from very different data (Dawkins & Cook’s interviews with college 
students), but it is warranted for our purposes because 1) this generalization is comparable to 
Antonini’s own citation of other studies on students’ production of indirect proofs and 2) we 
provide this plausible explanation to justify our contention that the specific mathematics in the 
task may be essential to explaining Valerio and Christina’s proving behavior. Whether this pair 
or other students would exhibit similar patterns of proving behavior on alternative tasks of a 
similar form is an empirical question, and researchers must make use of Antonini’s (2003) 
analysis with this in mind.  

These observations about the particular affordances of Antonini’s (2003) chosen 
mathematical content do not necessarily undermine the utility of his characterization of a 
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phenomenon of proving behavior, but we posit that they demonstrate how his characterization 
likely falls short of fully explaining the students’ reasoning behavior and why it emerged. We 
could sympathetically interpret Antonini’s hypothesis regarding tasks of the form “given an 
hypothesis A what can you deduce?” by inferring an implicit comparison to the alternative proof 
task prompt: “given the hypothesis A, prove that B must be true.” In this case, Antonini (2003) 
suggested that the former, open task prompt may invite more indirect reasoning since the latter 
prompt would focus students’ attention on A and B (rather than not-A and not-B). Our intention 
is not to dispute this content-general claim. Rather, we want to emphasize to the research 
community the relative importance of the mathematical content of A and B if we want to 
document and explain these type of phenomena of students’ proving behavior. Furthermore, we 
argue that the operative research framing (indirect proof, Cognitive Unity, the sense in which 
two tasks are “like” one another) can non-trivially influence 1) the ways we interpret students’ 
behavior, 2) those aspects of the situation to which we do not attend, and 3) which types of 
phenomena we take observed behavior to instantiate.  

Comparative analysis 2: Logic and inference regarding transversal configurations 
This and the following sections set forth two empirical episodes, each taken from one of the 

authors’ prior research, and dual analyses thereof. Episode 2 occurred during a sequence of task-
based interviews as part of the first author’s investigation of student learning of neutral, 
axiomatic geometry. It features two undergraduate mathematics majors trying to prove the 
equivalence of Euclid’s Fifth Postulate (EFP) and Playfair’s Parallel Postulate (PPP). Analysis of 
Episode 2 also appeared in Dawkins (2012). The second episode appeared during a sequence of 
task-based interviews with expert and novice mathematics students conducted by the second 
author. For the sake of brevity and clarity in this theoretical paper, we omit presenting the full 
methodology of the study, which is available in the cited reference.  
Episode 2: Proving the equivalence of geometric postulates 

For reference, the students’ statements and diagrams for EFP and PPP appear in Figure 1. As 
part of a homework assignment prior to the interview, Kirk and Oren had each proven the 
equivalence of the two postulates using the auxiliary claim we shall call Theorem *, which states 
“Given two lines cut by a transversal, if the same side interior angles sum is 180, then the two 
lines do not meet on that side of the transversal.” When asked to explain the postulates, the pair 
found themselves using language from each of the two statements to explain the other. Oren 
noted this circularity and attributed it to the fact that the statements implied one another. Kirk 
expressed a similar sentiment, but did so by simply claiming the postulates “are the same.” Oren 
explained the meaning of each postulate by extending his forearms to represent parallel lines and 
noting that any amount of rotation from the parallel position would cause the lines to intersect. 
While EFP characterized that rotation in terms of angle sums and PPP did so in terms of 
deviation from the one parallel line through P, Kirk and Oren seemed convinced of the unity 
between the claims. Interestingly, this arm gesture also provided Oren’s initial response about 
what it meant for two lines to be parallel. It appeared that he took other properties such as 
intersecting and equidistant to be consequences of that arrangement, such that the term parallel 
was, for him, defined in an inherently spatial way.  
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Figure 1: Kirk and Oren’s statements and diagram for EFP and PPP 

The students began the task intending to prove that EFP ⇒ PPP. The students’ argument 
depended upon dividing the line arrangements into three cases, depending upon the angle sum 
! + !. They successfully argued, using EFP and Theorem *, that:  

• if ! + ! < 180°, lines l and m meet on that side of line n, 
• if ! + ! = 180°, lines l and m do not meet, 
• if ! + ! > 180°, lines l and m meet on the other side of n.  

Upon completing their three-case argument, Kirk and Oren disagreed about their relative 
progress toward constructing a proof. Kirk considered this argument sufficient to prove PPP 
because it guaranteed that there was only one instance in which the lines l and m are parallel. He 
said, “Playfair's Postulate basically states that there’s only one instance or case where the lines 
will not meet.” Oren disagreed because he was concerned about how the choice of lines through 
point P (in PPP) corresponded to the angle sums (in EFP). Through their discussion, Kirk 
adopted some of Oren’s concern about the sufficiency of their argument saying, “It's just hard 
because Playfair’s doesn't include this line n, so you are trying to find a way to go from having 
this line n to not having this line n in Playfair’s.” Once it appeared they had reached an impasse, 
the interviewer invited the students to begin their argument with the diagram for PPP. The pair 
then was able to use their three cases argument to complete the proof. Oren showed great 
attention to the warrants necessary for constructing the transversal line and for relating each line 
through the point P, to a unique angle sum. Despite their work prior to the interview, Kirk and 
Oren’s proof production took over 40 minutes.  

Analysis 1 of Episode 2. The study in which this episode occurred sought to investigate 
students’ interpretation and use of conditional (“if…then…”) statements in proof-oriented 
mathematics. The first author used this task because it contained at least three conditional claims: 

• EFP: “Given two lines cut by a transversal, if the two interior angles on one side of the 
transversal sum to less than 180°, then the lines intersect on that side of the transversal.” 

• PPP: “If P is a point not on a given line l, then there exists only one line through P that 
does not intersect l.” 

• If EFP, then PPP (EFP ⇒ PPP).  
Kirk and Oren’s initial difficulties in proving EFP ⇒ PPP can be reasonably attributed to the 
logical structure of their argument, specifically the proof frame (Selden & Selden, 1995). 
Zandieh, Knapp, and Roh (2008) also reported on students’ difficulties with this proof and others 
with similar logical form. They explain that students do not adopt a Conditional-Implies-
Conditional (CIC) proof frame in which the proof proceeds from the hypotheses of the 
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consequent statement (in this case the point and line arrangement of PPP) to the conclusions of 
that statement (exactly one parallel through P). Kirk and Oren displayed difficulties similar to 
those reported in Zandieh et al. (2008) because they adopted the standard conditional proof 
frame that begins with hypotheses (EFP) and ends with the conclusion (PPP). Kirk’s was 
convinced they had produced an adequate proof with this proof frame, which could be modeled 
by the valid syllogism: EFP (and Theorem *) ⇒ Three Cases, Three Cases ⇒ PPP, therefore EFP 
⇒ PPP. However, this argument failed to prove that the conclusions of PPP are implied by its 
hypotheses, as the CIC proof does. In Raman et al.’s (2009) language, Kirk understood the key 
idea of the proof (the Three Cases argument), but lacked the technical handle (the proof frame) 
to construct a valid proof. Ultimately, the interviewer had to prompt the pair to begin with the 
diagram from PPP, which implicitly introduced the CIC proof frame. This modification allowed 
the students to produce a valid and normative proof.  

Analysis 2 of Episode 2. Several aspects of Kirk’s behavior in the episode are not explained 
by the absence of an appropriate proof frame. For instance, why was Kirk convinced by his 3 
Cases argument while Oren was not? Also, when Kirk described their intention to prove PPP 
from EFP, he appeared to metonymize (Zandieh & Knapp, 2006) the two statements by their 
diagrams. To get from EFP to PPP, one diagram needed to be transformed into the other, which 
required removing a transversal. We posit that a viable explanation for these phenomena requires 
attention to the geometric nature of Kirk’s reasoning (in a visuo-spatial sense). Much like Oren’s 
explanation using his forearms to observe the possible arrangements of two lines, Kirk seemed to 
interpret the postulates as describing geometric possibilities. For him, these conditional 
statements were not so much warrants for possible inferences in a chain of deduction as they 
were articulations of occurrences among lines in a plane. This explains why Kirk so closely 
linked the postulates to their diagrams and said the two postulates were “the same”: the two 
statements pointed to geometric phenomena and described the same set of three possibilities. 
Oren provided a stark contrast to Kirk’s reasoning inasmuch as he attended closely to how 
warrants in the body of theory afforded individual steps in proof construction. Oren’s 
hypothetico-deductive mode of activity led him to recognize the insufficiency of their three cases 
argument when Kirk could not within his visio-spatial mode of reasoning.  

This account of Kirk’s reasoning suggests that a more honest rendering of his understanding 
into the language of logic would be the invalid syllogism: “EFP (and Theorem *) ⇒ Only One 
Instance, PPP ⇒ Only One Instance, therefore EFP ⇒ PPP.” The deeper implication of our 
second analysis is that propositional logic is a poor tool for modeling the nature of Kirk’s 
reasoning. This can be seen in the way that each “implication” in this supposed syllogism has a 
distinct meaning. Kirk perceived the claim that there was Only One Instance (of a parallel 
through P) as an implication of EFP via the Three Cases argument. He viewed Only One 
Instance as a paraphrase of PPP rather than a consequence of it. Finally, his reasoning did not 
display clear directionality in the relationship between EFP and PPP (Dawkins, 2012). It appears 
that Kirk’s empirical reasoning convinced him that the 3 Cases argument proved that EFP and 
PPP were equivalent because they entailed the same geometric possibilities. Framing his 
reasoning thus as a quasi-empirical report on the set of geometric possibilities described by the 
two postulates provides a better explanation for various aspects of his behavior. We thus 
conclude that this description is more faithful to the nature of the underlying reasoning process.  

Comparative analysis 3: Examples and expertise in real analysis 
Episode 3 occurred during a comparative study of the proving behaviors of expert and novice 

mathematicians. This episode features a graduate student in mathematics, designated an expert 
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prover, attempting a novel analysis task about sequences. Analysis of Episode 3 also appeared in 
Karunakaran (2014), which presents the fully methodology of the study.  
Episode 3: Proving and disproving conjectures about sequences of real numbers. 

Upon being asked to validate or refute the claim given in Figure 2, Zander quickly stated, 
“So, the first thing that I would do is to see if [the series] obviously doesn’t converge.” When 
asked to elaborate his goals, Zander stated that he would search for a counterexample to the 
statement. That is, he would look for a sequence !! !!!

�  of real numbers satisfying the 
condition that 0 < !! ≤ !!! + !!!!!, such that the series !!!!� !! does not converge.  

 
Figure 2. The statement of the original Task 1 statement as presented to Zander. 

Zander quickly generated the valid counterexample sequence !! = 1  ∀ !. At this juncture, 
the interviewer asked Zander to prove a slightly modified version of statement in Task 1. The 
modified version negated the conclusion to state, “Then the series !!!!� !! diverges.” As before, 
immediately after being given the modified task statement, Zander stated, “Ok. Uh well … right 
so then I would have to find an example where it converges.” Upon being asked, Zander 
confirmed that he was looking for a counterexample to the modified statement. Also, Zander 
quickly considered and discarded the use of various convergence and divergence tests (e.g. ratio 
test; comparison test) because he anticipated that none of the tests would “guarantee divergence.”  

Then, Zander recalled a convergent series with which he seemed familiar: !!!!� !
!! . He 

stated his intentions for choosing this example saying, “maybe we can find a way to make a 
sequence where !! [the sequence in the task] is equal to !!! or smaller than or something like 

that. Cause then that would converge as well.” However, he noted that the sequence !
!!  does 

not satisfy the inequality condition 0 < !! ≤ !!! + !!!!!. To work around this, he attempted to 
generate a counterexample by modifying his example sequence such that !! = !! = !! = !! =
1 and then each of the terms for ! > 3 were constructed using the rule !!! = !

! !! and 

!!!!! = !
! !!. At this point he argued that “halving” the terms was the “best–case scenario” for 

satisfying the inequality since “it’s sort of the cutoff I mean because if we take it to be any 
smaller a half, say like a tenth of a tenth and then it no longer fulfills this second inequality.”  

Zander stated that he now believed the modified task statement to be true. Zander attempted 
to use the harmonic series to prove that the modified statement is true. However, he realized that 
the harmonic series does not satisfy the inequality condition, and he explained that he would like 
to show that the terms of the harmonic series (or some variant of it) would be a necessary lower-
bound to the corresponding terms of the series in the task and thereby the series in the task would 
also have to diverge (using the comparison test). 

Analysis 1 of Episode 3. The study in which this episode occurred focused on finding 
similarities and differences between expert and novice’s proving behaviors. As such, the original 
analysis characterized Zander’s proving behaviors across the various real analysis tasks 
provided. Zander repeatedly used the strategy of searching for a counterexample on this and 

Task 1 
Validate or refute the following statement: 
Let {!!}!!!�  be a sequence of real numbers 
such that 0 < !! ≤ !!! + !!!!! ∀! ∈
ℤ & ! ≥ 1. Then the series ∑ !!�

!!!  
converges.  
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other tasks. When asked about why he did so, he replied, “Because the counterexample might tell 
you why it always diverges … or rather the inability to find a counterexample might tell you why 
it always converges.” So, on multiple tasks Zander used this strategy of searching for a 
counterexample to either successfully find a counterexample invalidating the statement or to gain 
knowledge about why the statement is valid through the inability to find a counterexample. 
However, Zander’s choice of sequences/series appears strange since neither was a 
counterexample of the original or modified claim. This is because neither satisfied the inequality 
condition in the hypothesis. The interviewer asked Zander why he called on the series !

!! !!!

�
 

and the harmonic series, even though neither one satisfies the inequality condition. He explained 
that he routinely looked for examples that were relevant to the task and provided him with “a 
picture” or a “prototypical” example that helped him understand the task better. Zander’s use of 
the term “prototype” seems inconsistent with its use in mathematics education as an example 
central to a category. Since Zander engaged in a process of example generation similar to 
Antonini’s (2011) example transformation, he may use the term “prototype” to refer to his 
starting example that he modifies to satisfy the conditions in a task.   

Thus, this episode supports the general claim that Zander’s proving strategy often included 
searching for counterexamples (regardless of whether he believes one exists). He was aware of 
this strategy and valued it because it aided him either in disproving the claim (by 
counterexample) or proving the claim (using some insight from the example search). 
Furthermore, Zander’s work within this episode also supported the claim that he routinely used 
what he considered “prototypical” examples or visualized “pictures” to gain insight into why a 
particular claim is true, consistent with previous finding associating visualization and examples 
with conviction and insight (e.g. Alcock & Simpson, 2004).  

Analysis 2 of Episode 3. Even though we can make the content–general claims present in 
Analysis 1, this may not account for Zander’s “expertise” or his relative success on this task. We 
observe nuances within Zander’s search of counterexample and his choice of sequence/series 
( !
!! !!!

�
 and the harmonic series) that provide insights about his use of his content-specific 

knowledge about series. Throughout the task, Zander paid particular attention to the growth 
patterns of various series, which can rightly be considered a conceptual link between the 
inequality condition and the convergence of monotone increasing series. To find a 
counterexample to the modified task, Zander called on the series !!!!� !

!!  because he knew this 
to be a series that converged. A minimal way to satisfy the inequality condition is for !!! =
!!!!! = !

! !!, and !
!!  similarly halved its adjacent terms. Zander noted that !

!!  did not satisfy 
the inequality condition, but examining the rate at which its terms decreased prompted him to 
search for “a way to make a sequence where !! is equal to !!! or smaller than or something like 
that … then that would converge as well.” Zander deduced that “halving” the sequence terms 
would be the “best–case scenario” since,  

“if we take it to be any smaller a half, say like a tenth of a tenth and then it no longer 
fulfills this second inequality [and] if we take something that was bigger than a half then 
that’s only more problematic because you’re just throwing in bigger numbers into the 
sequence … I think this if I’m right in saying that this sequence always diverges this 
actually might be a key to the reason why.”  
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In what ways was this scenario “best?” Zander wanted to find a series that converged, so the 
added terms must decrease, but the inequality limited the rate at which they decreased. Zander’s 
modified example was his “best” possibility to have a minimal growth rate (so as to converge) 
while satisfying the inequality condition in the task. We infer that Zander’s analysis of the series 
!!!!� !

!!  convinced him that the modified task statement was true because he perceived that no 
sequence satisfying the inequality condition could decrease fast enough for the associated series 
to converge. He called upon the harmonic series (even though it is not a series that satisfies the 
inequality condition) as a “prototypical” example of a divergent series with a small growth rate. 
Part of what made Zander’s proving successful (his “expertise”) was his ability to interpret the 
conditions in the task as constraints on the growth rate of the sequence/series and call upon 
canonical examples that displayed particular growth behaviors. Both his knowledge and use of 
the prototypical examples point to his analysis-specific knowledge of series, growth rates, and 
comparison proof methods.  

Discussion and Conclusions 
We present dual analyses of these three proving episodes to portray the alternative insights 

gained by content-general analysis (of direct and indirect argumentation, logic, example use, 
etc.) versus content-specific analysis (of exploring the reciprocal relations between lines, the 
possible arrangements of transversal configurations, growth rates of sequences and series, etc.). 
These three studies reflect common research paradigms within mathematics education: 1) 
documenting the emergence of proving from student argumentation while solving well-designed 
tasks, 2) task-based interviews intended to elicit instances of mathematical behavior related to a 
general topic of interest and 3) comparing and contrasting expert/novice mathematical behavior. 
While the latter two studies employed grounded theory methods, affording these various 
analyses, they both began with guiding questions and theoretical framings (as no investigation 
can avoid being, on some level, theory-laden). Regarding Episode 2, it was only after attempts to 
generally characterize Kirk and Oren’s interpretations of conditional statements failed that the 
author attended to the broader differences between the ways they interpreted the statements and 
the task at hand. This helped explain Kirk and Oren’s very different proving behaviors and their 
assessments of their progress on the task. Regarding Episode 3, the second author designed the 
study to include tasks in various mathematical contexts, but later refined the study tasks to only 
include real analysis tasks. While the content-general claims about Zander’s proving expertise 
are supported by Zander’s proving practice and his self-reflection, they may also hide the role 
and value of Zander’s extensive experience with real analysis. In other words, content-general 
claims will necessarily fail to characterize what it means to be an expert in real analysis and how 
that expertise plays a role in the observed proving. We may conclude from cases like Zander that 
experts use examples more and differently than novices, but we must focus on content-specific 
ideas such as growth-rates and convergence to truly characterize how Zander used those 
examples productively. One must specify what category an example instantiates for the learner, 
as Zander productively used series that did not satisfy the task constraints, but exemplified 
various growth rates.  

In what follows, we present our arguments about why research on proof-oriented 
mathematical behavior should attend to the role of particular mathematical content. We organize 
our observations around two main points each of which highlight the role of content in proving 
behavior: 1) distinguishing when research describes from when it explains the emergence of 
proving behavior and 2) attending to the role researchers play in identifying and framing 
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observed phenomena. We then provide some recommendations for future research regarding the 
interplay between proving and mathematical meaning.  
Description versus explanation 

As we stated before, our goal is not to deny the value of content-general proof research, but 
rather to sensitize the mathematics education research community to the limitations and possible 
liabilities of content-general research lenses (i.e. questions and theoretical frameworks). As was 
discussed previously in the paper, we find it helpful to distinguish whether a study’s analysis 
provides descriptions of student proving phenomena or explanations for the emergence of those 
phenomena. We contend that one may describe many recurrent phenomena of student proving in 
a content-general way, but explaining the emergence of the observed reasoning in most cases 
requires attending to students’ understanding of the mathematical content at hand. This is 
because, generally, students reason about mathematics while they solve mathematical tasks! 

Many frameworks in mathematics education set forth categories that describe patterns in 
student proving behavior. These categories are useful inasmuch as they provide language for 
further investigation and tools for the formulation of testable hypotheses and inferences 
regarding student learning. Indeed, one does not necessarily need underlying mechanisms and 
explanations to identify and document recurrent phenomena in students’ proving behavior. 
However, such descriptions of recurrent student behaviors also should not be confused for 
explanations of the reasoning processes that lead to their emergence. It seems obvious to claim 
that students are thinking about the mathematics at hand when proving. This suggests that any 
explanation of their proving behavior must account in some way for students’ meanings 
(Thompson, 2013) for that mathematics. Accounts of proving phenomena that are not content-
specific are likely to capture epiphenomena that emerge at the chosen level of analysis, but 
whose underlying causes or mechanisms remain as-of-yet unspecified.  

How can we observe this distinction between description and explanation in each of our three 
episodes? Regarding Antonini’s (2003) account of the emergence of indirect proof, we provided 
an alternative account of how the particular geometric task afforded the students’ line of 
reasoning. Our account suggests that any use of Antonini’s hypothesis that open-ended proof 
tasks invite indirect reasoning may require careful attention to students’ familiarity with the 
properties in the task and their negations. Based on our analysis, we hypothesize that even 
traditionally stated proof tasks that involve negative properties may invite indirect proof, such as 
“Prove that any number that is not a multiple of 4 is not a multiple of 12.” In cases such as 
Antonini’s (2003) where both direct and indirect argumentation are viable, open-ended proof 
prompts may elicit indirect argumentation. The task frame alone falls short of explaining why it 
does so. Regarding Episode 2, analyzing proof frames or imposing a hypothetico-deductive 
structure on Kirk’s arguments both reveal deficiencies in his proving. One can describe his 
reasoning to show that it was non-normative, but this fails to reveal the subjective rationality of 
Kirk’s behavior. These forms of analysis do not provide insight into how his engagement in the 
proving process differed qualitatively from Oren’s. Because Kirk’s reasoning was intrinsically 
tied to the visuo-spatial representations, one cannot explain the emergence of his reasoning 
without attending to the geometric nature of the task. Regarding Episode 3, the strategic use of 
examples may provide an observable, qualitative difference between experts’ and novices’ 
reasoning, but that does not mean differences in example use constitute the nature of expertise in 
this proving arena. Our second analysis of Zander’s reasoning demonstrated how he used 
examples as implicit measures of rates of convergence, which we argue may be closer to an 
explanation of the nature of his expertise in sequence and series convergence.  
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Our distinction between description and explanation is of greatest import when using and 
applying the results of prior research. We acknowledge the appeal of reporting local findings in a 
content-general way because it maximizes the possibility that other researchers may use the 
results of a study. However, comparing phenomena across studies involves (at least implicitly) 
generalizing those phenomena across individuals and often generalizing across age, learning 
background, and mathematical content. We hypothesize that our field’s implicit invitations to 
overgeneralize empirical findings are partly to blame for the confusing and seemingly 
contradictory claims available in the literature on proof (e.g. Reid & Knipping, 2010). We offer 
our caution about explaining mathematical proving behavior in terms of mathematical meaning 
as a call to respect how situated students’ mathematical knowledge is.  
Distinguishing signal from noise 

Our second point focuses on how researchers’ framing of their investigations influences data 
analysis. A brief survey of mathematics education literature attests to the fact that students’ 
mathematical reasoning is an incredibly multi-faceted and complex forum for investigation. No 
single study can account for all of the dimensions of variation at play, and thus researchers must 
choose how to separate signal from noise in observed data. The broad prevalence of qualitative 
methods renders this difficulty particularly acute in mathematics education. How do researchers 
decide which dimensions of observed behavior to attend to and which to ignore? In most study 
designs the theoretical frameworks, research questions, observation protocols, etc. explicitly 
funnel the complexity of student behavior into interpretable streams of data. In studies using 
grounded theory methods, researchers cast a wide net in initial observation and allow trends to 
emerge along more natural contours in the data. In all cases, though, we contend that researcher 
questions, interests, and prior theory play a necessary role in helping distinguish signal from 
noise. There are two possible pitfalls within this process, each of which is exemplified in our 
three episodes: 1) researchers filter as noise some aspect of student behavior that is in some way 
essential to understanding the emergent phenomenon or 2) researchers’ framing and theory 
impose structures on student behavior that are not native to it.  

Episodes 1 and 3 exemplify the first issue. The studies purported to be about indirect 
argumentation and example use, respectively, which implicitly framed the observed behavior as 
instances of content-general phenomena. The research questions themselves may warrant a 
researcher’s choice to filter the mathematical content of tasks as noise, or to characterize the 
observed behavior in content-general language. This creates the illusion that the research 
subjects reasoned about “examples” and “non-examples” rather than transversal configurations 
or series. This is one instance of how mathematics educators use the language of meta-theory to 
discuss student behavior. Mathematics educators have rightly called upon mathematical meta-
theory to explicate the normative mathematical processes into which we intend to apprentice 
students. Such theory provides useful categories, terms, and structures for modeling student 
behavior, but we must carefully distinguish researcher models from observed phenomenon. We 
find that describing student behavior using meta-theory and assessing whether their behavior is 
mathematically normative (both of which are appropriate) can subtly lead researchers to impose 
the structures of meta-theory upon student behavior itself. This suggests how the first issue cited 
in the last paragraph can often lead to the second. This is probably nowhere more likely or 
prevalent than in logic (Dawkins, 2014), which is why Episode 2 serves as a cautionary tale.  

Proving involves drawing inferences and, somewhat controversially, logic can be used as a 
meta-theory for describing human inference. The relationship between formalized logic and 
reasoning has been widely disputed (e.g. Oaksford & Chater, 2002; Toulmin, 1958). It is beyond 
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the scope of the current discussion to elaborate on this debate and its relevance to mathematics 
education research on proving, but we find Piaget’s use of logic an insightful case. Piaget was 
fond of using formal mathematics as a descriptive language for children’s reasoning (e.g. Piaget, 
1950). Even though he clearly argued that he was recasting logic to reflect student reasoning 
(rather than the other way round), reviewers of Piaget’s work often interpreted his models of 
student reasoning as beholden to the structure of formal logic in problematic ways.  

Episode 2 demonstrates how content-general models such as logic may be applied to a broad 
range of students’ proving activity, but may also be misleading or dishonest to the underlying 
reasoning process. We maintain that the two syllogisms we used to model Kirk’s arguments are, 
on some level, representations that express some aspect of his reasoning process. However, each 
one likely hides other aspects of that process as well. These descriptive models reduce 
“implication” to mere links between claims with the effect that it fails to distinguish what may 
have been distinct types of inferences. The logical frame also imposes structure such as 
directionality that further analysis suggests was not native to Kirk’s reasoning (Dawkins, 2012). 
We perceive that several of the connections Kirk drew between the given claims were distinct in 
meaning. As such, using logic to model these inferences unintentionally imposes foreign 
structure upon them. Oren’s reasoning also provides evidence for the non-trivial influence of 
researcher models on data analysis. Oren’s reasoning in that interview was far easier to analyze 
because it was more consistent with a hypothetico-deductive frame of inference. This is to say 
that modeling student reasoning is easier when the data fits the model on a structural level.  

Many researchers avoid using formal logic to model students’ argumentation and proving, 
but this does not circumvent the danger that by applying content-general models mathematics 
educators will recast student behavior after the image of their analytical lens. Toulmin (1958), 
dissatisfied with the implicit assumptions entailed in using formal logic as a modeling tool, set 
forth an alternative scheme for modeling argumentation that has been increasingly popular in 
mathematics education research. However, this scheme does not alleviate the burden upon 
researchers to attend to the interpretive process, because the same argument can be modeled in 
different ways using Toulmin schemes and there is some debate about which dimensions of his 
framework must be used in mathematics education research (e.g. Inglis, Mejia-Ramos, & 
Simpson, 2007). How and when do content-general frames such as formal logic or Toulmin 
schemes obscure the role of mathematical meaning in proving? Researchers should apply these 
tools with some caution because they can focus analysis on the “signal” of warrants, claims, and 
data leaving particular mathematical claims as background or “noise.” How can mathematics 
educators adapt these frames or couple them with other tools to integrate mathematical meaning 
in the analyses of the emergence of mathematical proving? Researchers must be cautious 
applying content-general models to student reasoning lest the resulting characterizations reflect 
researcher’s questions more than students’ mathematical behavior. Furthermore, if a key goal of 
proof-oriented instruction is for students to experience proving as a means of developing 
mathematical understanding, our research lenses for mathematical proving must accommodate 
the particular mathematical understandings that we intend students to develop.  
Future directions 

While the primary goal of this theoretical paper was to sensitize the mathematics education 
research community to the role of mathematical meaning in research on proving, we also see 
viable avenues for future research to directly address the issues discussed here. There already 
exist many studies that approach proving phenomena in a contextual way, but often such studies 
are classified as studies of real analysis learning, geometry learning, etc. One promising research 
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approach is to document student’s apprenticeship into mathematical proving across content 
domains to document characterize content-independent proof skills if and when they emerge. 
Empirical study is required to determine how and when students develop a sense of mathematical 
proving as a unified practice with universal techniques and governing principles. Other studies 
might instead compare students’ proving in various mathematical contexts to learn when and 
how proving knowledge and know-how are situated within a mathematical domain (e.g. Mejia-
Ramos, Weber, & Fuller, 2015). Perhaps our highest recommendation is that researchers attend 
to the co-emergence of proving competencies and conceptual understanding of key mathematical 
content. We prioritize this because we view it most hopeful for facilitating the integration of 
proving as a means of mathematical learning across the curriculum.  
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CLEARING THE WAY FOR STEM MAJORS IN INTRODUCTORY CALCULUS 

Rebecca Dibbs  Jennifer Patterson 
    Texas A&M-Commerce     Texas A&M-Commerce 

One of the reasons for the exodus in STEM majors is the introductory calculus curriculum. 
Although there is evidence that curricula like CLEAR calculus support students’ adopting a 
more growth-orientated mindset, it is unclear how this curriculum promotes mindset 
changes. The purpose of this case study was to investigate which features of CLEAR Calculus 
students notice and attribution to their success. After administering the Patterns of Adaptive 
Learning Scale to assess students’ initial mindset in one section of calculus, four students 
were selected for interviews. At the end of the semester, students were re-administered the 
PALS and all students who took an additional mathematics class were given the survey at the 
end of their next course. Students cited that the labs CLEAR Calculus curriculum challenge 
them in ways that facilitate deeper comprehensive learning than that of prior courses, and 
the positive changes in approaches to mathematics continued in the next course. Students did 
not notice the formative assessments as part of the course, but the actions taken by the 
instructor as part of the course was taken as evidence as instructor caring by the students. 

Keywords: Calculus, formative assessment, mindsets 

Prospective STEM majors who declare a non-STEM major are most likely to do so after 
introductory calculus (Bressoud, Rasmussen, Carlson, & Mesa, 2014); students cite their lack 
of a perceived relationship with their instructor and the inability to seek help as primary 
reasons for switching (Ellis & Rasmussen, 2014). One possible solution is the use of 
formative assessments such as exit tickets; such assignments show promise in helping 
students to perceive their instructor as more approachable and caring about their success 
(Black & Wiliam 1998, 2009; Dibbs, 2014). 

However, the number formative assessments completed are a far stronger predictor of 
students’ success than their weight in the course grade would indicate (Author 1, 2015). One 
possible explanation for this effect was that students who completed more post-labs had 
different mindsets about learning mathematics than those that did not. It has been noticed that 
mindsets play a significant role in the overall success of calculus students.  Dweck (2006) 
defines mindset in two different ways: fixed mindset and growth mindset. Students classified 
under the fixed mindset, if not immediately successful in introductory calculus often leave the 
STEM field. However, growth mindset students can persist and succeed, even after failures as 
severe as failing a course (Dweck, 2007).  

We examined how CLEAR Calculus supports positive mindset changes in students 
through a case study of four students enrolled in an introductory calculus class taught using 
CLEAR Calculus. This research will be guided by the question: What are the features of 
CLEAR Calculus that students notice and value? By understanding what makes this 
curriculum effective, an interested practitioner who is not implementing CLEAR Calculus 
can learn what components to add to their classes if they would like to see a positive increase 
in their students’ mindsets. We argue CLEAR Calculus supports positive changes in students’ 
mindsets because the labs make a challenge and conceptual understanding central 
components of the course; although students did not notice the formative assessments, the 
actions were taken by the instructor as the result of formative assessments helped create a 
positive perception of their relationship with the instructor.  
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Theoretical Perspective and Methods 
Every week followed the same general schedule. On Monday, there was a new section of 

material introduced and students were given a prelab. The prelab asked students to complete 
the Unknown Value of the approximation framework (Figure 1) and to identify a quantity 
that could be used to approximate the unknown value. Students were asked to complete the 
prelab before class on Tuesday; the prelab was graded on completion at the beginning of 
class. During class on Tuesday, students worked in groups of three or four on their assigned 
lab context. After class, students completed a post-lab using the online course management 
software. Each post-lab asked students to summarize what their groups did, evaluate how 
well they understood the material, perform a computation similar to the ones expected on the 
lab, and identify which portions of the lab they still needed help on. This information was 
summarized and sent to the instructors that night and used to launch a classroom discussion 
on Wednesday. The remainder of the week was spent on concepts from the textbook. For the 
derivatives and definite integral labs, the next week would be a repeat of the first; all of the 
other labs proceeded directly to the regrouping described next. On the third week, students 
would be placed in new groups, where they were responsible for teaching their context to 
their new group members; this type of presentation is called a Jigsaw presentation because 
each student is responsible for one piece of a larger idea. After this Jigsaw presentation, 
students were expected to write up their individual answers to the 20 parts of the 
approximation framework. Each lab had one formative prelab and two or three post labs 
associate with the activity. 

 

 
Figure 1: Approximation framework (Oehrtman, 2008) 
 
The approximation framework is built upon developing systematic reasoning about 

conceptually accessible approximations and error analyses but mirroring the rigorous 
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structure of formal limit definitions and arguments (Oehrtman, 2008, 2009). This study 
focused on the three multi-week labs developing the most central topics in the course: limits, 
derivatives, and definite integrals. Each approximation lab consists of 20 questions designed 
to help students understand their context in terms of approximating a limit. For each calculus 
concept, students are asked to identify the unknown value that cannot be solved with algebra, 
an algebraic technique for approximating the unknown, quantify the error, bound the error, 
and describe how an approximation can be computed to any desired accuracy. Students are 
asked to represent these five components of the approximation framework contextually 
(words and pictures), graphically, algebraically, and numerically. The figure above illustrates 
the 20 components of the approximation framework for one context of the definite integral 
lab, where students have been asked to compute the water pressure on a dam (Figure 1). Each 
lab had three or four different contexts; one of which was more challenging and intended for 
students that had seen calculus before. 

The theoretical perspective for this case study (Patton, 2002) was Dweck’s (2006) 
mindsets (Figure 2). Participants attended a midsized rural regional research university in the 
South, and were recruited from an introductory calculus course taught using CLEAR 
Calculus labs. These labs are built upon developing systematic reasoning about conceptually 
accessible approximations and error analyses but mirroring the rigorous structure of formal 
limit definitions and arguments (Oehrtman, 2008, 2009). 

 
Figure 2. Summary of Dweck’s mindset theory 
 

Students in the course who consented to participate in the research (10/12 students in the 
course) took the Patterns of Adaptive Learning Scale (PALS) during the second week of the 
semester. Eight of the participants were male, and two were female. All students were math 
minors, math majors, or double majoring in math and another STEM field. Three participants 
were upperclassmen, and the rest were freshmen. Six had been exposed to calculus topics 
before this course. Four participants participated in semi-structured interviews (Patton, 2002) 
to obtain a sample with maximum variation according to their mindset (Table 1). Author 1, 
who instructed the course kept a journal of observations of each class and of students’ 
frequency and reasons for office hour visits throughout the semester. Author 2 observed the 
class and consulted with the instructor of the course for triangulation of the interview data. 
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Table 1 
Interview participants 

Participants were interviewed in a semi-structured interview at the end of the semester. 
The interview questions in the core script are listed below, though each participant had 
somewhat different probing questions. Interviews lasted approximately 20 minutes. After 
each interview, the authors discussed initial impressions that were recorded in research 
journals.

x Tell me what kind of student 
you’ve been in previous math 
classes 

x Tell me what this class is like. 
x If I had never seen one of the labs, 

tell me about them. What are they 
like? What do you do in them? 

x Why do you think you do labs? 
x Have labs changed you? How? 
x What do you do for calculus when 

you’re not in class? 
x What will you remember about this 

class? 
x What should I have asked you but 

didn’t? 

x Do you think your experience in 
this class will make you approach 
your next class differently? 

x What have you learned in the 
class? 

x What are the features of the class 
that stood out to you? 

x Have you changed as a student as a 
result of this class? 

x A lot of people mentioned 
instructor caring? 

x What made you decide caring was 
a thing? 

x Would you recommend this class 
to another student? 

 
After transcribing the interviews, Dibbs and Patterson coded the transcripts separately 

using the coding scheme developed from the literature and theoretical perspective (Table 3). 
The interrater agreement on the separate coding was 80%. After reconciling the codes where 
the researchers differed, a one page summary of each participants’ analysis was typed up and 
given to the participants as a member check. These member checks led to the challenge code 
to be broken into two separate codes. After the interview analysis was completed, the second 
PALS survey was scored, and the PALS results were analyzed using Mann-Whitney due to 
the small sample size. 

To if this behavior persisted in future mathematics classes, particularly those that were 
more traditionally taught, we observed Ian, Steven, and Quentin (who chose to repeat 
calculus in the one section of CLEAR calculus offered) in their next mathematics classes. 
Penelope and Roland were not required to take additional mathematics courses. Ian, Quentin, 
and Steven also took the PALS at the end of their next semester and had brief, informal 
interviews with Author 1 during the next two semesters. These interviews were coded using 

Pseudonym Year Major Mindset Final Grade 
Ian Junior Math Strong Growth C 
Roland Freshmen Biology Weak Growth A 
Penelope Sophomore Biology Weak Fixed B 
Steven Freshmen Math Strong Fixed A 
Quentin Freshmen Engineering Weak Fixed D 
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the same coding scheme given in Figure 3. To if this behavior persisted in future mathematics 
classes, particularly those that were more traditionally taught, we observed Ian, Steven, and 
Quentin (who chose to repeat calculus in the one section of CLEAR calculus offered) in their 
next mathematics classes. Penelope and Roland were not required to take additional 
mathematics courses. Ian, Quentin and Steven also took the PALS at the end of their next 
semester, and had brief, informal interviews with Author 1 during the next two semesters. 
These interviews were coded using the same coding scheme given in Figure 3. 
 
Table 3 
Standards of Evidence 
Code Definition Standard of Evidence Example 
Challenge 
is a feature 

Students’ perception of 
the class as having 
difficult problems as the 
course of the course and 
seeing this as a positive 
thing 

x Direct statements made by 
students that (challenging/real 
life/difficult problems are 
important in class 

x Direct statements made by 
students indicating this is a good 
thing 

x Tone of students’ response 
indicated bullet point #2 
 

“This class us 
challenging, but that is 
the point” -Penelope 

Things that 
are 
challenging 

What parts of the class 
students fins to take the 
most time outside of 
class/require the most 
work 
 

x Direct statements or complaints 
about the things that are the most 
difficult 

“Labs…they’ve been 
the most difficult 
challenges so far. 
Even more difficult 
than the test”  
-Penelope 

How labs 
changed me 

Students’ perceptions of 
the work habits and 
beliefs that participating 
in this curriculum 
changed them this 
semester &/or in the 
future 

x Direct statements made by 
students about homework or study 
habits that changed as a result of 
the class 

x Direct statements made by 
students about any beliefs that 
changed as a result of this class 

x Evaluative statements about 
whether this belief will persist 
into the next class 
 

“Taught me to think 
through the problems 
more carefully…to 
figure out what is 
wanted”  
-Roland 
 
“I’ll think more in 
depth about [future 
mathematics courses]”  
-Ian 

Student 
noticing 

Features of CLEAR 
Calculus labs and course 
design students recognize 
as different from other 
mathematics classes 
 

x Direct statements made by 
students about the parts of the 
course that were different from 
previous math courses 

“The main difference 
between this class and 
[my last calculus 
class] is that there are 
these weekly labs” -
Quentin 

Perceived 
course 
goals 
 

Student's beliefs about 
the purpose for the 
components of CLEAR 
calculus they have not 
experienced in prior 
courses 

x Direct statements made by 
students about what they believed 
the goals of the features they 
noticed about CLEAR calculus 
were 

“So that we can get 
almost real world 
experience so we can 
retain what we learn” 
-Steven 
 

 

Findings 
There were four major themes in the interview data: students do not notice the post-labs, 

students attribute all post-lab based instruction to instructor caring, there was an increase, 
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though not a statistically significant one, in growth mindset tendencies, and participants’ 
challenged in introductory calculus became more growth mindset oriented in the next course. 

The interview participants all agreed that the labs were the central component of the 
course. Steven, like the other interview participants, saw the labs as central to the class, 
challenging, but useful:  

[This class] is harder and easier than you’d expect. As long as you can keep up with 
your work, you can keep your grades up… [Labs] are great because I’m not 
necessarily testing as well as I do on my labs. This is my first class with a hard lab so 
that it was new for me. They’re [the labs] kind of like complicated word problems… 
[I think we do labs] probably so that we can get almost real world experience so we 
retain what we learn. 

The main difference between CLEAR calculus and prior experience with calculus classes was 
the weekly labs, as Ian explained in his interview: 

Why do we do labs? I think it’s to see how the math will be used in real world 
situations…The labs, probably [are what I will remember about this course]. I’ve 
taken calculus before and we didn’t do any labs. This is much different than any math 
class I’ve ever taken. 
As a part of the CLEAR Calculus curriculum, students completed a post-lab in the form 

of formative assessment after each lab. On this assignment, summarized what their group 
accomplished, their confidence in the material, the part in which they excelled the most in the 
lab, and the part(s) of the lab where they struggled. Figure 3 below gives an example of a 
typical student post-lab. Here, the student is comfortable with the basics of linear 
approximation, but is not noticing that the first problem is approximating an input value and 
the second is approximating an output value, which changed whether the computed value 
over- or underestimates the actual value. 

 
Figure 3. Typical student post-lab 
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The post-labs are a significant reflection piece of CLEAR Calculus labs that students 

rarely appeared to notice. These labs provided the instructor with the knowledge of the areas 
of the content that students have mastered and the areas that students have struggled. But 
students did not perceive the post-labs, a brief assignment at the end of class, to be the source 
of this knowledge. When students finished the in-class lab early, they were usually able to 
finish the post-lab in the last 5 minutes of class. In the interviews, none of the participants 
brought up post-labs until the interviewer did. Roland was the only student that mentioned 
post-labs at all and he only did so in a way that summarized the lab process, “…we do a pre-
lab, a lab, and then a post-lab. Overall, I don’t really like labs.” 

Students display a hurried approach to post-labs. They seem to try to finish the post-lab 
before they leave class on lab day so as to not leave it to the rest of the week to be forgotten. 
The following was a common episode at the end of every lab. One to three students said 
something similar at the end of each lab about the post lab starting in the third week of 
classes:  

Quentin smiled as he left Lab 6 today. “Here is my post-lab,” he told me as he put the 
paper in the folder, “This week, at least, I didn’t forget to do it.” –Author 1 fieldnotes, 
Week 6 (Tuesday) 
In class, post-labs were only mentioned explicitly by students as something they were 

glad that they did not forget to complete them. Combined with the students neglecting to 
mention the post-labs during the interviews, this suggests students approached post-labs as a 
low-priority afterthought.  

Students are not making the connection that the instructor uses the post-labs to alter the 
course of the content presented in class in any way. When asked, no student in the interview 
could identify the post lab as something other than a part of the lab. The assignment students 
most frequently asked to be able to turn in late (late work was not accepted in the course) 
were post-labs, because they often forgot to complete them. This indicates students did not 
notice the post-labs as an important component of the lab.  

Although students did not see the informal reflections they did on the post-lab as central 
to the course or important to their learning, students did see the higher stakes test corrections 
and reflections to be hugely important to their understanding of the material. Students are 
allowed to correct their tests to receive a token amount of points added to their original test 
grade; however, in order to receive any credit, the corrected test must be wholly correct and 
each problem must include at least a one sentence reflection on the error in the original test 
solution. When talking about correcting the test problems that he got wrong during the test, 
Steven saw this as an opportunity to learn: 

....Which is great because I’m not necessarily testing as well as I do on my labs…I try 
to figure out what’s going on again and again and watch YouTube. I like something 
my grandpa said, ‘You’re your own best teacher. So you only learn things if you want 
to learn them. So I’ll go back and try to figure out exactly what was going on to see if 
I can correct it. 
While students do not notice the post-labs, they all believe that there was value in the labs 

and that their instructor probably cared about their learning. However, the actions that were 
seen by the students as evidence of instructor caring were based upon the reflections in the 
post-labs, and so the unacknowledged post-labs did help to create a perception of a positive 
relationship between students and instructor. 

Students all saw labs as the most important and memorable part of the course. In three of 
the four interviews, students made statements comparing the relative importance of labs and 
tests. While students’ lab grades were 15% of their course grade, the same as one test, 
students saw the labs as being a much bigger part of the course. Although Steven felt that the 
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labs were less difficult than the test, the other three interview participants who did not earn 
A’s in the course disagreed with this sentiment: 

What I’ll remember most is probably doing all the labs. I’m taking chemistry as well, 
and we have a lab every week. So I’m used to doing the lab. I’m used to doing lab 
assignments, but like the lab assignments she gives us in this class are more 
challenging because you have a more complex pre-lab. Like lab assignments in 
chemistry, you don’t have to do a whole write up usually. She makes us like write 
paragraph answers to one-word answers. I guess that way we’re answering it more in 
depth. So we get a better understanding of it. I guess I’ll remember the labs the most. 
They’ve been the most difficult challenges so far. Even more difficult than the test. 
 –Penelope 
Participants believed that the labs were valuable, even though the labs were difficult and 

frustrating. When asked about what he will remember about the labs, Steven responded, 
Probably [I will remember] all the labs, in a little of both [a good way and a bad way]. 
I’ll remember because they were so hard. But it’s also nice when you understand one 
and you get it done. It’s a nice feeling of accomplishment. I’ll be a little more scared 
to take Calculus II, but that might be a good thing too.  
Since Steven was generally successful at the labs (he actually earned the highest grade in 

the course) he enjoyed the challenge of the labs and did not necessarily have an experience 
that would challenge his strongly fixed mindset.  

Quentin, who also had a strongly fixed mindset, did not get the same sense of 
accomplishment from the labs; he actually failed the class because he only turned in two of 
the 14 labs and only one post-lab. “I don’t turn in anything that isn’t fit to be seen,” he 
explained, “and my labs are not good enough. I care too much to turn in bad work.” When he 
was asked about not doing the post-labs, which are graded on completion, Quentin’s 
justification was that the other people who did post-labs were asking his questions already: “I 
don’t really need to do them. All my questions get answered on Thursday [when labs are 
discussed in class], so I don’t add anything by doing a post-lab.” Overall, the labs were seen 
as a positive thing, and even though Quentin did not feel post-labs were something he needed 
to do personally, he did feel that he benefitted from the discussion based on everyone else’s 
post labs later in the week. 

After the semester ended, the pre- and post- PALS surveys were analyzed using the 
Mann-Whitney U test since there were only 10 students who completed the survey. The 
Mann-Whitney U test was not significant (p = 0.15), but the small sample size makes it 
difficult to rule out mindset changes in general. Although we did not see significant mindset 
changes, all of the interview participants made actions during class throughout the semester 
and statements in their interview that suggested that there were qualitative, if not quantitative 
shifts towards a growth mindset. 

In the first month of the course, before the first test, participants’ behavior indicated an 
unwillingness to seek help or admit they did not understand. Two-thirds of the labs and 
homework were turned in a pattern of completely correct solutions or blank problems. When 
students were asked if they needed help during the labs and recitation by the instructor or 
teaching assistant, students responded in the negative or that they ‘didn’t get it’ and could not 
elaborate (Dibbs fieldnotes, weeks 1-4). During lectures, wait times of over a minute were 
required before students would participate in class. Only one of the ten students-Ian- visited 
office hours before the first test. However, on the final question of the post-lab, seven 
participants did note specific topics in the lab or on the homework that they did not 
understand on at least three of the four post-labs during the first unit. 

During the derivatives unit, students began to be more confident and more willing to seek 
assistance when they ran into trouble. Students’ reported confidence on post-labs improved; 8 
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out of 10 students reported feeling confident they understood the material, and seven 
consistently earned passing grades on the labs. Six students, including all three male 
interview participants, began attending office hours or the optional Friday recitation on at 
least a weekly basis. The average wait time per question dropped to 20 seconds, and the total 
number of hours the class spent in the math lab increased from two to 10. For the seven 
students that eventually passed the course, there was a marked reduction of blank responses; 
students were more willing to give partial responses and admit they had gaps in their 
knowledge (Dibbs field notes, Weeks 5-10).  

Students were interviewed in the final unit. By the end of the semester, students sought 
help when needed: in the math lab, on YouTube, from a classmate, via email, in office hours. 
Roland described his out of class work as a process for seeking help:  

[Outside of class I] do the [optional] problems that she assigns me to do. Try to do 
them or get someone to help me when I can’t understand them. I watch a lot of 
YouTube videos. I find the book [Stewart 6th Edition] hard to – hard to understand 
things from the actual book so I usually have to use other things for the harder 
problems. Usually, I’ll do all the ones I can do, and save the ones I can’t do for later. 
I’ll use additional resources or get help from the TA. 

There were only three comments on the post labs on this unit, all of them asking for help with 
sigma notation. After midterms, students visited the office at least every other week. 

Overall, even though there was not a statistically significant shift in students’ mindset, 
their behaviors and interview statements indicate that participants have at least adopted some 
more growth-oriented learning strategies. However, grades were still seen as a primary 
motivator for these students since the average goal orientation sub-score on the PALS was 
almost a full point below the average response on any of the other sub-score of the PALS 
results, so in essence students learned to emulate a growth mindset because such 
characteristics were required to satisfy their performance goals which were more aligned with 
their actual mindset.  

In the next course, two of the three participants became more growth oriented. Steven, 
who easily earned an A in the second-semester calculus course and the introduction to proof 
course, actually became more fixed, but Steven is unlikely to experience a change in his 
mindset until he begins to struggle with the material. Ian’s mindset became slightly more 
growth oriented after second-semester calculus, but his growth score is so high that there is a 
real chance of a ceiling effect. Quentin became much more growth-oriented after successfully 
repeating introductory calculus with the CLEAR calculus curriculum; by the end of the 
semester, his PALS score had become significantly more growth. Figure 4 shows the changes 
in participants’ scores over time; a score of 140 marks the boundary between a more fixed 
mindset and a more growth mindset. 
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Figure 4. Participants’ mindset scores over two semesters 
 

Discussion 
The feature of CLEAR Calculus that students notice and value the most are the labs. The 

post-labs, which were valued most by the instructor were worth a nominal percentage of 
students’ final grades and were neither noticed nor valued by participants. However, students 
did believe that the instructor cared about them and became increasingly willing to seek help 
throughout the semester.  

There were two components of the course that led students to believe that this course was 
different and that their instructor cared about them. The first and most important were the 
labs; the prominence and difficulty of the labs convinced students that this introductory 
calculus was different from their prior high school or college courses. Without some even 
causing disequilibration, students are unlikely to make any changes to their learning patterns 
and make the successful transition to college (Craig, Graesser, Sullins & Gholson, 2004; 
Zaretskii, 2009). The labs, with the decreasing amount of scaffolding throughout the 
semester, provided a challenge to their idea of their role as a student, but the test corrections 
gave students the perception of a margin for error in the course that there was room to 
struggle without risking their grades. The second component course the students noticed was 
the test corrections. Test corrections, which could raise students’ final grade by a maximum 
of 2.5% at an institution with no +/- grades did not actually make a difference in the final 
grade of any student enrolled in the course, but the perception of a safety margin was of 
central importance to the students. Steven, Penelope, and Roland were especially focused on 
maintaining their high grades in the course and maintained that the test corrections were very 
important.  

Although the more formative (1% of final grade) post-labs were not noticed by 
participants, this is likely a combination of the students’ strong performance goals and their 
general success of these participants in the course. The participants that earned A’s and B’s in 
the course mastered the limit concepts in the labs around the eighth lab and had few questions 
on their post-labs after that; for them, the post-labs had limited utility for months be the time 
they were interviewed. The only participant that mentioned these assignments in any depth 
was Quentin, who never did post-labs because he felt all of his questions were already 
answered. Quentin did choose to repeat calculus with the same instructor rather than change 
majors after failing the course. Given the importance of a perception of their instructor caring 
about their success is for Persisters (Ellis & Rasmussen, 2014), Quentin’s belief that his 
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instructor intuited and answered his questions likely helped him to continue with his intended 
major. Given that low stakes reflection assignments like these post-labs scale well onto free 
online platforms with semi-automated feedback like the Just in Time Teaching software 
(Marrs, Blake & Garvin, 2003; Urban-Lurain et al., 2013), these types of assignments are 
likely to be the most efficient way to create a perception of instructor caring with some 
positive effect on student persistence in their STEM major after introductory calculus. 

Although there were no significant gains in students’ mindsets, we believe that this area is 
worthier further exploration. The sample size in this study was small and the p-value was 
relatively low. We also did not collect baseline data from traditional calculus courses or other 
entry-level mathematics courses. Since students tend to adopt a more fixed mindset in times 
of stress, like transitioning to college (Murphy & Thomas, 2008), it is worth investigating 
whether maintaining students’ mindsets through their first semester or college is better than a 
typical curriculum. Regardless, post-class reflections do appear to help students build positive 
perceptions of their instructor for minimal additional grading. 
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What do students attend to when first graphing y = 3 in R3? 
 

Allison Dorko 
Oregon State University 

I interviewed 11 differential calculus students as they graphed for the first time in R3. This 
paper considers how students generalise as they graph y = 3. Some students drew a line, 
while others drew a plane. In creating their graphs, students attended to equidistance, 
parallelism, specific (x, y), (y, z), (x, y, z) tuples, and the role of x and z. Students’ use of these 
ideas was often generalised from thinking about the graphs of y = b equations in R2. A key 
finding is that the students who thought the graph was a plane always attended to the z 
variable as free. I discuss this specific result using Harel and Tall’s expansive, 
reconstructive, and disjunctive generalisations framework. I propose that the expansive and 
reconstructive categories provide a powerful way to explain and understand the two main 
ways students generalise from R2 to R3, and why multivariable topics are difficult for 
learners.   

Key words: multivariable functions, graphing, generalisation  

Introduction  

Most real-world uses of mathematics involve reasoning about situations with many 
variables. Being able to reason about multivariable ideas is so important that the 
Mathematical Association of America recently recommended that high school mathematics 
curricula include multivariable topics (Shaughnessy, 2011). This recommendation came as 
the result of the Curriculum Renewal Across the First Two Years report (Ganter & Haver, 
2011), which examined the mathematical needs of biology, chemistry, economics, 
engineering, physics, and other STEM disciplines. Hence research about how students 
understand multivariable topics has the potential to affect learning outcomes for a large group 
of students of a variety of ages and in variety of STEM fields.  

Because multivariable topics share many similarities with their single variable 
counterparts, many researchers studying student learning of multivariable topics focus on 
how students generalise from the single- to multivariable context (e.g., Dorko & Weber, 
2013; Fisher, 2008; Jones & Dorko, 2015; Kabael, 2011; Martinez-Planell, Trigueros, & 
McGee, 2015; Yerushalmy, 1997). This research tells us not only how students generalise 
specific ideas, but also allows us to take a broad, cross-context look at how students transition 
from the single- to multivariable setting. The goal of this paper is to contribute to both 
knowledge of specific multivariable topics and knowledge about students’ single- to- 
multivariable transition. I focus on the following questions:  
(1) What do students attend to as they first think about graphing y = 3 in R3? 
(2) How do students generalise as they first think about graphing y = 3 in R3, and how are 

these ways of generalising similar to or different from students’ generalisations of other 
multivariable topics? 

 
Theoretical Perspective 

I take an actor-oriented transfer perspective in which generalisation is “the influence of a 
learner’s prior activities on his or her activity in novel situations” (Ellis, 2007, p. 225). The 
actor-oriented perspective privileges what students see as similar across situations, even if 
their perceived similarities are not normatively correct (Lobato, 2003; Ellis, 2007). The idea 
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is that a student may do something in a multivariable setting that is not normatively correct 
(e.g., draw y = 3 in R3 as a line instead of a plane), but in doing so the student is making 
sense of a situation based on past knowledge and experience (e.g., y = 3 in R2 is a line). 
Hence the student’s work counts as a generalisation, even if she has drawn an incorrect 
graph.   

Under the actor-oriented umbrella, I use Harel and Tall’s (1991) expansive, 
reconstructive, and disjunctive generalisation categories to describe the particular ways 
students generalise (Table 1). This framework categorises generalisation in terms of how 
students use existing schemas or develop new ones as they move from one context to another.  

 
Table 1. Harel and Tall’s generalization framework (Harel & Tall, 1991, p. 1) 
Type Definition 
Expansive • Expansive generalisation occurs when the subject expands the 

applicability range of an existing schema without reconstructing it. 
• Earlier schemas are included directly as special cases in the final 

schema.  
Reconstructive • Reconstructive generalisation occurs when the subject reconstructs 

an existing schema in order to widen its applicability range. 
• Reconstructive generalisation differs from expansive in that the 

existing schema is changed and enriched before being encompassed 
in the more general schema. 

Disjunctive • Disjunctive generalisation occurs when, on moving from a familiar 
context to a new one, the subject constructs a new, disjoint schema 
to deal with the new context and adds it to the array of schemas 
available. 

 
These categories fit into the actor-oriented focus on what students see as similar by 

providing language for instances when students perceive similarity (expansive, 
reconstructive) and when they do not (disjunctive). In the next section, I identify examples of 
these three types of generalisation in existing research about students’ understanding of 
multivariable functions’ graphs. 

 
Background Literature 

Thinking about functions and graphs in three dimensions requires students to coordinate 
three quantities, as well as shift from thinking of y as a dependent variable to considering z as 
dependent on x and y. Evidence from a variety of contexts indicates that this is a difficult 
generalisation for students to make. For instance, some students give the domain of a function 
f(x, y) as x and the range as y (Dorko & Weber, 2013). Others may offer an (x, y ,z)-tuple as 
an element of the domain or range (Kabael, 2011). These responses indicate that students 
have not conceptualised y as independent.  

Students’ difficulties with multivariable graphing tasks also provide evidence that 
coordinating three quantities is hard, particularly when a function has a free variable. For 
instance, Martinez-Planell and Gaisman (2013) described how some students graph f(x, y) = 
x2 as a parabola instead of a parabolic surface. Additionally, students may draw f(x, y) = x2 + 
y2 as a cylinder or a sphere because they are accustomed to x2 + y2 representing a circle in R2 

(Martinez-Planell & Gaisman, 2013). I characterise drawing f(x, y) = x2 as a parabola as an 
expansive generalisation because the students seem to apply the idea that x2 is a parabola to 
the multivariable context. In contrast, I believe the cylindrical- and spherical-shaped graphs 
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represent reconstructive or disjunctive generalising because students have attended to z.  
Martinez-Planell and Gaisman (2013) write only that “upon seeing the expression ‘x2 + y2’, 
some students think of ‘circle’ and end up interpreting the graph as a cylinder or a sphere” 
(p.671) so it is impossible to know if students change how they think of x2 + y2 
(reconstructive) or if they think something like ‘x2 + y2 is a circle in R2 but it is a sphere in 
R3’ (disjunctive). The latter would represent a disjunctive generalisation because the student 
has developed different, context-dependent meanings for the symbols x2 + y2.  

In addition to coordinating three quantities, students must also develop a schema for 
representing points in space. Students sometimes struggle with conceptualising f(x, y) as and 
output or the height of the graph at a particular (x, y)-tuple (Martinez-Planell & Trigueros, 
2013), which may explain Kabael’s (2011) finding that students have difficulty projecting a 
graph to the xy plane to determine its domain and range. Students also have trouble 
determining the intersection of a surface with fundamental planes (a plane of the form x = a, 
y = b, z = c for a constant c). Trigueros and Martinez-Planell (2010) found that students who 
had taken multivariable calculus knew that these were planes, but weaker students had 
trouble placing such planes in a set of manipulatives and drawing the planes on a 2D image 
of a multivariable graph. Stronger students could place the planes, but had difficulty 
determining the intersection of such planes with a multivariable surface. My research, by 
focusing on a particular fundamental plane, may provide instructional implications that help 
students overcome these issues. In particular, my focus on what students attend to when they 
first graph in R3 may lend insight into how students build a schema for R3.  

Martinez-Planell and Trigueros’ research has been in the context of developing a set of 
activities to help students learn how to graph multivariable functions. They concluded that 
students’ difficulties with multivariable graphing could due to familiar symbols such as x2 in 
f(x, y) = x2 and x2 + y2 in f(x, y) = x2 + y2. They subsequently altered the activity sets to avoid 
familiar notations, so it is unknown if students are able to use such notations productively. 
My work builds on this research by paying explicit attention to how students’ conceptions of 
single-variable functions’ graphs interact with their conceptions of graphs of multivariable 
functions. Findings from other studies about various multivariable topics indicate that 
students can often successfully leverage their single-variable knowledge to make sense of 
multivariable topics (e.g., Dorko & Weber, 2013; Jones & Dorko, 2015; Kabael, 2011; 
Yerushalmy, 1997), and I wanted to study whether this was also the case when students graph 
in three dimensions.  

 
Data Collection and Analysis  

I interviewed 11 differential calculus students about multivariable functions so that I 
could observe the initial sense making of students who had not yet received instruction 
regarding these functions. I thought this would let me observe students’ generalisations in 
real time. Additionally, given the actor-oriented perspective, I wanted to focus on students’ 
reasoning and how that was being constructed. This paper focuses on data from two tasks. 
The first task directed students to graph y = 2 in R2 which was the intent. The second task 
directed students to graph y = 3 on R3 axes. After students read the task, I showed them an 
image of xyz axes and explained that the xy plane was flat with the z-axis perpendicular to it. I 
used a tabletop (xy plane) and a pen (z-axis) to show students what these axes looked like in 
3D1. I asked follow-up questions such as “why did you draw a [line, plane] here?”  

                                                
1 It is important to note that such a demonstration does not guarantee that students understood 
how such a coordinate system works; in fact, researchers have found that students often must 
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I chose to focus on these problems because of reported difficulty students experience with 
multivariable functions’ graphs, and also because fundamental planes can help students 
complete graphing and other tasks in calculus. That is, thinking of some f(x, y) equation for x 
= c or y = c results in a cross-section that can then be used to help visualise the function’s 
shape. Parts of fundamental planes also often form the boundaries of solids for multiple 
integration. These examples provide two good reasons to explore how students might think 
about equations of the form y = c in R3. Finally, Gaisman and Martinez-Planell (2011) point 
out that graphs of fundamental planes are the first R3 graph students meet in the widely-used 
Stewart (2006) text. Hence this seemed an appropriate task for students graphing in R3 for the 
first time.  

I recorded the interviews with audio, video, and LiveScribe technology. I transcribed the 
interviews and used the transcripts in data analysis. I used the constant comparative method 
(Strauss & Corbin, 1998) for data analysis, reading the transcripts to identify students’ 
answers to the task (that is, what did they draw for graphs?) and then re-reading to identify 
how students arrived at their answers. 

I observed that some students had drawn y = 3 in R3 as a line, others had drawn it as a 
plane, and two drew a line but then thought the graph might be a plane. I hence coded 
students’ work as belonging to one of two categories: plane or line. Students’ reasoning 
involved words/phrases like parallel, equidistant, “all x points,” “z can be any value,” “x can 
be any value,” “I don’t think that x and z really have like any effect”, all values of x and z, 
variables as “not mattering,” x and z being “any value,” and “no matter what x or z is.” I also 
observed students considering about specific points, such as “if you say x = 2 and z = 2, it’s 
going to be 3.” I noticed that these utterances fit into three broader, non-mutually-exclusive 
categories: reasoning using equidistance and parallelism, reasoning about x and z, and 
considering specific (x, y), (y, z), and (x, y, z) tuples.  

Finally, I looked for patterns in how students had thought about the graphs, and whether 
their graphs were planes or lines. That is, I looked specifically to see if there were something 
common to all of the students who drew the graph as a plane, and all the students who drew 
the graph as a line. I noticed that the difference between the graphs seemed related to whether 
or not the students explicitly attended to z as a free variable.  

 
Results  

Of the 11 students, three drew y = 3 in R3 as a line and 8 drew a plane. Figure 1 groups 
students’ work first by answer, then how they had arrived at that answer. For instance, four of 
11 students drew a plane by thinking about x and z as free variables. One student thought 
about parallelism and drew a line, and one student thought about parallelism and equidistance 
and drew a plane. The plane and line categories are mutually exclusive. The subcategories are 
not. The (n/11) parentheses next to each subcategory in the diagram represents the main way 
students reasoned. In some cases, students reasoned in multiple was (e.g., S3 both thought 
about particular coordinate points and free variables, but is in the coordinate point category 
because, in my opinion, this played a bigger role in her reasoning than did the idea of free 
variables).  

                                                                                                                                                  
develop a schema for R3 through specific actions like plotting (x, y, z)-tuples and working 
with fundamental planes (Martinez-Planell, & Trigueros, 2012; Trigueros & Martínez-
Planell, 2010). 
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I present the results by giving examples of students in each category (parallelism, x and z 
as not changing, tuples, and free variables), focusing on what they attended to and how they 
generalised.  

 

 
Figure 1. Results  

 
Attending to and generalising parallelism  

S6, S9, and S8 both generalised parallelism, but S6 and S9 drew lines while S8 drew a 
plane:  
 
S6 So y = 3. So on an xy graph [draws R2 axes] at 3, would be going this way. So on 

the y, following the x. So [switches to R3 axes] this would be on the y, this is the 3 
point on the y, and it’s following the x axis [Figure 2].  
 

S9 So if this is, if this is y is equal to 3, then I'm wondering if it will just go parallel 
with the x axis…but just at the y is equal to 3 point… just kind of like looking here 
[y = 2] it's like parallel to the x axis at whatever y point because it's just that straight 
line… I'd assume just for all x points that you know y would equal to 3. [I think the 
graph is a line] just cuz … your y is only 3. It's not like interacting with, with 
anything else. 
 

S8 y = 3 would be something like this, where this distance right here between each, 
between y and each of these axes would be 3, I think. I'm thinking that because if 
you take like this thing, and that would be everything except for y [shades xz 
plane]... I'm thinking of this plane in relation to y and having y be every distance 
that is 3 away from that plane... it would be an entire plane... it has to be parallel to 
x, and this has to be parallel to z, so it would be this plane right here that is 3 away 
from the plane that x and z creates... like for the last question when y is equal to 2, 
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that is every value that is 2 away from y = 0, right? So I'm thinking that like y = 0 
would be the same as this [xz plane; Figure 3]. So it's 3, it's 3 in the positive [y] 
direction it's going to be parallel to x in the same way that this line right here [draws 
y = 2 in R2] is parallel …to the x axis. 

 
S6 began by drawing R2 axes and graphing y = 3, describing the line as “following the x.” 

He then drew R3 axes and said “this is the 3 point on the y, and it’s following the x axis.” I 
infer his use of the word ‘following’ as attending to the parallelism between the x axis and y 
= 3. Moreover, S6 generalised what y = 3 in R3 would look like by thinking about what it 
looked like in R2, then drawing the same picture in a new orientation on the R3 axes (Figure 
2). This is an expansive generalisation because S6 expanded his existing schema to a new 
context without reconstructing it. In particular, he generalised that y = 3 in R3 would be 
parallel to the x axis, just like in R2, and he generalised that it would be a line. S9 made a 
similar generalisation, explicitly generalising between tasks when he said “I'm wondering if it 
will just go parallel with the x axis…but just at the y is equal to 3 point… just kind of like 
looking here [y = 2] it's like parallel to the x axis at whatever y point”. This is an expansive 
generalisation because he applied his schema for y = b equations as parallel to the x axis to 
the new R3 context.  

S8 also generalised parallelism. His reference to the R2 task, “it's going to be parallel to x 
in the same way that this line right here [draws y = 2 in R2] is parallel …to the x axis” is 
evidence that saw the two contexts as similar and generalised between them. In contrast to 
S6, however, S8 generalised by taking properties he knew to be true in R2 (equidistance; 
parallelism) and reconstructed them for R3. He first noted that y = 3 would be parallel to the x 
and z axes. He then shaded the xz plane and described y = 3 as always being “3 away from 
that plane.” I take his reference to y = 2 as “every value that is 2 away from the x axis” as 
evidence that he generalised the equidistance property from R2 to R3. Because he talked about 
y = 3 as being three away from the xy plane, I consider this a reconstructive generalisation. S8 
had to modify his equidistance and parallelism schema from the equidistance and parallelism 
of two lines to the equidistance and parallelism from two planes. There is evidence that he 
engaged in modifying these ideas in his statement “this distance right here between each, 
between y and each of these axes would be 3, I think.” S8 first thought about equidistance 
and parallelism between y = 3 and axes. He then thought about where y = 0 would be in R3, 
and having “y be every distance that is 3 away from that plane... it would be an entire plane... 
it has to be parallel to x, and this has to be parallel to z”. That is, S8 modified his equidistance 
and parallelism schema to thinking about the equidistance and parallelism between two 
planes.  
 

 
Figure 2. S6’s graph of y = 3  
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Figure 3. S8’s graph of y = 3 

 I believe that although both students generalised parallelism, S6 drew a line because 
expansive generalisation did not force him to attend to z. Expansive generalisations, however, 
do not always result in non-normatively correct answers. The next section provides an 
example of how S3 and S7 engaged in expansive generalisations that supported their drawing 
planes. I say more about normatively correct and non-normatively correct expansive 
generalisations in the discussion section.  
 
Attending to and generalising x and z as not changing  
 S1 and S11 drew lines for y = 3 in R3, reasoning that x and z did not effect the graph. This 
was generalised from how they thought about y = 2: 
 
S1 [y = 2] So, x and y, and at this point y will equal 2, and the graph would just go through 

2 all the way, for all values of x.  
 

S1 [y = 3] So the z direction, the z can’t change and the x can’t change… z is the vertical 
here… I guess I would just use this line for y always equal to 3.  
 

S11 [y = 2] So this would be x and this is y = 2, and since it’s just 2 all around, and it would 
go that way too [draws y = 2 for the negative x values]. Because usually like with the, 
it’s just kind of giving you like a number I guess, so like no matter like what number 
like input, there’s not really like, there’s no x, so whatever number it is it doesn’t 
matter, that the output is always going to be 2. 
 

S11 [y = 3] It stays on like that like xy plane because there’s no like z and there’s no x… no 
matter like what the other ones are, it’s just going to be that one number, which is like 
a straight line across the thing… I don’t think that x and z really have like any effect to 
y = 3.  

 
S1 talked about y equaling two “for all values of x” in the R2 task but said “x can’t change” in 
the R3 task. From an observer-oriented perspective, we might have expected her to say that y 
equaled three for all x in R3. Her statement that x could not change hence seems like the 
opposite. I wonder if from an actor-oriented perspective, both phrases ‘for all x’ and ‘x can’t 
change’ mean the same thing to S1. This seems reasonable given that S11 did the same thing 
when she said “no matter what the input” and “there’s no x” in the same sentence. I infer that 
S1 generalised that x did not affect the graph of y = 2 in R2, and that x and z would not affect 
the graph of y = 3 in R3.  
 S11 also generalised the idea of x having no effect to the idea of x and z having no effect. 
The evidence for this is that she used the same phrases in both problems: “no matter like what 
number the input…there’s no x… the output is always going to be 2” to “there’s no like z and 
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no x… no matter like what the other ones are”. I consider both students to have engaged in 
expansive generalisation because they applied the idea that a variable was not present in the 
equation, and hence did not matter, to the new context.  
 
Attending to and generalising coordinate tuples  

S7 and S3 and graphed y = 3 as a plane. Both thought about particular coordinate points, 
though S7 thought about a three-tuple and S3 thought about (x, y) and (y, z) pairs:  
 
S7 So here's 3, we've got x, or the y, but then it's also going to be for all the z values, 

since z evaluated at any point will be y = 3. So I guess it would come out to be a 
plane… I kind of just thought since x evaluated2 at any point on the graph equals 3, 
since the function is basically saying all, it's saying y = 3 at all points on the graph, 
any point you evaluate, so if you say z = 2 and x = 2, it's going to be 3. 
 

S3 [y = 2] Whatever you plug in for x, at all, ever [makes dashes along the x-axis], y is 
just going to equal 2. So it’s a horizontal line. 
 
[y = 3] No matter what x or z is, y is always going to equal 3…  I want to draw a line 
like this [indicates a line following the gridline for y = 3 on the xy plane] and a line 
like that [indicates a gridline parallel to the z axis and going through (0, 3, 0); Figure 
4]. So what it's saying here is if x were 1, y equals 3 [Figure 5], or if x = 2, y = 3. 
And here too if z were 1, y is always going to equal 3 here [Figure 6]... I guess I 
drew a plane... [a plane makes sense] when it is drawn out like that. 

 
Figure 4. S3’s plane 

 

                                                
2	I believe that S7 meant to say ‘y evaluated at 3’, particularly because she followed this 
phrase with ‘it’s saying y = 3 at all points on the graph’ and later used the example of x = 2. 
Consequently, I have analysed this excerpt assuming that she did indeed mean to say y.  
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Figure 5. S3 considering (x, y) = (1, 3) 

 

 
Figure 6. S3 considering (y, z) = (1, 3) 

Both S7 and S3 generalised that if a coordinate point satisfies a particular condition (in 
this case, y = 3), it lies on the graph. S7 identified this condition (“it’s saying y = 3 at all 
points on the graph”) and then explained that this meant (2, 3, 2) was on the graph because y 
equaled 3 in that tuple. S3 identified the condition that “y is always going to equal 3,” and 
used this to draw two perpendicular lines that intersected at (0, 3, 0). She then considered the 
points (x, y) = (1, 3), (x, y) = (2, 3), and (y, z) = (1, 3) and said “I guess I drew a plane”. I 
interpret the phrase “I guess” as an in-the-moment realisation that the graph was a plane, 
afforded by considering particular points. I emphasise that S3’s gestures (Figures 5 and 6) 
seemed to play a role in her thinking. Moving the pen from (0, 3, 0) to (1, 3, 0) and then to (2,  
3, 0), and then from (0, 3, 0) to (0, 3, 1) seemed to help her see that the graph was a plane. S3 
did not gesture toward particular points, but like S3, she said “I guess” the graph is a plane, 
and explained that she thought it was so because any point in which y = 3, such as (2, 3, 2), 
would be on the graph.  

For both students, considering specific points was an expansive generalisation of the 
scheme ‘If a coordinate point satisfies a particular condition (in this case, y = 3), it lies on the 
graph’. This is expansive because the students implemented a scheme that they likely had 
from experience with R2 graphs, and they did not have to modify the scheme for R3.  

S3’s particular points contain examples of both expansive and reconstructive 
generalisation. She considered two variables at a time, which I infer she generalised from 
being accustomed to considering (x, y)-tuples in R2. Because she did not consider an (x, y, z)-
tuple (which would be a reconstruction), I considered this an expansive generalisation. S3’s 
use of a (z, y)-tuple, however, is a reconstructive generalisation because she expanded the 
notion of using (x, y)-tuples to using tuples of other variables.  
 S3 also generalised the notion of a free variable. I detail this generalisation in the next 
section, along with examples of other students who made similar generalisations.  
 
Attending to and generalising free variables  
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 Three students determined that the graph was a plane by focusing on x and z as able to 
take on any value. These students differ from the students who thought of x and z as “not 
changing” because the students here thought of x and z as free, and this afforded their 
graphing planes.  

For example, in the y = 3 task, S3 said, “no matter what x or z is, y is always going to 
equal 3.” I interpreted these statements as generalising the idea of a free variable because it 
seemed similar to her comment in the R2 task that “whatever you plug in for x… y is just 
going to equal 2.” S3’s generalisation of the notion of a free variable seemed to be of the 
reconstructive variety because she realised that both x and z were free. S12 also appeared to 
engage in reconstructive generalisations:  

 
S12 So maybe, maybe it would be like this [draws and shades plane]. Well this would 

kind of just be like just a flat sheet of paper on the y = 3, because all x values are 3, 
and then I guess you assume that all z values, since it’s only, the only variable in 
the equation is y = 3, then it would have to be y = 3 for all x and z values. It’s kind 
of just like a, I think it’s supposed to be like a flat sheet kind of, like a piece of 
paper, and it’s on y = 3, so it’s supposed to encompass all the x values for negative 
and positive, and all the z values for z, positive z and negative z. They’re all on y = 
3... Well, I just thought like since y = 2 it should be like this, so if it’s y = 3 it’s like 
that, like all x values are y = 3. And z is going this way, so it must be, since there’s 
no z in the equation, then it must be covering all this area. 
 

I believe that the fact that S12 talked about x and then talked about z provides evidence that 
he engaged in reconstructive generalisations. S12 said “all the x values are 3” (from which I 
interpreted him as meaning ‘for all the x values, y equals 3’) followed by “I guess you assume 
that all z values since… the only variable in the equation is y = 3, then it would have to be y = 
3 for all x and z values.” He seemed to generalise that y = b in R2 would mean y = b for all x, 
and hence y = b in R2 would mean y = b for all x and z. The reconstruction is y = b for all z. I 
take the phrase “I guess” here to indicate changing something in his schema.   
 

Discussion 

 I observed students engage in expansive and reconstructive generalisations, but not in 
disjunctive generalisations. The particular generalisations are summarised in Table 2. This 
table also shows what students attend to when they first think about first graphing y = 3 in R3: 
they attend to parallelism, equidistance, particular coordinate points, and free variables. 
 
Table 2. Summary of generalisations  
Student(s) Generalisation Type  
S6 y = 3 is a line in R3 just like it is in R2  Expansive 
S6, S8, 
S9 

y = 3 in R3 is parallel to the x axis Expansive 

S8 y = 3 in R3 is parallel to the x axis and the z axis Reconstructive 
S8 y = 3 in R3 is equidistant from the xy plane, just like y = 2 in R2 

is equidistant from the x axis  
Reconstructive 

S1, S11 x has no effect on y = 2 in R2, so x and z have no effect on y = 3 
in R3  

Expansive 

S3, S12 Notion of a free variable: x is free in y = 2 in R2; x and z are 
free in y = 3 in R3 

Reconstructive 
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S3, S7 If a coordinate point satisfies a particular condition (in this 
case, y = 3), it lies on the graph 

Expansive 

S3 A coordinate point has two elements Expansive 
S3 The elements of a coordinate point need not always be (x, y) Reconstructive 
 

Trigueros and Martinez-Planell (2010) and Kabael (2011) found students’ difficulties 
with multivariable functions are often related to impoverished schemas for three-space. Our 
findings lend insight into how students begin to develop an R3 schema. One way students 
construct an R3 schema seems to be treating it like R2. S5, who drew y = 3 in R2 and then 
copied that image to the R3 axes, provides an example of this, as do the students who draw 
f(x,y) = x2 as a parabola (Martinez-Planell & Gaisman, 2013). Students seem to treat R3 like 
R2 in other function topics as well. Dorko and Weber’s (2013) observation of students who 
gave the domain and range of f(x, y) as x and y (respectively) provides a good example of 
this. Such treatment of R3 may be a temporary stage for students. For instance, Yerushalmy’s 
(1997) seventh-graders, engaged in their first multivariable graphing task and not shown R3 
axes like the students in this study, initially drew two graphs, one of independent quantity 1 
vs. dependent quantity and one of independent quantity 2 vs. dependent quantity. The 
students struggled with, but eventually found, a way to draw a single graph. In this study, S3 
also considered quantities two at a time. More research is needed to see if S3, S5, the student 
from Martinez-Planell and Trigueros’ (2013) study, and others initially treat R3 like R2 but 
move out of this stage like Yerushalmy’s students did.  
 
Instructional Implications 
 My findings indicate that instructors can help students graph correctly by teaching them 
to attend to z. Instructors could begin by proposing that students think of a graph as the set of 
all points that satisfy a particular relationship. This might lead to teaching students to 
consider specific (x, y, z)-tuples and whether or not those tuples satisfy the given relationship. 
An instructor could ask a student to give a particular tuple that was on the graph and explain 
why that particular point is part of the graph, or could ask a student “is (1,3,7) on the graph? 
Why or why not?”  
Instructors should also emphasise that variables vary. I say this because some of the students 
in this study (S1, S11) thought of x in y = 2 (in R2) as not changing, which led them to 
conclude that for y = 3, x and z ‘did not matter’. If we remind students that variables vary, 
they might consider how z varies in y = 3. One way we could reinforce this might be to write 
free variables as the variable times 0. For instance, perhaps writing f(x, y) = x2 as f(x, y) = x2 + 
0y would help students attend to y as free.  

Finally, I suggest instructors use the ideas of equidistance and parallelism to help students 
think about fundamental planes. This was a powerful strategy for S8, and equidistance and 
parallelism are ideas that should be familiar to students.   
 
Theoretical contributions 

I wish to offer three comments about the expansive, reconstructive, and disjunctive 
generalisation categories. These are (1) reconstructive generalisations as first requiring 
expansive generalisation; (2) the idea of reconstruction as explanatory for why multivariable 
calculus topics are so difficult for students; and (3) expansive and reconstructive 
generalisations may be normatively correct or non-normatively correct, but in either case the 
Harel and Tall’s (1991) framework helps us see what students are attending to. 

I believe that any reconstructive generalisation involves first an expansive generalisation 
in which the student tries to apply an existing schema to a new context, followed by a 
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reconstruction of the schema to account for differences between the two contexts. The 
theoretical support for this is the definition of reconstructive generalisation as “ocurr[ing] 
when the subject reconstructs an existing schema in order to widen its applicability range” 
(Harel & Tall, 1991, p.1) and expansive generalisation as “occur[ing] when the subject 
expands the applicability range of an existing schema without reconstructing it” (Harel & 
Tall, 1991, p.1). That is, if a student is going to reconstruct a schema, she must first see it as 
potentially applicable to the context. Hence she expands it to the context, then reconstructs as 
needed. One might envision Harel and Tall’s categories like shown in Figure 7, in which 
expansive generalisation can occur in its own right, and as part of reconstructive 
generalisation.  

 
Figure 7. Proposed reconceptualisation of Harel and Tall’s framework 

 
S8’s thinking provides an example for empirical support for expansive generalisation as a 

necessary condition for reconstructive generalisation. S8 explained his plane as three units 
away from the xz plane, “like for the last question when y is equal to 2, that is every value 
that is two units away from y = 0, right? So I'm thinking that like y = 0 would be the same as 
this [xz plane; Figure 3]”. He expanded the idea of y = b as equidistant from y = 0 to R3, 
reconceptualising y = 0 from a line in R2 to the xz plane in R3. The reconstruction could not 
have occurred in absence of the expansion. Hence I believe that reconstructive generalisation 
first involves expansive generalisation.  

Secondly, I believe that thinking about expansive and reconstructive generalisation 
provides explanatory power for why students often struggle with multivariable topics. 
Understanding that multivariable functions depend on multiple quantities, that domain is a set 
of (x,y)-tuples instead of a set of numbers, that derivatives in R3 depending on direction, and 
so on depends on students reconceptualising ideas. Moreover, students need to realise that 
they have to reconstruct their ideas. Expansive generalisation does not always allow for this 
(e.g., S6). Perhaps students who struggle with multivariable topics tend to engage primarily 
in expansive generalisation when they need to engage in reconstructive generalisation. More 
research is needed to determine if this is the case.  
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Lastly, although I believe many multivariable calculus topics require students to 
reconstruct their schemas for function and graphing, expansive generalisations may still be 
productive. They may be productive for students when students are able to expand 
overarching notions such as points being on a graph as long as they satisfy a particular 
relationship (e.g., S3) or the notion of function as input-output (Dorko & Weber, 2013; 
Kabael, 2011). These examples illustrate that a reconstructive generalisation is not 
necessarily better or more sophisticated than an expansive one.  

Categorising generalisations as expansive can be productive for researchers because 
doing so highlights what students are attending to. For example, we see from Table 2 that S6 
attended to the shape of the graph of y = 2 in R2, and that S3 and S7 attended to specific 
points and the broader idea that if a point satisfies a particular relationship, it is on the graph. 
S6’s generalisation was non-normatively correct, while S3 and S7 both gave correct 
responses. However, in both cases, these expansive generalisations lend insight toward what 
students attended to. Similarly, the reconstructive category allows us to identify what facets 
of ideas students reconstruct. In summary, the expansive and reconstructive categories 
provide a powerful way to explain and understand the two main ways students generalise 
from R2 to R3. 
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Gender, switching, and student perceptions of Calculus I 
 

We analyze survey data to explore how students’ reported perceptions of their Calculus I 
experiences relate to their gender and persistence in calculus. We draw from student free-
responses from several universities involved in a comprehensive US national study of Calculus I. 
We use social cognitive career theory to help inform a thematic analysis on the data. Our 
analyses indicate that there are significant differences in affective statements among four student 
groups determined by gender and persistence. Teacher behavior and teaching practices are 
highly correlated with affective statements, and thus may be very influential in the quality of 
students' Calculus I experiences.                                                                                              

 
Keywords: Calculus, gender, persistence, affect, thematic analysis, mixed methods 
 
Stemming from national need to increase persistence in Science, Technology, Engineering, 

and Mathematics (STEM), Ellis, Fosdick, and Rasmussen conducted a study focused on student 
persistence in calculus and investigated factors which may impact the likelihood of a student 
switching out of a STEM major (2016). They identified a striking relationship between gender, 
switching, and mathematical confidence. Specifically, females were significantly more likely to 
decrease their intentions to take Calculus II after taking Calculus I. When given a list of potential 
reasons for not continuing, female students cited that they, “do not believe [they] understand the 
ideas of Calculus I well enough to take Calculus II,” with significantly greater frequency than 
their male counterparts. However, there did not exist significant differences in the number of A’s 
and B’s between men and women. These results highlight the role that calculus is playing in 
students’ decisions to leave their STEM pursuits, and may help to explain the larger issue of the 
STEM Gender Gap (Eagan, Lozano, Hurtado, & Case, 2013; Seymour & Hewitt, 1997). This 
work motivated us to delve more deeply into student reports of their experiences in Calculus I. 
Specifically, we examine the relationships between students’ description of their experience in 
Calculus I, their gender, and their decisions to persist in calculus. 

Educators have long been interested in identifying factors that may contribute to the disparity 
in gender representation in STEM (Fennema & Sherman, 1976 & 1978; Griffith, 2010; Good, 
Rattan, & Dweck, 2012; Ellis, Fosdick, & Rasmussen, 2015). While there is consistent evidence 
against gender-based differences in mathematical ability (Fennema & Sherman, 1978; Islam, & 
Al-Ghassani, 2015; Lindberg, Hyde, & Peterson, 2010), there are clear distinctions between men 
and women in their persistence in STEM fields (Cunnigham, Hover, & Sparks, 2015; Eagan et 
al., 2013), and their self-reports of success in these fields (Griffith, 2010; Good, Rattan, & 
Dweck, 2012). To better understand these differences, we draw on social cognitive career theory 
(Lent, Brown, & Hackett, 1994), with an emphasis on self-efficacy and affect (Phillip, 2007). 
Social cognitive career theory is a theoretical framework that maps a student’s career/academic 
choice and integrates demographics as a key component impacting the learning experience 
through psychosocial processes that contribute to the development of career-related self-efficacy 
and outcome expectations. Lent, Brown, and Hackett (1994) hypothesize that gender (as well as 
race and ethnicity) differences in career interest, career goals, and actions arise largely through 
differential access to opportunities, supports, and socialization processes, rather than due to 
ability. More recently, researchers have begun to articulate factors related to persistence and the 
representation of females and other minorities in STEM majors (Ellis, Fosdick, & Rasmussen, 
2016; Fennema & Sherman, 1976; Graham, Frederick, Byars-Winston, Hunter, & Handelsman, 
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2013; Griffith, 2010; Wolniak, Mayhew, & Engberg, 2012). Griffith found that certain 
environmental factors (such as the representation of females and minorities in graduate 
programs) can increase STEM participation and success by minorities (2010). Good, Rattan, and 
Dweck (2012) found that a sense of belonging was related to student persistence in math and that 
women who exhibited a fixed intelligence mindset coupled with gender stereotyping in the 
classroom experienced reduced sense of belonging (2012). Gender differences in confidence 
have also been identified as a possible factor to explain why women discontinue pursuing 
mathematics at a higher rate than men (Ellis, Fosdick, & Rasmussen, 2016; Fennema & 
Sherman, 1978).  

Our research contributes to this literature by offering an inductive, qualitative analysis of 
student statements pertaining to their experiences in Calculus I. We draw on students’ responses 
to an open-ended survey question from the Characteristics of Successful Programs in College 
Calculus (CSPCC) project. In this report we address the following research question: How do 
student characterizations of their experience in Calculus I relate to student gender and 
persistence in calculus? 

Methods  

This work is embedded within a larger project aimed at investigating college calculus at a 
national level – the CSPCC project. The first phase of this work involved a survey of 
“mainstream” Calculus I students from a stratified random sample of colleges and universities. 
Two surveys were sent to students at the beginning and the end of the fall term. On the 
beginning-of-term survey, students were asked questions related to their demographics, previous 
mathematical experiences, affect towards mathematics, and career plans. On the end-of-term 
survey, students were asked questions related to their experience in Calculus I, affect towards 
mathematics, and career plans, as well as the open-ended question: “Is there anything else you 
want to tell us about your experience in Calculus I?”  We analyze students’ responses to this 
question in this report. The surveys provide us with information to distinguish students based on 
gender and whether they continued in calculus. Continuation to Calculus II is a proxy of whether 
students will persist in STEM majors because it is required of most STEM majors. Students who 
indicated an intention to take Calculus II at the beginning-of-the-term survey and still reported 
this intention at the end-of-the-term survey were coded as Persisters. Students who first intended 
on taking Calculus II but reported differently on the end-of-the-term survey were coded as 
Switchers. Students were divided into four student groups, Male Persisters, Female Persisters, 
Male Switchers, and Female Switchers, based on reported gender and intention to take Calculus 
II.  

In order to answer our research question, we sought to identify themes in the data and 
determine how those differ among the four student groups. There were 2,266 students who 
responded to the beginning-of-term and end-of-term surveys and were part of the analysis 
conducted by Ellis, Fosdick, and Rasmussen (2016). Of these students, there were 522 students 
who provided a response to the open-ended question. As shown in Table 1, the subset of 522 
students was composed of more male Persisters than in the original data set (51.3% compared to 
45.6%), less female Persisters (30.7% compared to 34.7%), slightly more male Persisters and 
slightly fewer female Switchers. Further, this subset of students reported slightly lower 
standardized test scores, the same level of Instructor Quality, and slightly higher levels of 
Student-Centered Practices as compared to the larger data set. Instructor Quality and Student-
Centered Practices were variables ranging from 1-6, based on student reports of sixteen 
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instructional practices and behaviors (see Tables S3 and S4 for detailed information on the 
derivation of these variables). Instructor Quality characterizes the level of conventional quality 
teaching, including availability outside of office hours, listening to questions, and encouraging 
students mathematically. Low values on this scale indicate low perceived instructional quality, 
and high values correspond to high instructional quality. Student-Centered Practices 
characterizes the frequency of classroom practices such as whole-class discussion, students 
giving presentations, and group work. Low values coincide with reported traditional, instructor-
centered instructional practices, and high values correspond to more innovative, student-centered 
teaching. 

 
Table 1. Comparison of larger data set to data set with open-ended responses 
 Larger data set 

(n=2588) 
Open-ended responses 

(n=522) 
Number of Institutions 142 102 
Number of Instructors 80 70 
Student Group   

1 – Male Persister 1181 (45.6%) 268 (51.3%) 
2 – Female Persister 897 (34.7%) 160 (30.7%) 
3 – Male Switcher 203 (7.8%) 43 (8.2%) 
4 – Female Switcher 307 (11.9%) 51 (9.8%) 

Standardized Test average (percentile) 86.37 84.80 
Instructor Quality 4.61 4.61 
Student-Centered Practices 3.29 3.35 

 
To characterize the ways these students discussed their experiences in Calculus I, and to 

relate these characterizations to student gender and persistence, we employed thematic analysis 
(Braun & Clarke, 2006). Social cognitive career theory guided this work, which emphasizes the 
role of demographics, self-efficacy, and learning experiences in a person’s career decisions 
(Lent, Brown, & Hackett, 1994). During the thematic analysis we familiarized ourselves with the 
student responses, blind to the gender and persistence of the students, though aware of the 
literature related to the STEM gender gap and, more specifically, aware of the relationship in this 
data set between gender, reported mathematical confidence, and persistence in calculus. We took 
an inductive approach, deriving themes from the data, but we brought to bear our knowledge of 
the literature in organizing these themes. The two authors each coded subsets of 50 student 
responses to develop and refine codes. The final codes, reported in Table 2, were finalized after 
multiple iterations of comparing codes and once 85% reliability was consistently achieved 
between researchers. One researcher then coded all responses, with a small percentage of 
questionable responses coded by both researchers. We weighted the codes on a scale of -1 to 1 to 
indicate a negative, neutral, or positive connotation. We coded each student response with as 
many codes as appropriate. We did not repeat codes within a student comment unless the same 
code carried different weights (positive, negative, or neutral) in the same student response. For 
instance, “I was pretty nervous about calculus because I was never strong at math … but so far it 
is going well” was coded twice for affect since this comment includes affective statements with 
different weights. The student communicated negative feelings about self with regards to 
mathematical ability, but made a positive statement about the calculus course. The NA code was 
only used if the entire student response was not relevant directly to the student’s Calculus I 
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experience. Responses were regarded as not relevant if the student stated that they had no other 
comments about the course or if the statement was too vague to apply to the calculus course. 

To frame this work we draw on literature surrounding self-efficacy and affect. We define and 
understand affect according to Phillip’s summary of research done on mathematical belief and 
affect from the years 1992 to 2007. By consolidating definitions from research, Phillip defines 
affect as “a disposition or tendency or an emotion or feeling attached to an idea or object. Affect 
is comprised of emotions, attitudes, and beliefs” (Phillip, 2007, p. 259). In our examination of 
students’ open-ended responses about Calculus I, we analyse students’ reported affect. Based on 
Phillip’s definition, nearly all student responses could be viewed as affective statements. Thus, 
we narrowed our use of the “Affect” code to only capture statements about a student’s emotions, 
attitudes, or beliefs towards the calculus course, oneself as a learner, or mathematics in general. 
For instance, “This professor is pretty good at explaining the concepts,” is an example of a 
response that was coded as being about the teacher but not as a report of the student’s affect. By 
contrast, “I feel that I am loving math because my professor loves to teach it. She makes class so 
much fun and she believes in us,” is an example of a response that was coded with both the 
“Teacher” and “Affect” codes. The former comment is merely an evaluation of the teacher, while 
the latter comment discusses the teacher as well as the student’s attitude towards math.  

 
Table 2. Codes, code descriptions, and examples.  
Code Includes statements about… 

Affect Student’s emotions, attitudes, and beliefs about (a) the calculus 
course, (b) mathematics, (c) themselves as learners. 

 For the first time in my life I really struggled in a math class. 
  

Assignments 
and assessments 

Assignments, and both formative and summative assessments.  
The exams tended to be stressful/time consuming. 

  

Pacing The pacing of the course in general and of class sessions. 

 The length of class … didn't really allow for … anything rather 
than the ‘spewing’ of material 

  

Preparation Preparation coming into the course and preparation going into the 
next course. 

 Taking calculus in high school helped me succeed in this class! 
  

TA The TA and his/her aspects such as communication, availability, 
helpfulness, etc. 

 The help desk hours with the T.A. were great. 
  

Teacher The teacher and his/her aspects such as communication, 
availability, helpfulness, etc. 

 I thoroughly enjoyed my professors teaching style and 
presentation of material. 

  

Teaching Specific teaching practices and teacher-controlled aspects of class 
room environment. 

 My instructor …had no passion for learning and lectured instead 
of taught. 

  

Other Other reasons and resources that may have impacted the student’s 
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success 

 Without the math tutoring lab there is no way I would do well in 
this class or even pass. 

  

Not applicable Anything irrelevant to the calculus course. 

 If a teacher truly loves the subject, students can tell and learn to 
love it too. 

 
Once the responses were coded, we investigated patterns within this data, drawing on descriptive 
and correlational analysis. These analyses provide a rich understanding of the overall aspects of 
student’s Calculus I experience that they find important, and that may be related to their 
decisions to persist (or not) through the calculus sequence, and eventually their STEM career 
decisions. After identifying relationships between students’ comments and their gender and/or 
persistence we took a deeper look into the qualitative nature of the comments that emerged as 
related to career decisions.  

Results 

To understand the relationships between students’ responses, their gender, and their calculus 
persistence, we provide an overview of the distribution of the codes among the four categories of 
students in Figure 1. Of the 522 original student responses, 68 were coded as not applicable and 
were filtered out, leaving 454 relevant comments. Half of these comments came from Male 
Persisters, 9% from Male Switchers, 32% from Female Persisters, and 10% from Female 
Switchers. Among all students, the most frequent responses were related to Affect, the Teacher, 
Assignments and Assessments, and Preparation. However, the frequency of these responses 
within each student group varies; for instance, 37% of Male Persisters’ responses were coded as 
Affect while 63% of Male Switchers’ responses were coded this way. There are statistically 
significant differences among the distribution of the responses related to Affect, the Teacher, and 
Preparation.  

 

 
Figure 1. Prevalence of codes among four student groups 

 
The most significant differences are in affective comments, where around 60% of both male 

and female Switchers’ comments were coded as Affect, while these percentages are significantly 
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lower for male and female Persisters. Much research has been done on mathematical affect and 
its role in student persistence (Ellis, Fosdick, & Rasmussen, 2016; Fennema & Sherman, 1978; 
Good, Rattan, & Dweck, 2012), with clear links identified between students’ affect and their 
career decisions. To better understand the nature of students’ affective statements, we conduct 
two secondary analyses: first, we compare the weight distribution of Affect statements across the 
four groups of students. As shown in Figure 2, the majority of male and female Persisters’ Affect 
statements were positive, while male Switchers’ Affect comments were nearly evenly split 
between positive, negative, and naturally, and the majority of female Switchers’ Affect 
statements were negative. These findings harken back to decades of research on mathematical 
self-efficacy and gender. Bandura (1986) defined self-efficacy as “people’s judgments of their 
capabilities to organize and execute courses of action required to attain designated types of 
performances” (Bandura, 1986, p. 391). In a meta-analysis of research on mathematical self-
efficacy and gender, Pajares (2005) concludes that women consistently have lower mathematical 
self-efficacy compared to men at all ages. This literature may help explain the differences in the 
weights of Affect statements among the four student groups. Men’s stronger mathematical self-
efficacy may explain why the males, even those who choose to leave their STEM pursuits after 
Calculus I, tend to report more positive affective statements. Comparing the proportion of 
comments coded with positive Affect, the male Switchers in our data set report positive affect 
much more frequently than do female Switchers. Although our Affect code is not identical to 
self-efficacy as defined by Bandura, the two are certainly related. Thus, the gender disparity in 
mathematical self-efficacy may help explain the gender differences in the weight distribution of 
responses coded with Affect. 

 

 
Figure 2. Weight distribution of Affect code 

 
  The second ancillary analysis we conduct to further understand the relationships between 

gender, STEM persistence, and students’ calculus experience is a correlational analysis among 
the codes to understand what codes are most associated with Affect statements. As shown in 
Table 3, Affect statements are significantly correlated with Teacher statements [r = 0.601, n = 
85, p < .001] and Teaching statements, [r = 0.819, n =31, p < .001]. Thus, it seems that of the 
many aspects of the calculus learning experience, the instructors’ behaviour and teaching 
approach can have the most impact on the students’ emotions, attitudes, and beliefs about 
mathematics, the calculus course, and themselves as learners.  
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Table 3. Correlations between Affect code and other codes 

 Aff AA C P Pr TA Teaching Teacher O 
Pearson Correlation 1 .038 .284 -.232 -.090 -.577 .819** .601** -.092 

Sig. (2-tailed)  .794 .115 .547 .557 .423 .000 .000 .640 
N 238 49 32 9 45 4 31 85 28 

 
This analysis indicates that the overlap between the codes Teacher and Teaching with Affect 

are especially important. Thus, we investigate these overlaps more deeply – first with Teacher 
and then with Teaching. We initially do this qualitatively and look into the nature of the 
comments in these overlaps. At this point in the analysis, the number of student responses under 
examination is small and so our findings cannot be taken as representative of a pattern in the 
larger data set. The purpose of this analysis is to understand the specifics aspects of the teacher 
or teaching that were related to students’ affect. We then look at the prevalence of these overlaps 
between the four groups of students (again, here the numbers are quite small and thus cannot be 
representative of larger trends), and revisit the analysis conducted by Ellis, Fosdick, and 
Rasmussen (2016) to compare the trends in our smaller sample of data to the trends in the data 
set of 2,266 students.  

 
Affect and Teacher 

There were 85 student responses coded with both Affect and Teacher. Through thematic 
analysis, we refined the analysis further to uncover two subthemes related to affect and the 
teacher that were most prevalent in this data set: comments related to the teacher’s 
approachability, and comments related to the teachers’ communication. Comments in the 
approachability subtheme included comments about how the teacher’s (lack of) approachability 
made students feel about themselves as learners, calculus, or mathematics in general. Comments 
in the communication subtheme included comments about how the teacher’s communication, 
including both potential language barriers and their general communication style, made students 
feel about themselves as learners, calculus, or mathematics in general.  
 

Table 4. Prevalence of Teacher and Affect subthemes among four student groups. 
 Approachability Communication 
Male Persisters (n=27) 4 7 
Male Switchers (n=7) 2 2 
Female Persisters (n=33) 11 8 
Female Switchers (n=14) 5 0 

 
Ellis, Fosdick, and Rasmussen (2016) constructed an aggregate variable, called Instructor 
Quality, from end-of-term survey questions related to various aspects of the quality of the 
instructor, including questions related to approachability and communication. Here we extend 
their analysis to shed light on how instructor quality may be related to student gender and/ or 
persistence. As shown in Table 5, Persisters report significantly higher Instructor Quality than 
Switchers [F(1, 4111) = 64.981, p < .001], but there were not significant differences in reports of 
Instructor Quality between men and women. However, when we compare across the four groups 
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it appears that the difference between female Persisters and Switchers is larger than that between 
male Persisters and Switchers. 
 
Table 5. Comparison of means of Instructor Quality among student groups.  
 Switcher Code***  Gender  Combined Student Groups***  
 

Persisters Switchers Male Female 
Male 

Persister 
Female 

Persister 
Male 

Switcher 
Female 

Switcher 
Mean 4.66 4.33 4.66 4.64 4.69 4.72 4.47 4.36 

n 3474 638 1468 1211 1284 930 184 281 
Std. 

Dev. .927 1.053 .896 .931 .882 .882 .962 1.034 
 
Affect and Teaching 

There were 31 student responses coded with both Affect and Teaching. These responses 
addressed the instructional approach, the technology used in the class, and the connection 
between material taught in class and material assessed.  

 
Table 6. Prevalence of Teaching and Affect among four student groups. 

 Teaching and Affect 
Male Persisters  13 
Male Switchers  3 
Female Persisters  12 
Female Switchers  3 

 
Ellis, Fosdick, and Rasmussen (2016) constructed an aggregate variable, called Student-Centered 
Instruction, from end-of-term survey questions related to various aspects of the format of the 
instruction, including questions related to the level of student-centered instruction such as group 
work and whole class discussion versus lecture. Here, again, we extend their analysis to shed 
light on how instructional approach may be related to student gender and/ or persistence. As 
shown in Table 5, Persisters report slightly significantly higher Student-Centered Instruction than 
Switchers [F(1, 4117) = 3.702, p = .054], significantly higher report  by men than women [F(1, 
2682) = 3.918, p = .048]. However, when we compare across the four groups these differences 
diminish, though it does show that female Persisters report slightly lower levels of Student-
Centered Instruction than the other student groups.  
 

Table 7. Comparison of means of Student-Centered Instruction among student groups.  
 Switcher Code* Gender** Combined Student Groups 
 Persisters Switchers Male Female MP FP MS FS 

Mean 3.31 3.22 3.32 3.24 3.33 3.23 3.30 3.30 
n 3479 639 1471 1213 1287 932 184 281 

Std. 
Dev. 1.078 1.096 1.036 1.086 1.035 1.084 1.046 1.094 
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Discussion 

This work was motivated by work that clearly linked gender to persistence in calculus, with a 
lack of confidence in mathematical ability as a major contributing factor for women’s decisions 
to leave calculus but not for men’s. In this report, we further investigated aspects of male and 
female Calculus I students’ reports of their experience in calculus to try to better understand the 
link between gender and persistence in calculus. Our analyses identified a number of aspects of 
the Calculus I experience as related to gender and persistence.  

After coding 454 relevant student responses, we found that the differences in distribution 
among the four coding groups were statistically significant for responses coded with Affect, 
Teacher, and Preparation. In particular, the proportion of affective statements made by male and 
female Switchers was significantly greater than the proportion for Persisters. This indicates that 
students who did not continue to Calculus II more frequently made statements expressing their 
emotions, attitudes, or beliefs about the calculus course, math, or themselves as learners than did 
those who persisted with their intention to pursue a STEM major. It is possible that the students 
who left the calculus sequence made affective statements more often than Persisters because they 
may have had more impactful experiences that they felt should be reported. 

There were also differences among the student groups in the distribution of weight of the 
Affect code. As would be expected, Persisters largely made affective statements which held 
positive connotation. The female Switchers’ affective responses were primarily negative in 
connotation, which also would be expected. However, the weight distribution among the male 
Switchers’ Affect comments was very even between positive, negative, and neutral statements. 
This disparity in the proportion of negative affective statements made among male and female 
Switchers may be explained in part by the literature surrounding mathematical self-efficacy. The 
literature indicates that women consistently have lower self-efficacy than men, where women 
tend to judge that they have less mathematical capability than do men. This could be linked to 
the pattern in our data set, that among students who no longer pursue a STEM major, men tend to 
make positive statements about the course, mathematics, or themselves much more often than do 
women. Self-efficacy related to STEM careers plays a large role in actually pursuing that career, 
which may explain the underrepresentation of women in STEM fields. 

Student responses that were coded with Teacher or with Teaching were significantly 
correlated with responses coded with Affect. Thus, teachers’ behaviors and practices may be a 
very impactful factor in shaping students’ affect towards mathematics, the calculus course, and 
themselves as learners. We found that in a small subset of student responses coded with both 
Teacher and Affect, female students made proportionally more comments about teacher 
approachability than about teacher communication. Although this data set was too small to be 
representative of the entire body of student responses, it prompted us to extend the analyses of 
Ellis, Fosdick, and Rasmussen (2016) to explore differences among the four student groups in 
various aspects of teaching. Two aggregate variables we examined from this past study were 
Instructor Quality, which relates to our Teacher code, and Student-Centered-Instruction, which is 
relevant to our Teaching code. 

When examining these two variables, we were working with a data set of 2,266 students who 
provided responses to the beginning and end-of-term survey. As would be expected, Persisters 
reported significantly higher Instructor Quality than did Switchers. No significant gender 
differences were seen with regards to this variable. When considering differences among the four 
student groups, there is a greater difference between female Persisters and Switchers than 
between male Persisters and Switchers, and female Switchers have the lowest number for 
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Instructor Quality among the four groups. This may indicate that female Switchers are having 
encounters with their teachers that are not as positive as for other students. This may be linked to 
our finding that the women in a small sample reported teacher approachability more often than 
men. Perhaps female Switchers are having more negative experiences with their calculus teacher, 
which may dissuade them from continuing to Calculus II. Again, the smaller difference between 
male Persisters and Switchers may indicate that men generally have better math self-efficacy and 
thus make similar reports regardless of switching. 

There are statistically significant differences in Student-Centered Instruction, with Persisters 
reporting a higher score than Switchers, and with men reporting higher Student-Centered 
Instruction than women. The differences decrease across the four student groups, although 
female Persisters report a somewhat lower level of Student-Centered Instruction. It is expected 
that Persisters would report beneficial teaching practices more often than Switchers. Women do 
not report student-centered teaching practices as often as men, which may play a role in deterring 
women from taking more STEM courses. Although the differences are small among the student 
groups, it is interesting that female Persisters reported the lowest levels of Student-Centered 
Instruction. Perhaps a lack of student-centered practices is not enough to prevent some women 
from taking Calculus II. Yet, it is still possible that these students may switch out of STEM 
major later on in their educational career. These small differences may be influential over the 
course of time, and could be factors that contribute to the shortage of women in STEM careers. 
The Teacher and Teaching codes were highly correlated to Affect, and affect and self-efficacy 
are very influential factors in a student's pursuit of STEM and eventual career choice. Thus, 
teachers may help with student retention in STEM fields by striving to better their 
communication and perceived approachability and by shifting teaching practices to be more 
student-centered. These actions may improve student affect towards mathematics and STEM in 
general, and may also reduce the disparity in gender representation in STEM. 
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Learning to think, talk, and act like an instructor: A framework for novice tertiary 
instructor teaching preparation programs 

 
Jessica Ellis 

Colorado State University 
 

In this report I present a framework to characterize novice tertiary instructor teaching 
preparation programs. This framework was developed through case study analyses of four 
graduate student teaching assistant professional development (GTA PD) programs at institutions 
identified as having more successful calculus programs compared to other institutions. The 
components of the framework are the structure of the program, the departmental and 
institutional culture and context that the program is situated within, and the types of knowledge 
and practices emphasized in the program. In this report I characterize one of the programs 
involved in the development of the framework as an example of how it is used. In addition to 
characterizing existing programs, this framework can be used to evaluate programs and aid in 
the development of new novice tertiary instructor teaching preparation programs.  

 
Keywords: Graduate student teaching assistant, professional development, pedagogies of 
practice, mathematical knowledge for teaching, framework 

 
Theoretically driven research centered on the teaching preparation of tertiary instructors 

pales in comparison to the research related to the professional development of K-12 teachers. 
While there are aspects of K-12 professional development (PD) programs that can be highly 
relevant and informative to the tertiary level, there are also many ways in which tertiary-level 
teaching preparation should be examined as its own field. In this paper, I articulate ways that K-
12 PD literature can inform tertiary level teaching preparation and the components that are more 
idiosyncratic to the tertiary context. I then introduce a theoretical framework that draws on K-12 
PD literature and responds to the particular needs at the tertiary level, and use this framework to 
characterize two novice instructor teaching preparation programs as an example of its use as a 
way to characterize programs as well as to compare programs.  

The National Science Board (NSB) uses the term professional development to refer both 
to teacher preparations (i.e. the teaching of pre-service teachers, prospective teachers, and 
teacher candidates) and to the development of practicing teachers (i.e. in-service teachers and 
practicing teachers) (National Science Board 2012). Novice tertiary instructors, especially 
graduate students, have commonalities with both categories of teachers: the training they receive 
for these roles is typically the first training to teach they will have received, however often they 
receive a large portion of this training while they are teaching. For many practicing tertiary 
instructors, any professional development related to teaching they may have received as graduate 
students or post-doctoral fellow is likely to be their only formal training as mathematics 
educators, rather than as mathematics researchers, and can help enculturate graduate students 
into academia (Austin 2002). Thus, the literature on professional development programs 
designed both for pre-service and in-service teachers at the K-12 level is relevant to tertiary 
teaching preparation. While there is extensive research into the professional development of 
teachers at the K-12 level, there is substantially less literature focusing on tertiary instructor 
teaching preparation, especially research that is theoretically driven. A large portion of the 
studies focused on tertiary instructor teaching preparation report on the success of existing 
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programs or needs (often unmet) of novice instructors (e.g. Hauk et al. 2009; Kung and Speer 
2009; Speer, Gutmann, and Murphy 2005). However, the body of research that connects aspects 
of these programs to identify commonalities and key features to consider when creating a new 
program is lacking.  

Ten years ago, Speer and her colleagues (2005) initiated the conversation among 
mathematics education researchers interested in novice tertiary instructor teaching preparation, 
calling attention to what we could learn from K-12 PD, and identified a number of research 
directions to pursue. Some of these directions have been pursued directly by Speer and others 
since this call, and as a result there are more productive models of novice tertiary instructor 
teaching preparation programs in existence. In this paper, I develop a theoretically driven model 
that connects such productive programs. This framework may be used to better understand (and 
make improvements to) existing programs as well as to influence the development of a new 
program geared at preparing novice tertiary instructors. 
Background 

As part of a large, national study focused on identifying elements present in successful 
calculus programs, Characteristics of Successful Programs in College Calculus (CSPCC), 
(Bressoud, Mesa, and Rasmussen 2015), I studied the novice instructor teaching preparation 
programs at four institutions with successful calculus programs where graduate students and 
post-doctoral fellows were involved in the teaching of calculus. Through analyses of survey data, 
the project team identified institutions that were more successful than comparable institutions, 
where success was viewed as a combination of retaining students’ positive dispositions towards 
mathematics, retaining students’ intentions to take Calculus II, and having a reasonable pass rate. 
We then conducted case studies (Stake 1995) at these institutions to learn what they were doing 
in calculus that may be contributing to students’ success, and how this success could be 
translated to other institutions. Robust novice instructor teaching preparation programs were one 
such element, and were then studied in depth in the national sample and at the case study 
institutions (Author). It is important to emphasize that the novice instructor teaching preparation 
programs themselves were not identified as successful; rather, these programs existed at 
institutions (a) whose calculus programs were identified as successful, and (b) where novice 
instructors were responsible for a considerable amount of calculus instruction. 

Methods 

Analyses of the case study data at the selected institutions led to development of the 
framework for novice instructor teaching preparation programs that I introduce in this paper. 
While I primarily attended to the ways in which these institutions prepared graduate students in 
their roles as instructors, these programs can be informative for preparing other novice tertiary 
instructors, such as post-doctoral fellows, lecturers, and new tenure-track faculty. As part of the 
CSPCC study, an abundance of data was collected surrounding each of four PhD-granting 
institution’s novice tertiary instructor teaching preparation programs. At each institution, the data 
set includes the collection of all documents related to the novice instructor teaching preparation 
programs (e.g. handbooks for graduate students and post-doctoral fellows, observation protocol 
for observations, etc.), observations of the training when possible, observations of instructor 
meetings, observations of novice instructors teaching and leading recitation sections, and 
interviews with novice instructors, administrators, teaching preparation program facilitators, and 
students. The purpose of this data collection was to gain an in depth understanding of the ways 
that novice instructors (predominantly graduate student teaching assistants) were prepared and 
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supported for their roles in the calculus programs at each of the institutions selected as having a 
more successful calculus program. The goal of this data collection was not to evaluate the novice 
instructor teaching preparation, but rather to understand the relationship between the novice 
instructor teaching preparation and the success of the calculus program at each institution.  

I analyzed the data with an eye towards understanding the components of the teaching 
preparation program at each institution, and to understand how this related to the success of the 
calculus program. To do so, I conducted inductive thematic analysis of the case study data. 
Thematic analysis involves “identifying, analyzing and reporting patterns (themes) within data. It 
minimally organizes and describes your data set in (rich) detail. However, frequently it goes 
further than this, and interprets various aspects of the research topic” (Braun and Clarke 2006, 
p.79). Inductive thematic analysis is a bottom-up approach, where the themes are data-driven, 
though may also be informed by research literature. This process involves first becoming 
familiar with the data, then generating initial codes, searching for themes, reviewing these 
themes, defining and naming these themes, and lastly producing the report. The themes that were 
developed through this process both emerged from the data set and were influenced by the 
literature. For each theme, I used multiple components from each data set to complement and 
triangulate the information obtained through the interviews, specifically to fact check 
information and to add details when needed.  

After identifying the main themes related to the novice instructor teaching preparation 
programs, I revisited the data to identify the ways that these themes were related to one another 
and how they were related to the success of the calculus programs. Together, the themes 
developed through the inductive thematic analysis and the relationships between them comprise 
the framework for novice tertiary teaching preparation.  
Components of framework 

The central dimension of the framework is the structure of a program; when it occurs, for 
how long, who participates, what is discussed, and how. The structure of a program includes 
objective information about the formal and informal structural components of the novice 
instructor teaching preparation programs program. This includes the five components identified 
by Belnap and Allred (2009): (a) timing, (b) frequency, (c) duration, (d) topics covered, and (e) 
overall design. The structure of a teaching preparation program is the aspect that is typically used 
to characterize a program, much like the specifications of a house (number of bedrooms and 
bathrooms, square footage, architectural design, etc.) are typically used to characterize it. 
However, like these specifications are shaped and constrained by the environment in which one 
builds a house (including the lot size, zoning laws, and builder and/or designers’ preferences), 
the structure of a teaching preparation program is constrained, determined, and enabled by the 
environment within which it is situated: the institution and the department. The institutional and 
departmental context and culture together comprise the environment within which the teaching 
preparation program exists. The institutional and departmental context guides the needs and 
capabilities of a teaching preparation program. For instance, the responsibilities of novice 
instructors are determined by (a) the number of graduate students, post-docs, and other novice 
instructors in the department in relation to the number of other faculty and in relation to the 
number of undergraduates served by the department, (b) the types of classrooms available (large 
lecture halls versus small classrooms), and other components of the context of the institution and 
department. The institutional and departmental culture shapes how the department responds to 
these needs and capabilities. For instance, whether graduate students serve as discussion 
section/recitation leaders or course instructors will be shaped by (a) the institution and 
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departments’ views on class size, (b) their orientation toward optimal learning environments, (c) 
their aspirations for undergraduate instruction, and other components of the culture of the 
institution and department.   

Within the structure of the program, different knowledge and practices are emphasized 
and in different ways. Once a structure has been developed, various knowledge and practices can 
be emphasized and fostered in different ways. As part of becoming an instructor, one develops 
knowledge and practices surrounding instruction. Thus, the tertiary teaching preparation 
programs emphasize different types of knowledge and practices depending on the community 
within than institution.  

To characterize the types of knowledge needed to teach I draw on the classic distinction 
by Shulman (1986), who differentiated between pedagogical knowledge (PK), content 
knowledge (CK), and pedagogical content knowledge (PCK). Pedagogical content knowledge is 
distinct from a blend of basic pedagogical knowledge and basic content knowledge and was 
introduced by Shulman in response to the wide-held belief that content knowledge alone was 
sufficient to teach. PCK is the particular form of content knowledge related to the aspects of 
content knowledge “most germane to its teachability”, including ways of representing content so 
that it is understandable to others (Shulman 1986, p. 9).  

Each of the three types of knowledge can be emphasized to varying degrees though a 
teaching preparation program. To illustrate the level of emphasis I use shading in the visual 
representation of the framework. No shading illustrates that this type of knowledge was not 
emphasized at all during the program. Light shading represents that this type of knowledge was 
emphasized to a small degree, but developing this type of knowledge was not the main focus of 
the teaching preparation program. Dark shading represents that developing this type of 
knowledge was the main focus of the preparation program. For instance, consider teaching 
preparation programs aimed at mathematics graduate student teaching assistants (GTAs) that 
does not provide any opportunities for participants to increase their content knowledge related to 
the area they are going to be teaching, is heavily focused on developing basic pedagogical 
knowledge, such as how to write on the board clearly, how to organize a lecture, and how to 
prepare a syllabus and an exam, talks briefly about common students misunderstandings in 
calculus and how to present ideas to help students grapple with these misunderstandings. Such a 
program would be characterized with no shading for content knowledge, dark shading for 
pedagogical knowledge, and light shading for pedagogical knowledge, as shown in Figure 1.  

 

 
 

Fig. 1 Shading of three types of knowledge to represent three levels of emphasis of each type of 
knowledge through the teaching preparation program 

 
To characterize the practices graduate students can legitimately and peripherally engage 

in as they learn how to be tertiary instructors, I draw on Grossman et al.s’ (2009) pedagogies of 
practice. Grossman and her colleagues (2009) identified three concepts for describing ways to 
teach practices in professional education: representations of practice, decompositions of practice, 

!!
Pedagogical 
Knowledge 

(PK) 

Content 
Knowledge 

(CK) 
!

Pedagogical 
Content 

Knowledge 
(PCK) 

19th Annual Conference on Research in Undergraduate Mathematics Education 139

19th Annual Conference on Research in Undergraduate Mathematics Education 139



 

5 

and approximations of practice. Representations of practice comprise different ways practice can 
be represented for novices. In teacher education, one may represent the practices of teaching 
through written case studies, Video cases, photographs of the classroom, narratives, lesson plans, 
technological reproductions, among many others. The authors note that “the nature of the 
representation determines to a large extent the visibility of certain facets of practice” (p. 2066) 
and thus different representations of the same practices have different affordances for the learner. 
Decompositions of practice break down a complex practice into its multiple parts, which has 
affordances as well as limitations. By decomposing a practice, it may remove the practice from 
the actual context within which it is situated (for an elaboration on this point see Putnam and 
Borko 2004) however it also enables the novice to focus on specific aspects of a practice without 
the complications of the actual context. Approximations of practice are activities that allow 
novices to engage in legitimate practices of a community in a peripheral way, meaning that they 
are “more or less proximal to the practices of a profession.” (p. 2058) These approximations may 
take the learner directly to the practice, as is done during student teaching, or bring the practice 
to the learner through various representations, such as Video cases or role-playing.  

Teaching preparation programs provide many examples of representations, 
decompositions, and approximations of the practices of teaching with varying levels of 
authenticity. For instance, by watching Videocases, novice teachers are able to “enter” the 
classroom, observe student behavior and imagine how they would react as the teacher, without 
the actual responsibility of being in the classroom. This approximation of teaching has a low 
level of authenticity because real teachers do not have the opportunity to pause or rewind 
classroom activity in order to decide how to react or how to interpret the situation. Practice 
teaching is an example of an approximation of teaching with much higher authenticity. During 
practice teaching, novice teachers have limited responsibility in the classroom, but are able to 
experience it in real time and in a much more authentic way than by watching a video. Grossman 
and her colleagues (2009) highlight the benefits of representations, decompositions, and 
approximations of practice with varying levels of authenticity, which “quiet the background 
noise so that they can tune in to one facet of practice at a time” (p. 2083). As novices participate 
in the practices of a community (through approximations of practice, representations of practice, 
and/or decompositions of practice) they do not just develop the skills of the community, but also 
develop (to varying degrees) a shared knowledge base and shared dispositions.  

A teaching preparation program can involve each pedagogy of practice to a varying 
degree. To illustrate the level of involvement of each pedagogy of practice I use shading in the 
visual representation of the framework. No shading illustrates that the teaching preparation 
program did not involve this type of pedagogy of practice. Light shading represents that this 
pedagogy of practice was involved in the program to a small degree, but was not the main feature 
of the teaching preparation program. Dark shading represents that this type of pedagogy of 
practice was the main feature of the teaching preparation program. For instance, consider a 
teaching preparation program held the week before graduate students teach for the first time that 
involves a short session where graduate students prepare a five-minute lecture and present it to 
other graduate students, video presentations about how to foster whole class discussion and 
group work and a lecture presentation about how to organize notes well and write on the board 
clearly. Such a program would be characterized with light shading for approximations of 
practice, dark shading for representations of practice, and light shading for decompositions of 
practice, as shown in Figure 2. 
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Fig. 2 Shading of three pedagogies of practice to represent three levels of involvement of each 
through the teaching preparation program 

 
These components are summarized in Table 1. Figure 3 illustrates the relationships 

between them, and provides a visualize representation of the framework for novice tertiary 
teaching preparation. 
 
Table 1 Dimensions of the tertiary teaching preparation programs 

Dimension Description 
Institutional 
and 
Departmental 
Context 

Objective information about the institution and department that is relevant to 
Calculus 1 instruction and the graduate student professional development 
program. This includes details about the current state of the institution, 
department, calculus program, and novice instructor teaching preparation 
program, and the history of each of these elements. 

Institutional 
and 
Departmental 
Culture 

Objective and/or subjective information about the views, beliefs, objectives, 
goals, and aspirations of the institution and department that are relevant to 
Calculus 1 instruction and the graduate student professional development 
program. This includes the views, beliefs, objectives, goals, and aspirations of 
(a) the institution regarding undergraduate education, (b) the department 
regarding Calculus 1 instruction, (c) the department regarding novice 
instructors’ roles in Calculus 1 instruction, and (d) the department regarding 
novice instructor preparation for their role in Calculus 1 instruction. These 
views, beliefs, objectives, goals, and aspirations may or may not be explicitly 
stated. 
 
The priorities surrounding the Calculus I program and/or the novice instructor 
preparation program and the department’s general orientation to teaching both 
fall somewhere in between the institutional and department culture and 
context. 

Structure Objective information about the formal and informal structural components of 
the novice instructor teaching preparation programs program. This includes 
the five components identified by Belnap and Allred (2009): (a) timing, (b) 
frequency, (c) duration, (d) topics covered, and (e) overall design. 

Development 
of knowledge 

Objective and subjective information about the types of knowledge 
emphasized through the structure of the program. This includes the three main 
types of knowledge identified by Schulman (1986): (a) pedagogical 
knowledge (PK), (b) content knowledge (CK), and (c) pedagogical content 
knowledge (PCK). 

Development 
of practices 

Objective and subjective information about the pedagogies of practice that are 
involved in the structure of the program. This includes the three pedagogies of 
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practice identified by Grossman et al. (2009): (a) representations of practice, 
(b) decompositions of practice, and (c) approximations of practice. 

 

 
 

Fig. 3 Framework of instructor teaching preparation programs 

Two Examples 

Here I use the framework to visually represent two models of novice instructor teaching 
preparation program models that were observed through the case studies at institutions with 
successful calculus programs and where novice instructors (including graduate students, post-
doctoral fellows, an undergraduate students) were heavily involved in Calculus I instruction. I 
call these two models the Apprenticeship Model and the Coordinated Innovation Model. These 
examples serve to illustrate how the framework can be used to characterize programs as well as 
to aid in comparison of programs.  

The Apprenticeship Model. The Apprenticeship Model of novice instructor teaching 
preparation was enacted at a small university with approximately 5,000 undergraduate students, 
where fall enrollment in Calculus 1 is around 270 and class sizes are around 45. Graduate 
students, both Master’s and Doctoral students, are involved in the teaching of Calculus I as 
teaching assistants, tutors, and course instructors. Post-docs are not involved in the teaching of 
Calculus I at this university.   

The primary guiding philosophy behind the Apprenticeship model is the desire to 
transition graduate students into the role of instructor, both as part of their immediate role as 
GTAs and as their (potential) future role as undergraduate mathematics instructors. Embedded 
within this philosophy is the belief that people learning a new profession (who will develop a 
professional identity surrounding it) must participate in the practices of the profession with 
growing responsibility. This belief is in line with a perspective in which learning is viewed as the 
process of engaging a novice in the practices of the profession with legitimate but peripheral 
participation (Lave and Wenger 1991). The term “peripheral” indicates that the practices novices 
are involved in are less central versions of the authentic practices, or are central practices with 
limited responsibility. As one clinical psychology professor involved in the Grossman et al. 
(2009) study said when describing how clinical psychologists are prepared, “if you’re learning to 
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paddle, you wouldn’t practice kayaking down the rapids. You would paddle on a smooth lake to 
learn your strokes” (p. 2026). The main components of the Apprenticeship model are: 

• A three-unit class, inspired by Lesson Study (Lewis, Perry, and Hurd 2009), that takes 
place during the semester before the graduate student is placed as a course instructor. 

• A mentor instructor for whom the mentee acts as a teaching assistant in the class they will 
be teaching during the semester before the graduate student is placed as a course instructor. 

• Weekly course meetings once the graduate student is placed as a course instructor. 
• Observations and feedback once the graduate student is placed as a course instructor. 
 

Graduate students are required to participate in a number of teaching development 
activities, both prior to teaching and while they teach. All new GTAs must attend a one-day 
seminar led by the mathematics department, with some of this time spent doing practice teaching 
presentations. During the seminar faculty conduct workshops on topics including pedagogical 
basics, such as how to write well on the board, as well as more advanced pedagogical topics, 
such as how to implement cooperative learning. Additionally, all first-year GTAs are assigned a 
faculty mentor during the orientation session.  

As shown in Figure 4, the framework representation of the Apprenticeship Model gives a 
clear overview of the structure and encompassing environment of the novice instructor teaching 
preparation program.  

 

 
Fig. 4 Apprenticeship model 

 
The main structural components of the program are a lesson-study (Lewis, Perry, and 

Hurd 2009) inspired course and mentoring that occur before the GTA is placed as an instructor, 
and ongoing meetings and observations once the GTA is placed as an instructor. The shading 
provides a visual representation for the level of emphasis of the knowledge and the level of 
authenticity of the practices involved in the programs. Within this structure, pedagogical 
knowledge is emphasized more deeply than PCK or content knowledge, though PCK is 
emphasized through both the lesson-study inspired course and the mentoring. Content knowledge 
is potentially emphasized through the mentoring, although it is not a primary focus. During the 
lesson-study course, novice instructors participate in a number of pedagogies of practice to 
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varying degrees of authenticity. Through the lesson-study-like iterations of developing, 
presenting, and refining lessons, graduate students engage in approximations of the practice of 
teaching to increasing degrees of authenticity. The practice of teaching is decomposed into 
planning, presenting, and refining through the lesson-study course. Through both the lesson-
study course and the mentoring, graduate students have multiple opportunities for teaching to be 
represented, by other graduate students, their mentor instructor, and by reading and watching 
cases. This program is situated within a small department that prioritized graduate students’ 
long-term development as instructors and encourages innovative teaching but does not require a 
certain pedagogical approach. 

Coordinated Innovation Model. The Coordinated Innovation Model of novice 
instructor teaching preparation was enacted at a large university with around 25,000 
undergraduate students, where fall enrollment in Calculus I is around 2,000 and class sizes are 
around 30. Novice GTAs teach the majority of these sections. The remaining instructors are 
experienced GTAs, post-docs, and occasionally faculty. All courses are coordinated by a team of 
three permanent faculty, and all Calculus 1 courses are taught using an Inquiry Based Learning 
(IBL) inspired instructional method, which emphasizes student discovery, group work, and 
conceptual understanding (see http://www.inquirybasedlearning.org/ for more information.  

The primary guiding philosophy behind the Coordinated Innovation Model is the  
that Calculus I should be taught in an innovative and student-centered way, in small, 

highly coordinated classes. This innovation addresses the approach to the content, which is 
conceptually oriented and application driven, as well as the pedagogical approach, which 
includes group work and whole class discussions surrounding students’ mathematical activity 
(rather than the teacher’s). The coordination of these classes ensures that students have similar 
experiences. Further, this coordination helps to support the secondary guiding philosophy: that 
graduate students can be prepared and supported to successfully implement innovative 
instruction. This model is also motivated by a third, underlying philosophy: that graduate 
students can be, as Seymour (2005) termed it, “partners in innovation” and that graduate students 
who are effectively prepared to implement innovative instruction will likely carry these 
innovative practices into their future roles as undergraduate mathematics instructors. The main 
components of the Coordinated Innovation Model are:  

• An intensive four-day training seminar that takes place the week before GTAs are placed 
as course instructors.  

• Weekly course meetings once the GTA is placed as a course instructor. 
• Observations and feedback once the GTA is placed as a course instructor.  

 
The Coordinated Innovation model prepares and supports GTAs to teach coordinated 

sections of Calculus I with a conceptually oriented and student centered approach. The main 
component of this novice instructor teaching preparation program is a five-day seminar that takes 
place the week before the semester begins. It provides multiple opportunities for graduate 
students to present a prepared lesson and get feedback, and a series of presentations aimed to 
introduce graduate students to the department’s approach to calculus, to explain the rationale for 
the approach, and to share evidence of its success. Many of the materials are reused year after 
year, with small additions or changes based on facilitators’ experiences and feedback from the 
GTAs. All first-time GTAs participate in the seminar. After the third day of the seminar, the 
GTA supervisors make course assignments based on availability and graduate student 
participation in the seminar, specifically their performance in their practice lessons. Most 
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graduate students are placed as course instructors for Calculus I, while some are placed as 
instructors for precalculus, Calculus II, or are assigned to be tutors in the calculus tutoring center.  

Part of the support that graduate students receive once placed in the role of course 
instructor comes through the coordination of the course. This coordination encompasses common 
homework, quizzes, exams, and schedule. Because there are many aspects of teaching that are 
new to graduate students, having these aspects of the course coordinated by an expert instructor 
allows them to focus their energy on other aspects of instruction. This can be especially helpful 
when implementing more innovative instruction.  

Part of the coordination that is especially helpful for supporting novice instructors is 
weekly meetings. These meetings involve all instructors for Calculus I and the course 
Coordinator. These meetings serve as a place to address class management issues including use 
of group work or how to address specific content, and function not only as an opportunity to 
cover the logistics of the week, but also as a venue for discussions about student thinking and 
difficulties. 

An experienced graduate student or faculty member observes all GTAs (new and 
experienced) at least once each term. The observers give feedback to the graduate student. If 
issues were noted, these are communicated to the GTA, along with concrete ways to address 
these concerns. In these cases, additional observations are done. As shown in Figure 5, the 
framework representation of the Coordinated Innovation Model gives a clear overview of the 
structure and encompassing environment of the novice instructor teaching preparation program.  

 
Fig. 5 Apprenticeship model 

 
The main structural components of the program are an intensive four-day seminar that 

takes place the week before graduate students are places as course instructors, and ongoing 
meetings and observations once the GTA is placed as an instructor. The shading provides a 
visual representation for the level of emphasis of the knowledge and the level of involvement of 
the pedagogies of practices in the programs. Within this structure, pedagogical knowledge is 
emphasized more deeply than both PCK or content knowledge. The majority of the focus is on 
preparing graduate students to enact a specific pedagogical approach, and helping them 
understand why this approach is taken. During the summer seminar, there is some discussion 
surrounding student thinking related to difficult topics, and this may also occur through out the 
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year during meetings – especially during exam time. During the summer seminar, teaching is 
decomposed into lecture, asking questions, discussions, and group work. Novice GTAs discuss 
each aspect with experts, and then have opportunities to practice teaching these practice, 
decomposed into a practice lecture and a practice student-centered activity, where GTAs are 
expected to engage their students in group work and discussion. Both the practice lecture and the 
practice student-centered activity are fairly inauthentic as the audience members are fellow 
graduate students. Thus, these activities serve both as an opportunity for the GTAs to 
approximate the practices (in an inauthentic environment) as well as watch many of their peers 
represent the practices for them, while also benefitting from the feedback given to their peers. 
This program is situated within a large department that has a team dedicated to the calculus 
program and the preparation of the graduate students who enable the calculus program. In this 
program, innovative, student-centered instruction is prioritized, and is able to be enacted on a 
large scale due to the high levels of coordination within the calculus instruction.  
Comparison 

By representing the Apprenticeship Model and the Coordinated Innovation Model using 
the framework, a number of similarities and differences become salient. One major similarity 
between the two programs is that they rely on substantial resources from their surrounding 
environment (department and institution). The Apprenticeship Model relies on the department 
supporting graduate students for a semester before they are placed in the classroom, as well as on 
mentor instructors in the department. The Department Chair at the institution where this model 
was enacted is a proponent of supporting graduate students in their long term development as 
instructors, and believes that one semester of support is worth it to almost guarantee quality 
graduate instructors for their remaining semesters. The Coordinated Innovation Model relies on 
the institution to secure small classes for the large numbers of Calculus I students, and relies on 
the department to bring in large numbers of graduate students to support the abundance of 
Calculus I sections.  

While there are clear differences in the structure of the programs within both models, the 
visual representation of the framework highlights the more subtle differences in the emphases 
and goals of these programs. The Apprenticeship Model focuses on developing graduate students 
as instructors, not just in their current roles as GTAs but as future mathematics faculty. 
Influenced by this goal, the structure of this program emphasizes both pedagogical knowledge as 
well as pedagogical content knowledge, to support graduate students in beginning to think like 
instructors. Throughout the program, graduate students participate in an array of pedagogies of 
practice, and with increasing authenticity. This supports the graduate students in developing a 
professional identity related to being an instructor, and the ongoing meetings and observations 
are geared towards helping the graduate students internalize their role as instructor. In contrast, 
the Coordinated Innovation Model focuses on preparing their GTAs to successfully implement a 
specific type of Calculus I instruction, rather than supporting them as long-term instructors. 
Certainly, graduate students will benefit as instructors in the long-term by being well-prepared to 
teach Calculus I in a specific way, but this is not the focus of the preparation, rather a side 
benefit. Influenced by this goal, the structure of this program strongly emphasizes pedagogical 
knowledge related to teaching using the IBL approach. Throughout the program, this approach is 
decomposed and represented to novice instructors, and they get some practice in approximating 
this practice. This supports the graduate students to implement IBL instruction, and the ongoing 
meeting and observations are geared towards solving problems, answering questions, and 
improving instruction related to the IBL approach.  
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Both models are influenced and constrained by their surrounding environments, and thus 
it would not make sense to pick up the Coordinated Innovation Model and use it in place of the 
Apprenticeship Model or vice versa. However, if an institution were looking to develop a new 
novice instructor preparation program, and their goals of this preparation were in line with those 
related to the Apprenticeship Model, but the institutional characteristics were more in line with 
the institution that enacted the Coordinated Innovation Model, this institution could identify 
aspects of each model that may work within their constraints and help them achieve their goals.  
Conclusion 

While the framework representation does not give the rich detail of the program on its 
own, it provides information useful in comparing across models, and can be used to ask and 
answer questions regarding the evaluation or implementation of an individual model. The 
framework can also be used to evaluate a program or to help with the creation or improvement of 
a teaching preparation program. To aid in the evaluation of a program, a mathematics department 
may determine that their GTAs and post-doctoral fellows seem to know very little about how 
their students may think about mathematics, their difficulties, and how to explain problems so 
that they will better understand them. They could use this framework to describe their current 
program and identify that they are not, in fact, spending time during the teaching preparation 
discussing PCK. To aid in the development of a program, this framework can help direct 
attention to important components to consider, as well as provide a visual representation of the 
many important components of a novice instructor preparation program. In many mathematics 
departments, a more robust novice teacher preparation program is developed based on the 
initiative of one or two motivated individuals – the change agents. Often, these change agents are 
not necessarily mathematics education experts, or may have good ideas about what the novice 
instructors need at their institution but do not know how to go about setting up a new program. 
The framework introduced here provides an organized and systematic way to think about the 
components of a tertiary teaching preparation program. 

The primary intention of this framework is to characterize existing novice instructor 
teaching preparation programs situated within a mathematics department at a tertiary institution. 
Often such programs are mainly intended for graduate students works as teaching assistants or 
classroom instructors, but such programs may also be used to support post-doctoral fellows, 
instructors, visiting faculty, and junior faculty in their teaching. The framework draws on 
theoretical underpinnings from the K-12 education literature, some of which are specific to 
mathematics and some of which are not. Thus, a number of questions arise about the relevance of 
this framework in thinking about teaching preparation programs outside of tertiary mathematics 
departments.  

For instance, one may wonder about how the ideas presented here can help one think 
about a graduate student teaching assistant training program in a Philosophy Department. There 
are a number of ways that this framework can be leveraged in this context, however there are 
also a number of reasons why it is specific to mathematics. Mathematics is a unique content area 
in that it is taught throughout K-12 education, rather than primarily (or exclusively) at the tertiary 
level, such as with Philosophy. This results in students coming in with a wide range of previous 
experiences in mathematics, which adds complexity to the teaching of tertiary mathematics, 
especially in the first or second years of study (such as with Calculus). Mathematics graduate 
students, who are often tasked with teaching lower level courses rather than upper level tertiary 
courses, then must be prepared not just to teach the content, but also to identify student 
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(mis)understanding in the moment and bridge this understanding with the understanding needed 
in their class.  

Mathematics is also largely a service department, and first and second year tertiary 
mathematics courses are widely required service courses. Thus, mathematics graduate students 
are tasked with teaching a course that a large percentage of the students may not be particularly 
interested in taking. Further, first and second year mathematics courses have been identified as 
greatly contributing to students losing interest in pursuing STEM fields – thus the instructors of 
these course should also be aware of the role their teaching may play in students’ career goals. 
While the same may be true to some extant in introductory Philosophy courses, it is to a much 
lesser degree. Thus, there are aspects of this framework that may be applicable when thinking 
about the development of a novice instructor preparation program for non-mathematics 
departments, but there are also important contextual differences that must be considered.  

There are also aspects of this framework that may be applicable to the teaching 
preparation of a specific subset of K-12 teachers: alternatively places teachers in high-need 
schools. Teach for America is the most widely known of these programs, but others include New 
York City’s Teaching Fellows Program, Teach Kentucky, and the Mississippi Teacher Corps 
programs (Heilig and Jez 2010). Teach for America (TFA) is a non-profit organization that 
recruits recent graduates from elite colleges to teach in low-income schools for two years. TFA 
teachers often do not have an education background and thus do not participate in the extensive 
teaching preparation that teachers receive over four-years (or more) in undergraduate 
credentialing programs. Instead, TFA teachers participate in a five-week summer program 
between graduating from college and beginning their teaching assignments. This training often 
includes a brief stint of student teaching, short lessons on pedagogy, content, and classroom 
management. In addition to the summer training, TFA teachers must continue coursework in 
local colleges to pursue full teaching credentials while they teach. Research into the efficacy of 
TFA teachers is mixed, with some indicating that students taught by non-TFA teachers 
outperform students taught by TFA teachers on reading and mathematics (Darling-Hammond, 
Holtzman, Gatlin, and Heilig 2005), though there are large differences between first-year TFA 
teachers and second-year teachers (Boyd, Grossman, Lankford, Loeb, and Wyckoff 2006).  

TFA teachers, and other alternatively-certified teachers, share a number of commonalities 
with mathematics graduate student teaching assistants: they are often strong with respect to their 
content knowledge, receive relatively little pedagogical preparation compared to other teachers, 
are younger than most other teachers, are not as interested in a long-term career in teaching as 
other teachers, teach students who are mathematically weaker than they were as students, and are 
often thought of as not as effective as traditional teachers (Boyd, Grossman, Lankford, Loeb, and 
Wyckoff 2006; Heilig and Jez 2010). However, both GTAs and TFA teachers are cost effective 
as teachers and serve a need. Thus, thinking about how to best prepare TFA teachers within the 
confines of the public school system is similar to thinking about the preparation of GTAs within 
the confines of tertiary mathematics departments, and as such the framework presented here can 
contribute to both situations. 

In this paper, I have provided two examples of how this framework can be used to 
characterize existing programs. In addition to being used in this way, the framework can also be 
used to help develop a novice teaching preparation program and to evaluate an existing program. 
The framework can be used to help develop a new program by narrowing down specifics aspects 
of the desired program. The individuals tasked with creating a new novice instructor teaching 
preparation program should think about what types of knowledge their novice instructors need to 
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develop, and what types of activities they want novice teachers to engage in during the teaching 
preparation. This will result in their own shading of the types of knowledge and the types of 
pedagogies of practice desired in the teaching preparation program. This information can be used 
then to help organize the program develops and bring ideas together, or the program developers 
could compare what they are hoping to develop to characterizations of existing programs to “find 
a match.” The institutional and department culture and context will help the program developers 
determine how applicable and adaptable existing programs would be to their department.  

The framework can also aid in the evaluation of existing programs. Those familiar with 
the needs a novice instructors could identify types of knowledge their novice instructors need to 
develop, and what types of activities they believe the novice teachers need to engage in to 
develop this knowledge. This could be then contrasted with a characterization of their existing 
program using the framework, which would illuminate discrepancies between the needs of 
novice instructors and the existing program. If changes are then implemented, a post-
implementation of the program could then be characterized using the framework and compared 
to the original characterization to identify how the changes were in line with the needs of the 
novice instructors. 

Due to recent increased attention to tertiary mathematics instruction, coupled with 
continued reports of the role of poor teaching in introductory mathematics courses in the leaking 
STEM-Pipeline, many tertiary mathematics departments are focusing more attention on the 
teaching preparation of instructors who teach introductory courses. The framework presented 
here aims to aid these improvement efforts by providing organization to the abundance of 
considerations related to teaching preparation.  
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Student responses to instruction in rational trigonometry 

James D. Fanning 

University of Massachusetts Dartmouth 

In this paper I discuss an investigation on students’ responses to lessons in Wildberger’s (2005a) 
rational trigonometry. First I detail background information on students’ struggles with 
trigonometry and its roots in the history of trigonometry. After detailing what rational 
trigonometry is and what other mathematicians think of it I describe a pre-interview, 
intervention, post interview experiment. In this study two students go through clinical interviews 
pertaining to solving triangles before and after instruction in rational trigonometry. The findings 
of this study show potential benefits of students studying rational trigonometry but also highlight 
potential detriments to the material.  
 
Key words: [Rational Trigonometry, Undergraduate Mathematics, Interviews]  
 

Introduction 
Students struggle with trigonometry. This struggle is a contributing factor to students not 

pursuing studies in the STEM fields. Students struggle with trigonometry at many points during 
their mathematical studies. While many pedagogical changes to trigonometry instruction have 
been tried (Bressoud, 2010; Kendal & Stacey, 1996; Weber, 2005) little has been done looking at 
replacing or augmenting trigonometry instruction with a mathematical alternative.  

Rational trigonometry is a system for studying triangles using different units to measure 
length and the separation between two lines instead of using distance and angle (Barker, 2008; 
Campell 2007, Franklin, 2006; Henle, 2007; Wildberger, 2005a, 2005b). The use of a different 
unit necessitates different formulas than traditional trigonometry. Wildberger (2005a, 2005b) 
claims that rational trigonometry is simpler to learn, understand, and use than its traditional 
counterpart. He believes this based on the formulas for rational trigonometry lacking the sine, 
cosine, tangent or other transcendental functions. Little if any research has been conducted 
looking into educational benefits of rational trigonometry.  

To investigate his claims, I conducted task-based interviews before and after lessons in 
rational trigonometry to explore the following: How do mathematics majors approaches to 
solving problems pertaining to triangles change after studying rational trigonometry?  

Traditional Trigonometry 
Trigonometry as we know and teach it causes many difficulties for students. Previous 

research on students’ difficulties with trigonometry include studies using quantitative methods 
(Brown, 2005), teaching experiments (Moore, 2009, 2013; Weber, 2005, 2008), and theoretical 
pieces (Bressoud, 2010; Gilsdorf, Moore, 2012; Wildberger, 2005a, 2005b, 2007).  
What is Trigonometry?  

This is a question that is rarely answered explicitly in mathematics texts (Wildberger, 
2005a). One method to defining words is the etymological approach. “Tri” being the prefix for 
three, “gon” referring to a polygon (e.g. pentagon, hexagon etc.) and “metry” referring to 
measure. Putting these together yields trigonometry as the study of the measure of three sided 
polygons.  

A second way to define a word is to look at its use throughout history. The predecessor of 
the sine function was developed in the second century BCE (Bressoud, 2010). This was a 
relationship between central angles and chords of a circle (Bressoud, 2010; Gilsdorf, 2006). 

19th Annual Conference on Research in Undergraduate Mathematics Education 151

19th Annual Conference on Research in Undergraduate Mathematics Education 151



Using these techniques for triangles started in the 11th century CE and was formalized as sine 
and cosine in the 16th century (Bressoud, 2010). Introducing students to the trigonometric 
functions through the use of triangles began in the 19th century (Bressoud, 2010).  

A third approach to defining trigonometry is to see how the word is currently used in the 
literature. Looking at texts yields the following list of topics: triangles, trigonometric functions, 
trigonometric identities, trigonometric equations, trigonometric graphs, imaginary numbers, 
polar coordinates, De Moivre's theorem, McClaurin Series, integral substitutions, waves, Fourier 
Analysis and more (Hirsch, Fey, Hart, Schoen, & Watkins, 2009a, 2009b; Larson & Edwards 
2014, Liebeck, 2005). This would lead us to defining trigonometry as the study of anything 
pertaining to angles, triangles, or the functions sine, cosine, and tangent.  

Based on these three perspectives, trigonometry is the study of everything pertaining to 
the functions, which resulted from applying the study of circles, to the study of triangles. For this 
study I am going to focus on the mathematics of triangles.  

Student difficulties with trigonometry. Many difficulties pertaining to trigonometry are 
well documented (e.g., Akkoc, 2008; Blackett & Tall, 1991; Bressoud, 2010; Brown, 2005; 
Marchi, 2012; Moore, 2009, 2012, 2013; Weber, 2005, 2008, Wildberger, 2005b). Most of the 
documented difficulties can be sorted into two categories: 1) difficulties pertaining to the concept 
of angle (Akkoc, 2008; Bressoud, 2010; Moore, 2009, 2012, 2013; Wildberger, 2005b), and 2) 
difficulties pertaining to the sine, cosine, and tangent functions (Bressoud, 2010; Brown, 2005; 
Marchi, 2012; Moore, 2012; Weber, 2005, 2008; Wildberger, 2005b).  

Student difficulties with angles. Akkoc (2008) claims that student difficulties with angles 
stem from gaps in their teachers’ understanding of angles. Moore (2012) attributes this difficulty 
to the current common approaches to teaching trigonometry. Bressoud (2010) attributes 
difficulties with angles to incompatibilities between the ratio and the unit circle approaches to 
understanding trigonometry. These approaches are associated with degrees and radians 
respectively. Students are then taught that they are interchangeable yet certain problems are to be 
done in terms of one and other problems in terms of the other without any justification for the 
decisions made (Akkoc, 2008; Bressoud, 2010). Wildberger (2005b) takes these views to an 
extreme by claiming that the unit itself is overly complicated and that with the exception of a few 
values cannot be calculated without a background in calculus.  

Student difficulties with trigonometric functions. Moore (2012) attributes flawed 
understandings of the trigonometric functions on the volume of inconsistent definitions used for 
them. Brown (2005) found that students compartmentalize two different definitions for sine and 
cosine. These two definitions for sine and cosine are as the ordinate and abscissa respectively of 
points on the unit circle and as ratios of side lengths of a right triangle. Some authors have found 
that the meanings of the trigonometric functions are obscured by the use of the unit circle instead 
of the use of ratios of side lengths of right triangles (Kendal & Stacey, 1996; Markel, 1982). 
Markel (1982) argues that the unit circle includes angles above 180° which are unnecessary and 
does nothing to help students differentiate sine and cosine. Kendal (1996) found that the unit 
circle approach gave students more opportunities to make mistakes. However, Weber (2005) 
states that the unit circle was a more effective pedagogical tool than right triangles. He found that 
students were more likely to recognize sine and cosine as functions if taught using a unit circle 
approach. Students have problems viewing sine, cosine, and tangent as functions due to their 
non-algebraic nature and as such are unsure about how to perform algebraic operations with 
them (Weber, 2005). This could be due to the pedagogy straying away from beginning with the 
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study of circles and chords (Bressoud, 2010; Gilsdorf, 2006) or it may be due to the 
transcendental nature of the functions (Weber, 2005; Wildberger 2005b).  

Need for trigonometry. One debated topic is the importance of studying traditional 
trigonometry. While the importance of many mathematical topics is debated in the K-16 
curriculum the inclusion and exclusion of trigonometry can be seen in multiple scenarios. 
Multiple groups believe that high school students are not being taught enough trigonometry and 
that it should be the penultimate high school course instead of calculus (Bressoud, 2012; Markel, 
1982). While many college calculus courses expect a prior knowledge of trigonometry many 
colleges now offer variants of their calculus courses that attend to the same topics with the 
exception of omitting trigonometry-based problems.  

Rational Trigonometry 
Rational trigonometry is a reformulation of trigonometry based on replacing the units of 

distance and angle, with the units of quadrance and spread (Wildberger, 2005a, 2007). 
Quadrance is distance squared. The spread between lines !" and  !# is the quadrance of  $%  
divided by the quadrance of  &$  shown in Figure 1.  

 
Fig. 1 

Replacing the concept of angle with the concept of spread, results with the main formulas in 
trigonometry needing to be reformulated. The result is that the traditional trigonometry laws are 
replaced with the laws of rational trigonometry. They are analogous to the tradition trigonometric 
laws but the trigonometric functions are replaced with algebraic operations shown in Table 1 
(Barker, 2008; Franklin, 2006; Henle, 2007; Wildberger, 2005a).  

Table 1. Analogous Formulas in Tradition Trigonometry and Rational Trigonometry 
Traditional Rational 

'# = )# + +# − 2)+ cos % 1" + 1# − 12 # = 41"1# 1 − 52  
)

sin & =
+

sin $ =
'

sin % 
5"
1"

= 5#
1#

= 52
12

 

& + $ + % = 28 5" + 5# + 52 # = 2 5"# + 5## + 52# + 45"5#52 
 

Curricular Change  
For something new to be adopted by the mathematics community it needs one of two 

things. It needs to either be able to do old tasks better than older approaches or it must be able to 
do new things. In the next three subsections I will discuss arguments supporting Wildberger’s 
(2005a, 2005c, 2007) claim and opposing his claim that Rational Trigonometry is simpler than 
its traditional counterpart. 
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Arguments in favor of rational trigonometry. Arguments in favor of rational 
trigonometry being simpler than traditional trigonometry are that it gets rid of the difficulties 
caused by the angle and the trigonometric functions by replacing them. With Rational 
Trigonometry, sine, cosine and tangent are no longer needed to study triangles (Barker, 2008; 
Franklin, 2006; Henle, 2007; Wildberger, 2005a, 2005b). Wildberger (2005a, 2005b) claims that 
the most complex operation needed for trigonometry becomes the square root function and that a 
student who has learned the quadratic formula has the prerequisite skills needed to study rational 
trigonometry.  

Arguments against rational trigonometry. Three arguments have been made against 
rational trigonometry. One of these is that the units are less intuitive (Campell, 2007; Gilsdorf, 
2006). Adding consecutive angles of 30° and 30° yielding 60° is more intuitive than adding two 
consecutive spreads of 1/4 and 1/4 and getting 3/4 as your result. Another is that many triangle 
problems would have irrational solutions when solved with rational trigonometry and that the 
irrational solutions from rational trigonometry are no more useful than the transcendental 
solutions from traditional trigonometry (Gilsdorf, 2006). A third is the inflexibility of the 
educational system (Campbell, 2007). Educational sequencing rarely changes and it pushes 
students to study traditional trigonometry before higher mathematics.  

Questions from the arguments. The two sides of this argument bring up some 
interesting points in comparing the systems. Is the benefit of avoiding trigonometric functions 
worth a unit that is less visually intuitive? Should simpler be defined in how one uses the 
material or in how one learns the material? Is there any benefit to rational trigonometry when 
you have to study traditional trigonometry anyway? While all of these are interesting my 
research question only addresses aspects of the first two. This study shows a glimpse at students 
working with quadrance and spread instead of the trigonometric functions. It also lets us see how 
two students use both trigonometric systems to address the same problems.  
Mathematical Research  

As stated earlier there are two reasons for the mathematics community to adopt 
alternative mathematics. The second of these mentioned was that if it does something that has 
not been done before. There is a small yet existent body of literature in higher mathematics that 
makes use of rational trigonometry. Authors have applied the concepts of rational trigonometry 
to geometry (Alkhaldi, 2014; Le & Wildberger, 2013; Vinh, 2006, 2013; Wildberger, 2010), 
computer programming (Kosheleva, 2008), and robotics (Almeida, 2007).  
Factors Influencing Students Pursuing Mathematics  

One of the factors that determines students’ course taking patterns in college mathematics 
is their overall confidence with mathematics.  

Students who expressed confidence in their mathematical abilities are more likely to take 
additional mathematics courses (Fennema & Sherman, 1977; Else-Quest, Hyde & Linn, 2010, 
Oakes, 1990). Those courses tend to be at a higher-level than the ones taken by their less 
confident peers (Fennema & Sherman, 1977; Else-Quest et al., 2010; Laursen, Hassi, Kogan, 
Hunter, & Weston, 2011; Stodolsky, Salk, & Glaessner, 1991). Typically, a loss in confidence is 
caused by performing lower than one’s expectations (Ahmed, van der Werf, Kuyper & Minnaert, 
2013). Improving students’ performance in trigonometry would help their confidence and 
positively influence their future studies.  
Students’ Problem Solving Strategies.  

Students tend to use the strategies and techniques they are most recently familiar with 
when approaching problems (Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Owen & Sweller, 
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1985). This explains why students might solve a quadratic by formula instead of factoring or use 
the law of aines when solving a right triangle. This phenomenon is stronger in weaker students 
who are less likely to stray from the patterns established in examples (Chi et al., 1989). Situation 
and context also influence how students attempt to solve problems (Moore, 2012). A student is 
most likely going to use the formulas they think an instructor or exam wants them to use.  

As it pertains to trigonometric problems the strategies are the same in both rational and 
traditional trigonometry but the techniques are different. For example, consider a problem where 
a student is given the measurements for two sides of a triangle and the vertex (Note: In this paper 
I use vertex to refer to the corner points of a triangle to avoid referring to angle as both an object 
and a unit of measurement) between them and asked for the third side. A strategy would be to 
use a formula that relates those four quantities. In traditional trigonometry the technique would 
be to use '# = )# + +# − 2)+ cos % while in rational trigonometry the technique would be to use 
1" + 1# − 12 # = 41"1# 1 − 52 . Based on the previous paragraph I expected their techniques to 

change after studying rational trigonometry. Nothing I found in the literature leads me to believe 
their strategies will or will not change. 

Methodology 
Decisions need to be made when designing a study. These decisions impact the result of a 

study. Giving an assessment before an intervention may influence the intervention. Omitting 
such an assessment limits before and after comparisons in data analysis. Using students who 
struggle in mathematics increases the chance of benefit but also increases the potential 
unforeseen issues in intervention design. Using students who do not struggle in mathematics may 
decrease the potential for benefit but also decreases the likelihood of unforeseen issues in design. 
Some decisions are not made because of something being definitively better than an alternative 
but are made because they fit the study that researcher has decided to conduct. 

The comparative nature of this study influences many design decisions. Only distances 
are given and asked for in these tasks. To give or ask for spread or angle would inherently design 
the questions towards the use of a particular approach. A second outcome of this is the triangles 
presented in both interviews are geometrically similar. Without similarity is it possible that one 
interview task was inherently simpler due to the triangles used. A third result is the tasks asking 
for an altitude, median, and vertex bisector. These three concepts have been studied since 
antiquity (Heath, 1956) and as such are not dependent upon rational trigonometry for analysis.  
Research Design  
The inquiry approach for this study is case study design. Case study is the study of a case across 
a timespan (Hatch, 2002; Yin 2009). Case studies can be exploratory or explanatory in nature 
(Yin, 2009). For this study the cases are the two participants and the timespan is five days (the 
pre-interview, three days of lessons, and the post-interview). Combining the need for a before 
and after and the exploratory affordances of task-based interviews (Confrey, 1981; Maher & 
Sigley, 2014; Schoenfeld, 2002) leads to the design of pre task based interview, lessons, post 
task based interview. The first interview is being used to look at strategies and techniques used 
by participants without a background in rational trigonometry. The lessons are used to create a 
background in rational trigonometry. The post interview is being used to see how a participant’s 
behavior and/or reasoning when approaching the same task is altered after studying rational 
trigonometry. Three video lessons on rational trigonometry were given to the participants. I 
designed these lessons to give familiarity with the units and formulas for rational trigonometry. 
The first lesson focused on the units of quadrance and spread. Quadrance was described as 
distance squared and spread was first defined geometrically. After that I detailed arithmetical 
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properties of spread such as the range of spread (0 to 1) and the spread of parallel lines (0) 
perpendicular lines (1) and showed examples of how to calculate the spread for lines given in 
both slope-intercept and standard forms. Spread bisection was also shown.  The second lesson 
focused on the formulas  1" + 1# − 12 # = 41"1# 1 − 52   (the cross law) and  9:;: =

9<
;<
= 9=

;=
 

(the spread law). Examples were shown of using the cross law with three given quadrances to get 
one spread and then use the spread law to find the remaining spreads. The last lesson focused on 
the triple spread law. The third lesson focused on 5" + 5# + 52 # = 2 5"# + 5## + 52# +
45"5#52 (the triple spread law). The lesson was an example of using the triple spread formula to 
find the third spread in a triangle if only two spreads were known. Each lesson was accompanied 
with a worksheet that acted as practice for the participant, additional data for myself, and 
verification that they watched the videos.  
Participants  

Due to the comparative nature of this study, participants with a strong background in 
mathematics in general, trigonometry in particular, and with no background in rational 
trigonometry were recruited. To ensure this, mathematics students with a 4.0 in their first year 
mathematics courses including Euclidian trigonometry were chosen.  
Data Collection  

Data was collected through a pre-interview, three worksheets and a post-interview.  
Interviews. Task based interviews were used to gather information about the participants’ 
approaches to solving problems pertaining to triangles. The two interviews were audio recorded 
and occurred four days apart. Between the pre and post interviews the participants watched all 
three lessons and completed all three worksheets. Participants were supplied with pencil, paper, 
and a selection of traditional trigonometric formulas. During the second interview they were also 
given the rational trigonometry formulas from the lessons. From the interviews both their spoken 
word and written work were collected. The three tasks chosen for the interviews were chosen to 
have no inherent bias towards traditional or rational trigonometry. The first task was to find the 
length of an altitude of a triangle. This task is commonly shown in the high school curriculum 
and is often done with and without the use of the sine, cosine, and tangent functions (Keenan & 
Gantert, 1989; Hirsch, et al., 2009b). The second task was to find the length of a median of a 
triangle. The last task was to find the length of a vertex bisector. The triangle from the pre-
interview is shown in Figure 2.  

 
Fig. 2 

Worksheets. The primary purpose of the worksheets was to ensure that the participants 
watched the videos. The work was analyzed with respect to the findings from the interviews for 
triangulation purposes. All three worksheets were collected at the second interview. 
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Data Analysis  
I began my data analysis by transcribing the interviews. At this point I was already 

making decisions about what data had the potential to show interesting findings. After this my 
next step was coding the data. That data was separated and regrouped for organizational 
purposes (Creswell, 2014; Maxwell, 2013; Saldana, 2009; Seidman, 2012). My coding efforts 
were focused on the written work and verbal statements given during the interviews. Once this 
was done I focused on the findings that were most abundant and different between both 
interviews. The strongest examples are highlighted here.  

Findings 
After my analysis three themes emerged. These themes were strategies, numerical 

properties of triangles, and confidence. The strategies used involved the Pythagorean theorem 
and the relationships represented by the laws of sine and cosine and the spread and cross laws. 
Numerical properties were that distances must be positive, the triangle inequality, and that the 
longest sides of a triangle are across from the largest angles / spreads. 
Maureen  

Maureen is a mathematics major with the goal of becoming a high school mathematics 
teacher. Her undergraduate course on trigonometry ended four months prior to the study.  

Strategies. Maureen started the pre-interview using the Pythagorean theorem in an 
attempt to find the value of an altitude. After multiple iterations gave her more unknowns than 
equations or values that did not make sense to her she abandoned this strategy. Her next attempt 
was to use the law of cosines to find one of the angles. Her goal was to use that angle in the law 
of sines to find the altitude. Once she found cos > = "2

"? she abandoned that approach as well. 
During the second interview Maureen used the cross and spread laws in the manner she intended 
to use the laws of cosines and sines in the first interview. In this attempt she successfully used 
both formulas. Though her use of the spread law gave her the quadrance of the altitude she did 
not turn that value into a length as the question was asking for. When questioned she said that the 
answer she gave was the length of the altitude.  

Numerical properties. During the pre-interview Maureen made ample use of numerical 
properties of triangles. In particular, she made use of the fact that side lengths cannot be negative 
and she made use of the triangle inequality. She used these to check her computational results. 
The triangle inequality was also used to determine ranges for the answers to the interview tasks. 
Since she did not compute an angle there was no opportunity to observe if she would have used 
that the longest side is opposite the largest angle. In the post interview there was no use of the 
triangle inequality. This could have been used to alert her to not having the right answer in the 
first task. She did however use the property that the largest spread has to be across from the 
largest side of a triangle.  

Confidence. Maureen’s confidence in approaching these tasks appeared to increase after 
the lessons in rational trigonometry. In the first interview she spent a lot of time staring at the 
tasks without performing any calculations. After a particularly long silence she said:  

As much as I hate to admit that I can not remember how to solve for altitude, I'm just 
going to spend 20 minutes staring at this, because I'm not liking what I'm getting. I feel 
very bad saying that and admitting that, but it's not gonna happen.  

In the second interview the gaps in work and expressions of frustration lessened. After the 
interview she gave the following two statements: “That was really really cool the whole 
quadrance and [spread]” and “if I had more time to practice I think I could have gotten all 3.” 
These statements point towards a higher confidence level using rational trigonometry.  
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Tom  
Tom is a mathematics major aiming towards graduate studies in applied mathematics. He 

took his trigonometry course approximately three years before the study.  
Strategies. In the first interview Tom’s strategy was to solve for anything he could find 

in hopes that he would come up with pieces he needed to solve the tasks. When he found cos > =
"2
"? he used that value in another law of cosines equation in order to solve one of the tasks. In the 
second interview his strategies were nearly identical. The biggest change between the two 
interviews was he was using the rational trigonometry formulas instead of the traditional 
trigonometry formulas.  

Numerical relationships. There was no evidence in either interview that Tom used the 
numerical properties listed above. He submitted answers to all three tasks and he could have but 
did not find two of them to be impossible due to the triangle inequality. In both interviews he 
was confident in his strategies (which would have worked) and his computations (which 
contained errors).  

Confidence. Tom showed no notable change in confidence.  
Discussion 

If nothing else was accomplished this paper serves as another data point for the belief that 
some difficulties in trigonometry stem from difficulties related to the teaching, learning and use 
of functions. This aligns with the previous findings of many authors and studies (Bressoud, 2010; 
Brown, 2005; Marchi, 2012; Moore, 2012; Weber, 2005, 2008; Wildberger, 2005b). 

Based on the findings I believe it is safe to say there may be some benefits to students 
studying rational trigonometry. The strongest evidence for benefits come from Maureen’s case. 
Maureen falls into the category of students who are weaker with their algebraic manipulation of 
functions, which hindered her mastery of trigonometry (Weber, 2005). She seemed to increase in 
confidence after studying rational trigonometry and appeared more capable of solving problems 
when using the rational trigonometry formulas. Tom showed a strong mastery of the algebra of 
functions and little change in performance using the rational formulas. This may point to 
potential benefits being more likely for students with a weaker skill set pertaining to functions. 
Potential weaknesses also need to be mentioned. Maureen did not apply the numerical properties 
that she showed earlier evidence of using. She also at one point equated quadrance and distance. 
Quadrance being less intuitive than distance (Campbell, 2007; Gilsdorf, 2006) is likely a 
contributing factor of this.  

I would also like to take this moment to point out a missed opportunity in this study. 
Since I did not notice it until data analysis I did not ask Maureen why she did not use the triangle 
inequality. Did she just not think of it? Did she not know how to work with it while using 
rational trigonometry? Did she know how to work with it but decide it wasn’t worth the effort? 
Did she not feel the need for it? The reasoning for this change may be useful for later lesson 
design or research. 

Future Research 
There are many possibilities for future research. While it would be impossible to list them 

all, the following are the ones that stand out between my experiences with this study and with the 
mathematics. 
Similar Studies 

As stated earlier there were decisions with regard to this study that had both pros and 
cons. Redesigning this study as a longitudinal study or with a larger participant count may allow 
for more insights. Omitting the pre-interview, inserting lessons on traditional trigonometry 
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before the pre-interview, or picking students with different backgrounds and experiences may 
also offer different results.  
The Esperanto Effect 

In the early twentieth century linguists were considering the idea of teaching Esperanto as 
a second language before teaching a third language to students. The idea being that a less 
complicated yet similar language would ease the transition from one language to the next. Eaton 
(1927) brought up multiple studies that supported this idea. 

A similar principle could be studied in regards to traditional and rational trigonometry. 
Students could develop their problem solving strategies with regards to triangles without the 
burden of the trigonometric functions. Then later on be introduced to traditional trigonometry to 
see how they respond. 
Other Geometric Structures 

Lastly students and rational trigonometry can be studied in non-Cartesian / non-Euclidian 
contexts. Student difficulties in studying geometries outside of the Cartesian plane are not 
unheard of. Wildberger has published mathematical works applying rational trigonometry to both 
polar coordinates (Wildberger, 2005a) and hyperbolic geometry (Wildberger, 2009). 

Conclusion 
Will rational trigonometry ever replace traditional trigonometry in the mathematics 

curriculum? Most likely not. Very large portions of most curriculums and branches of 
mathematics are dependent on traditional trigonometry. However it does have potential as 
supplemental material. To quote Almeida (2007) and his work on robotics “The main role of 
R[ational] T[rigonometry] in this work was that it forced a different approach than the standard, 
due to difficulties that had to be resolved, that ended up forcing the paving of a new path of 
study.” (p. 44). Using an alternative system gave him the opportunity to look at a problem 
differently. The potential gains from this type of opportunity merit further investigation.  
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Using Student Reasoning to Inform Assessment Development in Linear Algebra 
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The primary goal of this study was to design and validate an assessment of student reasoning in 
undergraduate linear algebra. We worked toward this goal by conducting semi-structured 
clinical interviews with 8 undergraduate students who were currently enrolled or had previously 
taken linear algebra. We identified the variety of ways students reasoned about the items in 
order to determine the extent to which the assessment measured or failed to measure students’ 
reasoning about the intended topics. Students were interviewed using a think-aloud protocol 
while they completed the assessment, and interview data was analyzed by using the theoretical 
framing of concept image and concept definition (Tall & Vinner, 1981). In this paper, we 
describe how students’ reasoning on items relating to span and linear independence informed 
adjustments to our assessment.  
 
Key words: assessment, linear algebra, student reasoning 
 

Students from a variety of science, technology, engineering, and mathematics (STEM) 
disciplines are required to take linear algebra as part of their undergraduate mathematics 
coursework. Students typically struggle with the theoretical nature of linear algebra as it is often 
their first time grappling with abstract mathematical concepts. Carlson (1993) argued that 
students’ mathematical background up to this point is often primarily computational in nature; 
this often creates a barrier for students to overcome when they reach linear algebra. Linear 
algebra is a pivotal course that includes the mathematical underpinnings of different STEM 
fields, but it is filled with challenges for students. According to Wawro (2011), “The content of 
linear algebra, however, can be highly abstract and formal, in stark contrast to students’ previous 
computationally-oriented coursework. This shift in the nature of the mathematical content being 
taught can be rather difficult for students to handle smoothly” (p. 2). The abstract concepts of 
linear algebra are often taught in such a way that students do not find any connections between 
new linear algebra topics and their previous knowledge of computational mathematics (Carlson 
1993).  

Researchers have worked to address this issue by developing inquiry-oriented 
instructional materials that help instructors to bridge students’ informal and intuitive ideas with 
more formal and conventional understandings (Wawro, Rasmussen, Zandieh, & Larson, 2013). 
Our work aims to move towards documenting the effectiveness of these inquiry-oriented 
instructional materials in supporting students’ conceptual understanding of central topics in an 
introductory undergraduate linear algebra course.  In this study we have designed an assessment 
that aligns with four focal topics typically covered in an introductory linear algebra course: (1) 
span and linear independence, (2) systems of linear equations, (3) linear transformations, and (4) 
eigenvalues and eigenvectors.  We aimed to create two questions for each of these four topics in 
order to develop an 8-item written assessment that could be completed by students in less than 
one hour. Based on findings from similar studies, we anticipate the results of the assessment to 
show greater conceptual learning gains from students who learned in inquiry-oriented classrooms 
along with similar procedural learning gains (Rasmussen & Kwon, 2007).  
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The central goal of this work is to develop a valid assessment to measure students’ 
conceptual understanding of linear algebra. In order to develop an assessment that is sensitive to 
students’ reasoning in linear algebra, we found it necessary to delve into the various ways that 
students reasoned about the items on our assessment.  In particular we wanted to consider the 
kinds of reasoning elicited by our items, both to determine whether students interpreted items in 
ways that we intended and, importantly, to identify aspects of students reasoning to which we 
need our assessment to be sensitive. Our process of item refinement was informed by the kinds 
of student reasoning we observed during the interviews. With these ideas in mind, our work was 
guided by the following research questions:   

� What is the nature of student reasoning elicited by the items on our assessment?   
� To what extent do the items on our assessment accurately measure student reasoning? 
 

Literature 
 In this section, we lay out our literature review in two parts. First, we report on the 
process of assessment development for other undergraduate STEM courses and how others have 
established validity and reliability. Then, we discuss research on student thinking and common 
difficulties faced in learning linear algebra concepts, particularly with regard to our four 
previously mentioned focal topic areas.  Examining the research on student thinking in linear 
algebra is important for contextualizing our work examining student reasoning. 
Literature on Assessment Development 

Assessments can serve a number of purposes – they can be designed to inform teachers’ 
ongoing instructional decisions (formative assessments), to evaluate students’ learning 
(summative assessments), to establish the effectiveness of an instructional approach or compare 
multiple instructional approaches, or to inform policy decisions (among other reasons).  Our 
assessment is intended to measure students’ conceptual understanding related to the four 
previously mentioned focal topic areas in introductory undergraduate linear algebra.   

The processes used to develop assessments that measure conceptual understanding in 
multiple STEM topic areas have been well-documented (e.g. Sadaghiani, Miller, Pollock, & 
Rehn, 2013; Carlson, Oehrtman, & Engelke, 2010; Barniol and Zavala, 2014; Melhuish, 2015).  
For example, Carlson et al.’s (2010) approach to developing an assessment for Pre-Calculus was 
by first identifying foundational content areas within the course, creating open-ended questions 
to comprehensively cover those content areas, interviewing students to determine how students 
approached each question, refining the questions and converting them to multiple-choice format 
based on interview data, and finally administering the instrument to multiple samples. In 
contrast, Barniol and Zavala (2014) followed a simpler process in which they collected their 
questions from existing instruments and had the content validated by experts.  

An important aspect of assessment development relates to the ways in which researchers 
validate these assessments. Examining how students reason about particular items and using this 
to inform the work of creating appropriate distractor items for multiple choice questions was an 
important phase in the process for several researchers (e.g. Hestenes, Wells, & Swackhamer, 
1992; Carlson, Oehrtman, & Engelke, 2010; Wilcox & Pollock, 2013; Sadaghiani, Miller, 
Pollock, & Rehn, 2013). Their interview component helped establish construct validity by giving 
researchers a glimpse into students’ interpretations of the questions and the kinds of reasoning 
that the items elicited. Appropriate probing and occasional direction from the interviewer also 
provided insight on student reactions to potential distractor items (Sadaghiani, et al., 2013).   
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Literature on Student Thinking in Linear Algebra 
Broadly, linear algebra can be considered to encompass theory about systems of linear 

equations and their solution sets as well as theory about vector spaces and mappings between 
them (Andrews-Larson, 2015). Difficulty in the teaching and learning of linear algebra during 
students’ first year of undergraduate study is well documented (Hillel, 2000; Sierpinski, 2000; 
Stewart & Thomas, 2009). The literature reveals that students also struggle with formal 
mathematical language in linear algebra courses (Stewart & Thomas, 2010; Sierpinska, 2000; 
Carlson, 1993).  Additionally, the need to learn and coordinate modes of the description and 
representation of abstract concepts of linear algebra can function as a source of difficulty for 
students in their early learning (e.g. Carlson, 1993; Hillel, 2000). For example, Larson & 
Zandieh (2013) developed a framework that highlights geometric and algebraic interpretations of 
three views of the matrix equation Ax=b that students need to develop: a linear combinations 
view, a system of equations view, and a transformation view.  While these three views are 
organized around the mathematics that students need to learn, the framework highlights the ways 
in which the literal symbols A, x, and b are coordinated in each view – providing a useful lens 
for identifying the (sometimes idiosyncratic) ways in which students often blend these views.  
Flexible, coordinated use of these three views lies at the core of many ideas central to an 
introductory linear algebra class. For instance, understanding a matrix times a vector as a linear 
combination of the column vectors of the matrix is importantly related to ideas about span and 
linear independence (properties of sets of vectors), and understanding a matrix times a vector as 
a representation of a linear transformation is important for understanding ideas about mapping 
between vector spaces. 

Span and linear independence: The literature has shown that students generally rely on 
procedural methods for approaching questions about linear dependence and independence, and 
often do not leverage geometric intuition (Bogomolny, 2007; Aydin, 2014). Furthermore, 
students have been found to perform better on questions about linear independence that require 
algebraic interpretation than on questions that require geometric interpretation, and that 
performance on both kinds of items was largely unrelated to students’ performance on questions 
that require understanding of the formal definition of linear independence (Ertekin, Erhan, Solak, 
& Yazici, 2010). Stewart & Thomas (2010) laid a similar argument with regard to students’ 
understanding of span. To ameliorate the problem of this disconnect between algebraic and 
geometric interpretations and their connection to formal definitions, Wawro et. al. (2012) have 
developed instructional materials intended to support students in developing well-connected 
understandings of span and linear independence.  

Systems of linear equations: There is extensive literature on student thinking in K-12 
settings documenting the importance of students’ interpretations of the equals sign as they learn 
to solve single equations in one variable (e.g. Star & Rittle-Johnson, 2007; Li, Ding, Capraro & 
Capraro 2008).  In the previously mentioned set of views of the matrix equation Ax=b, Larson & 
Zandieh (2013) highlight the flexible set of interpretations for the vector x that students need to 
develop and ways in which students coordinate these views. Zandieh and Andrews-Larson 
(2015) have subsequently expanded this framework to consider ways in which the augmented 
matrix [A|b] relates to this set of interpretations, and commented on the mischief created by x’s 
disappearing act. Students often struggle to interpret row-reduced forms of this augmented 
matrix to make sense of the solution sets of systems in which the number of equations differs 
from the number of unknowns, or in which the solution is unique; whereas in R2, students are 
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better able to leverage their geometric intuition to interpret the solution than in higher 
dimensional settings (Zandieh & Andrews-Larson, 2015). 

Linear transformations: Research on students’ thinking about linear transformations 
has identified a variety of metaphors students draw on to reason about how their understandings 
of functions might relate to linear transformations: input/output correspondence, morphing or 
mapping of vectors, and thinking in terms of a function ‘machine’ (Zandieh, Ellis, & Rasmussen, 
2012). Bagley, Rasmussen, and Zandieh (2015) identified two productive ways of student 
reasoning about matrix invertibility: thinking about an inverse as a transformation that undoes 
another, and conceiving of an inverse as a transformation that, when composed with another, acts 
as the “do nothing” function – the latter being more closely consistent with typical definitions of 
invertibility.  Others have considered students’ thinking about invertibility as it relates to the set 
of equivalent statements included in the invertible matrix theorem (e.g. Wawro, 2015; Selinski, 
Rasmussen, Wawro, and Zandieh, 2014).  
 Eigenvectors and eigenvalues: Sinclair & Tabahgi (2010) have noted the highly 
geometric ways in which mathematicians talk and gesture as they reason about ideas related to 
eigenvectors and eigenvalues. In contrast, students often primarily draw on algebraic ways of 
reasoning about these ideas, and can struggle to make sense of the reasons behind symbolic shifts 
such as shifting from 𝐴𝒙 = 𝜆𝒙 to (𝐴 −  𝜆𝐼)𝒙 = 0 (Thomas & Stewart, 2011).  It can be 
challenging for students to coordinate algebraic interpretations with geometric ones (e.g. Stewart 
& Thomas, 2010; Larson & Zandieh, 2013), and students’ ideas about eigenvectors are often not 
well connected to other conceptual aspects of linear algebra (Lapp, Nyman, & Berry, 2010).   In 
light of the value of these findings, researchers have developed interventions to support students 
in developing geometrically motivated ways of reasoning about eigenvectors and eigenvalues 
(Tabaghi & Sinclair, 2013; Zandieh, Wawro, & Rasmussen, 2016).  

 
Theoretical Framing 

A theoretical construct that has been useful in many areas of mathematics education for 
making sense of students’ reasoning is the notion of concept image and concept definition (Tall 
& Vinner, 1981). According to Tall and Vinner (1981), concept image is the “total cognitive 
structure that is associated with the concepts, which include all the mental pictures and 
associated properties and process” (p. 152). For a given concept, every individual creates an 
image or structure in their mind that helps the individual understand and remember that concept. 
This concept image may or may not be similar to other individuals’ images, and these images 
can be quite different from the formal definition of the concept. Tall and Vinner (1981) use the 
term “formal concept definition” to refer to the definition that is largely accepted by the 
mathematical community; they argue that this can be different from an individual’s ‘personal 
concept definition,’ which may change over the time and with new knowledge as is the case with 
one’s concept image.   

The notion of concept image and concept definition has been used as a lens for 
examining student reasoning at the undergraduate level in a number of content areas, including 
linear algebra (e.g. Wawro et. al., 2011; Britton & Henderson, 2009).  We draw on the notion of 
concept image and concept definition as an analytic tool for interpreting students’ responses to 
assessment items.  For our analysis, we look for alignment between a student’s elicited concept 
image and the formal concept definition as evidence of understanding.  
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Data  
In this study, we conducted semi-structured clinical interviews (Bernard, 1988) with eight 

university undergraduate students: six males and two females. One of the participants was taking 
linear algebra at the time of the interview, and the other participants had taken linear algebra 
within the last two years. The participants’ majors covered fields that included mathematics, 
statistics, education and economics. At the time of the interview, participants had completed an 
average of four math classes after taking linear algebra. 

Each participant was asked to work through eleven assessment questions using a think-
aloud interview protocol in which the interviewer asked the student to read each item aloud and 
think aloud as he or she came to an answer.  The interviewer then asked follow-up questions as 
needed to understand the student’s reasoning in arriving at their answer. Each interview lasted 
for approximately one hour and was audio and video recorded. 

We developed the assessment items used in this study by consulting past assessments 
prepared by five different mathematics faculty members at different institutions. After 
identifying a set of questions related to each of our four focal topics, three mathematics faculty 
members from three different institutions were consulted to identify which items these experts 
felt focused on key ideas and had the potential to assess students’ conceptual understanding of 
these ideas. We modified our assessment according to experts’ initial feedback, and the 
assessment items to be used in interviews were selected after receiving a second round of 
feedback from these experts.   

In this paper, we provide an in-depth analysis of student reasoning on the first two items 
on our assessment.  Figures 1 and 2 below show the wording of these two items as they appeared 
in the interview. 

 

 
Figure 1: Assessment item focused on span 

 
The items shown in Figures 1 and 2 focus on span and linear independence, which also 

entail conceptual connections to linear combinations and dimensionality. These concepts, along 
with their abstraction and notation, are often new ideas for students taking their first linear 
algebra course, and their position near the beginning of the course can also make these concepts 
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the first hurdles to complete. They serve as core concepts in linear algebra as they provide 
foundation for thinking about solution sets to systems of linear equations as well as vector spaces 
and the mappings between them. In addition, the interview data was particularly rich for these 
items, possibly because they appeared at the beginning of the interview when students and 
interviewers were at their “freshest.”  For these reasons, as well as for the sake of time and space, 
we will only provide a closer look at students’ reasoning on these two items.   

 

 
Figure 2: Assessment item focused on linear dependence/independence 

 
Methods of Analysis 

 In order to identify the kinds of student reasoning elicited by our assessment items and 
the extent to which these accurately assessed student understanding, we conducted our analysis 
in four phases: (I) characterizing individual students’ concept images, (II) identifying themes 
across students, (III) identifying alignment between responses and reasoning.  Phases I and II 
allowed us to identify the kinds of student thinking elicited by our assessment items.  Phase III 
offered insight to the extent to which the items accurately assessed students understanding.  
Specifically, we looked to see whether the assessment items accurately documented alignment 
between students’ concept images and the formal concept definition.  The phases of analysis are 
described in greater detail below.  
Phases 

Phase I: Characterizing individual students’ concept images: We developed a short 
description of what our data revealed about each student’s concept image by first watching the 
video and, in some cases, transcribing each student’s interview response to the question.  We 
then developed a list of themes that characterized how he/she thought about the concept and 
collected quotes that exemplified characteristics of the student’s thinking. 

Phase II: Identifying themes across students in how students reason: We grouped 
students according to the nature of their concept images. This helped us document themes in how 
students reason about the items. These groupings of students’ concept images were organized in 
a table to make it easier to identify trends in thinking.  

Phase III: Documenting written responses: We identified what students stated their 
final answer would be (and other answers they offered if they changed their mind) as well as the 
justification they offered for their answer(s).  This was accomplished by drawing on students’ 
written work as well as using audio/video data as needed in cases when the response was given 
orally but not written on the student pages. Each response was then color-coded to indicate 
whether a correct response corresponded to correct or incorrect reasoning and whether an 
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incorrect response corresponded to correct or incorrect reasoning.  This was used to assess the 
extent to which the item accurately measured what we intended.  

 
Findings 

In this section, we will describe in detail trends observed in students’ reasoning on items 
1 and 2. We then offer an overview of how we coded alignment between correctness of 
responses and rationales offered for responses in order to synthesize the extent to which items 
accurately assessed students’ understanding.  In the discussion section, we address the ways in 
which our analysis informed revisions to the assessment. 
Students’ Reasoning about Item 1: Span 

After interviewing students and transcribing their interviews we analyzed the first 
assessment item to document students’ concept image of span.  In part a of item 1, which asked 
students which best described the span of the given set of two (linearly independent) vectors 
in ℝ3, four of eight students correctly chose “a plane,” and the other four students were split with 
one each choosing a point, two lines, two planes, and a three-dimensional space.  In examining 
students’ justifications for these choices, we identified four themes in students’ responses that 
offer insight into those aspects of students’ concept images for span that are elicited by this item: 
(i) interpreted individual elements with notable effort, (ii) attempted to resolve the number of 
entries with the number of vectors (related to issue of dimensionality), (iii) reasoned about 
relationships between elements (related to linear dependence/independence), and (iv) interpreted 
procedurally.  

Three students’ responses were coded as entailing effortful interpretation of 
elements.  For example, Barry reasoned “x is at 1, y is at 2, and then z is at 3, so that I would say 
that’s a point.”  Kody argued “I’m pretty sure each of these represents a plane… could be two 
lines but I don’t think it is because there’s three coordinates.”  While these students selected 
different choices for what best represented the span of the set given in the question, both quotes 
highlight the students’ focus on interpreting individual elements of the set. 

Three students spent time working to resolve the number of entries in each vector (3 
entries) and the number of vectors (2 vectors) as they came to their answer.  Brenda, who 
ultimately came to incorrectly conclude the answer was a 3-dimensional space, explained her 
reasoning, “This [writes 𝑅2] was x and y, and 𝑅3 was x, y, and z.  This might be 3-dimensional 
space, but there are two of them [vectors].”  Carissa, who ultimately resolved the issue to 
correctly conclude the answer was a plane, said “So since there are two it will span just in the 
second dimension and in the second dimension would be a plane so then it might actually just be 
a plane.” 

Four students addressed relationships between elements of the set as they explained their 
reasoning on this question, in particular focusing on linear independence and 
dimension.  Notably, all four of these students answered the question correctly.  Carissa 
elaborated her earlier comment with the remark, “I think I need three linearly independent 
vectors to span a third dimension.  So I think in this case it doesn’t span a third 
dimension.”  Another student Lee argued “If they were linearly independent then one is either 
basically a scalar multiple of the other, so basically the same vector just different magnitude.”  

One student, Kenneth, described a procedural approach to answering the question. He put 
the two given vectors into a matrix, row reduced that matrix, and (incorrectly) concluded that the 
vectors in the row reduced matrix were in the span, and that the row reduced matrix would 
“span” the given set of vectors V.  In explaining his choice that the span was best described as 
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two lines, Kenneth explained, “I don’t remember the graph, I don’t think we went over the 
graphing.  How to convert like the matrices and the variables to like graphs and stuff.  I guess 
since I have two variables it would get two lines?”  The comment about two variables is 
consistent with his work row reducing a matrix with two columns, and suggests he is drawing on 
a systems of equations interpretation to respond to the question – but he is unable to effectively 
use this interpretation to reason about the span of the two vectors given.  It is also noteworthy 
that, while Kenneth’s procedure was incorrect, it does correspond to a procedure that would be 
correct in a different context – for instance if one is given a vector and told to determine if it is in 
the span of a particular set of vectors, row reducing is a common method for making this 
determination.  We posit that Kenneth was aware of some version of this procedure and 
attempted to adapt it to this context. 

Looking across these themes in student responses as shown above in Table 1, we note 
that all students who reasoned about relationships between vectors in terms of linear 
dependence/independence responded to the item correctly. Students who exhibited effortful 
interpretation of elements gave incorrect responses, which suggests students need to be able to 
consider relationships among vectors to answer the item correctly.    

 

 
Table 1: Student responses to Question 1a and categories of reasoning observed 

 
Students’ Reasoning about Item 2: Linear Dependence and Independence 
 When analyzing the second item, we documented students’ reasoning on the topic of 
linear independence and linear dependence. Seven out of eight students came to the correct 
conclusion that the vectors were linearly dependent. However, only four students reached this 
conclusion using sufficient, conceptually correct, generalizable reasoning. Amongst the eight 
students, five different ways of reasoning about linear dependence and independence were 
identified. Many of the students reasoned about the problem in more than one of these ways. The 
five ways of reasoning identified are: (i) dependence as a linear combination or one vector being 
a multiple of another, (ii) independence as a pivot in each row and/or column in the RREF 
augmented matrix, (iii) dependence as a row of zeros in the RREF augmented matrix, (iv) 

19th Annual Conference on Research in Undergraduate Mathematics Education 170

19th Annual Conference on Research in Undergraduate Mathematics Education 170



dependence as a relationship between variables (e.g. in the equation 𝑥 − 𝑧 + 2𝑡 = 0, 𝑥 can be 
thought of as depending on 𝑧 and 𝑡), and (v) dependence as the number of vectors exceeding the 
dimension space in which the vectors live. Below, we offer examples to illustrate these ways of 
reasoning.  The first four ways of reasoning were used in ways that were sometimes correct and 
sometimes incorrect. 
 Three students talked about the concept of dependence as a linear combination (Ronaldo, 
Lee, Carissa). For example Ronaldo explained, “… so linear dependence also means that there is 
one of the vectors that can be written as a linear combination of the other ones, so there will have 
to be a solution to the system and that system has a solution because we don’t have anything of 
the form all zeros…” We argue this aspect of these students’ concept image of linear dependence 
was consistent with the concept definition of linear dependence.  In contrast, Kenneth, the one 
student who arrived at the incorrect conclusion that the set was linearly independent argued that, 
“If the vectors are dependent that means they are like multiples of each other.”  While it is true 
that if one vector in a set is a multiple of another, the set will be linearly dependent, this is not 
the only way that a set can be linearly dependent as it doesn’t include the important possibility 
that a set can be linearly dependent if one of the vectors is a linear combination of other vectors 
in the set.  Because Kenneth’s concept image of linear dependence only aligned partially with the 
definition of linear dependence, he was unable to answer this item correctly. 
 Two students argued the set would be linearly independent if there is a pivot in each row 
and/or column (Derek and Carissa).  Carissa gave the explanation “… I think it has to be linearly 
independent because it has to have a pivot in every row or column I can’t remember which one, 
but either way I don’t have that here …” Carissa elaborated when she was asked about how the 
pivots relate to the linear dependence of the set, saying “we have two pivots so that means … 
since there is 4 vectors in the third dimension and we only have two [pivots], since we don’t 
have the correct number of pivots they are linearly dependent”.  This suggests that Carissa was 
aware that there is a relationship between pivots and linear dependence, her uncertainty about 
whether the pivots need to be in rows or columns indicates that her understanding of the 
relationship between pivots and linear dependence is largely procedural and perhaps somewhat 
tenuous. 

Two students reasoned that dependence can be determined by whether the augmented 
RREF matrix has a row of zeros (Brenda and Kody). Kody for example said “… it’s linearly 
dependent because of that row of zeros … we can’t have a row of zeros and have it be 
independent”. While this reasoning was not considered incorrect, it is easy to give examples in 
which a row of zeros in the augmented RREF matrix does not imply that the corresponding set of 
vectors is linearly dependent. Therefore, although both students who cited this reasoning arrived 
at the correct conclusion (that the given set of vectors is linearly dependent), this particular 
reasoning was classified as conceptually insufficient or incomplete.  In fact, the item was 
ultimately revised to remove the possibility that students could use this justification to argue that 
the set of vectors was linearly dependent. 
 Three students used the idea of dependence as a relationship among variables to give 
justification for the set being linearly dependent (Barry, Brenda and Ronaldo). Barry argued, “... 
whenever you look at these top two rows this is essentially like 𝑥1 − 𝑥3 + 2𝑥4 and similar to this 
one 𝑥2 + 𝑥3 + 𝑥4 and so there is a kind of some dependency there because you can arrange this 
equation but you can see like 𝑥1 depends on what 𝑥 or … these solutions are kind dependent 
upon each other on 𝑥1, 𝑥3, 𝑥4 and  𝑥2, and 𝑥3 and 𝑥4 so if I am remembering things correctly I 
am gonna say it is linearly dependent.” When the interviewer wanted to know more about what it 
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is that he is saying it is linearly independent he replied “the variables, so I think abstractly it does 
not necessarily … it does not have to be necessarily 𝑥1, but I am saying 𝑥1 is linearly dependent 
on 𝑥3 and 𝑥4 but I feel like you could definitely switch around and say 𝑥3 is linearly dependent 
on 𝑥1, 𝑥4 or 𝑥4 linearly dependent on 𝑥3 and 𝑥1.” While Barry’s reasoning about the variables 
was correct, when probed by the interviewer, he said he did not know what this revealed about 
the original set of vectors.  Note that Ronaldo’s previous comment shows how he was able to use 
ideas about linear combinations of vectors to relate the idea of dependence as relationships 
among variables to the idea of dependence as a property reflecting relationships among a set of 
vectors. 
 Finally, one student correctly noted that no computations were needed to solve this 
question, pointing out that because the number of vectors exceed the dimension space in which 
the vectors live, the set must necessarily be linearly dependent. Derek stated “It has to be linear 
dependent before even looking at the row reduction, because it is the 3-dimensional vectors so 
you know you are in 𝑅3 and if you have 4 vectors in 𝑅3 then you know that it is a linearly 
dependent, because at most the span of  𝑅3 can be all of 𝑅3  but then only three vectors can do 
that.” This comment further highlights the interrelated nature of students’ understanding of span 
with their understanding of linear dependence and independence.  
 Looking across these ways of reasoning, we see that students who reasoned about linear 
dependence in terms of linear combinations were the most successful at producing correct and 
generalizable justifications for their responses.  When students reasoned about linear dependence 
in terms of pivots and variables, there was more variation in evidence that they were able to link 
this reasoning to what this revealed about the original given set of vectors.  This is perhaps 
unsurprising as these forms of reasoning are organized around representations that are more 
obscured from the original set of vectors when compared to reasoning organized around linear 
combinations of vectors.   
Summary of Interview Analysis 
 Table 2 summarizes student responses to each assessment item. The “Correct%” column 
indicates which percent of students answered the item correctly, and the “Works%” column 
displays percentage of occurrences for which response and reasoning were aligned.  We coded 
an item as “working properly” if a correct response was accompanied by correct reasoning or if 
an incorrect response was accompanied by incorrect reasoning. An example of misalignment 
between response and reasoning would be Barry’s response to item 1b; even though he provided 
a vector that was in the span of the set, he only picked it because he interpreted span to simply be 
the set, not as any vector that was a linear combination of the vectors in the set.  

Table 2 also provides basic information about which items were changed, which will be 
addressed in more detail in the Discussion section. All changes were made after the eight 
interviews were completed with exception to 1a and 5. These items were modified after the first 
and sixth interview respectively to account for adjustments needed in light of these interviews. 
The additional distractors in 1a were added as a result of Barry’s response that the two elements 
of the vector set each represented a point. “Two points” as well as “two lines” and “two planes” 
were added to make the list of distractors comprehensive for all cases where students might use 
effortful interpretation of elements. The change in item 5 was made after six interviews because 
no student was able to correctly answer the question as it stood.  

5. “Assume that T is a linear transformation where 𝑇: ℝ2 →  ℝ2 first rotates the plane 
clockwise by 90 degrees about the origin, and then stretches the plane horizontally by a 
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factor of 2.  If A is the standard matrix for T, which of the following is true?  Justify your 
choice.” 
Four answer options were provided, each of which expressed the transformation as the 

product of two matrices. Students had a difficult time interpreting the transformation resulting 
from each answer choice. The process was often time-consuming, and students usually started 
interpreting or computing the product of the two matrices given each answer choice, which 
offered limited insight into how students reasoned about the composition of two linear 
transformations. The revision version of the question gives students transformation described as 
product of two matrices, and asks them to decide which of four geometric descriptions best 
describes this transformation. While the two students who received the modified version still did 
not answer the question correctly, they reasoned about the item in ways more aligned with our 
intent. 

 

 
Table 2: Alignment between correct reasoning and correct answers 

*1: Span; 2: Linear Independence; 3&4: Liner Systems; 5&6: Transformations; 7&8: 
Invertibility; 9&10: Eigenvalues, Eigenvectors 
**RA: Right Answer; RR: Right Reasoning; WA: Wrong Answer; WR: Wrong Reasoning; 
Cst: Consistent; UC: Unclear; US: Unsure; IC: Incomplete; DK: Don’t Know 

  
As Table 2 indicates with green shading, we can see that there was consistent alignment 

between answer and reasoning on many of the items. Some items were more problematic than 
others with respect to having alignment between responses as reasoning, such as items 1b and 1c. 
Other items elicited unclear or incomplete reasoning from students, making it difficult to judge 
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whether the question was working properly.  More careful future analysis of these items is 
needed. Item 6 was a more theoretical question that was written in a symbolically abstract way, 
and as a result, students had a very difficult time reasoning through the question and coming to 
an answer without some manner of interviewer scaffolding.  

We can also begin to say something about the discriminatory power of many of the 
questions based on the percentage of correct responses. For example, several were answered 
correctly 50% of the time, while other items were answered correctly closer to 0% or 100%. This 
informed us about the strength of some of our questions to discriminate between students with 
strong and weak conceptual understanding. None of the eight students were able to correctly 
answer item 5, suggesting that this item was doing a poor job measuring any student 
understanding about transformations.  

Discussion 
Trends in Student Reasoning 

Reflecting on our findings from item 1, we noted a key feature of students’ reasoning that 
distinguished students who answered correctly from those who did not: students whose responses 
focused on making sense of the individual vectors answered the item incorrectly whereas 
students who focused on the relationship between vectors (typically framed in terms of linear 
dependence/independence) answered the item correctly. This finding has potential pedagogical 
implications, in that it suggests that students need opportunities to develop rich interpretations of 
vectors and linear combinations of vectors to help them develop ways of thinking about all 
possible linear combinations of a set of vectors in a coordinated way – the very definition of the 
span of a set of vectors.  Additionally, our findings highlight the ways in which students’ 
understanding of linear dependence and independence is interconnected with their understanding 
of span. 

The trends we noted in students’ responses to item one also have implications for 
assessment development in linear algebra.  First, students’ responses to item 1 also suggested 
that, in order to more fully students’ understanding of span, we need to find a way to assess 
students’ strategies for resolving differences between the number of vectors in a set and the 
number of entries in each vector – an idea related to dimensionality.  Second, it might also be 
worth asking questions that target students’ understanding of the linear combinations and span 
separately. Third, we also find it important to consider the relationship between students’ 
understanding of span and linear independence and how we can assess students’ recognition of 
that connection.  We’ve added items to our assessment that aim to capture the first two of these 
implications; the third remains as an area for future exploration.    

For item 2, students expressed a number of ways of reasoning about linear dependence 
and independence. For example, some students focused on the row of zeros in the RREF as 
providing justification to claim that the vectors were linearly dependent. Others drew on the 
presence of a pivot in each row or column of the RREF as the basis for their reasoning. One 
student also believed linear dependence was solely based on the idea that one vector should be a 
multiple of another vector. It was difficult to establish whether these students had a clear 
conceptual understanding of linear dependence of vectors or if they were simply trained to look 
for certain conditions to answer such questions. The prevalence of these relatively procedural 
ways of reasoning suggest it would be fruitful to be able to document conceptual connections 
students have with regard to those procedures.   
Assessment Adjustments 

19th Annual Conference on Research in Undergraduate Mathematics Education 174

19th Annual Conference on Research in Undergraduate Mathematics Education 174



We left the first item largely as-is because it had good discriminatory power, and this 
discriminatory power aligned with a clearly distinguishable aspect of students reasoning (e.g. 
whether they focus on individual elements in a set of vectors or relationships among elements 
when reasoning about span).  However, we adjusted the second part of item 1 to more fully 
document students’ concept image by requiring that they indicate all vectors among several 
options are in the span of a given sent of vectors; this accounted for a misalignment between 
correctness of reasoning and response documented on the second part of item 1 (which was not 
part of our fine-grained analysis).  In addition, we added new item that aims to capture students’ 
reasoning about the relationship between the number of entries in a vector and the space in which 
that vector lives. 

The second item was adjusted so that students were still given a (linearly dependent) set 
of four vectors in ℝ3, but these correspond to a row-reduced matrix that does not include a row 
of zeros.  This removes the possibility that students would use the justification that there is a row 
of zeros to claim the set of vectors is linearly dependent.  In fact, this change might increase the 
discriminatory power of the item, as if students think this is the only way for a set of vectors to 
be linearly dependent, they will now answer the item incorrectly. 

Although, this paper focuses on the items related to span and linear dependence and 
independence, we also briefly describe the other kinds of modifications made in other items 
given the findings of the interviews. There were two main reasons for additional adjustments.  
One of these reasons was lack of discriminatory power (e.g. most students got question 4 correct 
and most students got question 5 correct) – so these items were removed or omitted.  The other 
reasons were more logistically oriented, e.g. many students spent far more time than intended 
performing a row reduction on question three, so we elected to provide the row reduced matrix 
and ask students to interpret the result.  We similarly removed item 7 because it had the potential 
to be computationally cumbersome and we wanted students to be equally likely to do well on the 
assessment regardless of their access to a calculator.  

While this paper shares useful findings about the creation of an assessment to measure 
students’ conceptual understanding of linear algebra, there is still more work to do. Our next step 
is to administer the revised assessment to several larger samples and conduct item and factor 
analysis based on this data. While the validation process for our assessment may not yet be 
complete, we believe this preliminary study reveals important insights into student reasoning that 
could be helpful to linear algebra instructors and assessment developers. 
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Example construction in a transition-to-proof classroom

Sarah Hanusch
Texas State University

Accurately constructing examples and counterexamples is an important component of
transition-to-proof courses. This study investigates how one instructor of a transition-to-
proof course taught students to construct examples, and compares this instruction to the
examples constructed by the students.

Keywords: transition-to-proof; undergraduate instruction; example construction

Introduction
Learning to write proofs is a complicated process, and students develop a variety of

beliefs about how to construct a proof (Harel & Sowder, 2007). Using examples is a well-
established strategy in the proof writing process, and examples can be used for several
purposes when developing and proving conjectures (Alcock & Inglis, 2008; Alcock & Weber,
2010; Lockwood, Ellis, & Knuth, 2013). Yet undergraduate students often use examples
ine�ectively (Iannone, Inglis, Mejia-Ramos, Simpson, & Weber, 2011).

The term example has many meanings in mathematics (Watson & Mason, 2002).
Within this study, the term example is limited to a mathematical object which satisfies
specific characteristics and illustrates a definition, concept or statement (Moore, 1994). This
definition excludes sample proofs, such as demonstrations of the direct proof technique or
proofs by induction. Alcock and Weber (2010) claim that this definition of example is “prob-
ably the most common intended meaning of the term when it is used by mathematicians
and mathematics educators in the context of proof-oriented mathematics” (p. 2).

Research questions. In this study, the following questions are addressed:
1. In what ways do students construct examples e�ectively and ine�ectively on tasks in their
transition-to-proof course?
2. How did the instructor teach example construction?
3. What connections are found between the students’ construction of examples and the
instruction given?

Literature and Theory
Considerable literature is available on the proving abilities of students and mathe-

maticians, and the use examples on proving tasks (Alcock & Weber, 2010; Buchbinder &
Zaslavsky, 2011; Dahlberg & Housman, 1997; Iannone et al., 2011; Lockwood, Ellis, Dogan,
Williams, & Knuth, 2012; Moore, 1994; Watson & Mason, 2002, 2005; Weber, Porter, &
Housman, 2008). However, in the interest of space, much of this literature has been omitted.
The review below focuses on the literature concerning the construction of examples, and the
role of example in teaching advanced mathematics courses.
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Example construction. Antonini (2006) sought to answer how examples are con-
structed, by conducting clinical interviews with seven mathematicians. From these interviews
three distinct techniques emerged: trial and error, transformation, and analysis. Trial and
error is characterized by constructing objects, and then testing whether the object has the
desired characteristics. Transformation is characterized by taking a known object which has
some of the necessary characteristics, and then performing adjustments until the object has
all the required characteristics. Analysis is characterized by deducing additional properties
of the object, until this list of properties evokes a known example or produces an algorithm
for constructing an example.

Antonini (2006) observed that mathematicians often follow a process of starting with
trial and error and then using transformation, if trial and error failed. The analysis tech-
nique was used after failing to construct an example with both the trial and error and
transformation techniques. Antonini (2006) notes that the analysis technique is appropriate
when it is possible that no example with the given properties exists, since the derivation of
properties could lead to a proof by contradiction.

This classification of example constructions was applied to undergraduate students
by Iannone et al. (2011), when they asked students to generate examples of a particular
type of function and classified the students’ construction technique. The students generated
examples with a trial and error technique on 51 out of 62 constructions, and on the remaining
11 constructions the students used a transformation technique where they modified a known
example.

Iannone et al. (2011) theorized that the trial and error strategy resulted in weaker
conceptual gains than the other strategies. However, in a second study Iannone et al. (2011)
found that there was no significant di�erences between the proof productions of students
who generated their own examples and those who were provided examples. In fact, Iannone
et al. (2011) found that the proof productions of the example reading group was slightly
higher than the proof productions of the example generating group, although the di�erence
was not significant.

The teaching and learning of mathematics. One of the primary goals of mathe-
matics education is to develop and implement interventions that change mathematics teach-
ing (Fukawa-Connelly, 2012a). At the undergraduate level, Speer, Smith, and Horvath (2010)
criticized that “very little empirical research has yet described and analyzed the practices of
teachers of mathematics” (p. 99), even though poor undergraduate mathematics teaching is
often cited as a reason students change majors away from science, technology, engineering,
and mathematics fields (Seymour & Hewitt, 1997). In fact, Mejia-Ramos and Inglis (2009)
conducted a literature of 102 mathematics education research papers concerning undergradu-
ate students’ experience reading, writing and understanding proofs, yet none of these papers
described the instruction the students received. Although some studies have investigated
instruction in proof writing since the publication of these critiques (e.g. Fukawa-Connelly,
2012a, 2012b; Mills, 2014), there is still a need for additional studies in this area.

Instruction can influence the choices that students make and their preferences when
solving problems, including proofs. Students need strategic knowledge in order to select
appropriate strategies (Weber, 2001), but students typically do not learn these strategies
without instruction (Lester, 1994). However, some instructors try to design their courses in
order to explicitly teach students strategic knowledge (Weber, 2004, 2005).

19th Annual Conference on Research in Undergraduate Mathematics Education 179

19th Annual Conference on Research in Undergraduate Mathematics Education 179



Theoretical framework. This study draws on the emergent framework developed
by Cobb and Yackel (1996), which links the social perspectives of classroom mathematical
practices to the psychological perspectives of mathematical conceptions and activity. This
theoretical perspective explains the design choice to look simultaneously at instructional
practices and student responses to tasks.

In addition, this study draws on a theory of e�ective example use on proof-related
task (Hanusch, 2015). This theory was developed by utilizing grounded theory, in the style
of Glaser and Strauss (1967). When using examples e�ectively on proof-related tasks, an
individual proceeds through four phases: deciding to use an example, establishing the in-
tended purpose of the example, constructing the example, and finally drawing conclusions
from the example (see Figure 1). In the first phase the individual decides to use an example,

Effective 
Example 

Usage 

Indicators 
for Using an 

Example 

Purpose of 
the Example 

Construction 
of the 

Example 

Implications 
of the 

Example 

 

 

  

Figure 1 . A model of e�ective example usage.

usually either because it was indicated by the task language or because the individual felt
they lacked su�cient knowledge about a concept. In the second phase, the individual iden-
tifies their intended purpose for using the example, such as to gain improved understanding
or to determine the truth of a statement. Then the individual moves into the third phase,
constructing the example. Finally, in the fourth phase, the individual draws conclusions
from their example, such as determining if they have fulfilled their purpose or if they need
additional examples. This study focuses on the third phase of this framework, example
construction, but the analysis of the constructions must consider the other phases of the
process.

Method
This study is part of a larger study that focused on all example activity within a single

section of a transition-to-proof course at a large university. The participants in this study
are the instructor, Dr. S, and the 27 students enrolled in her course during the semester of
the study.

Four students were selected for more detailed data collection during the fourth week
of the semester using maximal variation sampling (Creswell, 2013). By varying the stu-
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Table 1
The characteristics of the sampled students.
Name Year Major GPA Course Attempt
Amy Sr. Mathematics for Secondary Teaching 2.50-2.99 3rd
Carl Soph. Mathematics for Secondary Teaching 2.50-2.99 1st
Raul Jr. Applied Mathematics and Biochemistry 3.50-4.00 1st
Mike Sr. Mathematics and Spanish 3.00-3.49 2nd

dents’ levels of academic success (indicated by a self-reported grade point average), math-
ematical preparation (indicated by self-reported grades in mathematics coursework), and
specialization (pure, applied, secondary teaching), the findings have increased transferability
(Merriam, 2009). The characteristics of the four students included in the sample are pre-
sented in Table 1. These students were purposefully selected because they frequently spoke
during class, both by asking the professor questions and presenting their own work on the
blackboards.

Data collection. Interviews were conducted with the four selected students, in or-
der to observe each student’s process on proof-related tasks while working independently.
These interviews occurred three times during the semester: around the seventh week of the
semester, the twelfth week of the semester, and the last week of the semester. Unfortunately,
Mike was unavailable for the final interview, which explains why he used significantly fewer
examples than the other participants.

Each interview with a student had three components: a semi-structured portion ad-
dressing proof strategies and goals for the course, a task-based portion where students at-
tempted several proof-related tasks, and a reflection on the tasks. The semi-structured
portion asked the students to talk about their impressions of the course, namely what they
had learned and what they thought they should be learning. The tasks for the interviews
were selected from the textbook, or other studies on undergraduate proof writing (Alcock &
Weber, 2010; Dahlberg & Housman, 1997; Iannone et al., 2011). The mathematical content
of the questions varied over the three interviews, corresponding to the recent content from the
course. Additionally, the tasks asked for di�erent types of products including, constructing
examples, constructing counterexamples, making conjectures, validating proofs, and writing
proofs. After a student completed all tasks, then the students were asked to reflect on their
work. Sometimes the final reflection was omitted due to time constraints.

The classroom was observed daily to observe the examples used by the instructor during
lectures and student presentations. The observations are supplemented by three interviews
with the instructor during the semester, and a member checking interview the following year.
These interviews focused on the motivation for the choices made during class and how those
choices influenced the desired instructional goals.

Results
Construction of examples. When considering the construction of examples, two

levels of analysis were needed: 1) the accuracy of the example, and 2) the construction
technique used. The accuracy was determined by the author by checking that the hypotheses
and conclusions were met by each construction, and the accuracy levels for each student can
be found in Table 2.

Four categories were used to describe the construction technique: blind trial and error,
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Table 2
This table summarizes the construction abilities of the students.

Construction Amy Carl Raul Mike Total
Accurate Construction 30 16 18 4 68
Inaccurate 1 1 3 1 6
Incomplete 5 2 0 1 8
Authoritarian Source 3 2 2 0 7
Blind Trial and Error 2 1 7 3 13
Informed Trial and Error 14 17 4 1 33
Transformation 17 2 8 2 29

informed trial and error, transformation and authoritarian. An authoritarian example is
retrieved from a source, instead of being constructed by the prover. The sources included
the textbook, their notes, and the statement of the question. The terms trial and error
and transformation came from the definitions of Antonini (2006). However, the students
used two distinct version of the trial and error technique: blind trial and error where a
student selected a potential example with no consideration for the hypotheses and then tests
the hypotheses and conclusion, and informed trial and error where a student purposefully
selected a potential example thinking about the hypotheses. Neither the students nor the
professor discussed the analysis technique, so this category was not used. Table 2 indicates
the frequency of each of these classifications by student.

Only six of the constructions were inaccurate. Four of these occurred during the first
interview, when Raul and Mike appeared to misunderstand which conditions must hold for
a construction to be an example or a counterexample. During the first interview, Raul wrote
the constructions found in Figure 2, while attempting to prove if a|(b ≠ c) and a|(c ≠ d),
then a|(b ≠ d). The construction that Raul labeled as a counterexample does not satisfy the
hypotheses or the conclusion of the statement, which means it is not a counterexample. The
remaining two inaccurate examples were due to the students making errors when verifying
the hypotheses.

Figure 2 . The constructions generated by Raul for if a|(b ≠ c) and a|(c ≠ d), then a|(b ≠ d).

Some of the accurate constructions were not useful for fulfilling the intended purpose.
For instance, Mike was seeking a potential counterexample on a divisibility problem and
chose a = 1 as the value for the divisor, stating that he chose this value because “1 divides
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Table 3
The construction techniques used by the students during the interviews

Interview 1 2 3
Authoritarian Source 0 5 2
Blind Trial and Error 9 0 4
Informed Trial and Error 14 6 13
Transformation 1 5 22

everything.” Mike did not realize that this choice for a meant that every possible construction
would be an example of the statement. Although other students constructed examples that
were not useful for their purpose, this was the only instance in which a student stated a fact
that would directly indicate the lack of usefulness.

The students transitioned to more advanced construction techniques later in the
semester, see Table 3. During the first interview, Mike was the only student to utilize
the transformation construction technique, and he only did so once. By the final interview,
the students were using the transformation technique more frequently than trial and error.
For instance, when constructing an example of a fine function, Amy, Raul and Carl all be-
gan by modifying the graph of sin x so its zeros coincided with the integers satisfying the
definition of a fine function. Raul made two additional transformations of the sine function
to construct examples of fine functions, see Figure 3.

Figure 3 . The graphs of fine functions constructed by Raul using the transformation tech-
nique.
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The instruction. Dr. S rarely modeled example construction during the lecture.
Although she presented many examples throughout the semester, she seldom talked about
how these examples were constructed. Dr. S did model how to determine which properties
an example or counterexample of a statement needs to satisfy, and how to go about verifying
that a construction satisfies those properties. When asked what construction techniques she
expected from her students Dr. S stated that “It depends on the problem, but to some
extent trial and error is the first step.” Dr. S continued by saying some students are “not
always ready yet” for more sophisticated reasoning, and “I’m okay with them randomly
trying at first.” To provide students opportunities to practice example construction, Dr.
S assigned homework that the student’s were to write on the board prior to class. Dr. S
began class everyday by reviewing and correcting this student work. Furthermore, Dr. S
frequently reminded the students to “make mistakes on [their] homework, and we’ll talk
about them.” She suspected that the students would often fail before they succeeded at
example construction, and that the best way to help the students improve would be to
review their constructions.

There were two episodes from the lecture where Dr. S emphasized example construc-
tion. The first instance occurred shortly after formally defining functions. Dr. S emphasized
the importance of a function being well-defined, particularly when the domain is a partition.
To do this, Dr. S presented three potential functions:

f : Z3 æ Z6 f ([x]3) = [3x + 2]6
g : Z4 æ Z2 g ([x]4) = [3x]2
h : Q æ Z h

�
a
b

�
= a + b

The first example was generated using numbers suggested by the students, the last two were
purposely chosen by Dr. S. Dr. S proved that f and h are not well-defined by produc-
ing counterexamples that show that two di�erent representatives of the equivalence classes
produce di�erent outputs. For g, Dr. S provided the students with a proof that it was
well-defined. Ultimately this episode demonstrated the meaning of a well-defined function,
but also included instruction in constructing examples.

Dr. S intended that the students would move towards the transformation construction
strategy by asking themselves questions such as “is the statement similar to one [I] know?”
and then using that response to construct their example. During the an interview, Dr. S
reiterated this by saying “I would like to move them toward more directed examples where
they are intentionally trying to go certain places but I doubt that most of them are ready
for that. Right now I’m happy if they try random examples to see what’s going on, as long
as they don’t stop there.” Perseverance was a frequent theme when discussing proof and
example constructions in the lecture.

When the students wrote incorrect example constructions on the board, Dr. S would
usually ask the student who presented (or sometimes the whole class) to help her revise
the construction. In one instance, Carl presented a relation on A = 1, 2, 3 that should
have the properties of symmetry and transitivity, but not reflexivity. Carl presented the
relation {(1, 2)(2, 1)(1, 3)(2, 3)(3, 2)(3, 1)}, but this example is not transitive. Dr. S argued
that if (1, 2) and (2, 1) are in the relation, then transitivity requires that (1, 1) and (2, 2)
must also be included. As such, Dr. S changed the relation to {(1, 2), (2, 1), (1, 1), (2, 2)},
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which is symmetric and transitive, but not reflexive because it is missing (3, 3). Through
this discussion, Dr. S walked the students through using the transformation technique for
example construction, since she transformed an existing example to satisfy the given criteria.

Comparing the instruction and the students. The students used the trial and
error construction technique for all of the examples constructed during the first interview,
with one exception. However, as the semester progressed the students used the transforma-
tion technique with increasing frequency, as seen in Table 3. Dr. S predicted this behavior
of the students. In the first interview, Dr. S said

It depends on the problem, but to some extent, trial and error is the very first
step. You just try stu�. I’ve seen this even with advanced REU students, where
there is a good strategy. They’re not always ready yet. I’m okay with them
randomly trying at first. Now, I want them to move toward more careful con-
struction. As they go through this, they should be looking for things that are
similar and using that to give them a hint.

Dr. S recognized that as beginning students, they would not have the mathematical ex-
perience to use the more advanced informed trial and error, transformation and analysis
techniques, but she hoped they would grow to that point. The analysis technique was not
demonstrated by the instructor or used by the students; however, during the member check-
ing interview, Dr. S argued that the analysis technique was too advanced to be useful to
the students at their current level of understanding.

During the first interview, Dr. S stated that although she expects the students to have
some familiarity with using examples from their calculus classes, “they just never had to
construct [examples] themselves before.” As such, she expected some of the di�culties the
students had with example construction.

Dr. S did not explicitly vocalize an expectation of the accuracy problems exhibited
by some the students during the initial interviews. Both Raul and Mike had created ex-
amples that violated the statement hypotheses. Raul did not seem to realize that failing
the hypotheses was a problem. During the member checking interview, Dr. S said students
often make these types of construction errors at this point in their development. She fur-
thered this by explaining that many students present counterexamples that are not actually
counterexamples, especially on the first test of the course.

Dr. S usually did not talk about the construction technique when she presented exam-
ples to the class, focusing instead of how to verify the accuracy. Additionally, she designed
the course so that most of the example construction tasks were assigned as student presen-
tations, and that she would talk about example construction as she reviewed and corrected
the examples in the presentations. However, the students tended to present problems asking
for proofs rather than the problems asking for examples. Consequently, Dr. S did not have
the opportunity to talk about construction techniques with the expected frequency.

Overall, Dr. S had the experience to know the capabilities of the students with respect
to example construction. She recognized that trial and error would be the primary tech-
nique at the beginning of the semester, and that some of the students would not be able to
move beyond that technique in this course. However, towards the end of the semester, she
introduced the transformation construction technique for the benefit of the students who
were ready for more advanced techniques. The students in the sample were able to apply
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the transformation technique in some circumstances, and likely will be able to utilize it more
frequently in their subsequent courses.

Discussion
By the end of the semester, all of the students selected examples with more thought,

and used the transformation construction technique with increased frequency. It is unclear
exactly what caused this growth. Possible explanations include the students’ individual de-
velopment throughout the semester, the influence from the instruction, and the new content.

The mathematical content of the task-based interviews corresponded to the content
of the course, which varied throughout the semester. Specifically, the first interview con-
sisted entirely of number theory tasks, the second interview consisted for set theory and
equivalence relation questions, and the final interview concerned real-valued functions. The
students appeared to have a large sample space for real-valued functions to utilize for exam-
ple constructions. This means one reason the students were able to use the transformation
technique more frequently is because they had examples of real-valued functions to use as
the starting point for the transformation process.

In particular, when asked to construct an example of a fine function on question 3 of
interview 3, the first example constructed by each student was a transformation of y = sin x.
The students recognized that the pattern of the zeros in y = sin x could be adjusted to satisfy
the conditions of a fine function. It is unlikely that the students could have constructed an
example of a fine function via trial and error because of how di�cult it would be to verify the
conditions. However, it is equally di�cult to imagine a students utilizing a transformation
technique on a|(bc) implied a|b or a|c, especially for an initial example of the statement.
Most students will not have a su�cient background in the formal language of divisibility to
have such examples in their personal example space.

Previous research on undergraduate example construction showed that the students
used trial and error techniques approximately 80% of the time (Iannone et al., 2011). This
percentage is considerably higher than than the 57% trial and error observed in this study.
It is unclear what accounts for this discrepancy, although the one cause may be the task
selection. Additionally, both studies had small samples, this one had four participants and
Iannone et al. (2011) had nine, so the individual characteristics of the participants strongly
a�ected the percentages.

Implications for teaching transition-to-proof courses. One implication is that
students should be explicitly taught strategies for constructing and verifying examples. One
of the hardest parts of trial and error for the students was picking a construction to test.
However by explaining how the examples in the course are constructed, it may be possible
to guide the students beyond blinding picking parameters to test.

In this study, most of the students became convinced that a prove or disprove statement
was true after constructing only one or two examples. However, when mathematicians
obtain conviction from empirical evidence it is often from multiple examples or for unusual
properties (Weber, 2013; Weber, Inglis, & Mejia-Ramos, 2014). Although it is unreasonable
to assume that numerous examples should be constructed before trying to prove a statement,
we need to teach students to consider the quality of the examples they construct and to view
the examples as a collection. For example, a statement that is true for a prime number,
a perfect square, and another composite number is far more believable than a statement
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evaluated only with a prime number. But students need to be taught to consider examples
collectively rather than only individually.

Future research. Additional research needs to be completed on the instruction of
example construction. How does instruction impact a provers ability to e�ectively use and
construct examples? It is unclear whether or not such instruction will actually help the
students learn how to construct examples e�ectively. Some studies suggest that instruction
in problem solving frameworks alone does not help students become better problem solvers
(Garofalo & Lester, 1985; Schoenfeld, 1980), so it is possible a similar phenomenon will occur
here. This can only be established through additional study.

Finally, it is unclear whether e�ective example construction will positively impact proof
writing. Iannone et al. (2011) found that generating examples provided no benefits to the
students as compared to receiving a list of examples. One interpretation of this is that it
does not matter where the examples come from, what matters is how the examples are used
and what conclusions are drawn from the examples. As such, it is possible that knowledge
in using examples e�ectively can improve a persons ability to successfully write proofs, but
additional study is needed on this topic.
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An initial look at students’ conveyed meanings for probability 
 

Neil J. Hatfield 
Arizona State University 

Probability is the central component that allows statistics to be a useful tool for many fields. 
Thus, the meanings that students develop for probability have the potential for lasting 
impacts. This report extends Thompson’s (2015) theory of meanings through the notion of 
conveyed meaning: the constrained implications that a receiver attributes to the sender’s 
statements. A student’s conveyed meanings give insight into his/her initial and/or dominate 
meanings for a particular idea. This report shares the results of examining 114 
undergraduate students’ conveyed meanings for probability after they received instruction as 
well as their instructors’ conveyed meanings. The worrisome presence of circular conveyed 
meanings carries implications for the teaching of probability. 

Key words: probability, statistics, meanings, introductory statistics course  

Probability is the engine that makes inferential statistics run. In particular, probability is 
the result of centuries of work towards one goal:  the quantification of uncertainty. Since 
before the 1600s mathematicians, philosophers, logicians, and statisticians have attempted to 
resolve questions where uncertain outcomes dominate (Weisberg, 2014). Over the course of 
history, many scholars have engaged in what Thompson (2011) calls quantitative reasoning 
and quantification. In settling what a measure of uncertainty means (along with how to get a 
measure and what is meant by measuring uncertainty), scholars have taken different paths 
and arrived at their own meanings for the same notion, probability. Laplace considered the 
ratio of the number of outcomes of interest to the number of all possible outcomes under the 
assumption of “equally likely” outcomes (Weisberg, 2014). Von Mises (1981) considered 
repeating some process indefinitely to build a collective and that the limit of the relative 
frequency of an event of interest was the probability of that event. Kolmogorov’s (2013) 
axiomatic, measure-theoretic approach has become the gold standard for probability theory. 
De Finetti (1974) and Savage (1972) regarded probability as dealing with measuring the 
amount of belief that an individual had for a particular outcome’s occurrence that they called 
“subjective” or “personalistic” probability.  

The opening statement of this paper is one that hardly any practitioner of statistics will 
disagree with. Regardless of which school of probability you ask (i.e., Frequentist, Bayesian, 
Conditional Frequentist, etc.) each acknowledges that the central ideas of probability allow us 
to move beyond merely describing a data set to using the data set as evidence for supporting 
or refuting claims. The members of these schools of thought have already carried out the 
quantification of uncertainty, something that students have yet to undertake. How 
practitioners think is often vastly different from how students think before, during, and after 
instruction. Kahneman and Tversky (1974, 1982) described how individuals will use different 
heuristics when making judgments under uncertainty. For example, how representative an 
event (sample) is to the parent process (population) to can influence a person’s estimate of 
the probability of the event. Another heuristic that they found people use to measure 
uncertainty centers on the ease (or lack of) with which a person can imagine the event 
occurring; the more “available” an event is for the person to imagine, the larger the 
probability (the less uncertainty) there is for that event. Konold (1989) found that for some 
individuals, their way of thinking about probability did not match the use of heuristics nor 
was their thinking consistent with the schools of probability. Rather, these individuals 
appeared to view the goal of uncertainty to be the prediction of the next result; Konold 
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referred to this way of thinking as the outcome approach to probability. Students also have a 
tendency to view events as equally probable when they do not perceive the many ways a 
compound event might occur (Lecoutre, Durand, & Cordier, 1990). Lecoutre et al. found that 
students and adults view the event of getting a five and a six as having the same probability 
as getting two sixes when rolling two dice. They hypothesized that not recognizing that event 
of (5, 6) is comprised of two smaller events. This way of thinking across multiple events is 
what they referred to as the equiprobability bias. Fielding-Wells (2014) found that when 
trying to pick the best card for playing addition-bingo, Year 3 students (7-8 years) operated as 
though all of the sums of the numbers 1 to 10 were equally probable. Saldanha and Liu 
(2014) reviewed much of the literature on students’ understandings of probability and 
proposed that a key conceptual scheme for understanding the measurement of uncertainty is a 
stochastic conception. They define a stochastic conception as “a conception of probability 
that is built on the concepts of random process and distribution” (p. 393). They argue that in 
the quest to support students developing coherent probabilistic reasoning, instructors need to 
conceive of probability as ways of thinking rather than skills and design curriculum that 
supports this. While this review of the literature is brief, already apparent is the fact that the 
quantification of uncertainty is challenging. Individuals of all ages and backgrounds struggle 
just as mathematicians, statisticians have to construct a meaning for probability. 

In a discussion with a university instructor about introductory statistics courses, I was 
surprised to hear this individual say “I skip by probability because my students don’t really 
need it and we need the time to talk about doing hypothesis tests.” This statement caught me 
off-guard for two reasons: 1) this instructor had a Ph. D. in Statistics, and 2) the instructor 
continued to talk about how she wanted her students to develop “rich and productive 
meanings for hypothesis tests and p-values”. While I believe that students can and will 
develop meanings for hypothesis tests in the absence of a way of thinking about probability, I 
challenge the claim that students can develop “rich and productive” meanings. The sentiment 
that the instructor expressed about skipping probability is reminiscent of a position that Cobb 
and Moore (1997) took; “first courses in statistics should contain essentially no formal 
probability theory” (p. 820). Since they originally took this stance, the American Statistical 
Association through their Guidelines for Assessment and Instruction in Statistics Education 
(GAISE) have endorsed the notion of reducing probabilities role in introductory statistics 
classes (Aliaga et al., 2005).  However, there is a critical distinction between Cobb and 
Moore’s position and the aforementioned instructor’s: Cobb and Moore’s position (echoed in 
GAISE) is not that first courses should avoid discussing probability, bur rather there should 
be little to no emphasis on formal rules of calculating probabilities (e.g., what to for all types 
of cases for   P[A∪ B]  or   P[A∩ B]). They believe that discussing probability is still 
important for statistical inference. Liu and Thompson (2002) make an excellent argument that 
trying to debate the question of “What is probability?” is a fruitless endeavor in a first course. 
Rather, in a first course on statistics and probability, our focus should be on what we (us and 
our students) mean by the term “probability”.  

Students do not learn and instructors do not teach in a vacuum with only each other’s 
company. Course materials such as textbooks play a role in student learning. A quick perusal 
of four introductory statistics texts indicates that these texts cover probability in the exact 
way that Cobb and Moore urged against; i.e., each focus almost entirely on how to calculate 
rather than how to think about (what do we mean by) probability. The introductory text 
Statistics for the Life Sciences, 4th edition (Samuels, Witmer, & Schaffner, 2012) devotes 15 
pages to probability. However, there are only two sentences related to how to think about 
probability. Out of the 29 exercises provided for the students to use for homework, 26 ask for 
students to calculate a value of the probability of some event, 3 ask students to make a claim 
about whether or not two events are independent, and no questions ask students to 
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interpret/make use of a way of thinking about probability. Likewise, Introduction to the 
Practice of Statistics, 7th edition (Moore, McCabe, & Craig, 2012) devotes 18 pages to 
probability and randomness. Of these pages, only 3 sentences (all variations of each other) 
focus on how to think about probability. There are only two questions of the 45 that focus on 
something other than a calculation of probabilities or judgment of independence; one asks 
whether or not a probability value is applicable to a larger set of colleges, and the other asks 
students to explain what a probability value means. In both of these cases, students’ major 
takeaway is that probability is a calculation. In addition to these two traditional textbooks, I 
examined two open source texts; Introductory Statistics (Illowsky, Dean, & OpenStax 
College, 2013) and OpenIntro Statistics, 3rd edition (Diez, Barr, & Çetinkaya-Rundel, 2016).  
There are 51 pages devoted to the topic of probability in Introductory Statistics, while the 
OpenIntro gives 40 pages to the “special topic” of probability. There is only one sentence in 
each that focuses on how to think about probability. For the 128 homework questions in 
Introductory Statistics, only three ask for something other than a calculation of a probability 
value. Those three questions ask students to state what an expression such as   P[A OR B]  
means in words. None of OpenIntro’s 44 questions ask students to interpret a probability 
value. I chose these four texts for different reasons. The Samuels text was the textbook used 
by the students I studied; the Moore text is one of the most popular introductory texts at the 
undergraduate level. We are seeing a surge in number of open access textbooks across all 
disciplines and I’ve had statistics educators recommend checking out both of the texts I did 
examine. My intent was not to conduct a full-scale text analysis, but rather just to get a sense 
of how textbooks treatment probability. Worth pointing out is that all four of these texts have 
publishing dates after the Cobb and Moore article and after the release/adoption of GAISE. 

Given the recommendations in GAISE, what I found in the textbooks I examined, and the 
extant literature on people’s understanding of probability, I began to question what meanings 
students could possibly have for probability after instruction. In particular, I wanted to 
answer the questions: 

• What meanings do students convey for probability after they received instruction? 
• Are there differences in the students’ conveyed meanings based on which 

instructor they had? 
Theoretical Background 

To investigate my questions, I turned to the theory of meanings that Thompson and Harel 
have devised (see, Thompson, 2015; Thompson, Carlson, Byerley, & Hatfield, 2014). 
Meaning refers to the space of implications which includes actions, images, and other 
meanings that results from an individual assimilating some experience and thereby forming 
some understanding of that experience (Thompson, 2015). The space of implications, that is 
the meaning, is the inference that accompanies assimilation (Jonckheere, Mandelbrot, & 
Piaget, 1958). Central to the radical constructivist perspective is the belief that every 
individual builds his/her own knowledge through repeated experiences (von Glasersfeld, 
1995). The meaning that an individual imbues an experience with is a product of their 
constructions. Thus, an individual’s meanings are intensely personal and researchers do not 
have access to that individual’s meanings. This problem is a familiar one to mathematics 
education researchers. Thompson (2013) tackled a similar question; if meanings are entirely 
within individuals, then how can people learn a meaning from someone else? Thompson’s 
found an answer by turning to the notion of intersubjectivity and Pask’s conversation theory. 
Intersubjectivity hinges on an individual having a mental image of another person that is free 
to think like and not like individual (von Glasersfeld, 1995). From Pask’s theory, Thompson 
(2013) highlights that a conversation is more than just a verbal exchanges; conversation also 
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includes all of the participants’ “attempts to convey and discern meaning” (p. 63).  He uses 
the following figure to highlight the blending of intersubjectivity and conversation theory: 

 
Figure 1. A "meaningful" conversation (Thompson, 2013, p. 64). 

As ‘A’ and ‘B’ talk to each other, they must each keep in mind not only what they wish to 
communicate but also how the other person might interpret his/her words/actions. Both ‘A’ 
and ‘B’ build a model of the other person. Thompson’s work provides an answer for how the 
conveyance of meaning from one individual to another might occur. Suppose that ‘A’ wants 
to communicate something specific to ‘B’. When ‘B’ assimilates the experience to his 
schemes, he imbues that experience with a meaning that stems from two sources. The first 
source is his own meanings; the second is what he knows about ‘A’. The meaning that ‘B’ 
gives to ‘A’s is what I refer to as the conveyed meaning. A conveyed meaning is the set of 
implications that a receiver attributes to the sender’s message constrained by 1) the receiver’s 
de-centering and 2) the receiver’s belief that the sender made an honest effort to convey 
his/her thinking. These constraints lay the groundwork for intersubjectivity and keep both 
participants in the picture. While ‘A’s conveyed meaning might not be a perfect reflection of 
‘A’s actual meaning, this is how ‘B’ understood ‘A’ and is the basis for which ‘B’ to now 
respond. The notion of conveyed meaning is useful in education in several ways. First, we 
can use this notion in research to attempt to discern what meanings our students have 
constructed for various topics. Second, we can use this notion in the planning of lessons. By 
trying to answer the question of “what have I conveyed to my students?” we can engage in 
de-centering and design meaningful conversations.  This second use is easily extended to a 
third focused on the generation of curriculum materials such as activities and textbooks. With 
textbooks, we can imagine to types of conveyed meaning; the first being what the authors 
conveyed to us and the second being what the authors conveyed to our students. 

By examining students’ responses, we can characterize those responses by the meaning 
conveyed. However, to compare categories of conveyed meanings there must be an aspect of 
the theory that deals with productiveness of the meanings. Thompson (2015) proposes that 
productive meanings are those meanings that provide coherence to ideas that students have 
and those meanings which afford students a frame that supports the students in future 
learning (Thompson, 2015). Productive meanings are clear, widely applicable (within 
reason), and entail an awareness of and need to explicate any assumptions. Notice that the 
usefulness of a meaning is part of a productive meaning. I take a useful meaning to be any 
meaning that allows a student to meet some performance or learning goal. Consider the 
following meanings for the associative property: A) move parentheses around vs. B) the 
choice of which of two structures to impose ( [a+b]+c or a+[b+c] ) does not change the 
result. Meaning A is useful; students can get correct answers, however, this meaning does not 
necessarily help students when there are more than three terms. However, meaning B is a 
productive meaning and useful.  
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Methodology 

To answer my research questions I conducted an observational study at a large, public 
university located in the Southwestern region of the United States during the Spring 2014 
semester. Students enrolled in an introductory statistics course aimed at life science majors 
took a written survey during a regular class period after they had received instruction about 
probability. I was only able to secure a five-minute window from the course instructors, so 
the survey consisted of two questions related to their meanings for probability. The course 
had four sections, taught by three instructors. Instructor A was a Ph.D. Math Education 
student who had not previously taught the course, Instructor B was a Senior Lecture (MS-
Statistics) who had taught the course many times and served as the course coordinator, and 
Instructor C was as Ph.D. Statistics student who had taught the course the previous semester. 
Instructors B and C (B had two sections) followed the textbook (the aforementioned Statistics 
for the Life Sciences (Samuels et al., 2012)) closely. Instructor C made use of many of B’s 
materials. Instructor A departed from the textbook, and instead focused on designing a course 
that sought to foster students’ construction of productive meanings. Each of these instructors 
also responded to the written survey. The two questions students and instructors responded 
two were: 
Question 1: How do you think about probability?  That is, how would you explain 

probability to another person? 
Question 2: Consider the following statement: 

The probability of observing a value of 4 when looking at the product of two dice is 3/36. 
How should someone think about (interpret) 3/36 given the above statement? 

To analyze the responses I used a grounded method consistent with that described by 
Strauss and Corbin (1990). I initially used open coding for the responses and then I made use 
of an axial coding system. I used the axial codes in my analysis that follows. This approach 
partnered with the theoretical perspective is also consistent with the general methodology 
used in the development the Mathematical Meanings for Teaching Secondary Mathematics 
instrument described in Thompson (2015). 

Results 

I used the ten axial codes as shown in Table 1, five for each survey question along with 
the ordering of the meanings in terms of productivity. The categories of long-run relative 
frequency and percent of the time both point to the same underlying meaning: if you were to 
repeat some process an unlimited number of times, the probability of an event is the 
percentage of the time (i.e., the unlimited trials) or long-run relative frequency of that event. 
This meaning is the most productive out of the set presented. This meaning is applicable to a 
wide range of situations (discrete or continuous) and makes relatively few assumptions that 
are included in the statement (repeating a process indefinitely).  

The categories of Frequency and Classical are similar and are the next two most 
productive meanings. The conveyed meanings in the frequency category appear to reflect a 
blending of Frequentist language and Classical notions. Classical conveyed meanings are 
consistent with Laplacian (set-theory based) notions of probability. This notion depends on 
the assumption of “equally likely” but none of the responses included this assumption.  
The third category for Question 1 covers those students’ responses that dealt with prediction. 
The responses that fall into this category are reminiscent of the outcome-approach of 
probabilistic thinking (Konold, 1989). Often these students only spoke about the very next 
time you carry out some process. This focus makes the meaning less productive than the 
proceeding ones. While the conveyed meaning in for the category “Fixed Number of Rolls” 
is similar to those in the “Classical” category in viewing 3/36 as two numbers; these 
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meanings convey a sense that we must repeat a process a fixed number of times and we will 
always see exactly the same number of the events of interest. For example, if we were to roll 
the dice 36 times, we would then see exactly 3 products of 4 (“fixed number of rolls”). This 
conveyed meaning points to a meaning that runs counter to all of the schools of thought about 
probability. 
Table 1. Axial Codes for Conveyed Meanings from Survey Responses. 

Q1: How do you think about 
probability? 

More 
Productive Q2: Interpreting 3/36 

Long-run Relative Frequency 
(L.R.R.F): The student conveyed that 
the value emerges from carrying out 
some process a large number of times; 
the value is the relative frequency of 
how many times you see an event with 
respect to the number of trials. 

 Percent of the Time: the student 
conveyed that 3/36 was a single 

number that was the percent (fraction) 
of the time that you would see a 

product of four if you were to roll two 
dice “many, many times”. 

Frequency: The student conveyed that 
the value was the absolute or relative 
frequency of seeing an event but did 
not convey the existence of a repeating 
process. 

Classical: the student conveyed that 
3/36 was two numbers; the “first” 

(“upper”) number tells you how many 
ways to get a four there are and the 

“second” (“lower”) number tells you 
the number of ways you can roll two 

dice. 
Prediction: The student conveyed that 
the value referred to the next trial 
(outcome approach) or the student 
conveyed that the value was a long-run 
prediction of something unspecified. 

Fixed Number of Rolls: the student 
conveyed that 3/36 was two numbers; 

the 3 told you how many times you 
would see a product of 4 when you 

rolled two dice exactly 36 times  (the 
second number). 

Circular: The student conveyed that 
probability was just “chance” or 
“likelihood” of something happening. 

Chance: the student conveyed that 
3/36 was your “chance” of getting a 

product of four. 
Other: The student’s conveyed 
meaning did not fit any other category. 

Other: The student’s conveyed 
meaning did not fit any other 

category. 
 Less 

Productive 
 

 

The fourth category of conveyed meanings for Question 1 is what I call “Circular”. 
Typical responses that fall into this category are “Probability is the chance that something 
happens”, or “the likelihood of some event”. In trying to understand such student statements, 
I spoke with students who were willing to speak to me from the course as well as other 
students from the mathematics-tutoring center. During these discussions, the students who 
spoke of probability as being “chance” or the “likelihood” of some event, would often answer 
the follow up question of “What is chance/likelihood?” with the statements along the lines of 
“well, chance is, umm, just probability.” Several times these students would also introduce 
the third term or even a fourth (“odds”). If I asked the student to explain probability but 
banned the usage of the terms “chance”, “likelihood”, and “odds”, the students struggled to 
say anything. The way that these students thought about probability appeared to be a near 
unending cycle of labels with little meaning behind those labels. The seemingly only way 
these students broke out of this cycle was when they had to deal with a concrete situation and 
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a specific value for them to speak about. However, this is did not always work. The conveyed 
meaning of Chance for Question 2 is a case in point. Responses here conveyed that 3/36 was 
merely the “chance” that you see a product of four with no further explanation. This circular 
conveyed meaning is the least productive meaning (other than the Other category). This 
meaning does not lay any groundwork for future learning and lends no coherence to the idea 
of probability.  The final category of conveyed meanings for both questions is the “Other” 
category that captures any conveyed meaning not captured by the other categories. 

What meanings do students convey for probability after they received instruction? 
The following bar chart (Figure 2) shows the frequency of responses that fall into these 

categories for Question 1. Overwhelmingly, 89 students (78.1%) gave a response conveyed a 
circular meaning. Nineteen students (16%) appear to think about probability in terms of 
frequency/relative frequency. Of these students, 15 think about probability as the long-run 
relative frequency of some process.  

 
Figure 2. Students' conveyed meanings for Question 1. 

As shown in the Figure 3, a majority of students interpreted the probability value 
(Question 2) as being about a fixed number of rolls of the dice and a fixed number of 4’s 
(40.5%). Only 17.1% (19) of the students thought about 3/36 as representing the percent of 
the time we would see a product of 4. Fifteen students appeared to use a “classical” way of 
thinking, while 19 just substituted “chance” for “probability”.  

  
Figure 3. Students' conveyed meanings for Question 2. 

A natural question that follows from the previous two questions, is how do the students’ 
responses to each question relate to one another? Table 2 shows the two-way contingency 
table for students’ responses to both questions. The vast majority of individuals who appeared 
conveyed that probability is the long-run relative frequency of some event also conveyed that 
a given probability value as the percent of the time we would see some event happen in the 
long run. The majority of students who conveyed that 3/36 as being two numbers separated 
by a bar (either Classical or Fixed Number) or as a “measure of chance”, also conveyed a 
circular meaning for probability. The wide range of interpretations given by students with a 
circular meaning is not surprising. Given that the students’ meaning for probability appears 
related to a word-exchange, the students would need to draw upon some other meanings to 
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help make sense of the value 3/36. All but one student, who explained 3/36 as the “chance” 
of getting a product of 4, gave responses that indicated a circular meaning to Question 1.  

 
Table 2. Students' responses to Question 1 by their responses to Question 2. 

 
Percent of 
the Time Classical 

Fixed Number 
of Rolls Chance Other total 

L.R.R.F. 12 1 0 1 0 14 
Frequency 1 0 1 0 2 4 
Prediction 2 1 0 0 0 3 
Circular 4 12 42 18 10 87 
Other 0 0 1 0 2 3 

total 19 14 44 19 18 111 
 

I will quickly mention that three students did not answer Question 2, thus the reduction in 
the grand total to 111. Taking these results together, we can see most students conveyed 
meanings that are less productive than what they could have. The overwhelming percentage 
of students who initial conveyed a circular meaning for probability for Question 1 is 
worrisome. The prevalence of such conveyed meanings and whether or not this conveyed 
meaning is truly indicative of the students’ actual meanings require further research. 

Are there differences in the students’ conveyed meanings based on which instructor 
they had? 

To explore this question, I used the ordering imposed on the conveyed meanings by the 
notion of productive meanings, to establish a multivariate ranking of the students across both 
questions (Wittkowski, 2004; Wittkowski, Song, Anderson, & Daniels, 2008). This non-
parametric approach makes use of my theoretical perspective without adding any 
assumptions about the data that would be unreasonable (e.g., data are normally distributed). 
The Kruskal-Wallis test is an appropriate method to see if the there are differences between 
students’ conveyed meanings by instructor. The test statistic has a value of 50.7783; thus, 
under a  χ2

2  distribution, the approximate probability of observing a value at least as extreme 
was we did is p <  0.0001. A post-hoc analysis using the Steel-Dwass method shows that 
Instructor A’s students’ conveyed meanings tend to be more productive than Instructor B’s 
students’ (p <  0.0001; large effect size of 0.6255) as well as more productive than Instructor 
C’s students’ (p <  0.0001; large effect size 0.5458). The conveyed meanings from Instructor 
B’s students do not appear to be statistically different from Instructor C’s students’ in terms 
of productivity (p = 0.9268). To examine the site of the difference at the multivariate level, I 
also examined each question. 

Table 3 provides a good visualization of how students described probability in Question 
1. A striking aspect to notice is that all of the students who conveyed that probability is the 
long-run relative frequency all have Instructor A. Additionally, the vast majority of students 
for both Instructor B and Instructor C gave responses that conveyed a circular meaning for 
probability in general.  
Table 3. Students' Responses to Question 1 by Students' Instructor 

 L.R.R.F. Frequency Prediction Circular Other total 
Instructor A 15 2 2 8 0 27 
Instructor B 0 2 1 58 1 62 
Instructor C 0 0 0 23 2 25 

total 15 4 3 84 8 114 
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To further explore this difference, I conducted a Kruskal-Wallis test with α = 0.05. The 
test statistic has a value of 58.0382. Thus under a  distribution, the approximate 
probability of observing a difference at least as extreme as we did is p < 0.0001. The post-hoc 
analysis using the Steel-Dwass method shows that Instructor A’s students’ responses are 
significantly different from the responses of Instructor B’s students (p < 0.0001; large effect 
size of 0.6255) and significantly different from Instructor C’s students (p < 0.0001; large 
effect size of 0.4807). However, the responses from Instructor B’s and Instructor C’s are not 
significantly different from each other (p = 0.1752). 

Much like the prior question, a two-way contingency table provides insight into 
answering the question about the difference in how students interpret a given probability 
value in relation to the students’ instructor. Notice in Table 4 that the vast majority of 
students conveyed that 3/36 as a percent of time have Instructor A and two-thirds of 
Instructor A’s students gave this type of interpretation. None of Instructor C’s students and 
only 1 of Instructor B’s students gave a response that fell into this category. Given that the 
majority of Instructor B’s and Instructor C’s students conveyed a circular meaning for 
probability (see Table 3), the spread of their students’ interpretations is not surprising.  
Table 4. Students' Responses to Question 2 by Students' Instructor 

 Percent of 
the Time Classical 

Fixed Number 
of Rolls Chance Other total 

Instructor A 18 3 3 1 1 26 
Instructor B 1 10 27 12 11 61 
Instructor C 0 2 15 6 1 24 

total 19 15 45 19 13 111 
 

I conducted another Kruskal-Wallis test (with α = 0.05) to test the difference between the 
students’ responses in relation to instructor. The test statistic has a value of 32.2145. Under a 

 distribution, the approximate probability that we observe the differences we did or one 
greater is p < 0.0001. Post-hoc analysis using the Steel-Dwass method indicates that 
Instructor A’s students’ responses are significantly different from those of Instructor B’s 
students (p < 0.0001; large effect size of 0.4995) and Instructor C’s students (p < 0.0001; 
large effect size of 0.4262). The responses of Instructor B’s students are not significantly 
different from Instructor C’s students (p = 0.9801). 

Thus, we can say that there does appear to be statistically significant difference between 
the students’ conveyed meanings based upon which instructor they had. This difference exists 
at all levels of analysis and with consistently large effect sizes. One possible reason for this 
difference could be the meanings that the instructors conveyed during the course for 
probability. Table 5 shows how each instructor’s responses to the same two questions the 
students answered fell under my axial coding system for conveyed meaning. 
Table 5. Instructors’ Conveyed Meanings for Questions 1 and 2. 

 Response to Question 1 
(probability in general) 

Response to Question 2 
(interpret 3/36) 

Instructor A L.R.R.F. 
(55.6%) 

Percent of the Time 
(69.23%) 

Instructor B Circular 
(93.5%) 

Classical 
(16.4%) 

Instructor C Circular 
(92%) 

Classical 
(8.33%) 

 

 χ2
2

 χ2
2
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For Question 1, a majority of each instructor’s students conveyed a meaning of the same 
category.  However, for Question 2, this does not hold true for Instructors B and C.  In both 
cases, the conveyed meaning that the majority of the students conveyed was the Fixed 
Number of Rolls (Instructor B: 44.3%; Instructor C: 62.5%). If the meanings conveyed by the 
instructors on the survey are consistent and representative of their conveyed meanings during 
instruction, then this data suggests that instructors’ conveyed meanings serve as a limiting 
factor for students’ construction of meaning.  

Discussion 

The vast majority (78.1%) of students conveyed a circular meaning for probability, with 
roughly 13% (of 114) conveyed probability as being about the long-run relative frequency of 
some event (given a stochastic process). Similarly, a majority of students (40.5%) conveyed 
that a probability value, 3/36, was about a fixed number of rolls (of dice) and observing 
exactly 3 outcomes that were the event of interest. There are differences in the conveyed 
meanings of each instructor’s students. In the case of Instructor A, the most common 
conveyed meaning for probability (both in general and for interpreting) students gave is 
consistent with thinking about probability as the long-run relative frequency of an outcome of 
some repeatable process. For Instructor B’s and Instructor C’s students, the dominant 
conveyed meaning for probability focused on a circular word-exchange and a fixed number 
of trials. While further investigation into each teacher’s actual meanings for probability as 
well as what meanings they convey during instruction is necessary, there is evidence to 
support the idea that a teacher’s mathematical meanings serve as one of the key components 
of how that teacher teaches (Thompson, 2013). 

Circular conveyed meanings 
One finding of this study is that a vast majority (78.1%) of the students described 

probability in way that which I classified as conveying a circular meaning. As I mentioned 
previously, the origin of this category’s label grew out of many interactions with students 
seeking help from this and other statistics courses in a tutoring center. Any time I worked 
with a statistics student, I would ask him/her to explain probability and much of the time the 
student would give a statement nearly identical to those the circular category.  When I would 
press the student and ban any word in his/her cycle (i.e., “probability”, “chance”, 
“likelihood”, “odds”), the student would often struggle. Only when I would move the student 
into a specific context did many (but not all) students break free of their circular statements.  
Since this original study, I’ve built a set of questions specifically to see test the circular 
nature of students’ conveyed meanings. Preliminary results show that 31 of 35 (88.57%) 
students believe that at least two of the terms “probability”, “likelihood”, and “chance” are 
the same. Twenty of these students explicitly stated that they believe that all three terms as 
the same. Additionally, their responses to other items suggest that their circular conveyed 
meanings are reflective of their actual meanings and those meanings are context dependent.   

Students are not alone in conveying a circular meaning for probability; textbooks, 
instructors, and everyday language equate these three terms. The aforementioned Statistics 
for the Life Sciences (Samuels, 2015) explicitly defines probability as “a numerical quantity 
that expresses the likelihood of an event” (p. 83). The authors go on to use “chance” 
interchangeably with “probability”. The OpenIntro Statistics (Diez et al., 2016) uses 
“chance”, “probability”, and “likely” interchangeably as well. Even the Moore, McCabe, and 
Craig (2012) textbook includes “…what chance, or probability, each possible sample has” (p. 
193). I will admit that in the past, I supported students in coming the think about 
“probability”, “likelihood”, and “chance” as all being the same. However, there do appear to 
be consequences for this. As instructors, we must be aware that the meanings conveyed to our 
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students are not necessarily the meanings we have nor we intended to support students in 
constructing (Thompson, 2013, 2015). By intentionally making distinctions between the 
meanings we want students to construct for “probability”, “likelihood”, “chance”, and “odds” 
(and “personal (un-) certainty”) we can better help students develop more productive ways of 
thinking about situations involving uncertainty. To this end I propose that instructors, 
authors, and curriculum designers adopt the following distinctions: 

• Probability refers to the long-run relative frequency of an event when you imagine 
repeating a stochastic process indefinitely. The description of the particular 
stochastic process includes any assumptions. Probability is a measure that focuses 
on the occurrence of events given our theory/assumptions. 

• Likelihood refers to the long-run relative frequency of a parameter taking on a 
certain value (more generally, our assumptions being “true”) given our observed 
data. 

• Chance refers to the relative size of the subset of outcomes of interest with respect 
to the size of the sample space. While a stochastic process exists, there is an 
assumption that each simple outcome has the same chance of occurring as every 
other simple outcome. This assumption removes the need to carry out the 
stochastic process. 

• Odds is a ratio formed by using one of the above measures and comparing an 
event’s under that measure to the event’s complement’s under that same measure. 

• Personal (Un-) Certainty refers to an individual’s belief that a particular result will 
occur in a non-repeatable process; i.e. there is no stochastic process in the 
situation. 

I must point out that the distinctions here are not new. The distinction I make between 
probability and likelihood is consistent with how statisticians already treat likelihood 
functions and cumulative/probability density functions. What I’ve called chance is also 
known as “Classical” or “Laplacian” probability (von Mises, 1981; Weisberg, 2014). Von 
Mises (1981) argued that his notion of probability built upon the notion of long-run relative 
frequency in the collective was not the same as Laplace’s which hinges on the assumption of 
equal chances. Further he notes that “authors start with the ‘equally likely cases’, only to 
abandon this point of view at a suitable moment and turn aside to the notation of probability 
which is based on the frequency definition” (von Mises, 1981, p. 99). Savage’s (1972) notion 
of “personalistic probability” serves as the basis for what I’ve called personal (un-) certainty; 
which he argued is fundamentally different from both probability and chance. What is new is 
my call for instructors (and researchers) to use different terms for each of these ideas rather 
than a single umbrella term (“probability”) with a modifier (“classical”, “frequentist”, 
“subjective”, etc.) that often gets dropped when writing. I hypothesize that by using different 
terms for the different ideas and discussing the differences, fewer students will develop 
meanings that lead them to convey a circular meaning for probability.   

Limitations and Future Directions 
A limitation to this study is that responses to two questions do not necessarily provide 

enough information to confidently describe an individual’s meanings for a mathematical 
topic. However, when considering the role of conveyed meanings, this limitation is not as 
serious as initial thought. We cannot ignore the fact that the students chose to write what 
he/she did. I believe that the meaning that the students conveyed is strongly related to each 
students’ initial and/or dominate meaning for probability. If the students’ go-to explanation 
for probability is circular, then this suggests that their underlying meanings are not as 
productive as we would desire. Further research including a larger survey with a set of more 
items designed to get at students meanings for probability is in the works. As I mentioned in 
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the previous section, preliminary results from piloting indicate that a majority of students 
convey a circular meaning for probability. Additionally, given that this was an observational 
study, we cannot definitively say that Instructor A is the cause for stark differences between 
the three sets of students’ responses. However, given that Instructor A made the decision to 
follow a curriculum centered on assisting students in developing productive ways of thinking, 
there is evidence of a strong causal relationship. Further research could substantiate this 
claim.  

The notion of productive meanings for probability joined with the notion of conveyed 
meaning is useful in the development of a scale to measure students’ progress in developing 
coherent meanings. Such a scale serves as a progress variable which represents “(a) the 
developmental structures underlying a metric for measuring student achievement and growth, 
(b) a criterion-reference context for diagnosing student needs, and (c) a common basis for 
interpretation of student responses to assessment tasks” (Kennedy & Wilson, 2007, pp. 3–4). 
Establishing a progress variable for probability along with items that measure such a variable 
has the potential to change how we teach probability at all levels. Additionally, a progress 
variable for probability is vital for other areas of statistics education research including 
students’ notions of p-values, hypothesis testing, and distributions of random variables.  

This study serves as but a first step in examining how undergraduate students’ conveyed 
meanings for probability after receiving instruction. I introduced my notion of conveyed 
meaning as the constrained implications that a receiver attributes to the sender’s statements. 
Conveyed meanings can provide insight into the actual meanings that an individual has. The 
present study indicates that the dominant conveyed meanings for probability after instruction 
are circular and calculationally oriented. One section of the course, which used a curriculum 
aimed to support students in developing rich meanings, does have a number of students who 
conveyed a highly productive meaning for probability. Further work needs to be done in 
order to help more students develop a rich and deep meaning for probability that is coherent 
and does work for the students in statistics. 
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Exploration of the Factors that Support Learning:  
Web-based Activity and Testing Systems in Community College Algebra 

 
Shandy Hauk Bryan Matlen 

WestEd WestEd 
 
A variety of computerized interactive learning platforms exist. Most include instructional 
supports in the form of problem sets. Feedback to users ranges from a single words like 
“Correct!” to offers of hints and partially to fully worked examples. Behind-the-scenes design of 
such systems varies as well – from static dictionaries of problems to “intelligent” and responsive 
programming that adapts assignments to users’ demonstrated skills, timing, and an array of 
other learning theory-informed data collection within the computerized environment. This short 
paper presents background on digital learning contexts and describes the lively conversation 
with attendees at the conference poster session. The topics were the research design and early 
results of a cluster-randomized controlled trial study in community college elementary algebra 
classes where the intervention was a particular type of web-based activity and testing system.  
 
Key words: Adaptive Tutoring System, College Algebra, Multi-site Cluster Randomized 
Controlled Trial 
 

Research Questions 
Funded by the U.S. Department of Education, we are conducting a large-scale mixed 

methods study in over 30 community colleges. The study is driven by two research questions: 
Research Question 1: What student, instructor, or community college factors are associated with 

more effective learning from the implemented digital learning platform? 
Research Question 2: What challenges to use-as-intended (by developers) are faculty 

encountering and how are they responding to the challenges as they 
implement the learning tool? 

 
Background and Conceptual Framing 

First, there are distinctions among cognitive, dynamic, and static learning environments (see 
Table 1). Learning environments can vary along at least two dimensions: (1) the extent to which 
they adaptively respond to student behavior and (2) the extent to which they are based on a 
careful cognitive model.  
  
Table 1. Conceptual framework of the types of instruction based on adaptability and their basis 
in a theory of learning. 
 Static Dynamic 
Is a particular 
model of learning 
explicit in design 
and implementation 
(structure and 
processes)? 

No 
 

Text and tasks with 
instructional adaptation 
external to the materials  

Adaptive tutoring systems 
(Khan Academy, ALEKS, 
ActiveMath) 

Yes Textbook design and use 
driven by fidelity to an 
explicit theory of learning 

“Intelligent” tutoring systems 
(Cognitive Tutor) 

Static learning environments are those that are non-adaptive without reliance on an 
underlying cognitive model – they deliver content in a fixed order and contain scaffolds or 
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feedback that are identical for all users. The design may be based on intuition, convenience, or 
aesthetic appeal. An example of this type of environment might be online problem sets from a 
textbook that give immediate feedback to students (e.g., “Correct” or “Incorrect”).  

Dynamic learning environments keep track of student behavior (e.g., errors, error rates, or 
time-on-problem) and use this information in a programmed decision tree that selects problem 
sets and/or feedback based on students’ estimated mastery of specific skills. An example of a 
dynamic environment might be a system such as ALEKS or the “mastery challenge” approach 
now used at the online Khan Academy. For example, at khanacadmy.org a behind-the-scenes 
data analyzer captures student performance on a “mastery challenge” set of items. Once a student 
gets six items in a row correct, the next level set of items in a programmed target learning 
trajectory is offered. Depending on the number and type of items the particular user answers 
incorrectly (e.g., on the path to six items in a row done correctly), the analyzer program identifies 
target content and assembles the next “mastery challenge” set of items. Above and beyond such 
responsive assignment generation, programming in a “cognitively-based” dynamic environment 
is informed by a theoretical model that asserts the cognitive processing necessary for acquiring 
skills (Anderson et al. 1995; Koedinger & Corbett, 2006). For example, instead of specifying 
only that graphing is important and should be practiced, a cognitively-based environment also 
will specify the student thinking and skills needed to comprehend graphing (e.g., connecting 
spatial and verbal information), and provide feedback and scaffolds that support these cognitive 
processes (e.g., visuo-spatial feedback and graphics that are integrated with text). In cognitively-
based environments, scaffolds themselves can also be adaptive (e.g., more scaffolding through 
examples can be provided early in learning and scaffolding can be faded as a student acquires 
expertise; Ritter et al., 2007). Like other dynamic systems, cognitively-based systems can also 
provide summaries of student progress, which better enable teachers to support struggling 
students. Some studies have shown the promise of cognitively-based dynamic environments in 
post-secondary mathematics (Koedinger & Sueker, 1996). 
 

Method 
The study we report here is a multi-site cluster randomized trial (note: because the study is 

currently underway, we purposefully under-report some details). Half of instructors at each 
community college site are assigned to use a particular adaptive web-based system in their 
instruction (Treatment condition), the other half teach as they usually would (Control condition). 
The primary outcome measure for students’ performance is an assessment from the Mathematics 
Diagnostic Testing Program (MDTP), which is a valid and reliable assessment of students’ 
algebraic knowledge (Gerachis & Manaster, 1995).  

Using a stratified sampling approach to recruitment, we first conducted a cluster analysis on 
all 112 community college sites eligible to participate in the study (i.e., in a state that was a study 
partner and offering semester-long courses in elementary algebra that met at least some of the 
time in a physical classroom or learning/computer lab). The cluster analysis was based on 
college-level characteristics that may be related to student learning (e.g., average age of students 
at the college, the proportion of adjunct faculty, etc.). This analysis led to five clusters of 
colleges. Our recruitment efforts then aimed to include a proportionate number of colleges within 
each cluster. The primary value of this approach is that it allows more appropriate generalization 
of study findings to the target population (Tipton, 2014). Recruitment for our first cohort of 
participants yielded a study sample of 38 colleges similar to the overall distribution across 
clusters that was the target for the sample (see Figure 1).  
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Figure 1. Recruited sample proportions and target sample proportions across clusters. 

 
 
Sample for this Report 

Initial enrollment in the study included 89 teachers across the 38 college sites. For this 
report on early results, we used the data from the participating students of 30 instructors across 
19 colleges. Student and teacher numbers related to the data set reported on here are shown in 
Table 2. 
 

Table 2. Counts of Teachers, Students, and Colleges in the Study. 
Condition Teachers Students Colleges 
Control 19 147 15 

Treatment 11 80 10 
Total 30 227 19 

 
Quantitative Analysis 

The primary aim of the quantitative analysis was to address Research Question 1, how and 
for whom the particular adaptive computer environment might be effective. To this end, 
ultimately we will employ Hierarchical Linear Modeling (HLM) on the full data set. Models will 
include interaction terms between instructors’ treatment assignment and covariates at different 
levels (e.g., students’ history of course-taking, self-concept of ability), to explore the moderating 
impact of tool use on student learning. The primary post-test outcome measure is the MDTP 
elementary algebra assessment. A different but related MDTP pre-algebra diagnostic served as 
the measure of students’ baseline knowledge. For this report, we have focused on the MDTP 
post-test as an indicator of algebraic knowledge. 
  
Qualitative Analysis 

To address Research Question 2, a great deal of textual, observational, and interview data 
are still being gathered. These data allow careful analysis of the intended and actual use of the 
learning environment and the classroom contexts in which it is enacted – an examination of 
implementation structures and processes. Indices of specific and generic fidelity derived from 
this work also will play a role in HLM generation and interpretation in the coming year. 
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Preliminary Results 
Fall 2015 was the first full semester of data gathering for the project. It was our “practice” 

semester in that researchers were refining instruments and participant communication processes 
while treatment condition instructors were trying out the web-based learning tool with their 
classes for the first time. The “efficacy study” semester takes place in Spring 2016.  
 
At the Conference: Poster Conversations 

At the time of the conference, we had early results from the practice semester that suggested 
an aptitude by treatment interaction. Specifically, students in the Treatment group who started 
out with lower scores relative to the group mean on their algebra readiness pre-test, showed more 
benefit than Control group students (i.e., Treatment group students from the lower scores group 
had higher scores, relative to the group mean, on their post-test in elementary algebra). Some 
discussions in the poster session at the conference revolved around this interaction. For instance, 
one conference participant reported finding a similar result using a web-based technology: In his 
study, lower ability students exhibited higher grades when they were required to use the web-
based tutor than when they were not. In another discussion, a conference participant 
hypothesized that instructors need to gain familiarity with technology before they can effectively 
use web-based learning tools for teaching. Indeed, after a semester of practice, Treatment but not 
Control instructors in our study reported an increase in their ability to use technology for 
teaching mathematics. Though not statistically significant (p = .12), the difference was consistent 
with the conference participants’ hypothesis. Another key set of conversations at the poster were 
about the idea of an adaptive system that was based on a relatively stable “learning trajectory” or 
“genetic decomposition” as compared to a “cognitively-based” model approach that includes 
variability within a trajectory or decomposition, depending on the student, as the mechanism to 
guide selection algorithms when diagnosing and responding to student work in the computerized 
learning environment. We believe interactions such as those at the poster help to improve 
communication between the cognitive science research community and the RUME community. 

 
Since the Conference: Updated Results 

Since the conference, we have cleaned more data and have conducted analyses on this 
updated set. These analyses indicated that the aptitude by treatment interaction that was reported 
on the poster was no longer statistically significant: Estimate = -0.04, p = 0.71. Nevertheless, 
findings may continue to change as we continue to collect data in our efficacy semester. 

Here we can add information about a new analysis of post-semester test scores that 
corrected for instructor clustering and students’ scores on their algebra readiness pre-test. This 
analysis indicated that students in the treatment condition (adjusted M = 23.80, unadjusted SD = 
6.67, N = 80) performed higher on their post-test than students in the control condition (adjusted 
M = 22.45, unadjusted SD = 8.27, N = 147), albeit these mean scores, at about 1 point difference, 
were not statistically different (Estimate = 0.93, p = 0.62). The effect size for this difference was 
Hedges’ g = .12, which is considered small, but within expectation for efficacy trials of this type 
and is worth noting (Cheung & Slavin, 2015; Hill et al. 2008). As mentioned, this analysis 
included only a subset of students (data cleaning is ongoing) and results may continue to change 
as we collect, clean, and add more data to the analysis. Figure 2 shows box-plots of pre-test and 
adjusted post-test scores. 
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Figure 2. Left: Box-plot of pre-test scores. Right: Box-plot of adjusted post-test scores. 

 
Next Steps 

We will continue this study with a second cohort of new participants who will repeat the 
year-long study in the 2016-2017 academic year. Our specific objectives in the upcoming year 
are to (1) complete data collection from the first cohort for the primary efficacy study (i.e., data 
for hundreds of students for Spring 2016), (2) continue reporting findings from the Spring 2016 
efficacy study of cohort 1, (3) recruit a second cohort of participants for another practice 
semester and efficacy study in 2016-17, and (3) begin the practice semester of the study with 
second cohort of participants. 

Of particular interest is how the spread of information shown in Figure 3 might look for the 
efficacy (Spring 2016) data set. We look forward to having more to report and new questions to 
discuss at the 2017 conference. 

 
Figure 3. Adjusted mean post-test score by condition. Vertical bars represent standard errors of 

the means. 
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How “Good” is “Good Enough”? Exploring Fidelity of Implementation for a Web-based 
Activity and Testing System in Developmental Algebra Instruction 

Shandy Hauk Katie Salguero Joyce Kaser 
WestEd WestEd WestEd 

 
A web-based activity and testing system (WATS) has features such as adaptive problem sets, 
videos, and data-driven tools for instructors to monitor and scaffold student learning. Central to 
WATS adoption and use are questions about the implementation process: What constitutes 
“good” implementation and how far from “good” is “good enough”? Here we report on and 
illustrate our work to provide structure for such examination. The context is a study about 
implementation that is part of a state-wide randomized controlled trial examining student 
learning in community college algebra when a particular WATS suite of tools is used. Discussion 
questions for conference participants dug into the distinctions among intended, enacted, and 
achieved curriculum and the processes surrounding these as well as the challenges and 
opportunities in researching fidelity of implementation in the community college context, 
particularly the role of instructional practice as a contextual component of the research.   
 
Key words: Fidelity of Implementation, College Algebra, Research Tools 
 

Background 
 

 “How good is good enough?” has plagued humankind since the early cave dwellers 
wondered if killing three bison would get the family through the cold winter months. Even today, 
with our technological advances, we still ask questions such as “Do I have enough money for 
retirement?” “Have I practiced enough hours?” or “Is what I’m doing good enough?”  

This ubiquitous question plagues social science researchers who are assessing the whats, 
whys, and hows of an intervention. Did the instructors have enough support to adequately 
implement the new curriculum? Were the materials adequate to provide enough practice hours 
for students? Was the instruction sufficient to prepare students to pass the final exam? Oh, if 
there were only an answer! 

Study Context 
We chose to attempt to answer this question of “good enough” in the implementation of a 

large project investigating relationships among student achievement and varying conditions of 
implementation for a web-based activity and testing system (WATS) used in community college 
algebra. We selected an implementation research approach that we had used previously and 
found to be helpful. In the new study we hope to replicate and to refine our earlier experience. 
Implementing the WATS is part of a statewide, randomized controlled trial examining student 
learning in community college algebra. WATS tools include adaptive problem sets, instructional 
videos, and data-driven tools for instructors to use to monitor and scaffold student learning. The 
WATS is accessed on the internet and is designed primarily for use as replacement for some in-
class individual seatwork.  
Research Questions 

In what ways does a program-in-operation have to match the program-as-intended to be 
successful? Well, we have to identify what “success” means and also to identify alignment 
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between intended and enacted implementation. Thus, two major research questions drive our 
attempt to answer the “good enough” question: 

(1) What is the nature of alignment between how the program is implemented and how the 
developer/publisher envisioned it (i.e., what is the fidelity of implementation)? 

(2) What are the relationships among varying conditions of implementation (differing 
degrees of fidelity) and the extent to which students are achieving the desired results? 

 
Conceptual Framework 

The theoretical basis for our approach lies in program theory, “the construction of a 
plausible and sensible model of how a program is supposed to work” (Bickman, 1987, p. 5). 
Having such a model in place allows researchers to conjecture and test causal connections 
between inputs and outputs, rather than relying on intuition or untested assumptions. As in many 
curricula projects, developers of the program in our study did pay attention to learning theory in 
determining the content in the web-based system, but the same was not true for determining 
implementation processes and structures. The pragmatic details of large-scale classroom use 
were under-specified. Developers articulated their assumptions about what students learned as 
they completed activities, but the roles of specific components, including the instructor role in 
the mediation of learning, were not clearly defined. 

As Munter and colleagues (2014) have pointed out, there is no agreement on how to assess 
fidelity of implementation. However, there is a growing consensus on a component-based 
approach to measuring its structure and processes (Century & Cassata, 2014).  Fidelity of 
implementation is the degree to which an intervention or program is delivered as intended 
(Dusenbury, Brannigan, Falco, & Hansen, 2003). Do implementers understand the trade-offs in 
the daily decisions they must make “in the wild” and the short and long-term consequences on 
student learning as a result of compromises in fidelity? Century and Cassata’s (2014) summary 
of the research offers five core components to consider in fidelity of implementation: Diagnostic, 
Procedural, Educative, Pedagogical, and Student Engagement (see Table 1).   

Table 1. Components and Focus in a Fidelity of Implementation Study 

Components Focus 
Diagnostic These factors say what the “it” is that is being implemented (e.g., 

what makes this particular WATS distinct from other activities). 
Structural-Procedural 
 

These components tell the user (in this case, the instructor) what to 
do (e.g., assign intervention x times/week, y minutes/use). These 
are aspects of the expected curriculum. 

Structural-Educative These state the developers’ expectations for what the user needs to 
know relative to the intervention (e.g., types of technological, 
content, pedagogical knowledge are needed by an instructor). 

Interaction-Pedagogical 
 

These capture the actions, behaviors, and interactions users are 
expected to engage in when using the intervention (e.g., 
intervention is at least x % of assignments, counts for at least y % 
of student grade). These are aspects of the intended curriculum. 

Interaction-Engagement  These components delineate the actions, behaviors, and 
interactions that students are expected to engage in for successful 
implementation. These are aspects of the achieved curriculum. 
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Method 

The components in Table 1 are operationalized through a rubric, the guide for collecting and 
reporting data in our implementation study. A rubric is a “document that articulates the 
expectations for an assignment by listing the criteria, or what counts, and describing the levels of 
quality from excellent to poor” (Andrade, 2014). Each component has several factors that define 
the component. The project’s research team has developed a rubric for fidelity of 
implementation, identifying measurable attributes for each component (for example, see Table 2 
for some detail on the “educative” component). 

Table 2. Example of rubric descriptors for levels of fidelity, Structural-Educative component. 

Educative: These components state the developers’ expectations for what the user needs to 
know relative to the intervention. 

 High Level of Fidelity Moderate Fidelity Low Level of Fidelity 
Users’ 
proficiency in 
math content  

Instructor is proficient to 
highly proficient in the 
subject matter.  

Instructor has some gaps 
in proficiency in the 
subject matter.  

Instructor does not have 
basic knowledge and/or 
skills in the subject area.  

Users’ 
proficiency in 
TPCK  

Instructor regularly 
integrates content, 
pedagogical, and 
technological 
knowledge in classroom 
instruction. 
Communicates with 
students through WATS. 

Instructor struggles to 
integrate CK, PK, and 
TK in instruction. 
Occasionally sends 
digital messages to 
students using WATS 
tools.  

Instructor CK, PK, 
and/or TK sparse or 
applied in a haphazard 
manner in classroom 
instruction. Rarely uses 
WATS tools to 
communicate with 
students.  

Users’ 
knowledge of 
requirements 
of the 
intervention 

Instructor understands 
philosophy of WATS 
resources (practice 
items, "mastery 
mechanics," analytics, 
and coaching tools),  

Instructor understanding 
of the philosophy of 
WATS tool has some 
gaps. NOTE: 
Disagreeing is okay, this 
is about instructor 
knowledge of it. 

Instructor does not  
understand philosophy 
of WATS resources. 
NOTE: Disagreeing is 
okay, this is about 
instructor knowledge of 
it. 

Users’ 
knowledge of 
requirements 
of the 
intervention 

Instructor understands  
the purpose, procedures, 
and/or the desired 
outcomes of the project 
(i.e., "mastery") 

Instructor understanding 
of project has some gaps 
(e.g., may know 
purpose, but not all 
procedures, or desired 
outcomes).  

Instructor does not 
understand the purpose, 
procedures, and/or 
desired outcomes. 
Problems are typical.  

Results 

Our focus here is two-fold. We first offer the preliminary results of rubric refinement from 
data collected through observation, interview, and teacher self-report in weekly surveys (also 
known as “teaching logs”). These results were shared on the poster (and handouts) at the 
conference. Then we summarize the highlights of the conversations about researching fidelity of 
implementation that emerged at the conference.   
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Defining and Refining Measures for the Fidelity of Implementation Rubric 
The ultimate purpose of a fidelity of implementation rubric is to articulate how to determine 

what works, for whom, under what conditions. In addition to allowing identification of alignment 
between developer expectations and classroom enactment, it provides the opportunity to discover 
where productive adaptations may be made by instructors, adaptations that boost student 
achievement beyond that associated with an implementation faithful to the developers’ view.  

The example on the poster was for the procedural component from our WATS intervention 
(see Table 3, next page). The Structural-Procedural components tell the user what needs to be 
done (e.g., makes assignments for students to complete using the WATS tool).  The table has 
four rows of expectations. Columns define high, moderate, and low fidelity followed by data 
sources and notes on the measures used.  

We employ a mixed-method, feedback design to capture and communicate about fidelity of 
implementation. A feedback design for refining an intervention can be driven by qualitative 
research and supported by quantitative snapshots of student performance, teacher 
understandings, and systemic growth. Or vice versa. Our rubric (Table 3) lists primary, 
secondary and tertiary sources of data for gathering information about the four items on the 
procedural component of the fidelity rubric. These sources are WATS Application programming 
interface (API) – this provides data from the digital audit trail of WATS usage, occasional 
classroom observations for some instructors with an associated instructor interview, instructor 
self-report (through logs and surveys), and student survey. These measures were selected based 
on available sources and constraints on project time and funding.  

We always dance between what we want to know about an intervention and what we are 
able to measure. Instructor self-report logs are highly useful as they can document what is 
happening with implementation.  For example, logs can tell us how many times an instructor 
mentioned or used the intervention. And that accretion across weeks gives the area under the 
curve of what’s going on across time, contributing to the big picture, of implementation.  

In using the rubric, we assign a number to each level of fidelity. This can be as simple as a 3 
for a high level of fidelity, 2 for a moderate level of fidelity, or a 1 for a low level; or the items 
can be weighted. Note on Table 3 under “amount of instruction – mindset lessons” we will know 
instructors’ use of mindset lessons through logs and an interview question and can then assign a 
high, moderate, or low level of fidelity to the item (see Table 2, Notes on Metrics).  

The score for the intervention will be the total number of points assigned in completing the 
rubric as a ratio of the total possible, across all instructors. It will also be possible to create a 
fidelity of implementation score on each row for each instructor – these data will be used in 
statistical modeling of the impact of the intervention as part of a “specific fidelity index” 
(Hulleman & Cordray, 2009). We first total points for the item, then the component, and finally 
all components for a single score as an index of implementation.  

We anticipate having data that allow us to answer several questions related to “good 
enough.” For example, for Research Question 1: 

• To what extent did the instructors assign WATS activities? 
• To what extent did the instructors encourage students to complete the WATS activities? 
• To what extent were the mindset lessons implemented? 
• How frequently was WATS assigned? 

And, for Research Question 2: What is the relationship between level of mastery students 
achieved and number of WATS activities students completed or number of mindset activities 
students experienced?
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At the Conference: Poster Conversations 
The factors included in the poster were meant as a starting point for conversation. The 

poster shared the theory behind the protocol and was a touchstone for gathering ideas from 
RUME attendees on dissemination that might be productive as we move forward into the full 
study (2015 is a “practice” year for the study). Here we summarize the highlights of the 
conversations at the poster. 

Participant comment: I never thought about this before, that somebody might pick up an activity 
that I designed and use it in a counter-productive way. Why would they even try it if they 
didn’t think like I did about how to use it?  

Response: There are myriad of reasons why someone would change the way they conduct an 
activity that another had designed. They can be from differences in content, pedagogical, 
or pedagogical content knowledge, or due to limitations of time or resources or even relate 
to someone wanting to “brand” the activity as their own. Just remember: what you call 
counter-productive may be seen as a helpful tweaking to someone else. The key lies in the 
impact of the change on the desired result (e.g., student learning gains).  

Participant question: How do you do curriculum development when multiple people develop 
something for use by multiple people, including some who are not in the room? 

Answer: Very skillfully! Your start with using data about your intended audience. As you design, 
you determine what you think will be your fidelity factors – the ones that drive your 
anticipated results. Next you implement your activity and then gather data to determine 
results and confirm the role of your fidelity factors. Further testing can show what happens 
when you vary a fidelity factor like contact time or dosage. These are all excellent 
opportunities to document “good enough.” Remember you are dealing with human beings. 
Keep in mind the idea of “close approximation.” 

Participant question: How do you decide what the “it” is that is being implemented? 
Answer. Excellent question. The “it” is the intervention, the project, the curriculum.  

Determining the “it” is answered in part by asking about a series of diagnostic factors that 
are part of our model. We start by interviewing developers, asking these diagnostic 
questions. One of the questions is how the intervention, project, or curriculum differs from 
others that are similar. Then we layer this information with observation of the training that 
developers give to faculty and the kinds of questions faculty ask about using the 
intervention during the training. You might think that determining the “it” is easy – 
sometimes yes, sometimes no. Unless you zero in on what the “it” is, you will never get to 
the level of specificity required to evaluate fidelity factors.   

Participant question: I like to think of a three-way overlapping Venn diagram for an 
intervention: the intended curriculum, the implemented curriculum, and the achieved 
curriculum. Can your framework relate to this concept? 

Answer: Our model is a fourth party that attempts to take in perspectives of all these aspects 
curricula. It can connect them as an important way of monitoring for efficacy (also, see the 
notes in the second column of Table 1, above). 

Participant comment: I am surprised that a component is that instructors might need certain 
types of knowledge before they are ready to use a particular type of intervention. 

Response: Usually something about an intervention is new. Maybe new content. Maybe new 
pedagogy. The instructor may not have learned whatever is required to carry out the 
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intervention. One of the major reasons interventions fail is that participants are asked to do 
new things (such is the nature of interventions) for which they are given little or no 
training. 

Participant question: I like the idea of descriptions of performance at the high, medium, and low 
levels. Can you develop materials that incorporate such descriptions on the front end? 

Answer: Sure you can. Such descriptions can be used at each level from the beginning of an 
activity or program through the implementation and finally for the evaluation at the end.  

Participant question: Does your framework help increase equity in any respect? 
Answer: The specificity of what fidelity of implementation requires we include in the rubrics is 

an opportunity for us to address potential challenges to equity and inclusion in the 
implementation of an intervention. How to make college math accessible to all students is 
a theme of the work in in the WATS system we are studying. Investigating fidelity of 
implementation allows us to identify how curriculum and its implementation play a part in 
that accessibility process. 

Participant question: Where is it explicit to a user what the developer’s intentions are?  
Answer: Sometimes the developers will tell you outright in the introductory material. Other times 

the intent is buried in the content, and you have to unearth it. Sometimes developers are 
very cognizant of their intentions; other times, oblivious. Regardless of level of 
transparency, intentions are always there. 

Participant question: As a classroom instructor, where in the rubrics is my relationship with the 
WATS online resource? My perspective about its use in teaching and learning? 

Answer: Yes, that’s something we are wrestling with as we develop the details of the Educative 
rubric (Table 2). Right now, the rubric looks at the degree of knowledge instructors have 
about the intended relationship (e.g., about the philosophy behind the WATS tool), not at 
the alignment of the instructor’s view with that perspective. We agree success of 
implementation may depend on how someone sees the resource, but is it necessarily an 
aspect of being faithful to the intentions of the tool? For an instructor, the resource can be 
a partner, or a distinctly separate support for teaching, or even an obstacle. The Concerns 
Based Adoption Model provides some ideas that we are pursing (Hall & Hord, 2014). 

Participant comment: It’s a new idea to me that implementation could be a major field of study. 
Response: It has grown exponentially over the past 20 years, and we have learned much about 

the implementation process. You have probably heard the cliché, “We tried that once and 
it didn’t work.” What actually happens most often is a failure in implementation. Even the 
best ideas will collapse with insufficient or faulty implementation.  

Implications for Practice 

By definition, high fidelity implementation of an instructional tool is use that results in 
greater learning gains than non-use. Instructors and students are better equipped to implement 
with high fidelity when they have answers to questions like: What are the characteristics of good 
implementation? Among preferred actions in implementation, which are the highest priority? 
What are the trade-offs and consequences of making particular decisions about use of the tool?  

Answers to these questions provide data for determining what is “good enough” and help 
users make the best decisions for program efficacy. As the field moves forward, we seek 
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effective ways to communicate implications to college instructors, department chairs, as well as 
stakeholders in the larger public arena. 
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A Framework for Mathematical Understanding for Secondary Teaching: The  
Mathematical Activity perspective 
 
                   M. Kathleen Heid                                     Patricia S. Wilson 

Pennsylvania State University                   University of Georgia 
 
Abstract: A framework for mathematical understanding for secondary teaching was developed 
from analysis of the mathematics in classroom events. The Mathematical Activity perspective 
describes the mathematical actions that characterize the nature of the mathematical 
understanding that secondary teachers could productively use. 
 

Mathematics teaching at the collegiate level focuses on enabling students to develop solid 
understanding of mathematics.  Although collegiate mathematics students often describe 
mathematics as learning specific topics and strategies and applying this knowledge to their work, 
their instructors may have additional but less explicit goals such as valuing the structure of 
mathematics, being able to create a deductive argument, or exploring and comparing systems of 
mathematics. These latter goals are especially important for prospective teachers of secondary 
mathematics, and college mathematics instructors are attending in new ways to the mathematical 
preparation of those who will teach mathematics.  

 
Over the past three decades, mathematics education researchers and theorists have 

increased their focus on the mathematical knowledge of teachers that helps teachers reach their 
goals of promoting a more robust understanding of mathematics in their students. During that 
time, researchers have refined the focus from Shulman’s (1986) construct of pedagogical content 
knowledge to constructs such as mathematical knowledge for teaching (MKT) (Ball, 2003; Ball 
& Bass, 2003; Ball & Sleep, 2007a; Ball & Sleep, 2007b; Ball, Thames, & Phelps, 2008) and 
knowledge of algebra for teaching (KAT) (Ferrini-Mundy, Floden, McCrory, Burrill, & Sandow, 
2005; McCrory, Floden, Ferrini-Mundy, Reckase, & Senk, 2012). Work on MKT is, perhaps, the 
best known of the research programs focused on teachers’ mathematical knowledge. MKT 
originated with a reflection on the mathematical knowledge involved in the mathematical work 
of teaching at the elementary level. MKT partitions the territory of mathematical thinking into 
categories such as specialized content knowledge, common mathematical knowledge, and 
mathematics at the horizon. While the MKT categories can partition mathematical knowledge at 
the secondary level as well as at the elementary level, those categories may not characterize the 
nature of mathematical thinking that seems to distinguish mathematics at the secondary school 
level.  

 
In their work in secondary mathematics, students expand their mathematical knowledge 

to include new ideas such as irrational numbers, complex numbers, static and rotating objects, 
sample spaces, and a variety of ways to represent these ideas.  But the differences between 
mathematics at the elementary and secondary levels are not solely extensions of the topics 
involved, but also a change in the nature of mathematical thinking involved. Whereas both 
elementary and secondary mathematics honor deductive reasoning, secondary mathematics 
places a much stronger emphasis on deductive thinking within a closed mathematical system. It 
is in the context of secondary mathematics that curricula focus on reasoning on the basis of a 
well-defined system of given properties and relationships. For example, the work of secondary 
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students in the study of geometry is more likely to occur at the third or fourth van Hiele level 
(making deductive connections and constructing proofs) rather than the first or second levels 
(focused on visualizing or recognizing properties of geometric objects) that are more prominent 
at the elementary level. At the elementary level, students develop ways to represent 
mathematical relationships. As students progress through school mathematics, their repertoires of 
ways to represent mathematical relationships expands so that, as they engage in secondary 
mathematics, they can be expected to link representations of the same mathematical entities and 
to reason about a mathematical entity in one representation making conclusions about that entity 
in another representation.   

 
Secondary teachers need to be able to reason flexibly enough to recognize and act on 

opportunities for their students to build capacities for reasoning in a closed system and for 
capitalizing appropriately on a range of representations.  They need mathematical understanding 
that enables them to perform such activities as creating examples, nonexamples, and 
counterexamples of entities encountered in secondary mathematics, to identify special cases of 
broad categories of mathematical objects, and to explain when a general statement can or cannot 
be extended to a larger or different domain or set of mathematical objects.  Secondary teachers 
need to make connections across mathematical systems.  In order to facilitate learning secondary 
mathematics, the work or context of teaching requires a depth of specific mathematical 
understanding that incorporates the more subtle but important goals of mathematics teaching. 
Mathematics teachers must not only understand mathematics but they must enable others to 
understand mathematics in the fullest sense. They need to pose interesting questions and tasks 
that bring the structure of mathematical systems alive. They need to understand the mathematical 
thinking of students in order to correct or challenge their thinking.  They need to be able to 
reflect on the curriculum and organization of mathematical ideas. The context of learning 
mathematics requires specific mathematical understanding beyond pedagogical knowledge.  

 
The six faculty involved in our project on Mathematical Understanding for Secondary 

Teaching (Glen Blume, M. Kathleen Heid, Jeremy Kilpatrick, James Wilson, Patricia Wilson, 
and Rose Mary Zbiek), recognizing the need to understand better the nature of the mathematical 
understanding that could best serve secondary teachers, adopted the goal of developing a 
framework that could account for the mathematics a secondary teacher could productively use in 
the context of teaching secondary mathematics. We decided to began our inquiry by identifying 
mathematical opportunities secondary teachers actually encounter, and so we began in the 
classroom.  As we embarked on our study of mathematical opportunities unfolding in the 
classroom, we recognized many of the ideas expressed by others who have attended to secondary 
mathematics (e.g., Adler & Davis, 2006; Cuoco, 2001; Cuoco, Goldenberg, & Mark, 1996; Even, 
1990; McEwen & Bull, 1991; Peressini, Borko, Romagnano, Knuth, & Willis-Yorker, 2004; 
Tattoo et al., 2008). While the framework incorporates previous ideas, it attends directly to the 
secondary mathematics built on data from mathematics classes. 

 
Our source of data was a set of what we came to call Situations. A Situation is a 

mathematical description, based on an actual event that occurred in the practice of teaching, of 
the mathematics that teachers could productively use in the work of teaching mathematics. 
Teams of mathematics education faculty at Penn State and at University of Georgia worked with 
dozens of doctoral students in mathematics education to develop more than 50 Situations. 
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Although any one Situation is too large to report in this paper, we provide a brief outline of one 
of the Situations (from Heid & Wilson, 2015) here. Each Situation includes a Prompt (a 
description of a mathematical opportunity–an event that one of the authors observed happening 
in the course of teachers planning or implementing a secondary mathematics lesson) and several 
Mathematical Foci (development of mathematics that a teacher could productively use in the 
context of that mathematical opportunity). A short statement about the nature of the 
mathematical understanding being targeted precedes each Mathematical Focus. Other parts of 
each Situation are Commentaries (a description of how the Mathematical Foci for the Situation 
fit together) and PostCommentaries. One of the Situations is outlined in Figure 1.   

 
The Situations we (the cross-university teams) developed suggested a range of 

mathematical abilities, actions, and settings that could underlie potentially productive 
mathematical thinking on the part of the teacher. It was on the basis of these abilities, actions, 
and settings that we embarked on the challenging task of developing our Framework for 
Mathematical Understanding for Secondary Teaching. As we examined the Situations we had 
created, we recognized that we needed several different perspectives to explain the mathematics 
we had identified. Akin to Plato’s allegory of the cave, the framework on which we settled 
consisted of three perspectives, each of which cast a different shadow representing a student’s 
mathematical understanding (See Figure 2).  

 
We adapted one perspective, Mathematical Proficiency, from Adding it up: Helping 

children learn mathematics (National Research Council, 2001). We found that we could identify 
the mathematical understandings in our Situations as examples of the strands of proficiency in 
this document: conceptual understanding, procedural fluency, strategic competence, adaptive 
reasoning, and productive disposition, supplemented by an additional strand focused on 
historical and cultural knowledge. This perspective accounted for mathematical knowledge and 
its use, but did not account for the mathematical actions that secondary teachers could 
productively take in the context of teaching mathematics. The second perspective addressed this 
focus on mathematical actions as Mathematical Activity. However, neither the first nor second 
perspective accounted for the settings in which teachers needed to call on their mathematical 
knowledge. The third perspective, Mathematical Context of Teaching, addressed the 
mathematical context in which teachers could productively call upon their mathematical 
knowledge.  
 

The first perspective, Mathematical Proficiency, is likely to be familiar as a way to think 
about students’ mathematical capability. The third perspective, Mathematical Context, provides a 
description of the mathematical understanding that is particularly relevant to teaching. This 
perspective was more implicit than explicit in our data, but we realized that the Mathematical 
Context of teaching indicates why it is critical to recognize and attend to the importance of 
Mathematical Activity.  In this paper, we confine our discussion to the development of the 
second perspective, Mathematical Activity. The reader can find more detail on the Mathematical 
Proficiency and Mathematical Context perspectives in the Heid and Wilson book (Heid & 
Wilson, 2015).   
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CHAPTER 22. INVERSE TRIGONOMETRIC FUNCTIONS (originally identified and 
developed by Rose Mary Zbiek)  
 
Prompt 
Three prospective teachers planned a unit of trigonometry as part of their work in a methods 
course on the teaching and learning of secondary mathematics. They developed a plan in which 
high school students would first encounter what the prospective teachers called the three basic 
trig functions: sine, cosine, and tangent. The prospective teachers indicated in their plan that 
students next would work with “the inverse functions,” which they identified as secant, cosecant, 
and cotangent. 
Commentary 
The Foci draw on the general concept of inverse and its multiple uses in school mathematics. 
Key ideas related to the inverse are the operation involved, the set of elements on which the 
operation is defined, and the identity element given this operation and set of elements. The crux 
of the issue raised by the Prompt lies in the use of the term inverse with both functions and 
operations. 
Mathematical Focus 1 
An inverse requires three entities: a set, a binary operation on that set, and an identity element 
given that operation and set of elements. 

Secondary mathematics involves work with many different contexts for inverses. For 
example, opposites are additive inverses defined for real numbers and with additive identity of 0, 
and reciprocals are multiplicative inverses defined for nonzero real numbers and with 
multiplicative identity of 1. [Discussion follows about the nature of inverses, the role of an 
identity in inverses, and the importance of domain and range in consideration of inverses.] 

… 
Mathematical Focus 2 
Although the inverse under multiplication is not the same as the inverse under function 
composition, the same notation, the superscript -1, is used for both. 

[Discussion follows about notation used in different inverse relationships, and the 
specific use of that notation in consideration of trigonometric functions. ] 

… 
Mathematical Focus 3 
When functions are graphed in an xy-coordinate system with y as a function of x, these graphs 
are reflections ) in the line y = x of their inverses’ graphs (under composition). 

The graph of a function reflected in the line y = x is the graph of its inverse, although 
without restricting to principal values, the inverse may not be a function. Justifying this claim 
requires establishing that the reflection of an arbitrary point (a, b) in the line y = x is the point 
(b, a). [A geometric proof follows, using a coordinate plane representation of the reflection of a 
point (a,b) over the line y = x.]  

… 
 
Figure 1. Outline describing a Situation appearing in (Heid & Wilson, 2015).  
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Figure 2. Three perspectives of the Framework for Mathematical Understanding for Secondary 
Teaching (Heid & Wilson, 2015). 
 

MATHEMATICAL ACTIVITY 
 

We used the set of Mathematical Foci from the Situations as data from which to generate 
our Framework for Mathematical Understanding for Secondary Teaching. First we identified 
mathematical actions implicit or explicit in each of the Foci. We then developed categories that 
seems to capture those actions, including categories such as creating mathematical entities, 
interpreting mathematical representations, and orchestrating movement among them.  
 
Creating 
 

One set of mathematical actions that seemed to group into a single category included the 
following actions:  

• Creating a counterexample for a given structure, constraint, or property 
• Creating an example or non-example for a given structure, constraint, or property 
• Creating equivalent equations to reveal information 
• Creating problems to foreground a concept 
• Creating a file (a computer application) whose creation requires mathematics beyond 

what the file is used to teach 
• Constructing an object given a set of mathematical constraints 
• Generating specific examples from an abstract idea 
• Creating a representation for a mathematical object with known structure, constraints, or 

properties  
 

Each of these actions involves the generation of a new mathematical entity. Some of the actions 
involve the generation of a new (to the creator) mathematical object such as an instance of a 
counterexample for a mathematical conjecture, some of the actions involve the creation of 
specific examples that illustrate mathematical concepts that have given sets of properties, and 
some of the actions involve the creation of mathematical tools such as computer files that display 
a representation of the motion of a bicycle. In every case, the mathematical entity that was 
created was one fitted to a given set of mathematical conditions.   

 
Having grouped these actions into a single category, we developed a description of a 

mathematical action that encompassed these actions. In this case our description was “Creating a 
mathematical entity or setting from known (to the one creating) structures, constraints, or 

19th Annual Conference on Research in Undergraduate Mathematics Education 222

19th Annual Conference on Research in Undergraduate Mathematics Education 222



properties.” An example of a specific mathematical action that might fit this category is the task 
of constructing a quadrilateral with specific characteristics. Other mathematical actions were 
developed in a similar fashion. A few of the final set of mathematical actions at this juncture, 
along with specific examples drawn from the Situations, are shown in Figure 3. 
 
Extending 
 
A similar process underpinned the development of a subcategory we called extending. 
Mathematical actions that fell into this category could be described as those involving extension 
of a domain, argument, or class of objects for which a mathematical statement is or remains 
valid. The following mathematical actions fell under the “extending” category:!

• Structuring an argument so that it extends to a more general case; 
• Determining mathematical extensions to a given problem or question; 
• Recognizing mathematical relationships that allow one to extend a conclusion to a larger 

class; 
• Considering a definition in an expanded sense or altering the “universe” being 

considered; and 
• Extending domain while preserving structure. !

Just as “extending” the domain of a mathematical relationship is an essential mathematical 
process for teachers, so is restricting or constraining the domain. Examples in the set of 
Situations that involved extending are: extending the absolute value function from the real to the 
complex domain; and extending the object "triangle" from Euclidean to spherical geometry 
 

Category Example 

Create: Creating a new (to the one creating) 
mathematical entity or setting from known (to 
the one creating) structure, constraints, or 
properties 

Sketch quadrilateral ABCD with 
 and  such that 

ABCD is not a parallelogram. 

Recognize: Recognizing mathematical 
properties, constraints, or structure in a given 
mathematical entity or setting, or across 
instances of a mathematical entity 

Recognizing that strategic choices for 
pairwise groupings of numbers are critical to 
one way of developing the general formula 
for summing the first n natural numbers 

Choose: Considering and selecting from among 
known (to the one choosing) mathematical 
entities or settings based on known (to the one 
choosing) mathematical criteria 

The mathematical meaning of a/b (with 
b≠0)) arises in different mathematical 
settings, including: slope of a line, direct 
proportion, Cartesian product, factor pairs, 
and area of rectangles. One might choose 
slope of a line as a setting to illustrate the 
need for b≠0. 

 
Figure 3. A few of the set of mathematical actions that comprised the Mathematical Activity 
perspective of the Framework for Mathematical Understanding for Secondary Teaching, along 
with specific examples drawn from the Situations. 

� 

m∠D = m∠A = 90

� 

AB DC
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Use representations: For given 
representations, interpret them in the context of 
the signified, orchestrate movements between 
them, and craft analogies to describe the 
representations, objects, and relationships 

Using tabular and graphical representations to 
estimate the value of 22.5 

Assess (interpret and adapt) the 
mathematics of the situation: Interpret and/or 
change certain mathematical conditions/ 
constraints relevant to a mathematical activity 

Recognize the desirability of a modulus 
definition of absolute value in evaluating 

 

Extend: Extend the domain, argument, or class 
or objects for which a mathematical statement 
is/remains valid. 

Extending: the absolute value function from 
the real to the complex domain; "triangle" 
from Euclidean to spherical geometry 

Connect: By recognizing structural similarity, 
make connections between: representations of 
the same mathematical object; different 
methods for solving a problem; mathematical 
objects of different classes; objects in different 
systems; or properties of an object in a 
different system. 

Identifying structural similarities of the 
Euclidean algorithm and the long division 
algorithm 

Reason: Reason about a mathematical entity 
in more than one way, including, but not 
limited to: from mathematical definitions, from 
given conditionals, from and toward 
abstractions, by continuity, by analogy, and by 
using structurally equivalent statements. 

Reasoning about the sum of the first n natural 
numbers by appealing to cases, by making 
strategic choices for pair-wise grouping of 
numbers, and by appealing to arithmetic 
sequences and properties of such sequences. 

 
Figure 3, continued. 
 
Creating the Mathematical Activity perspective  
 

Finally, we organized the set of mathematical actions to account for the actions arising in 
the Situations as well as mathematical actions that we could readily imagine and that were not 
captured in the categories that were derived from the Situations. The final set of categories is 
displayed in Figure 4.  

 
The final categories differed from existing frameworks in their mathematical nature. The 

mathematical actions we described derived from the mathematical decisions that teachers 
confront. Their work in mathematics classrooms would benefit from their ability to notice similar 
mathematical structures. Being comfortable enough with mathematical entities, properties, and 
structures to create and modify new representations would allow them the freedom to pursue 

� 

f (x) = x −10
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their students thinking. They could productively use a flexible and robust repertoire of 
techniques for justifying their mathematical work.  
 

The framework is intended to be a work in progress. It can serve as a research tool to 
study the mathematical understanding of secondary teachers. Researchers might investigate, for 
example, what collegiate mathematics courses contribute to the development of the capabilities 
suggested in each of the perspectives.  They might also investigate how the aspects of secondary 
mathematics teachers’ own mathematical understandings as described in the Framework 
influence the mathematics to which they expose their students. 

 
 
I. Mathematical noticing: Recognize and choose from among known mathematical entities 
or settings based on known mathematical criteria such as:  

A. Structure of mathematical systems 
B. Symbolic form 
C. Form of an argument  
D. Connections within and outside mathematics  

II. Mathematical reasoning: Reason about a mathematical entity in one or more than one 
way, including, but not limited to: from mathematical definitions, from given conditionals, from 
and toward abstractions, by continuity, by analogy, and by using structurally equivalent 
statements. 

A. Justifying/proving 
B. Reasoning when conjecturing and generalizing 

                  1.        Investigate (Take a mathematical action to find out more about structure, 
                         constraints, or properties of a mathematical situation or a mathematical object) 

C.        Constraining and extending  
III. Mathematical creating. Create (Creating a mathematical entity or setting from known (to 
the one creating) structure, constraints, or properties)   
        A.       Representing 
        B.       Defining 
        C.       Modifying/transforming/manipulating       
IV. Integrating strands of mathematical activity. Coordinate (Coordinate mathematical 
knowledge, student mathematical thinking, school curricula, and knowledge development); 
Reflect (self-reflect) (Reflect on mathematical aspects of one’s practice or on one’s own doing 
math); and Apply (Employ algorithms, definitions, and technology in mathematical settings 
and/or real world quantitative settings when applicable.) 
 
 
Figure 4. Mathematical Activity Perspective of the Framework for Mathematical Understanding 
for Secondary Teaching (from Heid & Wilson, 2015)  
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Secondary teachers’ responses to embedded mathematical uncertainty: Cases from an 
assessment item on exponents. 
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Yvonne Lai 
University of Nebraska – 

Lincoln 
A growing body of research recognizes uncertainty as an inevitable part of teaching.  Yet still 
little has attended to the potential of uncertainty as a space for mathematics teacher 
education.  In this paper, we report on an analysis of interview data in which secondary 
teachers were asked to think aloud as they solved a task with embedded uncertainty.  We 
present examples of teacher responses and discuss ways in which they assign valence to their 
experience of uncertainty.  We found that teachers do not always engage with mathematical 
uncertainty, but also that their (dis)engagement did not necessarily signal their ability to 
reach the intended answer, and was not always predicted by the valence they assigned the 
uncertainty.  These results suggest that, while tasks containing embedded uncertainty may be 
rich sources to draw on, facilitating the resulting discussions is likely to be complicated and 
needs to account for a number of factors.   

Keywords: Secondary Mathematics Teachers, Uncertainty, Algebra, Teacher Education, 
Teacher Assessment 

“Teaching is evidently and inevitably uncertain” (Floden & Buchmann, 1993, p.  373).  In 
acknowledgement of this, education researchers have attended to what causes uncertainty and 
to how teachers might respond productively to uncertainty.  We build on this work by 
attending to mathematical uncertainty, by which we mean uncertainty whose source is 
mathematical.  In this study, we examine a set of interviews with secondary mathematics 
teachers who responded to a task involving mathematical uncertainty.  In the sections that 
follow, we first locate this study in the literature on uncertainty in teaching and teacher 
education.  We then discuss the task, called the Williams item, originally designed to assess 
mathematical knowledge for teaching, and discuss the mathematical uncertainty embedded in 
that task.  We then describe our data and the context in which the teacher interviews were 
conducted, and outline our analysis process.  In presenting the results of the analysis, we 
describe teachers’ reactions to uncertainty as well as the valence they assign that experience. 
The term valence, in this paper, means one’s opinion of uncertainty that can be positive, 
negative, both, or neutral.  Our goal is to populate an example space within which teacher 
educators can think through what might make such reactions more or less productive.  We 
finish by discussing how the types of reactions we observed suggest that tasks containing 
mathematical uncertainty may potentially serve as tools for mathematics teacher education.   

Background 
Uncertainty in thought, encountered while teaching, can be conceptualized as cognitive 

“perplexity, confusion, or doubt” (Dewey, 1933) that can originate in various sources and that 
may exist within or outside of the individual.  Uncertainty can result from instructional 
content (e.g., Capobianco, 2010), pedagogy (e.g., Midthassel, 2006; Wheatley, 2005), and 
student traits or school culture (e.g., Labaree, 2003; Villaume, 2000).  Education researchers 
have used the term uncertainty to describe everything from unpredictable classroom 
situations (e.g., Midthassel, 2006) to low self-efficacy (e.g., Wheatley, 2005).  Some strands 
of literature describe it more as an external, contextual attribute (e.g., Floden & Buchmann, 
1993) while others locate it as an emotion experienced by the teacher (e.g., Meister & Nolan, 
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2001).  In other words, uncertainty is defined in the literature in various ways, and it covers a 
range of aspects of teaching.   

Studies suggest that when teachers confront uncertainty and conceptualize teaching as 
open and fluid, they encounter greater opportunity to develop their practices and their subject 
matter knowledge (Floden & Buchmann, 1993; Labaree, 2003).  And this may be as true for 
expert teachers as for novice teachers.  Floden and Chang (2007) suggest the metaphor of a 
jazz score for teaching, where certain frames of reference can be nailed down and others are, 
of necessity, open to creativity and interpretation; a sign of expertise is the ability to make 
use of uncertainty rather than the ability to avoid uncertainty.  Denying uncertainty may 
restrict teachers’ opportunities to look for alternative teaching methods and in turn limit 
students’ learning (D. Cohen, 1988; Helsing, 2007; Munthe, 2003).   

In this paper we focus on uncertainty that is mathematical in nature.  Mathematical 
knowledge can be open to revision and hence it does change (Ernest, 2004, 2015; Lakatos, 
1976; Stinson & Bullock, 2012).  In other words, uncertainty can be embedded in the subject 
matter, and this type of uncertainty will never be fully resolved no matter how well a teacher 
prepares, even if preparation can reduce some uncertainty.  Mathematical uncertainty can be 
as irreducible as other uncertainties. 

Although uncertainty is worth examining from the view of teacher education, little 
empirical research has been done in the context of mathematics teacher education.  Some 
research has attended to unexpectedness in teaching mathematics (e.g., Cavanna, Herbel-
Eisenmann, & Seah, 2015; Coles & Scott, 2015; Mason, 2015; Rowland, Hodgen, & 
Solomon, 2015; Rowland, Thwaites, & Jared, 2015), with more focus on classroom 
interaction and general pedagogical situations.  Zaslavsky (2005) focused on providing 
teachers with tasks designed to provoke mathematical uncertainty by having teachers 
generate competing claims, work with unknown paths or questionable conclusions, or deal 
with non-readily verifiable outcomes.  The teachers, in interviews after engagement with the 
tasks, showed appreciation and reported deep engagement due to the uncertainty.  The 
mathematical uncertainty encountered allowed the participants to engage with the 
mathematics more deeply.  As a result of this activity with teachers, Zaslavsky recommended 
that teacher educators reflect on task implementation and make modifications so as to invite 
teachers to confront mathematical uncertainty.  Buchbinder and Zaslavsky (2008) also 
reported teachers being satisfied and excited after resolving mathematical uncertainty.   

Conceptualizations of the work of teaching associated with mathematical knowledge for 
teaching suggest that teachers need to hold specialized content knowledge, a form of pure 
mathematical knowledge uniquely needed by teachers (Ball, Thames, & Phelps, 2008).  This 
knowledge often manifests in the consideration of unconventional student solutions, which 
may need to be examined for mathematical coherence, validity, generality, efficiency, or 
appropriateness.  This type of work is clearly a component of the daily work that teachers do, 
but is also mathematical work.  The need to respond quickly to student-generated 
mathematics suggests that the more open a classroom is to student-generated ideas, the more 
likely it is that teachers will need to respond rapidly to unfamiliar mathematics.  In other 
words, one can characterize responding to mathematical uncertainty as an inevitable part of 
the work of teaching.  Jordan, Kleinsasser, and Roe (2014) suggested teacher educators might 
support teachers’ professional growth by deliberately inducing uncertainty.   

Previous work on uncertainty has conceptualized how a mathematical task can provoke 
uncertainty and has provided empirical evidence that confronting uncertainty can help 
teachers as learners of mathematics to acquire deeper mathematical understandings.  They do 
not take on the question of how confronting mathematical uncertainty in their roles as 
teachers might be leveraged by teachers to, for example, provide a window into the student 
experience and model approaches to uncertainty for their students.  This skill has taken new 
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relevance in view of recent work on K-12 standards.  The Common Core State Standards 
(CCSS) have set forth a list of key mathematical practices that students should be able to take 
in solving mathematical problems.  We see a potential in mathematical uncertainty for 
providing opportunities for teachers to engage with multiple standards for mathematical 
practice, including “Make sense of problems and persevere in solving them” and “construct 
viable arguments and critique the reasoning of others” (Common Core State Standards 
Initiative, 2012).  If students are to learn these practices, it is important for teachers to model 
the practices explicitly (Charalambous, Hill, & Ball, 2011; J. Cohen, 2015; Morrison, 
Robbins, & Rose, 2008).  Though scholars have explored, more generally, productive 
approaches to uncertain mathematics from learners’ perspectives (Cuoco, Goldenberg, & 
Mark, 1996; Komatsu, 2016), there has been less study of approaches to mathematical 
uncertainty as a part of the work of teaching and how teacher educators can support teachers’ 
ability to leverage the emotional component that may inevitably accompany the experience of 
confronting uncertainty in front of a classroom full of students.  To better support teacher 
educators utilizing uncertainty, it is important to understand the strategies teachers use and 
how they feel when confronted by uncertainty in the work of teaching. 

For the purposes of this paper, we conceptualize mathematical uncertainty following 
Zaslavsky (1995): any mathematical situation in which competing claims, an unknown path 
or questionable conclusion, or non-readily verifiable outcome occurs.  We take uncertainty to 
be both a condition of the situation (that something cannot be known) and the associated 
emotions.  We use the term valence to describe a teacher’s positive or negative opinion of the 
consequences of uncertainty.  Valence may be neutral, as a person may not have a strong 
opinion, and it does not itself have a truth value.  Valence is not often discussed in the 
literature, although it might be read into certain work that accepting uncertainty means 
assigning a positive valence to uncertainty (Jordan, Kleinsasser, & Roe, 2014; Meister & 
Nolan, 2001; Villaume, 2000; Zaslavsky, 2005).  We question this assumption.  Our research 
questions are: 

• What did participants do to attempt to resolve uncertainty? 
• What types of valence do participants assign to the uncertainty they experience? To 

what do they attribute the valence (the mathematics, the teaching situation, etc.)? 
In this paper we examine a set of teacher responses to a teaching situation in which 

mathematical uncertainty was embedded.  Our analysis is qualitative and interpretive.  We do 
not attempt to generalize our claims to the general population of all teachers in forms such as 
“X% of teachers have valence type V”.  Rather, our goal is to generate a set of response 
patterns that teacher educators might consider in using such tasks and to consider the ways in 
which the participants’ valence interacts with their attempts to resolve uncertainty.  We begin 
by introducing the Williams item and its embedded mathematical uncertainty. 

The Williams Item 
This study focuses on teachers’ responses to the Williams item (see Figure 1).  This item 

was originally drafted as an assessment item to evaluate teachers’ mathematical knowledge 
for teaching.  Specifically, the item assesses whether the teacher is aware of limitations of the 
exponential identity (xa)b = xab = xba = (xb)a in numerical expressions, in particular, for 

evaluating −9
!
!
!
.  Although the identity does hold for nonnegative bases without issue, 

complications arise when the base is negative, or when x < 0 .  Applying the identity to the 

example expression yields a contradiction.  The identity implies that −9
!
!
!
= −9

!
!⋅! 

= −9 !⋅!! = −9 ! !
!.  However, −9 ! !

! = 81
!
! = 9, whereas −9

!
!
!
is either 
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undefined if square roots of negative numbers have not been defined yet, or −9
!
!
!
=

3! ! = −9.  In either case, the result is not equivalent to +9.  Hence applying the 
exponential identity in this case constitutes an invalid application of exponential laws.  The 
Williams item features the work of two students who have performed this invalid application 
of the exponential identity. One student, Craig, obtains +9, and the other, Katlynn, 
coincidentally obtains −9, the “correct” numerical answer, by an invalid process.  The 
intended response is that neither student’s application of the laws of exponents is valid.  We 
use the term “correct” carefully here, as one complexity embedded in the item is that there is 
not an unambiguous correct evaluation of the expression the students have been given.  It is 
true that over the complex number system the given expression evaluates to −9, but it is not 
clear whether the students are working in this system, and if they are assumed to be working 
over the real numbers, the “correct” evaluation of the expression is that it is undefined.   

 

 
Figure 1. The Williams item (Copyright 2013 by Educational Testing Service). 
 
There are a number of potential sources of uncertainty embedded in the item.  A 

participant might be uncertain about what the students actually thought or did, or struggle to 
make sense of the student work as presented, although this was not a pattern we observed in 
the data and is not one we would classify as mathematical uncertainty.  A teacher who is 
solving the item does not know in this situation whether Ms. Williams’ students are working 
in the domain of real or complex numbers, an issue that makes the correct evaluation of the 
expression uncertain.  This uncertainty does not affect the correct response to the question 
posed in the item, as laws of exponents have been applied incorrectly regardless, but is a 
source of mathematical uncertainty about the underlying mathematics in the problem 
presented to the students.  This example resembles one presented by Tirosh and Even (1997) 
in which the expression (–8)1/3 similarly can be argued to have different correct evaluations 
because the base is a negative number, and which Zaslavsky (1995) categories as a type of 
mathematical uncertainty called ‘competing claims’.  In this case, it is a claim that cannot be 
resolved because the uncertainty is embedded in the mathematics itself.  Needless to say, a 
participant might simply not have encountered this mathematics before, leading to a different 
type of mathematical uncertainty, one that potentially could be resolved with greater 
familiarity.   

Responses to this particular item, because of the embedded mathematical uncertainty, and 
because a large proportion of the teacher responses demonstrated uncertainty, afforded an 
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ideal opportunity to examine patterns of reasoning in response to uncertainty.  In particular, 
this item provides an opportunity to explore the strategies participants used to resolve their 
own mathematical uncertainty and the valences they attached to this process.   

Methods 
Context and Data 

This study represents a secondary analysis of data originally collected as part of a larger 
project intended to provide validity evidence for a set of assessment items developed for 
measuring teachers’ mathematical knowledge for teaching.  The items used in this larger 
study were developed at the Educational Testing Service in 2013 following an assessment 
design theory that originated at the University of Michigan (e.g., Study of Instructional 
Improvement, 2008).  The items require test takers to apply mathematical knowledge in the 
context of teaching.  Teachers with secondary mathematics certification were selected to 
participate in think-aloud interviews in which they shared their reasoning for selecting each 
answer.  Participants were selected for strong mathematical proficiency as measured by the 
Praxis secondary mathematics content test, and varied between 0 and 13 years of teaching 
experience. 14 participants were female and nine were male. The present study used 
transcript data collected for one item, the Williams item, because of the opportunity to 
observe engagement with mathematical uncertainty.  The data set included 13 transcribed 
responses to the Williams item.  Among these, four answered correctly that both students’ 
work were invalid, eight responded that Craig’s work was not valid but Katlynn’s work was 
valid, and one responded both were valid.   
Analysis 

Drawing on thematic analysis, we conducted multiple iterations of theme searching from 
the transcripts.  Thematic analysis is “a method for identifying, analyzing and reporting 
patterns (themes) within data” (Braun & Clarke, 2006, p.  79).  Patterns, or themes, are not 
strictly defined in thematic analysis.  A researcher may pick as a theme what was observed 
multiple times across the data.  Alternatively, the researcher may pick impressive events that 
all together address the research questions.  Because of such nature of thematic analysis, the 
themes are not easy to describe at the beginning of the analysis, but becomes clear towards 
the end of the analysis.   

We began our analysis by each closely reviewing transcripts for the Williams item to 
produce an initial list of themes.  We also noted the statements participants made about how 
they would deal with a situation such as that presented in their classroom teaching, which 
were occasionally prompted by the interviewer but more often spontaneous.  We then 
narrowed the themes of interest to the following list, for which we systematically recoded the 
entire data set.  Themes for which we coded data at this point were the presence (or absence) 
of explicit statements of uncertainty, the valence assigned to that uncertainty by the 
participant where applicable, the presence of incorrect mathematics in the participant’s 
response, and the types of mathematical approaches each participant used to resolve 
uncertainty if approaches were taken.   

Among these themes, the ones that stood out most strongly were those of type of 
mathematical approach and valence.  Mathematical approaches were quite varied, in some 
cases sophisticated, and often showed signs of being potentially productive regardless of the 
end result.  And statements reflecting valence were quite mixed, including some strong 
statements.   

We grouped responses in which a mathematical approach was taken by type of approach, 
and we operationalized valence as a personal perception of uncertainty.  Through multiple 
iterations of analysis with the data, we observed participants negatively framing their 
acknowledged uncertainty.  Reading such cases from the transcripts, we came to see the gap 
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between acknowledging uncertainty and welcoming uncertainty.  We wanted to examine the 
relationship between valence, uncertainty, and teaching.  From our observation of the data, 
we recognized that the participants can have positive, negative, or no valence to uncertainty.  
These observations informed us with refining the theme and selecting excerpts to share in this 
paper. 

Results 
We divide our results into two sections in which we describe teachers’ responses to each 

of the research questions.  First, we discuss the types of responses we saw from participants 
when confronted with uncertainty.  Second, we discuss the valence they assigned it.  
Responding to each research question, we share major themes we encountered.  These themes 
are major because they were worth attending to, not because they were most common.  
Thematic analysis allowed us to pick impressive events, instead of counting instances of each 
theme.  We refer to participants by pseudonym numbers (e.g., “4016”). 
How Did the Participants Respond to Uncertainty? 

Where participants were uncertain about the mathematics, responses fell into three 
categories.  We first share the cases in which responses over-relied on the correctness of the 
numerical answer to determine validity.  Then, we show cases in which responses 
demonstrated engagement in doing the mathematics in the moment to figure out the solution.  
These cases included a number of different and potentially productive mathematical 
approaches.  Lastly, we present cases of seeking external resources to resolve the uncertainty.  
Correctness of student answer   

In responding to the item, some participants acknowledged their uncertainty but seemed 
to give the numeric answer the student produced disproportional weight as a signal of 
validity.  For example, when determining the validity of Craig’s work, a participant (4016) 
first determined the answer −9 using complex arithmetic and then compared her answer to 
Craig’s answer, stating:  

So I disagree with Craig’s answer as far as did he apply properties of exponents, yes 
he did, but he did not get the same answer that I deem valid, and therefore I think 
there is something wrong with his application.   

The participant, however, did not explain what exactly is wrong with Craig’s application 
of the law, and when prompted by the interviewer to guess at what might be wrong, stated, “I 
guess it’s just some properties of exponents must not apply to imaginary numbers.” This 
participant was aware of her uncertainty regarding the properties of exponents, and qualified 
her answer as a guess.  Instead of exploring whether or not the properties of exponents 
applied, she relied on the correctness of the answers to determine validity.  It is worth noting 
that this did not, for this participant, lead to an incorrect analysis of the second student’s 
work.  Participant 4016 concluded that Katlynn’s work was not valid, even though it 
produced a correct answer, and engaged in exploration of why.  However, the logic of 
discarding Craig’s use of the exponent laws on the basis of it producing an incorrect answer 
is subtly flawed—in such a case Craig might have applied the laws correctly and have made 
an arithmetic error that produced the erroneous answer.  Although it is mathematically valid 
to conclude that something about reasoning is incorrect when an incorrect answer is obtained, 
the item asks whether the error can be attributed to a particular source, not just whether the 
reasoning is on the whole invalid or valid.   

It would be equally flawed to conclude that Katlynn’s work was correct simply because it 
led to a correct answer.  We did not see clear evidence of participants basing their answers 
only on Katlynn’s answer, but we did see those in which responses seemed swayed by the 
correct answer.  One participant (4023) simply stated that Katlynn’s work was correct, and 
when pushed to explain why Katlynn could simplify the expression to −9 if Craig could not, 

19th Annual Conference on Research in Undergraduate Mathematics Education 233

19th Annual Conference on Research in Undergraduate Mathematics Education 233



said, “I mean she’s got the right answer but actually I’ll put a question mark in terms of like 
the way she did it,” hinting that this participant must have considered the answer more 
heavily than the method in marking ‘valid’ as his answer for Katlynn.   

In one striking case, interviewer error gave a window into how vulnerable a participant’s 
reasoning can be to the correctness of answer.  A participant (4020) engaged in strong initial 
reasoning about Craig’s work, initially solving using complex arithmetic and correctly 
pointing to the sign of the radicand as a potential issue:  

If I do what this student [Craig] did I’m squaring –9 first, which gives me 81, and 
then I’m taking the square root of 81 and then that would be +9 so… So if, I guess if 
the number inside the radicand there was positive then it would be okay to assume 
that this would be good. 

He goes on to conclude that Craig was making an “incorrect generalization,” and when 
asked to explain the validity of Katlynn’s work, he initially replied “1 and ½ I don’t think that 
they cancel,” indicating that he does not think Katlynn’s work to be valid.  The interviewer, 
who misheard the response, then made a mistake and asks how he would reconcile this with 
Katlynn’s “correct answer”, and the participant reported that he “didn't look at the final 
answer.” He then changed his original answer, saying, “I’m squaring the square root, so 
actually that is valid, isn’t it?” and went on to state that it would work for both negative and 
positive bases, which is not true.  In other words, with only a slight prompt from the 
interviewer, a participant whose reasoning was quite strong to that point reversed course and 
presented contradictory reasoning to justify the student’s correct answer, suggesting that the 
numeric answer influenced his thinking about the reasoning quite strongly.  It is also worth 
noting that a number of participants, asked later in the interview how they approach figuring 
out if student work is valid in general, discussed the ‘false positive’ logic, when a student’s 
answer is correct it could be simply coincidence and one needs in such case to dig more 
deeply into the reasoning.  However, in several cases participants who made these statements 
still showed signs of being unduly influenced by the answer, indicating that perhaps even 
strong understanding of the pitfalls in general terms is vulnerable in the face of uncertainty 
around the underlying mathematics. 
Mathematical investigation 

The second type of responses we noted among our responses was that of engaging in 
mathematical investigations in an effort to resolve the uncertain mathematics.  This is a 
response that the literature might describe as embracing uncertainty, and we view this type of 
engagement to be a positive response type in general as it has the potential to lead to deeper 
mathematical understanding.  The examples we are sharing here, however, also show that 
engaging with uncertainty does not guarantee that the participant will respond correctly to the 
item.  In some ways this may be a limitation of the data, which was not collected for the 
purpose of exploring uncertainty.  Interviewers did not, in general, push participants to 
resolve uncertainty, as they were cautious to avoid leading the participants during the 
interview.  Because of time constraints of the interview, they moved on from discussion once 
the desired evidence had been collected, and so we simply do not know whether participants 
might have reasoned through their uncertainty productively given sufficient time or support 
to do so.  We describe the approaches below as potentially productive because from a 
mathematical perspective they are approaches from which one could reason to an 
understanding, not because these participants necessarily succeeded in doing so.  Our purpose 
in noting this pattern of engagement is not to suggest a certain set of ‘right’ teacher 
approaches so much as to describe a set of reasonable approaches in ways that may support 
education researchers and teacher educators in anticipating possible teacher reactions to 
uncertainty in algebra.  We discuss an algebraic approach, a graphical approach, and an 
approach involving examination of the boundary.   
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Algebraic approach 
A number of participants engaged in an algebraic approach at some point during the 

course of responding to the item, in some cases in the course of evaluating the expression 
independently using complex arithmetic, and in some cases in unpacking the work of one or 
both students.  In some cases the participant engaged in more extended mathematical 
investigation.  We share the response of a participant (4028) who used an algebraic approach 
to understand Craig’s work to solve the task in his own way, and then engaged in a more 
extended abstract investigation.  When he first read Craig’s work, it seemed plausible to him, 
and he unpacked line by line what he believed Craig to have done algebraically: “I said based 
on reading this sentence, yes, that makes sense.  Powers of power, that’s the rule, that how I 
remember them, powers of power, you multiply them, and when you multiply by two 
numbers is associative.  So we can change the location, I just commute...  So I said, oh that’s 
going to work, so in that case 92 is going to give me 81, and then I do 81 to the 1/2 power that 
means square root, which is equal to +9.” As he considered each line of Craig’s work, he 
judged each step to be valid, and concluded initially then that Craig’s work was valid, a 
reasonable conclusion.  The participant goes on however, to do a deeper examination by 
solving the task in his own way: 

But after that, I said wait a minute, let me try this out on my own, and then I did my 
work down there if you see in that (–9)1/2, and that give me the imaginary number I 
brought in the complex number system.  And then (3i)2 I got 9 times i2 and in 
definition i2 is –1.  I got –9.  So I said wait a minute, if I follow this the way to do it 
this outer from inner, from the inner computation go to the outer bigger picture, I got 
–9.  But the first student got 9, okay that cannot be right. 

The participant’s algebraic examination, like other participants who solved the task in 
their own way, mainly involved computation with imaginary numbers.  This algebraic 
examination led him to conclude that Craig’s work is not valid because Craig’s final answer 
was different from the answer he arrived at.  At this point he potentially might have allowed 
the correctness of the numeric answer to overwhelming thinking, but instead he continued to 
explore, finding it necessary to figure out why algebraic steps that seemed reasonable to him 
would lead to an answer she believes is incorrect.  He moved to a general case to explore 
further:  

I tried to write out the general case, that’s……I’m thinking along the same rule, use 
letter A you see the numerical, algebraically, (AB)C this is powers of power, this is the 
same as ABC but since B times C we can commute we can rewrite as ACB is equal 
to(AC)B.  So that’s really like what is the first student describe in words.  And usually 
I take this view is correct, but based on the numerical calculation I did down there, it 
seems this answer going to change if A is negative in this case A is –9.  So the correct 
answer should be –9 as I calculated.  So that’s how to me is a concept of my general 
experiment maybe not valid 100% depends what is A, B, C. 

By moving to a more abstract representation of the rule Craig applied, the participant is 
able to articulate what it is he would generally consider correct and state that the 
contradictory evidence makes his question that conclusion.  He continued to explore, stating:  

I’d written originally A, B, C belong to the real number, I do realize that, is this 
always true? That for B and C, that could be real? Whether it’s a positive exponent or 
negative exponent I think that doesn’t matter, but for the base...  so that’s why I erase 
A I put A belongs to R positive, or A is greater than or equal to zero I personally try 
to make a generalization here.  But I’m not quite sure with this generalization I get is 
100% right mathematically.  And then I wrote a sentence, “If base A is a negative, 
then the rule does not always work.” 

19th Annual Conference on Research in Undergraduate Mathematics Education 235

19th Annual Conference on Research in Undergraduate Mathematics Education 235



The participant remained uncertain about whether the domain restriction he has identified 
is exactly correct as stated, but makes substantial progress through this exploration in figuring 
out what the key uncertain mathematics is and why it is uncertain.   
Graphical approach 

Another participant (4016) used a graphical approach to address her feeling of uncertainty 
about Katlynn’s approach: 

I know that there is something weird about the way we define the square root, if you 
look at like the graph of f(x) squared it’s a parabola and it’s in you know the first and 
the second quadrant but then if you take the inverse which would graphically be the 
equivalent of...  reflecting over the line y equals x now you have a problem you would 
have like a sideways parabola in quadrant one and quadrant four but it won’t pass the 
vertical line test, it won’t be a function.  So we just kind of say like oh no we’re just 
going to take the positive part.  And I think that kind of where some of the trouble 
occurs by the way that we define the square root.  Because technically the inverse of 
squaring something is plus or minus the square root so it’s not, the x2 function doesn’t 
have a true inverse, the inverse of the x2 function is not a function so we have to have 
to kind of restrict the domain to make it a function, we say the square root has to be 
positive yeah.  So then I was like well let me figure this out.  So I decided to graph 
both of them like both ways like f of x equals the square root of x squared and when I 
did that I got the line f(x) equals x but only when I took positive.  Then I tried to graph 
it the other way and do f(x) equals the square root of x2 and I got the absolute value 
function. 

The participant, who had already noted that Katlynn’s answer was numerically correct, 
went on to attend to her method, and connected the cancellation to the relationship between a 
function y equals x2 and its inverse, touched on the issue of restricting the domain, and used a 
graphic calculator to graph the functions.  From this graphical investigation, the participant 
concluded that “squaring the square root doesn’t give you back x all the times” and “the 
square root of x2 doesn’t always give you x all the time.” The participant tried through this to 
come up with a viable argument on why Katlynn’s method may not always work.  That is, 
she actively explored mathematical uncertainty by taking a graphical approach.  Although the 
participant did not articulate fully the set of domain restrictions under which Katlynn’s 
method would be valid, her exploration was sufficiently productive to point her to the correct 
conclusion that Katlynn’s method was not valid. 
Examining the boundary 

Some participants tried to determine the validity of student work by examining the 
boundary of the laws, specifically by selecting other test cases to see if the law would hold.  
For example, a participant (4020), once forced to confront the disconnection between 
Katlynn’s ‘correct’ answer and her method, searched for example cases to justify why her 
method should be valid: “Maybe that is valid.  Because if I would have done 100 times 
[inaudible] 1/2 to the square root I would get 10, 102 is 100.  I’m squaring the square root, so 
actually that is valid, isn’t it?” The participant applied Katlynn’s strategy to 10, a positive 
number, and this selection may be intentional since the originally given value, −9 was 
negative.  In general, selecting examples that are different from one another is a productive 
choice when testing the generality of a rule.  In this case, however, it leads the participant to 
an erroneous conclusion because Katlynn’s method does, in fact, work with positive bases 
regardless of the exponent.  We note that we do not have strong evidence here to infer the 
classic error of using isolated examples to demonstrate the truth of a rule; this participant was 
not asked to provide a mathematical proof and was simply engaged in informal reasoning to 
try to make sense of an apparent contradiction.  As mentioned above, he had been 
unintentionally prompted to conclude Katlynn’s work was correct, so may have simply been 
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looking for any explanation that would make this a plausible conclusion.  His approach, 
however, had the potential to be productive, because testing a rule’s generality by selecting 
well-chosen examples to test is typically a productive starting point. 
Seeking external resources 

A third pattern we observed was a willingness to draw on external resources.  For 
example, when the interviewer asked a participant (4016) what she would do if Craig and 
Katlynn were in her classroom and were forced to respond, the participant said she would 
search on the web:  

I mean honestly I would just go try to Google and figure out what the problem is or I 
would tell them to think on it tonight and see what you can find online and I would 
definitely try to explore it further and come to like an answer.  I don’t have any 
problems with revealing my hesitancy in front of the students. 

We point out this response type for a number of reasons.  First, it is worth noting that it is 
also a potentially productive response to uncertainty.  It might be argued, in fact, that in the 
moment of classroom teaching, pausing to engage in extended exploration might not always 
be appropriate, and finding a way to buy time by saving the question for another day is a 
strong pedagogical response.  We often think of teachers as reasoning through difficult 
mathematical situations that come up in teaching in isolation and in the moment, but this 
participant reminds us that this need not be the case, that one can respond to students by 
simply saying ‘I don’t know but I’ll find out” and by consulting with external sources—in 
this case via internet search, but perhaps also by consulting with colleagues or mentors.   
Approaches were not mutually exclusive 

We also note here that we have chosen to present responses from one participant (4016) 
as examples across three categories in order to illustrate that these response patterns were not 
mutually exclusive.  Participant 4016 used one type of reasoning in considering Craig’s work 
and another in considering Katlynn’s work.  She was willing and able to engage in 
mathematical investigation but still reported that if faced with such a situation in actual 
instruction she would likely turn to an external resource instead.  Although she selected the 
intended answer to the item, that neither student’s work was valid, she experienced 
uncertainty throughout her response, using phrases like “I’m not sure” and “my 
understanding is limited.” But she also indicated a level of comfort with that uncertainty, 
seeming untroubled by revealing it to the interviewer, and stating explicitly that she would be 
comfortable revealing it to her students.  This comfort with uncertainty hints at our second 
theme, the assignment of valence.   
What Types of Valence Do Participants Assign to the Uncertainty They Experience? 

In addition to how the participant reacted to the uncertainty, we examined statements in 
which they assigned valence to the uncertainty or to their experience of it.  Not surprisingly, 
the valence varied.  More surprisingly, we did not see many cases of negative valence even 
when respondents reported uncertainty or answered incorrectly, and the expressed valence 
did not show a strong connection with the approach taken to resolving the uncertainty; in 
other words, assigning a positive valence did not necessarily predict potentially productive 
investigation, nor did assigning a negative valence preclude it.  In the next sections we 
describe what these statements of valence looked like when we saw them in the data. 
Positive valence 

One participant (4012) assigned a strong positive valence to uncertainty, demonstrating 
not just comfort but genuine excitement about the ways in which uncertain situations can be 
pedagogically useful: 

I have had times when I’m like whoa I didn’t think about this, how did this happen? 
But the important thing is just that I just throw away back to my student.  That’s a 
very good observation, why did you think this happened? You know, it kind of makes 
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them be more kind of curious about it, but then like I go home and I’m like dying, I’m 
like okay I got to figure this out why is this happening you know.  But yeah...  but it’s 
very nice I love when situations like these come out because it forces to think of why, 
and also different ways to actually justify our thinking. 

This particular participant did engage in mathematical exploration, and expressed explicit 
uncertainty throughout the interview, even saying “I had a hard time with this.” In the end, 
despite her expression of need to figure out what is happening, she did not arrive at the 
intended answer to the item during the recorded interview.   
Mixed valence 

Participant (4014) expressed mixed valence.  This participant, who self-identified to 
“have a pretty significant mathematical background,” displayed a strong understanding of the 
inherent ambiguity in the expression and disliked the idea that Ms.  Williams had presented 
such a task to students.  As he commented: 

It gives you something, ambiguous is just like really the best word here it gives you 
something that’s ambiguous.  It doesn’t define the meaning for you.  Where 
mathematics is very precise in its meaning and its definition.  And having such a 
question that creates such a gray area, kind of isn’t that great, like you really shouldn’t 
have that there but that’s just my opinion. 

This participant’s negative valence originated from the task being “ambiguous,” and 
unlike other responses seemed less about his own experience of uncertainty and more about 
his perception that the students would experience uncertainty in a pedagogically 
inappropriate way.  He did, however, recognize the potential for other types of open tasks to 
elicit interesting classroom discussions: 

So there’s this great problem where they’re like “Can you raise an irrational number 
to an irrational number and get a rational number?” That’s an amazing question and a 
great activity for a day or two for students to explore.  And it’s something I want to 
use with a different population of students who would be able to access that question 
more. 

The two excerpts above shows that the participant appreciates uncertainty as what 
intellectually stimulates students to have mathematical discussions.  We hypothesize that this 
participant has a positive valence to uncertainty that is originated from students’ feeling, but 
has a negative valence to uncertainty that is from the mathematics in the task.  In other words, 
it seems that the participant values students’ mathematical exploration, but the exploration 
should only happen within a mathematically safe space.  Teachers like this participant might 
not think that mathematical knowledge is open to revision (Ernest, 2004, 2015; Lakatos, 
1976), hence inherently uncertain. 

Discussion 
In the first set of results we discussed a range of approaches that participants took toward 

the uncertain mathematics presented in the Williams item.  We noted that the correctness or 
incorrectness of the given numeric answer seemed to be given disproportionate weight in 
some participants’ thinking, at times overshadowing their thinking about the validity of the 
methods.  Some participants explicitly mentioned being aware of the logical error in which 
one assumes that a correct answer means correct reasoning was used to reach it, but 
mentioning this did not seem predictive of resisting the influence of the answer.  This may 
not be a shocking result—people do not always do in specific cases the things they describe 
as general approaches.  But we wonder if it might also be a function of the uncertain 
mathematics.  Confronted with uncertainty, there might be a tendency to fall back on methods 
for evaluating student work that are simply not valid methods even when the person doing so 
knows that they are not valid methods.  Several participants fell into the accompanying error 
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of assuming that because Craig’s numeric answer was incorrect his method must also be 
without examining his work in detail.  These examples suggest to us a number of points that 
might be taken up specifically in teacher preparation, including explicit discussion of the 
relationship (or non-relationship) between students’ methods and their answers, but perhaps 
more importantly suggesting that prospective teachers need opportunities not just to discuss 
these things in general terms but also support in learning to recognize cases where these 
things might be happening in their own thinking.   

Overall we observed many responses in which participants engaged in potentially 
productive mathematical investigations.  We presented examples of an algebraic approach, a 
graphical approach, and an examination of the boundary, but recognize that this is only one 
way of categorizing these responses.  Most of the algebraic approaches also might have been 
labeled as attempts to explore the generality of the rule, which has some overlap with 
exploration of boundaries, or we might have categorized those approaches in terms of use of 
examples or whether a general proof argument was attempted.  We do not claim that our 
categorization is necessarily best or comprehensive, and certainly one would expect that 
different tasks would present opportunities to engage in different types of strategies.  We 
called out these three approaches because we believe they are approaches that are likely to 
generalize to other task types and that therefore deserve attention in teacher preparation.  The 
participants of this study demonstrated their mathematical habits of mind (Mark, Cuoco, 
Goldenberg, & Sword, 2010) by looking at extreme cases or using abstraction.  That is, the 
embedded mathematical uncertainty provided an opportunity for the participants to practice 
their mathematical habits of mind.  This seems particularly important to attend to in the 
context of the CCSS standards for mathematical practices, which ask teachers to help 
students learn how to engage in some of these very habits.  Situations in which uncertainty is 
available might constitute the very opportunities teachers need to model this type of 
engagement to their students as they themselves think through the mathematics in a public 
way.   

The second set of results in which we observed the valence assigned to uncertainty is 
harder to interpret.  We expected to see case of strong emotional reaction to the item, as is 
often the case with tasks that participants find difficult.  We also expected we might see a 
fairly simple relationship between valence and approach in that people who experienced 
uncertainty as positive might engage productively, but the story was more complex.  We see 
from the data that we cannot predict the participants’ correctness of their responses from their 
valence.  We also see that with the valence, we cannot predict whether they would deeply 
engage with the uncertainty.  We observed cases where valence was assigned to different 
aspects of the uncertainty at in different ways.  All this are to say that the relationship 
between valence assigned uncertainty and meaningful mathematical investigation is not 
straightforward.   

Being aware of this complexity between valence and resolution of uncertainty is 
important for teacher educators and researchers.  Teacher educators should be careful not to 
assume that teachers with negative valence will not engage with uncertainty and those with 
positive valence will conduct an in-depth mathematical investigation or will know how to do 
so productively.  This awareness is important for researchers, too, because teacher valence is 
often not explicitly addressed in the literature.  While literatures encourage teachers to 
acknowledge uncertainty, we would argue that acknowledging uncertainty should not be 
interpreted as having a positive valence toward uncertainty.  Our examination presents cases 
suggesting that the relationship between valence and engagement might be more complex 
than we thought, and therefore further examination on such matter is necessary to support 
better teacher learning.   
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We learn from literature that cultivating an orientation toward engaging with uncertainty 
is important for teacher development (e.g., Capobianco, 2010; Meister & Nolan, 2001; 
Munthe, 2001, 2003; Munthe & Thuen, 2009; Wheatley, 2005), but this is clearly only the 
first step.  Teachers also have to have ways to work productively with that uncertainty, 
regardless of the valence they assign it, in order to figure the mathematics out for themselves.  
To teach students to engage in mathematics by exploration, teachers must think about 
modeling the practices as they engage in order to utilize uncertainties as opportunities to 
learn. 

Conclusion 
The examples we shared in the paper, rather than providing a catalogue of responses, 

present possible approaches teachers can take.  The point of these examples is to illustrate 
that uncertainty is a slippery space in which teachers’ mathematical and emotional response 
varies, and one that can easily arise even in the context of fairly simple mathematics.  We do 
not advocate a “right” response to uncertainty, but think that these considerations might be 
useful to teacher educators in considering how to prepare teachers for dealing with such 
situations.  We see a strong potential of uncertainty as a resource for teacher education.  We 
draw on the notion of specialized content knowledge (Ball, Thames, & Phelps, 2008) to 
understand the potential of uncertainty.  When responding to the Williams item, the 
participants used mathematics to understand student work.  That is, uncertainty from the item 
invited the participants to use mathematics that are unique to the teaching situation. 

We echo Zaslavsky’s (2005) suggestion to include tasks with embedded mathematical 
uncertainty in teacher education to cultivate mathematical understanding.  We take a step 
farther and claim that teachers should be supported in acknowledging uncertainty, 
confronting and engaging it, finding productive approaches, articulating those approaches, 
and thinking through how such moments could be transformed into “teachable moments.” 
This is partly mathematical skill, partly an emotional response to uncertainty, and partly 
developing a disposition that values such opportunity.  The field has acknowledged the 
importance of teachers’ modeling the mathematical practices for their students (e.g., 
Charalambous, Hill, & Ball, 2011) and we posit that the best modeling may come in response 
to a genuine, unexpected mathematical problem in a case where the teacher truly does not 
know the answer.  By providing teachers opportunities to engage in mathematical 
uncertainty, we expect them to become more skillful at productively responding to 
uncertainty, and in turn more able to model such practice in front of their students.  Teacher 
educators needs to provide opportunities for novice teachers to engage in approximations of 
the work of teaching (Grossman, Compton, Igra, & Ronfeldt, 2009), where responding to the 
range of unexpectedness presented by classroom interactions (Coles & Scott, 2015; Mason, 
2015) is part of that work of teaching, and one type of unexpectedness can be in the form of 
uncertain mathematics.  Responding to mathematical uncertainty is not simple, and we see it 
comprises at least the following steps: (a) notice their uncertainty about what a student is 
proposing (b) understand that it might be worth pausing for or attending to (c) constructively 
direct the class in a way that leaves the question open and allows time to think (d) explore the 
uncertain mathematics and (e) make a judgment about how to engage the students 
productively depending on the result of that exploration.  We believe that engagement with 
appropriate tasks can provide opportunities for prospective teachers to practice performing 
each of those steps, with appropriate support.  
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Reasoning about changes: a frame of reference approach 

Surani Joshua 
Arizona State University 

 
In a RUME 18 Theoretical Report, my co-authors and I presented our cognitive description 

of a conceptualized frame of reference, consisting of mental commitments to units, reference 
points, and directionality of comparison when thinking about measures. Here I present a pilot 

study on how a focus on conceptualizing a frame of reference impacts students’ ability to reason 
quantitatively about changes. The two-part empirical study consisted of clinical interviews with 
several students followed by teaching interviews with three students, who were chosen because 
of their varying abilities to conceptualize a frame of reference. This initial evidence shows that 
the ability to conceptualize a frame of reference benefits students as they attempt to reason with 

changes. 
 
Keywords: Frames of Reference, Quantitative Reasoning, Quantities, Changes, Additive 
Comparisons 
 

In a RUME 18 Theoretical Report , my co-authors and I presented our cognitive 
description of a conceptualized frame of reference (Joshua, Musgrave, Hatfield, & Thompson, 
2015). At the same time, my experiences working with reform curricula for Precalculus (Marilyn 
P.  Carlson, Oehrtman, & Moore, 2013) and Calculus 1 (Patrick W. Thompson, Byerley, & 
Hatfield, 2013) at a large Southwestern public university led me to be surprised at how much 
students struggle with thinking and reasoning about changes. Rate of change is known to be a 
central idea in calculus (Marilyn P. Carlson, Jacobs, Coe, Larsen, & Hsu, 2002), and important to 
introduce as early as Algebra 1 with the idea of slope. But in order to reason about rate of 
change, a student must be able to conceptualize and reason about changes themselves. 

My own anecdotal data and conversations with other Precalculus and Calculus 1 teachers 
showed that students frequently struggled with conflating the idea of a total quantity’s 
measurement with a change in a quantity’s measurement. These discussions led me to realize 
that a fundamental differentiation between measures of total quantity and change in quantity is 
coordination of reference points from which to measure. Hence, student struggles in reasoning 
with and about changes fit squarely within my current research topic of frames of reference. 

 
Theoretical Perspective 

A survey of both math education and physics education literature revealed few papers that 
focused on student thinking about frames of reference (Bowden et al., 1992; Dede, Salzman, & 
Loftin, 1996; Marshall & Carrejo, 2008; Monaghan & Clement, 2000; Panse, Ramadas, & 
Kumar, 1994; Shen & Confrey, 2010) and many of those did not explicitly state what they meant 
by a “frame of reference”, taking that phrase to have a shared meaning between the authors and 
the readers; even a paper on alternative conceptions of frames of reference (Panse et al. 1994) 
only stated what a frame of reference is not. However, it is not clear that there is a shared 
definition of a frame of reference in these fields. The few concrete definitions we found in the 
literature or textbooks ranged from physical objects like “welded rods” (Carroll & Traschen, 
2005), or “a set of observers” (de Hosson, Kermen, & Parizot, 2010) to a coordinate system 
(Young, Freedman, & Ford, 2011). 
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More significantly, none of these definitions focus on the cognitive actions of a student 
that is thinking about measures within a frame of reference. In tasks that involve thinking about a 
frame of reference (such as relative motion, special relativity, etc.), the focus of the task is never 
the frame of reference itself. Rather, it is that a student must organize the measures of quantities 
such as distance, velocity, and time within one or more frames of reference in order to keep track 
of what those measures mean. In a 2015 paper, my colleagues and I introduced our cognitive 
definition of what a conceptualized frame of reference entails:  

  
An individual can think of a measure as merely reflecting the size of an 
object relative to a unit or he can think of a measure within a system of 
potential measures and comparisons of measures. An individual 
conceives of measures as existing within a frame of reference if the act of 
measuring entails: 1) committing to a unit so that all measures are 
multiplicative comparisons to it, 2) committing to a reference point that 
gives meaning to a zero measure and all non-zero measures, and 3) 
committing to a directionality of measure comparison additively, 
multiplicatively, or both (Joshua et al. 2015). 

 
One important implication of our definition is that it places frames of reference squarely 

within the larger construct of quantitative reasoning (Patrick W. Thompson, 1993a). Though 
people may frequently speak of a frame of reference as a noun, it is actually a set of decisions 
that a person makes about how to think about quantities and their measurements. Thompson 
writes “[a] person constitutes a quantity by conceiving of a quality of an object in such a way 
that he or she understands the possibility of measuring it” (Patrick W. Thompson, 1993b). In 
2015 we expanded on his previous definition by defining a framed quantity “which refers to 
when a person thinks of a quantity with commitments to unit, reference point, and directionality 
of comparison”. 

Our definition expands the utility of frames of reference from its traditional application of 
relative motion to almost any situation in which quantitative reasoning is necessary. Of course, 
our definition provides a strong starting point to analyze student difficulties for working with 
relative motion. However, we have already identified additional contexts were these ideas can be 
applied: concavity of functions, rate of change, electric potential, and the difference between 
quantity and change in quantity.  

 
Research Questions & Methodology 

 My initial hypothesis was that student struggles in reasoning with and about changes 
were due at least in part to the fact that measures of changes in quantities had reference points 
and directionality, but that they did not think about framed quantities – quantities whose total 
measures necessitated commitments to unit, reference point, and directionality of comparison in 
order to make sense of them. Therefore, they did not have parallel attributes with which to 
compare and contrast the ideas of quantities versus changes, and to distinguish the two in their 
minds. From this hypothesis I developed seven research questions for this pilot study, four of 
which are discussed in this paper. 
Changes in Quantity vs. Values of Quantity: 
• RQ#1: How do students conceptualize a change in a quantity versus the value of a quantity? 
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• RQ#2: Does a focus on frames of reference affect students’ ability to reason about changes 
in quantity and values of quantity, by drawing explicit attention to reference points? 

Changes in Changes: 
• RQ#3: How do students think about changes in changes, in tasks such as being asked to 

identify whether a function is increasing/decreasing at an increasing/decreasing rate? 
• RQ#4: Does a focus on frames of reference affect students’ ability to reason about changes 

in changes, by drawing explicit attention to a directionality of comparison? 
 
 To investigate these research questions, I designed and carried out an empirical study on 
the connections between a student’s ability to conceptualize a frame of reference and his or her 
ability to reason about changes that involved both clinical and teaching interviews. Clinical 
interviews are conducted for the purpose of gathering information about a student’s current 
understanding; with such a goal it would be counterproductive to engage in any form of teaching, 
including questioning designed to help the student make connections. In contrast, teaching 
interviews developed as a data-collecting tool in the 1970s because “researchers explicitly 
acknowledged that mathematical activity in school occurs as a result of students’ participation in 
teaching” (Steffe & Thompson, 2000). The goal of a teaching interview is to ascertain both a 
student’s current understanding and to examine how and to what extent a student progresses in 
understanding in the context of teaching (such as probing or guiding questions, didactic objects 
(P. W. Thompson, 2002), conversations with the interviewer, direct instruction, etc.). Even with 
a teaching interview, a student’s progress is still affected by the mental resources that she brings 
to the interview, and a teaching interview can help to illuminate those resources. 
 The first part of the study consisted of clinical interviews with seven students who had 
taken at least one algebra class and one physics class in college or high school. These interviews 
helped me form models of each student’s current ability to conceptualize a frame of reference. I 
then picked three students that I found demonstrated varying abilities to conceptualize a frame of 
reference. Hayden, a recent college graduate in graphic design, consistently gave high-level 
responses that were situated within a frame of reference and referred to directionality and 
reference points when explaining his answers. Miranda, a biochemistry major in a reform 
Calculus 1 class, performed at a medium level, sometimes giving answers that indicated a 
conceptualized frame of reference. Luigi, a full-time worker with an Associate’s degree, rarely 
gave answers situated within a frame of reference and often could not explain his answers. The 
second phase consisted of teaching interviews with these students to study to what extent their 
varying abilities to conceptualize a frame of reference would help them to move forward in their 
ability to reason about changes. 
 All interviews were videotaped and analyzed to form models of how the student thought 
about measures and measure comparisons before, during, and at the end of the teaching 
experiment. I also used the videos to build hypotheses about how these ways of thinking about 
measures (within a frame of reference or not) affected each student’s ability to reason about 
changes. For Luigi’s interview the video recording malfunctioned, so I wrote detailed notes with 
Luigi directly after his interview. 
 

Results from Clinical Interviews 

 In this section I present results from the clinical interview stage of this study. I focus on 
tasks that elicited responses that helped me to build models of how Hayden, Miranda, and Luigi 
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did or did not conceptualize a frame of reference. 

Land of the Midnight Sun  
 The second part of our cognitive definition of a conceptualized frame of reference is that 
a person commits to a reference point that gives meaning to both a zero measure and all non-zero 
measures. To see to what extent my students could make such a commitment, I created the graph 
in Figure 2 of a flagpole’s shadow length in an imaginary Land of the Midnight Sun, where there 
is sunshine in the middle of the night. The labels “length of shadow” and “o’clock” on the axes 
were left deliberately vague. 

 
Figure 2. Land of Midnight Sun graph. 

 
 Part 1’s purpose was to make sure that the students understood what the vague axes 

labels meant. They were shown the portion of the graph for x ≥ 0 and asked “What does this 
point mean?” while highlighting the points (4, 5) and (14, 12.5); all three easily said that at 4am 
the shadow was 5 feet long and at 2pm the shadow was 12.5 feet long. 
 For Part 2, I extended the visible graph to the domain x ≥ -3 so that point A was visible, 
and asked the students what the meaning of point A was. Hayden immediately said that at 10pm 
the night before the shadow’s length was 0.5 feet. When asked how he decided that the time was 
10pm, he said “It's like this 12 o'clock is the point of reference of when to use…”. Miranda 
originally said that point A was the length of the shadow at 2 o’clock, but with some prompting 
was able to say 10 the night before. There was a clear difference in how Hayden and Miranda 
thought of measures of time; while Miranda seemed to have some idea of using zero/midnight as 
a reference point, her meaning for her own reference point did not help her to find meanings for 
negative measures. In contrast, Hayden’s explicit mention of a reference point and immediate 
response showed that for him the reference point gave meaning to all non-zero measures both 
positive and negative, which is the second part of our 2015 definition of a conceptualized frame 
of reference introduced in the Theoretical Perspective above. 
 In Part 3 I showed the entire graph and asked the students to interpret the meaning of 
point B. Here Miranda started by assuming that the meaning of point B somehow related to the 
area under the curve. When asked to justify her answer she eventually said that the length had 
started increasing again as time went backwards. Luigi clearly stated that the shadow’s length 
was 1 foot, and when questioned further he merely shrugged and smiled and said that he didn’t 
know how to account for the negative. He did not seem upset by his lack of a systematic way to 
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deal with the negative. Hayden was the most clear, saying that “the fact that it's going negative in 
feet now could mean one of two things. It could mean the shadow is just like going beyond 
existing, which is not realistically possible, so… The other explanation would be that the shadow 
is now going in the opposite direction. So, if the shadow was extending to the right, now it's 
extending to the left.” Here Hayden was incorporating both a commitment to reference point and 
a commitment to directionality of comparison that allowed him to make these comments; these 
commitments are the second and third parts of our 2015 definition of a conceptualized frame of 
reference. 
 Hayden, Miranda, and Luigi revealed their varying abilities to commit to a reference 
point by their treatment of the vague axes labels. This task was designed to answer the question 
‘What meanings could each student give to the definition of zero on each axis so that negative 
measures made sense?’ Miranda and Luigi were unable to give such productive meanings to 
‘zero o’clock’ and ‘zero shadow length’ while Hayden could. This suggests that Hayden had 
ways of thinking – specifically, committing to a meaningful reference point and directionality of 
comparison - available to him that Miranda and Luigi did not have. Because of this he was able 
to work with a conceptualized frame of reference, as defined by our three-part definition above, 
to make sense of all the interview tasks in a coherent way. 

Comparing Spousal Heights  
 The third part of our cognitive definition of a conceptualized frame of reference is that a 
person commits to a directionality of measure comparison additively, multiplicatively, or both. If 
a student always calculates changes by saying “3 less pounds” or “4 more pounds”, then the 
student is constantly changing her directionality of comparison to keep the comparison measures 
positive. The measures themselves (3 and 4) do not carry all the information needed to make 
sense of them. While this is usually not a problem for a single comparison, it becomes extremely 
important when reasoning about multiple comparisons. 
 As with my unit task, I did not expect students to spontaneously commit to a 
directionality of measure comparison. Instead, I created a series of increasingly detailed 
questions and looked to see how much prompting (if any) could elicit such a commitment. Even 
though this was still part of the clinical interview, it was also the first time I had an opportunity 
to ask the students about changes (additive comparisons). 

husband’s height (ft) 
5.6 
3.2 
6.1 
4.8 
5.9 

wife’s height (ft) 
6.2 
4.9 
5.9 
3.2 
7 

a) Compare the heights of each couple. 
b) How much taller or shorter? 
c) Now only use the words 
     “taller than” 
d) Now only use the phrase: 
     “Wife is ___ taller than husband” 

Figure 3. Comparing Spouses’ Heights Task 

 All three students did not maintain a directionality of comparison for prompts a-c. When 
I asked them to maintain a comparison from one spouse to the other and also maintain the 
comparison “taller than” Luigi was unable to do, and Hayden and Miranda had similar answers 
but with very different levels of comfort, which demonstrated their varying abilities to 
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conceptualize a frame of reference.  

Hayden: So, the wife is point 6 feet taller than the husband in the first 
couple. Second couple; the wife is four…second couple, the wife 
is 1 point 7 feet taller. I guess I have to use the word taller? 

Interviewer: Yeah. Than the husband. 
Hayden: Than the husband. Okay. So, if I have to keep saying the wife 

first, then uh... use the word taller, then the wife is…The third 
couple, is negative point 2 feet taller than the husband. And for 
the fourth couple, the wife is negative point 6… negative 1 point 
6 feet taller than the husband. And the last couple, the wife is 1 
point 1 feet taller than the husband. 

Interviewer: Okay. You hesitated before you did the third couple. May I 
ask why? 

Hayden: Cause usually when talking about people's height, you don't 
really use a negative number. So I just had to think for a second… 
like, if that's the way that I wanted to describe it. 

Interviewer: Okay. Can you tell me about why you decided that's the way 
you wanted to describe it? 

Hayden: I mean, given the parameters, there's not really much else… 
other way you can describe it. If you have to use the word wife 
first, and if you have to say taller, there's not that many other 
ways to describe it. 

Interviewer: Do you think that that is actually a mathematically legitimate 
way of describing the situation? 

Hayden: I'd say it's a similar situation to the graph before [Midnight 
Sun task]. So, where in this case the negative number either 
means that there's such a thing as negative length. Like, 
theoretically, like measuring something that you would actually 
be able to measure negative amounts. Or it means that it's going in 
the opposite direction. In this case, it would technically mean 
shorter, even though you're using the word 'taller'. 

Interviewer: All right. 
Hayden: So, like if I'm …if someone's shorter, then basically negative 

taller would be shorter, or negative shorter would be taller. 

 

Interviewer: Now, say that sentence, and be filling in the blank each time. 
Miranda: Can I say… do I have to say taller? 

Interviewer: You have to say 'the wife is blank taller than the husband.' 
Miranda: Okay. The wife… For couple one the wife is point six feet 

taller than the husband. For couple two, the wife is one point 
seven feet taller than the husband. For couple three, the wife is 
not…hmm. For the wife…I don't think… 

Interviewer: Just say whatever you feel should go in that blank. Honestly. 
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Miranda: There's two things that could go. 
Interviewer: Okay. Go ahead. 

Miranda: Okay, so the first thing is; the wife is not taller than the 
husband, but the husband is one point two taller than the…wait. 
Hold on. The wife is not taller than the husband, but the husband 
is taller…is point two taller than the wife in terms of the change 
between the wife and the husband. (Laughs) 

Interviewer: Okay. 
Miranda:  Or you could just say the wife is negative point two feet 

taller than the husband. 
Interviewer: Out of those three things, which one do you instinctively go 

towards, and also which one do you suspect is probably, like, the 
most mathematical way of saying it? 

Miranda: Negative two is the most um…mathematical way of saying it. 
Interviewer: And what was your instinct? 

Miranda: I just want to switch it to make it positive. So, I just want to 
switch the…I want to switch the – the input and output …so it's 
the… it's supposed to be less…it's less confusing. 

 While maintaining a directionality of comparison in this task was not natural for either 
Hayden or Miranda, Hayden quickly adjusted to my request and made reference to earlier tasks 
in which he had made and maintained mental commitments so that all of his responses were 
coherent. His spontaneous explanations at the end of the excerpt and his analogy between the 
couple’s height task and the midnight sun task showed that he thought about both kinds of 
measures within a consistent system – a conceptualized frame of reference. In contrast, Miranda 
had a vague understanding that a negative was a mathematical tool likely to be useful in this task, 
but was deeply uncomfortable with using it. Both her words and her body language indicated that 
she was giving her answers against her own better judgment, which indicates that if she was not 
repeatedly pressed to do so she simply would not commit to a directionality of comparison and 
therefore not conceptualize a frame of reference within which to think about such tasks. 
 The husband and wife height’s task was followed by a red car vs. blue car speeds task 
that was formulated in the exact same way, except that one car’s speed was always an integer 
multiple of the other’s speed. In order to maintain a directionality of comparison a student would 
have to go from, for example, “Red car is 5 times as fast as blue car” to “Red car is 1/3 times as 
fast as blue car.” I was surprised to see that all three students completed the car speeds task with 
much less discomfort! Their speed in coming up with statements could be explained by the fact 
that they were primed by the couple’s heights task, but the difference in their comfort levels and 
body language was evident. This difference in comfort between maintaining a directionality of 
comparison additively and multiplicatively will be a point of focus in my further study, and I 
plan to have the cars going in different directions to see how students coordinate both additive 
and multiplicative comparisons. 
 The data from clinical interviews shows that Hayden, Miranda and Luigi had varying 
abilities to conceptualize a frame of reference. Luigi could not commit to either a reference point 
or a directionality of comparison, Miranda could partially commit to both in somewhat vague 
ways that were not always productive, and Hayden could commit to both a reference point and 
directionality of comparison in ways that allowed him to move forward on tasks. 
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Results from Teaching Interviews 

 Of the seven students who participated in the clinical interviews, I chose Hayden, 
Miranda, and Luigi to participate in teaching interviews because of their varied abilities to 
conceptualize a frame of reference and their willingness to verbalize their thinking. In this phase 
my primary goal was to examine these students’ ability to reason about changes, and to look for 
any indications that their reasoning did or did not involve a conceptualized frame of reference. 

Tom and Padma  
 The Tom and Padma task is designed to see whether students understand that all 
quantities are measured with respect to a reference point, and that any choice of reference point 
is arbitrary. A total quantity’s measurement is therefore a change from a measurement of zero, 
and what we call a change in quantity is a change from any starting point. Yet even a 
measurement of zero depends on the definition of the quantity itself. In any given task “total 
water I drank” might be this day or week but is likely not all the water I have drunk in my entire 
life, “total wheat sold” is never defined as since man first crawled out of the oceans, and 
“velocity” by the principle of relativity (citations) has no absolute zero except with reference to 
another object taken to be at rest. Even what we commonly call “zero velocity” is only a change 
of zero in velocity with respect to the surface of the Earth.  
 To see whether the students could, with help, reason about velocity measurements as 
changes, I created the two-part Tom and Padma task. All three students got stuck and fell silent 
after 5-7 minutes, so I started asking them about what an observer from space would see to try 
and elicit a definition of velocity measurement that was specifically with respect to the surface of 
the Earth. My hypothesis was that once a student acknowledged that even our “everyday” 
velocity measurements were with respect to a reference point, they might conclude that all 
velocity measurements have a reference point as well. 

Tom watches Padma’s car go by, makes some measurements, and 
announces that Padma’s car is moving at a speed of 15 mph. What can you tell 
me about the car? 
 

What if I tell you that Padma’s car continues at the same constant speed, 
and ends up making a 200 mile trip in only 4 hours? How can this be? Note: 
Tom did everything correctly. 

Figure 4. The Tom and Padma task. 

 Miranda had a great deal of trouble with Tom and Padma, asking if Tom only measured 
the very beginning of her trip when she accelerated, Tom incorrectly measured the time, or that 
Tom made incorrect calculations. Then, nine minutes after she started working on the task, she 
made a sudden breakthrough. 

Interviewer: How could I look at this [pencil on desk] and say, 'this is at 
rest?' It's at rest relative to what? 

Miranda: My position in time? 
Interviewer: Actually, your position in space, right? 
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 Miranda was able to see that if Tom was running, as she put it, he could accurately 
measure Padma’s speed as less than 50mph, but that qualitative description was all she could 
achieve. We spent a total of 45 minutes on the Tom and Padma task (at her request, she did not 
want to give up) and she could never tell me that Tom must be driving at 35mph on the road to 
measure Padma at 15mph. Luigi was able to say that Tom must be moving after only a few 
minutes of thinking, but also was never able to tell me how fast Tom must be going. Neither 
Miranda nor Luigi could think about the different velocity measurements within conceptualized 

Miranda: In space! 
Interviewer: Not time. Right now, it's not moving with respect to you, 

right? 
Miranda: No. 

Interviewer: Anything else that's not - 
Miranda: WAS HE RUNNING??!?! 

Interviewer: - moving with respect to you? 
Miranda: Was... (laughs and smiles) If he's moving…or was he…. 

Does this mean…okay…if he's going…if this is 
slower…Okay…mmm… if this car…. 

Interviewer: Do you need this pencil? 
Miranda: Yes! [Picks up both pens to represent Tom and Padma]  

(laughs) If this car is going this fast, and he's going really 
slow…[moves pens parallel to each other, one faster than the 
other] er, like, he's not at a constant place if this is going super 
fast, and he thinks it's going really slow…so…does that mean 
that…ah…is that…. (shakes pens) 

Interviewer: Yes! 
Miranda: Does….Yeah? 

Interviewer: Yes! Yeah! 
Miranda: Yeah? He's going really slow and the car's going really fast? 

That is how you think it is? 
Interviewer: Right. Tell me…can you tell me- 

Miranda: Like fifteen miles per hour? 
Interviewer: Can you be really specific…exactly what's going on, so that 

he thinks… he honestly…like it is accurate to say, right? Isn't it 
accurate to say that this [pencil] is at rest with respect to Brittany 
right now?  

Miranda: Mmm hmm. 
Interviewer: It's also accurate to say that it's moving with respect to what? 

What is it moving with respect to? 
Miranda: Space. 

Interviewer: The problem is, what's space? (laughs) Give me something 
specific instead of space. Something else that's out there. 

Miranda: The speed of light! 
Interviewer: That is not an object….or a location. 

Miranda: Hmmm. 
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frames of reference, and so could not coordinate them to finish the task. 
 In contrast, when Hayden realized that Tom could be moving, he conceptualized both 
measures of Padma’s speed as framed quantities, and could then reason about a change between 
them. As for the other two students, after he was stuck for 6 minutes I engaged him in a 
discussion about how we measure velocity. 

 

 
 Not only could Hayden reason that Tom was going in the same direction as Padma at 
35mph with respect to the surface of the Earth, but also he spontaneously commented that Tom 
would measure Padma’s velocity as more than 50mph if he was going in the opposite direction 
from Padma. He was able to use 15mph and 50 mph as framed quantities in different 
conceptualized frames of reference and coordinate the two frames to reason about changes 

Interviewer: Now imagine the solar system. And the earth is whirling 
around the sun. 

Hayden: Okay. Yes. 
Interviewer: And the earth is spinning on its axis. And Padma's driving. 

Are you sure that her car's going at 50 miles an hour? 
Hayden: Ohhhh. It's um, if you weren't factoring in the speed of the 

earth's rotation, she would be going 50 miles an  hour,  but if you 
factor that in, technically she would be going faster than that. 

Interviewer: So…can that give you a hint as to what, maybe, is going on 
here? 

Hayden: So, I was making the assumption that we are just considering 
like, just space… I was going to make the assumption that we 
were just talking about like, driving like from here to Las Vegas, 
or something…and just considering that distance on the earth's… 

Interviewer: Okay. 
Hayden: …just on the earth's surface itself. 

Interviewer: Wonderful. On the earth's surface. Or with respect to the 
surface of the earth. 

Hayden: Yeah 
Interviewer: Good, okay. Now. You make that assumption, but that 

assumption is not here.  So, how could Tom have taken this 
measurement and gotten a true 15 miles per hour? 

Hayden: [after brief diversion where he tries to incorporate planetary 
speeds] So, if he's going… so if he's also moving, then 
technically he would get some reading that's less than what the 
speedometer is. 

Interviewer: Could there ever be more? 
Hayden: If he was going the opposite direction. 

Interviewer: Wonderful. So, you're saying that he's moving in the same 
direction? 

Hayden: Yes. 
Interviewer: Okay. And do you know how fast he was going? 

Hayden: [after first correctly saying that Tom was going 15/50 as fast 
as Padma] But, um… see, he would have to be going 35. Yes, 35. 
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between them. 
 There is a clear difference in the way Luigi, Hayden, and Miranda were able to move 
forward in reasoning about changes with my guiding questions about velocity that address 
Research Questions #1 and #2: ‘How do students conceptualize a change in a quantity versus the 
value of a quantity?’ and ‘Does a focus on frames of reference affect students’ ability to reason 
about changes in quantity and values of quantity, by drawing explicit attention to reference 
points?’ Luigi was able to discern that Tom was moving after only a few minutes, and Miranda 
came to the same conclusion after nine minutes, which meant that they were eventually able to 
conceptualize velocity measurements as a change in velocity with respect to another object taken 
at rest (in this case Padma’s measurement of her own speed held the surface of the Earth to be at 
rest, and Tom’s measurement of Padma’s speed took held himself to be at rest). However, neither 
were able to utilize these realizations to reason that when both measures are considered within a 
single conceptualized frame of reference, such as the one Padma used, then Padma’s speed 
measurement is a quantity and Tom’s speed measurement is a change in quantity. Without this 
ability to coordinate quantity versus change in quantity, neither were able to make a conclusion 
about how fast Tom must be going to make sense of the task. Hayden, whose clinical interview 
showed that he was able to conceptualize a frame of reference, could complete the task by 
coordinating changes, which required him to commit to reference points for both Tom and 
Padma’s measurements of Padma’s speed. Moreover, he was also able to move beyond the 
planned task to reason about how Tom might measure Padma’s velocity as more than 50mph by 
committing to a directionality of comparison of [Padma’s velocity with respect to Earth’s 
surface] – [Tom’s velocity with respect to Earth’s surface] = [Tom’s measurement of Padma’s 
velocity]. 

Leaky Bucket Task 

 The leaky bucket task is designed to see if students can reason about changes in changes. 
The graph in Figure 5 shows the relationship between time and the number of cups of water left 
in a leaky bucket. Because Luigi was showing signs of discomfort and stress I skipped this task 
with him and only presented it to Hayden and Miranda. 
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a) What is happening to the water as time increases? 
b) Starting with point (2.5, 8) can you illustrate how much the water changes as 
    the time increases by 0.5 hours? 
c) Can you illustrate changes in water along the entire graph for x-intervals of  
    length 0.5 hours? 
d) Look at the changes in the water as time increases. What can you tell me   
    about the changes? 
e) If necessary: Can you also tell me how the changes are changing? 

Figure 5. Graph and Prompts for Leaky Bucket task. 

 Both students struggled with prompt d. To describe the set of changes drawn in prompt c, 
a person can say that the changes are negative, and that the changes are increasing as time 
increases (since the sequence -3, -1, -0.5 is increasing). In order to conclude that the changes are 
negative a student needs to choose a directionality of comparison f(timefinal) – f(timeinitial), and to 
conclude that the changes are increasing a student needs to continue to commit to that same 
directionality. While both students chose the above directionality and said that the changes were 
negative, both then broke that commitment and used a comparison [larger change] – [smaller 
change] to conclude that the changes were decreasing. 

Interviewer: So, as time goes by, what is the water doing? 
Hayden: So, the water is decreasing. 

Interviewer: Decreasing. Okay…. First let's just look at the changes in 
time. So look at these changes. Are they increasing, decreasing, 
or staying the same? 

Hayden: Staying the same. Each one's half an hour. 
Interviewer: Now, what about these changes?  

Hayden: The change is becoming less and less…each time. 
Interviewer: Okay. So the change is… 

Hayden: So the greater change is first, and it's getting to the less of a 
change. 

Interviewer: Are the changes increasing, decreasing, or staying constant? 
Hayden: Decreasing. 

 Miranda gave a similar response to Hayden. I then asked both students to estimate the 
value of each change. Hayden did so and initially tried to tell me whether the changes of the 
changes were increasing, decreasing, or staying constant, but when I redirected him to speak 
about the changes he said they were increasing. 

Hayden: Oh, yeah. But like the size between, if I actually took like 
accurate measurements and put it on a timeline the size between 
these changes would start decreasing. So like, E [fifth labeled 
change] would be closer to D [fourth change] than B [second 
change] would be closer to A [first change]. 

Interviewer: So, as we're going from A to E are the changes increasing, 
decreasing, or staying the same? 
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Hayden: Okay. That's what you meant by that. I thought you meant 
something else. 

Interviewer: Tell me what you meant by something else. 
Hayden: I thought you meant like, was the distance between the two 

changes… like was it like a greater amount of change, or was it a 
less amount of change. 

Interviewer: Right. Well, you're talking about comparing the changes of 
changes. 

Hayden: Yeah. 
Interviewer: But what about comparing the changes? 

Hayden: The changes themselves, it's increasing each time. 

 When I gave Miranda the same prompt to estimate the changes, she found a negative 
increasing sequence but continued to say that the changes were decreasing. We spent 10 minutes 
talking about the meaning of the measures of changes but she was not able to independently say 
that the changes were increasing. In response to her increasing frustration I told her the sequence 
was increasing and explained why by placing the measures of changes on a number line and 
asking her to drag her finger from one change to another.  

Interviewer: Why do you think that you saw negative three, negative one, 
and negative point five, and you said decreasing? 

Miranda: The negative value. 
Interviewer: What about it? 

Miranda: That's why I said it's decreasing. 
Interviewer: Oh, just because they were all negative? 

Miranda: (Nods) 

 Hayden and Miranda’s answers reveal their different abilities to reason about changes in 
changes which addresses Research Questions #3 and #4: ‘How do students think about changes 
in changes, in tasks such as being asked to identify whether a function is increasing/decreasing at 
an increasing/decreasing rate?’ and ‘Does a focus on frames of reference affect students’ ability 
to reason about changes in changes, by drawing explicit attention to a directionality of 
comparison?’ Miranda repeatedly confounded comparisons of changes with changes themselves, 
(a parallel problem to confounding changes with quantities themselves) shown by her 
explanation that she thought negative changes meant that the changes were decreasing. Even 
when I directly instructed her to look only at the measures of the changes in changes she could 
not keep track of quantities, changes, and changes in changes in a way that allowed her to make 
sense of all the information she was given. In other words, since the only difference between the 
three aforementioned quantities are reference points and directionality of comparison, Miranda 
was not coordinating these ideas within a conceptualized frame of reference per our 2015 
definition. Though Hayden struggled in the beginning by inadvertently looking at the changes in 
changes in changes, he recovered and then was able to reason about changes in changes by 
comparing the changes measures in ways that made sense to him. He considered the changes in 
changes by means of both measuring each with respect to its own reference point f(timeinitial) for 
that x-interval, and also by committing to a directionality of comparison. His conceptualized 
reference frame is what allowed him to arrive at his final conclusion that the changes were both 
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negative and increasing. 

Conclusion 

 Through this pilot study, I found evidence that students need to commit to and think 
about a reference point in order to reason about changes versus total quantities (Research 
Question #1) and need to commit to and think about a directionality of comparison in order to 
reason about changes in changes (Research Question #3) as explained with the excerpts above. 

 I also found strong initial evidence that a student’s ability to conceptualize a frame of 
reference – that is, commit to a unit, reference point, and directionality of comparison when 
thinking about measures - had a significant positive effect on their ability to reason about 
changes versus quantities (Research Question #2) as well as reason about changes in changes 
(Research Question #4). The evidence for this conclusion is two-fold. First, the students’ abilities 
to reason through tasks about changes in the teaching interviews frequently reflected the initial 
positions of ‘high’ ‘medium’ and ‘low’ that I had placed them simply on their abilities to reason 
about a frame of reference in the clinical interviews. More significantly, the language that the  
students’ used to explain their reasoning about tasks involving changes was often about a 
reference point or direction when the students – especially Hayden - were successful, and almost 
never about any of the three aspects of a frame of reference in our cognitive definition when the 
students gave up or were unsuccessful. 

 The results of this pilot study are being used to inform the creation of a larger study with 
more tasks, a longer time frame, and more students on how their capacity to conceptualize a 
frame of reference affects their ability to reason about changes. My preliminary results also 
suggest that a student’s ability to reason about changes within a conceptualized frame of 
reference has implications for his ability to make sense of rates, first and second derivatives, 
concavity, addition of vectors, velocity, acceleration, and the principle of relativity, among other 
ideas. If so, this work can provide starting places in both math education and physics education 
for better instructional design. 
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Connecting symbol sense and structure sense 
 

Margaret T. Kinzel 
Boise State University 

 
Novotná & Hoch (2008) propose that structure sense is an extension of symbol sense, which is 
an extension of number sense. Data collected initially to explore symbol sense were re-examined 
in terms of possible instances of structure sense. Preliminary thoughts on this re-examination are 
presented in this paper. 
 
Key Words: symbol sense, algebraic notation, structure sense 
 
One of the benefits of presenting early at a conference is the opportunity to have conversations 
with colleagues. In this case, I was able to have conversations with Stacy Musgrave, Duane 
Graysay, and others on possible connections between my notion of symbol sense and elements of 
structure sense in their work. These conversations prompted me to revisit my interview data with 
undergraduate mathematics students and mathematicians in search of possible evidence of 
structure sense. Task-based interviews were conducted with nine mathematicians and eleven 
undergraduate students enrolled in a proof-based mathematics course. Tasks for the interviews 
were selected to be accessible to a range of participants but to also provide enough complexity so 
that a participant’s approach to notation becomes apparent and an explicit focus of the interview. 

 
Characterizing Symbol Sense 

 
In my short paper in these proceedings, I proposed a framework for characterizing 

algebraic symbol sense. Within work on a task, an individual may be looking at, looking with, or 
looking through the notation, with the assumption that for a fluent user of notation, these 
viewpoints are more interconnected, so that shifts between the viewpoints are fluid and reasoned. 
This supports my earlier definition of symbol sense as a coherent approach to algebraic notation 
that supports and extends mathematical reasoning (Kinzel, 2000). Brief examples from each 
viewpoint are presented here with the goal of connecting to elements of structure sense. 

Looking at the notation involves noticing particular aspects of a notational form and 
considering potential actions. This can happen in both productive and non-productive ways. One 
mathematician participant (M8), when asked to solve the system of equations shown below, 
responded:  

!" = 100
! − 5 ! + 1 = 100 

“What I see right off the bat is that I can subtract these. Left-hand side also has xy 
in it. Left with something in terms of x+y. Does that help me solve it though? If I 
subtract them, I know x+y is equal to something. Yeah. That will allow me to 
solve for y in terms of x plus a number and plug it back in and that will give me 
my answer.” 
 

This seems a productive instance of looking at the notation and considering the effectiveness of 
possible operations. In contrast, a student participant (S1) recognized the common term of 100, 
set the left sides equal to each other, and proceeded to solve for y, expecting to arrive at a 
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numeric value. Surprised by the result of a linear equation in x and y, the student applied a 
familiar process and found the intercepts of this equation. In this case, looking at the 
(unexpected) linear equation prompted a known procedure that actually has limited relevance for 
the given task. Both instances seem to involve the participant considering structural aspects of 
the task and using their understanding of these aspects to guide choices. 

Looking through the notation intends to capture those instances in which participants 
seemed to read through the symbols to the underlying relationships described by the symbolic 
forms. For example, a few participants (both students and mathematicians) recognized the 
system of equations shown above as representing products, and used this relationship to quickly 
find solutions to the system. One student participant (S7) found the solution (25,4) quickly 
without writing anything down. When asked if this were the only solution, he considered 
negative factors and proposed (-20,-5) as a second solution to the system. Another student 
participant (S10), surprised by finding two solutions to the system, was able to reconsider the 
original equations as products and reasoned:  

“Generally with a system of equations, you should be able to get the correct result 
using only one factor of x and y each. Considering that you have two 
multiplication problems, I suppose—instead of more addition and subtraction—I 
guess I can understand why it might be two factors. Because they can both be 
negative and then they can both be positive.” 
 

Although S10 did not seem to interpret the equations as products initially, his unexpected result 
prompted him to reconsider the equations and he was able to recognize them as products. Again, 
both participants seemed to draw on some aspect of the structure of the task within their work. 

Looking with the notation is intended to capture instances in which an individual 
introduces or constructs notational forms to represent relationships within a context, specifically 
with the intent of understanding or manipulating the quantities involved. Once such forms are 
constructed, one’s sense of algebraic structure could then be evidenced through articulations and 
choices made. It may also be that evidence of a sense of structure can be found within the 
construction process. Consider the Treasure Hunt task: 

 
A treasure is located at a point along a straight road with towns A, B, C, and D on 
it in that order. A map gives the following instructions for locating the treasure: 
 a. Start at town A and go half of the way to C. 
 b. Then go one-third of the way to D. 
 c. Then go one-fourth of the way to B, and dig for the treasure. 
If AB = 6 miles, BC = 8 miles, and the treasure is buried midway between A and 
D, find the distance from C to D.  
 

Constructing appropriate expressions for the distances traveled requires focusing on and 
coordinating various steps, and thus can be challenging even for fluent users of notation. Within 
their work on this task, several participants referred to expressions or terms within expressions as 
“this guy” or “this thing” and in some cases replaced a term or expression with a new variable. 
As a mathematician (M4) explained: “Sometimes introducing a simpler expression allows you to 
see things.” She further stated that the simpler expression can allow you to see things from a 
different perspective, and perhaps indicate different potential operations. Such considerations 
may indicate strategies to isolate relevant structure within a representation. 
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Connections to Aspects of Structure Sense 
 

Hoch (2003) suggested that structure sense includes the ability to recognize algebraic 
structure and to use appropriate features of that structure to determine useful operations. It seems 
this draws on aspects of both looking at and looking through the notation. M8’s productive 
looking at the notation as described above could be interpreted as recognizing particular forms 
and using that recognition to guide his choices. Similarly, S7’s recognition of the equations as 
products allowed him to apply a perhaps more efficient trial-and-error approach to this particular 
task. Some participants, when working on the Treasure Hunt task, wondered whether the location 
of the treasure is uniquely determined by the given information. Recognizing and drawing on the 
relationship between the number of variables and the number of constraints within a context may 
also be an aspect of structure sense 

The tasks used in my interviews were chosen to elicit a range of interactions with 
algebraic notation and thus were not specifically aimed at exploring participants’ ability to 
capitalize on algebraic structure. (See the list of tasks at the end of the paper.) All participants 
completed the Rational Equation, Treasure Hunt, Age Ratio, and System of Equations tasks; the 
Percent and Permutations tasks were used at the discretion of the interviewer. Of these, the 
Rational Equation and System of Equations tasks come closest to being aimed specifically at 
revealing an individual’s use of algebraic structure. 

 
Aspects of Structure Sense within the Rational Equation Task  
Results. All participants were given the Rational Equation task as the first task in the 

interview: Solve for x: !!!"
!!!!!!!" = 0. All nine of the mathematician participants and six of the 

eleven student participants (S1, S2, S5, S7, S10, and S11) focused primarily on the numerator 
and checked in some way that x=-16 would not also produce a value of 0 in the denominator. In 
fact, one mathematician participant (M5) commented that the identification of x=-16 was “so 
easy, it’s got to be that -16 makes the denominator zero as well.” This check was usually done by 
evaluating the denominator for x=-16, although M2, M4, and S1 initially attempted to factor the 
denominator. When this proved nontrivial, all three confirmed that x=-16 would not produce a 
zero value in the denominator and were satisfied with their solution. An additional student (S8) 
identified x=-16 as the solution, but with no explicit attention to possible implications for the 
denominator. It should be noted that one mathematician (M4) initially focused on the left side of 
the equation, thinking in terms of the shape of the graph, rather than noticing the value of zero on 
the right side of the equation. The remaining four students focused on the denominator, 
attempting to factor in order to cancel with the x+16 in the numerator. Most persisted with this 
approach even when it became apparent that (x+16) would not be a factor of the denominator.  

Discussion. Hoch and Dreyfus (2004) include in a proposed definition of structure sense 
the ability to “recognize an algebraic expression or sentence as a previously met structure.” All 
the participants discussed here seemed able to recognize the rational equation as a familiar 
structure, but they focused on different components of that structure. The nine mathematicians 
and six students seemed able to identify “expression = 0” as the most relevant structural aspect of 
the task and this allowed them to quickly propose x=-16 as a potential solution. They all went on 
to acknowledge that the left side being a rational expression required further verification of the 
solution. It is not clear whether the additional student (S8) recognized this aspect of the equation. 
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Further, M4 initially focused on the left side as a rational function and its related graph, only 
focusing on the “expression = 0” aspect later in her work. In contrast, the remaining four students 
seemed to attend more to the quadratic structure within the denominator, prompting them to 
apply known procedures for identifying factors of a quadratic expression. We can assume that all 
twenty participants had encountered rational expressions set equal to zero previously, and so this 
should exist for them as a “previously met structure.” For the four student participants, however, 
the familiar quadratic structure of the denominator seemed to take precedence. This is perhaps an 
example of what Musgrave and colleagues (2015) refer to as responding to contextual cues rather 
than structural awareness; that is, a quadratic expression presented within a “solve” context may 
trigger factoring strategies and may limit or inhibit a participant’s attention to the overall 
structure of the task. 

 
Aspects of Structure Sense within the System of Equations Task 
Results. The System of Equations task was presented above and some sample excerpts 

discussed. Nearly all of the participants successfully completed this task. One student (S1), as 
described above, found the intercepts for an intermediate linear equation and assumed these 
points would be solutions to the system. When this proved to not be the case, he was unable to 
make further progress on the task. Four additional students (S3, S6, S9, and S11) found 
appropriate values for one or both variables, but their articulations reveal potential problems in 
terms of algebraic structure. Although appropriate procedures were applied to the task, the 
interpretation of values as solutions to the system was problematic for these four participants. 

When S6 encountered a quadratic equation within his solution process, he applied the 
quadratic formula to find two values for x; these values were written as (25, -20) and he stopped 
work on the task. When asked if he had solved the system, he replied “I think so. Is it right?” but 
did not check his solution in any way. A similar situation occurred in S11’s work; he chose to 
solve for y and, finding that y could be -5 or 4, initially assumed that these two values constituted 
the solution to the system. He did eventually find -20 and 25 as values for x, and these were 
written under the appropriate values for y, but S11 does not clearly articulate that there are two 
ordered pair solutions to the system.  

Both S6 and S11 initially assumed that the two possible values for one variable 
constituted a solution to the system. S11 did make further progress on the task, but did not 
clearly identify two ordered pairs as solutions. A similar result was seen in the work of S3; he 
also solved for y and used the first equation to find values for x: “y equals 5 or y equals -4. 
Easiest will be xy=100.” These values are written but not explicitly connected as ordered 
pairs (see figure at right). Finally, S9 also found two values for x (-20 and 25) and two values 
for y (-5 and 4), but then created the four possible ordered pairs: (-20, -5), (-20, 4), (25, -5) 
and (25, 4) and checked each pair in the equations. In this way, he did identify the two ordered 
pairs that are solutions to the system but for him and the other students described here, there is 
clearly an issue with understanding the algebraic structure within this task. 

Discussion. Participants who were successful on this task seemed to acknowledge the 
algebraic structure in some way, appropriately identifying the two ordered pair solutions and 
perhaps recognizing the equations as representations of products (as in the work of S7 and S10 
described in the description of the framework). This recognition of structure seemed to allow 
S10 to make sense of his unexpected result of two solutions to the system. In contrast, the four 
less successful participants (S3, S6, S9, and S11) recognized the system as a familiar form and 
applied appropriate procedures but their interpretations of the nature of the solutions were 
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limited and this limitation is likely related to not attending to the nonlinear nature of the given 
equations. 

 
Aspects of Structure Sense within Contextual Tasks  
The remaining tasks used in this particular set of interviews were presented as contextual 

situations and may or may not have introduced specific symbols. Returning to Hoch and 
Dreyfus’ (2004) definition of structure sense as it applies to high school algebra, several abilities 
are included: 

• see an algebraic expression or sentence as an entity, 
• recognize an algebraic expression or sentence as a previously met structure, 
• divide an entity into sub-structures, 
• recognize mutual connections between structures, 
• recognize which manipulations it is possible to perform, and  
• recognize which manipulations it is useful to perform. 

A full analysis of these interview data with respect to this list of abilities will not be attempted 
here. I will offer a few preliminary observations that seem to be related to the overall notion of 
structure sense. 

Across interviews, when the task required the construction of a notational representation, 
the more fluent and/or successful participants often expressed the notion of being “done” once an 
appropriate representation was produced. Particularly on the Treasure Hunt task, once a 
(perceived) correct equation was constructed, participants felt the task had been completed and 
only carried out the algebraic manipulations for confirmation or as a reaction to the interview 
setting. That is, the “work” of algebra was accomplished in the construction of the equation. In 
the specific case of the Treasure Hunt task, this is an appropriate view of the structural aspect of 
the task: confidence in the appropriateness of the equation combined with confidence in one’s 
manipulative skill should indicate successful completion of the task. Such a view was also seen 
in some participants’ work on the Permutations task, particularly with respect to claim (a). For 
this task, a place-value based representation leads easily to noticing that the average of the 
permutations will be 37 times the sum of the three digits. Once this relationship was recognized, 
participants generally did not feel the need to produce a formal written proof for claim (a); the 
relevant structure had been identified so the “work” was done.  

A second theme that emerged across interviews is the tendency to think in terms of a 
general case and how the notation is used in service of this. The Age Ratio, Permutations, and 
Percent tasks each are open to either a numeric or notational exploration. Both approaches were 
observed in the work of more than one participant on each task. The approaches did not align 
with mathematician or student status; that is, not all mathematicians took a notational approach 
and not all students took a numeric approach. Varying degrees of success were observed across 
participants. In some cases, a numeric approach was used in hopes of revealing the structure of 
the general case. In these cases, even when what was written involved specific values, the 
articulations indicated that these values were recognized as “stand-ins” for the general case. In 
contrast, other participants seemed to focus on the specific values themselves, and so were less 
likely to be able to recognize the values as stand-ins for generic quantities in the tasks. In both 
the Age Ratio and Percent tasks, the specific values of ages or salaries drop out when appropriate 
notational forms are constructed and manipulated, revealing the underlying relationship between 
the ratios or percentages. More fluent users of notation were able to see the notation as a tool 
capable of revealing underlying structure that is perhaps not evident in specific numeric 
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instances.  
 
Closing Thoughts 
As I reexamined these interviews, I was struck by a few particular comments. These 

comments seem related to a sense of algebraic structure so I share them here as food for thought. 
Two students, S3 and S5, made comments that may indicate their awareness of structure but also 
potential limitations within that awareness. In contrast, comments from mathematician 
participants more frequently indicated not only an awareness of, but an intention to capitalize on 
aspects of structure.  

As S3 began work on the Rational Equation task, he indicated a desire to cancel factors in 
the denominator with the numerator, and made this comment regarding the denominator: “I’m 
really hoping this isn’t a quadratic.” Further articulations indicate that he meant that he hoped 
that the (obviously quadratic) expression in the denominator would factor so that he would not 
need to use the quadratic formula. This may just be a careless use of “quadratic,” but given that 
the goal was to cancel with the numerator, not seeing x-16 as a potential factor of the 
denominator should eliminate the quadratic formula as a useful manipulation in this case. Later 
in his work on the System of Equations task, S3 commented on his chosen process, “Hope I’m 
not backing myself into a corner.” When asked how he might know, he responded, “For me, 
personally, probably wouldn’t realize it until it was too late. I imagine people with more 
advanced algebraic skills would, like with chess, be thinking a few moves ahead.” This comment 
seems to indicate that S3 may be aware that there is more structure inherent in tasks than he feels 
completely capable of recognizing and using to guide his work. 

Related to the notion of where the “work” of algebra takes place, a comment from S5 on 
the System of Equations task is unsettling. She used substitution to approach the task and 
produced the quadratic equation 20 = ! + !!. At this point, she paused and said, “I kinda 
already know what the answer is, but it’s not, for me, solving.” She was able to look at the 
equation and reason that y=4 satisfies the condition since “4 times 4 is 16 and plus 4 is 20.” She 
did not see this as a legitimate “solving” process. I would argue that this is an indication of 
recognizing the represented relationship and a perfectly legitimate, perhaps even desirable, 
means of solving this particular equation.  

Comments from mathematicians often referred to possible structural awareness, such as a 
general comment from M5 while working on the Treasure Hunt task: “Sometimes in 
mathematics, what you choose to let your variable be affects the complexity of the solution.” A 
poignant comment from M2 reflects an awareness of being aware. He recounted his memory of 
his first “purely mathematical thought” at around age 12: “Rules for pushing symbols around 
were one thing, but the empty spaces being inhabited by virtual numbers was a different thing.” 

Other authors have indicated that it is difficult to capitalize on structures not “previously 
met”; ensuring that all students have the opportunity to meet all possible structures would seem a 
daunting task. It seems potentially more useful to consider how to develop the structural 
awareness indicated by the mathematician comments in the previous paragraph. The interview 
data examined here suggest that a possible approach would involve developing the ability and 
tendency to think in terms of a general case, coordinated with developing thoughtful fluency with 
manipulations of a variety of notational forms. Such an instructional approach should emphasize 
the role of notation as a tool capable of both representing and revealing algebraic structure. 
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Tasks 
Rational Equation Task  
Solve for x:  

! + 16
!! − 3! − 12 = 0 

Treasure Hunt Task 
A treasure is located at a point along a straight road with towns A, B, C, and D on it in that order. 
A map gives the following instructions for locating the treasure: 
 a. Start at town A and go half of the way to C. 
 b. Then go one-third of the way to D. 
 c. Then go one-fourth of the way to B, and dig for the treasure. 
If AB = 6 miles, BC = 8 miles, and the treasure is buried midway between A and D, find the 
distance from C to D. (Charosh, 1965)  
 
Age Ratio Task 
The ratio of John’s age to Mary’s age is now r. If 1<r<2, express in terms of r the ratio of John’s 
age to Mary’s age when John was as old as Mary is now. (Saul et al., 1986)  
 
xy System Task 
Solve the system for x and y:  

xy = 100 
(x - 5)(y + 1) = 100 
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Permutations Task 
The average of the six permutations of 1, 2, 8, (that is, 128, 182, 218, 281, 812, and 821) is 2442 
÷ 6 or 407. It is observed that (a) the average is an integer; and (b) 1 + 2 + 8 = 4 + 0 + 7. Are 
these observations valid for any three digits? (Charosh, 1965)  
 
Percent Task 
A person’s salary is reduced by p percent. By what percent would the salary then have to be 
raised to bring it back to the original amount? (Charosh, 1965)  
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Online Calculus Homework: The Student Experience 
 

 Andrew Krause Ralph Putnam 
 Michigan State University Michigan State University 

 
Online homework is propagating rapidly across the nation, especially in large, introductory 
courses in STEM fields. The literature provides some evidence that the implementation of online 
homework is correlated with higher exam scores and course grades, but theory about how online 
homework supports learning is lacking, as is research on how students engage with and 
experience online homework. This study examines student experiences with online homework by 
identifying various homework environments, resource use, perceptions, and strategies that 
characterize diverse student experiences and learning opportunities. This portrayal 
demonstrates that aggregating student experiences through statistical analyses is sometimes an 
oversimplification that limits the inferences that can be made from achievement data and is 
evidence that qualitative data is vital to understand how online homework supports learning and 
inform improvements to its implementation. 

 
Key words: online homework, calculus homework, screen recording, interviews, observation 

 
Addressing the problem of persistence of students working toward a degree in the science, 

technology, engineering, and mathematics (STEM) fields is an enduring challenge of educators 
across the Unites States. It is estimated that between 40 and 60 percent of students who enter 
postsecondary education with the intention of pursuing a degree in a STEM field will switch 
their study to a non-STEM field (Bressoud, Mesa, Hsu, & Rasmussen, 2014). Poor instruction in 
mathematics and science courses, especially calculus, is cited as a reason that students decide to 
switch out of STEM fields (Seymour, 2006; Sonnert & Sadler, 2015). Even academically 
successful students sometimes leave STEM fields because of negative reactions to the pedagogy 
they experience in mathematics and science courses, meaning that factors other than student 
success should be considered to address the issue of STEM retention. 

As the use of online calculus homework propagates across the country (for example, over 
700 institutions use WeBWorK nationwide), online homework is taking on a growing role in 
students‟ experiences with calculus. My experiences as a student, tutor, and instructor led me to 
believe that online homework is large component of students‟ experience with calculus, and 
students have expressed both positive and negative perceptions about their online homework. 

The goal of this study is to portray student experiences with online calculus homework to 
better understand how online homework facilitates learning and to inform instructional decisions 
about online homework. A deeper understanding about the strengths and weaknesses of online 
homework, especially about the ways in which online homework facilitates learning 
opportunities, can inform how online homework is implemented to maximize its effectiveness. 
For various reasons described later, online homework appears to be positioned as a permanent 
component of college calculus instruction, so improving its implementation is one way to 
improve students‟ experiences with calculus. 

 
Why has Online Homework Propagated so Rapidly? 

Two factors have contributed to the rapid adoption of online homework systems across the 
nation. First, there is evidence in the research literature (summarized in the next section) that 
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students in calculus classes that use online homework perform slightly better, in terms of exam 
scores and course grades, than those without online homework. Second, several features of 
online homework provide instructional alternatives that indirectly contribute to improved student 
support. Online homework can free up department resources, allow for assigning students 
individualized homework sets, and can provide immediate feedback while automatically grading 
entire assignments. Although the evidence suggests that online homework may slightly improve 
student success in calculus courses, it is important to recognize that the following opportunities 
offered by online homework may have contributed to its propagation independent of a critical 
analysis about how online homework supports learning. 

Freeing up department resources. In many university courses, especially large courses, 
assigning paper-and-pencil homework entails a large commitment to grading. Often, graders are 
hired to assist with grading, which incurs a significant financial burden on the departments. 
Online homework systems can automatically grade assignments, alleviating the financial burden 
of grading homework. Those resources can be redirected to other programs designed to support 
student learning, such as tutoring centers (Bonham, Beichner, & Deardorff, 2001; Carpenter & 
Camp, 2008; Richards-Babb, Drelick, Henry, & Robertson-Honecher, 2011; Zerr, 2007). 

Immediate feedback and grading. Online homework systems offer instantaneous grading 
and feedback. This feature enables instructors to grant multiple solution attempts to students, 
which allows students to work through their mistakes without having to turn in an assignment 
and wait for grading and feedback (Bonham et al., 2001; Carpenter & Camp, 2008; Kortemeyer, 
2014; Zerr, 2007). Furthermore, immediate feedback has been shown to improve learning 
opportunities (Epstein, Epstein, & Brosvic, 2001). Immediate grading also enables continual 
formative assessment, both because automatic grade reports can inform instructors about the 
progress of their students and by providing a means for students to self-assess (Demirci, 2007). 

Individualized homework sets. Online homework systems can generate problems 
algorithmically, so students can be assigned unique problems. Problems can be authored using 
several random parameters, so that each student‟s homework sets have problems that are 
identical in structure but that have unique numbers. Many instructors see this capability as a 
means to deter cheating (Carpenter & Camp, 2008), but this capability can also be employed to 
allow students to generate an unlimited number of practice problems. 

 
Does Online Homework Help Students Learn? 

To determine the effectiveness of online homework in supporting student learning, 
assumptions must be made about the types of evidence that inform such an evaluation. The 
following vignette illustrates that one type of evidence that is valued is achievement data, 
gathered through an experimental comparison between control and experimental groups. This 
perspective undergirds much of the research about online homework, but the neglect of the 
student perspective has left a gap in the literature. This study portrays student experiences with 
online homework and demonstrates the importance of the student perspective in understanding 
how online homework supports learning. 

 
Assumptions about Measuring Learning 

During a course meeting while data for this study was being collected, a faculty member 
respectfully asked, “Do we even know if online homework helps students learn?” Although I 
attempted to provide some insights during the meeting, it is clear, in retrospect, that I should 
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have been mindful of the differences in the assumptions about what evidence to answer that 
question might look like. 

My colleague politely inquired for evidence from an experimental study, revealing his 
conception that the measurement of learning can be accomplished through comparison between a 
treatment group and a control group. That kind of evidence does exist; Hirsch and Weibel 
(2003), for example, found that students performed slightly, but significantly, better on a final 
exam in a general calculus course when enrolled in a section for which online homework was 
used, scoring 4% higher on average. In an introductory calculus-based physics class, Bonham, 
Beichner, and Deardoff (2001) found that students scored slightly better on tests in sections that 
employed online homework (78%) in comparison to sections using paper-and-pencil homework 
(75%). A similar effect has been reported in other introductory STEM courses (Cheng, Thacker, 
Cardenas, & Crouch, 2004; Cole & Todd, 2003; Richards-Babb et al., 2011). 

This evidence, while providing some insights about the value of online homework, is 
incomplete. The gap in these results is clear; measuring the systematic improvement to the 
structure of a course is more complex than finding a 4% improvement on final exams. The 
results of that variety of research are unquestionably important, but student learning is more than 
complex than student outcomes on exams. We must include the student perspective to 
understand how learning opportunities are facilitated by online homework.  Student success data 
is information about the results of students‟ experiences with online homework, but data from 
the student perspective is required to understand how students‟ experiences support learning. 

 
A New Perspective 

Each of the previously described studies have a commonality: they are all inquiries from the 
instructional perspective. The student perspective is missing from these results, and thus only 
half of the story has been described. Hirsch and Weibel (2003) found a substantial difference (of 
two letter-grades) between students who attempted every online homework problem and those 
“who did not attempt many” (p. 14). These findings describe, with more nuance, qualities of the 
student experience that we could try to facilitate to maximize the effectiveness of online 
homework as a learning tool. The evidence collected from the instructional perspective provides 
a limited portrayal of the mechanisms by which online homework might support learning, which 
is why we must look to the student perspective for more insight. 

By examining the ways that students experience online homework, I was able to capture 
students‟ perceptions about how online homework supports their learning, the study behaviors 
facilitated by online homework, and the ways in which students use resources to complete their 
assignments. From this perspective, this study describes how online homework facilitates student 
behaviors and perspectives that lead to learning opportunities, and identifies homework 
environments and study strategies that shape students experiences with online homework. 

 
Research Method 

My research combined a quantitative survey with observation to determine general trends in 
tandem with providing a detailed portrayal of individual student experiences with online 
homework. My research is guided by the four following questions: 

1. What homework environments do students experience during online homework? 
2. What resources do students employ while completing online calculus homework? 
3. What perceptions do students have about online homework? 
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4. What strategies do students employ to complete online homework? 
 

Sample 
The survey was administered to all students in the mainstream calculus course at a large 

public university via email and was completed with a 24% response rate. 
Participants for the observation study were solicited via email from two sections taught by 

two different graduate teaching assistants. Both of the graduate teaching assistants had at least 
one full year of teaching experience and had previously participated in a teaching mentoring 
program, which is a typical of the graduate students assigned to teach calculus at the institution. 
Four students were selected to participate from a pool of 9 volunteers, with attention given to 
selecting participants with varying backgrounds in terms of experience with AP Calculus, with 
other calculus classes at the institution, and as repeat students for the same calculus course. 

 
The Survey 

The survey gathered data on students‟ demographic information, mathematical backgrounds, 
perceptions of online homework, study habits, and resource use. I analyzed the survey data by 
examining graphical representations and basic descriptive statistics to identify general trends. 
 
Qualitative Study 

I gathered two main forms of qualitative data: (a) video recordings of student homework 
sessions and (b) transcribed, audio-recorded interviews. As a secondary data source, I drew on 
notes from informal conversations with the participants, most of which occurred while meeting 
with students briefly to collect the video recording files. 

Video recordings. The video recordings of homework sessions include two data streams. 
Screen-recording software (Screencast-O-Matic) was installed on the participants‟ computers to 
capture the details of their computer work. The screen recordings provide details about students‟ 
exact input into the online homework system, and also captured students online activity outside 
of the online homework system, such as browsing the internet for support and using online 
calculators such as WolframAlpha. A webcam was used to simultaneously to capture students‟ 
real-world activity, but did not capture the same level of detail that was captured by the screen 
recordings. In the webcam recordings, I can identify when students are working with paper-and-
pencil during their online homework session, but it is not possible to determine exactly what 
students are writing. 

Interviews. Each of the four students participated in an interview administered using a semi-
structured protocol, with the goal of identifying individual study habits and perceptions about 
online homework. I also informally discussed the students‟ experiences with their online 
homework several times while I was transferring the videos from their computers. 

 
Results 

To analyze my data, I conceptualized students‟ experiences with online homework as being 
characterized across the following dimensions: (a) the homework environments that students 
create, (b) the resources that students utilize, (c) the perceptions that students have about online 
homework, and (d) the strategies that students employ to complete homework. The homework 
environments that I describe illustrate variation in the amount of time that students spend on 
online homework, the setting in which homework is completed and the people present in that 
setting, and the time when homework is completed. Then, I describe the resources that students 
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use, along with variation in the ways that those resources are used. Next, I describe student 
perceptions about online homework, including the perceived usefulness of online homework as a 
learning tool. Finally, I will describe several strategies that students employ related to how and 
why they complete homework. 
 
Homework Environments 

The context that students create to complete their online homework determines learning 
opportunities afforded by that experience. I found variation in the homework environments 
across three dimensions: (a) the length of time that students study, (b) the physical setting, 
including the location and people, and (c) when students choose to study relative to the course 
schedule. 

How much time do students spend on online homework? The survey, interviews, and 
observations all suggest that students spend about 5 hours per week working on online 
homework. Of course, the amount of time required to complete an online homework assignment 
varies from assignment to assignment and student to student, but it appears that students spend 
more time working on their online homework than on studying calculus through other means. 

Survey data. Figure 1 is a histogram that displays the time that students reported spending on 
online homework, per week, as well as the amount of time that they spend studying calculus 
otherwise. This data was gathered through a free response question and responses were binned 
by 1-hour intervals. 

 
Figure 1: Amount of Time Studying Calculus (hours/week) 

Interview data. Aesha and Brittany provided some insights into the amount of time that they 
spend working on online homework. Aesha reported that she “spends three hours on it to finish 
it, three for two assignments”, so approximately 4.5 hours per week for the three assignments 
each week. Aesha also indicated that her study routine only consisted of working on online 
homework and doing practice exams, without studying otherwise, but Aesha was a high-
achieving student who had taken a college calculus course previously. Brittany suggested that 
she worked on online homework for long hours, but was not explicit about the number of hours. 
Brittany did complain, however, that “Even though the [online homework] takes 90% of your 
time, it‟s worth like a fraction of what your grade is,” indicating that a large portion of her study 
time is spent working on homework, which matches the trend in the survey data. 

Observation data. The video recordings provided an exact record of the amount of time that 
students spent on each problem that that worked on during a recorded homework session. For the 
four observed students, the average time to solve one problem was 6.2 minutes (SD = 3.4) and 
the average time needed to complete one homework set was 35.0 minutes (SD = 15.5). All of the 
students completed multiple homework sets during one homework session on some occasions, 
and the average homework session time was 105.0 minutes (SD = 33.7). Being that three 
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homework sets were assigned per week, the observed students spent about 105 minutes on online 
homework per week. 

Where do students do online homework, and with whom? The setting in which students 
do online homework varies along two dimensions: (a) the physical space in which the homework 
is completed and (b) the people present in that space. I have grouped these components of 
students‟ homework context together because the place that students choose to study in 
determines, in part, the types of people that will be present. 

Survey data. Students reported spending more time, per week, than in a collaborative setting, 
as shown in Figure 2.  The tutoring center appears to facilitate collaboration. 

 
Figure 2: Homework Environments (time per week) 

Interview data. I found variability in the physical homework setting described across the 
interviewed students. Aesha reported that studying alone in her dorm room to complete her 
online homework was the primary studying she did outside of class (A:65-78)1. Brittany started 
her online homework assignments alone in her dorm room, and then finished them in the tutoring 
center. While Brittany studied in the tutoring center, she usually worked alone, but was happy to 
work with other students, even though she not seek out study partners (B:433-443). Chris usually 
studied with his roommate, who was enrolled in a different section of the same calculus course; 
they worked together on entire problem sets and compared work to progress through the 
assignment (C:286-300). Dan studied with his friend occasionally, but studied alone is his dorm 
more often than he had in a previous semester, when he was taking the same course (D:127-140).  

Observation data. All of the students that were observed recorded homework sessions in 
their dorms; Brittany was the only one who recorded another setting when she recorded one 
homework session in the tutoring center. The variety of students‟ study settings is not well-
captured by my research, due to limitations of the technology. While the screen recording 
software runs seamlessly in the background of the computer, the recording of the student 
requires an external webcam that is awkward to set up in a public setting. 

When do students do online homework? The day of week (and time of night) that students 
complete online homework is influenced by the due dates placed on that homework. Homework 
deadlines tend to determine when students start assignments, and coinciding due dates for 
multiple assignments tend to determine how assignments are grouped into homework sessions. 
Note that during this study, homework assignments opened 3-7 days before the content was 
scheduled in class (it was a uniform course) and was due the following Thursday. Quizzes over 
the material were given in class on the Friday before the homework was due. 

Survey data. Although the survey response options shown in Figure 3 were both vague and 
overlapping, a trend is still apparent: large numbers of students complete the majority of their 
online homework assignments close to the due date.  
                                                

1 References to interview transcripts are formatted as ([Appendix]:[Line Numbers]). Appendices are available electronically: 
A: https://goo.gl/bajW1x; B: https://goo.gl/Uq88SN; C: https://goo.gl/CPKREb; D: https://goo.gl/jWO8kz  
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Figure 3: Student-reported Homework Timing 

Interview data. The students who were interviewed all described ways in which their 
studying was structured, at least partially, around online homework. Aesha explained, “I'm like a 
lazy person...If I don't have the homework which is due like in 1 or 2 days, I just let it go and not 
study until the exam is coming.” Similarly, Chris talked about online homework helping him to 
structure his studying, “It is like an annoying mother that actually ends up helping,” but he also 
explained that he attributed his success in precalculus, in part, to his habit of working on his 
online homework as soon as possible following the lesson on that material (C:237-268). Chris 
explained that he had recently been waiting until just before the due date to complete his online 
homework, which was set for the week following the quiz, and had felt unprepared for quizzes as 
a result (C162-180). Dan also explained that the misalignment of the homework due dates and 
the quizzes had negatively impacted his quiz preparation (D39-63). 

During this study, all three of the homework assignments from any given week were due on 
Thursday the following week, at the same time. As a result, Aesha, Brittany, and Chris all 
explained that they completed multiple online homework assignments during the same 
homework session (A:79-89; B:99-106; C:241-252). The interviews clarify the survey data 
displayed in Figure 3, which shows that many students complete online homework close to the 
deadline, meaning that they are likely grouping the content in ways that are similar to those 
described by Aesha, Brittany, and Chris. 

Observation results. Video recordings confirmed that students often work on multiple online 
homework assignments as a group during a single homework session. The recordings captured 
the students working on multiple assignments with the same due date during the same session. 

 
Resources 

Students use a variety of resources when working on online homework. Popular resources 
include class notes, viewing a similar example within the online homework system (which will 
be referred to as See Similar Example hereafter), online calculators, YouTube videos, and 
informational websites. Traditional resources such as the textbook, on campus tutoring centers, 
office hours, study groups, and private tutors were used less frequently. See Similar Example is a 
feature of the online homework system in use for the calculus course that was studying; there is a 
button on the interface, which is available on each problem, that is a link to a solution of a 
problem that is similar to the assigned problem, in PDF format. An instructional website is a 
website, such as Paul’s Notes, that provides explanations of math content and reads much like a 
textbook. Online calculators include WolframAlpha and Symbolab, which have advanced 
capability to solve essentially any calculus problem, both symbolically and questions posed in 
common language, such as “What is the derivative of x^2?” Online help forums allow students 
to post questions that other users can answer (i.e. physicsforums.com, Yahoo Answers, and 
mathforum.org), and preserves the communication so that students can find answers to questions 
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by Google searching for homework questions using the text of the problem verbatim; often full 
solutions and even exact answers can be located using this strategy. 

Survey data. Figure 4 shows student response data about the frequency of resource use 
during online homework. Students reported using the “See Similar Example” feature the most, 
followed by class notes and online calculators. Traditional resources, such as the textbook and 
office hours, were used sparingly. 

 
Figure 4: Resource Use for Online Homework 

Interview data. Interview data pertaining to the frequency that various resources are used is 
described below, but descriptions of the strategies related to different resources are presented in 
the following section of the paper. Interviews revealed variability in the types of resources 
students use when completing online homework, but the use of online symbolic calculators (i.e. 
WolframAlpha) was mentioned by all four interviewed students. Aesha shared that she never 
uses the textbook, but often used WolframAlpha, the “See Similar Example” feature, and her 
class notes (A:96-117). Similarly, Brittany questioned her decision to buy the textbook because 
she primarily used online resources including online calculators and informational websites as 
resources; Brittany also indicated that she worked in the tutoring center for 30-40% of her online 
homework (B:225-248;427-430). Chris estimated that his use of online calculators accounted for 
half of his total resource use, with the other half split between looking at similar examples and 
going to the tutoring center (C:308-335). Dan also indicated that he used online calculators and 
the “See Similar Example” feature, while also using the textbook (D:134-142). 

Observation data. Observations of the students revealed complexities in the ways that 
students use online resources, particularly with four electronic resources: (a) the “See Similar 
Example” feature, (b) online calculators, and (c) instructional websites and online forums. 

“See Similar Example”. Observation data aligned with the survey and interview data in that 
I observed students using this feature on many problems; this is often the first source that 
students turn to when they are stuck. Sometimes students look at the similar example 
immediately after they read the problem, other times they look at the example after they have 
attempted the problem and have submitted an incorrect answer, but students almost always turn 
to this resource first when they are not able to complete the problem on their own. It is difficult 
to infer exactly how students are interacting with the PDF, but informal conversations with the 
students match the observed behavior in that it appears as though the primary goal is to 
determine similarities in the structure of the problem to try to figure out how the numbers in the 
example can be manipulated to yield the answer to the problem at hand. In this sense, the similar 
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example serves more as a recipe to complete the necessary calculation, rather than a support for 
students to make sense of the problem that they are trying to complete. 

Online calculators. Observations of the students revealed two distinct uses of online 
calculators, which I will call troubleshooting and circumventing. First, when students are 
troubleshooting using online calculators, they have already worked through the problem on their 
own, submitted an incorrect answer, and are trying to find their error. Students talked about this 
behavior informally, explaining that they used online calculators to double check complex 
arithmetic and algebra because it is difficult to maintain exact precision throughout the 
calculations that involve unruly numerical values. Second, students sometimes use online 
calculators to circumvent a problem, meaning that they use the technology to calculate the 
answer without first attempting the problem on their own. Brittany and Chris spoke informally 
about sometimes completing their online homework by circumventing problems using online 
calculators, but both recognized that they tried to avoid the strategy because they thought it was 
hurting their learning. 

Instructional websites and online forums. In the observations, students accessed 
instructional websites (e.g. Paul‟s Notes) and online forums (e.g. YahooAnswers) exclusively 
through the use of a search engine, such as Google, which is why I have grouped these two 
resources together. Consider the two following searches queried by the students during recorded 
homework sessions: (a) Brittany: “How do you find a second derivative?” and (b) Aesha: “Use 
interval notation to indicate where on the interval [-2, 4] the function f(x) is differentiable.” The 
results of Brittany‟s search were links to several instructional websites that explained the process 
of finding second derivatives, one of which Brittany read before going back to her notebook to 
complete her problem. The results of Aesha‟s search were links to several online help forums, 
one of which Aesha visited and found the full solution to the exact problem that she was working 
on. Aesha read through the explanation and several comments, and then copied the posted 
answer and submitted it for credit. The slightly differing strategies for internet searching led to 
quite different kinds of resource use and learning opportunties. 

 
Student Perceptions of Online Homework 

The survey and interview data were used to determine student perceptions about online 
homework. Many students reported that the online homework was a useful tool for learning 
calculus, but several aspects were identified that could improve students‟ experiences. 

 
Figure 5: Student Perceptions of Online Homework 

Survey results. Figure 5 shows student responses to Likert-type survey questions about 
perceptions of online homework. Students generally perceive online homework as a useful tool 
for learning calculus, but also expressed a need for written homework as a compliment. 
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Interview results. Each of the four students who were interviewed stated that online 
homework helps them learn and provided details about the specific aspects that were helpful, 
including: (a) using online homework to structure and schedule studying, (b) receiving 
immediate feedback, and (c) having an opportunity to practice problems. Several issues were 
identified including: (a) being overburdened by the size of assignments, (b) misalignment of due 
dates, (c) the numerical complexity of problems, and (d) the need for written homework to 
supplement online homework. 

Structuring studying. Aesha described how online homework helps her to keep up with her 
homework and hypothesized that she would do less homework without online homework 
assignments (A:20-33). Chris agreed that a more structured schedule, with more frequent due 
dates, would help his learning, joking that “it is like an annoying mother that actually ends up 
helping.” Dan explained that the online homework was easy to study from (D:29-30). 

Immediate feedback. Both Brittany and Chris found the capability of online homework to 
provide immediate feedback useful for their learning (B:291-296; C:127-136). Brittany noted 
this capability as advantage over written homework, explaining that “you don‟t really get 
feedback about if it‟s right or wrong until like after you turn it in and you‟re sort of like detached 
from it „cause it might be like a week before you get it back.” Chris described, “I like the online 
part because then you can know what the answer is after a while like eventually, but if you are 
doing homework and you‟ve got the answer wrong you might keep going in your homework and 
continuously do that wrong, like, yeah, this is how to do it and there is no way to check unless 
you go to the learning centers...[online homework] gives you that instant…What‟s right and 
what‟s wrong.” 

Practice. Brittany and Chris both explained that the practice provided by doing online 
homework problems was helpful (B:30-33). Chris suggested that adding a feature to regenerates  
new problems would be helpful (C:217-230), “I would make the problems able to be solved 
infinite amount of times. Like in [chemistry]... And I would like if the problems would change 
when you try to do them.” This feature has been added since the time of this study and both 
students and tutors in the tutoring center have found the feature useful, anecdotally. 

Overburdening . Brittany and Dan both explained that the learning opportunity presented by 
online homework is diminished when they feel overburdened by the size of the assignments 
(B:6-37; D:164-168). Brittany explained, “it‟s not helpful when there‟s like you know, 15 
questions and trying to finish them in an hour and you‟re just putting it all into WolframAlpha 
and getting the answers...I end up doing a lot of that because it‟s like, crunch time, got to get this 
done.” Note that Brittany talked about online homework in a positive light overall. 

Due date misalignment. Brittany, Chris, and Dan each explained that their study habits, in 
terms of when they do their homework, are at least partially determined by the due dates on the 
homework assignments. It was problematic for students that the assigned due dates were after the 
weekly quizzes. Chris explained that he completes his online homework after he takes the 
corresponding quiz, “Most of the time, I don‟t really study that much and I‟ll take the quiz and 
then do my [online] homework... most of the time I feel kind of unprepared [for the quiz].” Dan 
echoed Chris‟s sentiment, “This semester I have noticed it was like a week off, a couple of days 
off...what I‟ve noticed now is that with the things are off, I‟m not doing too hot on the quizzes.” 

Numerical complexity. Aesha, Chris, and Dan each talked about the numerical complexity of 
some of the online homework problems as being a barrier to their learning (A:43-56; C:19-32; 
D:19-33). Each student is assigned the same problem set, but individual problems are generated 
using random parameters, leading to answers that are not easily simplified. Students are not 
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allowed to use calculators on quizzes and exams, so complicated answers are intimidating to 
students and can be difficult to input into the system with all of the parentheses. 

Written homework. Aesha thought one advantage of written homework is that it allows the 
teacher to provide feedback about the entire solution process, but she admitted that she would not 
do written homework that was not graded (A:169-187). Brittany found the optional written 
homework provided by her instructor useful (B:217-221), and estimated that her work on those 
written assignments accounted for approximately 70% of her learning (B:314-344), but she 
thought that most students would not do homework that was not graded (B:291-299). 

 
Strategies 

Each of the four students interacted with their online homework in unique ways, so I will 
provide a short description of each students overall strategy. I will provide some references to the 
formal interviews, but much of the description is informed by informal conversations and hours 
of video data that are more difficult to reference specifically. 

Aesha. Aesha generally attempted each problem on her own before turning to resources; she 
her class notes, WolframAlpha, the See Similar Example feature, and occasionally Googled the 
question when she ran into problems. According to Aesha, “see similar example in online 
homework is more useful than the notebook. Sometimes the notebook doesn't cover the 
knowledge they want us to do.” If she could not solve a problem using those resources, which 
was rare, she would, “…sometimes Google it…really, really seldom to the Google.” She would 
find an exact solution on an answer forum, would read the accompanying explanation, and would 
submit the answer provided in the forum.  

Aesha recognized that working on problems was integral to her learning process and 
appreciated that online homework provided a structure for her to do that. She identified one 
limitation of online homework, “usually on the [online homework] you only show the answer of 
the result, but on the written paper you need to show your processing… and if there any wrong in 
your processing…maybe the instructor can like talk about these question.” Aesha‟s recognition 
of this shortcoming demonstrates the value that she places on homework extends beyond its 
value in the grade book; she truly values homework as a learning opportunity. She often spoke 
about the importance of completing her online homework to her understanding; on several 
occasions Aesha dismissed her temporary struggles with confidence that she would understand 
the content after she completed her online homework. 

Even though Aesha claimed, “so I'm like a lazy person. If I don't have homework, I usually 
don't do much effort on math,” she completed nearly all of her online homework independently 
(A: 65-68). Her learning routine was consistent throughout her experience: (1) attend class and 
take notes, (2) complete the online homework individually using notes, textbook, and online 
resources, (3) succeed on weekly quizzes, (4) study for the exam, and (5) succeed on the exam. 

Brittany. Brittany‟s experience with calculus was more like a mission to complete her online 
homework, which aligns with her perception of the role on online homework in her learning. 
Brittany appreciated that she was able to persevere to complete those assignments, but her 
frustration that the grade weighting was so low (10%) demonstrates that she valued online 
homework more for the grades rather than the learning experience. She explained, “…even 
though the [online homework] takes like…. 90% of your time, it‟s worth like a fraction of what 
your grade is which I think is kind of dumb…I‟ve really tried to work really hard on the [online 
homework] just because… rather than like an exam if you don‟t know the answer you just get it 
wrong, but at least on the homework you can get help to get the answers right.” Brittany 
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explained that, “in some ways [online homework] can be helpful…because it is practice…we do 
some example problems in class and the [online homework] works…to practice applying those 
skills like if we were in class,” but she never specifically identifies how online homework 
supports her learning or talks about online homework as a way to master the material. 

Brittany often procrastinated her online homework, which led to study habits that she 
recognized as being less productive than was possible: 

It‟s not helpful when there‟s like you know, 15 questions and trying to finish them in an hour…and you‟re just 
putting it all into WolframAlpha and getting the answers…I end up doing a lot of that because it‟s like, crunch 
time got to get this done… and I‟ve no idea what I just did but, it‟s green so….that‟s when I think it‟s not 
helpful…it‟s when it gets to the point where you‟re just getting it done, to get done and not really focusing on 
how to do it. 
Brittany recognized that doing her homework herself was valuable, and explained that she 

would always attempt problems before she turned to other resources, namely the MLC and 
online calculators (B:30-47; 409-430). Brittany explained, “I try not to just get the answers on 
the computer and then put it right into my work and not really even process what that means. 
„Cause then, that‟s not gonna help me on a quiz or an exam when I don‟t have the computer to 
use,” which further demonstrates the value that she placed on online homework as a means to 
practice problems similar to those on the quizzes and exams. When she talked about online 
homework as a way to practice, language about the importance of doing those problems as a part 
of learning the materials was always missing, which indicates that she sees her online homework 
more as a component of her grade than as a learning tool that would help her master the content. 
In other words, Brittany was concerned about completing the online homework problems rather 
than learning how to complete the online homework problems. 

Chris. Chris valued online homework based on his previous experience and success in a 
precalculus class that utilized online homework, but his study habits did not align with those 
values, and he recognized the discrepancy. He often worked on his precalculus online homework 
immediately following the classes in which the content was covered, but abandoned that strategy 
for calculus and instead completed his calculus homework based on the due date, which was 
after his quizzes. He recognized that his study strategy was less beneficial than more regular 
studying, and suggested that pushing students to work more regularly through more structured 
due dates would be, “like an annoying mother that actually ends up helping.” Chris clearly 
recognized that online homework was most helpful when he worked on it more regularly, but 
there were a number of factors that contributed to his habit to utilize the online homework in a 
less effective way. 

Like Brittany, Chris valued online homework as a way to practice problems, and suggested, 
“I would make the problems able to be solved infinite amount of times.” Chris compared his 
experience with online calculus homework to his experience with online chemistry homework 
and explained that the online homework helps him learn by providing him with example 
problems, and that having an unlimited number of problems helped him use online homework 
more effectively in his chemistry class (unlimited problems, solutions provided) than in his 
calculus class (specific homework set, no solutions provided). This is indicative of the value that 
Chris ascribed to online homework as being a way to practice problems and learn the material by 
looking through solutions to try to find patterns, which implies that he values the online 
homework as a way to perfect his solution methods rather than a way to improve his conceptual 
understanding of the content. 

Dan. Dan valued online homework primarily as an organizational tool. He explained, “It‟s 
like easy to study from, so you know what to study from. You don‟t have to like trace through 
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notes and all that.” The misalignment of the homework with the rest of the course was his main 
critique of his experience with online homework, “this semester it doesn‟t usually match with 
what we are doing in class and when I do it, it is just like wait, we‟re not doing this, it is 
distracting and sometimes I didn‟t get it done.” 

Dan recognized that working on problems was important for his learning, but he was critical 
of the types of problems presented within the online homework, saying, “some of the web work 
problems are a lot like more challenging than you ever get… sometimes it is just too broad. It 
always asks about the trig function ones, I rarely see those [on quizzes or exams].” He compared 
online homework problems to some optional problems assigned by his instructor, “he has a lot of 
conceptual ones which I think that helps a lot where a lot more whereas these are, just like, you 
got to learn how to plug it in and all that,” which demonstrates that, after having worked through 
the online homework during his previous semester with calculus, he is aware of the different 
kinds of learning that the different types of homework problems support. 
 

Discussion and Implications 
The range of student experiences portrayed demonstrates the complexity of student 

interactions with online homework. Given the same homework assignment in the same class, one 
student might productively struggle through a 15-problem homework set prior to a quiz while 
another student may not even start that same assignment until after the quiz. If the average 
achievement (e.g., course grade) of these two students is employed as a way to understand the 
effect of online homework on student learning, the nuances of the students‟ experiences are lost 
and that data might tell a misleading story. To determine the effect of online homework on 
student learning, we must examine the mechanisms by which online homework supports 
learning, and we can only do that by understanding how students interact with their online 
homework to create learning opportunities. Once we have a better understanding of various 
student experiences, instructors can identify learning associated with specific experiences and 
can leverage teaching practices to facilitate the interactions that are most productive. 

 
Homework Environments 

The context in which online homework is completed shapes the learning opportunities 
afforded by that task; working on an online homework set alone in a dorm room is different than 
working on that same homework during office hours with a group of peers. Instructional design 
should draw on the strengths of online homework and should account for the shortcomings. I 
found that students tend to work on online homework alone and tend to complete assignments 
based on the deadline, regardless of how it aligns with the course schedule.  Addressing those 
issues is one way that we might seek to improve how online homework supports learning. 

One way that instructors might counteract the tendency of students to complete online 
homework alone is to supplement online assignments with collaborative written assignments. 
Students perceived optional, written homework as useful supplements to online homework both 
because written homework provides a space for them to express their thinking process as well as 
a common experience upon which to base classroom discussion and demonstration. Although 
interviews revealed that motivation may be an issue when the written homework is not graded, 
the value that students ascribed to written homework that is conceptually-based suggests that 
finding creative ways to assign and incentivize written homework is worthwhile. Shifting some 
student tasks away from online homework can also help to shift students‟ focus away from 
online homework as the only medium for studying, which is currently the case for many students 
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as over 40% if students report spending less than an hour per week studying calculus outside of 
their online homework (Figure 1). 

The majority of surveyed students (68.9%) reported that they complete their online 
homework either the day of or a couple of days before the due date. Chris and Dan both 
explained that they were unprepared for calculus quizzes because they completed homework 
assignments on the due dates that were set after the quizzes. It is no surprise that online 
homework that is completed following an assessment is perceived as less useful than homework 
completed before, so instructors should consider structuring online homework due dates in ways 
that facilitate the study behavior that is desired, even if the structure seems too prescriptive. 

 
Perceptions, Strategies, and Resource Use 

Student perceptions about the usefulness and purpose of online homework influenced the 
strategies and resources that students employed to complete their assignments, and thus affected 
the learning opportunities experienced. Some students viewed the completion of the online 
homework assignments as being important, in its own right, because of the graded component of 
the homework. This contrasts sharply with the perceptions of students who valued online 
homework as learning experience to practice the procedures and master the material. The 
learning opportunities shaped by the homework environments, strategies, and resource use 
associated with these contrasting perspectives differ substantially, and illustrate the importance 
of understanding online homework from the student perspective. 

Brittany, Chris, and Dan all espoused perceptions about their online homework that 
suggested that they leaned towards valuing online homework because it was a graded component 
of the course. They employed strategies and resources to expedite their studying, often at the 
expense of deteriorating their learning opportunities. These students often turned to online 
forums, online calculators, the “See Similar Example” feature, and sometimes the tutoring center 
for assistance in performing the required procedure to calculate the correct answer to specific 
problems. In doing so, they essentially circumvented the experience of solving those problems 
on their own, diminishing their learning opportunities. 

Although Brittany, Chris, and Dan mentioned the value of online homework as a learning 
experience, Aesha clearly explained that she valued her online homework as an important 
component of her learning and demonstrated a significant commitment to strategies and 
resources that supported her learning. When she struggled with a problem, she turned to the 
textbook, class notes, and instructional websites to try to understand the problem, and to make 
sense of the solution method as a whole, rather than seeking the solution to that specific problem. 
Aesha often turned to an online calculator to find an error in a solution that had already been 
worked out, as opposed to the strategy of employing an online calculator to simply calculate the 
answer to a problem, but she would turn to online forums when all else failed. 

Student perceptions about the usefulness and the role of online homework are a determining 
factor in how students interact with online homework, and thus determine the learning 
opportunities that are experienced. The students that participated in my research demonstrated 
that a number of productive strategies exist, along with numerous strategies that degrade the 
quality of the learning experience. In particular, when students prioritize the credit they earn 
towards their grade for completing the online homework over the learning opportunity inherent 
in the struggle to solve a problem, they often employ strategies that degrade their learning 
opportunities. Nonetheless, these students perceived online homework as a useful learning tool, 
and likely benefited from the alignment of the online homework with the course exams. Because 
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of this, an inquiry focused on student experiences can reveal the strengths and issues with online 
homework that would be overlooked by an evaluation focused on student success as measured by 
exam scores and course grades. Future work about online calculus homework should be directed 
towards the student perspective to more fully understand the ways that it can support student 
learning and inform instruction that facilitates productive study strategies. 
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Lacking confidence and resources despite having value: A potential explanation for 
learning goals and instructional tasks used in undergraduate mathematics courses for 

prospective secondary teachers 
 

Yvonne Lai 
University of Nebraska-Lincoln 

In this paper, I report on an interview-based study of 9 mathematicians to investigate the 
process of choosing tasks for undergraduate mathematics courses for prospective secondary 
teachers. Participants were asked to prioritize complementary learning goals and tasks for 
an undergraduate mathematics course for prospective secondary teachers and to rate their 
confidence in their ability to teach with those tasks and goals. While the mathematicians 
largely valued task types and goals that mathematics education researchers have proposed to 
be beneficial for such courses, the mathematicians also largely expressed lack of confidence 
in their ability to teach with these task types and goals. Expectancy-value theory, in 
combination with these findings, is proposed as one account of why, despite consensus about 
broad aims of mathematical preparation for secondary teaching, these aims may be 
inconsistent with learning opportunities afforded by actual tasks and goals used. 

Key words: secondary teacher education, mathematicians’ instructional dispositions 

Each year, many prospective secondary teachers are enrolled in undergraduate programs 
intended to prepare them to apply mathematical knowledge to their future teaching practice. 
The field has called for improving these programs, including teachers’ mathematical 
preparation. Although effects of teacher programs have proven difficult to assess in general, 
there are multiple studies on secondary mathematics teacher education suggest that secondary 
teacher do not connect their mathematical preparation and teaching practice. Even if 
connections could made in theory, it seems unlikely that teachers would leverage them if they 
believe there is no connection. 

In many institutions, mathematics departments offer courses required for these programs 
(Conference Board of the Mathematical Sciences, 2010). However, there are few studies of 
how mathematics faculty teach (Speer, Smith, & Horvath, 2010), including why mathematics 
faculty make the instructional priorities that they do, and what resources are available to 
support these priorities. In this paper, I begin with an overview of policy and textbooks that 
inform mathematics courses for prospective secondary teachers. Then I report on a small 
interview study in which 9 mathematicians were asked about their priorities for goals for 
these courses. The responses provide a potential explanation for why current priorities may 
be difficult to change, even if there is some agreement on how to change. 

Background 

Potential to connect mathematical preparation to teaching 

Approaches to mathematical preparation for teaching. In the US, committees of the 
Mathematical Association of America set policy for undergraduate mathematics courses 
taught through mathematics departments. Policy documents for mathematics courses for 
prospective mathematics teachers include reports written by the Committee on the 
Undergraduate Program in Mathematics Panel on Teacher Training in the 1960’s to 1980’s 
and Committee on the Mathematical Education of Teachers in the 1990’s. Contemporary 
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policy documents include the Mathematical Education of Teachers published by the 
Conference Board of the Mathematical Sciences (2001, 2012).  

As a set, these policies describe different approaches to designing mathematical 
experiences for prospective teachers: mathematics from an advanced standpoint; trajectories 
to disciplinary content and practices; and mathematics as it is applied to recognizing, 
responding, understanding mathematical issues that arise in the context of teaching.  

Each of these approaches connect mathematics to teaching in different ways. 
Mathematics from an advanced standpoint (Klein, 1908) seeks to provide an underlying 
mathematical structure for school mathematics, lending mathematical coherence to K-12 
mathematics. In teaching, knowledge of school mathematics from an advanced standpoint 
provide explanations of foundational mathematical ideas that position learners to connect the 
mathematics across the curriculum. Mathematics that leads to disciplinary content and 
practices can be used to give intellectual purpose to school mathematics because they provide 
potential trajectories from school mathematics to compelling problems and practices of the 
discipline. An example of this approach is developing the mathematics necessary to prove the 
impossibility of classical straight-edge and compass constructions. In teaching, knowing such 
trajectories may provide perspective in ways similar to the role of horizon content knowledge 
(Ball, Thames, & Phelps, 2008), and can inform how to portray ideas so they are consistent 
with generalized mathematical systems learned later.  

The third approach is a “practice-based” approach because it applies mathematics to 
teaching practice. The phrase references Ball and Bass’s (2003) introduction to mathematical 
knowledge for teaching as a “practice-based theory”. It is the mathematics that teachers draw 
upon to carry out the work of teaching, for instance, to select mathematical tasks that are 
amenable to whole group discussion, recognize what students are thinking, and strategize 
how to respond to students’ thinking toward particular mathematical points. 

There is a fourth approach represented by policy for teacher preparation, which I call 
mastery of conventional mathematics. By conventional mathematics, I refer to the 
mathematics of a conventional course of study. A common notion in the US spanning back 
more than a century and codified by policies such as No Child Left Behind (2002) is that the 
teacher should generally know mathematics that is the equivalent of one degree level higher 
than the level of instruction. Teachers must at least know what they will teach at the level that 
the students are intended to learn. In teaching, teachers at least need to solve the mathematics 
problems that students are assigned. 

Empirical results on the effectiveness of mathematical preparation for secondary 
teachers.  Although experiences in mathematics from an advanced standpoint and that lead to 
disciplinary content have been received well as professional development (e.g., Watson, 
2008; Eisenbud, 2015; Educational Development Center, 2015), there are also studies 
suggesting that prospective teachers are dissatisfied with their mathematical preparation, do 
not see their preparation as connected to their teaching. In Zaskis and Leikin’s (2010) survey 
of 52 practicing secondary teachers, and Goulding, Hatch, and Rodd’s (2003) survey of 173 
prospective teachers, many participants found their mathematical preparation disconnected to 
teaching. Ticknor (2012) interviewed five prospective secondary teachers and a mathematics 
faculty instructor, and found that instructor saw connections between abstract algebra and 
teaching school mathematics, the teachers were engaged with the course, and yet the teachers 
perceived the course as disconnected from teaching. Wasserman, Villanueva, Mejia-Ramos, 
and Weber (2015) interviewed 14 secondary teachers and found similar results for real 
analysis. Thus, though there are theoretical arguments for why experiences in mathematics 
from an advanced standpoint and that lead to disciplinary content are beneficial for teachers, 
but it is harder to establish these benefits in practice. Wasserman et al. (2015) and Ticknor 
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(2012) concluded that these benefits may be more likely to occur if the content taught were 
more explicitly and intentionally situated in teaching situations – in other words, to adopt a 
more practice-based approach to the content. Scholars have made the argument for a practice-
based approach to teacher preparation more generally (e.g., Ball & Cohen, 1999; Stylianides 
& Stylianides, 2014). 

Practice-based knowledge and its links to teaching quality and student outcomes. 
Practice-based knowledge is linked to teaching quality and student outcomes at elementary 
and secondary level (Hill et al., 2008; Hill, Rowan, & Ball, 2005; Baumert et al., 2010), and 
at least two studies have documented that practice-based knowledge is more so linked than 
mastery of school mathematics or mathematics from an advanced standpoint. Baumert et al. 
(2010) found that performance on their measure of content knowledge had less to do with 
teaching quality than performance on their measure of pedagogical content knowledge, and 
Rockoff, Jacob, Kane, & Staiger (2011) found that teachers’ performance on the LMT MKT 
assessment (Hill, Schilling, & Ball, 2004) of practice-based mathematical knowledge related 
to their student achievement outcomes, whereas the relationship between teachers’ 
performance on SAT math student achievement outcomes was positive but statistically 
insignificant. These results give credence to the potential value of a practice-based approach 
to teacher education.  

Prevalence of practice-based resources for the mathematical preparation of teachers 
Given the evidence for the potential of practice-based approaches to mathematical 

preparation of teachers, it is natural to ask to what extent existing resources, such as policy 
documents and textbooks, support practice-based approaches. In short, policy and texts 
support practice-based approaches for elementary teacher education, but not secondary 
teacher education, and this difference began in the 1990’s and 2000’s.  

Surveying historical policy documents for mathematics departments, the dominant 
approach to secondary mathematics education is to require prospective teachers to either 
pursue mathematics majors or to take many courses that overlap with the requirements of 
mathematics majors (Ferrini-Mundy & Findell, 2004). It is striking that current policy, as 
codified in the Mathematical Education of Teachers, 2 (CBMS, 2012), does not propose 
practice-based knowledge as an organizing principle of mathematics courses specific to 
secondary teacher education, despite highlighting the importance of mathematical knowledge 
for teaching in the introductory chapters of the document. The principles advocated are “treat 
high school mathematics from an advanced standpoint”, “take up a particular mathematical 
terrain related to high school mathematics and develop it in depth”, and “develop 
mathematics that is useful in teachers’ professional lives” (p. 63). The last principle may 
seem practice-based, but the examples given to define it are “classical ideas that are not 
normally included in a mathematics major but are of special use for teachers, such as the 
classical theory of equations or three-dimensional Euclidean geometry” (p. 63).  

Historically, policy for elementary teacher education resembles secondary teacher 
education in its emphasis. As the 1971 Report of the Panel on Teacher Training explained of 
its proposed sequence for elementary teachers, “the arithmetic of the rationals finds 
justification and natural applications in elementary probability theory. … Also, the 
algorithms of elementary arithmetic lead naturally to flowchart and to a study of the role of 
computers” (p. 166). Indeed, the objectives of teacher training were “understanding the 
concepts, structure, and style of mathematics”, “facility with its applications”, “ability to 
solve mathematical problems”, and “development of computational skills” (p. 161).  

In contrast, the Mathematical Education of Teachers, 2 states for elementary teacher 
education, “A major advance in teacher education is the realization that teachers should study 
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the mathematics they teach in depth, and from the perspective of a teacher. … It is also not 
enough for teachers just to study mathematics that is more advanced than the mathematics 
they will teach” (p. 23). Illustrative activities for domains to be studied in coursework include 
examining and critiquing student reasoning, examining common student errors, and using 
common classroom manipulatives to explain elementary mathematics ideas. The domains 
include key mathematical ideas, their general principles, and how their structures connect to 
the structure of ideas later in the curriculum. Contemporary policy for elementary teacher 
education emphasizes practice-based knowledge that draws on structure of elementary 
mathematics. In this sense, the approach to elementary teacher education can be interpreted 
as practice-based drawing upon elementary mathematics from an advanced standpoint. The 
change toward practice-based knowledge in policy began in the 1990s. 

Textbooks for teacher education reflect the policy. Beckmann’s (2003) textbook for 
prospective elementary mathematics teachers, a highly rated and common text (National 
Council on Teaching Quality, 2008), contains many examples and tasks that use 
representations that are typically used at the elementary level and not beyond the elementary 
level (e.g., Cuisenaire rods, fraction strips), ask for a student-accessible explanation, feature 
embedded student work or a teaching goal, or that ask for explanation or interpretation based 
on different ways of thinking about the same ideas. In contrast, common textbooks for 
prospective secondary mathematics teachers, such as Usiskin et al. (2003) and Bremigan, 
Bremigan, and Lorch (2011) contain some but comparatively fewer practice-based tasks, and 
with the majority of problems focusing on mathematics from an advanced standpoint. 

Elementary and secondary teacher education paint different pictures of mathematical 
preparation, as evidenced by MET2 and historical changes in national policy documents for 
mathematics departments. This backdrop raises a question of why practice-based approaches 
have not taken hold of secondary teacher education, as well as whether such change would be 
favorable. I focus here on the first issue. To do so, I looked at expectancy-value theory, which 
provides one explanation for how people make decisions. This paper reports on a study 
addressing the questions: What goals and tasks do mathematicians value for mathematics 
courses for prospective secondary teachers? What expectancy do mathematicians hold for 
these goals and tasks? What factors influence value and expectancy? 

Theoretical framework 

Expectancy-value theory 
Expectancy-value theory is a frame for understanding choices that people make. Broadly 

speaking, many studies have shown that a person’s success in attaining a goal is strongly 
shaped by how much the person values the goal intrinsically, the person’s confidence that 
they could attain the goal, and the quality of the person’s ability to conceive of 
implementation intentions (statements of the form “If X happens, then I will do goal-attaining 
behavior Y”). (See Eccles and Wigfield (2002)’s review of research on the effects of 
motivational beliefs and values on goal attainment, and Gollwitzer and Sheeran (2006)’s 
review on the effect of implementation intention on goal attainment). To represent 
confidence, I use expectancy, that is, a person’s belief about how well they will do at a task 
(Atkinson, 1964), as used in Eccles and colleagues’ extensively validated expectancy-value 
theory that relative value and perceived probability of success influence achievement-related 
choices (e.g., Eccles, 1983; Eccles, Wigfield, Harold, & Blumenfeld, 1993). The phrasing of 
this study’s interview questions on expectancy and value were adapted from those described 
in Eccles, Wigfield, Harold, and Blumenfeld (1993).  Expectancy-value theory holds that a 
person is most likely to choose tasks for which they hold high value and expectancy. If value 
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is high, but expectancy is low, then success may be sacrificed because a person chooses to 
engage in tasks that are counter to their values. A classic example of this phenomenon is 
quitting an addiction. Addicts may know the value of quitting, but because they do not expect 
to succeed at quitting, they may act in ways that enforce the addiction. Knowing the value of 
changing habits is not enough to support actual change. 

Practice-based design 
Following the conceptualizations of researchers in mathematical knowledge for teaching 

(Ball & Bass, 2003, Hill, Schilling, & Ball, 2004; Gitomer, et al., 2014), a task or goal is 
considered to follow a “practice-based” design if it intentionally and explicitly connects 
mathematics and teaching. That is, it applies mathematical knowledge to teaching situations, 
situates teachers in work of teaching, the kind of work to which the mathematics is applied is 
important and recurrent to teaching, and the mathematical knowledge addresses K-12 
mathematics. Ball and Bass (2003) introduced mathematical knowledge for teaching as a 
practice-based theory, and the phrase has been subsequently codified in work that attempts to 
systematically catalogue the work of designing tasks that assess mathematical knowledge for 
teaching (e.g. Gitomer, et al., 2014).  

The propositional mathematical knowledge drawn in the work of a practice-based task 
can include mathematics of secondary school and beyond. The Green Task gives an example 
of former and the Blue Task the latter. What makes them practice-based is that they both 
require mathematical and teaching knowledge to interact for the purpose of teaching 
secondary mathematics. In the Green Task, a teacher must apply knowledge of factoring to 
infer that discussion of different solution paths is best supported by the radicand with the 
most possible perfect square factors, in this case, 72. In the Blue Task, a teacher must apply 
knowledge of functions to a student accessible explanation.  

Approaches studied 
In a previous study on proofs for pedagogical purposes, some mathematicians evaluated 

the value of a proof differently depending on the mathematical ideas emphasized (Lai & 
Weber, 2014). Because the mathematical content of a practice-based task can range from 
secondary content to beyond, and the argument for mathematics from an advanced standpoint 
is that it underlies explanation of foundational ideas, I decomposed practice-based tasks into 
two types: practice-based drawing on strictly secondary content and from mathematics from 
an advanced standpoint. Thus the approaches to tasks studied were: (1) mathematics from an 
advanced standpoint, (2) mathematics that leads to disciplinary content, (3)(b) practice-based 
drawing on strictly secondary content, (3)(a) practice-based drawing on mathematics from an 
advanced standpoint, (4) ensuring mastery of school mathematics. Because the mathematics 
involved in a particular goal can vary more than it might for a specific task, I did not do a 
similar parsing of practice-based goals. 

Study 

Rationale 
To examine factors influencing value and expectancy of the different approaches, 

mathematicians were asked to perform three card sorts using a think-aloud protocol. The card 
sets were statements of 4 content-specific goals, statements of 4 content-generic goals, and 6 
tasks representing the different approaches to mathematics courses for prospective secondary 
teachers described above. Mathematicians were asked to place the cards horizontally to 
represent the value of the card to the mathematical preparation of secondary teachers, and 
then vertically to represent their expectancy in teaching the task or toward the goal.  
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Sorting on value was designed to simulate prioritizing. A common choice encountered in 
teaching is selecting among tasks and goals to accomplish in a limited amount of time. Even 
if many goals or tasks are valuable, it is often not possible to address all goals and tasks 
deemed valuable. Sorting on expectancy was meant to elicit relative confidence in ability to 
carry out the goals and tasks. Relative value and expectancy informs the goals and tasks that 
may be chosen when others must be sacrificed for the sake of time.  

Card sorts with content-specific goals, content-generic goals, and tasks were used both to 
elicit relative value and expectancy and also to examine construct consistency among the 
participants. Common wisdom provided to instructors across K-16 education suggests 
identifying goals for the course as a whole, identifying goals for each lesson, and then 
selecting or constructing tasks that serve the goal. Thus one would expect consistency in how 
instructors perceive course-level goals, lesson-level goals, and tasks. At the same time, if 
inconsistencies arose, their reasons should be considered in explaining instructional choices.  

Method 

Participants. Mathematicians were recruited for an interview study as follows. Email 
invitations were sent to a list of mathematicians who had participated in workshops on 
teacher education discussing practice-based approaches to conceptualizing the knowledge 
needed for teaching. The invitation specified that the study sought mathematics faculty and 
mathematics graduate students who had or would, if given the opportunity, teach a course for 
prospective high school teachers. A total of 9 mathematicians agreed to participate. Prior to 
the interview, participants were asked to complete a survey about their background and 
experiences as mathematics instructors. The mathematicians had between 0 and 10 years 
experience teaching courses for prospective secondary teachers, 0 to 5 years experience 
teaching courses for prospective elementary teachers, 0 to 3 years experience teaching 
courses for practicing secondary teachers, and 0 to 3 years experience teaching courses for 
practicing elementary teachers. All mathematicians had at least 1 year experience teaching 
prospective teachers of some level. In the pre-interview survey, all mathematicians responded 
that, on a scale of 1 (not at all) to 7 (very much), being good at teaching courses for teachers 
was 5 to 7, and being good at teaching in general was either 6 or 7. The mathematicians were 
also asked, in comparison to other courses, how well did they think they taught courses for 
teachers; responses were between 3 and 7, with mostly 3’s and 4’s. The mathematicians 
taught at a variety of institutions from small liberal arts schools to research-intensive schools 
and ranged in appointment, including assistant professors, associate professors, full 
professors, and lecturers. 

Materials and procedures. This interview took place in the context of a longer interview 
with six parts: (a) describing a favorite task used when teaching prospective teachers, its 
goals, and its enactment, (b) considering the appropriateness of content-specific goals for a 
particular task shown to participants, (c) (card sort 1) content-specific goal sort as goals 
independent of the task, (d) (card sort 2) task sort, (e) (card sort 3) content-generic goal sort, 
(f) wish list. This study focuses on the results of the three card sorts, with the responses to the 
wish list questions used to provide additional context for card sort comments. The card sort 
contents were based on existing resources for teacher education when possible. Prior to the 
interviews, two mathematicians and two mathematics educators independently reviewed the 
contents favorably for consistency with intended approach. 

I now briefly describe the protocols for the three card sorts and the wish list. For each, 
participants were first asked to sort the cards horizontally to indicate value and then vertically 
to indicate expectancy. Participants were prompted to explain the relative positioning of cards 
for each sort. 
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Card Sort 1: Content-specific goals. Four content-specific goals were shown to 
participants representing the approaches to goals. Table 1 shows the goals. 

Card Sort 2: Tasks. Six cards containing tasks were shown to participants representing 
the approaches. The tasks were named by colors (Pink, Orange, Yellow, Green, Blue, 
Purple). The cards contained tasks representing approaches to tasks, with one task (Orange) 
that situated the Pink Task in a teaching situation. Table 2 shows the tasks. 

Card Sort 3: Content-generic goals. Four content-generic goals were shown to 
participants representing approaches to goals. Table 1 shows the goals. 

Wish List. At the end of the interview, participants were asked: If you could make a wish 
list for resources for getting better at teaching math courses for teachers, what are some 
things that wish list would contain? What is inadequate about existing resources, such as 
textbooks that are already out there, or talking with other people who have taught this course 
before in your institution or beyond? 

Analysis. For each card for each participant, cards were assigned horizontal and vertical 
coordinates with values between 1 and 5 based on the approximate location of the center of 
the card as placed by the participant where horizontal coordinates represented value and 
vertical represented expectancy.  

Interview transcripts were chunked into statements discussing beliefs, goals, knowledge, 
or action plans, following Schoenfeld’s (1998) theory of instructional decision making. The 9 
participants made 144 statements in total during the card sorts and wish lists. Each statement 
was then coded for whether it discussed value or expectancy. Among these, 17 statements 
were coded as “neutral”, meaning they did not give a specific reason (e.g., a belief statement 
such as “I think the orange card should be placed higher than the pink card” or “I feel 
confident about this”). Among the remaining, 61 statements addressed expectancy and 66 
statements addressed value. The collection of statements with reasons were analyzed for 
themes (Strauss & Corbin, 1994). Patterns noted in card placements were triangulated with 
interview statements. 

Results 
Table 3 shows scatterplots of card sort placements. It is worth noting that generally, these 

participants valued practice-based tasks and goals more than they were confident in being 
able to carry out practice-based tasks and goals. The practice-based data points tend to fall 
beneath the diagonal.  

We now discuss how participants’ card sorts and interview responses addressed themes 
addressing value and expectancy, and how this might play into these participants’ disposition 
toward practice-based tasks and goals. For brevity, we focus on only the dominant themes. 
We present tables summarizing all themes in the types of comments that participants 
provided, but give representative illustrations or only the most dominant themes for each 
value and expectancy. See Tables 4 and 5. The themes discussed are bolded. 

Table 1. Content-specific goals, content-generic goals, and their correspondence 
Content-specific goals Content-generic goals 

Understanding the relationship between the 
definition of an equation, the definition of graph, and 
the definition of relation. 

Connecting ideas from higher mathematics to secondary 
mathematics 
 

Seeing how “circles” can look very different 
depending on the metric used. 

Experiencing secondary mathematics as a rigorous, 
challenging, coherent body of mathematics. 

Analyzing incorrect solutions for foundational ideas 
that may be misunderstood. 

Analyzing mathematical teaching situations 
 

Mastery in graphing relations of two variables, 
especially involving absolute values. 

Ensuring that teachers would be able to do the problems 
they are responsible for teaching K-12 students to do. 
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Table 2. Tasks and their correspondence to approaches 
Green Task: Practice-based drawing on 

secondary content1 

 

Yellow Task: Secondary mathematics leading to 
disciplinary content2 

 
Pink Task: Secondary mathematics from an 

advanced standpoint 

 

Purple Task: Mastery 
 

 

Orange Task: Practice-based drawing on 
mathematics from an advanced standpoint 

 

Blue Task: Practice-based drawing on 
mathematics from an advanced standpoint 

 
Table 3. Scatterplots of card sort placements 

   
Content-Specific Sort  
Value vs. Expectancy 

Content-Generic Sort  
Value vs. Expectancy 

Task Sort  
Value vs. Expectancy 

Key: Green, Orange, Blue = Practice Based, Yellow = Disciplinary Content, Pink = Advanced Standpoint, 
Purple = Mastery. Larger circles represent more participants placing the card in that approximate location. 
 

                                                
1 Source: Thames (2006), p. 6. 
2 Adapted from an instrument developed by the Educational Testing Service © 2013, with permission 

Ms. Madison wants to pick one example from
the previous day’s homework on simplifying rad-
icals to review at the beginning of today’s class.
Which of the following radicals is best for setting
up a discussion about different solution paths for
simplifying radical expressions?

1.
�

54

2.
�

72

3.
�

120

4.
�

124

5. Each of them would work equally well.

Explain your reasoning.

During a lesson on exponentiation, Ms. Waller’s

students came across the expression
�
(�4)

1
2

�2
.

Two students obtained different answers when
they tried to evaluate this expression.

Anna: I got �4. I started with (�4)

1
2

=�
�4. And

�
�4 = 2i. So (2i)2

=

4i2 = �4, and so
�
(�4)

1
2

�2
= �4.

Brenda: My answer was 4. I did�
(�4)

1
2

�2
= (�4)

1
2 ·2

= (�4)

2· 1
2

=

�
(�4)

2� 1
2

= 16
1
2

=

�
16 = 4.

Explain the apparent contradiction between
Anna’s and Brenda’s answers in terms of a multi-
valued exponential function.

Suppose x �= 0. Prove that x0
= 1.

You may use the additive law of
exponents (ab+c

= abac for all a � R,
b, c � 0, and b, c � Z) and the
definition that a1

= a for all a � R

Find three different pairs of functions g
and h such that

g � h = (x + 3)

2.

In Ms. Swain’s Algebra I class, a student says the following.

I don’t know why x0
= 1. Is it just a convention? To me, it

seems like it should be 0 because anything times 0 is 0.

Write two different explanations that Ms. Swain can give to ad-
dress what the student said. The explanations should address the
underlying mathematics and be accessible to Algebra I students.

During a lesson on functions and their graphs, a student asks Mr.
Loman:

The vertical line test talks about graphs and lines and points.
But I thought we said that a function was something that
has to do with rules about inputs and outputs. What do lines
going through points have to do with rules about inputs and
outputs?

Write an explanation that Mr. Loman can give to address the stu-
dent’s question. The explanation should address the student’s
concerns about the connection between the underlying mathemat-
ics.
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Factors influencing value. The most dominant themes for determining value were 
importance to teaching practice, how the knowledge represented by the task or goal might 
enhance teaching or how well the nature of mathematics is conveyed, and proximity to 
secondary mathematics. 

Importance to teaching practice. There were 24 statements about the value of a task or 
goal in terms of its importance to work that teachers do, the knowledge needed for teaching, 
or whether a task applied mathematics to teaching. All 9 mathematicians made statements to 
this effect. These statements were used to justify moving practice-based tasks and goals more 
to the right in the card sort, designating higher value. Typical of this reasoning was Joe’s and 
Cantor’s thinking on the content-specific goal sort as they moved the practice-based goal 
more to the right. As Joe commented, (italics are my emphasis): 

Because their students are going to misunderstand. There are going to be foundational ideas when 
they’re teaching that they they’ll need to convey and these ideas are often confusing. So having 
them identify you know, what’s wrong with this, this solution gives them experience. I guess it 
gives them experience teaching. 

Joe is pointing out that the work of teaching entails conveying ideas and parsing student 
work, and the value of the goal is that it seems close to practice. The work of teaching 
highlighted by participants generally concerned identifying and remedying student 
misconceptions and explaining mathematics. Calling out work of teaching as a reason for 
valuing a task or goal occurred in all three card sorts.  

The potential for knowledge represented to be useful in teaching was used most typically 
used to justify value for the practice-based and advanced standpoint tasks and goals. As Heidi 
commented (italics mine), “And I did put the analyze the incorrect solutions slightly lower 
and then the understanding relationship and that’s partially because I think you need to 
understand the relationship first to really be able to analyze the incorrect pieces.” Heidi later 
commented that making connections between different concepts in secondary math allows a 
person to teach in a “flexible creative way”. One participant did use application to teaching to 
justify the connections to disciplinary content task. However, this participant still placed the 
practice-based and advanced standpoint tasks higher.  

Finally, the potential for a task to prompt teachers to apply mathematics to teaching was 
used to justify the value of practice-based tasks and goals. As Cantor reasoned (italics mine), 
“I guess if teachers can answer the pink one, they probably have a good answer to the orange 
one, but the orange one felt like more the situation a teacher would get…interact with, that’s 
more contextualized. So it got moved farther to the right.” All participants valued the Orange 
Task more than the Pink Task, although not all participants provided explicit reasoning for 
why. I suggest that one reason may be that, as Cantor pointed out, the Orange Task situates 
the mathematics of the Pink Task in a teaching situation. 

Proximity to secondary mathematics. The closeness of the knowledge to secondary 
mathematics was generally used to justify moving cards representing advanced standpoint 
and practice-based with advanced standpoint cards more to the right and connections to 
disciplinary content more to the left, although two participants also used this to justify 
moving mastery cards more to the right. As Heidi commented about the connections to 
disciplinary content task:  

The detail needed for this particular questions is probably beyond the necessary knowledge of 
somebody whose teaching algebra 1 or middle school math or geometry. … so that’s kind of why 
I put them in the middle. 
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Participants generally valued advanced standpoint tasks more than the connections to 
disciplinary content task.  

Potential to enhance understanding the nature and foundation of mathematics. Whether a 
task or goal captured a “foundational” or “fundamental” aspect was used to justify valuing 
advanced standpoint and practice-based drawing on advanced standpoint, as well as to justify 
less value in the practice-based drawing on strictly secondary mathematics. Typical of this 
reasoning was Dan: 

And I feel like…the things that seem most important to me are understanding why things work 
the way they do and I think it might be important to have a discussion of how there are multiple 
ways you can come to a correct answer. And some of these problems might illustrate these better 
than others, but I think the other questions get at deeper foundational issues. 

Dan is pointing out both that the more that a task gets at foundational mathematics, the more 
important it is, and the less that a task foundational mathematics, the less important it is. 

Four participants pointed out the importance of connections to disciplinary content as 
exposure to the nature of mathematics. However, these participants did not place these cards 
rightmost, hedging that the content might be important, but not as important. As Jim said in 
the content-specific goal sort: 

I guess well you’ve made your horizon knowledge to understand these connections and have a 
deeper appreciation for what we’re doing in geometry. We have to push them a little and expose 
them to a broader viewpoint. But what is the most important thing? Well they better know how to 
graph something and explain that to someone. Right?” 

Two participants pointed out a “neat factor” in connections to disciplinary content, but that 
this might not be as important as mathematics that is more foundational. 

Factors influencing expectancy. The two most dominant themes influencing expectancy 
were the demands of taking a practice-based approach and related past experiences.  

Difficulty of taking a practice-based approach. Participants cited the demands of a 
practice-based approach for why they felt less confident in teaching practice-based tasks or 
towards practice-based goals. In particular, participants commented on the difficulty of 
designing good quality practice-based tasks as well as assessing solutions when the language 
used could not rely on the typical formal language used in the discipline.  

As Cantor observed of practice-based questions, “I tend to be good at recognizing, ‘This 
is really good, these are interesting questions.’ But coming up with them, creating them 
myself I think I tend to struggle.” Eight of the participants commented in the wish list section 
that they wanted “more problems like the colored tasks”. That the participants had 
encountered difficulty in writing practice-based tasks is unsurprising. Although there is 
increasing knowledge in the field of how to write practice-based tasks well (Gitomer et al., 
2014; Hill, Schilling, & Ball, 2004) and of how practice-based tasks function (Howell, Lai, & 
Phelps, 2016; Howell & Phelps, 2016; Lai, Jacobson, & Thames, 2013), the current state of 
the art still generally requires multiple reviews and revisions involving persons with different 
expertise (Gitomer et al., 2014). Combined with the lack of available examples of practice-
based tasks for secondary mathematics teaching in commonly used resources, it should be 
expected that an individual express difficulty expressed in writing practice-based tasks.  

Assessing and understanding solutions to practice-based tasks also challenged 
participants. As Heidi commented on the placement of a practice-based task card, “It’s hard 
seeing inside a student’s head to be absolutely sure that you’re communicating correctly no 
matter how much assessment you do, we use words differently. So that’s why it’s just a little 
bit lower.” Other participants commented that “proofs are something I can do”, going on to 
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explain that they have language for proof. I suggest that in contrast, explanations that are 
student accessible or that are about connections between representations may require using 
language that is nonstandard, and therefore should seem more difficult than language that is 
familiar to mathematicians because they are trained in formal language of proofs. 

One participant, Margaret, also commented on the difficulty of teaching prospective 
teachers to see mathematics from their future students’ point of view: “You have to teach 
them how to look … They’re viewing it from the right, the student’s viewing it from the left, 
they’re seeing mirror images, they’re seeing different things, and they haven’t even started to 
think about how this student is seeing it.” Margaret saw this perspective as necessary for 
engaging with practice-based tasks, but expressed reservation in knowing how to cultivate 
this perspective in prospective teachers. 

Related past experiences. Participants described their experience with teaching practice-
based tasks to justify expectancy for success in teaching the practice-based tasks or toward 
the practice-based goals shown. Participants both used positive experiences with practice-
based tasks to raise their expectancy of success with these practice-based tasks, and used lack 
of experience as a reason for lower expectancy of success. For instance, Jim, on the content-
generic goal of analyzing mathematical teaching scenarios, commented, “I think it would still 
be a challenge for me because of lack of experience. … I never took a course on classroom 
management or, or how to think about how to organize a course.” On the other hand, Dan and 
Heidi, who had both had positive experiences teaching from Beckmann’s textbooks for 
prospective elementary teachers featuring many practice-based tasks, expressed confidence in 
carrying out further practice-based tasks, even if the tasks were for a different course. As Dan 
reasoned, “I’m confident that I could, create situations where they could do well or learn to 
do well, based on having done that in other courses.” Previous experience was also used to 
justify high expectancy on mastery tasks and goals. Although these participants generally did 
not value mastery tasks and goals as highly as practice-based and advanced standpoint tasks 
and goals, they at the same time expressed higher confidence in ability to teach for mastery 
because they had taught more courses with mastery goals. These comments are consistent 
with findings in the expectancy-value literature; previous achievement-related experience, 
positive and negative, have been shown to factor into a person’s expectancy of future success 
(e.g., Eccles & Wigfield, 2002). 
 

Table 4. Themes for how participants determined the value of a task or goal 

Ways mathematicians determine value # statements  
(# distinct participants) 

Importance to teaching practice 
• It arises in the work of teaching 
• The work of teaching requires more math than what is being 

taught to students. 
• It is important for teachers to apply content to teaching. If it does 

not apply as much to teaching, it is not as important. 

24 (9) 
8 (6) 
6 (5) 

 
10 (6) 

  
Proximity to secondary mathematics 16 (8) 
Potential to enhance teachers’ understanding of the nature or 
foundation of mathematics 10 (6) 

How mathematical the task or goal is 4 (4) 
Not knowing it would be bad for teaching 5 (4) 
Needs of particular teachers being taught  4 (3) 
Priority for beginning teaching 3 (1) 
Total statements 66 (  ) 
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Table 5. Themes for factors influencing participants’ expectancy 

Factors influencing mathematicians’ expectancy # statements 
(# distinct participants) 

Difficulty of taking a practice-based approach 
• Coming up with practice-based problems is hard 
• It is hard to teach prospective teachers to take a teaching viewpoint 
• Getting away from formal language is hard 

17 (9) 
6 (5) 
2 (1) 

 
9 (4) 

Lack of experience / ability to draw on experience 27 (7) 
Difficulty of explaining complex mathematics 12 (5) 
Perceptions of prospective teachers’ beliefs and attitudes 5 (3) 
Total statements 61 (  ) 

Discussion 

These participants’ interviews generally revealed value in practice-based approaches to 
mathematical preparation of teacher, as well as mixed expectancy for carrying out such 
approaches. Interview analysis revealed that reasons for valuing practice-based approaches 
included importance to teaching, proximity to secondary mathematics, and potential to 
enhance teachers’ understanding of the nature and foundation of mathematics. Reasons for 
higher or lower expectancy included the demands of taking a practice-based approach as well 
as presence or absence of experience with a practice-based approach. 

There are two limitations of the study due to the aim and scope of the study. The first is 
that only nine mathematicians were interviewed. This is a small sample, and although 
commonalities emerged from the participants, there is no warrant for sample-to-population 
generalizations. Nonetheless, this study does document a particular phenomenon—that 
practice-based tasks could be held in high value in combination with mixed expectancy, and 
that expectancy can be informed by previous experience. The mathematicians here all 
participated in workshops that emphasized the need for mathematical knowledge for 
teaching, so it is unsurprising that they espoused practice-based values. What is more striking 
in this context is the lack of expectancy. Future studies can look at the degree to which 
mathematics faculty hold contrasting values and expectancies for practice-based approaches 
and other approaches, more generally.   

The second limitation of this analysis is the scope. The participants examined only a 
limited number of tasks designed with a particular frame of approaches. It is possible that a 
different set of tasks or goals would have elicited different value and expectancy ratings. The 
consistency of the ratings across the three card sorts is promising, although the task and 
content-specific card sorts could have primed the content-generic card sort that followed. It is 
also possible that there are approaches to the mathematical preparation of teaching that have 
not been documented in policy documents for mathematics departments. Yet in the current 
time, these approaches are the ones that are available and therefore likely the ones that 
instructors will select among, so understanding why they are theoretically valued as well as 
valued in practice, are important to understand. The current study identifies some values that 
may be used in prioritizing among approaches. 

The literature on expectancy-value theory suggests that successful goal-oriented decision 
making is more likely when a person values the goal, has high expectancy at achieving that 
goal, and has the resources to support goals and build expectancy. When expectancy and 
resources are not in place, even if a person’s values resonate with a goal, the person may not 
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choose to make choices that support that goal. Mathematicians may actually share math 
educators’ values but do not take on practice-based tasks because they lack the confidence 
and resources to do them.   
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Classifying combinations:  
Do students distinguish between different categories of combination problems? 
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In this paper we report on a survey study to determine whether or not students differentiated 
between two different categories of problems involving combinations – problems in which 
combinations are used to count unordered sets of distinct objects (a natural, common way to use 
combinations), and problems in which combinations are used to count ordered sequences of two 
(or more) indistinguishable objects (a less obvious application of combinations). We 
hypothesized that novice students may recognize combinations as appropriate for the first 
category but not for the second category, and our results support this hypothesis. We briefly 
discuss the mathematics, share the results, and offer implications and directions for future 
research.  

Key words: Combinatorics, Discrete mathematics, Counting 
 

Introduction and Motivation 
Discrete mathematics, with its relevance to modern day applications, is an increasingly 

important part of students’ mathematical education, and national organizations have called for 
increased teaching of discrete mathematics topics in K-16 mathematics education (e.g., NCTM, 
2000). Combinatorics, and the solving of counting problems, is one component of discrete 
mathematics that fosters deep mathematical thinking but that is the source of much difficulty for 
students at a variety of levels (e.g., Batanero, Navarro-Pelayo, & Godino, 1997; Eizenberg & 
Zaslavsky, 2004). The fact that counting problems can be easy to state but difficult to solve 
underscores the need need for more research about students’ thinking about combinatorics.  

One fundamental building block for understanding and solving combinatorial problems are 
combinations (i.e., C(n,k), also called binomial coefficients due to their role in the binomial 
theorem). Combinations are prominent in much of the counting and combinatorial activity with 
which students engage, and yet little has been explicitly studied with regard to student reasoning 
about combinations. This study contributes to our understanding of students’ reasoning about 
combinations, and, in particular, beginning students’ inclination to differentiate between typical 
combinatorics problems. This study addresses the following research question: Do early 
undergraduate students use binomial coefficients to express the solution to two different 
categories of combination problems?  

Theoretical Perspective 
Lockwood (2013; 2014) has argued for the importance of focusing on sets of outcomes in 

solving counting problems. In an initial model of students’ combinatorial thinking, Lockwood 
(2013) proposed that there are three inter-related components that students may draw upon as 
they solve counting problems: formulas/expressions, counting processes, and sets of outcomes. 
Formulas/expressions are terms involving numbers or variables that reflect the answer to a 
counting problem. Counting processes are the series of procedures, either mental or physical, in 
which one engages as they solve a counting problem. Sets of outcomes are the complete set of 
objects that are being counted in the problem, and the cardinality of the set of outcomes gives the 
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answer to the counting problem (Lockwood, 2013). Lockwood also pointed out that a given 
expression might reflect a counting process, and that various counting processes may impose 
different respective structures on the set of outcomes. For example, consider solving a problem 
like How many arrangements are there of the letters A, B, C, and D? A 4-stage counting process 
to solve this problem is to first place one of the four letters in the first position (there are 4 
choices), then to place one of the three remaining letters in the second position (3 choices), then 
to place one of the two remaining letters in the third position (2 choices), and finally to place the 
last remaining letter in the last position (1 choice). Because at each of these stages the number of 
choices is the same and is independent of the result of the previous stages, we can multiply the 
number of options at each stage.1 This counting process thus yields an expression of 4•3•2•1, 
which is 24. Note that this counting process also imposes a structure on the set of outcomes, 
namely organizing them according to first, then second, then third, then fourth letter. The 
lexicographic listing of the set of outcomes in Figure 1 demonstrates the set of outcomes that 
might be associated with the specific counting process.  

 
ABCD BACD CABD DABC 
ABDC BADC CADB DACB 
ACBD BCAD CBAD DBAC 
ACDB BCDA CBDA DBCA 
ADBC BDAC CDAB DCAB 
ADCB BDCA CDBA DCBA 

Figure 1 – A lexicographic listing of arrangements of A, B, C, and D 
 
The point of this example is that a given formula or expression (4•3•2•1) may have a 
combinatorial process that underlies it (the 4-stage process described above), which in turn 
structures the set of outcomes in some specific way. Lockwood (2013) argued that it would 
behoove students to have flexibility in their counting, especially in understanding that different 
counting processes may organize the sets of outcomes in different ways, and vice versa.  

Lockwood (2014) emphasized the importance of sets of outcomes, and argues for a set-
oriented perspective toward counting. In this perspective, counting “involves attending to sets of 
outcomes as an intrinsic component of solving counting problems” (p. 31). In this paper, we 
frame our work from this perspective, namely that sets of outcomes are the key factor in 
determining what counting situation one is in, and thus what counting process and formula may 
be appropriate. That is, as we discuss “combination problems,” we consider a problem to be a 
combination problem if the set of outcomes can be appropriately modeled in a particular way 
(specifically, as sets of distinct objects), as opposed to being attuned to problem features like 
particular key words or contexts.  

The nature of our data is such that we are, at times, only able to examine a student’s written 
expression and must make inferences about their counting process based on that expression. In 
this way, we draw on Lockwood’s (2013) model and its position that counting processes can and 
do underlie formulas and expressions. Those underlying processes can suggest how students 
might be conceiving of the set of outcomes, if at all.  

                                                
1 This is due to the multiplication principle, which is a fundamental yet subtle combinatorial idea. See Tucker (2002) 
for a statement of the principle and Lockwood, Reed, & Caughman (2015) for a more in-depth discussion of its 
mathematical subtleties. 
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Literature  
Combinations as a Unifying Combinatorial Topic  

Combinations, or binomial coefficients, are one of those unifying topics that connect a 
variety of combinatorial contexts and ideas. They are commonly used to count particular kinds of 
objects, namely k-element subsets of n-element sets, or, equivalently, the number of ways of 
selecting k elements from an n-element set. But this fact is applied meaningfully in a variety of 
important combinatorial settings, establishing combinations as a foundational “big idea” in 
combinatorics. Specifically, in addition to solving counting problems, these binomial coefficients 
also show up as entries in the rows of Pascal’s Triangle as a model for solving multichoose 

problems, and as the coefficients in the binomial theorem, (x + y)n = C(n,k)xnyn−k
k=0

n

∑ , because 

to find the coefficient of a given xk term we simply choose which k of the n binomials will 
contribute an x term. Because of this important relationship, combinations are known as binomial 
coefficients and arise in a number of mathematical domains. Finally, combinations appear in 
many combinatorial identities, and they necessitate combinatorial proof, which is another key 
topic in combinatorics. The variety of contexts in which combinations naturally arise points to 
the invaluable role that they play in the domain of combinatorics. Given how pervasive and 
fundamental they are, we were motivated to better understand how students might reason about 
and learn this foundational combinatorial idea. 
Combinations in Mathematics Education Literature  

There is much documented evidence for the fact that students struggle with solving counting 
problems correctly. Some reasons for such difficulty are that counting problems are difficult to 
verify (Eizenberg & Zaslavsky, 2004) and that it can be difficult to effectively encode outcomes 
in terms of objects one knows how to count (e.g., Lockwood, Swinyard, & Caughman, 2015b). 
We seek to address potential difficulties by focusing on better understanding students’ 
application and use of combinations – which are fundamental in enumeration. Piaget & Inhelder 
(1957) studied students’ mental processes as they solved arrangement and selection problems, 
and they took a special interest in determining whether permutations, arrangements, or 
combinations would be most difficult for students. Dubois (1984), Fischbein and Gazit (1988), 
and Batanero, et al. (1997) have also investigated the effects of both implicit combinatorial 
models and particular combinatorial operations on students’ counting, again considering 
differences in reasoning about particular problem types such as permutations and combinations. 
We extend existing work that focuses on students’ mental processes of foundational 
combinatorial ideas, seeking specifically to explore the extent to which undergraduate students 
appear to distinguish between two categories of combination problems (we define these two 
categories in the following section).  

Other researchers have looked at students as they explore the variety of settings in which 
binomial coefficients arise. For example, Maher, Powell, and Uptegrove (2011) documented 
several episodes in which students of their longitudinal study make meaningful connections 
between binomial coefficients, certain counting problems, and Pascal’s Triangle. More 
specifically, Speiser (2011) documented one 8th grade student’s reasoning about problems 
involving block towers, which can be solved as combination problems, and connections she 
made to the formula C(n,r). In a similar vein, Tarlow (2011) reported on eight 11th grade students 
who could make sense of a well-known binomial identity using both pizza and towers contexts. 
These studies highlight the many connections that binomial coefficients afford in combinatorial 
settings, suggesting that it may be beneficial for students to have a sophisticated understanding 

19th Annual Conference on Research in Undergraduate Mathematics Education 298

19th Annual Conference on Research in Undergraduate Mathematics Education 298



 

of binomial coefficients that could facilitate these kinds of valuable connections. We build upon 
this work by Maher et al., (2011) by focusing on whether or not students see two distinct settings 
as both involving combinations.  

Our work also builds on a recent study by Lockwood, Swinyard, & Caughman (2015a) in 
which two undergraduate students reinvented basic counting formulas, including the formula for 
combinations. Based on the students’ work on combination problems, Lockwood, et al., (2015b) 
suggested the importance of being able to correctly encode outcomes combinatorially (by which 
they mean the act of articulating the nature of what is being counted by associating each outcome 
with a mathematical entity such as a set or a sequence). More specifically, the students could 
solve combination problems but not others, which was curious given their overwhelming success 
overall. In our current study, we were able to mathematically characterize a fundamental 
difference between some common combination problems based on characterizing a difference in 
their sets of outcomes. We wanted to explore further whether, for novice students, this 
distinction in the set of outcomes would pose a significant hurdle to their ability to recognize 
binomial coefficients as equally useful in the solutions to both situations. This resulted in us 
differentiating two different, different “categories” of combination problems and speculating 
about whether or not, for students, this difference matched their reality. We introduce and 
explore this distinction in the next section.  
Mathematical Discussion – Classifying Two Categories of Combination Problems  

In this section we outline mathematical details of combinations, and we highlight a 
distinction between two “categories” of combination problems based on their sets of outcomes 
that is the focus of our investigation. A combination is a set of distinct objects (as opposed to a 
permutation, which is an arrangement of distinct objects). Combinations can also be described as 
the solution to counting problems that count “distinguishable objects” (i.e., without repetition), 
where “order does not matter.” The total number of combinations of size k from a set of n 
distinct objects is denoted C(n,k) and is verbalized as “n choose k.”2 So, the binomial coefficient 
C(n,k) represents the set of all combinations of k objects from n distinct objects. As an example, 
combinations can be used to select, from eight (distinguishable) books, three books to take on a 
trip (order does not matter) – the solution is C(8,3), or 56 possible combinations. In contrast, 
other combinatorial problems and solution methods, such as permutations, are frequently 
organized in relation to the different possible constraints – see Table 1.  
Table 1: Selecting k objects from n distinct objects 
 Ordered Unordered 
Distinguishable 
Objects (without 

repetition) 

Permutations 
n!

(n − k)!
= n ⋅(n −1) ⋅(n − 2) ⋅...⋅(n − k +1)  

Combinations 
n
k

⎛
⎝⎜

⎞
⎠⎟
= n!
k!(n − k)!

 

Indistinguishable 
Objects (with 

repetition) 

Sequences 

 
nk = n ⋅n ⋅n ⋅...⋅n

k
! "# $#  

Multicombinations 
n
k

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
=

k + n −1
n −1

⎛
⎝⎜

⎞
⎠⎟

 

 

In this paper we refer to combination problems as problems that can be solved using 
binomial coefficients, in the sense that parts of their outcomes can be appropriately encoded as 
sets of distinct objects. Sometimes this encoding is fairly straightforward, as the outcomes are 
very apparently sets of distinct objects. For instance, in the above problem of selecting three 
books from eight books to take on a trip, the books could be encoded as the numbers 1 through 8 
                                                
2 The derivation of the formula for C(n,k) as n!/((n – k)!k!) is not pertinent to the study; Tucker (2002) provides a 
thorough explanation. 
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(because they are different books), and the outcomes are fairly naturally modeled as 3-element 
sets taken from the set of 8 distinct books. Any such set is in direct correspondence with a 
desired outcome; there are C(8,3) of these sets. We call such problems Category I problems.  

In other situations, fairly typical combination problems may still appropriately be solved 
using a binomial coefficient, but recognizing how to encode the outcomes as sets of distinct 
objects is less clear. For example, consider the Coin Flips problem (stated in Table 2). A natural 
way to model an outcome in this problem is as an ordered sequence of length 5 consisting of 3 
(identical) Hs and 2 (identical) Ts, such as HHTHT. Solving the problem then becomes a matter 
of counting such sequences. One way to count the number of such sequences is to arrange all of 
the five letters (in 5! ways), and then divide out the repetitive outcomes based on the fact that 
there are three identical Hs (3!) and two identical Ts (2!) – a solution of 5!/(3!2!). One could 
think of first treating all five of the letters as distinct and then “un-labeling” identical Hs and Ts. 
However, we note that the problem also can be (and frequently is) solved using a binomial 
coefficient – but, in order to do this, the outcomes must be encoded appropriately as a set of 
distinct positions in which the Hs are placed. Given the five possible distinct positions (i.e., the 
set: {1, 2, 3, 4, 5}), the outcome HHTHT would be encoded as the set {1, 2, 4}. This sufficiently 
establishes a bijection between outcomes (sequences of Hs and Ts) and sets of the numbers 1 
through 5 because every outcome has a unique placement for the Hs (the Ts must go in the 
remaining positions). In this way, the answer to the Coin Flips problem is simply the number of 
3-element subsets from 5 distinct objects (i.e., positions 1 to 5), which is C(5,3). This gives an 
identical formula of 5!/(3!2!) and it is another way of solving the problem.3 We call these 
problems, which can naturally be modeled as sequences of identical objects, but which can be 
encoded so as to be solved via a binomial coefficient, Category II problems (See Table 2).  
 
Table 2: Characterizing two different categories of fairly standard combination problems 
 Description Example problem Natural Model for Outcomes 

Category 
I 

An unordered selection 
of distinguishable 
objects 

Basketball Problem. There are 12 athletes 
who try out for the basketball team – 
which can take exactly 7 players. How 
many different basketball team rosters 
could there be? 

{(1,2,3,4,5,6,7), 
(1,3,5,7,9,11,12), …} 

Category 
II 

An ordered sequence of 
two (or more) 
indistinguishable objects 

Coin Flips Problem. Fred flipped a coin 5 
times, recording the result (Head or Tail) 
each time. In how many different ways 
could Fred get a sequence of 5 flips with 
exactly 3 Heads? 

{(HHTTH), (HTHHT), 
(TTHHH), …} 

 

In light of various ways of encoding outcomes that facilitates the use of combinations, we 
point out that it may seem that combinations are actually being used to solve two very different 
kinds of problems. The outcomes in the Books problem are clearly unordered sets of distinct 
objects, but the outcomes in the Coin Flips problem are actually ordered sequences (not 
unordered) of two kinds of indistinguishable (not distinct) objects (Hs and Ts). Combinations are 

                                                
3 We can use Lockwood’s (2013) language to describe this phenomenon, in which two different counting processes 
might yield the same expression. Indeed, the point is that just by looking at a particular formula or expression that a 
student writes for a problem, it may require some interpretation as to what their underlying counting process to solve 
the problem might have been. We can hypothesize and look for supportive evidence, but it is possible for multiple 
counting processes to yield identical expressions. 
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applicable in both situations, but we argue that there could be a difference for students in 
identifying both problems as counting combinations. Indeed, although both categories can be, 
and frequently are, thought of in terms of counting (choosing) sets, using combinations to solve 
Category II problems involves an additional step of properly encoding the outcomes with a 
corresponding set of distinct objects. We thus posit that Category I problems may be more 
natural for novice students, more clearly representative of combination problems than Category 
II problems. In spite of the widespread applicability of combinations, we posit that students may 
not recognize both categories of combination problems as problems involving combinations. 
This may be due in part to the fact that students tend not to reason carefully about outcomes 
(e.g., Lockwood, et al., 2015b), and because “distinguishable” and “unordered” are not always 
natural or clear descriptions of the situation or outcomes.  

However, we note that it is important and useful for students to be able to solve these 
Category II problems (and use combinations to do so) because combinations often arise as a 
stage in the counting process. Furthermore, using combinations in this way can facilitate 
productive and efficient solutions. For example, consider a problem such as Passwords consist of 
8 upper-case letters. How many such passwords contain exactly 3 Es?. This problem can be 
solved by using combinations as a stage in the counting process – first we select 3 of the 8 
positions in which to place Es (there are C(8,3) ways to do this), and then we fill in the 
remaining position with any of the 25 non-E letters (there are 255 ways to do this). Thus, the two-
stage process yields an answer of C(8,3)*255. Here, we recognize that a Category II combination 
problem can help us complete the first stage of the counting problem. Importantly, realizing that 
a combination is useful in the first step makes the problem much easier than if one were to try to 
only to use permutations to do so. If we tried to answer the Passwords problem without first 
selecting places for the Es, and instead took a permutation approach, it would be possible, but it 
would require a large number of complex case breakdowns.4 Thus, we argue that being able to 
solve Category II problems by using combinations demonstrates the utility of combinations as a 
powerful tool, and yet it also represents a sophisticated understanding of what combinations 
count, because it involves encoding the set of outcomes in a particular way. Given that the ability 
to solve Category II combination problems may allow students to solve a wide range of 
problems, and that it can reinforce a more complete understanding of what binomial coefficients 
can do, we are motivated us to investigate whether or not students actually respond differently to 
the two different problem categories.  

Methodology 
We designed two versions of a survey, and although the surveys contained a number of 

elements, we focus in particular on features of the survey that serve to answer the research 
question stated above. Each survey consisted of 11 combinatorics problems, and each problem 
was designed with categories in mind that included problem category (I or II) and complexity 
(Simple, Multistep, or Dummy).5 Simple combination problems refer to those that can be solved 
using a single binomial coefficient, in the sense that their outcomes can be appropriately encoded 
as sets of distinct objects; multistep combination problems would require multiple binomial 
                                                
4 For example, we would have to consider how many of the non-Es are distinct and then arrange them. So we would 
have to account for cases in which a) all of the non-E letters are identical, b) exactly one of the non-E letters is 
identical (and the rest are distinct), c) exactly two of the non-E letters are identical (and the rest distinct), there are 
exactly two pairs of identical non-E letters, and so on. This process can generate the right answer, but it is complex.  
5 We also coded the tasks according to other criteria that we do not report on in this paper, such as: sense of 
choosing (Active or Passive), and whether an object or process is to be counted (Structural or Operational). 
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coefficients in the solution (see Table 3 for problems in Survey 1 and the Appendix for Survey 
2). The authors coded the problems independently before finalizing the coding for each problem. 
Each version of the survey contained the same number of problems of each category and 
complexity, as well as the same two “Dummy” problems to discourage students from assuming 
that every problem could be solved with a combination. Each problem was selected for one 
version of the survey with a companion problem in mind for the other version in order to 
compare responses with respect to the various coding categories. In this report, however, we 
primarily use the two surveys as additional support that the phenomenon observed is not limited 
to particular problems on one survey, but is consistent across a larger variety of these different 
categories of problems.  

 
Table 3: Survey 1 

Description Problem 

Category I Simple There are 12 athletes who try out for the basketball team – which can take exactly 7 
players. How many different basketball team rosters could there be? 

Category I Simple 
There are 8 children, and there are 3 identical lollipops to give to the children. How 
many ways could we distribute the lollipops if no child can have more than one 
lollipop? 

Category 
II Simple 

There are 3 green cubes and 4 red cubes. Sam is making “towers” using all of the 7 
blocks by stacking the cubes on top of each other. How many different “towers” 
could Sam make? 

Category 
II Simple 

Computers store data using binary notation - an ordered sequence of 0s and 1s. A 
particular piece of computer data is 95 digits in length, and it has exactly 12 1s. How 
many possible sequences fit this constraint? 

Category 
II Multistep 

Stella is stacking ice cream scoops onto a cone. She has 3 scoops of chocolate, 5 of 
vanilla, 2 of pistachio, and 6 of strawberry. How many different ways can she stack 
all of the ice cream scoops onto the cone? 

Dummy  In Montana, a license plate consists of a sequence of 3 letters (A-Z), followed by 3 
numbers (0-9). How many different possible license plates are there in Montana? 

Category I Simple 
There are 12 points, all different colors, drawn on a sheet of paper (and no three 
points are on a line). How many different possible triangles can be made from these 
12 points? 

Category I  
Simple 

Bob got a new job and is at a store looking for new ties. The tie rack has 196 different 
ties to choose from. In how many ways can Bob select 10 ties to buy? 

Category 
II Simple Fred flipped a coin 25 times, recording the result (Head or Tail) each time. In how 

many different ways could Fred get a sequence of 25 flips with exactly 11 Heads? 

Category I Multistep 
There are 8 females and 10 males who would like to be on a committee. How many 
different committees of 6 people could there be if there need to be exactly 2 females 
on the committee? 

Dummy  From an Olympic field of 15 athletes competing in the 100-meter race, how many 
different possible results could there be for gold, silver, and bronze medals? 

 
We targeted Calculus students because they were believed to have been likely to have 

encountered combinations at some point in their mathematical careers (perhaps in middle or high 
school) without having studied them in detail, making them informed but novice counters. 
Although we collected some additional demographic information about their previous 
mathematics courses and experiences with combinatorics, we have yet to incorporate this into 
our analysis. Overall, 281 people started the survey; however, many of these did not answer a 
single question on the survey, leaving n=126 people (65 for Survey 1, 61 for Survey 2), who 
responded to at least one of the combination questions. We included a reminder in the beginning 
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of the survey that offered a brief standard overview of combinations and permutations. The goal 
was for students to be reminded of the formulas and notation for combinations and permutations 
that they likely had encountered previously at some point in their education.   

The prompt for the combination problems asked participants to use notation that would 
suggest their approaches, rather than just numerical values. We gave this prompt because we 
wanted to be able to know what the student’s counting process was, and so we would not have to 
make inferences based only on numerical responses. Specifically, the prompt was:  

 
Read each problem and input your solution in the text box. Please write a solution to the 
problem that indicates your approach. If you're not sure, input your best guess. NOTE: 
Appropriate notation includes: 9+20, C(5,2), 5C2, 21*9*3, 5*5*5*5=5^4, 8!, 8!/5! = 8*7*6 = 
P(8,3), C(10,2)*3, Sum(i,i,1,10), 12!/(5!*7!), etc. Only if you individually count all of the 
outcomes should you input a numerical answer, such as 35.  
 

In addition, for three of the problems, participants were prompted to expand particularly on how 
they understood the set of outcomes they were counting (see Appendix for this prompt.) The 
intent was to provide further evidence from the students about their counting process and the set 
of outcomes. Notably, however, many students had difficulties with these instructions, frequently 
providing numerical answers in their initial responses. We discuss further our analysis approach.  

In general, to investigate the research question we wanted to compare their solutions to the 
different categories of combination problems. Thus, we coded each response in three different 
ways. First, we coded whether the response was “correct” or “incorrect.” In this case, any 
problem the participants answered was determined to be correct or incorrect (with two 
exceptions: if the notation they used was not standard, e.g., “C(3,5,2,6),” – which happened four 
times – or their answer was unclear, e.g., “a small fraction of 9595,” to where we could not judge 
correctness – which happened five times). Importantly, many of the participants only included 
numerical answers, for which we could just confirm correctness, but not process. Therefore, 
secondly, for those participants that wrote a solution indicating their approach (i.e., followed the 
instructions) we coded the “definite” method that characterized their solution. If they used a 
combination, we coded whether they used the combination correctly (CC) or incorrectly (CI); if 
their answer involved a permutation, we coded it a P; if their answer was essentially multiplying 
numbers, we coded it M; if it only involved factorials that were not in a permutation or 
combination formula, we coded it F; if it involved exponents, we coded it E, if they just summed 
numbers, we coded it S; if they just used a single number from the problem, we coded it N; and 
if it was did not fall into any of the previous categories, we coded it O.  

Notably, for three of the problems, participants had an opportunity to explain more in relation 
to the sets of outcomes. For some participants who wrote numerical expressions, it was here that 
they explained their process. Therefore, when the numerical answer and their process matched 
up in these cases, we included a “definite” method based on their explanation. As mentioned 
previously, from some solution responses the method would not be completely clear. Particularly 
considering combinations, we had to determine the meaning of a response such as: “8!/(5!3!).” 
Thankfully, there were not many such instances. For participants who appeared to be using the 
verbatim combination formula, such as “8!/(5!(8-5)!),” we coded this as a combination; however, 
for participants who wrote “8!/(5!3!),” if there was a clear indication from the set of outcomes 
responses or if they had used combination notation on other problems, e.g., C(20,10), we 
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presumed their response to be indicative of a permutation approach.6 Thirdly, if numerical 
answers seemed to have a clear process – such as the problem including the numbers 8 and 5, 
and participants answering 40 – we coded the “probable” method that characterized their 
response.  

We consider this last coding involving “probable” codes as the best set of codes for our 
analysis for two reasons. First, some students gave correct numerical responses, such as 
4,457,400, which we viewed as most likely indicative of using C(25,11), because coming up 
with this answer in some other way would be very difficult. This allowed us to include C(25,11) 
as their probable method – to the extent possible, we wanted to give students the benefit of the 
doubt. Second, because so many responses were only numerical, this also allowed us to include 
some more responses in the analysis for which we could be fairly sure of their method.  

For the purposes of this paper, we limit our analysis only to the most basic combination 
questions – the four simple Category I problems and the three simple Category II problems on 
each survey. These seven problems provide us with the most basic comparison between their 
responses to these two categories of problems. So, using the third coding (“probable” method), 
first we computed the proportion of instances on which participants used a combination approach 
at all for Category I problems, and the proportion of instances on which participants used a 
combination approach at all for Category II problems, and compared these two proportions. We 
also computed the proportion of these responses that were correct uses of a combination 
approach. Notably, however, each individual participant answered up to seven such questions. 
Thus, for each individual, we secondly computed whether or not that individual had used a 
combination approach at all on at least one Category I problem, and whether they had used a 
combination approach at all on at least one Category II problem. We also computed the 
proportion of participants that had used the combination approach correctly on at least one of 
each category of problem. This allowed us the ability to compare the proportion of distinct 
participants (not distinct problems) who had used a combination approach correctly on the 
differing problem categories. Thirdly, given that many participants’ methods were significantly 
off track – i.e., many simply multiplied numbers in the problem without ever using a different 
method – we limited our participants to only those that had used a combination approach on at 
least one problem. This allowed us to probe further whether participants that at least found a 
combination approach useful on one problem were differentiating between the two problem 
categories. For each proportion, we used a proportion t-test to determine whether the proportions 
were significantly different, and then used Cohen’s h to determine the relative effect size of the 
differences. (We used standard cutoffs from Cohen (1988) of: 0.2, small effect; 0.5, medium; and 
0.8, large.) Notably, when separating the analysis by survey, the results in every analysis were 
similar, and so we present the combined analysis across both surveys. 

Findings 
In this section we present the different analyses of our data, which all support the singular 

finding that students do indeed use a combination approach more regularly on Category I 
problems than they do on Category II problems. We regard this result as indicating that from a 

                                                
6 Indeed, one participant (1009), had correctly responded “20C4” to one problem, explaining it as, “You choose any 
4 out of 20. Order is irrelevant,” and had responded “8!/((5!)*(3!))” on another problem, explaining it as, “It's like 
having five dots and placing 3 dots in between the five. This is similar to arranging them in any way but not caring 
how they are arranged among themselves.” 
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learners’ perspective there is a meaningful difference between these two categories of basic 
combination problems.   

Overall Participant Responses. Of the 126 participants, there were 117 of which we were 
able to give a “probable” approach code on at least one Category I problem that they answered, 
yielding 380 total responses to Category I problems for which we probably knew the 
participants’ approach. There were 116 participants for which we were able to give a “probable” 
approach code on at least one Category II problem, yielding 261 total responses to Category II 
problems for us to consider. Table 4 indicates the results. The data show that about 24% of the 
responses to Category I problems used a combination approach, whereas only 16% of responses 
to Category II problems did – a significant difference, but with a small effect size. Interestingly, 
most of the combination approaches to Category I problems were correct (only 2/90 were 
incorrect), whereas about one-quarter of the combination approaches to Category II problems 
were incorrect (11/43 were incorrect). We see this as another indication that even if a student 
attempts to use a combination approach on Category II problems, they are doing so in ways that 
are, in fact, incorrect. Similarly, when isolating unique participants, we also find a statistically 
significant difference, with relatively small effect size, between the proportion of participants 
that were using a combination approach on Category I compared to Category II problems. 

 
Table 4. Comparison of Overall Participant Responses 

 Category I 
Simple 

Category II 
Simple 

p-value Cohen’s 
h 

On what proportion of responses is a 
combination approach used at all? 90/380 ~24% 40/261 ~15% p<0.01 0.212 

(Small) 

On what proportion of responses is a 
combination approach used correctly? 88/380 ~23% 29/261 ~11% p<0.001 0.324 

(Small) 

What proportion of participants used a 
combination approach at all on at least 
one problem? 

38/117 ~32% 24/116 ~21% p<0.05 0.268 
(Small) 

What proportion of participants used a 
combination approach correctly on at 
least one problem? 

37/117 ~32% 18/116 ~16% p<0.01 0.385 
(Small) 

 
 Reduced Participant Responses. Since many participants never used a combination 

approach on any problem in the survey, as is evident from the overwhelmingly small proportions 
in Table 4, we reduced our participants to only those 42 who had used a combination approach 
on at least one problem – either Category I or Category II. These 42 participants yielded 153 
responses to Category I problems, and 114 responses to Category II problems. Table 2 indicates 
the results. Notably, for even these seemingly more knowledgeable participants there is a 
significant difference in the use of a combination approach to these two categories of problems. 
In fact, by reducing our population to only those who at least appear to have some idea that a 
combination might be a useful approach to solve a counting problem, we see larger effects in the 
differences. Given that these participants most closely match our desired population of 
participants – students who had likely been introduced to combinations but not studied them 
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extensively, and who can use combinations appropriately in some settings – we see these results 
as the most telling.  

 
Table 5. Comparison of Reduced Participant Responses 

 Category I 
Simple 

Category II 
Simple 

p-value Cohen’s 
h 

On what proportion of responses is a 
combination approach used correctly? 88/153 ~58% 29/114 ~25% p<0.001 0.664 

(Medium) 

What proportion of participants used 
a combination approach correctly on 
at least one problem? 

37/42 ~88% 18/42 ~43% p<0.001 1.009 
(Large) 

 Discussion 
Despite the fact that both Category I and Category II problems could be naturally encoded as 

combination problems, our findings suggest that the participants do not view the problems in this 
way. We found statistically significant differences in students’ use of combinations to solve 
Category I versus Category II problems. In this way, our study offers quantitative evidence of 
what had been an anecdotally observed phenomenon.  

In terms of the model of students’ combinatorial thinking (Lockwood, 2013) and the set-
oriented perspective toward counting (Lockwood, 2014), this study suggests that students are not 
recognizing that outcomes of Category II problems can be appropriately encoded as sets of 
objects. That is, even though natural bijections exists that would allow students to leverage 
binomial coefficients in a variety of contexts, our research suggests that students are either not 
aware of this fact or are not able to use that bijection to encode outcomes effectively. Indeed, a 
large majority of students were simply not able to answer Category II questions in a correct 
manner, regardless of the method – there were no other correct non-combination responses to the 
Category II questions, except one participant who correctly solved three Category II questions in 
a permutation manner. However, we want to acknowledge that it is not necessarily surprising 
that students would struggle to see this distinction. Indeed, familiar descriptions of “unordered” 
and “distinct” do not seem to apply – at least in the most natural way to model the outcomes. 
Students can tend to associate counting with key words, specific contexts, and mantras like 
“order doesn’t matter,” and they tend not to think about counting in terms of the outcomes they 
are trying to count (Lockwood, 2014). If this is a student’s perspective on counting, it would 
follow that they would not be attuned to the importance of encoding outcomes and might not 
realize that they have the flexibility to encode outcomes in creative ways. Our study thus offers 
further evidence that students would benefit from focusing on the nature of the outcomes as the 
determining factor in what counting processes (and, ultimately, formulas) are most appropriate in 
a given situation.  

 
Conclusions, and Implications 

In sum, students may need additional exposure to combinations and may benefit from 
explicit instruction about how Category II problems can be encoded in a way that is consistent 
with Category I problems. Generally, this point underscores a need for students to become more 
adept at combinatorial encoding (Lockwood, et al., 2015b). Encoding outcomes as sets is an 
inherent part of the field of combinatorics, but students may need particular help in making this 
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connection explicit. Also, these findings provide evidence for the fact that it may not be 
productive for students to be exposed to formulas initially if they are not pushed to understand 
those formulas. 

In terms of implications for instruction, then, we feel that teachers should explicitly direct 
students toward focusing on what they are trying to count. This means thinking of combination 
problems not exclusively as those problems whose outcomes can be encoded as sets of objects. 
Given how difficult (and seemingly unnatural) it is for students to encode outcomes of Category 
II problems, instructors may need to give examples of ways to encode outcomes of Category II 
problems and to clearly establish relevant bijections. Discussing the relationship between how 
one models the set of outcomes and the pertinent solution approach may also be particularly 
meaningful in this context. For example, listing outcomes as 5 Hs and 3 Ts might lead to a 
permutation approach of 8!/(5!3!), whereas further encoding the outcomes in terms of the 5 
distinct positions, for which three will be heads, might lead to C(5,3) as the natural solution 
approach. This is not to claim one approach as preferential over another, but we regard having 
both the flexibility to see different solution approaches as viable in this situation, as well as 
connecting sets of outcomes with particular solution methods, as highly important in developing 
an understanding of combinatorics. This might mean that instructors should first familiarize 
themselves with this distinction and to be able to understand and articulate what the distinction is 
between these two categories and why students might perceive them as different. Being able to 
use binomial coefficients flexibly and in a variety of settings can be a powerful tool for solving 
enumeration problems, but without a robust understanding – including how and why Category II 
problems can be solved using them – students may possess a tool they do not really understand 
how to use. As instructors, we should invest time and energy in helping students to understand 
this tool and the various ways in which it can be effectively used.  

There are natural next steps and avenues for further research. We plan to investigate more 
questions and hypotheses with the data we have, such as analyzing effects of demographic data 
and investigating other relationships and potentially contributing factors in students’ responses. 
We also want to explore the multistep problems more, and we wonder if perhaps the multistep 
problems might be similar in some way to the Category II problems, because both of these use a 
binomial coefficient as part of a process as opposed to the complete set of solutions. We could 
also see investigating similar kids of questions with counters with more experience than the 
novice calculus students, such as discrete mathematics or probability students. Our findings also 
indicate that further investigating students’ reasoning about encoding with combinations through 
in-depth interviews may give insight into the development of more robust understandings. 
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Appendix 
 

Prompt 2: “On the previous page, you entered your solution to different combinatorics 
problems. On this page, we would like you to expand upon how your solution is related to 
the "set of outcomes" for a few of the problems. That is, we want you to list some (but not 
necessarily all) of the outcomes that you are counting. Explain your thinking for your solution 
and its relation to what is being counted.  

For example, for the problem, "If we have four distinct toy cars (Red (R), Blue (B), Green 
(G), and Yellow (Y)), how many different subsets of 2 of them are there?", your solution to the 
problem might have been: C(4,2). On this page, the intent is to expand on how that solution, 
C(4,2), relates to the set of outcomes. You might write something like, "The set of outcomes 
includes the following pairs of cars: BR, RG, GY, BG. I used the combination C(4,2) because 
the outcomes were "pairs" (2) from the 4 different colored toy cars. I did not include RB because 
this would be the same as BR in this case.” 
 
 
Table: Survey 2 

Description Problem 

Category I Simple 
You are packing for a trip. Of the 20 different books you consider packing, you are 
going to select 4 of them to take with you. How many different possible combinations 
of books could you pack? 

Category I Simple There are 9 justices on the Supreme Court. In theory, how many different ways could 
the nine justices come to a 7:2 vote in favor of the defendant? 

Category 
II Simple 

Stella is ordering an ice cream cone that is 8 scoops tall. She orders 5 chocolate 
scoops and the rest vanilla. How many different ways can the employee stack the ice 
cream scoops? 

Category 
II Simple 

There are 55 elementary students standing in a line. The teacher has 35 identical red 
balloons and 20 identical blue balloons, and gives each student either a red or a blue 
balloon. How many different outcomes are possible in this process? 

Category 
II Multistep Sam is making “towers” from 3 green, 4 red, 2 yellow, and 8 orange blocks. Using 

all 17 blocks, how many different “towers” could Sam make? 

Dummy  In Montana, a license plate consists of a sequence of 3 letters (A-Z), followed by 3 
numbers (0-9). How many different possible license plates are there in Montana? 

Category I Simple There are 15 people in a room. Everyone shakes hands with everyone else. How 
many different handshakes take place?  

Category I  
Simple 

There are 250 kittens at a shelter. Sally is adopting 6 of them. In how many ways 
could she adopt 6 kittens? 

Category 
II Simple A professor writes a 40-question True/False test. If 17 of the questions are true and 

23 are false, how many possible T/F answer keys are possible? 

Category I Multistep There are 19 students in your class. How many ways are there to split the class into 3 
different groups - one group of size 5, another of size 6, and another of size 8? 

Dummy  From an Olympic field of 15 athletes competing in the 100-meter race, how many 
different possible results could there be for gold, silver, and bronze medals? 
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When we grade students’ proofs, do they understand our feedback? 
 

Robert C. Moore  Martha Byrne 
Andrews University  Earlham College 

 
 Sarah Hanusch                   Tim Fukawa-Connelly  

  Texas State University                Temple University 
 

Instructors often write feedback on students’ proofs even if there is no expectation for the 
students to revise and resubmit the work. It is not known, however, what students do with that 
feedback or if they understand the professor’s intentions. To this end, we asked eight advanced 
mathematics undergraduates to respond to professor comments on four written proofs by 
interpreting and implementing the comments.  We analyzed the student’s responses using the 
categories of corrective feedback for language acquisition, viewing the language of 
mathematical proof as a register of academic English.  
 
Keywords:  Proof Writing, Proof Grading, Proof Instruction, Proof Revision, Student Thinking  
 

Introduction and Research Questions 

Rav (1999) claimed that proofs “are the heart of mathematics” and they play an “intricate 
role […] in generating mathematical knowledge and understanding” (p. 6), and multiple authors 
have claimed that proof is how the discipline grows (cf., Lakatos, 1976; de Villiers, 2003). 
Consequently, proof is perhaps the dominant feature of the advanced undergraduate mathematics 
curriculum. For example, Mills (2011) estimated that approximately half of all class time 
consists of instructors presenting proofs at the board while the presentation of definitions, 
examples, algorithms and theorems (as well as explanations of the same) together constitute less 
than half of class time. Similarly, student homework and exams in advanced mathematics classes 
generally include a number of prompts asking them to produce written proofs of given claims 
(cf., Fukawa-Connelly, 2015).  That is, as Weber stated, developing proof proficiency “is often 
the primary goal of advanced mathematics courses and typically the only means of assessing 
students’ performance” (2001, p. 101).  

While proof proficiency may be the primary goal of advanced undergraduate mathematics 
courses, a significant body of research has demonstrated that students have great difficulty 
writing proofs, and a body of writing about mathematicians’ personal teaching experiences 
supports this claim as well. For example, Epp (2003) claimed: 

Often their efforts consisted of little more than a few disconnected calculations and 
imprecisely or incorrectly used words and phrases that did not even advance the substance of 
their cases. My students seemed to live in a different logical and linguistic world from the 
one I inhabited, a world that made it very difficult for them to engage in the kind of abstract 
mathematical thinking I was trying to help them learn. (886) 

Due to space constraints, we do not report all of this research here, rather we note that there are 
multiple handbook chapters (e.g., Harel and Sowder, 2007) describing the literature, and a 
comprehensive summary of undergraduate mathematics majors’ difficulties with proof is given 
in Selden and Selden (2008). This difficulty is further illustrated by the emphasis on reforming 
proof instruction as evidenced by the large number of “how-to” textbooks on proofs (e.g., 
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Chartrand, Polimeni, & Zhang, 2012; Franklin & Daoud, 2011; Smith, Eggen & St. Andre, 
2014), and practitioner articles about improving student proof writing (e.g., Strickland & Rand, 
in press; Zerr & Zerr, 2011). Of particular importance to the present study is Moore’s (1994) 
claim that students are unfamiliar with the language of mathematical proof. Yet, the language of 
proof writing is largely unstudied, and thus, there is little information about how mathematicians 
understand this language; instead, we rely on individual reflections and theoretical analyses.   

We argue that the language of proof is a particular academic register of English.  A register is 
a variety of language used for a particular purpose or within a particular social context. 
Specifically, it “is the set of meanings, the configuration of semantic patterns, that are typically 
drawn upon under the specific conditions, along with the words and structures that are used in 
the realization of these meanings” (Halliday, 1978, p. 23).To support our claim that the language 
of mathematical proof constitutes a register, we note that Scarcella (2003) claimed that academic 
English was a particular register “used in professional books and characterized by the specific 
linguistic features associated with academic disciplines” (p. 9) and that each academic discipline 
had its own particular subregister. Halliday (1978), Pimm (1987) and Moschkovich (1999) have 
similarly argued that the language of mathematics constitutes a particular register. Thus, “we can 
refer to a ‘mathematics register,’ in the sense of the meanings that belong to the language of 
mathematics […], and that a language must express if it is being used for mathematical purpose” 
(Halliday, 1978, p.195).  

When considering how students might learn and use this register, exposure and practice is 
certainly important (Pinker, 2009). Yet, without feedback on this practice, students are unlikely 
to improve their proof writing. Moreover, mathematicians act on the belief that giving students 
feedback is critical to their learning by making marks and notes on student proof productions 
(e.g., Hattie & Timperley, 2007; Moore, 2016). Yet, this feedback improves student learning 
only if students read, make sense of, and incorporate it into their future work. Few, if any, studies 
have explored students’ understanding of this process of giving feedback as a means to improve 
their proficiency. Thus, in this study we investigate the following questions: 

1. What do students claim to do with the professor’s feedback on their proofs? 
2. How do students interpret and explain the rationale for the professor’s marks and 

comments on student-written proofs? 
3. How do students’ responses to the professor’s comments align with the way that is 

normative in the discipline, as described by mathematically enculturated individuals? 
 

Literature and Theory 

Theoretical orientation 
The theoretical orientation for this study is acquisition of language through which we 

consider the register of mathematical proof. In the case of proof in an advanced undergraduate 
mathematics classroom, there is an interesting duality: there are the proofs that the professors 
present and those that the students produce. Professors report that they often present proofs with 
small gaps in them; giving multiple reasons for doing so, such as not allowing technical details to 
obscure the big ideas, conserving limited class time, and providing the gaps as learning 
opportunities for students to help them better understand the content and support their proof 
writing (Lai & Weber, 2014; Lai, Weber, & Mejia-Ramos, 2012).  
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Language acquisition 
While there is little research on how students learn formal mathematical language, there is a 

significant body of research on language acquisition (both first and second language acquisition) 
which has relevance to the acquisition of a register. Pinker (2009) described four criteria for a 
language, or in this case, a register, to be learnable: 

1. From among the class of all possible languages, the target needs to be identified. 
2. Learners need an environment in which to learn it. 
3. Learners need a learning strategy, meaning a learner-created algorithm that uses 

information in the environment to create “hypotheses” about the target language, and 
then to determine whether they are consistent with the input information from the 
environment. 

4. Learners determine a success criterion, meaning the hypotheses are related in some 
systematic way to the target language.  A learner may waver among a set of hypotheses, 
one of which is correct. They may arrive at a hypothesis identical to the target language, 
or they may arrive at an approximation to it.  

All of these are fulfilled by the advanced mathematics classroom: there is a particular register to 
be acquired, an environment in which to learn it, means for trying out usages of the language 
(proof writing), and a success criterion (sufficient fluency to earn passing marks).   

Pinker continued by noting that language learning was a case of induction—developing 
uncertain generalizations from the observed instances of the language used in the environment.  
In the case of the formal mathematical register, students often get specific instruction describing 
the use of some phrases as well as the syntax, and they observe their professors using the 
register, although mixed with colloquial mathematics (Lew, et a., 2016).  Moreover, professors 
frequently write only the algebraic steps of a proof on the board while saying aloud many of the 
connecting phrases and logical underpinnings (Fukawa-Connelly, 2012). In contrast, when 
reading proofs the professors focus on the phrases and logical descriptions in the written 
language, acting as if the algebraic manipulations are of secondary importance (Hodds, Alcock, 
& Inglis, 2014). Thus, the sample of the register on which the students are inducting is 
problematic and suggests an over-importance of the symbolic argument, thus increasing the 
number of generalizations likely to be present in the superset of the language that the students 
might develop. It is from these uses that students must develop hypotheses about the symbols, 
phrases and syntax, and yet as noted above, unlike in colloquial language, formal mathematical 
language must be unambiguous and correct, thus increasing the challenge for students.  

Most important, language acquisition research suggests vital roles for learners’ language 
production, including that learners “try out new language forms and structures as they stretch 
their interlanguage to meet communicative needs; they may use output to see what works and 
what does not” (Swain, 1998, p. 68). That is, students learning the mathematical register will 
write proofs in which they will commonly use correct grammar and syntax but also incorrect 
grammar and syntax, and they do this, partially, in order to try to learn the language and solicit 
feedback. This testing of language is not typically a conscious goal, rather we appear to be 
biologically disposed to do so. While to a mathematical expert, novice proof productions are 
filled with errors of logic, grammar, syntax and more, under the lens of language learning we 
instead view them as attempts to communicate in the style of the community where the rules are, 
at best, partially mastered and often tacit. On the basis of this research, we assert that professors’ 
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feedback on student proof productions has perhaps an unparalleled role in students’ learning to 
produce proofs. 

 
The role of feedback in language acquisition 

We adopt Leeman’s (2007) definition of feedback, meaning a mechanism that provides a 
learner with information regarding the success or failure of a given production, such as a written 
proof. Much research has focused on negative feedback, which is feedback that in some way 
indicates an error or issue with the production (Gass, 2008; Herschensohn & Young-Scholten, 
2013). In particular, Lyster and Ranta (1997) described six types of corrective feedback, each of 
which can also be seen as indicating issues with the learner’s production. Their types of feedback 
included: 

1. Explicit correction: the teacher indicates that the utterance is incorrect and provides the 
correct form. 

2. Recast: the teacher reformulates the student’s production and remediates the error or 
provides the correction, such as writing out the correct sentence, without specifically 
indicating the error in the student’s work. 

3. Clarification request: the teacher asks the student to reformulate their production without 
specifically indicating what the error is. 

4. Metalinguistic clues: the teacher poses questions, typically with a yes/no answer, or gives 
comments related to the student’s production but does not provide the correct form or 
specifically indicate the error (e.g., Do we use this symbol here?”).  

5. Elicitation: the teacher directly elicits the correct form from the student by asking 
questions or starting the phrase. These questions typically expect more than a yes/no 
answer, such as, “Where do we use this hypothesis?” 

6. Repetition: the teacher repeats the student production but highlights the error in the 
delivery (e.g., highlighting). 

Lyster and Ranta found that recasts and explicit corrections did not result in subsequent 
improvement in student productions and hypothesized that it was because students are then 
limited to repeating the correct form the teacher provided (Tedick & de Gortari, 1998). Gass 
(2008) argued that explicit negative feedback can only teach about surface-level phenomena and 
cannot teach abstraction. Consequently, students may use the correct grammar and syntax in the 
future but without developing reasons to support their choices. The other five types of responses 
do not provide learners with the correct form and require that the learners provide it. Lyster and 
Ranta claim that when learners must restate, they are having to actively engage with the 
feedback, which is a critical feature in learning from feedback. 
 
Student and mathematician misunderstandings 

While we argue that professor comments on student proof productions have a significant role 
in students’ learning to produce proofs, we also have reason to believe that students are likely to 
misinterpret them. Research on student understanding of lectures suggests that students 
sometimes develop significantly different understandings of the presented material and meaning 
for professor actions than the professor intends (cf. Lew, et al., 2016; Weinberg, Weisner, & 
Fukawa-Connelly, 2014). The work of Ko and Knuth (2013) and Selden and Selden (2003) has 
shown that students often fixate on the form, such as the presence of mathematical symbols, 
rather than the content of the proof, when reading mathematical arguments. 
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We use this prior research on misunderstandings and “misses of understanding” to form 
hypotheses about how students are likely to interpret a professor’s comments on proof 
productions. (To learn about the kinds of comments professors leave on proofs, see Moore, 
2016). In particular, we hypothesize that they are likely to: 

● not apprehend some feedback, 
● develop only a surface-level understanding of some feedback, and 
● interpret feedback in ways that differ from what mathematical experts would do. 

Moreover, we argue that the latter two of these hypotheses are supported by the language 
acquisition literature described above. 
  

Methods 

Participant selection 
The participants were 8 students, 4 men and 4 women, with advanced undergraduate standing 

at two institutions, four from each institution. Each participant had taken at least two proof-based 
undergraduate mathematics classes, including a transition-to-proof course. We purposely 
selected participants who had experience with writing proofs and receiving feedback from their 
professors so as to give the best possible chances for their success in understanding the proofs 
and interpreting the professor’s comments in this study. 

 
Data collection 

We engaged each participant in a 90-minute task-based interview where the primary task was 
to describe and interpret a professor’s comments about proofs.  The interviews were audio-
recorded and pencast with Livescribe pens. Each interview began with basic demographic 
questions and reflective questions about the participant’s typical use of their professors’ 
feedback, as follows: 

1. What is your major(s) and which college-level math courses have you taken? Which 
math courses have emphasized proof writing? 

2. When a professor returned homework papers, how often were you asked to revise and 
resubmit your work?   

3. When you were not asked to revise and resubmit, what did you do with the feedback your 
professors gave you? Can you provide a specific example? 

4. If you were asked to revise and resubmit, what did you do with the feedback? 
5. Do you think it is important to read the comments on your proofs?  Why or why not? 
Subsequently, the main part of the interview consisted of a sequence of three or four proofs, 

as time allowed. We ensured that each proof had a mix of professor marks and comments related 
to notation and presentation, and logical issues. The proofs and professor comments were taken 
from a previous research project exploring four mathematics professors’ proof grading practices 
(Moore, 2016). From among the various marks and comments that the professors in Moore’s 
study wrote on the proofs, we selected the ones that appeared on the proofs in the present study. 
An example proof, Proof A, with comments, is shown in Figure 1. (Note that the participants did 
not see the numbers beside the comments; we inserted them later for our convenience in 
referring to the comments). 

First, we handed a proof to the participant, told her it had been written by a student, and 
asked her to read and understand it as best she could. Next, we presented a marked proof to the 
participant with a professor’s feedback written in red ink. To determine whether the participant’s 
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interpretation of the mark or comment matched our own, we asked the participant to explain why 
the professor had written each individual mark or comment and what changes she thought the 
professor wanted. Finally, we asked the participant to rewrite the proof in order to allow us to 
further explore her interpretation of the comments and see how she implemented the professor’s 
recommendations. 

 
 

Figure 1. Proof A with the professor’s comments. 

 
Data analysis 

For each comment in each proof, each of the researchers wrote a description of what change 
he or she believed the professor wanted and a rationale for the change. Based on these individual 
notes, we created a consensus description of what each mark and comment was asking the 
participant to change and the reason for the change. We also classified each comment using 
Lyster and Ranta’s (1997) types of corrective feedback. Thus, each comment was classified 
along three dimensions: what change was requested, the reason for the change, and the type of 
corrective feedback. 

We transcribed each interview and then chunked it at a number of levels. We parsed the 
demographic and reflective questions in one piece and the participant’s discussion of each proof 
in additional pieces. We partitioned the discussion of each proof by identifying the participant’s 
initial reading of the proof as a whole, and then her conversations about the individual 
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comments. In cases where participants discussed multiple comments in the same utterance, we 
looked across interviews, and when it was common, we treated the comments as a single unit to 
parse all interviews similarly. We made a final block of the talk-aloud proof-writing process, for 
which we chunked the participant’s utterances around the comments and linked those to what she 
wrote when she revised the proof. 

To code the participant’s utterances about each comment we first wrote a brief holistic 
summary, and then we developed a more detailed coding sheet that recorded: 

● what the participant identified as the part of the proof the comment addressed, 
● what the participant’s response suggested should change in the proof, 
● any reason the participant gave to explain the intended change and the underlying logic, 
● a summary of what the participant changed in her revised proof, 
● a comparison of each of the above points to our consensus expert interpretation, and  
● an explanation of how an unanticipated change exhibited during the proof writing could 

be understood as a logical interpretation of the professor’s comments. 
We then created summaries, first by looking at individual proof comments across participants, 
and then by looking across the different categorizations of comments.  For example, in the case 
of explicit corrections we described how the participants interpreted the requested changes, the 
kinds of reasons the participants provided for them, and the changes the participants included in 
their revised proofs. Similarly, we aggregated all of the changes that, according to our expert 
consensus, were recommended by the professor for a particular reason, such as “cultural 
convention,” described the kinds of reasons the participants provided for them, and noted the 
changes the participants included in their revised proofs.   
 

Results 

Overall, the participants were very successful at interpreting what a professor wanted them to 
do in response to the comments. For example, for each of the eight comments on Proof A, 100% 
of participants correctly identified an acceptable part of the proof to be changed, and they all 
executed a change in a manner logically consistent with our understanding of the comment. 
However, their explanations of the rationale for the comments were not always consistent with 
our expert understanding. In the sections that follow, we explore the participants’ work and 
thinking about the professor’s comments on Proofs A and B. 

 
Explicit corrections and recasts: feedback that specified the change 

When the professor’s comment specified a change to make to the proof, such as in an explicit 
correction or recast, the participants were consistently able to identify and state the change the 
professor wanted, and in the case of explicit corrections, what the professor considered incorrect. 
In their revised proofs, all of the participants consistently adopted the professor’s suggested 
changes. For example, six of the professor’s eight comments on Proof A (see Figure 1) were 
explicit corrections or recasts.  Five of them indicated that something in the proof should be 
crossed out and replaced. In these instances, the participants always identified what they believed 
the professor wanted them to revise and implemented the revisions in a way that conformed with 
expert understanding.  

Comment 1, the only recast comment on Proof A, was also specific but suggested the 
addition of new text, namely, the phrase “We want to prove,” rather than the replacement of 
existing text. Seven participants added the recommended phrase, and one participant, Adam, 
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showed some individuality by assuming that xRy and yRz and then writing, “We will prove that 
xRz,” which we judged to be consistent with our understanding of the professor’s comment. 

In summary, when the professor’s comment was an explicit change of or an addition to the 
proof-text, the participants’ identification and implementations of the recommended changes 
were largely consistent with the expert consensus, or made a related change that addressed the 
intent of the comment.  Thus, it appears that the participants demonstrated that they could 
appropriately identify and use explicit corrections and recasts on proofs. 

   
Elicitations and clarification requests: feedback that did not specify the change 

The professor’s comments on the four proofs included eleven elicitations and clarification 
requests. None of these comments gave specific directions about how to revise the proof. For 
example, comment 6 on Proof A, which says “hard to follow,” was a clarification request that 
did not indicate how to revise the proof. The participants generally interpreted this comment to 
mean that the algebraic steps lacked readability. Adam said about this comment: 

When I was reading the original proof, I guess it took me a little bit of time to follow how 
they laid it out, and maybe the layout could have been a little bit easier to follow. So maybe 
we should change some of this so it’s a little bit easier to get from certain points to certain 
points.  

Our interpretation of Adam’s statement is that the comment asked for a change in layout in order 
to help a reader understand how the proof flows from point to point.   

Bella and Don interpreted comment 6 differently and focused on the idea that the professor 
was asking for more detail. Bella focused on adding algebraic steps, whereas Don suggested 
clarifying and justifying the steps: “I would take that to mean use more detail, I suppose, 
describing what I’m actually doing at each step, even it were just to label, you know, 1, 2, 3, and 
then preferably say why 1, why 2, why 3.”   

Two participants, Ruby and Nancy, noted specific changes that they would make to the 
proof. Ruby suggested that, “If there were sentences there, it wouldn’t be as hard to follow.” 
Nancy explained how she would add transition phrases and justifications, when she said: 

Normally you say more instead of just writing a bunch of random equations. ... You could 
say like “using substitution, we know this part” ... instead of just writing down random 
arrows and saying “Ha, ha! We got it!” … You can figure out what it’s trying to say, it’s not 
hard to follow in that sense, but it’s hard to follow in the sense of formal proof writing. It 
doesn’t have the normal, yeah, words, English.  

Nancy has claimed that text is a “normal” part of proofs and a “bunch of random equations” is 
not appropriate, and her interpretation of the comment appears to be influenced by this belief.   

On Proof B, shown in Figure 2, we classified comments 2 and 3 as clarification requests. For 
comment 2, the professor circled a part of the student’s work and wrote, “right idea, bad 
notation.” For comment 3, the professor crossed out two parts of the student’s proof and wrote, 
“Bad syntax. Sets can’t imply sets.” Note that in comment 2, the professor did not specify the 
error in what was written, and for neither of these two comments did the professor indicate how 
to revise the proof, which is consistent with the definition of a clarification request. 

When the participants read comment 2, “right idea, bad notation,” all but one were able to  
identify that the professor was indicating that the student’s arrow notation was incorrect and 
needed to be changed, but most of them had difficulty articulating exactly what was incorrect 
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and how to correct it. For example, Charles said, “I suppose this tells me they did it wrong. I 
would have to look up to see what the proper notation was, if I didn’t know what it was off 
hand.”  

 
Figure 2. Proof B with the professor’s comments. 

 
Two participants suggested a means to deal with the comment by changing everything into 

written language without using symbols. Genevieve claimed, “that should be sentences instead of 
arrows.” Nancy noted that the text is “not written in a mathematically formalized way. It’s more 
written in a shorthand of reminding yourself” and suggested “actually writing it out in a way that 
says ... it in a mathematical proof kind of way.” Nancy’s response provided insufficient evidence 
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to determine what she thought would make the argument more formal, but when asked, 
suggested writing out the inclusions in words: “Here I might write, ‘by definition of subset,’ and 
then write, ‘x is in B and y is in D,’ or something like that.” 

The participants’ responses to comment 3 were similar to those for comment 2. They 
recognized the arrow between the two sets as problematic but did not give much more 
information. Bella stated, “It’s not something you can do, it’s not like, it’s just maybe a rule.” 
Multiple participants commented that the arrow indicated implication, such as Adam, “Yeah, the 
arrow means implies. Syntax. … you have to make sure you’re using the right ones to mean what 
you want it to mean. And implies doesn’t work for sets. You just don’t do that.” Genevieve said, 
“It’s not grammatical when you substitute implies in place of arrow.” Thus, although the 
participants generally recognized the problematic usage of the arrow, their verbal explanations of 
their interpretations of this comment offered little insight into what was wrong about the arrow 
and what they would change. Moreover, all of the participants avoided the problematic arrow 
usage in their revised proofs, typically by writing the inclusion in sentence form, often 
significantly restructuring the last few lines of text. 

   
Participants’ descriptions of the logic of specified changes 

The participants were also asked to describe why they thought the professor had specified 
each of the changes to the proof text, and their answers revealed a variety of ways of thinking 
about the language of formal mathematics. For most of the comments, some participants were 
able to express the logic supporting the comment and some were not, and this was consistent 
across comment types. 

With regard to the “We want to prove” recast comment at the beginning of Proof A, the 
expert consensus was that a proof should not begin with the conclusion that is to be proved, and 
the correction indicates that the first sentence expresses the goal of the proof. Two participants 
clearly articulated the logical issues with first line of the proof. Here is Adam’s response: 

I think what the professor meant by this is you want to make a statement saying this is what 
we are going to prove or trying to prove.... They didn’t say we’re trying to prove this or this 
is the conclusion we’re going to come to. And you want to make that clear. 

In contrast, Bella explained that she understood the reason for the comment as “that’s just one of 
the proper ways to start a proof, that from what I’ve learned, yeah, it’s just the way to start a 
proof.” That is, her thinking appeared to focus on the form of proofs, rather than on the logical 
function of the statement. The other five participants described the added phrase as clarifying the 
presentation, but they did not clearly articulate the logical issue. For example, Don said, “This is 
just to me good syntax. It’s a way of setting it up to be understand better and to be read more 
easily.” Thus, we suggest that the logic the professor intended to motivate by this comment was 
not successfully communicated to six of the participants.   

The participants also initially showed mixed understanding of the reasons for the professor’s 
explicit corrections on Proof A (Figure 1). For comment 2, which specified changing  Z to R, the 
experts agreed that the change was logically necessary because the relation R is defined on the 
set of real number. Six of the participants gave an explanation that approached that of the 
experts, including Genevieve who said, “there is no reason to believe that x, y, z are in the 
integers. The theorem never states that they are in the integers. [The theorem states] on the set of 
real numbers.” Don gave a mixed explanation, initially saying “they [Z and R] are both correct 
but the real numbers are more applicable, in most cases,” but later in the interview noted that the 
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theorem specifies that x, y, z are real numbers. Don’s explanation for the requested change did 
not reject the original statement as inappropriate for the proof.  

In reference to comment 5, only two participants, Don and Nancy, articulated the distinction 
between let and for some, whereas the other participants said little about this comment or gave 
explanations that did not fully align with the expert consensus. For instance, Charles said: “... 
when you make the mark for some k, c, that’s traditional writing. But it also helps clarify how k 
and c are related to the two previous corrections. Um, whereas the student seems to be setting it 
up as its own separate idea, it’s important to clarify that k and c are related to x, y, and z.” 
Charles’s comment about “traditional writing” suggests that he viewed the explicit correction as 
stylistic, i.e., to bring the writing into alignment with writing norms, although he also noted the 
logical issue. 

 The participants’ interpretations of the clarification requests were similarly met with mixed 
success. Consider comment 2 on Proof B (Figure 2). The participants generally did not know the 
correct notation, and as a result, gave only an explanation about the importance of correct 
notation. For example, Adam said, “Wrong notation. Let me think here. (pause) I don’t 
necessarily know if I know the right notation to put this in now (laughs), but I knew that wasn’t 
the right notation.” Genevieve, on the other hand, was able to articulate the notational issues with 
this part of the proof by saying “The arrows are sort of sometimes ambiguous with people 
because it generally means implies, but sometimes people use arrows in different ways, and so I 
think to actually put it in a sentence and make it clearer would be a lot better.”   

Similarly, for comment 3 on Proof B the participants agreed that “sets can’t imply sets” but 
struggled to articulate the reason. Nancy and Ruby attempted to give a rationale in terms of if-
then statements but had difficulty expressing themselves clearly and succinctly. 

 
The participants’ revisions of the proofs 

When the professor gave an explicit correction or recast comment, the participants always 
incorporated it, or revised the proof in such a way as to avoid the problem. When the professor 
used an elicitation or a clarification request, the participants had to develop their own change. 
One such comment was “proofs should be complete sentences,” which is somewhat directive in 
that it suggested a course of action. Four of the participants rewrote the entire proof in paragraph 
form, eschewing the string of equations, while the other four displayed the string of equations 
and wrote the concluding part of the proof in complete sentences. Both are reasonable 
interpretations of the professor’s note, and either is stylistically acceptable.  

In sum, the participants were generally quite capable of writing revised proofs that 
remediated the issues indicated by the professor’s marks and comments, even when they could 
not fully explain the rationale for the comments. 

 
What the participants claimed to do with professor feedback 

To begin the interview, we asked the participants to describe what they typically did with the 
professors’ comments on their graded proofs. Generally, they claimed to make relatively little 
use of them. Bella noted that she did not consistently read the comments, noting that “sometimes 
it would just go on the pile of homework, to be honest.” Five more claimed to consistently read 
them. Nancy claimed to do more than simply read the comments: 

I would read through it, um, and I would try to kind of make mental notes. I would often not 
try to go back and rewrite it, but if I then did another proof that was similar, I would ... try to 
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make a mental note of it and use that. I did try to use it in other proofs. I wouldn’t always 
redo those, but I definitely would use that information the next time that I wrote a proof. And 
I would actually get it out and look at it the next time I was writing a proof and try to see 
what did I do, what could I do differently to make this better. 
Adam, too, talked about making additional use of the comments, and in his case it was in the 

context of his abstract algebra course. During this course, the teacher would sometimes return 
proof papers in class and go over them, and in that case Adam would write notes on his proofs 
for later reference. Adam claimed that he would use the written and oral comments to help him 
prepare to rewrite the same proofs during exams. But it seemed that without that motivation, he 
would normally do no more than read the comments.  

Six of the participants claimed to make use of their professors’ comments when they were 
asked to revise and resubmit proofs, but they all noted that they were seldom asked for revisions. 
This evidence suggests that students generally do not meaningfully engage with the comments 
on their graded proofs unless required to do so. The language acquisition literature (e.g., Lyster 
& Ranta, 1997) and composition research (e.g., Bean, 2011) argue that such engagement is 
critical for learning from feedback. 
 

Conclusion 

This study contributes to undergraduate mathematics education in that it is the first study to 
describe and analyze how students interpret and respond to their graded proof papers. Given that 
mathematicians consider proof grading to be an important means of teaching students to write 
proofs (Moore, 2016), the study opens a new line of research on the teaching and learning of 
mathematical proof at the undergraduate level. 

We report three principal findings in response to the research questions. The first important 
finding is that when the professor wrote an explicit correction or a recast comment on a proof, 
the participants correctly identified the changes recommended and generally, but not always, 
could provide some rationale for the changes, including what was incorrect about the original 
proof. We suggest that the participants were able to invent reasons by comparing the original text 
and the corrected text; that is, they were able to develop a hypothesis about usage via induction 
(Swain, 1998). In contrast, when the professor’s comment was a clarification request or an 
elicitation and did not provide new text, the participants struggled to provide a rationale for the 
change and fell back to more general claims that did not explicitly identify what was incorrect 
about the original proof. We note that the literature on second language acquisition suggests that 
cognitive engagement with the feedback is important for the students to incorporate the new 
information, and that clarification requests and elicitations promote cognitive engagement better 
than explicit corrections and recasts (Lyster & Ranta, 1997). Yet in this study, when the 
professor wrote clarification requests and elicitations, our participants were not reliably 
successful in responding to the comments because they did not appear to fully understand the 
comment and the mathematical language to correct the problem. Instead, they relied on general 
claims that are insufficient to support future proof-writing attempts. On the other hand, in the 
context of an actual course, if the professor requires students to revise their work, clarification 
requests and elicitations may promote cognitive engagement by directing students to use 
available resources to learn how to address the issues raised by the comments on their proofs. 

The second important finding is that, regardless of the type of feedback the professor offered, 
the participants could not reliably describe normatively correct logic for the changes and why the 
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original proof production was incorrect or problematic. While explicit corrections and recasts 
gave the participants a means to develop hypotheses by contrasting the two proofs, their 
inferences were sometimes incorrect or incomplete. It appeared that, generally, the participants 
could only explain the logic for requested changes when they already could identify the issue 
prior to reading the professor’s comments. Moreover, it appears that they would often fall back 
to claiming that a requested change was “cultural” or “how you do it in formal mathematics.” 
This observation suggests that the way professors currently write comments is not an effective 
way to communicate the reasons underlying the comments, which they often claim is the most 
important thing they are attempting to convey in their instruction (Lew, et al., 2016). Our data 
suggests that professors should write more about the logic that they are attempting to convey to 
the students, as well as distinguish between logical errors and readability concerns. What form 
such feedback might take to be most effective and efficient, whether direct statements, 
clarification requests, or elicitations, is a productive direction for future research. 

A third finding is that students’ written proofs are insufficient to distinguish between those 
who have some level of conceptual understanding and those who work only procedurally. When 
they revised the proofs, the participants successfully implemented the suggested changes in 
nearly all instances, regardless of the type of comment, even when they did not fully understand 
the rationale for the changes. This ability to write a correct proof without an understanding of the 
underlying logic is problematic for the teacher who may conclude that students understand more 
than they actually do. This potential mismatch suggests that perhaps professors have good reason 
to focus on teaching students the important mathematical logic and let the language, symbols, 
and grammar sort themselves out over time. 

We recognize that this is a single, exploratory study with a small number of elementary 
proofs, a small number of participants, and only analytical generalizations. Moreover, we note 
three significant limitations of this study that suggest the need for further work. First, the 
participants were reading and writing proofs on mathematical topics that most of them had not 
worked with in some time, possibly since their introduction to proof class. Second, we asked the 
participants to interpret comments on proofs they had not written, thus imposing a need to make 
sense of another student’s proof attempt prior to interpreting the comments. More research is 
needed to explore students’ ability to interpret feedback in the context of their own proof writing. 
This first exploratory study provides a body of empirical evidence for future directions and more 
theoretical work. We note a third limitation: initially the four experts did not always agree on the 
reasons for the changes. While we could come to a consensus interpretation, there were 
significant differences in our initial interpretations, which means that different researchers, or a 
different mix of researchers, might have arrived at a different consensus interpretation of the 
professor’s comments. This limitation of the study suggests an avenue for future research, 
motivated by Weber’s (2014) argument that proof is a cluster concept. We hypothesize that 
while professors might share instructional goals about proof and use similar notes and language 
to communicate with students, in reality they may be attempting to convey very different content 
via the same notes, which has significant implications for students.  
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Students’ symmetric ability in relation to their use and preference for  
symmetric heuristics in problem solving   

 

Meredith Muller Eric Pandiscio 
University of Maine  

 
 

Advanced mathematical problem solving is marked by efficient and fluid use of multiple solution 
strategies. Symmetric arguments are apt heuristics and eminently useful in mathematics and 
science fields. Research suggests that mathematics proficiency is correlated with spatial 
reasoning.  We define symmetric ability as fluency with mentally visualizing, manipulating, and 
making comparisons among 2D objects under rotation and reflection. We hypothesize that 
symmetric ability is a distinct sub-ability of spatial reasoning which is more accessible to 
students due to inherent cultural biases for symmetric balance.  Do students with varying levels 
of symmetric ability use or prefer symmetric arguments in problem solving? How does 
symmetric ability relate to insight in problem solving? Results from initial analysis indicate that, 
among mathematics undergraduates, there is variation in symmetric ability. Methods, future 
research, and implications are discussed. 
 

Key words: [Symmetry, Problem Solving, Heuristics, Cognitive Spatial Reasoning] 
 

Context  
Geometry is the branch of mathematics most connected to the world as humans 

experience it; geometry is the math we see in the natural and manufactured structures around us. 
Cultures around the world have used geometry to build, navigate, make art, and predict motion. 
It is how we measure the earth and space. Shapes and angles provide the vocabulary we use to 
describe our surroundings and communicate about them with others. The utility of geometry to 
students is as plain as a line they draw and the plane in which they draw it. A traditional 
geometry curriculum in the United States is capped around age 16 with proof-based construction 
geometry and the introduction of trigonometry. Broadly speaking, visualizing in mathematics is 
one of the most important tools we have to offer students to help them better understand the 
application of mathematics to the physical world around them. Wai, Lubinski, and Benbow 
(2009) found that spatial ability was a key factor in determining success of students in advanced 
STEM education and career paths.  Others have found that spatial skills can be taught and 
retained, which may increase participation in STEM fields (Uttal et al., 2013). Unfortunately, 
robust visual geometric understanding is often not the outcome of a standard mathematics 
education. Undergraduate students have trouble with geometric transformations, including 
symmetrical relationships (Rizzo, 2013). The 2011 TIMSS survey found that only half of United 
States 4th graders could complete a shape to have line symmetry. Further, in both 4th and 8th 
grades in the content area of geometry and measurement, American students underperformed in 
comparison to their overall mathematics achievement (Mullis, Martin, Foy, & Arora, 2011).  

Symmetry. It has been frequently suggested, to the point of inclusion in both NCTM and 
CCSS standards (Common Core State Standards Initiative, 2012; National Council of Teachers 
of Mathematics, 2000), that studying symmetry is an important part of a well rounded 
mathematics education. Mathematicians have long noted symmetry as a major convergence point 
of mathematics and beauty (Drefus, T., Eisenberg, 1990). Symmetry is a persistent part of visual 
language worldwide (Dreyfus & Eisenburg, 2000; Hargittai & Hargittai, 1994; Shaw, 1990). 
Molecules, gems, butterflies, flowers, human faces, sculpture, architecture, musical notation, and 
even galaxies exhibit symmetry in both generation and propagation. Many cultures use and have 
used symmetry in their creative expressions. Classifying and decoding the meaning of symmetry 
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in historical artifacts is an important endeavor to sociologists (Washburn & Crowe, 1987). 
Further, symmetry has great sway in terms of value judgments of mathematical, musical, literary, 
scientific, and aesthetic objects (Weyl, 1952). Symmetry is relevant in all branches of school 
mathematics. While most apparent in geometry and its study of transformations on Euclidian 
spaces, topics in algebra like symmetric functions, symmetric systems of equations, and 
symmetric graphs also rely on this construct (Hilton & Pedersen, 1986). In calculus, there is 
symmetry in integral construction. In statistics and probability, there is symmetry in 
distributions. And in trigonometry, there is symmetry in the identities (Dreyfus, T., Eisenberg, 
1990). Symmetry has great importance to life and earth sciences, and it has served as a strong 
basis for investigation since the early geometers. The relatively new field of group theory in 
mathematics is based in large part on notions of symmetry and has been applied to the study of 
crystals, particle physics, and phyllotaxis (the study of branching in plants) (Dreyfus, T., 
Eisenberg, 1990). For these reasons, fluency in symmetry not only taps into an innate part of the 
human experience, but also can provide rich opportunities for engagement across academic 
disciplines.  

Spatial Ability. There are many forms of spatial ability and reasoning, as well as tests 
and probing research on this aptitude. Spatial ability, the precision and robustness of visual 
perception, correlates positively with mathematical achievement (Battista, 1990). Spatial ability 
includes skills like differentiating foreground and background, performing mental shifts of 
orientation, seeing the effects of single and multiple reflections, identifying rotationally 
symmetric objects in two- and three-dimensions, correlating elevational and cross-sectional 
plans, mentally rearranging objects, and recreating visual patterns. Clements and Battista (1992) 
define spatial reasoning as “the set of cognitive processes by which mental representations for 
spatial objects, relationships, and transformations are constructed and manipulated.” Spatial 
reasoning is further split by some psychometricians into several factors like spatial orientation: 
“The ability to perceive spatial patterns or to maintain orientation with respect to objects in 
space,” and spatial visualization: “The ability to manipulate or transform the image of spatial 
patterns into other visual arrangements” (French, Ekstrom, & Price, 1963). The primary 
difference between these two constructs being the active or passive nature of the observer. These 
definitional distinctions are hotly debated and other such terms have been proposed and 
defended. Many facets of spatial ability have been studied in contexts such as gender differences 
and mathematical achievement (Battista, 1990; E. H. Fennema & Sherman, 1978; E. Fennema & 
Sherman, 1977; Harris, 1981), problem solving (Tartre, 1990), implications for instruction 
(Bruce & Hawes, 2014; Ferrini-Mundy, 1987) with the aid of engineering drawings (Olkun, 
2003), learning disabilities (Garderen, 2006), and relationship to fields such as: chemistry 
(Bodner & Guay, 1997), geology (Orion, Nir, Ben-Chaim, David, Kali, 1997), kinematics 
(Kozhevnikov, Motes, & Hegarty, 2007), and music and sport (Pietsch & Jansen, 2012). 
Evidence suggests that spatial ability peaks in humans during preadolescence, further justifying 
inclusion and serious treatment of symmetry in middle and high school curricula (Ben-Chaim, 
Lappan, & Houang, 1988). Overall, spatial ability is an important cognitive function that 
strongly correlates (.30-.60 (Battista, 1990)) with mathematical achievement. This correlation 
becomes more pronounced as task difficulty increases and is of approximately equal weight to 
that of verbal reasoning (E. Fennema & Sherman, 1977). The perception of symmetry is an 
unknown portion of spatial ability.  

Problem Solving. Problem-solving and critical thinking are main pillars of reformed K-
12 curricula (Common Core State Standards Initiative, 2012; National Council of Teachers of 
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Mathematics, 2000) and are pervasive in PCAST reports (Holdren & Lander, 2012). Schoenfeld 
(1987) demonstrates that metacognitively aware problem solvers read, analyze, explore, plan, 
implement, and verify during their problem solving process. The “analyze” phase involves 
creating hypotheses of how a problem can be solved – i.e. the generation and recall of solution 
strategies. Polya (1957) offered up some of the first solution strategies for devising a plan of 
mathematical action: use a related problem or alter the problem to make it easier.  Since then, 
more and more solution strategies have been named and studied as they relate to specific 
mathematical problem areas, many of them algorithmic. Multiple solution tasks are those that 
can have many solution paths. Almost all mathematics problems can be solved more than one 
way. A simple example might be the different algorithms one can use to add three-digit numbers. 
A more complex task might be to prove that a parallelogram with congruent diagonals is a 
rectangle (Levav-Waynberg & Leikin, 2012). Some research on problem solving focuses on 
flexibility which is, “knowledge of multiple solutions as well as the ability and tendency to 
selectively choose the most appropriate ones for a given problem and a particular problem-
solving goal” (Star & Newton, 2009). This research shows that flexibility can be trained for and 
that contrasting cases are particularly useful in this endeavor (Rittle-Johnson & Star, 2007). The 
skilled mathematician is fluid in their use of solution strategies.  

Symmetric Heuristics. Symmetry is often an easy path in problem solving and may have 
broad appeal to students and mathematicians alike. Goldin & McClintock (1980) call the 
application of symmetry in problem solving insight and enumerate several kinds of symmetry in 
problem solving: overt, construction, representational alteration, and hidden. They make 
recommendations for teaching to exploit symmetry. Drefus & Eisenberg (1990; 2000) emphasize 
that for symmetry to cut through the restrictions of a problem, like a hot knife through butter, it 
must first be seen and imposed, a challenging task. The utility of symmetry as heuristic has 
applications in multivariate calculus, organic chemistry, applied engineering and design, and 
physics (Hilton & Pedersen, 1986). Previous research with in-service teachers shows that they 
generally do not use symmetric solution strategies, and are skeptical of the mathematical validity 
or sufficiency of such solution strategies when working on multiple solution tasks (Leikin, 
Berman, & Zaslavsky, 2000; Leikin, 2003).  Similarly they believe that conventional solution 
strategies (relying on calculus, algebra, or geometric definitions) are more trustworthy and they 
have more confidence in teaching them. The insightful recognition of when to use symmetric 
arguments, and preference for/against symmetric arguments has not been investigated with 
students before. The terms Goldin & McClintock offered for categorizing symmetric heuristics 
have not been observed in practice and cataloged as of yet.   

Mathematics attitude. Research indicates that affective/attitudinal factors greatly 
influence mathematical achievement (E. Fennema & Sherman, 1977) as well as selective 
processes like choosing a career (Betz & Hackett, 1983). Put differently, one’s attitudes about 
mathematics influence one’s mathematics performance as well as one’s decisions having to do 
with mathematics. We propose to look at mathematics attitude in relation to how one ranks 
solution strategies in order of preference. Having some measure of self-conception is important 
when trying to form a well-rounded picture of ability level. Bandura (1993) posits that a 
students’ self-efficacy is composed of several factors, one of them being selective processes. 
Choice as mediated by ability is a new avenue in mathematics research.  

 

Research Questions and Goals 
In this research we propose to investigate the relationship between students’ symmetric 

spatial abilities, their attitudes toward mathematics, and their use and preference for symmetric 
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heuristics. We define symmetric ability as: a student’s ability to mentally visualize, manipulate, 
and make comparisons among 2D geometric objects and as applied to cultural material in terms 
of reflectional and rotational symmetry. A research instrument was developed for the purpose of 
measuring this sub-ability of spatial reasoning. In response to the research context and 
instructional significance presented here, this research project is designed to answer the 
following research questions:  

1. How does students’ symmetric ability relate to their use and preference for symmetric 
heuristics in problem solving? 

2. How does students’ symmetric ability track with confidence and self-efficacy in 
mathematics learning?  

The conclusions of this research could serve as a basis for the continued curricular expansion of 
treatments of symmetry within geometry and other mathematics curricula, and provide insight 
into how students currently think about symmetry as a heuristic. Future research might seek to 
find out how one’s symmetric ability can be built upon in challenging problem solving situations 
as we know that spatial ability can be refined through training (Uttal et al., 2013). This research 
was undertaken from a cognitivist theoretical framework, meaning that the perspectives and 
views of subjects were assumed to be accessible through verbal and visual communication with 
them. This framework is appropriate because subjects’ conception of validity and justification of 
symmetry as heuristic is the focus of this study.   

 

Research Methods 
Two research instruments were developed for this investigation: a survey and an interview 

protocol.  
Symmetric Ability Survey. A survey was developed to provide a quantitative measure of 

symmetric ability. Our definition of symmetric ability mimics those that Olkun (2003) 
summarizes: spatial ability in reasoning, relations, and visualizations with an added cultural 
component influenced by research on ethnomathematics (Abas, 2004; D’Ambrosio, 2001; 
Eglash, Bennett, O’Donnell, Jennings, & Cintorino, 2006). Therefore this survey has three 
sections (based on our definition of symmetric ability and our research goals dealing with 
mathematics attitude): cultural, mathematical, and attitudinal. Sample items can be seen in 
Figures 1-4. For both the cultural and mathematical symmetry sections, detailed written 
instructions and worked examples were part of the survey.  
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Figure 1. Cultural item from symmetric ability survey, one of five. All items used the same 

questions (a.,b., and implied c. - drawing) 
 

The cultural symmetry section of this survey was developed through both informal 
(research workshop) and formal (pilot sample) validity measures. Cultural objects were drawn 
from traditional northeastern art and design while question vocabulary was drawn from school-
aged curricula.  

 

    
Figure 2. (left) Geometric 2D items from symmetric ability survey, tests rotational ability. 

Students mark whether the eight images are rotationally symmetric (S) or different (D) from the 
leftmost image. Three of ten. 

Figure 3. (right) Geometric 2D items from symmetric ability survey, tests reflectional ability. 
Images to the left of the bold line show a series of folds and hole punches done on a square piece 
of paper. Students choose the image to the right that corresponds to the correct pattern of holes 

when the paper is unfolded in place. Four of ten. 
 

The mathematical symmetry section was composed of two factor analysis tests taken 
from the literature. An exhaustive search was performed to catalog all the research-validated 
tests of spatial ability. The Card Rotations Test and Paper Folding Test (Ekstrom, French, 
Harman, & Derman, 1976) were chosen as they highly correspond to the tasks of mental rotation 
and mental reflection in two dimensions. This portion of the survey was timed in accordance 
with the Educational Testing Service’s administration protocol (Ekstrom et al., 1976).  
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Figure 4. Attitudinal items from the symmetric ability survey. Four of twenty-five. 

 

The attitudinal section of the survey was composed of the confidence and self-efficacy 
sub-scales of the Fennema-Sherman attitudinal scales (Fennema & Sherman, 1976), Figure 4.  

Symmetric Heuristics Interview. An interview protocol to qualitatively describe use 
and preference for symmetric arguments was developed. This interview protocol centered on 
four problems.  Sample problems can be seen in Figures 5-6.  

 
 

 
Figure 5. Students may respond to this open-ended question with several solution strategies. 

Expected solutions include parameterization and minimization, guess and check, reflection of B 
through CD to form the straight path AB’ and application of the Pythagorean theorem, and using 

proportional reasoning from the related case of AC=DB. Problem statement modified from Goldin 
& McClintock (1980). 

 

19th Annual Conference on Research in Undergraduate Mathematics Education 330

19th Annual Conference on Research in Undergraduate Mathematics Education 330



 
 
 

7 

 
Figure 6.  Students respond by ranking their preferred solution strategy. Problem statement from 

Leikin et al. (2000). 
 

These problems were taken from various sources: the literature, an undergraduate physics text, 
and the mathematics cannon. Two of the problems were open-ended and could be solved in 
multiple ways, for example: algebraically, with calculus, by guess and check, or with symmetry. 
These problems were intended to gauge native use of symmetry as heuristic (Fig. 5). The 
remaining two problems presented students with three worked solutions that they were asked to 
rank. Criteria for this ranking were not specified. Instead, students were asked to reflect on the 
reasoning behind their selections, and further to hypothesize on how expert mathematicians 
would rank the solution strategies. These problems were intended to gauge students’ preference 
for symmetric heuristics and identify reasoning for these preferences (Fig. 6). One of each type 
of problem, open-ended or ranked solution, had a symmetric solution strategy relying on 
reflection and one of each type of problem had a symmetric solution based on rotation. Sample 
cognitive interview prompts can be seen in Figure 7. 
 
 

 
Figure 7.  Sample prompts from the problem solving interview protocol. 

 
Primary data collection occurred during the 2015-16 academic year at a large 

northeastern university. The symmetric ability survey (Fig. 1-4) was administered to n=95 
students concurrently enrolled in integral (39%) or multivariable (61%) calculus courses. The 
majority of students (78%) were engineering majors (mechanical, chemical, electrical & 
computer), 4% were math majors, and 14% were women. A subsample, currently n=5, was 
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selected to take part in the symmetric heuristics interview (which was designed as a think-aloud, 
problem solving format). Calculus students were chosen as an audience to ensure that calculus 
solution strategies would be available to students.  
 

Data Analysis 
Symmetric Ability Survey. The three sections of the symmetric ability survey were scored 

separately. A rubric was developed to establish the cultural section as a quantitative measure. 
Cultural symmetry questions (Fig. 1) were scored in a binary fashion for each of the three 
problem parts: the number of possible rotations, the number of reflectional axes, and the correct 
drawing of axes on the image. To establish inter-rater reliability of this rubric, three raters 
reviewed overlapping portions of the data set. We found agreement > 95% of the time. Card 
rotation items (Fig. 2) and Paper folding items (Fig. 3) were scored following the guidelines 
provided by the distributors (Ekstrom et al., 1976). Likert scale attitudinal data (Fig. 4) were 
scored using the reverse coding method (Field, 2009). This method calls for Likert data to be 
coded against the response pattern of an ideal subject, thus giving a measure of confidence and 
self-efficacy as compared to a responder with perfect self-image of confidence and efficacy. All 
measures were scaled for comparison purposes.  In future data analysis we hope to search for 
trends within the card rotations and paper folding test having to do with angular difference 
(Cooper, 1975) and fold complexity. Further, we intend to catalog the persistence and variety of 
misconceptions students have with using school language symmetry with the cultural items.   
 Symmetric Heuristics Interview. Survey participants were invited to participate in the 
think-aloud symmetric heuristics interview. We used high and low symmetric ability and high 
and low attitude as selection criteria for the interview. Students whose scores were ± 1 standard 
deviation from the mean in any of two symmetric ability scales and on either of the attitudinal 
scales were contacted for participation. The matrix in Figure 8 describes the distribution of 
interview participants.  

 
Figure 8. Distribution of symmetric ability survey participants based on ± 1 standard deviation performance on 

multiple measures of symmetric ability and at least one measure of mathematic attitude. Darkened circles indicate 
current interview sample, effort was made to interview high and low performance students.  

 

In addition to these subjects, we conducted a pilot interview with a small group of mathematics 
graduate students in order to solicit broader idea generation and to practice fruitful questioning 
tactics. Inclusion of one or more expert (professorial) interviews is expected. Transcription of 
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these interviews is in process. We will undertake a grounded theory reading of the interviews 
searching for trends in student reasoning (Corbin & Strauss, 2008).  
 

Preliminary Results  
Symmetric Ability Survey. In the survey sample population we see some variation in 

symmetric ability (Fig. 9), indicating that this instrument can parse differences in student 
performance.  However, we noted that on all measures members of the inter and upper quartile 
performed very well, getting more than half of all questions correct. This contrasts with previous 
findings from a pilot study (n=11) of undergraduate ‘exploratory mathematics’ students (Fig. 
10). Further, there seems to be a positive correlation between symmetric ability and mathematics 
attitude (Fig. 11), though this correlation is weak and not statistically significant (!! = .11).  
 

 
Figure 9.  Summary statistics for each section of the symmetric ability survey.  

 

 
Figure 10. Summary statistics for each section of the symmetric ability survey, pilot population. Note: In a 
previous version of the survey the attitude item scales were incomplete. Cultural, rotational, and reflectional 

sections did not undergo revision and are cross-comparable. 
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Figure 11. All three measures of symmetric ability weighted equally in comparison to an equal weighting of 

attitudinal scales. 
 

 Symmetric Heuristics Interview. Initial investigation revealed a few avenues for 
further inquiry. Students displayed expected conventional solution strategies as seen in Figures 
12-13 but there was more of a mix of preference when ranking traditional and symmetric 
solution strategies both personally and when projecting on to experts.  
 

 
Figure 12. Example of expected ‘guess and check’ solution strategy. 
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Figure 13. Example of expected calculus minimization solution strategy. 

 

The student who successfully applied calculus (Fig. 13) later expressed preference for a 
traditional solution strategy while working on the system of equations problem (Fig. 6).  
 

“I’d like to think that my professor would choose the first solution, but I 
do know some professors that would be just like, oh yea, that (the second 
solution strategy) is how equations work. My professor definitely sees 
patterns in the numbers a lot better than I do sometimes. I’d like to think 
they would use the first one just because it is a good rote way to do it, 
showing us how to do it. But if they were to do it off the top of their head, I 
think they might have been able to do the second one.” 
 

This preference for the traditional solution strategy extends beyond personal to include a 
preference for how this student thinks the content should be taught, recognizing that the 
symmetric strategy requires a certain level of intuition which causes some self doubt. 
This might support the findings of Leikin (2003) that there is appreciation for symmetric 
heuristics but qualities like validity and perceived ease detract from overall preference 
and use.

 

Implications and Future Inquiry 
 Based on preliminary findings it seems that this population does not exhibit, with this 
measure, a meaningfully varied range of symmetric abilities. While there is a statistically 
insignificant positive correlation between symmetric ability and mathematics attitude, students 
performed very highly on both. It could be that a sample of quite advanced mathematics students 
would have previously self-selected to continue in mathematics based on good symmetric ability 
and/or mathematics attitude. This hypothesis suggests that differences may exist between 
students with high or low symmetric ability, but our research population was not suited to find 
this. Future research plans include expanding symmetric ability survey sample size to less 
proficient mathematics students. Possible further interview findings include: high symmetric 
ability students prefer but do not natively use symmetric heuristics, low symmetric ability 
students do not prefer and do not natively use symmetric heuristics, or any combination therein. 
Further, this line of inquiry will provide a characterization of how students think about symmetry 
as a heuristic.  
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 Research has shown that it is possible to train and develop varieties of spatial ability 
(Uttal et al., 2013) and that using symmetric heuristics can enhance one’s problem-solving 
endeavors (Ho, Ho, & Jaguthsing, 2012). We share the perspective of others that symmetry is a 
powerful and yet lightweight tool that could be used as a vehicle for inspiring deeper 
mathematical learning. We sought to find a connection between symmetric ability and symmetric 
heuristic use and preference which would be an important finding for the continuing efforts of 
establishing curricular recommendations that align with this perspective.  
 
 

References 

Abas, J. S. (2004). Islamic Geometrical Patterns for the Teaching of Mathematics of Symmetry. 
Symmetry in Ethnomathematics, 12(1-2), 53–65. 

Bandura, A. (1993). Perceived Self-Efficacy in Cognitive Development and Functioning. 
Educational Psychologist, 28, 117–148. http://doi.org/10.1207/s15326985ep2802_3 

Battista, M. T. (1990). Spatial Visualization and Gender Differences in High School Geometry. 
Journal for Research in Mathematics Education, 21(1), 47–60. 

Ben-Chaim, D., Lappan, G., & Houang, R. T. (1988). The Effect of Instruction on Spatial 
Visualization Skills of Middle School Boys and Girls. American Educational Research 
Journal, 25(1), 51–71. http://doi.org/10.3102/00028312025001051 

Betz, N. E., & Hackett, G. (1983). The relationship of mathematics self-efficacy expectations to 
the selection of science-based college majors. Journal of Vocational Behavior, 23(3), 329–
345. http://doi.org/10.1016/0001-8791(83)90046-5 

Bodner, G. M., & Guay, R. B. (1997). The Purdue Visualization of Rotations Test. The Chemical 
Educator, 2(4), 1–17. http://doi.org/10.1007/s00897970138a 

Bruce, C. D., & Hawes, Z. (2014). The role of 2D and 3D mental rotation in mathematics for 
young children: what is it? Why does it matter? And what can we do about it? ZDM 
Mathematics Education. http://doi.org/10.1007/s11858-014-0637-4 

Clements, D. H., & Battista, M. T. (1992). Geometry and Spatial Reasoning. In D. A. Grouws 
(Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 420–4654). New 
York; Toronto; New York: Macmillan ; Maxwell Macmillan Canada ; Maxwell Macmillan 
International. 

Common Core State Standards Initiative. (2011). Common core state standards for mathematics. 
Cooper, L. a. (1975). Mental rotation of random two-dimensional shapes. Cognitive Psychology, 

7, 20–43. http://doi.org/10.1016/0010-0285(75)90003-1 
Corbin, J., & Strauss, A. (2008). Basics of Qualitative Research (3rd ed.): Techniques and 

Procedures for Developing Grounded Theory. Thousand Oaks, CA: SAGE Publications 
Inc. http://doi.org/http://dx.doi.org/10.4135/9781452230153 

D’Ambrosio, U. (2001). What is Ethnomathematics, and How Can It Help Children in Schools? 
Teaching Children Mathematics, 7(6), 308–310. 

Dreyfus, T., & Eisenburg, T. (2000). On Symmetry in School Mathematics. Retrieved from 
http://www.mi.sanu.ac.rs/vismath/drei/ 

19th Annual Conference on Research in Undergraduate Mathematics Education 336

19th Annual Conference on Research in Undergraduate Mathematics Education 336



 
 
 

13 

Dreyfus, T., Eisenberg, T. (1990). Symmetry in Mathematics Learning. ZDM., 22(2), 53–59. 
Eglash, R., Bennett, A., O’Donnell, C., Jennings, S., & Cintorino, M. (2006). Culturally Situated 

Design Tools: Ethnocomputing from Field Site to Classroom. American Anthropologist, 
108(2), 347–362. http://doi.org/10.1525/aa.2006.108.2.347 

Ekstrom, R. B., French, J. W., Harman, H. H., & Derman, D. (1976). Manual for Kit of Factor-
Referenced Cognitive Tests. Princeton, New Jersey. 

Fennema, E. H., & Sherman, J. a. (1978). Sex-Related Differences in Mathematics Achievement 
and Related Factors: A Further Study. Journal for Research in Mathematics Education, 
9(3), 189–203. 

Fennema, E., & Sherman, J. (1976). Fennema-Sherman Mathematics Anxiety Scales: 
Instruments designed to measure attitudes towards the learning of mathematics by females 
and males. Journal for Research in Mathematics Education, 7(5), 324–326. 
http://doi.org/10.2307/748467 

Fennema, E., & Sherman, J. (1977). Sex-Related Differences in Mathematics Achievement, 
Spatial Visualization and Affective Factors. American Educational Research Journal, 
14(1), 51–71. http://doi.org/10.3102/00028312014001051 

Ferrini-Mundy, J. (1987). Spatial Training for Calculus Students: Sex Differences in 
Achievement and in Visualization Ability. Journal for Research in Mathematics Education, 
18(2), 126 – 140. http://doi.org/10.2307/749247 

Field, A. P. (2009). Discovering statistics using SPSS : (and sex and drugs and rock “n” roll). 
London: SAGE. 

French, J. W., Ekstrom, R. B., & Price, L. A. (1963). Manual for Kit of Reference Tests for 
Cognitive Factors. Princeton, New Jersey: Educational Testing Service. 

Garderen, D. van. (2006). Spatial Visualization, Visual Imagery, and Mathematical Problem 
Solving of Students With Varying Abilities. Journal of Learning Disabilities, 39(6), 496–
506. 

Goldin, G. A., & McClintock, C. E. (1980). The Theme of Symmetry in Problem Solving. In S. 
Krulik & R. E. Reys (Eds.), Problem Solving in School Mathematics (pp. 178–194). Reston, 
Va.: National Council of Teachers of Mathematics. 

Hargittai, I., & Hargittai, M. (1994). Symmetry : a Unifying Concept. Bolinas, Calif.; Berkeley, 
Calif.: Shelter Publications ; Distributed in the U.S. by Ten Speed Press. 

Harris, L. J. (1981). Sex-Related Variations in Spatial Skill. In L. Liben, A. Patterson, & N. 
Newcombe (Eds.), Spatial Representation and Behavior Across the Life Span (pp. 83–125). 
Academic Press. 

Hilton, P., & Pedersen, J. (1986). Symmetry in Mathematics Learning. Computers and 
Mathematics with Applications, 12B(1/2), 315–3. 

Ho, W. K., Ho, F. H., & Jaguthsing, D. (2012). Pre-Service teachers’ use of symmetry of 
quadratic graphs in problem solving. In 12th International Congress on Mathematical 
Education. 

Holdren, J. P., & Lander, E. (2012). REPORT TO THE PRESIDENT Engage to Excel: 
Producing One Million Additional College Graduates with Degrees in Science, Technology, 

19th Annual Conference on Research in Undergraduate Mathematics Education 337

19th Annual Conference on Research in Undergraduate Mathematics Education 337



 
 
 

14 

Engineering, and Mathematics. Retrieved from 
http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-engage-to-excel-
v11.pdf 

Kozhevnikov, M., Motes, M. a, & Hegarty, M. (2007). Spatial visualization in physics problem 
solving. Cognitive Science, 31, 549–579. http://doi.org/10.1080/15326900701399897 

Leikin, R. (2003). Problem-solving preferences of mathematics teachers: Focusing on symmetry. 
Journal of Mathematics Teacher Education, 6, 297–329. 

Leikin, R., Berman, A., & Zaslavsky, O. (2000). Applications of symmetry to problem solving. 
International Journal of Mathematical Education in Science and Technology, 31(December 
2014), 799–809. http://doi.org/10.1080/00207390050203315 

Levav-Waynberg, A., & Leikin, R. (2012). The role of multiple solution tasks in developing 
knowledge and creativity in geometry. Journal of Mathematical Behavior, 31(1), 73–90. 
http://doi.org/10.1016/j.jmathb.2011.11.001 

Mullis, I. V. S., Martin, M. O., Foy, P., & Arora, A. (2011). TIMSS 2011 INTERNATIONAL 
RESULTS IN MATHEMATICS. 

National Council of Teachers of Mathematics. (2000). Principles and standards for school 
mathematics. Reston, VA: National Council of Teachers of Mathematics. 

Olkun, S. (2003). Making Connections : Improving Spatial Abilities with Engineering Drawing 
Activities. International Journal of Mathematics Teaching and Learning, (April), 1–10. 
Retrieved from http://www.cimt.plymouth.ac.uk/journal/default.htm 

Orion, Nir, Ben-Chaim, David, Kali, Y. (1997). Relationship Between Earth-Science Education 
and Spatial Visualization. Journal of Geoscience Education, 45, 129–132. 

Pietsch, S., & Jansen, P. (2012). Different mental rotation performance in students of music, 
sport and education. Learning and Individual Differences, 22(1), 159–163. 
http://doi.org/10.1016/j.lindif.2011.11.012 

Polya, G. (1957). How to solve it: a new aspect of mathematical method. Garden City, NY: 
Doubleday. 

Rizzo, S. (2013). College Students’ Understanding of Geometric Transformations. University of 
Maine. 

Schoenfeld, A. H. (1987). What’s All the Fuss About Metacognition? In Cognitive Science and 
Mathematics Education (pp. 189–215). Hillsdale, NJ: Lawrence Erlbaum Associates. 

Shaw, F. (1990). Symmetry in art, nature and molecules. Winchester, MA: Blue Sky Associates. 
Star, J. R., & Newton, K. J. (2009). The nature and development of experts’ strategy flexibility 

for solving equations. ZDM - International Journal on Mathematics Education, 41(5), 557–
567. http://doi.org/10.1007/s11858-009-0185-5 

Tartre, L. A. (1990). Spatial orientation skill and mathematical problem solving. Journal for 
Research in Mathematics Education, 21(3), 216–229. Retrieved from 
http://www.jstor.org/stable/749375 

Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, 
N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. 
Psychological Bulletin, 139(2), 352–402. http://doi.org/10.1037/a0028446 

19th Annual Conference on Research in Undergraduate Mathematics Education 338

19th Annual Conference on Research in Undergraduate Mathematics Education 338



 
 
 

15 

Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 
50 years of cumulative psychological knowledge solidifies its importance. Journal of 
Educational Psychology, 101(4), 817–835. http://doi.org/10.1037/a0016127 

Washburn, D. K., & Crowe, D. W. (1987). Symmetries of culture : theory and practice of plane 
pattern analysis. Seattle: University of Washington Press. 

Weyl, H. (1952). Symmetry. Princeton: Princeton University Press. 
 

19th Annual Conference on Research in Undergraduate Mathematics Education 339

19th Annual Conference on Research in Undergraduate Mathematics Education 339



 

 

Understanding and advancing graduate teaching assistants’ mathematical knowledge 
for teaching 
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Graduate student teaching assistants (GTAs) usually teach introductory level courses at the 
undergraduate level. Since GTAs constitute the majority of future mathematics faculty, their 
image of effective teaching and preparedness to lead instructional improvements will impact 
future directions in undergraduate mathematics curriculum and instruction. Yet GTA 
training, when offered, tends to focus on the practice of teaching rather than the mathematics 
being taught. In this paper, we argue for the need to support GTAs’ in improving their 
mathematical meanings of foundational ideas and their ability to support productive student 
thinking. By investigating GTAs’ meanings for average rate of change, a key content area in 
precalculus and calculus, we found evidence that even mathematically sophisticated GTAs 
possess impoverished meanings of this key idea. We argue for the need, and highlight one 
approach, for supporting GTAs’ to improve their understanding of foundational 
mathematical ideas and how these ideas are learned. 

Key words: graduate student teaching assistant, mathematical meanings, average rate of 
change, precalculus  

Many mathematicians believe that undergraduate curriculum and teaching is 
unproblematic. After all, it worked for them! However, evidence exists to suggest otherwise 
(Bressoud, et al., 2012; Seymour, 2006). As universities continue to explore how to improve 
the mathematical success of their students, we propose that consideration for the preparation 
of future faculty be a central component of shifting introductory university level instruction. 
Graduate student teaching assistants (GTAs), namely, those individuals who constitute future 
faculty, teach many of the courses that undergraduate students first encounter in college (i.e., 
courses up to and including calculus). As such, GTAs who offer high quality instructional 
experiences for their students can impact a large number of students early in their studies. Yet 
GTA instructional support and professional development, when offered, frequently focuses 
on general discussion of best practices in pedagogy and specific logistical and student issues 
for a given institution. As novice instructors, this information is important in supporting 
GTAs’ development of facility with the day-to-day practices of teaching, but it does little to 
support them in engaging deeply with the mathematical content in a way that will translate to 
meaningful mathematical discussions in their classrooms.  

As other researchers have noted, having completed many mathematics courses, as most 
GTAs have, does not necessarily improve a teacher’s understandings and teaching practices 
(Speer, 2008; Speer, Gutmann, & Murphy, 2005). Speer and Wagner (2009) further argue 
that the work done by mathematics instructors in providing analytic scaffolding, which 
entails recognizing and figuring out the ideas expressed by students to build upon and push 
the mathematical discussion forward, involves mathematical work. Instructors with 
impoverished or strictly procedural meanings for the mathematical content of a lesson will 
struggle to engage their students in conceptually oriented discussions around this lesson. 
Thompson, Carlson & Silverman (2007) claim that: 

If a teacher’s conceptual structures comprise disconnected facts and 
procedures, their instruction is likely to focus on disconnected facts and 
procedures. In contrast, if a teacher’s conceptual structures comprise a web of 
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mathematical ideas and compatible ways of thinking, it will at least be 
possible that she attempts to develop these same conceptual structures in her 
students. We believe that it is mathematical understandings of the latter type 
that serve as a necessary condition for teachers to teach for students’ high-
quality understanding (pp. 416-417). 

The possible attempts to support student learning are revealed in the nature of the instructor’s 
questions, her questioning patterns and the quality of the discussion she leads. All of these 
activities are built from how the teacher makes sense of her students’ thinking, which itself is 
done through the lens of the teacher’s own mathematical meanings (Teuscher, Moore & 
Carlson, 2015).  

In this paper, we argue the need for attention to the GTAs’ mathematical meanings, 
fostering attentiveness to student thinking, and supporting GTAs to speak with meaning 
during their training (Clark, Moore, & Carlson, 2008). In the context of an intervention to 
support mathematics GTAs to act in productive pedagogical ways, we investigated GTAs’ 
meanings for average rate of change (AROC), a key content area in precalculus and calculus. 
We found evidence that even mathematically sophisticated GTAs possess meanings that vary 
widely in productivity for teaching prior to our intervention, and that shifts in meanings 
required prolonged engagement in professional development focused on making meaning, 
building coherence and communicating with precision.   

We provide an expanded description of our goals for high quality instruction, how the 
intervention supports GTAs in making progress towards those goals, and describe what 
research has reported to be a productive meaning for the idea of AROC (Thompson, 1994). 
We then report on results that reveal the varied fluency among participants in speaking with 
meaning about AROC when probed before, during and after the intervention. We conclude 
with a discussion about the impact of the intervention and implications for other GTA 
training and professional development for undergraduate mathematics instructors.  

Theoretical Framework 

We provide a brief explanation of our theoretical perspective on mathematical meanings 
and say what we mean by high quality instruction. We also include a detailed description of 
the intervention used to support GTAs in developing more robust meanings of the concepts of 
AROC. 

Researchers have proposed mathematical meanings as the organization of an individual’s 
experiences with an idea, also referred to as a scheme (Thompson, 1994). It is through 
repeated reasoning and reconstruction that an individual constructs schemes to organize 
experiences in an internally consistent way (Piaget & Garcia, 1991; Thompson, 2013; 
Thompson, Carlson, Byerley, & Hatfield, 2013). For example, an individual’s meaning for 
the idea of average rate of change might consist of the calculation for the slope of a secant 
line, or simply ∆y/∆x. An individual who has committed to memory that the average rate of 
change is the slope of a secant line does not possess the same meaning as someone who sees 
the slope of a secant line as the constant rate of change that yields the same change in the 
dependent quantity (as some original non-linear relationship) over the interval of the 
independent quantity that is of interest. These two individuals hold different meanings for the 
same idea, and the consequences of such differences can be profound. For instance, the 
former individual may or may not have an understanding of AROC as a rate of change, but 
instead conceptualizes AROC as the numerical output of a computation. This individual will 
struggle to generate problem solving strategies relying on AROC, for instance, in situations 
where linear approximations could help generate characterizations for how two quantities 
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covary over a given interval.   
In studying individuals’ meanings for various mathematical constructs, researchers are at 

a disadvantage – we cannot see schemes. Rather, we only have access to what an individual 
says, writes and gestures when engaging in mathematical activity. In our research and in the 
intervention, we focus on an individual’s expressed meaning of an idea, or the spontaneous 
utterances that an individual conveys about an idea. From these utterances we can make 
inferences about how an individual has organized her experiences with the idea. We find the 
expressed meanings of particular interest in studying instructors’ mathematical meanings 
because it is these spontaneous verbalizations that emerge during class instruction when 
students ask questions or pose solutions that deviate from what the instructor had prepared. 
What the instructors say in the moment, in turn, affects the ways of thinking their students 
develop about the mathematical idea(s) central to the discussion. We further propose that 
these expressed meanings provide insight into an instructor’s meanings, which influence 
nearly all instructional activities, including: how the instructor interprets and responds to 
students’ utterances and written products, the nature of the questions the instructor poses to 
students, and the selection and implementation of curricular tasks during class meetings.  

We further note that an individual’s meanings can be more or less productive for 
teaching. By more productive for teaching, we intend to describe those meanings that would 
support the individual in constructing new mathematical ideas and connections to other ideas, 
and correspondingly create the possibility for the individual to foster those connections 
within her students. An individual’s meaning for specific ideas can be further developed 
through reflection, which occurs when the individual is faced with perturbations to her 
current meanings for those ideas (Dewey, 1910). With this perspective in mind, the 
intervention for GTAs is designed, in part, to perturb the GTAs’ thinking about mathematical 
content areas specific to the courses they teach, namely precalculus and beginning calculus.  

High quality instruction 
For the purposes of this paper and the intervention being discussed, we delineate some of 

the characteristics we take as essential components of high quality instruction. A teacher is 
engaging in high quality instructional practices when she 

• Supports students in constructing deep understandings and rich connections among 
central ideas of a course, 

• Supports students in developing flexible problem solving abilities that enable them 
to solve problems that are novel to them and require that they apply their 
understandings 

• Interprets and acts on student thinking when teaching, and  
• Reflects on student thinking and learning to improve teaching. 

One of the behaviors that might indicate high quality instruction to an observer is that the 
instructor is speaking precisely and meaningfully about mathematical ideas (Clark, Moore, & 
Carlson, 2008). Another indicator is that the instructor asks questions that elicit student 
thinking and then interprets, analyzes, clarifies and, whenever possible uses students’ 
contributions to push forward the mathematical activity in the classroom (Johnson, 2013; 
Steffe & Thompson, 2000). A teacher’s ability to engage in these practices depends heavily 
on the teacher’s mathematical meanings and her mathematical knowledge for teaching (Ball 
& Bass, 2003; Ball, Hill, & Bass, 2004; Silverman & Thompson, 2008). 

The intervention 
The graduate students involved in the intervention volunteered to participate in the 

program and were compensated for their participation. All but one had met their respective 
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university requirements to teach and agreed to further engage in a yearlong professional 
development program, which we call the intervention. The GTAs participated in a 2-3 day 
workshop before the start of their first semester of teaching with research-based, Pathways 
Precalculus curriculum materials (Carlson, Oehrtman, & Moore, 2015). During this intensive 
workshop, the GTAs completed mathematical tasks that were designed and sequenced to 
support graduate students in constructing a productive meaning for the key ideas in the 
precalculus curriculum, including the ideas of constant rate of change, AROC, exponential 
growth, angle measure, and the sine and cosine functions1. The graduate students confronted 
problems and questions designed to perturb their meanings for these topics. Sometimes these 
questions were as simple as “Explain the meaning of _____.” Other times, the workshop 
tasks were more advanced mathematical problems that could be solved with precalculus 
tools, provided the individual had a deep understanding of the mathematical ideas central to 
the lesson. Still other intervention tasks were situated in the act of teaching, requiring 
participants to respond to hypothetical student questions and responses. The intent of these 
questions and tasks was to prompt reflection and subsequent shifts in the GTAs’ meanings for 
the mathematical ideas that were the focus of their instruction.  

The intervention leaders conducted workshops in a manner to encourage the participants 
to speak with meaning about the ideas. This meant GTAs were encouraged to avoid using 
vague language (e.g., use the quantity descriptions instead of pronouns, as in “The distance 
increases” instead of “It goes up.”) and to explain basic vocabulary (e.g., proportional) 
instead of taking terms as understood. As this type of communication is new to most of the 
participants, this focus on speaking with meaning about the mathematics continued during the 
intervention. During the fall and spring semesters, the GTAs attended weekly 90-minute 
seminars concurrent with teaching a course using Pathways Precalculus materials, 
instructional resources designed using research on student thinking (e.g., Carlson, 1998; 
Carlson et al., 2002; Moore, 2012; Strom, 2008; Smith, 2008; Engelke, 2007) and scaffolded 
to support students’ construction of key ideas of precalculus that are foundational for 
calculus.  

The primary goals of the weekly seminars were to support the graduate students in 
developing more productive meanings of the key ideas to be taught during the upcoming 
week, and to support them in clearly explaining their meanings for those ideas to others. As 
part of the intervention to support them in achieving these goals, each of the graduate 
students reviewed the course materials prior to the weekly seminar and came prepared to 
discuss what is involved in understanding and learning the ideas central to the lesson for the 
subsequent week. They also came prepared to give presentations to their peers about how 
they intended to support their students’ learning of these ideas. During the seminars, 
participants frequently worked in small groups to develop mini-presentations focused on 
implementing the most conceptually challenging tasks to be used in the lessons for the 
upcoming week. At some universities, GTAs were further asked to videotape their instruction 
and write reflections on their instruction with respect to the ways of thinking they supported 
during that class, the types of questions they posed to students, and how they might have 
responded differently taking student thinking into account.  

The intervention had a primary focus on the mathematical content and what was entailed 
in understanding and learning key ideas of each lesson. Student thinking was discussed and 
described using constructs from relevant research literature and the GTAs’ classroom 
experiences. Student thinking was analyzed for the purpose of describing student reasoning 
and understanding, and identifying productive ways for advancing students’ learning. To 

                                                
1 The idea of average rate of change is the culminating idea of the first instructional unit of the 
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achieve the goal of improving the GTA’s ability to make sense of and advance student 
thinking, the intervention leaders and accompanying instructor materials had a primary focus 
on supporting the GTAs in developing rich and well-connected meanings for the 
mathematical ideas that were the focus of each lesson.  

The content for the course began with a focus on developing students’ ability to 
conceptualize quantities in a problem context and consider how pairs of varying quantities 
change together—these reasoning abilities have been identified to be necessary for 
constructing meaningful formulas and graphs (Moore & Carlson, 2012) to define functional 
relationships in applied contexts. As students explore the patterns of change for non-linear 
functions, such as exponential, quadratic, polynomial, rational, and trigonometric functions, 
they use the idea of average rate of change to characterize and compare function behavior 
over intervals of a function’s domain. Since the idea of average rate of change is an 
important cross cutting idea that is challenging to teach with a conceptual focus, we selected 
this idea for studying the GTAs’ mathematical meanings.  
 
A productive meaning for the idea of average rate of change 

Constructing a rich meaning of average rate of change entails conceptualizing a 
hypothetical relationship between two varying quantities in a dynamic situation. Given a 
relationship between the independent quantity A and the dependent quantity B, and a fixed 
interval of measure of quantity A, the average rate of change of quantity B with respect to 
quantity A is the constant rate of change that yields the same change in quantity B as the 
original relationship over the given interval. In order to understand this complex idea 
meaningfully, an individual must first conceptualize the idea of quantity as a measurable 
attribute of an object (e.g., the distance a car travels from home, number of minutes elapsed 
since noon). Next, provided a situation in which two quantities vary in tandem, an individual 
must develop an understanding for what it means to describe the rate of change of one 
quantity relative to the other. Namely, the individual must conceptualize the multiplicative 
comparison of changes in the two quantities (the change in the output quantity is always 
some amount times as large as the change in the input quantity). In the special case that the 
relative size of changes in one quantity relative to the other remains constant, we say the 
quantities vary with a constant rate of change (CROC) (see Figure 1 for the mental actions 
involved in constructing the idea of CROC). Individuals with a robust meaning will draw 
connections between AROC and CROC and view those two connected ideas as a means for 
approximating values of varying quantities in dynamic scenarios. 

 

Figure 1. Mental actions involved in understanding constant rate of change 

Methods 

We collected data from mathematics graduate students and instructors at three large, 
public, PhD-granting universities in the United States. Participants’ teaching experience 
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varied between zero and 11 years, at both the K-12 and tertiary level. We conducted semi-
structured clinical interviews with 19 graduate teaching assistants, all of whom had at least 
one semester experience teaching a small section or acting as the recitation leader for a 
Precalculus course that used the Pathways Precalculus materials (Clement, 2000). The lead 
author conducted interviews to probe shifts in their beliefs about the roles of students and 
teachers in teaching and learning mathematics, and gain insights about their understandings 
of mathematical ideas, teaching practices and goals for student learning. Interviews were 
recorded using both a video camera and Livescribe technology to capture audio-matched 
written responses to sample teaching scenarios provided during the interviews. Interviews 
lasted 1-2 hours, and were transcribed and coded by three members of the research team. 
Members of our team analyzed videos in pairs at first, identifying themes of interest relative 
to our conception of a productive expressed meaning for AROC before working individually 
to continue coding and reconvening as a group to discuss our findings (Strauss & Corbin, 
1990).  

Results 

We first share data that reveals the expressed meanings that the graduate students 
conveyed for the idea of AROC when entering the program. We then illustrate their varied 
fluency in describing their meaning for AROC by sharing excerpts from clinical interviews 
with experienced participants. This is followed by our contrasting this data with their written 
descriptions of participants’ meaning for AROC provided the week after they had completed 
teaching the investigations on AROC in a precalculus course using the Pathways materials 
for the first time. Collectively, our data reveals that the meanings for AROC conveyed by the 
novice and experienced GTAs differ in terms of the level to which they are able to 
spontaneously provide a meaningful description of what is involved in understanding AROC; 
however, it is noteworthy that even after completing the intervention, some GTAs in our 
study did not shift to speak fluently about the idea of AROC.  

Pre-Intervention Meanings for AROC 
As a warm-up activity for the start of a Summer 2015 teaching assistant workshop, we 

asked seven math graduate students to describe the meaning of “average rate of change.” 
Each participant’s response is recorded in Figure 2, in the order in which they verbalized their 
meaning to the group. Their responses align with the authors’ prior experiences with both 
students and teachers at the secondary and tertiary levels; most of the participants provided 
computational or geometric interpretations based on imagining a secant line between two 
points on the graph of a function. In particular, we see that Alan2 described AROC both 
computationally (i.e., ∆y/∆x) and geometrically as a line, instead of highlighting the key 
attribute of the line—its slope. Another student, Frank, provided two equivalent descriptions 
of how to compute the AROC over a given interval, but did not convey what the result of 
those computations represent. When prompted by the workshop leader to explain the 
meaning of the result of the described computations, Frank struggled to communicate his 
thinking beyond referencing speed, saying, “[The result] represents how fast you’re moving 
in effect. I always think of it as distance and time. It’s difficult when you don’t know what 
the quantities are.” This issues of describing a meaning for AROC devoid of context arises 
repeatedly, even among the most experienced GTAs.  
 

                                                
2 Psuedonyms are used throughout the reporting to protect the identity of participants.  
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Responses to the question: What does “average rate of change” mean to you? 
Alan: Delta y over delta x. A straight line between two points on a graph 

Edgar: Rate of change over an interval and talk about interval as a whole. Describe 
the rate of change.  

Frank: The amount the dependent variable changes divided by the amount the 
independent variable changes. Delta y divided by delta x.  

Cassie: Steepness of a graph, like how steep or how flat it is. 
Diane: Steepness of a graph. […] Uh, I don’t have actual words.[…] Slope or 

derivative. 
Brian: As one variable changes for every one unit, how much is the other variable 

changing. Slope. Speed.  
Greg: I lost all the words…It’s the predictive effect of changing one variable and the 

amount and how it’s going to affect the other variable. One quantity affecting 
change in another quantity.  
Figure 2. Pre-intervention participant descriptions of AROC 

Cassie and Diane spoke explicitly about a graph’s steepness, a visual aspect of a graph 
that is simultaneously restricted to the Cartesian coordinate system and, in that setting, is 
potentially misleading when the coordinate axes do not have the same scale (see Figure 3).   
Another GTA, Brian, also mentioned slope, though he did so while conveying the idea that 
slope is an amount of change in the dependent quantity for each unit change in the 
independent quantity, a restrictive meaning for slope as it fails to support reasoning about 
variation when changes in the independent quantity have magnitude other than 1. His 
mention of speed suggests he might have been imagining more than he communicated, but 
his inability, or perceived lack of need, to coherently communicate with precision about his 
thinking is exactly one of the characteristic behaviors of the novice GTAs the intervention 
aims to transform.  

 
Figure 3. Same relationship but different visual "steepness" 

Edgar’s description of average rate of change as the rate of change over a whole interval 
lacks specificity and fails to communicate new information to the label of “average rate of 
change” beyond involving an interval. Taken literally, saying the AROC describes the rate of 
change loses all nuances about the possibility of a situation involving a varying rate of 
change and how AROC allows one to capture information about a dynamic situation even in 
the absence of information about the actual rate of change. Greg commented on the 
“predictive” quality of AROC, making him the only participant to explicitly highlight the 
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idea that AROC provides an alternate means for characterizing how two quantities change 
together. This thinking, however, is missing many elements of what we have previously 
characterized as a productive meaning for AROC. 

The pre-intervention participants’ expressed meanings were predominantly geometric, 
computational, or restricted to particular representation formats (i.e., a graphical 
representation of a function in the Cartesian coordinate system); moreover, only one of the 
seven participants spontaneously hinted at the idea that the AROC serves as a tool for 
characterizing a function’s change over some interval of its domain.  

Post-Intervention Meanings for AROC 
We analyzed 19 clinical interviews with participants who experienced at least one 

summer workshop and one semester of our intervention. In contrast to the predominantly 
geometric and computational descriptions of AROC from our pre-intervention participants, 
15 of the 19 participants attempted to describe a meaning for AROC that conveyed some 
significance of the concept beyond a computation to perform (i.e., ∆y/∆x) or an image to 
consider of a particular representation (i.e., secant line connecting two points). These 
descriptions can be classified as: the productive, general meaning described in our theoretical 
framework; a special case of that meaning for average speed; or, in one instance, a distinct 
interpretation the participant called “linearization.” The other four participants offered 
explanations that fall strictly into the last four categories described in Table 1.   
 

Table 1. Experienced participant descriptions of AROC 

Expressed 
Meaning 
Category 

Sample Excerpts from Clinical Interviews Number of 
Instances* 

Productive –
General  

[Students] have to understand constant rate of change 
because the average rate of change is the constant rate of 
change someone else would have to go, and I'm talking 
about average speed now, to achieve the same change in 
output for a given change in input. So, if you don't have 
meaning for constant rate of change, well, then average rate 
of change is just this number.  

9 

Average 
Speed 

[AROC] is a constant rate of change for that specific time 
and distance, or uh, you know how I mean… 

8 

Conceptual 
Other 

I would like to say linearization. Right, this idea of 
approximating something that isn't linear in a linear fashion. 

1 

Computational … this final minus initial over the outputs and this final 
minus initial over the inputs and that's a rate. 

4 

Geometric Average rate of change is the constant rate of change to go 
between two points. 

2 

Incorrect I want my students to understand that constant rate of 
change is a special case, I guess of average rate of change. 
It’s this special case that exists when the corresponding 
changes in our two quantities are proportional. 

3 

None  1 
* Total exceeds 19 because some interviewees conveyed more than one expressed meaning. 
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The excerpts in Table 1 highlight the fact that the impact of the intervention on 
participants is far from uniform. One participant failed to provide a clear statement of a 
meaning for AROC as he talked around the issue for 14 minutes during his interview. We 
found this surprising in light of the fact that this participant had four semesters of experience 
teaching the idea of AROC using curriculum materials designed to support the productive 
meaning described above. Of the 9 people who conveyed the productive meaning for AROC, 
four started with the more specific version of average speed and then generalized to a 
description in terms of general quantities. The other five produced explanations with various 
degrees of fluency, taking one participant almost 4 minutes to construct his explanation. Four 
of the eight participants who conveyed a meaning tied to average speed did not convey a 
meaning for AROC beyond the context of comparing distance and time. In fact, two of those 
four GTAs only discussed average speed when prompted from the interviewer following their 
initial response of describing a computation.  

The sample excerpt for an incorrect meaning suggests that the participant developed a 
meaning for AROC linked to CROC in a non-standard way; conventional treatment of the 
two ideas typically describes AROC as a CROC approximation instead of viewing CROC as 
a special case of AROC. Another GTA stated that an average rate of change can be found by 
adding up and dividing, conveying a meaning for AROC that is conventionally identified as 
an arithmetic mean. Yet another participant proclaimed, “I will forever think of average rate 
of change as the slope of the secant line.” The fact that some of these GTAs did not 
immediately produce the meaning for AROC supported both by the intervention and the 
curriculum materials points to the complexity of the idea of AROC and the difficulty that 
even graduate students had in modifying their strongly held geometric and computational 
images of the idea of AROC to a more robust scheme with connections that are rooted in a 
quantitative meaning that can be expressed in multiple representational contexts.  

Nonetheless, many participants’ expressed meanings did align with our productive 
meaning for AROC as a way to describe a characteristic of a relationship between varying 
quantities, even if only in the special case of average speed. Recall that during the 
intervention, leaders encouraged participants to speak with meaning as a tool to support their 
students in reasoning about quantities.  Participants were asked to use appropriate language, 
describe the underlying meanings of specialized vocabulary (e.g., reference quantities instead 
of using pronouns like “it”, explain “proportional” instead of just using that word), and offer 
multiple ways of explaining a concept. We see evidence of this practice in the “Productive 
Meaning” excerpt from Table 1 that was conveyed by a participant with 3 years of experience 
with the intervention, first as a participant and more recently as a leader. Not only did she 
express a productive meaning for AROC, using appropriate descriptions that highlighted 
changes in quantities as opposed to values of quantities, she further made explicit the 
connection between CROC and AROC and described the mental imagery she hopes her 
students develop. She later elaborated the importance of students imagining a second object 
or scenario that displays a CROC relationship that would yield the same change in output 
over the given interval of the input quantity. 

Similarly, Hannah stumbled slightly, but ultimately described AROC in terms of 
changes in quantities, as seen in the following interview excerpt: 

I think one needs to understand that average rate of change means that […] 
two quantities are varying but not necessarily at a constant rate of change—
like the output quantity can, umm, not have a constant factor with respect to 
the input quantity. But the average rate of change of that relationship would 
be like if the…if there was a constant rate of change, the same output would 
be covered for a given amount of input. I think the easiest one for students to 
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understand with that is the example of like distance and speed. So if you're 
driving your car at a constant speed and I am stopping and going and slowing 
down and speeding up, we will cover the same amount of distance in the same 
amount of time. And your—the constant rate that you go—is the same with my 
average rate. But I find that with that example it's really […] hard for 
students to talk about things not in terms of time. I also find that using the 
word “average” is confusing to students.  

She continued to reflect on a driving context as a familiar example to support students’ 
reasoning about AROC, but demonstrated an awareness of student thinking by highlighting 
that particular example as potentially problematic for students to generalize beyond contexts 
dependent on time. She also expressed an awareness of student difficulties with the multiple 
meanings of the word “average” appearing in the phrase average rate of change. 

Interestingly, though Hannah demonstrated a relatively high level of fluency in speaking 
with meaning about AROC, she pointed out that this particular idea is usually difficult for her 
to discuss with her students, saying:  

I was struggling with it, and […] it’s just hard to word it in terms of input and 
output and varying quantities without having a concrete example. And so, to 
me I'm not even sure that [students are] not getting it so much as that they're 
not able to articulate it.  

Other GTAs expressed similar difficulties in discussing the idea, both during the 
interview and while teaching. For those GTAs who were not actively involved in the 
intervention and were also not the lead course instructor (they led the break-out recitation 
sections while a professor or lecturer provided the lecture and assigned student grades), their 
discomfort in expressing their meaning for AROC appeared to be more severe; not only were 
they unable to verbalize a coherent meaning for AROC, but they appeared more 
uncomfortable in being asked to do so. Examination of the video data revealed that they were 
more likely to squirm in their chairs, cross their arms, or move away from the interview desk. 
After the interviewer asked one GTA to describe his meaning for CROC, the GTA first 
explained how many months it had been since he taught that idea. As the interview 
progressed and he was asked to explain his meaning for AROC, he stumbled through saying: 

The average rate of change is…um…rather than having a, a, um, ok. So the 
average rate of change is the, um, is again, the relation of two 
quantities…[explanation omitted]…ahhh…blah. You understand what I’m 
getting at, I hope. I’m just putting it into words poorly. 

Another GTA paused for several seconds as she debated how specific to be in her response 
and if she would “mess up writing it or verbally saying it.” Both of these participants 
eventually conveyed the productive meaning for AROC, but not without discomfort, lengthy 
periods of reflection and scratch paper.  

Mid-Intervention Meanings for AROC 
Because of the extreme difficulty some of the GTAs had in describing a meaning for 

AROC, we gathered written data from six GTAs at one university while they were actively 
engaged in the intervention. Participants wrote responses to several tasks asking about their 
meanings for CROC and AROC during the week after they taught the idea in their respective 
classes, either as lead instructor or as recitation leader. We attribute some of the variation in 
productivity of responses to whether or not the GTA was lead instructor or recitation leader 
(see Table 2). All but one of the GTAs wrote a description of AROC as a CROC satisfying 
some condition. The first GTA produced a written description of AROC that conveys the 
productive meaning for AROC and uses the same level of precision in language supported in 
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the intervention and curriculum materials. This GTA had extensive experience studying 
student thinking around the idea of AROC outside of her participation in the intervention and 
had been selected to help lead the weekly meetings of the intervention during the academic 
year.  

In sharp contrast to the pre-intervention computational and geometric expressed 
meanings, GTAs 2-6 all refer to the CROC needed to achieve the “same” or “given” change 
in one quantity relative to the “same” change in the other quantity. At this stage of the 
intervention, the sharpest criticism of these responses is that they neglect to clarify what 
these changes are the same as (i.e., a mention of an existing relationship between two 
quantities and the corresponding changes under inspection). In the same set of tasks, the 
GTAs were further prompted to construct new problem scenarios that would require a 
student to use the idea of AROC to understand. All five of these GTAs produced coherent 
problems that did, in fact, rely on the productive meaning of AROC in the context of distance 
and time. Interestingly, GTA 1 was the only GTA to construct a problem involving two non-
time quantities, with her example asking a student to determine a vehicle’s average rate of 
change of miles traveled with respect to gallons used based on an odometer reading and 
information about number of gallons purchased at a gas pump.  

Table 2. Written responses to the question “What is your meaning for ‘average rate of 
change’?” 

GTA 
# 

Type of 
GTA Written response Meaning 

Category 
1 Lead 

instructor 
I imagine 2 quantities x and y changing together, not 
necessarily at a constant rate of change. As x changes from 
x1 to x2, I imagine that y changes from y1 to y2. x1 and y1 
stand for an arbitrary ordered pair that is fixed. The 
average rate of change of y with respect to x over the 
interval (x1, x2) is the constant rate of change needed to 
have the same change in x (that is x2 – x1) and the same 
change in y (that is y2 – y1) as the original function.  

Productive 
- General 

2 Lead 
instructor 

The constant rate of change needed to cover the change in 
the output given the change in input.  

3 Recitation 
Leader 

The constant rate of change needed to produce the same 
change in output given the same change in input.  

4 Recitation 
leader 

AROC is the constant rate of change required to cover the 
same change in the dependent variable over the same 
change in the independent variable.  

5 Recitation 
leader 

It is the constant rate of change that you have to apply to 
your variable to get a fixed value of your answer. For 
example, if it is speed: it is the value of speed that you 
should pick to get a given distance in a given amount of 
time.  

6 Recitation 
Leader 

It is the constant rate of change to have traveled the same 
amount distance in the same amount of time.  

Average 
Speed 

7 Not 
teaching Sum all the rate of change, the divide by the total number.  Incorrect 
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Surprisingly, GTA 7, who participated in the intervention by attending the summer 
workshop and the weekly seminar, in hopes of getting a teaching assignment during the 
subsequent semester, again gave a response highlighting the stability of a meaning for AROC 
as the arithmetic mean by describing AROC as the arithmetic mean of rates of change. Even 
more than the interview setting, getting this type of response from a GTA in writing points to 
the difficulties of getting individuals, even those with sophisticated mathematical 
backgrounds, to shift their thinking and communication about the idea of AROC. 

Discussion 

The vast majority of participants held impoverished meanings for the idea of AROC at 
the beginning of the study, primarily focused on computation or a geometric interpretation 
restricted to graphical representations of function relationships in the Cartesian coordinate 
system. Once the GTAs participated in a summer workshop and taught using Pathways 
research-based curriculum designed to support the productive meaning for AROC, the 
meanings GTAs conveyed in written responses more closely matched the meaning supported 
by the intervention. Our interviews with participants who were no longer attending the 
weekly seminars revealed that these GTAs had retained aspects of the productive meanings 
for the idea of AROC that we desired. In particular, the majority of post-intervention 
interviewees attempted to give a meaning for AROC that went beyond a computational or 
geometric meaning for the idea. What remained variable, however, was the fluency with 
which they conveyed these somewhat more productive, albeit unstable, meanings.  

The initial impoverished meanings expressed by graduate students were widespread 
across all three institutions, suggesting that that the relatively impoverished meanings 
expressed by mathematics graduate students’ prior to the intervention is likely a widespread 
phenomena and is in need of further investigation. Moreover, it bears noting that some of 
these graduate students had prior teaching experience, typically as recitation leader for a 
range of calculus classes. Yet their experiences in teaching these classes did not support them 
in building strong, connected meanings for ideas of slope, rate of change, constant rate of 
change and average rate of change. These findings challenge the assumptions that graduate 
students in mathematics have strong meanings of fundamental ideas of mathematics, and 
further, that having taught a course guarantees such meanings will be constructed. In fact, 
when asked what it means to talk about “rate of change,” one GTA responded by saying, 
“Actually, I’ve taught calculus before, like Calc 1. Usually in that class, I don’t talk about 
rate of change to them. So I haven’t thought about that before.” Such a statement suggests 
that interventions such as what we have described are necessary in fostering reflective 
teaching practices among future faculty that might lead to more productive and coherent 
mathematics instruction. Failure to take action to debunk these faulty assumptions by 
supporting GTAs’ development of conceptually coherent and meaningful conceptions of key 
mathematical ideas may have severe consequences for improving the predominantly 
procedural focus that exists in many introductory undergraduate courses in colleges and 
universities across the United States of America (e.g., Tallman & Carlson, 2012).  

Graduate mathematics students who hold a meaning for AROC that is strictly geometric 
(i.e., slope of secant line) will be unable to support their students in developing a quantitative 
meaning for AROC. It is the quantitative meaning for AROC that an individual leverages to 
build connections between accumulation functions and rate of change functions, an activity 
foundational to applying the tools of calculus in contextualized problem scenarios. In 
particular, those bound by a geometric meaning for AROC are similarly limited to thinking 
about derivatives in a calculus class as the result of some limiting process for slopes of secant 
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lines. Individuals with this meaning will be hard pressed to make connections between this 
slope-of-tangent-line meaning and, say, using the derivative to predict population values 
given a model of population relative to time.  

Though not the focus of this research, there was mention during some of the interviews of 
how the Pathways materials exposed the participants to new ways of thinking about the 
mathematical ideas. As one GTA said, her participation in the intervention gave her the 
experience of “living conceptual learning…all of a sudden [she] was being asked questions 
about linear functions [she] couldn’t answer and that really transformed [her] image of what 
precalculus was and the math that [she] was teaching.” Other GTAs emphasized that their 
new ways of thinking further had positive effects on their own performance as mathematics 
PhD students. Interestingly, however, these new ways of thinking did not necessarily 
translate to what the participants had as goals for their students’ learning. There was evidence 
of tension between what the GTAs had experienced as undergraduate students and what they 
were being asked to do as instructors with regards to discussing mathematics meaningfully.  

On a similar note, experiences in working with the graduate students during the 
interventions produced encouraging anecdotal evidence that the opportunity to 
reconceptualize fundamental ideas may have a lasting impact on their image of what effective 
mathematics teaching entails. GTAs with prolonged exposure to the intervention (more than 
one year, and sometimes in conjunction with a leadership role within the intervention) more 
frequently commented on both wanting students to develop a more coherent view of the 
mathematics and the role of understanding their students’ thinking in helping them become 
more effective instructors. One GTA even suggested that, depending on the level of influence 
his future position will offer, he could envision leading a similar type of program for 
instructors of a common course to provide a space for discussing the mathematics, student 
thinking and ways of supporting student learning. This leaves us optimistic that ours and 
other similar efforts might motivate mathematicians to engage in work to make 
undergraduate mathematics instruction more meaningful for students. 
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We report our analysis of changes in assessment practices of introductory calculus instructors 
piloting weekly labs designed to enhance the coherence, rigor, and accessibility of central 
concepts in their classroom activity. Our analysis compared all items on midterm and final exams 
created by seven instructors prior to their participation in the program (386 items) with those 
they created during their participation (495 items). Prior exams of the seven instructors were 
similar to the national profile, but during the pilot program increased from 12.4% of items 
requiring demonstration of understanding to 33.5%. Their questions involving representations 
other than symbolic expressions changed from 37.0% to 59.8% of the items. The frequency of 
exam questions requiring explanations grew from 5.2% to 18.0%, and they shifted from 1.0% to 
5.1% of items requiring an open-ended response. We examine qualitative data to explore 
instructors’ attributions for these changes.  

Key words: [Calculus, Assessment, Cognitive Level, Representations, Problem-Solving] 

One component of the recent national study of calculus programs in the United States 
(Bressoud, Mesa, & Rasmussen, 2015) examined the assessment practices of instructors of 
these courses. Tallman et al. (2016) analyzed the content of 150 Calculus 1 final exams 
sampled from a variety of post-secondary institutions in the larger study. Using their Exam 
Characterization Framework (ECF), Tallman et al. described the cognitive orientation, 
mathematical representations, and answer format of each item in their sample. The study 
demonstrated that few final exam items required a demonstration or application of 
understanding of the material, primarily involved only symbolic representations, and rarely 
required explanation or involved open-ended responses. One explanation of these results may 
be that faculty assessment practices simply reflect the expectations of institutionally adopted 
curricula. Lithner (2004), for example, found that a majority of exercises in calculus 
textbooks could be solved by choosing examples or theorems elsewhere in the text based on 
surface-level features and mimicking the demonstrated procedures.  

We examined the assessment practices of pilot instructors implementing activities in their 
calculus courses designed to simultaneously enhance the coherence, rigor, and accessibility 
of student learning throughout the course. Project CLEAR Calculus provided weekly labs in 
which students participated in group problem-solving activities to scaffold the development 
of central concepts in the course along with instructor training and support to implement the 
labs. While the project did not address student assessment through exams, we hypothesized 
the conceptual focus in the labs and requirements of student write-ups would impact the 
instructors’ assessment practices. Our study was guided by the following research questions:  

1. How do the pilot instructors’ exam questions compare to their previous exams along 
the three ECF dimensions (cognitive orientation, mathematical representation, and 
answer format)? 

2. What factors do the pilot instructors attribute for any shifts in their assessment 
practices? 
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Background 

Limit concepts are at the core of mathematics curriculum for STEM majors, but decades 
of research have revealed numerous misconceptions and barriers to students’ understanding. 
Building off of work by Williams (1991, 2001), Oehrtman (2009) identified several cognitive 
models employed by students that met criteria for emphasis across limit concepts and for 
sufficient depth to influence students’ reasoning. Williams noted that students frequently 
attempt to reason about limits using intuitive ideas associated with boundaries, motion, and 
approximation. Oehrtman found that, unlike most other cognitive models employed by 
students, the structure of students’ spontaneous reasoning about approximations shares 
significant parallels with the logic of formal limit definitions while being simultaneously 
conceptually accessible and supporting students’ productive exploration of concepts in 
calculus defined in terms of limits. These findings suggest the commonly presumed 
dichotomy between a formally sound, structurally robust treatment of calculus on the one 
hand and a conceptually accessible and applicable approach on the other (Tucker, 1986) is 
false. By adopting an instructional framework utilizing approximation and error analyses, we 
designed labs based on criteria listed in Figure 1 intended for weekly use in an introductory 
calculus sequence. 

Design Criteria 1. Language, notation, and constructs used in the labs should be 
conceptually accessible to introductory calculus students. 

Design Criteria 2. The structure of students’ activity should reflect rigorous limit 
definitions and arguments without the language and symbolism of 
formal 𝜀-𝛿 and 𝜀-N notation that is a barrier to most calculus students’ 
understanding. 

Design Criteria 3. The labs should present a coherent approach across all concepts defined 
in terms of limits and effectively support students’ exploration into 
these concepts. 

Design Criteria 4. The central quantities and relationships developed in all labs should be 
coherent across representational systems (especially contextual, 
graphical, algebraic, and numerical representations) 

Design Criteria 5. All labs should foster quantitative reasoning and modeling skills 
required for STEM fields. 

Design Criteria 6. The sequence of labs should establish a strong conceptual foundation 
for subsequent rigorous development of real analysis. 

Design Criteria 7. All labs should be implemented following instructional techniques 
based on a constructivist theory of concept development. 

Figure 1. Design criteria for the CLEAR Calculus labs. 

When left unguided, students’ applications of intuitive ideas about approximations are 
highly idiosyncratic (Martin & Oehrtman, 2010a, 2010b; Oehrtman, 2009). To systematize 
students’ reasoning concerning approximation ideas and support an accessible yet rigorous 
approach to calculus instruction, students engage in labs that contain contextualized versions 
of the questions in Figure 2. These questions develop coherence between structural 
components, reveal operations performed on these components, and highlight relationships 
among the operations, all of which is foundational for the generation of new understandings 
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(e.g., Piaget, 1970; von Glasersfeld, 1995; Ernest, 1998). 
 

Question 1.   Explain why the unknown quantity cannot be computed directly. 

Question 2.   Approximate the unknown quantity and determine, if possible, whether your 
approximation is an underestimate or overestimate 

Question 3.   Represent the error in your approximation and determine if there is a way to 
make the error smaller. 

Question 4.   Given an approximation, find a useful bound on the error. 

Question 5.  Given an error bound, find a sufficiently accurate approximation. 

Question 6.   Explain how to find an approximation within any predetermined bound. 

Figure 2. Approximation questions consistent across most labs. 
 

Exam Characterization Framework 

Tallman et al. (2016) developed a three-dimensional framework to analyze a sample of 
post-secondary calculus I final exams to get a snapshot of the skills and understandings that 
are currently being emphasized in college calculus. Their Exam Characterization Framework 
(ECF) characterizes exam items according to three distinct item attributes: (a) item 
orientation, (b) item representation, and (c) item format. 
 
Item Orientation 

Tallman et al. adapted the six intellectual behaviors in the conceptual knowledge 
dimension of a modification of Bloom’s taxonomy (Anderson & Krathwohl, 2001) to 
characterize the cognitive demand of exam items. The six categories of item orientation are 
hierarchical with the lowest level requiring students to remember information and the highest 
level requiring students to make connections (see Table 1). 
 
Table 1 
Item orientation codes (Tallman et al., 2016, p. 113) 

Cognitive 
Behavior 

Description 

Remember Students are prompted to retrieve knowledge from long-term memory. 

Recall and apply 
procedure 

Students must recognize what procedures to recall and apply when directly 
prompted to do so. 

Understand Students are prompted to make interpretations, provide explanations, make 
comparisons or make inferences that require an understanding of a 
mathematics concept. 

Apply 
understanding 

Students must recognize the need to use a concept and apply it in a way 
that requires an understanding of the concept.  

Analyze Students are prompted to break material into constituent parts and 
determine how parts relate to one another and to an overall structure or 
purpose. 

Evaluate Students are prompted to make judgments based on criteria and standards. 
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Create Students are prompted to put elements together to form a coherent or 
functional whole; reorganize elements into a new pattern or structure. 

  
Item Representation 

The item representation domain of the ECF involves classification of both the 
representation of mathematical information in the task as well as the representation the task 
solicits in a solution (see Table 2). A task statement or solution may involve multiple 
representations. Since many tasks can be solved in a variety of ways and with consideration 
of multiple representations, we observed Tallman et al.’s recommendation of considering 
only the representation the task requires. 
 
Table 2 
Item representation codes (Tallman et al., 2016, p. 116) 

Representation  Task statement Solicited solution 

Applied/ 
modeling 

The task presents a physical 
or contextual situation. 

The task requires students to define 
relationships between quantities or use a 
mathematical model to describe a physical or 
contextual situation. 

Symbolic The task conveys 
information in the form of 
symbols.  

The task requires the manipulation, 
interpretation, or representation of symbols. 

Tabular The task provides 
information in the form of a 
table.  

The task requires students to organize data in 
a table. 

Graphical The task presents a graph. The task requires students to generate a graph 
or illustrate a concept graphically. 

Definition/ 
theorem 

The task asks the student to 
state or interpret a definition 
or theorem. 

The task requires a statement or interpretation 
of a definition or theorem. 

Proof 

 

The task presents a 
conjecture or proposition. 

The task requires students to demonstrate the 
truth of a conjecture or proposition by 
reasoning deductively.  

Example/ 
counterexample 

The task presents a 
proposition or statement. 

The task requires students to produce an 
example or counterexample. 

Explanation Not applicable.  The task requires students to explain the 
meaning of a statement. 

 
Item Format  

The third and final dimension of the ECF is item format. The most general distinction of 
an item’s format is whether it is multiple-choice or open-ended. However, there is variation 
in how open-ended tasks are posed. For this reason, Tallman et al. define three subcategories 
of open-ended tasks: short answer, broad open-ended, and word problem. A short answer 
item is similar in form to a multiple-choice item, but without the choices. A student can 
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anticipate the form of the solution of a short answer item upon reading the item. In contrast, 
the form of the solution of a broad open-ended item is not recognizable upon immediate 
inspection of the item. Broad open-ended items therefore elicit various responses, with each 
response typically supported by some explanation. Word problems can be of a short answer 
or broad open-ended format, but prompt students to create an algebraic, tabular and/or 
graphical model to relate specified quantities in the problem, and may also prompt students to 
make inferences about the quantities in the context using the model. Also, tasks that require 
students to explain their reasoning or justify their solution can be supplements of short 
answer or broad open-ended items. 
 
Exam Characterization Results of the National Sample 

Tallman et al. only coded 14.83% of items in their randomly-selected sample of 150 post-
secondary calculus I final exams, collectively containing 3,735 items, at the “Understand” 
level of the item orientation taxonomy or higher. Their coding also revealed that 34.55% of 
items in their sample involved representations other than symbolic in either the problem 
statement or solution. Additionally, Tallman et al. found that only 2.4% of the items required 
explanations from students and just 1.34% of items in their sample were broad open-ended 
questions.  

 
Methods 

Twelve instructors piloted up to 30 labs in 24 different first and second semester calculus 
classrooms at eight different institutions from Fall 2013 to Spring 2015. Training began with 
in-person and online meetings with pilot instructors before the start of the fall semesters, and 
most of the instructors attended a three-day workshop outlining the goals, strategies, and 
activities of the project. We supported their implementation of the labs throughout the fall 
and spring semesters with online meetings with project personnel. The project website 
(http://clearcalculus.okstate.edu) provided instructors with student materials, instructor notes 
for each lab, solutions, grading rubrics, supporting handouts, and virtual manipulatives. 
Support meetings frequently included discussions of assessing lab write-ups but did not 
include discussions of creating or grading exams. 

To document changes in the pilot instructors’ assessment practices, we collected mid-
term and final exams from the calculus classes the instructors taught prior to implementing 
CLEAR Calculus labs and from the classes in which they were implementing the labs. Five 
of the instructors either had not previously taught calculus or were required to give exams 
that were created by other faculty, so exams from these instructors were removed from the 
comparative sample.  

A lead researcher in the development of the ECF and its application in the national study 
trained two members of our team to code with the framework resulting in 89% agreement 
between coding the training sample. Subsequent training focused on discrepancies. One 
member of our team has coded 386 items from 24 exams given by seven instructors prior to 
using CLEAR Calculus labs and 495 items from 27 exams given by the same instructors 
while implementing the labs. A random sample of 13% of the items was coded by the second 
member resulting in 92% agreement.  

We also collected self-reported characterizations on the impact of pilot instructors’ 
teaching and exams through their implementation of CLEAR Calculus labs.  
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Results 

Our analysis of exams given by our pilot instructors prior to participating in the project 
revealed a pattern very similar to the national profile found by Tallman et al. (2016) as shown 
in Table 3. In contrast, while implementing the labs the instructors nearly tripled the 
frequency at which they asked questions requiring a demonstration or application of 
understanding (from 12.4% to 33.5%) and included representations other than symbolic 
expressions at over 1.5 times the previous frequency (37.0% to 59.8%). They asked for 
explanations nearly 4 times as often (5.2% to 18.0%) and included broad open-ended items 
over 5 times as often (1.0% to 5.1%).   

 

Table 3 
Shifts in CLEAR Calculus pilot instructor’s assessment practices 

 Tallman et al. 
National Sample 

(3735 items) 

Pilot instructors 
prior to CLEAR 

Calculus 
(355 items) 

Pilot instructors 
with CLEAR 

Calculus 
(417 items) 

Items requiring 
understanding or higher 
level reasoning 

14.8% 12.4% 33.5% 

Items involving 
representations other than 
symbolic 

34.6% 37.0% 59.8% 

Items requiring 
explanation 2.4% 5.2% 18.0% 

Broad open-ended items 1.3% 1.0% 5.1% 

 
Items Requiring Understanding or Higher Level Reasoning 

When looking at the individual instructors, five out of seven instructors were below the 
national average prior to CLEAR Calculus. However, with CLEAR Calculus all seven were 
above the nation average, which is shown in Figure 5. Moreover, the degree of the shifts in 
particular is noteworthy.  

As an example of the types of shifts we observed, we compare an exam question from 
one pilot instructor’s prior exam in Figure 3, to an exam question from the same pilot 
instructor while using the labs in Figure 4. 

1. Use implicit differentiation to find 𝑑𝑦
𝑑𝑥 for 3𝑥𝑦 − 4 = 𝑦2 + 2𝑥. 

2. Use your answer to question 1 above to find the equation of line tangent to the curve 
3𝑥𝑦 − 4 = 𝑦2 + 2𝑥 at the point (2, 4).  

Figure 3. Question from a pilot instructor’s exam prior to CLEAR Calculus. 
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Consider the function 𝑓(𝑥) = arctan (𝑥) 
a) Find the tangent line approximation to 𝑓(𝑥) near 𝑥 = 1. (Hint: arctan(1) = 𝜋

4.) 
b) Use the equation you found above to approximate arctan(1.1). 
c) Is you approximation of arctan(1.1) an overestimate or an underestimate? Explain 

how you know. 
Figure 4. Question from the same pilot instructor’s exam with CLEAR Calculus. 
 

 
Figure 5. Shits in items requiring understanding or higher level reasoning. 

The questions in Figure 3 are standard procedural questions, which demand cognitive 
behavior at the recall and apply procedure level. However, to perform the task in Figure 4, a 
student would have to solve a procedural task equivalent to the task in Figure 3 and then 
apply understanding of the tangent line.   

The conceptual emphasis of the labs was a common theme attributed to the shift to more 
conceptual exam problems in the instructor interviews, highlighted by the following 
quotation from one pilot instructor.  

The labs had an effect on my learning goals for the class as well as my assessment of 
them. Because of the deeper nature of lab problems, I was able to focus more on the 
problem solving process as opposed to answers. When many textbook problems have 
only one step, it is often difficult to distinguish between these. 

Additionally, the following quotation demonstrates one instructor’s desire to test more 
conceptually demanding problems on an exam, despite using conceptually demanding 
coursework. 

I don’t look at the labs as being an assessment. I would categorize them more as an 
activity. The main value for the students is doing it, and I want them to learn 
something by doing it, and I’m not so focused on using it as a measure of what they 
know. I think that in addition to being helpful ways of understanding the calculus 
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concepts, the notion of approximations and knowing how good they are worthwhile 
things for students to know themselves, even if they’re not kind of inherently part of 
Calculus. So for that reason, they showed up a lot in class and they showed up on the 
exam. 

 
Items Involving Representations Other Than Symbolic 

In the national study, only 34.6% of the items involved representations other than 
symbolic. Thus for almost two thirds of the items from the national sample both the question 
statement and the solution elicited from the students were represented symbolically. Four of 
the seven pilot instructors in our study were below the national average prior to using 
CLEAR Calculus. However, while using the labs, six out of seven instructors were 
significantly above the nation average. 

 
Figure 6. Shifts in items involving representations other than symbolic. 
 
An example demonstrating the shift toward representation other than symbolic is given in 
Figures 7 and 8. 
 
Determine the critical points of the function 𝑓(𝑥) = 𝑎𝑥2 + 𝑏

𝑥. 
Figure 7. Question from a pilot instructor’s exam prior to CLEAR Calculus. 
 
Artisanal rocking chair construction has been going particularly well, and the work-space 
needs to be expanded. The original building has a square 
footprint of 75 ft by 75 ft. You buy 100 feet of drywall to 
construct the walls of the new extension. You are going to 
build a rectangular extension (see figure) to the building using 
one wall of the existing building and the other three walls 
from the new drywall. What dimensions should the new 
extension be to maximize the floor area of the new room? 
Figure 8. Question from the same pilot instructor’s exam with CLEAR Calculus. 
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In Figure 7, both the presented task and the required solution are represented symbolically.  
However, Figure 8 presents and applied task, in which students will need to write a symbolic 
formula similar to the one given in Figure 7 in the process of solving the problem.   

In the instructor interviews, the shift to representations other than symbolic was attributed 
to increased treatment of real-world problems through the labs. Tallman et al. found in the 
national sample problems were rarely stated in real-world contexts (13.2% of the tasks and 
7% of the solutions). In our study, the percentage of applied/modeling items in either the 
statement or the solution increased from 17.1% to 32.7%. One pilot instructor explained, 

I think that they get at a little more numerical understanding of these ideas that is 
often not really part of the traditional calculus class. The traditional calculus class, 
you’re world is elementary functions. If you’re given an elementary function for 
something, then you have all these computational tools to deal with it. But in 
traditional calculus classes, if you have a function that’s not an elementary function, 
then you are stuck. But that’s not a good reflection of reality, and in real life you don’t 
get elementary functions handed to you for any particular data that you’re trying to 
understand, even if calculus tools might be useful for that. I think it’s even more true 
in this day and age when anything dealing with elementary functions is very easy for 
a computer to do. So I think that this was sort of a way to help them have tools that 
apply more broadly, and if they understand at a conceptual level what a derivative is, 
and these more numerically based ideas about how to work with them in more than an 
algebraic context, then that will be more valuable to them. 

Items Requiring Explanation 
The numbers of items on the majority of the pilot instructors’ exams prior to CLEAR 

Calculus was above the above the national average of 2.4%. While using the labs, all the pilot 
instructors were significantly above the national average.   

 
Figure 9 Shifts in items requiring explanation 
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The following Figure is an example from a pilot instructor’s exam with CLEAR Calculus.  

The following table gives the number of cars, 𝐶 = 𝑓(𝑡), in millions, in the US in the year 𝑡. 
𝑡 1940 1950 1960 1970 1980 1990 2000 
𝐶 27.5 40.3 61.7 89.2 121.6 133.7 133.6 

 
a) Is 𝑓′(𝑡) positive or negative during the period from 1940 to 1980? What does this 

mean about car sales during this period? 
b) Is 𝑓′′(𝑡) positive or negative during the period from 1940 to 1980? What does this 

mean about car sales during this period? 
c) Estimate 𝑓′(1975), and include the units for this number. Interpret this answer in 

terms of passenger cars. 

Figure 10. Question from a pilot instructor’s exam with CLEAR Calculus. 

All three items in Figure 10 require an explanation. This examples also demenstrate a 
broader shift in assessement practices, which were not neccessarly related to the 
approximation framework. 

One of the goals of the CLEAR Calculus project was mathematical rigor. The following 
quotation from one pilot instructor highlights how the approximation framework together 
with explanations is analogous to the rigours 𝜀 − 𝛿 and 𝜀 − 𝑁 arguemnts in analysis.  

I wanted them to show an understanding of that process, the understanding that this 
process does guarantee a sufficient accuracy. And what I was hoping to lead them 
away from was, “Oh I’ll just choose a difference quotient between 1 and 1.000001,” 
where they choose an arbitrary number of zeros, “and I’m sure that will probably be 
good enough.” The point here is that this method gives you a guaranteed error bound, 
right? You know for sure that you are within this interval of the correct answer. And I 
was hoping for them to be able to articulate that. 
 

Broad Open-Ended Items 
Due to the nature of broad open-ended items we would not expect a typical calculus I 

exam to contain a large number of broad open-ended items. Tallman et al. found that less 
than 1%  of  the items in there study were broad open-ended. Three of the pilot instructors 
increased their inclusion of broad open-ended items on their exams. 

The following example taken from a pilot instructor’s exam with CLEAR Calculus 
demonstrates a broad open-ended task.  

 
If you are trying to approximate 𝑔′(2), is it possible that 𝑔(2.1)−𝑔(2)

.1  and 𝑔(2)−𝑔(1.9)
.1  are both 

underestimates? If so, give an example of such a function 𝑔 and explain why this is the case. 
If not, explain why it is impossible. 

Figure 11 Question from a pilot instructor’s exam with CLEAR Calculus 

In the task presented, students first have to decide if the situation presented is possible or not.  
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Figure 12 Shifts in broad-open ended items 
 

A common theme in the instructor interviews was the goal of conceptual understanding. 
The following instructor attributed the shift to more broad open-ended items to this goal of 
conceptual understanding.  

I want to know what they’re doing. If they say “overestimate” and they get it right, I 
don’t know if that’s because they actually know something about derivatives. This is 
based on the Approximation Framework... So what I was hoping to find out, do they 
understand and are they able to connect it with the concavity. It seemed like the most 
natural way to do that was to do it more open-ended, rather than to try to come up 
with a question that is designed in such a way that if they don’t understand that, they 
can’t get the right answer. It seemed just a little more natural if I’m looking for them 
to understand a specific thing is to ask them to tell me about that specific thing. 

 
Discussion 

All but one of the seven pilot instructors participating in this study demonstrated notable 
shifts in their assessment practices. Prior to implementing CLEAR Calculus labs in their 
classes, their exams resembled the national averages in requiring conceptual understanding, 
using multiple representations, and requiring explanations. While piloting the CLEAR 
Calculus materials, the seven instructors averaged a 270% increase in the proportion of exam 
questions requiring conceptual understanding, 162% increase in use of representations other 
than symbolic, and 346% increase in items requiring explanations. Three of these instructors 
also asked more questions involving open-ended responses. Due to starting near the low 
national averages, large shifts are certainly possible with even moderate changes in practices. 
Nevertheless these shifts were large enough that many of the pilot instructor’s exams while 
using the labs would have constituted outliers in each category among the random national 
sample analyzed by Tallman et al. (2016).  
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Pilot instructors viewed their shifts in assessment practices as positive and attributed them 
to multiple aspects of the CLEAR Calculus labs aligned with the design goals as well as to 
other broader factors. The important quantities and their interrelationships emphasized in the 
Approximation Framework guiding the labs are salient, useable, and consistent across all of 
the primary mathematical representations used in calculus (Figure 1, Design Criteria 4). 
Instructors cited this coherent use of multiple representations throughout the lab materials for 
establishing meaningful ways to assess their students using representations other than only 
symbolic. The labs also engage students in conceptually accessible approximation concepts in 
a consistent way across all of the calculus concepts defined in terms of limits (Figure 1, 
Design Criteria 1 & 3). Instructors cited these features for providing important global ideas 
and a foundation of common reasoning to assess (for example, choosing appropriate tools to 
find an underestimate or overestimate as required). While remaining conceptually accessible, 
the labs are also designed to engage students in activities that reflect the structure of standard 
𝜀-𝛿 and 𝜀-N definitions and proofs (Figure 1, Design Criteria 2). The pilot instructors cited 
the connection to rigorous mathematical argumentation as providing an opportunity to require 
additional explanation or justification from students (for example, justifying that their 
approximation is sufficiently accurate).  

Our continued analysis of this data will explore these patterns in greater depth and 
provide a foundation for further interviews with the pilot instructors. For example, the most 
experienced of the pilot instructors was the sole exception to the shifts displayed by the 
others. Thus, we plan to explore the role of background and experience with each of the 
instructors to identify their potential connections to changes in assessment practices. 
Similarly, we seek to better understand the rationale behind shifts in use of questions that are 
not directly derived from the Approximation Framework questions (Figure 2). Finally, by 
pairing items on exams and our common Calculus Concepts Assessment administered to 
most students across the pilot sites, we will identify and characterize any correlation of 
assessment focus and differences in student learning. 
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Covariational and parametric reasoning 
 

Teo Paoletti Kevin C. Moore 
Montclair State University University of Georgia 

Researchers have argued that students can develop foundational meanings for a variety of 
mathematics topics via quantitative and covariational reasoning. We extend this research by 
examining two students’ reasoning that created an intellectual need for parametric functions. 
We first describe our theoretical background including different conceptions of covariation 
researchers have found useful when analyzing students’ activities constructing and 
representing relationships between covarying quantities. We then present two students’ 
activities during a teaching experiment in which they constructed and reasoned about 
covarying quantities. We highlight aspects of the students’ reasoning that we conjecture 
created an intellectual need for parametric functions, a need we capitalized on in a later 
session. We conclude with implications the students’ reasoning has for future research and 
curriculum design. 

Key words: Covariational reasoning; Quantitative reasoning; Parametric Functions; Cognition 

An increasing number of researchers have made contributions to the literature base on 
students’ quantitative and covariational reasoning (Carlson, Jacobs, Coe, Larsen, & Hsu, 
2002; Carlson, Larsen, & Jacobs, 2001; Castillo-Garsow, 2012; Confrey & Smith, 1995; 
Ellis, 2007; Ellis, Ozgur, Kulow, Williams, & Amidon, 2015; Johnson, 2012a; Thompson, 
1994a, 1994b). These contributions have been with respect to students’ understandings of 
various content areas (e.g., function classes, rate of change, and the fundamental theorem of 
calculus) and to their enactment of important mental processes (e.g., generalizing, modeling, 
and problem solving). Although maintaining the common intention of understanding 
students’ covariational reasoning, researchers’ treatments of covariation are varied. For 
instance, Confrey and Smith (1994, 1995) approached covariation in terms of reasoning about 
discrete numerical values, finding patterns in these values, and interpolating patterns between 
them. In contrast, Thompson and Saldanha (Saldanha & Thompson, 1998; Thompson, 2011) 
approached covariation in terms of coordinating changes in two continuous magnitudes, thus 
not constraining covariation to the availability of specified numerical values. 

In this work, we illustrate students conceiving of and representing covarying quantities in 
ways compatible with Thompson’s and Saldanha’s descriptions of covariation. We identified 
this reasoning while exploring the research question, “What ways of reasoning do students 
engage in during activities intended to emphasize reasoning about relationships quantitatively 
and covariationally?” Before characterizing students’ reasoning during a study framed around 
this research question, we provide our theoretical background including the perspectives on 
covariation that informed our work. We also describe the methods—teaching experiments 
and clinical interviews—we used to investigate students’ covariational reasoning. We then 
focus on the students’ actions during the closing sessions of the teaching experiment to 
discuss how the students used graphs in the Cartesian coordinate system to represent 
relationships they perceived to constitute some situation or phenomena. We highlight the 
parametric nature of the students’ reasoning that we recognized during on-going analysis and 
describe our efforts at affording the students opportunities to become explicitly aware of the 
parametric nature of their reasoning. We then provide a discussion of our findings and relate 
our results to research examining students’ understandings of parameters and parametric 
functions. We conclude by describing research and curricula implications of this study.  
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Theoretical Background 
Researchers have drawn from interpretations of Piagetian and radical constructivist 

theories of knowing and learning to develop definitions and frameworks that describe the 
mental processes and conceptual structures entailed in reasoning about relationships between 
quantities (Carlson et al., 2002; Johnson, 2012a, 2012b; Moore & Thompson, 2015, in 
preparation; Steffe, 1991; Thompson, 1994a, 2011). Of importance to this report, Carlson et 
al. (2002) presented a framework that allows for a fine-grained analysis of students’ 
covariational reasoning. The authors identified mental actions students engage in when 
coordinating covarying quantities including coordinating direction of change (quantity A 
increases as quantity B increases; MA2), amounts of change (the change in quantity A 
decreases as quantity B increases in equal successive amounts; MA3), and rates of change 
(quantity A increases at a decreasing rate with respect to quantity B; MA4-5) (Figure 1a).  

Carlson et al. (2002) described the aforementioned mental actions in relation to the Bottle 
Problem (Figure 1b). As they described, when coordinating the relationship between volume 
of water and height of water in the bottle as water is poured into the bottle, a student first 
conceives that the two quantities are changing (MA1). The student can then coordinate that as 
volume of water increases, height also increases (MA2). Next, the student can coordinate that 
for equal changes in volume, represented by each colored cross sectional area in Figure 1c, 
successive increases in height decrease until the widest part of the bottle, at which point 
increases in height increase until the neck of the bottle (MA3). As the student re-constructs 
this relationship, she may coordinate the average (MA4) and instantaneous (MA5) rate of 
change of liquid volume with respect to liquid height as water is poured into the bottle. In this 
report, we focus on students’ enactment of MA1-3 as part of their conceiving and 
representing relationships between covarying quantities. 

!!
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were exhibited while responding to that task. A student is given a level classifica-
tion according to the overall image that appears to support the various mental actions
that he or she exhibited in the context of a problem or task. The Covariation
Framework contains five distinct developmental levels (Table 2). We say that one’s
covariational reasoning ability has reached a given level of development when it
supports the mental actions associated with that level and the actions associated
with all lower levels.

The notion of image used in describing the levels of the framework is consis-
tent with Thompson’s (1994a) characterization of an image as that which “focuses
on the dynamics of mental operations” (p. 231). As an individual’s image of
covariation develops, it supports more sophisticated covariational reasoning.
(Recall that we define covariational reasoning to be the cognitive activities
involved in coordinating two varying quantities while attending to the ways in which
they change in relation to each other). 

A student who is classified as exhibiting Level 5 (L5; i.e., Instantaneous Rate
Level) covariational reasoning, relative to a specific task, is able to reason using

Table 1
Mental Actions of the Covariation Framework
Mental action Description of mental action Behaviors

Mental Action 1 Coordinating the value of • Labeling the axes with verbal indica-
(MA1) one variable with changes tions of coordinating the two variables 

in the other (e.g., y changes with changes in x)
Mental Action 2 Coordinating the direction • Constructing an increasing straight 

(MA2) of change of one variable line
with changes in the other • Verbalizing an awareness of the di-
variable rection of change of the output while 

considering changes in the input 
Mental Action 3 Coordinating the amount • Plotting points/constructing secant 

(MA3) of change of one variable lines
with changes in the other • Verbalizing an awareness of the 
variable amount of change of the output 

while considering changes in the 
input

Mental Action 4 Coordinating the average • Constructing contiguous secant lines 
(MA4) rate-of-change of the func- for the domain

tion with uniform incre- • Verbalizing an awareness of the rate 
ments of change in the of change of the output (with respect 
input variable. to the input) while considering uni-

form increments of the input 
Mental Action 5 Coordinating the instanta- • Constructing a smooth curve with 

(MA5) neous rate of change of the clear indications of concavity changes 
function with continuous • Verbalizing an awareness of the in-
changes in the independent stantaneous changes in the rate of 
variable for the entire change for the entire domain of the
domain of the function function (direction of concavities and 

inflection points are correct)

360 Applying Covariational Reasoning

Imagine this bottle filling with water. Sketch a graph 
of the height as a function of the amount of water 
that’s in the bottle.

input variable expresses the rate of change of the function for an interval of the func-
tion’s domain. This recognition is typically revealed by the student’s sketching of
secant lines on a graph or by carrying out the mental computation or estimation of
the slope of a graph over small intervals of the domain (the sketching of these lines
would result from the student imagining and adjusting slopes for different intervals
of the domain). It is noteworthy that mental actions identified as MA3 and MA4
may both result in the construction of secant lines; however, the type of reasoning
that produces these constructions is different (i.e., MA3 focuses on the amount of
change of the output (height) while considering changes in the input; and MA4
focuses on the rate of change of the output with respect to the input for uniform incre-
ments of the input). Attention to continuously changing instantaneous rate (MA5)
is revealed by the construction of an accurate curve and includes an understanding
of the changing nature of the instantaneous rate of change for the entire domain. It
should be noted that a student may perform MA5 without demonstrating an under-
standing that the instantaneous rate of change resulted from examining smaller and
smaller intervals of the domain. However, the developmental nature of the frame-
work indicates that only students who are able to unpack MA5 (build from MA1 to
MA4) would receive a L5 covariational reasoning classification. This L5 image has
been shown to support an understanding of why a concave-up graph conveys where
the rate of change is increasing and why the inflection point relates to the point on
the graph where the rate of change changes from increasing to decreasing, or from
decreasing to increasing. 

Use of the Framework

This section provides information based on a dynamic situation shown in Figure 1
and called the Bottle Problem, which illustrates common covariational reasoning
behaviors that have been expressed by students when responding to a specific task
(Carlson, 1998; Carlson & Larsen, in press). The mental actions supported by each
image of covariation are followed by a description of specific behaviors that have been
observed in students and their corresponding classifications in using the framework. 

The Coordination Level (L1) supports the mental action of coordinating the height
with changes in the volume (MA1). MA1 has been identified by observing students

Figure 1. The Bottle Problem.

(a)

(b)

(c)

 
Figure 1: Carlson et al.'s (2002) framework and the Bottle Problem. 

We also leverage the work of Thompson and Saldanha to characterize student thinking in 
this study. Saldanha and Thompson (1998) stated, “Our notion of covariation is of someone 
holding in mind a sustained image of two quantities’ values (magnitudes) simultaneously” (p. 
298). The researchers argued students’ images of covariation are developmental and 
described an operative image of covariation in which a student is capable of imagining two 
quantities being tracked for some amount of time with the correspondence of the two 
quantities an emergent property of this image. Such an understanding entails a student 
coupling the two quantities to form a multiplicative object. Saldanha and Thompson (1998) 
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described, “As a multiplicative object, one tracks either quantity’s value with the immediate, 
explicit, and persistent realization that, at every moment, the other quantity also has a value” 
(p. 298).  

Extending this description, Thompson (2011) provided a first-order model of such an 
understanding in which an individual conceives of a quantity’s value, x, varying over 
(conceptual) time, t. The individual could then conceive of covering the domain of t-values 
using intervals of size ε, and consider the variation of x within these intervals (i.e. considering 
xε as the set of x-values (x(t), x(t + ε)) = x(tε)). Thompson (2011) concluded his description, “I 
can now represent a conception of two quantities’ values covarying as (xε, yε)= (x(tε), y(tε)). I 
intend the pair (xε, yε) to represent conceiving of a multiplicative object—an object that is 
produced by uniting in mind two or more quantities simultaneously” (p. 47). Apparent in this 
description of covariational reasoning is the parametric nature of covariational reasoning; a 
student imagines two quantities varying with respect to (conceptual or experienced) time, 
eventually coordinating these two quantities in a way that variation in either quantity 
necessarily entails variation in the other quantity to form a multiplicative object.  

Drawing on the aforementioned perspectives of covariation, Moore and Thompson (2015, 
in preparation) defined emergent shape thinking as a student conceiving graphs in terms of an 
emergent, progressive trace constituted by covarying magnitudes. We use Figure 2 to 
represent instantiations of an emergent image of a trace representing liquid height and liquid 
volume in a bottle covarying as liquid is poured into the bottle. Adopting Thompson’s (2011) 
notation, the student understands hε = h(tε) and vε = v(tε) both increase as time, tε, increases. A 
student with such an image of a graph understands that the magnitude of the blue segment 
represents the height of liquid in the bottle and the magnitude of the red segment represents 
the volume of liquid in the bottle at a certain moment of (experiential or conceptual) time, 
and that the resulting trace is a product of tracking how these two quantities covary with 
respect to (experiential or conceptual) time. That is, the student understands the graph as 
being formed by a trace of the multiplicative object (hε, vε) = (h(tε), v(tε)) for all values tε.  

 
Figure 2: Four instantiations of an emergent conception of height and volume of liquid in a 

bottle covarying as liquid is poured into a bottle. 

Subjects, Methodology, and Methods 
We conducted a semester long teaching experiment with two undergraduate students, 

Arya and Katlyn (pseudonyms). The students were enrolled in a secondary education 
mathematics program at a large state institution in the southern U.S. Both students were 
juniors (in credit hours taken) who had successfully completed a calculus sequence and at 
least two additional courses beyond calculus. The teaching experiment consisted of three 
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individual semi-structured task-based clinical interviews (per student) (Clement, 2000) and 
15 paired teaching episodes (Steffe & Thompson, 2000). Each clinical interview and teaching 
episode lasted approximately 1.25 hours. We video and audio recorded the sessions and we 
captured and digitized records of the students’ written work at the end of each episode. 

We used semi-structured task-based clinical interviews (Clement, 2000) as individual pre- 
and post-interviews to determine the meanings and reasoning the students brought to the 
teaching experiment and to examine if any shifts had occurred throughout the teaching 
experiment. Clinical interviews provided us insight into students’ meanings without intending 
to create shifts in their meanings. We used minimal heuristics to probe student thinking as we 
did not intend to promote shifts in student thinking (Hunting, 1997); we note that although we 
did not intend to promote shifts, such shifts might have occurred as addressing tasks or 
questions caused the students to reflect on their activity in such a way that raised 
perturbations for the students.  

We used the teaching experiment as an exploratory tool, giving us firsthand experiences 
with the students’ mathematics and allowing us to explore the mathematical progress the 
students made over the semester (Steffe & Thompson, 2000). Consistent with the teaching 
experiment methodology, we began the teaching experiment with a hypothesis we intended to 
examine, but we also created and tested many hypotheses during the teaching experiment. 
This sometimes led to our abandoning our initial research question to explore new 
conjectures created in the moment of interacting with the students (Steffe & Thompson, 
2000). Specific to this report, we describe students’ activities resulting from one such 
instance in which we made a conjecture regarding the students’ understandings during our 
on-going analysis that we explored in a later session. 

When analyzing the data we conducted a conceptual analysis—“building models of what 
students actually know at some specific time and what they comprehend in specific 
situations” (Thompson, 2008, p. 60)—to develop and refine models of the students’ 
mathematics. By students’ mathematics, we mean the students’ body of understandings that 
are fundamentally unknowable to us as researchers (Steffe & Thompson, 2000). With the 
goal of building viable models of the students’ mathematics in mind, we analyzed the records 
from the teaching episodes using open (generative) and axial (convergent) approaches 
(Clement, 2000; Strauss & Corbin, 1998). Initially, we identified instances of Arya’s and 
Katlyn’s behaviors and actions that provided insights into each student’s mathematics. We 
used these instances to generate tentative models of the students’ mathematics that we tested 
by searching for supporting or contradicting instances in their other activities. When evidence 
contradicted our constructed models, we made new hypotheses to explain the students’ ways 
of operating and returned to prior data with these new hypotheses in mind for the purpose of 
modifying previous hypotheses or characterizing shifts in students’ ways of operating. 

 
Task Design 

Throughout the teaching experiment, we provided Arya and Katlyn tasks prompting them 
to represent relationships between covarying quantities. We followed certain principles when 
designing these tasks. (a) We designed tasks to include situations that would be familiar and 
accessible to the students, with most tasks including videos, applets, or images of phenomena 
(e.g., circular motion). (b) We avoided providing specific values for quantities as we were 
interested in the students’ capacity and propensity to engage in reasoning that was magnitude 
based (i.e., emergent shape thinking). (c) We often asked students to construct multiple 
graphs related to a situation to explore if, and if so how, the students leveraged their images 
of the quantities and covariation between quantities when creating multiple graphs that may 
or may not differ in appearance. This principle was based on our findings (Moore, Silverman, 
Paoletti, & LaForest, 2014; Moore, Stevens, Paoletti, & Hobson, 2016) that students’ 
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meanings for functions and graphs can become problematic when attempting to differentiate 
and represent numerous relationships (possibly under numerous axes orientations).  

To illustrate these design principles, we used a variation of the aforementioned Bottle 
Problem, which was designed by the Shell Centre (Swan & Shell Centre Team, 1985) that 
several researchers have used productively to investigate students’ covariational reasoning 
(e.g., Carlson et al. (2002), Carlson et al. (2001), Johnson (2012, 2015), Stalvey & Vidakovic 
(2015)). Reflecting (a) and (b), we provided the students with a pictured bottle that provided 
no numerical information and asked them to imagine the experience of filling the bottle with 
liquid. We then asked them to graph the relationship between volume and height of liquid in 
the bottle as it filled with liquid. Reflecting (c), and after they constructed a graph for a given 
bottle and a bottle for a given graph, we altered the prompt to ask the students to imagine 
liquid evaporating from the bottle. We then asked the students to represent the relationship 
between liquid height and liquid volume in the bottle for this new scenario.  

 
Results 

We first summarize the students’ activities when creating graphs to represent how the 
liquid height and liquid volume covaried as a bottle filled. We then present their activities 
addressing liquid evaporating from the bottle in order to illustrate the students representing an 
additional aspect of the situation in their graph: the direction in which they imagined the 
graph tracing. We conclude by highlighting the students’ activities on a task that we 
implemented during a later clinical interview in which we asked the students questions that 
we conjectured would explicitly raise the notion of a parametrically defined function. 

 
Overview of students’ activities addressing the (filling) Bottle Problem 

As the teaching experiment progressed, the students exhibited activities indicative of 
reasoning about graphs as emergent traces representing two covarying quantities they 
conceived as constituting some situation. For instance, during the first part of the Bottle 
Problem each student conceived that the two quantities increase in tandem and then 
determined how the volume of liquid changes for equal successive increases in liquid height; 
each student coordinated how the volume and height of liquid in a bottle covaried in terms of 
direction of change (MA2) and amounts of change (MA3). Each student then created a graph 
while maintaining an explicit focus on how all drawn points and traces represented the 
relationship she conceived between the height and volume of liquid.  

As an example, consider Katlyn’s activity as she created her graph (see Figure 3c). Katlyn 
had already marked equal changes of height in her bottle (Figure 3a) and shaded the first 
three areas representing the volume in these height intervals (Figure 3b) (Excerpt 1).  
Excerpt 1. Katlyn coordinates the relationship between liquid volume and liquid height using 
the bottle. 
Katlyn:  This volume [the volume in (A)] is obviously smaller then this one [the volume in 

(B)]. But they’re, like when you add them together like that’s the height, or that’s 
the volume at that height. And then when we move from here to here [pointing to 
(B) and (C)] um this volume [the volume in (C)] is also bigger then the one before 
it [the volume in (B)] so when we add it on again it’s like continuing to grow… 
the volume is increasing [pause] more with equal changes in height 

Katlyn’s image of the situation entailed MA1-3 relative to the relationship between liquid 
height and liquid volume as the bottle filled. Katlyn then drew coordinate axes, marked equal 
changes along the horizontal height axis, and constructed her graph (Excerpt 2),  
Excerpt 2. Katlyn represents the relationship between volume and height in a graph. 
Katlyn:  This first equal change in height [pointing to (A) in Figure 3a] gives you like this 

much volume every single time [draws segments representing the volume in (A) at 
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each height increment, recreated as solid blue segments in Figure 3c]. So you’re 
always going to have that ‘cause we’re adding them up. Um and then the next one 
is going, like when we move up in height again [motioning from (A) to (B) in 
Figure 3a] the next volume that you’re going to add on is bigger. But since we’re 
adding them we can add that one to the rest of them [draws segments extending 
from the original segment at the second and successive equal changes of height 
representing the volume in (B) recreated as solid red segments in Figure 3c].  

Katlyn continued in this way as she constructed her graph representing the relationship 
she inferred from the situation. She reasoned about the magnitudes of the color-coordinated 
segments she drew as representing amounts of volume within specific height intervals, 
understanding that each added segment corresponded to an amount of volume added to the 
total volume. Katlyn’s careful attention to the quantities and use of magnitudes indicates 
Katlyn maintained an understanding of the trace of her curve as representing two magnitudes 
as represented in Figure 2. Using Thompson’s (2011) notation, she conceived her graph as 
composed of coordinate points (hε, vε) = (h(tε), v(tε)) with h(tε) and v(tε) representing height 
and volume as conceptual time, tε. elapses.  

  

(a)  (b)  (c)    (d)    
Figure 3: (a) Katlyn’s bottle (numbers and letters added for referencing), (b-c) Katlyn 

representing total volume with respect to height in the situation and graph, and (d) 
Katlyn’s resultant graph. 

Addressing water evaporating from the bottle 
After the students had constructed and discussed graphs for multiple bottles, we asked 

them to graph the relationship between height and volume of liquid in the bottle in Figure 3a 
as the liquid evaporated. We requested they complete this graph on the same board as a graph 
representing the relationship between height and volume of liquid in the bottle as the bottle 
filled. Indicating they did not anticipate that their previous graph could represent the posed 
relationship, the pair first drew a new set of axes then spent two minutes considering this new 
relationship and deciding how to label their axes. After they decided to label the horizontal 
axis height, as in Katlyn’s original graph (Figure 3d), Arya noted they should start at “full 
volume, full height.” Katlyn then pointed to her original graph (Excerpt 3).  
Excerpt 3. Katlyn describes how to represent the relationship between height and volume as 
water evaporates from the bottle. 
Katlyn:  It’s going to look backwards… We can literally just travel this way instead 

[motioning over the completed prior graph from the top-right most point back to 
the origin]. [To the researchers] We’re done, we’re just going to travel this way 
[again motioning over the original curve from the top-right most]. 

[Shortly after this, Katlyn elaborated as to how she conceived the graph as representing 
water evaporating from the bottle] 

Katlyn:  If we’re looking at it like equal changes of height… if we start at this, this height 
[pointing to the maximum height value on the horizontal axis] and this volume 
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[points to the maximum volume value on the vertical axis then to the top-left most 
point on the graph], and then, oh some water evaporated, now we’re at this new 
height [pointing to tick 4 in Figure 3b], now we’re going to be at this volume 
[placing her marker on her curve corresponding to the height and volume at tick 
4]. Okay more water evaporated [pointing to tick 3 in Figure 3b] now were at this 
height this volume [placing her marker on her curve corresponding to the height 
and volume at tick 3]… We don’t need a new graph, it’s the same.”  

As when addressing water entering the bottle, Katlyn’s careful attention to the 
magnitudes of quantities represented on the axes are indicative of emergent shape thinking. 
Katlyn now conceived the graph as (h2ε, v2ε) = (h(t2ε), v(t2ε)) with h(t2ε) and v(t2ε) decreasing 
as conceptual time in this second situation, t2ε, elapses (recreated in Figure 4a-c). Katlyn 
described this relationship by identifying how liquid volume in the bottle decreased for equal 
decreases in liquid height (MA1-2) with respect to this new situation.  

 
(a)   (b)   (c)   (d) 

Figure 4: (a)-(c) A recreation of the students’ graph as an emergent trace and (d) a recreation 
of their graph with the added arrow representing the direction of the trace. 

To investigate if using the same curve for a new context created a perturbation for the 
students, a researcher asked, “Is the situation the same? You’re ending up with the same 
graph.” Katlyn responded, “No, I just want to draw little arrows... we’re going this way now 
[draws an arrow on the curve pointing towards the origin, recreated in Figure 4d].” As she 
addressed the displayed graph representing two different situations, Katlyn represented this 
difference by adding an arrow to indicate the direction in which the graph is traced out with 
respect to the second situation; Katlyn parameterized her graph (from our perspective) with 
respect to conceptual time to differentiate how the displayed graph is traced out depending on 
the situation. Adopting Thompson’s (2011) notation, Katlyn understood the displayed graph 
as composed of points (h, v) representing the appropriate magnitudes of height and volume of 
liquid in the bottle, regardless if liquid is entering or leaving the bottle. In the first scenario, 
she understood (h, v) = (h1ε, v1ε) = (h(t1ε), v(t1ε)) with t1ε representing conceptual time as 
liquid enters the bottle. In the second scenario she understood (h, v) = (h2ε, v2ε) = (h(t2ε), 
v(t2ε)) with t2ε representing conceptual time as liquid evaporates from the bottle.  

 
Addressing the Car Problem 

During our on-going analysis, we conjectured that the students’ activities addressing how 
the same graph could represent the relationship between volume and height of liquid either as 
it enters or evaporates from a bottle may have led to their experiencing an intellectual need 
(Harel, 2007) for parametrically defined functions. Harel (2007) described, “The term 
intellectual need refers to a behavior that manifests itself internally with learners when they 
encounter an intrinsic problem—a problem they understand and appreciate” (emphasis in 
original, p. 13). Specifically, we conjectured the students experienced an intrinsic problem as 
they attempted to represent a new situation in a graph created to represent a different situation 
but, ultimately, appearing the same as another completed graph. The students resolved this by 
adding an arrow to their graph to indicate the direction of the trace producing the graph. 
Further, we hypothesized that this reasoning had the potential to support them in becoming 
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explicitly aware of the parametric nature of their reasoning as well as possibly bringing to the 
surface parametric functions.  

We intended to explore the extent that we could support the students in bringing the 
parametric nature of their reasoning to the forefront as they addressed the Car Problem that 
Saldanha and Thompson (1998) designed and used to investigate students’ covariational 
reasoning. We asked the students to represent the relationship between an individual’s 
(Homer) distances from two cities (Shelbyville and Springfield) as he travels back-and-forth 
on a road (Figure 5a). Because the relationship is such that neither distance is a function of 
the other distance, we conjectured raising the idea of function after each student constructed a 
graph might support her in reasoning about an explicitly defined parametric function.  

Both students initially described the directional variation (MA2) of each distance (e.g., as 
Homer moves from the beginning of his trip, the distance from each city decreases). As Arya 
attempted to represent this relationship in her graph, she drew a segment from right to left 
getting closer to the horizontal and vertical axis (indicated by (1) in Figure 5b). After Arya 
re-described the directional relationship she conceived (MA1-2), she moved to her graph and 
marked points on each axis to confirm her graphed segment represented that Homer’s 
distance from each city was decreasing (MA2) (indicated by (2) and (3) in Figure 5b). Arya 
continued this process to draw her completed graph (Figure 5c). As in previous situations, 
Arya conceived her graph as an emergent trace representing two projected covarying 
magnitudes, indicated by her explicit attention to the magnitudes of the quantities represented 
on the axes when drawing each segment. Further, and similar to the students’ activities 
addressing the Bottle Problem, Arya added an arrow to her completed graph (Figure 5c) to 
represent an additional aspect of the situation: the direction the graph was traced in 
correspondence to how Homer traveled along the road from the beginning of his trip. 

     
(a)     (b)    (c) 

Figure 5: (a) The Car Problem applet, (b) a recreation of Arya’s work, and (c) a recreation of 
Arya’s final graph. 

Arya subsequently described that her graph did not represent either distance as a function 
of the other. Hoping to raise the idea of a parametrically defined function, a researcher asked, 
“What if your input was total distance traveled and your output was two-dimensional?” He 
then described the output as being composed of both distance from Springfield and distance 
from Shelbyville. Arya stated that this relationship represented a function as each total 
distance input corresponded to exactly one pair of distances.  

Similarly, addressing whether the relationship with the same two-dimensional output but 
with ‘distance on the path’ as the input represented a function, Katlyn identified, “Well that’s 
what [my graph] shows, right?” Katlyn described that for any of Homer’s distances on the 
path there was only one corresponding coordinate point on her graph, concluding that this 
relationship represented a function. Katlyn added, “I understand, like, what I’ve been drawing 
this whole time is like, how I’m traveling on like this purple path. But I don’t, I never thought 
of that as my input, but it really is.” Both students were able to assimilate a question 
concerning a one-dimensional input and two-dimensional output to consider a parametrically 
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defined function after they had engaged in constructing the relationship and the graph as an 
emergent trace representing their conceived relationship.  

Katlyn spontaneously continued to consider the parametrically defined function. Katlyn 
wrote “Dist. on Path => (dist. Shelby, dist. Spring)” as a notational system she used to 
consider specific instances of Homer’s distance on the path and the corresponding instances 
of the two-dimensional output. After labeling the point representing Homer’s position on the 
path at Beg (labeled A for reference in Figure 6a), Katlyn continued (Excerpt 4). 
Excerpts 4. Katlyn re-constructs her graph as defined by a parametric function. 
Katlyn:  So my distance zero on my path [writes 0 =>, see Figure 6a], and my output, 

distance from Shelbyville is [marking a dashed line from A to the horizontal axis, 
indicated by (2)] like, um, three. [laughing] Whatever, it doesn’t matter, and then 
the distance from Springfield [motions as if drawing a line from A to the vertical 
axis, indicated by (3)], five [finishes writing 0 => (3, 5)]. So now I’d say I would 
start [pointing to A] at three five. Then I would do like one [writes 1 => as seen in 
Figure 6b]. Pretend that this is one [tracing along her graph from A to B]. 

KM:  So by, what do you mean by pretending this is one?  
Katlyn:  [pointing to B in Figure 6b] I guess like what, this is like [pause, points to a 

position on the road on the computer screen] one. I don’t know, the first portion 
that I’ve decided to call one on this purple curve [using her fingers to indicate an 
interval starting at Beg along the road in Figure 5a]. This is [pointing to B in 
Figure 6b] distance on my path, I’ve traveled a distance of one on my path then 
I’m this far away from Shelbyville [drawing a solid segment from B to the 
horizontal axis, indicated by (2) in Figure 6b] which is probably like two and then 
I’m [drawing solid line from B to the vertical axis, indicated by (3) in Figure 6b] 
this far away from Springfield which is like [finishes writing 1 => (2, 3), 
indicated by (4)]. And so it makes sense but I’m just like, you’d have to go at like 
really really really really small increments to get like the right thing, you know? 

 
(a)    (b)    (c) 

Figure 6: (a) and (b) recreations of Katlyn’s work and (c) an image of her final work. 

As Katlyn conceived of and represented the relationship with a one-dimensional input and 
two-dimensional output, she created her own notational system for such a relationship. 
Further, she considered that creating an accurate graph using this definition would require 
“really really really really small” incremental changes in her input. We note that although she 
choose specific values for each quantity (e.g., 0 => (3, 5)), to Katlyn the actual values were 
not critical to her thinking (e.g., “distance from Shelbyville is like, um, three. [laughing] 
Whatever, it doesn’t matter”); her reasoning was focused on comparing the magnitudes of the 
distances from each city with respect to changes in distance on the path and she used 
fictitious numbers to support her in doing this. Throughout, Katlyn’s understanding of the 
graph as an emergent trace of points representing a coordination of the distance from each 

19th Annual Conference on Research in Undergraduate Mathematics Education 376

19th Annual Conference on Research in Undergraduate Mathematics Education 376



city (i.e. a multiplicative object) supported her reasoning parametrically and becoming 
conscious of this reasoning. 

 
Discussion 

In this section we highlight important findings relative to the students’ covariational and 
parametric reasoning. We also relate our findings to existing research on students developing 
understandings of parameters and parametric functions.  
 
Students’ emergent shape thinking  

The students developed and maintained images of covariation we interpreted to be 
compatible with the descriptions of Thompson, Saldanha, and Moore (Moore & Thompson, 
2015, in preparation; Saldanha & Thompson, 1998; Thompson, 2011). Specifically, the 
students’ words and actions (e.g., Katlyn saying “we’re going this way now” as she traced 
along her curve recreated in Figure 4), along with their careful attention to the quantities’ 
magnitudes represented along the axes, indicate they imagined their constructed graphs as 
traces of a point, with the point representing a multiplicative object and the trace involving 
coordinating two covarying magnitudes.  

We highlight the interplay between the mental actions described by Carlson et al. (2002) 
and the students thinking of graphs emergently. Specifically, the students first constituted the 
situations in terms of covarying quantities (i.e., at MA1-3 in the Bottle Problem and at MA1-
2 in the Car Problem). After conceiving of covarying quantities in the situation, the students 
represented this relationship using a graph by carefully attending to the quantity on each axis 
and representing the directions (MA2) and/or amounts of change (MA3) they inferred from 
their activity constructing the situation. Throughout this process, the students’ mental actions 
(MA1-3) provided a root for the students accurately representing the relationships they 
conceived. That is, while the students anticipated that their graphs represented emergent 
traces coordinating two covarying quantities as described by Moore & Thompson (2015), in 
order to construct an accurate graphical representation they enacted MA1-3 as they 
constructed relationships with respect to the situation and then enacted MA1-3 in a graphical 
context in order to construct a graph representing an equivalent relationship. 
 
An intellectual need and explicitly coordinating three quantities  

Recall Harel (2007) described, “intellectual need refers to a behavior that manifests itself 
internally with learners when they encounter an intrinsic problem—a problem they 
understand and appreciate” (emphasis in original, p. 13). We conjecture the students’ 
activities addressing the Bottle Problem raised an intellectual need for parametric functions, a 
need that we capitalized on with the Car Problem. When addressing water evaporating in the 
Bottle Problem, the students’ activities resulted in their encountering an intrinsic problem: the 
students came to understand one curve as corresponding to two different experiential 
situations. This resulted in them seeking to determine how to differentiate between the two 
situations while using the same completed curve. We conjecture that this intellectual need, 
which was supported by their emergent shape thinking, was critical to the students 
considering the parametric nature of the relationships they represented. By understanding one 
curve as representing two different emergent traces, the students became explicitly aware of 
their thinking about the curve in terms of two related quantities and conceptual time.  

When addressing the Car Problem, we interpreted each student’s initial activities to 
indicate her reasoning parametrically about the relationship between Homer’s distance from 
the two cities covarying as Homer’s total distance or ‘distance on the path’ varied. However, 
the students did not explicitly conceive their graph parametrically until we described a 
relationship or function with a one-dimensional input and two-dimensional output. 
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Addressing this question, the students brought to the surface a particular conception of the 
graph, a graph as an emergent trace, in relation to “function” (i.e. a uniqueness 
mapping). Both students described such a parametrically defined relationship as representing 
a function with Katlyn explicitly addressing the novelty of this reasoning (e.g., “I never 
thought of that as my input, but it really is”).  

In one study examining students’ understandings of parametric functions and parameters, 
Keene defined dynamic reasoning as “developing and using conceptualizations about time as 
a dynamic parameter that implicitly or explicitly coordinates with other quantities to 
understand and solve problems” (2007, p. 231). Arya and Katlyn’s reasoning was compatible 
with Keene’s (2007) definition of dynamic reasoning with their initial activities in each 
problem being compatible with Keene’s description of implicitly coordinating time with other 
quantities. Although the students engaged in reasoning that was parametric or dynamic in 
nature when responding to both tasks, the students did not exhibit activities to indicate they 
were explicitly aware of the parametric nature of their reasoning until they addressed later 
questions that we designed to focus in this area. 
 
Developing parametric function understandings and the “same graph” 

Our data provides evidence that conceiving of and representing relationships between 
covarying quantities can lead to more formal parametric function understandings. For 
example, Katlyn’s activity addressing the Car Problem indicate how a student who engages in 
emergent shape thinking and then considers the parametric nature of this reasoning can 
spontaneously conceive of and use a notation for parametric functions and consider the 
importance of using small incremental changes of the input to draw an accurate 
representation of a parametrically defined relationship. Katlyn’s activity is compatible with 
other researchers’ findings that indicate students can leverage their quantitative and 
covariational reasoning to develop foundations for more formal mathematical ideas (Ellis et 
al., 2015; Johnson, 2012a; Thompson & Carlson, in press). 

Related to these findings, Stalvey and Vidakovic (2015) investigated how students 
conceive an invariant relationship between two simultaneously varying quantities with 
respect to a third quantity and how this reasoning relates to parametric functions. They were 
interested in how students might conceive of the rate of change of two quantities as 
independent from the third quantity (i.e., the parameter). Similar to our prompt involving 
water evaporating from a bottle, the researchers asked the students to consider water 
emptying from two identical coolers at different rates to investigate how students might 
conceive that the rate of change of height with respect to volume is the same regardless of the 
rate at which water emptied from the cooler.  

Stalvey and Vidakovic (2015) presented a genetic decomposition for parametric 
functions (a model for how an individual might construct an understanding of a specific 
mathematical concept), which included some features we observed in Arya and Katlyn’s 
reasoning. For instance, Stalvey and Vidakovic described a student imagining a point tracing 
out a curve in the coordinate system. Further, the researchers’ main focus (i.e., the last step of 
their genetic decomposition) involved students conceiving “a relationship between x and y as 
invariant” (ibid, p. 193) across two different experiential situations, which is compatible with 
Arya’s and Katlyn’s understanding of the graph in Figure 4d as (h, v) = (h(t1ε), v(t1ε)) and (h, 
v) = (h(t2ε), v(t2ε)).  

Although our students’ activities are compatible with some of Stalvey and Vidakovic’s 
genetic decomposition, our main interest was not on students conceiving of an invariant 
relationship between the rate of change of height and volume. Instead, our interest was 
students understanding one graph as being able to represent more than one possible trace. As 
such, our results provide a contrast to Stalvey and Vidakovic’s (2015) genetic decomposition 
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in regards to students’ developing parametric function understandings. Specifically, by 
engaging in emergent shape thinking the students in our study were attentive to the direction 
they conceived the graph being traced out; these students did not conceive of their graph for 
water entering and evaporating from the bottle as being “the same” or invariant in that the 
students understood that these situations resulted in different emergent, progressive traces.  

We note Stalvey & Vidakovic’s (2015) interest was in students developing an 
understanding that the rate of change of two parametrically defined quantities with respect to 
each other does not depend on the parameter and our focus was on students coordinating two 
covarying quantities without an explicit focus on the rate of change of the two quantities. We 
conjecture these two foci complement each other. If students first construct and represent 
different relationships via emergent shape thinking they likely would be better suited to 
coordinate relative changes of one graphed quantity with respect to the other graphed 
quantity with the explicit understanding that the rate of change of the two quantities with 
respect to each other does not depend on the parameter. For example, consider two 
parametric functions, t→ (x, y)  and t→ (u,v) , 0 ≤ t ≤ 2π , such that (x, y) = (t, sin(t)) and (u, 
v) = (2π - t, sin(2π - t)). A student who engages in reasoning compatible with Thompson’s 
and Salandha’s descriptions of covariation (Moore & Thompson, 2015, in preparation; 
Saldanha & Thompson, 1998; Thompson, 2011) imagines (x, y) and (u, v) as producing 
different emergent traces (Figure 7a-c) that result in the same completed graph (Figure 7d). 
Compatible with Stalvey and Vidakovic’s (2015) focus, as the student re-constructs her 
images of the phenomena and relationships between the quantities, she can choose to 
consider the relationships between the paired quantities without the parameter t, possibly 
leading to the student identifying invariances between the relationships defined by y = f(x) 
and v = g(u) including their respective rates of change. Further, the interplay of these two 
approaches may lead to students engaging in even more sophisticated and nuanced 
covariational reasoning (e.g., conceiving in this case as x increases from 0 to π/2, y increases 
at a decreasing rate and as u decreases from π/2 to 0, v decreases at an increasing rate and 
produces the same completed graph). 

  
(a)      (b) 

   
(c)      (d) 

Figure 7: Four instantiations of the trace of (x, y) and (u, v). 

Implications and Future Research  
Unlike other researchers who have set out to examine students’ understandings of 

parameters and parametric function in differential equations or calculus settings (Keene, 
2007; Stalvey & Vidakovic, 2015; Trigueros, 2004), we intended to examine students’ 
understandings of pre-calculus concepts through their quantitative and covariational 
reasoning; although this reasoning is parametric in nature (see Thompson, 2011), we did not 
expect to examine the students developing explicit parametric understandings. The fact that 
the students spontaneously engaged in reasoning that we interpreted as creating an 
intellectual need for parametric functions has both curricular and research implications.  

First, these findings support researchers’ conjectures (Carlson et al., 2002; Kline, 1970, 
1974; Oehrtman, Carlson, & Thompson, 2008; Smith III & Thompson, 2008; Thompson, 
2011; Thompson & Carlson, in press) that curricular approaches providing students 
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opportunities to reason about relationships between quantities can be productive for students’ 
function understandings. Although this report highlighted the students’ construction of 
parametric functions, Arya and Katlyn’s activities considering a one-dimensional input and 
two-dimensional output gives more general insights into the students’ function 
understandings. Each student understood a question about the ‘function-ness’ of a 
relationship required explicitly defining input and output quantities then considering if there 
was a unique output value for each input value. Hence, researchers and curriculum designers 
might examine how providing students opportunities to construct and represent relationships 
between covarying quantities can support their developing formal function understandings.  

Second, future researchers and curriculum designers might examine how providing 
students with experiences in constructing graphs as emergent traces can provide foundations 
for more explicit and formal introductions to parametric functions. For instance, and 
stemming from the current study ending before we could more extensively pursue the 
students’ reasoning about parametric functions, researchers and educators should further 
explore how using different situations that result in students constructing and reasoning about 
the same completed graph via different emergent traces has the potential to create an 
intellectual need for parametric functions.  

 
Concluding Remarks 

Before the onset of the teaching experiment we conjectured that students reasoning about 
relationships quantitatively and covariationally could be productive for their mathematical 
learning and set out to further explore students’ reasoning in situations we intended to 
provide them to opportunities to engage in such reasoning. Although we did not set out to 
explore students developing understandings of a particular mathematical concept, the 
students engaging in reasoning about relationships quantitatively and covariationally led to 
their constructing, re-constructing, or creating intellectual needs for several content areas 
typically presented in K-16 school mathematics (e.g., parametric functions, inverse functions, 
and function more generally).  

We find this notable for several reasons. First, this leads us to reiterate researchers’ calls 
(Carlson et al., 2002; Oehrtman et al., 2008; Smith III & Thompson, 2008; Thompson & 
Carlson, in press) for increased attention to students’ quantitative and covariational reasoning 
in K-16 school mathematics. Second, we highlight that if mathematics education researchers 
are too strictly focused on students constructing specific content in K-16 school mathematics 
(e.g., certain function classes), then we as researchers limit our scope to these specific ideas. 
In such cases, as with Stalvey & Vidakovic (2015), we can construct descriptions that viably 
explain how someone with a sophisticated understanding of a concept may have developed 
such an understanding but overlook how students who are novices with these concepts can 
develop foundational understandings that later support them in developing these more 
sophisticated understandings (Thompson, 2002). For instance, by focusing on different ways 
students might conceptualize graphs as emergent traces and the products of such reasoning, 
we identified students engaging in reasoning that supported them in developing function and 
parametric function understandings. We conjecture engaging in quantitative and covariational 
reasoning can support students in developing foundational ideas for other content areas in K-
16 mathematics (e.g., coordinate systems, constant and varying rates of change, 
differentiation) in ways that can be overlooked if we only focus on specific content topics.  
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Re-claiming: One way in which conceptual understanding informs proving activity 
 

David Plaxco 
University of Oklahoma 

Abstract: In this research, I set out to elucidate the construct of Re-Claiming - a way in which 
students’ conceptual understanding informs their proof activity. This construct emerged 
during a broader research project in which I analyzed data from individual interviews with 
three students from a junior-level Modern Algebra course in order to model the students’ 
understanding of inverse and identity, model their proof activity, and explore connections 
between the two models. Each stage of analysis consisted of iterative coding, drawing on 
grounded theory methodology (Charmaz, 2006; Glaser & Strauss, 1967). In order to model 
conceptual understanding, I draw on the form/function framework (Saxe, et al., 1998). I 
analyze proof activity using Aberdein’s (2006a, 2006b) extension of Toulmin’s (1969) model 
of argumentation. Reflection across these two analyses contributed to the development of the 
construct of Re-Claiming, which I describe and explore in this article. 

Key words: Mathematical Proof, Conceptual Understanding, Abstract Algebra 

Mathematical proof is an important area of mathematics education research that has 
gained emphasis over recent decades. Inherent in the process of proving is the notion that one 
must validate (or refute) some mathematical relationship that one might not necessarily know 
before he or she engages in the activity of proving. Each proof involves the statement of a 
mathematical relationship, which is either intuitively driven or presented to the individual, 
and the validity of which is either in question or taken as unknown. The individual then sets 
out to draw on his or her specific notions about the concepts involved in the relationship in 
order to show that the relationship is valid relative to his or her own mathematical reality, 
logic, reasoning, and perception of expectations within a mathematical community in which 
he or she might intend to communicate such proof activity. Once the relationship is validated 
(or refuted), there is new potential for the prover to begin to incorporate this new relationship 
into his or her understanding of the concepts involved (perhaps slowly and over time, perhaps 
quickly and with immediate consequences). In this brief description of the proving process, 
one might identify two general interactions: the ways in which a prover’s current conceptual 
understanding informs proving activity in the moment and the potential the individual has to 
alter his or her understanding of the very concepts about which he or she is proving. 

The majority of empirical research in proof focuses on individuals’ proof production 
(e.g., Alcock & Inglis, 2008), individuals’ understanding of or beliefs about proof (e.g., Harel 
& Sowder, 1998), and how students develop notions of proof as they progress through 
higher-level mathematics courses (e.g., Tall & Mejia-Ramos, 2012). Researchers have also 
generated philosophical discussions that explore the purposes of proof (e.g., Bell 1976; de 
Villiers, 1990). Much of this latter discussion centers on the explanatory power of proof (e.g., 
Weber, 2010), with the primary focus being on the techniques and methods involved in a 
given proof (e.g., Thurston, 1996), rather than the development of concepts or definitions 
(Lakatos, 1976). Few studies, however, use grounded empirical data to explicitly discuss the 
relationships between an individual’s conceptual understanding and his or her engagement in 
proof (e.g., Weber, 2005). Rather, research tends to isolate proof as a discipline in-and-of 
itself – relatively decontextualized from the specific mathematical conceptions the prover 
brings to bear in a given situation. In this research, I focus on individual students’ 
engagement in Abstract Algebra proofs that involve inverse and identity. Specifically, I seek 
to investigate the question: “How might students’ conceptual understanding of identity and 
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inverse relate to their proof activity?” In this article, I introduce a construct, re-claiming, that 
addresses one way in which conceptual understanding informs proving activity. I then 
provide examples from one participant’s interview responses that illustrate the underlying 
interactions between conceptual understanding and proof activity involved in re-claiming. 
 

Theoretical Frameworks 

In this research I operationalize participants’ conceptual understanding using Saxe et al.’s 
constructs of form and function (Saxe, Dawson, Fall, & Howard, 1996; Saxe & Esmonde 
2005; Saxe et al, 2009). Throughout the literature, forms are defined as cultural 
representations, gestures, and symbols that are adopted by an individual in order to serve a 
specific function in goal-directed activity (Saxe & Esmonde, 2005). Three facets constitute a 
form: a representational vehicle, a representational object, and a correspondence between the 
representational vehicle and representational object (Saxe & Esmonde, 2005). Saxe focuses 
on the use of forms to serve specific functions in goal-directed activity as well as shifts in 
form/function relations and their dynamic connections to goal formation. Through this 
framework, learning is associated with individuals’ adoption of new forms to serve functions 
in goal-directed activity as well as the development of new goals in social interaction. Saxe, 
Dawson, Fall, and Howard (1996) describe how one might think of learning using 
form/function relations, saying, “Mathematical development in the form/function framework 
can be understood as a process of appropriating forms that have been specialized to serve 
developmentally prior cognitive functions and respecializing them such that they take on new 
properties” (p. 126). Accordingly, the form/function framework provides an appropriate 
theoretical framing for investigating the ways that individuals’ understanding of identity and 
inverse relates to their engagement in the goal-directed activity of proving. 

Saxe (1999) discusses how a form can be schematized as a vehicle for mathematical 
meaning. This schematization involves a representational vehicle, a representational object, 
and a semantic mapping (correspondence) between vehicle and object (p. 23). Saxe (1999) 
goes on to state that, “inherent in the microgenetic act is a schematization of a 
correspondence between the latent qualities of the vehicle and object such that one can come 
to stand for the other” (p. 24). He continues, “individuals structure cultural forms … into 
means for accomplishing representational and strategic goals. This dynamic process allows 
for the flexibility of forms to serve different functions in activity, in that the same forms may 
be structured into means for accomplishing different ends” (Saxe, 1999, p. 26). These quotes 
draw focus toward the ways in which forms are able to shift during goal-oriented activity. 
This aspect of the form/function framework informs the focus of the current study by drawing 
attention to the ways in which participants structure the forms and functions upon which they 
draw during proof activity, specifically with regards to the ways in which specific forms 
might support varied reasoning within different proving contexts. 

 

 
Figure 1. Visual representation of Toulmin models 

In order to model participants’ proof activity, I use Aberdein’s (2006a) adaptation of 
Toulmin’s (1969) model of argumentation. Several researchers have adopted Toulmin’s 
model of argumentation to document proof (e.g., Fukawa-Connelly, 2013). This analytical 
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tool organizes arguments based on the general structure of claim, warrant, and backing. In 
this structure, the claim is the general statement about which the individual argues. Data are 
general information, facts, rules or principles that support the claim and a warrant justifies the 
use of the data to support the claim. More complicated arguments may use backings, which 
support the warrant; rebuttals, which account for exceptions to the claim; and qualifiers, 
which state the resulting force of the argument (Aberdein, 2006a). This structure is typically 
organized into a diagram, with each part of the argument constituting a node and directed 
edges emanating from the node to the part of the argument that it supports (Figure 1).  

Aberdein (2006a) provides a thorough discussion of how Toulmin models might be 
extended to organize mathematical proofs, including several examples relating the logical 
structure of an argument to a Toulmin model organizing it. Using “layout” to refer to the 
graphic organization of a Toulmin model, Aberdein includes a set of rules he to coordinate 
more complicated mathematical arguments in a process he calls combining layouts: “(1) treat 
data and claim as the nodes in a graph or network, (2) allow nodes to contain multiple 
propositions, (3) any node may function as the data or claim of a new layout, (4) the whole 
network may be treated as data in a new layout” (p. 213). The first two rules are relatively 
straightforward – the first focuses on the treatment of the graphical layout, as for the second, 
one can imagine including multiple data sources in the same data node. The third and fourth 
rules provide a structure for combining different layouts and rely on organizational principles 
that Aberdein uses. He provides examples of combined layouts (Figure 2).  

 

     
Figure 2. Five Ways of Combining Layouts (Aberdein, 2006a, p.214) 

 
Together, these two theoretical frameworks support the development deeper models of 

the participants’ conceptual understanding and proof activity. Further, juxtaposition of these 
models, affords more holistic insight into the motivations of participants’ proof activity, 
specifically contextualizing the argumentation that a participant develops in the moment 
relative to documented consistencies in his or her ways of thinking as well as affording 
insight into subtle, in-the-moment shifts in the ways that participants draw on and use the 
very concepts about which they are proving. This directly addresses a student’s proof activity 
as situated relative to his or her conceptual understanding, each of which is treated as an 
emergent, dynamic facet of the student’s mathematical reality. In short, the combined use of 
these frameworks allows researchers hold both concept and activity as integral and 
integrated, each continually informing the other throughout the student’s proving process.  
 

Methods 

Data were collected with nine students in a Junior-level introductory Abstract Algebra 
course, entitled Modern Algebra. The course met twice a week, for seventy-five minutes per 
meeting, over fifteen weeks. The curriculum used in the course was Teaching Abstract 
Algebra for Understanding (TAAFU; Larsen, 2013), an inquiry-oriented, RME-based 
curriculum that relies on Local Instructional Theories that anticipate students’ development 
of conceptual understanding of ideas in group theory. Three individual interviews (forty-five 
to ninety minutes each) took place at the beginning, middle, and end of the semester, 
respectively. These interviews were semi-structured (Bernard, 1988) and used a common 
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interview protocol so that each participant was asked the same questions as the others. Un-
planned follow-up questions were asked during the interview to probe students’ descriptions 
and assertions. The goal for each interview was to evoke the participants’ discussion of 
inverse and identity and engage them in proof activity that involved inverse and identity. I 
developed initial protocols for these interviews, which were then discussed and refined with 
fellow mathematics education researchers. 

Each interview began by prompting the student to both generally describe what “inverse” 
and “identity” meant to them and also to formally define the two mathematical concepts. 
Additional follow-up questions elicited specific details about what the participant meant by 
his/her given statements, figures, etc. The interview protocol then engaged each participant in 
specific mathematical tasks aimed to elicit engagement in proof or proof related activity. 
Each participant was asked to prove given statements, conjecture about mathematical 
relationships, and describe how he or she might prove a given statement. As with the 
questions about defining, each of these tasks had planned and unplanned follow-up questions 
so that all participants were asked at least the same base questions, but their reasoning was 
thoroughly explored. Throughout the interviews I kept field notes documenting participants’ 
responses to each interview task. I also audio and video recorded each of the interviews, and 
all participant work and the field notes were retained and scanned into a PDF format. As I 
shifted to analysis of the data, I narrowed my focus to three of the participants (John, Tucker, 
and Violet) and transcribed each interview, including thick descriptions of participants’ 
gestures and the timing of pauses in participants’ speech. 

The retrospective analysis of the three participants’ interview responses consisted of three 
stages, which I ordered so that each stage built upon the previous stages toward a resolution 
of the general research question. This consisted of an iterative coding process to generate 
thorough models of the participants’ conceptual understanding and engagement in proof and 
proof-related activity. I analyzed each participant’s data separately, coordinating each 
analysis chronologically so that the model of each participant’s conceptual understanding 
corresponded with his or her proof activity over the semester. I then investigated relationships 
between each participant’s conceptual understanding and proof activity, exploring instances 
in which meaningful interactions between understanding and activity occurred.  

 
Modeling individual students’ conceptual understanding 

The form/function analysis for participants’ understanding consisted of iterative analysis 
similar to Grounded Theory methodology (Charmaz, 2006; Glaser & Strauss, 1967). This 
analysis is differentiated from Grounded Theory most basically by the fact that the purpose of 
this specific analysis was not to develop a causal mechanism for changes in the students’ 
conceptual understanding, but rather that it was used to develop a detailed model of students’ 
conceptual understanding at given moments in time. For each interview transcript, I carried 
out an iteration of open coding targeted towards incidents in which the concepts of inverse 
and identity were mentioned or used. In this iteration, I focused on the representational 
vehicles used for the representational objects of identity and inverse and pulled excerpts that 
afforded insight into the correspondence that the participant was drawing between the 
representational vehicle and object in the moment. Along with the open codes, I developed 
rich descriptions of the participants’ responses that served as running analytical memos. After 
the open coding, I carried out a second iteration of axial coding using the constant 
comparative method, in which open codes were compared with each other and generalized 
into broader descriptive categories. These categories emerged from the constant comparison 
of the open codes and were used to organize subsequent focused codes until saturation was 
reached. Throughout this process, I wrote analytical memos documenting the decisions that I 
made in forming the focused codes and, in turn, providing an audit trail for the decisions 
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made in the development of the emerging categories. This supports the methodology’s 
reliability (Charmaz, 2006). 

  
Modeling proof activity 

In the second stage of analysis, I first separated statements that conveyed a complete 
thought, initially focusing on complete sentences and clauses. I then reflected on the intention 
of each statement, focusing on prepositions and conjunctions that might serve to distinguish 
the intentions of utterances that comprise the sentence or clause. Following this, I compared 
these utterances to the model’s constructs, focusing on which node an utterance might 
comprise. I constantly and iteratively compared each utterance relative to the overarching 
argument in order to parse out how the utterance served the argument in relation to other 
statements within the proof. For each proof, I then generated a working graphic organizer 
(i.e., a figure with the various nodes and how they are connected), including corresponding 
transcription highlighting the structure of the participant’s argument. I then iteratively refined 
the graphical scheme to more closely reflect the structure of the argument as the participant 
communicated it. After this process, I completed a final iteration in which I compared the 
scheme to the participant’s communication of the proof in its entirety to ensure that the model 
most accurately reflected the participant’s communication of the proof. An expert in the field 
then compared and checked the developed Toulmin schemes against transcript of the 
interview in order to challenge my reasoning for the construction of the scheme, supporting 
the reliability of the constructions of the Toulmin schemes.  

 
Relating conceptual understanding and proof 

During the third and final stage of analysis, I focused on the participants’ use of forms 
and functions within nodes of the Toulmin scheme, comparing the roles that specific forms 
and functions served in various nodes within the argument. I also focused on the shifts in 
which the participants’ generated new, related arguments, specifically attending to concurrent 
shifts in forms and functions. I compared across arguments, looking for similarities and 
differences between the forms upon which the participant drew and the functions that the 
forms serve within the respective arguments. As in the previous stages, the analysis across 
conceptual understanding and proof centered on an iterative comparison of the patterns 
emerging across the analyses of the three participants’ argumentation. In this comparison, I 
noted differences and similarities in the overall structures of Toulmin models for arguments. 
Further, I attended to the aspects of form/function relations that served consistent roles across 
similar types of extended Toulmin models. I continuously built and refined hypothesized 
emerging relationships through constant comparative analysis and memos. Through this 
process, I characterized constructs that unify the patterns found between the roles forms and 
functions of identity and inverse served across Toulmin schemes for the three participants. 
 

Results 

In this section, I discuss data from Tucker’s second (midsemester) interview in order to 
demonstrate the construct of re-claiming that emerged during the third stage of analysis. I 
first discuss specific aspects of the form/function model of Tucker’s understanding of inverse 
and identity. These codes of Tucker’s conceptual understanding are relevant for discussing 
selected parts of his response to Question 7 of the protocol, which asked the participants to 
prove or disprove whether a defined subset H of a group G was subgroup of G (Figure 3). 
The reader might recognize the set H in question as the normalizer of the element h. This is 
can equally be thought of as the subgroup of elements that commute with h or the set of 
elements that fix h under conjugation, as the definition in the problem statement is structured. 
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Importantly, at the time of the interview, the notions of conjugation and normalizer had not 
been address in class. The students were familiar with proving whether subsets were 
subgroups, although, to this point in the semester, this often occurred with specific 
instantiations of subsets that the students could enumerate, rather than set notational 
definitions, although the participants were familiar with notation used to define subsets.  

 
“Prove or disprove the following: for a group G under operation * and a fixed 

element h ∈G, the set H = {g ∈ G : g*h*g-1 = h} is a subgroup of G.” 
Figure 3. Asking participants to prove about the normalizer of h 

 
For the sake of space, I have chosen to share three sub-arguments of Tucker’s proof in 

response to question 7, specifically because they help demonstrate the construct of re-
claiming without shifting between different participants’ conceptual understanding and proof 
activity or shifting the focus of mathematical content too drastically. Further, I focus on 
Tucker’s understanding of inverse so that the reader might gain a better sense of how Tucker 
drew on forms of inverse to serve specific functions in his goal-oriented activity. Tucker’s 
response to Question 7 lasted about 40 minutes and involved several shifts between the three 
subgroup rules. Because of this, Tucker’s proving activity in response to the prompt was 
modeled with Toulmin schemes for 11 sub-arguments, three of which are discussed in this 
article. These three sub-arguments provide a glimpse into Tucker’s proving process in his 
effort to show that H satisfies the inverse and closure subgroup rules (that H contains each of 
its element’s inverse and that the product under the group operation, *, of any two elements 
in H is also an element of H).  

 
Form/function codes for Tucker’s understanding of inverse 

Tucker’s discussion throughout the interviews supported the development of several 
codes for functions of inverse, three of which he used during the parts of his proof activity 
discussed herein: an “end-operating” function of inverse in which Tucker operates on the 
same end of both sides of an equation with a form of inverse, a “vanishing” function of 
inverse in which an element and its inverse are described as being operated together and are 
removed from an algebraic statement, an “inverse-inverse ” function of inverse characterized 
by an element serving a function of inverse in relation to its inverse, and an “inverse of a 
product” function of inverse in which the inverse of a concatenation (or product) of elements 
is the reverse order of the inverses of those elements (e.g., (g*h)-1 = h-1*g-1) . Throughout his 
proof activity in these excerpts, Tucker draws on the “letter” form of inverse to serve these 
functions. Although these functions of inverse are consistent with ways inverses are typically 
used in formal mathematics, Tucker drew on these functions with varying fidelity to their 
formal treatment depending on the problem contexts in which he was engaged. Tucker 
continually demonstrated that he was able to use the “letter” form of inverse to serve these 
functions of inverse in order to appropriately manipulate equations and maintain logically 
consistent equations. When considering these functions of inverse relative to the Toulmin 
models of Tucker’s proof activity, the functions tended to serve as warrants within Sequential 
layouts, connecting equations (serving as data) to logically equivalent equations (serving 
initially as a claim, then as data for the next claim in the sequence). This is evident in two of 
the three sub-arguments discussed in this article. 
 
Proving that H satisfies the inverse subgroup rule 

As mentioned, I will discuss three sub-arguments of Tucker’s proof that help to explicate 
the construct of re-claiming. During his response to Question 7, Tucker read over his work 
saying, “I- you know what I might do actually?” (line 1078). He then explained 
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So, right now, we have g star h star g inverse is equal to h. We want to get to 
somewhere that looks like- … Want to show. g inverse star h star g is equal to h. In 
order for the inverse of g to satisfy this (points to definition of H) right here. Cause 
that's what you do when you put in the g inverse. (lines 1084-1086).  

With this excerpt, Tucker began a subargument (Figure 4) of his broader, overarching proof 
for Question 7 in which he attempted to show that the set H contains the inverse of each of its 
elements. He began with the equation used to define H, saying, “right now, we have g star h 
star g inverse is equal to h” (line 1085), which serves as initial data (Data1.1) for the 
argument. He then described wanting to show that g-1*h*g = h, which serves as the claim in 
the subargument (Claim1). He supported this claim by explaining that this goal means that g-1 
satisfies the given equation, saying, “Cause that's what you do when you put in the g inverse” 
(line 1087). This warrants the claim by reflecting Tucker’s previous activity in which he 
replaced g in the equation used to define H with its inverse and drew on the “inverse-inverse” 
function of inverse to rewrite the equation (g-1*h*g = h). Although he had discussed the need 
to show that the set H satisfies the inverse subgroup rule earlier in his response, this the first 
time during his response that Tucker outlined a plan for demonstrating that the set contained 
inverses. This constitutes a shift in Tucker’s description of what it would mean for the set H 
to contain inverse elements. Specifically, he anticipates manipulating the definition of H to 
result in the same equation he had obtained by substituting g-1 into the definition of H. 
 

 
Figure 4. Tucker’s inverse subproof in response to Interview 2, Q7 

 
Tucker then continued, explaining how he might manipulate the first equation so that it 

looks like the second equation. Tucker began by left-operating with g-1, saying, “let's apply 
the g inverse to that. So, applying g inverse to both sides would give you h star g inverse is 
equal to g inverse star h” (Warrant1.1, lines 1089-1091). This process comprises a warrant 
that draws on the “end-operating” and the “vanishing” functions of inverse to support the 
claim that a new equation (Claim1.1/Data1.2) can be produced. This equation then serves as 
data as Tucker describes right-operating with g to produce the equation h = g-1*h*g 
(Claim1.2). Similar to the left-operation with g-1, this draws on the “end-operating” and 
“vanishing” functions of inverse to warrant the new claim. However, this action also subtly 
draws on the “inverse-inverse” function of inverse in that Tucker is using the element g as the 
inverse of its own inverse in order to cancel the g-1 on the right end of the left-hand side of 
the equation. Tucker then interpreted the result of this activity, saying, “Which is what we got 
right here. Meaning that the inverses for each element in G which satisfy that (points to 

Warrant: Which is what we got right here. (points to prior work) 
Meaning that the inverses for each element in G which satisfy that 
(points to definition of H, lines 1094-1095) Claim: meaning that [inverses] 

must be in H. (line 1095) 

 Data1: 

Claim1.2:  
h = g-1*h*g. (lines 1093-1094) 

Warrant1.1: So, applying g inverse to 
both sides would give you (lines 1090) 

Warrant1.2: and then next, you just apply 
g to [the right] side. (line 1091) 

Data1.1:  
g*h*g-1 = h. (line 1085) 

Claim1.1/Data1.2:  
h*g-1 = g-1*h. (lines 1090-1091) 

Claim1: Want to 
show. g-1*h*g = h.  
(lines 1085-1086) 

Warrant1: In order for the inverse of g to satisfy this right here (points to definition 
of H). Cause that's what you do when you put in the g inverse. (line 1086- 1087) 
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definition of H), mean that must be in H” (lines 1093-1095), which comprises a warrant and 
claim for the overarching argument that H contains the inverses of its elements. 

Tucker’s work in this instance exemplifies the construct of re-claiming (Figure 5), which 
I define as the process of reframing an existing claim in a way that affords an individual the 
ability to draw on a specific form and the functions that it serves in meaningful (to the 
student) ways to support the new claim, which the student is then able to connect back to the 
original claim. In this study, it was often the case that re-claiming occurred when a 
participant was asked to prove or disprove a general statement and, in response, interpreted 
the general statement using a specific form to produce a new claim in terms of this form. For 
instance, in this example, Tucker substituted the “letter” form of inverse into the definition of 
H to produce the equation g-1*h*g = h. An important part of successfully re-claiming is the 
consistency between the original claim and new claim. In this case, Tucker’s new claim 
successfully reflects the assumption that g-1 satisfies the definition of the set H. The 
individual must also be able to interpret any possible hypotheses or assumptions of the 
original claim with respect to the new form upon which he or she draws. Again, Tucker 
successfully uses the assumption that g satisfies the definition of H and uses this as initial 
data in his construction of an argument. Once the individual generates appropriate initial data 
from the given hypotheses and assumptions, he or she is then able to draw on the new form to 
serve specific functions, which affords the development of meaningful argumentation toward 
the new claim. The various functions of inverse that Tucker was able to draw on to 
manipulate the equation in the initial data allowed Tucker to produce meaningful connections 
between the initial data he generated and his re-claimed claim. Finally, after supporting the 
new claim, the individual should be able to provide a warrant for how or why this claim 
supports the original claim.  

 
Proving that H satisfies the closure subgroup rule 

Among the other sub-arguments that Tucker generated during his response to Question 7, 
he produced two sub-arguments to show that H satisfies the closure subgroup rule which also 
help demonstrate re-claiming. Tucker describes this subgroup rule, saying, “[we] have to 
prove that all of those star themselves will yield you back another one” (line 762), which 
constitutes Claim of this sub-argument (Figure 5). He follows this by describing his 
approach, saying, 

 
a be an element of H and b be an element of H, then by definition of the set, a 
star h star a inverse is equal to h and b star h star b inverse is equal to h. And it 
looks like we can just, like, set these equal to each other. So, a star h star a 
inverse is equal to b star h star b inverse. See, what we're trying to do here is 
prove that a star b is also in H to prove that there's closure. That's what you've 
got to do to prove closure. So- In order to prove- I'm just gonna write this out. 
Trying to show that a star b is an element H, which means a star b (mumbles, 
writing) - I'm just gonna need to write star between that - star h star a star b 
inverse is equal to h. So that's what we gotta, um, we need to prove. Um- 
Okay. I think it would be easiest to rearrange (points to a*h*a-1 = b*h*b-1) this 
so that we get that (points to (a*b)*h*(a*b)-1 = h). Hm. That's a good question. 
I don't know how we're supposed to do that, though. (lines 764-775) 
 

This excerpt provides transcript of the entirety of this sub-argument, except for Tucker’s 
initial claim. Notice that Tucker begins by fixing two elements of H, a and b. These serve as 
initial data (Data1) in a sequence in which Tucker draws on the definition of the set to 
warrant (Warrant1) the generation of two equations: a*h*a-1 = h and b*h*b-1 = h 

19th Annual Conference on Research in Undergraduate Mathematics Education 390

19th Annual Conference on Research in Undergraduate Mathematics Education 390



(Claim1/Data2). These equations then serve as data in order for Tucker to generate a third 
equation (a*h*a-1 = b*h*b-1) comprised of the left-hand sides of the first two equations set 
equal to each other, serving as a second claim that is warranted by the phrase “it looks like 
we can just set these two equal to each other” (lines 766-767). Together, these data, warrants, 
and claims follow the structure of a sequential argument that serves as data that Tucker 
indicates should eventually support the claim that the element a*b must satisfy the equation 
used to define H.  
 

 
Figure 5. Tucker’s first closure sub-argument in response to Interview 2, Q7 

 
Tucker follows this initial sequential argument by rephrasing the original claim to reflect 

the definition of the set H. Specifically, similarly to Claim1/Data2, Tucker replaces g and g-1 
with the algebraic statement “(a*b),” yielding the equation “(a*b)*h*(a*b)-1 = h.” This shifts 
the goal of the proof from a more general description of closure to an algebraic framing that 
reflects the data that Tucker has produced. He then provides a series of statements that 
qualify, warrant, and back the embedded argument to support this new claim. First, he alludes 
to rearranging the equation “a*h*a-1 = b*h*b-1” to “get that” while pointing to the written 
“(a*b)*h*(a*b)-1 = h,” but admits that he is unsure how he might do this, which qualifies his 
argument. Tucker then provides a warrant for how his data might serve the claim that 
elements in H satisfy closure, saying, “See, what we're trying to do here is prove that a star b 
is also in H to prove that there's closure” (lines 767-768). He adds, “That's what you've got to 
do to prove closure. So- In order to prove- I'm just gonna write this out” (lines 768-769), 
which serves as backing for this warrant. Tucker’s argument then stalls as he again expresses 
his uncertainty in the qualifier, saying, “This is a little trickier. I'm open to suggestions here” 
(line 784). At this point, Tucker has reframed the original claim that he has set out to prove 
and generated an equation that might serve as initial data in this argument, but reaches an 
impasse as he is unsure how he might be able to connect the two equations. 

Later in his response to Question 7, Tucker returned to the closure subgroup rule, making 

 

Backing: That's 
what you've got 
to do to prove 
closure. So- In 
order to prove- 
I'm just gonna 
write this out. 
(lines 768-769) 

Warrant: See, 
what we're trying 
to do here is 
prove that a star 
b is also in H to 
prove that there's 
closure. (lines 
767-768) 

Claim: Um, we have to prove that all of those star themselves will 
yield you back another one. (lines 761-762) 

Claim: Trying to show that a star b is an element h, which means 
[(a*b)*h*(a*b)-1 = h]. So that's what we gotta, um, we need to prove. 
(lines 770-772) 

 

Qualifier: I think it would be easiest to rearrange [a*h*a-1 = b*h*b-1] so 
that we get [(a*b)*h*(a*b)-1 = h]. Hm. That's a good question. I don't 
know how we're supposed to do that, though. (lines 773-775) 

Warrant2: And it looks like we 
can just, like, set these equal to 
each other. (lines 766-767) 

Warrant1: then by 
definition of the set, 
(line 765) 

Data1: [Let] a 
be an element of 
H and b be an 
element of H, 
(lines 764-765) 

Claim2: So, a star 
h star a inverse is 
equal to b star h 
star b inverse. 
(line 767) 

Claim1/Data2: a star 
h star a inverse is 
equal to h and b star h 
star b inverse is equal 
to h. (lines 765-766) 
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a new sub-argument (Figure 6) to show that H satisfies the closure rule. Tucker initially 
indicated that he is still unsure of how to prove that the set satisfies closure. When asked what 
tools he could use, Tucker replies, “existence of inverses and identity. I don't know” (line 
1148). The interviewer reminds Tucker that associativity holds and suggests, “Or you could 
just un-group stuff” (line 1154). This likely provided Tucker with some insight into a 
possible approach to the proof, as he said, “And, like, kinda like modify this right side as 
well, or- (4 seconds) Okay, so, if we bring that over-” and began writing. He then began this 
sub-argument by saying, “So, we know that a works and b works” (line 1163), which serves 
as the first data (Data1) in support of the claim, “We wanna show that a*b works” (line 1164, 
Claim). It is likely that Tucker is using the word “works” here to indicate that they satisfy the 
definition of H. This sense is supported by Tucker generating the equations a*h*a-1 = h and 
b*h*b-1 = h. Tucker then provides an argument that reflects his anticipated goal in the 
qualifier of the prior sub-argument, which he had described, saying, “I think it would be 
easiest to rearrange [a*h*a-1 = b*h*b-1] so that we get [(a*b)*h*(a*b)-1 = h]” (lines 773-774). 

 

 

Figure 6. Tucker’s second closure sub-argument in response to Interview 2, Q7 

Claim1: We wanna show that a*b works. 
(line 1163) 
 
Claim2: So, there's closure, which means 
this is true, (lines 1203-1204) 

Warrant: So, using 
associativity, we can, I 
guess, mul- like, kinda 
move things around so 
that we have two true 
things on both sides. 
(lines 1163-1165) 

Backing: So, I kinda 
wanna get- I wanna g- get 
both sides so that, like, 
maybe, like, one side looks 
like this a side and one side 
looks like that b side. (lines 
1185-1187) 

Data1: So, we know that a works and b works. (line 1163) 

Data2:  

Claim2.5: So, [b*h*b-1] would be equal to [a-1*h*a] would be true. (line 1203) 

Data2.1:  

Claim2.1/Data2.2:  

Claim2.2/Data2.3:  

Claim2.3/Data2.4:  

Claim2.4/Data2.5:  

Backing2.1: So, I kinda wanna get- I 
wanna g- get both sides so that, like, 
maybe, like, one side looks like this a side 
and one side looks like that b side. Um, so 
to do that, I could do, okay, well, get rid 
of this- these inverses on this side. (lines 
1185-1188) 

Warrant2.2: So, we'll 
apply on the right side an 
a, so it's gonna look- we 
can get that to equal, um, 
and we'll do a and b at the 
same time, I guess. (lines 
1188-1189) 

Warrant2.5.1: Because we e- we started out with [b*h*b-1 = h]  
and 

Warrant2.5.2: we also know that the inverse works. We proved earlier that 
the a inverse would work. So each inverse exists. (lines 1201-1203) 

Warrant2.1: Well, also, um, if we wanna kind of get rid of the brackets here, 
a star b inverse in brackets if we wanna get rid of those, would be b inverse 
star a inverse. (lines 1166-1167) 

Warrant2.4: a inverse we're applying (line 1200) 

Warrant2.3: Um, so to do that, uh, 
let's bring this a over to that- Oh. Let's 
bring the b over to that side, cause 
that's on that side. So, bringing that b 
over, (lines 1191-1192) 

Backing2.2: And now we 
kinda wanna separate the 
a's and b's, I think- would 
be the next goal. (lines 
1190-1191) 
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Tucker describes how he expects to approach the proof, saying, “So, using associativity, 
we can, I guess, mul- like, kinda move things around so that we have two true things on both 
sides” (lines 1163-1165), which serves to warrant Tucker’s re-claiming. He then draws on the 
“inverse of a product” function of inverse (Warrant2.2) to support rewriting the equation 
(a*b)*h*(a*b)-1 = h (Data2.1) as (a*b)*h *b-1*a-1 = h (Claim2.1/Data2.2). Tucker draws on 
this new equation to serve as data for developing yet another equation, first backing his 
activity by describing his reasoning for changing the equation, saying,  

 
So, I kinda wanna get- I wanna g- get both sides so that, like, maybe, like, one side 
looks like this a side and one side looks like that b side. Um, so to do that, I could do, 
okay, well, get rid of this- these inverses on this side. (lines 1185-1188) 

 
This supports a strategy that it seems Tucker anticipates helping to eventually generate the 
desired equation. Tucker generates the new equation by drawing on the “end-operating” and 
“vanishing” functions of inverse to simultaneously remove the a-1 and b-1 from the right end 
of the left-hand side of the equation and concatenate a and b on the right end of the right-
hand side of the equation, resulting in the new equation a*b*h = h*a*b (Claim2.2/Data2.3). 
In doing so, he warrants his activity by saying, “So, we'll apply on the right side an a, so it's 
gonna look- we can get that to equal, um, and we'll do a and b at the same time, I guess” 
(lines 1188-1189).   

Tucker continues by drawing on the same functions of inverse to remove the b that he had 
just concatenated on the right-hand side of the equation and concatenate b-1 on the left-hand 
side of the equation, essentially undoing part of his activity in which he generated the 
equation in (Claim2.2/Data2.3). He explains,  

 
And now we kinda wanna separate the a's and b's, I think- would be the next goal. 
Um, so to do that, uh, let's bring this a over to that- Oh. Let's bring the b over to 
that side, cause that's on that side. So, bringing that b over… (lines 1191-1192) 

 
This serves as warrant and backing for Tucker to generate the equation a*b*h*b-1 = h*a 
(Claim2.3/Data2.4). Tucker immediately follows Claim2.3 by saying, “a inverse we’re 
applying” (line 1200), which warrants the equation b*h*b-1 = a-1*h*a. Throughout this entire 
data-warrant-claim sequence, new equations are generated by Tucker’s manipulation of the 
previous equation, drawing primarily on the “end-operating” and “vanishing” functions of 
inverse, the “inverse of a product” function of inverse, and also, implicitly, the “inverse-
inverse” function of inverse. Having generated the equation b*h*b-1 = a-1*h*a, Tucker 
interprets his work, saying, “…we started out with this and we also know that the inverse 
works. We proved earlier that the a inverse would work. So each inverse exists. So, that 
would be equal to that would be true. So, there's closure, which means this is true” (lines 
1201-1204). In the first part of this excerpt, Tucker provides two warrants (Warrant2.5.1, 
Warrant2.5.2) that support the claim that the equation b*h*b-1 = a-1*h*a is true, seemingly 
drawing on the equation b*h*b-1 = h in Data1 and his prior sub-argument showing that H 
satisfies the inverse rule for subgroups, which supports the equation h = a-1*h*a. However, 
Tucker does not explicitly draw on these two equations or any sense of transitivity, instead 
saying “we started out with this” (lines 1201-1202) while pointing to the statement b*h*b-1 
and “a inverse would work. So each inverse exists” (lines 1202-1203), while pointing to the 
statement a-1*h*a. Tucker finally concludes, “So, there’s closure, which means this is true” 
(lines 1203-1204, Claim2). 

In this sub-argument, Tucker’s re-claiming activity is slightly different from the prior 
sub-argument. As before, Tucker begins by drawing on a specific form of inverse to reframe 
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the original claim that H is closed under the operation (*). He also generated initial data from 
the hidden hypotheses of the original claim (considering two elements that are elements of H; 
Data1). However, the data that Tucker chooses to manipulate in order to reach some 
conclusion in the Embedded, Sequential Toulmin scheme is the assumption that a*b satisfies 
the definition of H. He then develops a chain of reasoning that leads back to an equation that 
Tucker recognizes as verifiably valid based on his assumption in Claim1 that a and b each 
satisfy the definition of H. This reflects a not-uncommon proof approach in which the prover 
assumes the result that he or she intends to show and deductively shows that the result is 
equivalent to the assumption(s) he or she is able to make about the conjecture. Still, Tucker’s 
activity reflects a type of re-claiming in which he was able to draw on a specific form to 
generate a new claim and initial data. From this claim and data, Tucker leveraged specific 
functions of inverse to demonstrate that the initial data and new claim were logically 
equivalent. Tucker’s work is warranted by his initial claim that he would try and generate and 
equation that was true from his assumption that a*b satisfied the definition of H.  

 
Conclusions 

This discussion of Tucker’s proof activity should afford a sense of the various facets 
involved in re-claiming. Specifically, in re-claiming, it is not sufficient, to only reframe a 
claim. Rather, one must likely also reframe its related (often hidden) hypotheses. These 
aspects of reclaiming reflect the frequently taught proof mantras of “what do I know?” and 
“what do I want to show?” In this case, Tucker describes needing to show that g-1*h*g = h 
and begins with the equation g*h*g-1 = h, which reflects the assumption that g satisfies the 
definition of H. In the context of the form/function framework, these restated hypotheses 
serve as initial data (drawing on a specific form of identity or inverse) in a new argument in 
which the participant is able to draw on the form of identity or inverse with which the data is 
reframed to serve appropriate functions of identity and inverse in support of the new claim. 
The individual should then be able to reason that this new argument supports the original 
claim. In this sense, Re-Claiming provides a type of proof activity in which an individual’s 
conceptual understanding (forms upon which an individual draws and the functions that these 
forms are able to serve) informs his or her proof approach. Specifically, the access to a form 
that is able to serve specific functions affords the individual an opportunity to generate a 
meaningful argument that he or she would likely not have been able to produce without Re-
Claiming the initial statement. This activity is not necessarily an inherent necessity of a given 
conjecture, but rather depends on the individual’s understanding in the moment.  

The current research was constrained by several factors. First, my focus on three students’ 
responses to individual interview protocols limits analysis of the relationships between 
conceptual understanding and proof activity, warranting further analysis of different 
participants’ conceptual understanding and proof activity. Also, although this analysis was 
informed by the broader contexts of the classroom environment, the focus on the individual 
interview setting affords insight into a specific community of proof in which argumentation 
develops differently than in other communities. For instance, the structure of the interview 
setting necessitated that participants developed their arguments solely relying on their own 
understanding in the moment and for the audience of a single interviewer. My early 
observations of and reflections on the development of argumentation in the classroom and 
homework groups included the mutual development of argumentation in which participants’ 
argumentation was informed by their interactions. Accordingly, analysis of the other 
collected data is warranted.  

This research contributes to the field by drawing on the form/function framework to 
characterize students’ conceptual understanding of inverse and identity in Abstract Algebra. 
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This affords insight into the forms upon which students participating in the TAAFU 
curriculum might draw as well as the various functions that these forms are able serve. The 
broader research also contributes to the field by providing several examples of how 
Aberdein’s (2006a) extension of Toulmin’s (1969) model of argumentation might be used to 
analyze proofs in an Abstract Algebra context. Further, this research draws attention to an 
aspect of the relationships between individuals’ conceptual understanding and proof activity. 
These results situate well among the work of contemporary mathematics education 
researchers. For instance, Zazkis, Weber, and Mejia-Ramos (2014) have developed three 
constructs that also draw on Toulmin schemes to model students proofs in which the 
researchers focus on students development of formal arguments from informal arguments. 
These constructs provide interesting parallels with the three aspects of relationships between 
conceptual understanding and proof activity developed in the current research. Zazkis, 
Weber, and Mejia-Ramos (2014) describe the process of rewarranting, in which an individual 
relies on the warrant of an informal argument to generate a warrant in a more formal 
argument. However, the current research focuses more on the aspects of conceptual 
understanding that might inform such activity. 

Moving forward from this research, I intend to analyze the data from other participants’ 
individual interviews in order to develop more form and function codes for identity and 
inverse, affording deeper insight into the various form/function relations students in this class 
developed. Such analysis should also explore the proof activity of the other participants in the 
study, which would provide a larger sample of proof activity, in turn affording new and 
different insights into the relationships between mathematical proof and conceptual 
understanding. I also intend to analyze the sociomathematical norms and classroom math 
practices within the classroom. This will afford insight into the sociogenesis and ontogenesis 
of forms and functions at the classroom and small group levels in order to support and extend 
the individual analyses – which are focused on microgenesis – in the current research. 
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Physics students’ construction and use of differential elements  
in an unconventional spherical coordinate system  
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As part of an effort to examine students’ understanding of non-Cartesian coordinate systems 
when using vector calculus in the physics topics of electricity and magnetism, we interviewed 
four pairs of students. In one task, developed to compel students to be explicit about the 
components of specific coordinate systems, students constructed differential length and volume 
elements for an unconventional spherical coordinate system. While all pairs eventually arrived 
at the correct elements, some unsuccessfully attempted to reason through spherical or Cartesian 
coordinates, but recognized the error when checking their work. Analysis of student work 
identified actions and aspects of students' concept images when constructing differential vector 
elements. Findings suggest that attention to multiple components and dimensionality were useful 
aspects of students’ concept image, while students had difficulty appropriately applying the idea 
of projection.  
 
Key words: Coordinate Systems, Differential Elements, Physics, Vector Calculus 

 
It may seem obvious that the farther a physics student progresses within their degree program 

the more difficult the mathematical computation becomes, but physics does not employ 
mathematics as merely a calculational tool. It is equally important for students in upper-division 
physics courses to reason using mathematics in the development of their physical models when 
problem solving. Many problems in upper-division courses require students to walk a fine line 
between physical context and mathematical understanding, only to turn around and carry this 
mathematical reasoning back across the metaphorical high-wire to make sense of the physical 
context in which they started. For students in junior-level electricity and magnetism (E&M), this 
is no easy task. In fact, students in upper-division E&M courses have difficulty setting up 
appropriate calculations, interpreting mathematical results physically, accounting for underlying 
spatial situations, and accessing appropriate equations or methods of solutions (Pepper et al. 
2012). Thus we see that not only is mathematical understanding important, it is an area of 
difficulty for many students. 

E&M courses expect students to employ knowledge of single-variable calculus, multivariable 
calculus, and vector calculus. Notably, physics students' exposure to vector calculus and non-
Cartesian coordinate systems often occurs in physics courses before these topics are taught in a 
mathematics course sequence.  Physics students typically learn relevant concepts and theorems 
of vector calculus in their E&M course.1 The reason for the emphasis on vector calculus 
instruction is largely due to the need for physics students to use vector calculus as a conceptual 
reasoning tool, as well as the particular application of vector calculus in non-Cartesian 
coordinate systems. While infinite sheets or plates of charge can easily be solved with use of a 

                                                      
1 A greater asynchrony occurs in some introductory mechanics courses, in which mechanical 
work is defined as a line integral.  Many departments have a “mathematical methods for physics” 
course that surveys a wide range of mathematical concepts and techniques.  Still, in many cases 
vector calculus is taught far later in the course than is needed in a parallel E&M course.  
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Cartesian coordinate system, symmetries exist in common physical systems that favor other 
coordinates: point charges, spherical volumes, and spherical shells are more easily thought about 
in spherical coordinates, just as line charges and problems involving straight wires can be made 
quick work of with cylindrical coordinates. The choice of a coordinate system is one of the many 
tasks left to the student when problem solving.  

Hand in hand with the choice of a coordinate system, students are expected to use differential 
line, area, and volume elements, as well as position vectors that describe the locations of charges 
distributed over volumes, surfaces, and lines, in order to set up appropriate integrals. As many 
E&M equations involve vector calculus (line and area integrals), differential line and area 
elements are used as vector quantities and thus have a specific direction, while the volume 
elements are scalar. The ubiquitous nature of the differential element, coupled with coordinate 
system confusion, present an area of student difficulty at the boundary of mathematics and 
physics that is ripe for study.  

 
Related Literature 

Various physics education researchers have explored student difficulties with the 
mathematics applied in Electricity and Magnetism (E&M). Early work addressed student use and 
understanding of integration (Doughty et al., 2014; Meredith & Marrongelle, 2008; Nguyen & 
Rebello, 2011). As a part of this work, student understanding of the differential element began to 
come into focus. Nguyen and Rebello identified student difficulty determining the appropriate 
differential element when setting up integration, as well as particular difficulty with discerning 
the meaning of a differential area element (Nguyen & Rebello, 2011). Expanding upon this, later 
work identified what the differential represented in students' conceptual understanding of 
integration (Hu and Rebello, 2013). In many cases, students interpreted the differential as an 
identification of the variable of integration; in these cases the differential possessed no further 
physical meaning. This work highlights the fact that many students often disregard the true 
meaning of differential when performing calculations and is a common finding in the literature 
(Artigue et al., 1990; Jones, 2013; Nguyen & Rebello 2011; Sealey & Thompson, 2016). 

Little other work has looked at student understanding of differentials in a multivariable or 
vector calculus setting, where differentials have particular meaning in regards to a specific path 
of motion or area over which a flux is taken. As part of a larger paper detailing the many student 
difficulties in E&M, Pepper and colleagues found that students had difficulty articulating 
complex symmetry arguments and noted student mistakes with differential elements during a 
homework help session (Pepper et al., 2012). One group incorrectly wrote a spherical differential 
area as        , without the necessary        scaling factor needed to make it an 
appropriate area. Another group used        as a length element when calculating a line 
integral and became confused when they recognized that this possessed features of a volume. 
These types of errors are consistent with both a limited understanding of the differential and 
difficulties reasoning mathematically when accounting for the underlying spatial situations./ 

Physics education researchers have identified difficulties in student understanding when 
applying Gauss’s and Ampère’s Laws, two key equations of E&M courses that involve a surface 
integral and line integral, respectively (Guisasola et al., 2008; Manogue et al., 2006; Pepper et 
al., 2012; Wallace & Chasteen, 2010). Much of this work has looked at how students recognize 
and apply specific symmetries, due to the constraint of these problems requiring highly 
symmetric cases. The need for symmetry comes from the "inverse nature" of both laws 
(Manogue et al., 2006); rather than attempting to solve the line or area integral to obtain a result, 

19th Annual Conference on Research in Undergraduate Mathematics Education 398

19th Annual Conference on Research in Undergraduate Mathematics Education 398



students must make arguments about the direction and magnitude of  the electric and magnetic 
fields, in order to extricate the field terms from the dot product and integral. Other work in vector 
calculus has looked at how students have addressed calculation, understanding, and application 
of gradient, divergence, and curl in both mathematics and physics settings (Astolfi and Baily 
2014; Bollen et al., 2015). In particular it was found that while students were adept at 
mathematical calculation, they had little ability to reason physically about gradient, divergence, 
and curl when applied to vector fields. 

When it comes to the teaching and mathematical application of vector calculus, Dray and 
Manogue highlight numerous disciplinary conventions that can hinder students understanding 
(Dray and Manogue 1999; 2003; 2004). In particular, the lack of standardization of cylindrical, 
and spherical coordinates is of significant concern (2003). In mathematics courses, beginning 
with the introduction of two-dimensional polar coordinates,   is typically used as the azimuthal 
angle (rotating about the  -axis). When moving to a three-dimensional coordinate system, it is 
common practice for mathematicians to use   as the polar angle (measured from the z-axis). In 
physics the roles of the angles are swapped, with   as the polar angle and   the azimuthal angle. 
While the authors do not highlight any student work in particular, results from work published in 
2010 looking at students abilities to write    in spherical coordinates for six points, each located 
on a Cartesian axis, touched upon this as a student difficulty (Hinrichs, 2010). Of 28 volunteers, 
no student was able to correctly answer the original question by writing       , and only slightly 
fewer than half of the students were able to write the correct r,  , and   for each point. The most 
common mistakes were with the writing of the angles, with 20% of the total switching the values 
for   and  . While disciplinary conventions can be an obstruction to student understanding early 
in the course, even when these are addressed, students can still have difficulty constructing these 
differential elements.  

 
Research Design and Methodology 

The overarching goal of this study is to address student understanding and use of vector 
calculus in upper-division physics. By the end of the first semester of a year-long, junior-level 
E&M sequence, students are expected to have a working knowledge of spherical coordinates. As 
part of instruction in the course, students are taught how to build each term of a differential 
length element, a procedure replicated in the course textbook (Griffiths, 2013). The majority of 
the following semester is then spent using this coordinate system (as well as cylindrical and 
Cartesian coordinate systems) in particular problems. This involves making determinations of 
differential elements to use in integration and construction of position vectors. 

Given the importance of these differential elements and different coordinate systems to the 
calculations, the current focus of the research seeks to address the following questions: 

x How do students make sense of and work with coordinate systems, specifically 
cylindrical and spherical coordinates? 

x How do students construct differential vector elements in a given coordinate system? 
In order to address these questions further clinical think-aloud interviews were conducted 

with pairs of students (N=8) at the end of the first semester of a year-long, junior-level E&M 
sequence. Pair interviews allowed for a more authentic interaction and sharing of ideas between 
students with minimal influence from the interviewer. This report focuses on a task based on an 
unconventional spherical coordinate system (see Figure 1). Students were asked to conclude 
whether the system was feasible, and to build and verify the differential line and volume 
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elements. As students work through these tasks, we are able to see how they reason about the 
differential elements in a specific coordinate system, thus giving insight into the choice and use 
of these elements in their problem solving. 

 
Figure 1. (a) Conventional (physics) spherical coordinates; (b) an unconventional 
spherical coordinate system given to students, for which they were to construct 
differential length and volume elements. The correct elements for each system are in (c) 
and (d), respectively. 

 
The unconventional system, schmerical coordinates, is left-handed and depicts both angles as 

measured from the y-axis. The left-handed nature allows us to determine if any Cartesian 
elements presented by students are the result of recall or accurate (but unnecessary) projections. 
This also means   is placed differently than the analogous   in spherical coordinates while not 
changing the length element. Likewise, the placement of   is different than  . It should be noted 
that by symmetry and arguments based on the range of the angles,   can also be placed between 
the vector M and the   -plane. The variation in the placement of the angles from spherical 
coordinates requires students to recall and use various techniques of building differential 
elements. 

The theoretical framework we adopted for this preliminary stage of the study is that of 
concept image and concept definition (Tall and Vinner 1981). A student's concept image 
represents that student’s entire cognitive structure about a particular idea, including any 
properties, processes, and mental pictures a student may recall. Unlike the actual concept 
definition, the concept image is a dynamic construct dependent upon specific contexts and may 
contain elements that are contradictory or false. The idea of concept image has recently been 
adopted by physics education researchers studying student use of mathematics, particularly in the 
context of vector differential operators and integration in electromagnetism courses (Bollen et 
al., 2015; Doughty et al., 2014). 

A relevant framework from the physics education research literature is that of resources 
(Hammer, 2000), which is an extension of diSessa’s knowledge-in-pieces framework (diSessa, 
1993). These frameworks consider the elements of knowledge used in student problem solving in 
physics. More recent work has extended these to include reasoning elements and epistemological 
perspectives in the context of using mathematics in introductory physics (Tuminaro & Redish, 
2007) as well as mathematical procedures in more advanced physics (Wittmann & Black, 2015). 

We are limiting our analytical framework here to that of concept image; it is the more 
prevalent in the mathematics domain, which is where this work is situated. Future efforts will 
reconcile this framework with the resources model and possibly align the two frameworks for 
interdisciplinary work. 
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With the concept image framework in mind, each interview was videotaped and transcribed 
for analysis using modified grounded theory (Strauss & Corbin, 1998; Bryant & Charmaz, 2007). 
The tasks administered here provided us with views of students’ concept images of the 
differential length and volume elements. We also used the activity of element construction to 
observe the aspects of the concept images presented in student discussion. Analysis of student 
responses to the unconventional coordinate system allows us to develop a clearer picture of 
student understanding, as well as specific student difficulties (Heron, 2003) and successes when 
working with coordinate systems that they apply to particular problems throughout the semester.  

 
Results 

In addressing the feasibility of the unconventional coordinate system, all students correctly 
determined that schmerical coordinates would allow one to map any point in space. Students also 
made the determination that the unconventional system would be useful for solving the same 
types of problems as spherical coordinates. The similarity to spherical coordinates was 
challenging for some students, but upon recognizing that   and   covered the same range of   
radians, students recognized the similarity of the systems.    

Following a decision on the feasibility of the system, students were asked to construct a 
differential length element for the system. Analysis of students' concept images has allowed us to 
identify four particular aspects that students associate with and use when constructing a 
differential element as part of our interviews. Table 1 defines each aspect and provides an 
example of how students attended to and drew upon these aspects during construction. 

 
Aspects  Explanation  Example 1  Example 2  

Component 
& Direction 

Writing sum of 
terms 

Each component 
displaced 

independently 

(67) F: Yeah, so like there,   , 
there are three different   's. 
There is    with respect to  , 
   with respect to a,  , and    
with respect to  …  

(67) F: …you can change   and you can 
change   and you can change  , but if you 
change   the effects are different from if 
you change   or you change  .  

Dimensionality 
Units of length  

in each term 

(28-30) A:… This doesn't 
have any units of length…so, 
it needs to have some   term. 

(89) C:…but sine of something isn't a 
length, so we're going to have to also have 
something else in there.  

Differential 
Small changes 

(of 
displacements) 

(74) C: Right. So you have a 
change in your    is going to 
be your   , it's your change 
in your  .  

(147) E: …ok,    , so that means we're 
moving a little bit in   so we need the  , 
that's that, there and then times a little  , 
  . 

Projection 

Use of 
cosine/sine 
explicitly 

(not rote recall) 

(90-92) D: I mean, it's like 
      would put us where 
we're… down in the B hat 
range.  

(273) E: …but if we're pointed way up 
here, then we need to take the cosine so 
that we're, we have the component of   
that is actually in the   plane, and then 
we can move a    length amount...  

Table 1. Examples of the four aspects identified from student work when building differential 
length elements in the interviews. 

 
The component and direction aspect involved students’ attention to the summation of three 

different components as well as the idea that each component of the vector equation is displaced 
independently. Many of the students placed emphasis on the aspect of dimensionality, 
specifically attending to the need of each component to have units of length. Students used the 
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aspect of differential to talk about needing small displacements or changes in specific directions. 
Due to the nature of the coordinate system, the aspect of projection (obtaining a component of a 
vector in a particular plane) is relevant to appropriately explain the need for a      in the β-
component. However many students did not apply this last aspect to their construction.  

In addition to identifying necessary concepts for building there were several actions that 
students took during the interviews: rote recall of length elements from other systems; mapping 
of the variables to spherical or Cartesian; and grouping of elements, typically based on variable. 
Grouping as we identify it here is distinguishable from the grouping resource identified by 
Wittmann and Black (2015), where terms in a differential equation are combined into a single 
new term. We highlight instances where students engaged in these actions in Table 2. 

 
Actions  Explanation Example 
Grouping  Combining elements by like variables  

or terms  
(47) H: You've got        plus, is it        or is there 
an   in there? 

Mapping  Direct matching of variables from 
existing coordinate system  

(35-37) B:...so now we have just to compare so we have   
it is  ,   is  =...=  is  . 

Rote Recall  Writing elements from Cartesian or 
spherical  

(112-116) G: dτ in spherical is        =... 
=     =...=   

Table 2. Examples of identified actions taken by students when constructing differential length 
elements in the interviews. 

 
Students application of recall and mapping versus building of length terms 

Each group of students appeared to approach the problem in different ways. Some attempted 
to reason about the length elements through direct mapping from spherical or Cartesian 
coordinates.  Whether a student chose to build the differential length element from the necessary 
concepts and ideas or recalled ideas from memory provided insight into how students approach 
multivariable differential elements in integration in E&M.  

When asked to construct a differential length element, the graduate students (A and B) each 
initially took a different approach.  

A: Alright, let's try,   , well let's do the easy one first,   , and I know you don't like this but= 
B: Yes, [laughs] 
A: =it's easy for me, um [draws   ] So these angles are a bit more difficult, say you do this   . This 

doesn't have any units of length= 
B: [independently writes differential length element from spherical coordinates] 
A: =so, it needs to have some   term. I think it is just like that, isn't it [writes    ]. For α? [sweeps 

arm down as if covering the space of the angle] Yeah. 
B: You can, you can check from this, um… 
A: For   it doesn't have any dependence on this other angle over here, but when you're talking about 

 , um [looking at the spherical        that B wrote] 
B: So this is    [gestures to spherical differential he wrote], okay?      [hat],       [hat],= 
A: No, I have this backwards (erases   terms)  
B:=             [hat], so now we have just to compare so we have   it is  ,   is  = 
A: (writes  's in place of   terms) 
B: =  is  . 

We see from this exchange that student A is attempting to reason using the aspects of 
component and direction and dimensionality, while student B is attempting to make use of the 
existing spherical coordinates using recall and mapping. Once student B makes the direct 
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mapping, the two students work together and finish the construction of the differential element 
so that it mirrors the spherical length element and includes     .  

It is notable to mention that the actions made by student A in the last few lines of the 
transcript were later illuminated as due to a use of the mathematical convention for spherical 
coordinates. This would be acceptable as long the angles were also changed in a student's 
description of the differential element, which was not the case for student A. Using limits for the 
angles from the mathematical convention coupled with a physics interpretation of the differential 
volume element results in a value of zero for integration (of        from –π/2 to π/2) along 
with potential for several conceptual inconsistencies, as seen here. The two students drew a 
spherical coordinate system and student B instituted the physics convention, allowing A to fix 
his mistake. 

The second pair of students, C and D, progressed in a similar fashion but spent more time 
discussing the choices and reasons for their actions. The pair began building using all four 
aspects but did not attend appropriately to the differential when constructing the β length 
component, as depicted in the following exchange.  

D: I mean, it's like       would put us where we're = 
C: I like, no 
D: = down in the b[ ]-hat range. And so judging by what you're saying is we just need that there 

[writes a "d" in front of       to make a   ], 

After further difficulties in building, C and D recall the differential volume element from 
spherical coordinates to reason about the components of the differential length element for 
schmerical coordinates. While they had previously recognized the appropriate term for 
projection, the direct mapping resulted in the incorrect use of      in the   length component, as 
it had for the graduate students.  

The third pair of students, E and F, provided a contrast to the previous two groups. The two 
students resolved to build the integral from scratch and made a deliberate choice to not “fog their 
minds with preconceived notions of how things should work.” As a result they spent the 
interview weaving together aspects of component and direction, differential, and dimensionality, 
building each component of the length vector independently; later they added each component 
together to represent the entire differential length element. The aspect of projection was entirely 
absent from their reasoning. At one point they made a comparison to spherical but agreed that 
they should not include a      term, given that they could not justify the need. As a result, their 
differential element lacked any trigonometric function. 

The final pair, G and H, focused entirely on rote recall and mapping. Neither student, 
however, could appropriately construct a spherical differential length element, due to lack of 
consideration of dimensionality coupled with difficulty with grouping terms by variable (as is 
done in integration) rather than by appropriate length component. This difficulty pushed them 
toward building an element in Cartesian coordinates using the form                    . 
They then decomposed      into  ,  , and   components for a right-handed system, rather than the 
given left-handed coordinates. Recognizing the determined differential element was in Cartesian 
coordinates and not in schmerical coordinates, the students returned to the idea of building the 
differential length element later in the interview by recalling the method of construction they had 
learned in class at the beginning of the semester.  
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Themes in students building of differential elements 
Identification of these four building aspects and three actions afforded us the ability to 

determine the order and grouping of these aspects as students progressed through the interviews. 
We were then able to generalize across the interviews and observe recurring patterns in students' 
construction. We were able to identify which aspects or combination of aspects were productive 
and when the absence, or misapplication, of an idea in student thinking hampered further 
construction. Analysis across all of the interviews identified specific difficulties faced by 
individual groups or that were commonly held by several students, which we were able to 
connect to the scope and sequence of aspects that emerged in the interviews.  

 
Productive combination and sequence:  Component and direction and dimensionality 

Analysis across groups identified that the use of component and direction coupled with 
dimensionality was very productive for students in the first three pairs when considering the 
differential length element as a whole. For the third pair of students, the combination of these 
two aspects was additionally beneficial when constructing each individual components of the 
differential. 

F: So then if you have  — 
E:     
F: Oh, yeah. 
E: So you're going to have a length component in the  -hat direction. 

For each term, the pair would isolate a specific direction of movement and then discuss what 
a length element in that direction was comprised of.  

 
The role of dimensionality 

In general, dimensionality alone was a strong factor for the students that used the aspect. 
Students C and D were particularly adamant about accounting for units of length. 

C: ...it's going to be like, so if it's going to be some trig thing but sine of something isn't a length so 
we're going to have to also have something else in there.  

C and D used the aspect of dimension to reason about the variables of each term, to an extent 
that later in the interview they could not recall whether or not differential angles or unit vectors 
gave units of length to their vector components. While the pair made a comparison to the 
spherical volume element, the concern persisted as they continued to construct terms. Other 
students often did not provide additional reasoning for including an   in their construction, as 
was seen in early transcripts.   

A: … This doesn't have any units of length…so, it needs to have some   term. 

However, student E specifically addressed the idea of arc length, combining aspects of 
direction, dimension, and differential, which made using the radius of length   apparent.   

E: =so it's   times some  , I think it's M times   , a small  , because it's like if you take   times its 
small   then that is the arc length= 

F: Yeah. 
E: =around a circle. 
F: Yeah, okay. 
E: Right, so like     would be like the length component around a circle, so this would be    . 

The final pair of students did not attend to dimensionality and subsequently had difficulty 
with early recall from spherical and Cartesian coordinate systems. 
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The role of the differential 

Particular concept images of differentials were important to students’ reasoning abilities. The 
treatment of differentials in terms of small amounts of motion (Artigue et al., 1990; Roundy et 
al., 2015; Von Korff & Rebello, 2012) was helpful to the building of terms. This idea is trivial 
for students here, but other views may be coming into play. C and D had particular trouble 
constructing the α and   components due to difficulties with reasoning about the differential, 
thinking only in terms of changes rather than small motions applied to the     , and more 
specifically not attending to the need to have a    with the  -hat term. 

 
Grouping terms within components 

Groups CD and GH assembled the differential length component by sorting terms in the 
recalled spherical differential volume element. Both pairs grouped angular terms based on 
variables, rather than length components (Figure 2). Some attention to dimensionality was 
present in both cases, however. Initially both pairs of students wrote the      term with    in a 
similar fashion to how it would appear when looking at the integration of each term for a 
differential volume element. In typical E&M problem solving, the writing of differential volume 
elements (e.g.               for spherical coordinates) involves a grouping of terms in a way 
that dissociates the variables from their particular length component. This was something student 
C paid attention to when writing her differential volume element.  

C: ... I was trying to figure out which I guess um I don't know vector direction each come from, um, 
because I feel like, right? This is right, right? We just write it    for convenience right? It comes 
from separated out [terms]. 

C and D were later able correct the incorrect grouping of terms when reasoning through how 
the differential element was constructed in spherical coordinates. For student H, this dissociation 
of variable from the length components went further: 

H: You've got          plus, is it        or is there an   in there? 
G: I think there is an   there, it's an   because you want, you want at that radius uh, plus a small 

angle. 

Student H seems to have a concept image where the grouping of terms based on like variable 
is dominating the correct ideas for each length component. If this were the case, all the   terms in 
the differential length component would have been grouped with   . This goes further to show 
how a lack of reasoning about dimensionality can hamper problem solving in E&M. 

.  
Figure 2. (left) Incorrectly recalled differential spherical volume element written by student C 
and (right) unsuccessful attempt to reconstruct differential spherical length element by students 
G and H. 
 
Construction and checking of differential volume elements 

When asked to construct a volume element for schmerical coordinates, pairs AB and CD 
immediately knew to multiply the length components together. While this may seem trivial for 
the pair CD, having constructed the length elements through recall of the spherical differential 
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volume, the pair acknowledged that they understood the volume element originated from the 
multiplication of length components. Both pairs of students also knew they could check their 
volume element by integrating to a constant radius to attain the equation for the volume of a 
sphere, but due to their incorrect trigonometric function, both checks of the differential volume 
resulted in an integration to zero over the domain of α. At this point, students recognized an error 
in their differential length element. Student A immediately recognized the mistaken projection 
due to the direct mapping and articulated that the change in placement of the angle makes      
the appropriate projection. Both students C and D were stricken by the result of the integration 
and only postulated that the error may have been with the     , recognizing this caused the 
integration to zero. Shortly following this exchange, they were also able to recognize the mistake 
in the projection.  

When asked to check their volume element, F attempted to reason dimensionally, saying the 
integration of the   terms would given units of length cubed, so it didn't matter what the 
remaining integrals yielded. Unconvinced, E suggested the integration of the full differential 
volume element. The resulting    in their answer convinced them that a sine or cosine was 
needed, but the justification around the aspect of projection was not immediately seen. 
Eventually E and F arrived at the correct differential length element. 

When it came to the differential volume element, G and H mapped from the spherical 
differential, as they were both comfortable with that element. Early on in the construction they 
accounted for the different placement of α but the decided a direct mapping would be okay and 
included a      term. After reconstructing a differential length element and obtaining correct 
terms, G and H were asked if they still satisfied with their differential volume element, which 
included a different trigonometric function from their length element.  

H: I still like our volume element= 
G: Yeah, I think so. 
H: = I don't know about you, this one over here, I still think that 
G: They're the same, yeah. 
Interviewer: Okay, and can you check that that volume element is correct? 
G: Isn't that kind of the same question? 
H: Oh, you want us to actually do this integral out. 
G: Oh. No, but see in down here we've gone with the     . 
H: Oh, we've gone cosine, oh yeah. 
G: And so we might want cosine. Yeah, I think we do, oh wait, let's see, oh not that's, alright, yeah 

we do want these, we want these to agree so they need to be, this needs to be a cosine [in the 
volume element]. 

     ...[After the exchange the pair start working out the integration] 
G: Why did we change it to cosine? 
H: I'm sorry? 
G: Actually wait no, because the negative sign, the negative     

 
 is one= 

As G and H are checking their differential volume element, they were hesitant to change their 
volume element and even after deciding that the length and volume element should agree, 
student G questioned the switch in trigonometric functions as the pair began to check their 
volume element, but was then comfortable with the choice, seeing that the mathematics arrived 
at the expected answer. The overreliance on spherical coordinates as well as the overly direct 
mapping from one coordinate system to another by the first two pairs of students is reminiscent 
of x,y syndrome (White & Mitchelmore, 1996), where a particular process in remembered in 
terms of symbols rather than how it comes about. Likewise, the symbols of the differential are 
remembered in the form that they are first taught and lose any particular meaning.  
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Conclusion 

Our results suggest students do not have a robust understanding of how to build differential 
elements, but are able to check the validity of these elements and adjust terms appropriately. 
When working in an unconventional spherical coordinate system, students used a mixture of 
approaches to construct differential length and volume elements. Some attempted to reason about 
the length elements through direct mapping from spherical or Cartesian coordinates. We found 
students could implement successful strategies using necessary concepts. Particular attention to 
component and direction as well as dimensionality, both a coupling of the aspects and as 
individual aspects, allowed students to think productively about terms. Using the aspect of 
differential to think in terms of small changes was also useful to students. Interviews also 
highlighted a number of difficulties students face when working with differential length 
elements. An overreliance on rote recall and mapping led to difficulties for a number of students. 
It was also noted that students had particular difficulty grouping terms within recalled spherical 
length and volume elements. Students' inattention to dimensionality and projection hampered 
construction of terms. The successes and difficulties surrounding dimensionality speak to the 
importance of reasoning about units and dimensions when it comes to work in physics.  

However, the determination and subsequent checking of the volume element seemed to help 
elicit ideas or connections between aspects that were not used when working on the length 
components.  This suggests that while some students have an incomplete understanding of the 
coordinate systems due to misapplication of particular aspects, for others the requisite aspects are 
present but not accessed. 

Student interviews have been particularly useful in exploring student understanding in this 
area, since for written problems seen earlier in the course sequence, rote memorization may have 
taken the place of conceptual understanding without hampering students' ability to arrive at the 
correct answer. We see similar results in the findings of Bollen and colleagues (2015) where 
students are able to correctly perform the calculations for differential vector operators but are 
unable to explain what the results mean. These cases are reminiscent of Tall and Vinner (1981), 
who stated that a restricted concept image can develop when students work for long periods with 
the same application of a given formula, even if the student is first presented with the formal 
definition. Then when students are met with a broader context, the student may be unable to 
cope. This implies that in order to improve student instruction in differential vector elements in 
E&M, more focus should be given to how length, area, and volume elements are constructed and 
determined when problem solving. Results of this study will be used to develop instructional 
resources to be used in E&M or the methods of theoretical physics course. 

Further work seeks to explore how students reason about differential area elements, given the 
prevalence of these in flux integrals in E&M. We also seek to explore the role differential vector 
elements play in students' understanding when these elements represent abstract quantities such 
as electric fields in physics problems, as well as make comparison about students' thinking and 
use of differential vector elements between the contexts of math and physics. Additionally, we 
are analyzing student responses in terms of symbolic forms (Sherin, 2001), identifying a range of 
forms that students invoke when constructing and interpreting vector expressions as well as 
building from partially remembered equations.  
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Students’ interpretation and justification of “backward” definite integrals 
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The definite integral is an important concept in calculus, with applications throughout 

mathematics and science. Studies of student understanding of definite integrals reveal several 
student difficulties, some related to determining the sign of an integral. Clinical interviews of five 
students gleaned their understanding of “backward” definite integrals, i.e., integrals for which 
the lower limit is greater than the upper limit and the differential is negative. Students initially 
invoked the Fundamental Theorem of Calculus to justify the negative sign of the integral. Some 
students eventually accessed the Riemann sum appropriately but could not determine how to 
obtain a negative quantity this way. In our research, we analyze various concept images for the 
differential, and see the primary obstacle here as interpreting the differential as a width, and 
thus an unsigned quantity, rather than a difference between two values. 

 
Key words:  Definite integrals, Calculus, Differential 
  

In this preliminary report, we examine the role of the differential in the “backward” definite 
integral, ! " #"$

%  where & < (. The definite integral is a fundamental concept in calculus, with 
applications throughout mathematics and science. Studies of student understanding of definite 
integrals reveal several difficulties (Bajracharya, Wemyss, & Thompson, 2012; Bezuidenhout & 
Oliver, 2000; Jones, 2013; Lobato, 2006; Orton, 1983; Sealey, 2006, 2014; Sealey & Oehrtman, 
2005). The existing literature on definite integrals tends to support a specific approach to 
developing an understanding of the definite integral, specifically by recognizing it as the sum of 
infinitely small products, which are formed via Riemann sums (Jones, 2013; Meredith & 
Marrongelle, 2008; Sealey, 2014). Additionally, Sealey (2006) and Jones (2013) point out that 
recognizing the Riemann sum as a sum of products of the function value !(") and the increment 
on the x-axis (∆x) is necessary for students to understand the meaning of the area under the 
curve, which is, arguably, the most prominent metaphor/interpretation of the definite integral. On 
the other hand, reasoning about a definite integral as area under the curve may limit students’ 
ability to apply the integral concept (Norman & Prichard, 1994; Sealey, 2006; Thompson & 
Silverman, 2008). 

Another aspect of the definite integral that leads to student difficulties is the meaning of the 
differential itself. Students treat the differential as an indicator of the variable of integration 
rather than a fundamental element of the product in integration of both single- and multivariable 
functions (Artigue et al., 1990; Hu & Rebello, 2013; Jones, 2013; Nguyen & Rebello, 2011). 
This could stem from, or lead to, a failure to understand the product layer of the integral (Sealey, 
2014; Von Korff & Rebello, 2012). In other recent work, students treat dx as a graphical width 
(Bajracharya et al., 2012; Wemyss, Bajracharya, Thompson, & Wagner, 2011) or a small amount 
or quantity of whatever the x-axis represents (Artigue et al., 1990; Hu & Rebello, 2013; Roundy 
et al., 2015), rather than an infinitesimal difference or change in x (Von Korff & Rebello, 2012), 
both for positive and negative integrals.  

Interpreting the sign of the integral has been shown to be difficult for students. Definite 
integrals that have a negative result are of particular difficulty geometrically. Students often do 
not treat the area as a negative quantity, effectively associating it with spatial area rather than the 
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quantity represented by the product of ! " +#". This is true for integrals for which !(") is 
negative, i.e., below the x-axis (Bezuidenhout & Oliver, 2000; Lobato, 2006; Orton, 1983; 
Rasslan & Tall, 2002), as well as those for which dx is negative, i.e., the direction of integration 
is in the negative direction (Bajracharya et al., 2012). The former type of negative integral is 
more common, but the latter also has relevance to applications in physical situations (e.g., 
finding thermodynamic work during the compression of a gas).  

The notion of dx as a signed quantity is somewhat controversial, depending on the way one 
defines the differential. The perspective here, which is consistent with applications in physics 
and other fields, is that dx is defined as an infinitesimal change in the quantity x, akin to the limit 
of the change in x for the products in a Riemann sum:+∆" = %.$

/ ; +#" = lim
/→5

%.$
/ .+This is 

consistent with Von Korff & Rebello (2012), who argue that infinitesimal quantities and 
infinitesimal products are important for an understanding of the meaning of definite integrals. 
Generally the sign of these quantities is not of interest, since b>a in most cases. However, if 
b<a, then ∆x, and thus dx, are negative. In Stewart’s (2016) most recent text, he explains that the 
backward integral is negative because ∆x is negative, but does not explicitly refer to dx as a 
signed quantity. 

  
Theoretical Perspective 

Given the prior work in this area, we wanted to explore the facets of students’ concept image 
(Tall & Vinner, 1981) of the definite integral that apply to the sign of the integral. As described 
earlier, it was noted in the literature that the differential can be viewed as a variable of 
integration, as a width of a rectangle, as a small amount of a given quantity, or as a difference or 
change in a quantity. In particular, the role of the differential in a backward integral, ! " #"$

% , 
is crucial in interpreting the sign of the integral. We suspected that students would not recognize 
the fact that the differential would be negative for backward integrals, and we were interested in 
exploring whether certain concept images for the differential were more productive for viewing 
the differential as a negative quantity. Thus the backward integral had the potential to illuminate 
students’ understanding of the meaning of differentials, definite integrals, and to some extent, the 
Riemann sum, beyond what has been seen in the literature to date. 

 
Methods 

During clinical interviews, students were asked a series of questions about the relationship 
between forward and backward integrals. As this was a pilot study, we chose to interview five 
students at various levels: two second-semester freshmen (both double majors in math and 
physics and concurrently enrolled in a second-semester calculus course), one junior math major, 
one senior math major, and one first-semester Ph.D. level graduate student in math/math 
education. The interview subjects were volunteers who were either former students or teaching 
assistants of one of the authors. Interviewees received a $10 gift card at the conclusion of the 
interview.  

Prior to the interviews, we developed an interview protocol and agreed upon the order in 
which the questions would be asked of the students, starting with the open ended general 
expressions shown below and concluding with a physical example.  

1.!General expressions: ! " #"%
$  and ! " #"$

%  
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2.!Specific expressions: 2"+#"8
9  and 2"+#"9

8  
3.!Physical scenario: Work required to stretch a spring, :+#";<

;= , where : = >" (see Fig. 1) 

 
Figure 1.  Information given to interview subjects for spring question. 

 
In each case we gave the forward integral first, then asked about the backward integral of the 

same expression.  Interviews were semi-structured, following the same order of topics for each 
of the five interviews, but allowing for off-script questions in order to clarify our understanding 
of the students’ responses. For example, with the general expressions, we first gave the students 
a paper containing the integral expression ! " #"%

$  and asked the students how they would 
read that expression.  Next, we asked them to, “Explain what you know and understand about 
that expression.”  In the third section of the interview, students were asked about the work done 
on a spring. Bajracharya et al. (2008) found that students could justify the sign of a negative 
integral represented graphically by imagining a physical context that could be represented by the 
given graph. This led us to include a physical scenario involving a backward integral in order to 
explore its effect on evoked student concept images. Our initial task provided the integral 
expression as well as the expression for the force on a spring and a figure to demonstrate the 
scenario. Students were asked to interpret this integral for an extension of the spring (i.e., where 
"9 < "?), and then to interpret the integral with the limits reversed, rather than explicitly asking 
about a compression of the spring. During the students’ explanations, we asked clarifying 
questions in order to refine our understanding of the students’ responses and their meanings.  
Since this was a pilot study, we also allowed for time at the end of each interview to go off script 
and ask additional questions. 

Interviews were videotaped and transcribed for analysis. During the first round of data 
analysis, both authors viewed the videos multiple times and made notes of the ways in which the 
students explained the sign of the integral in both the forward and backward integral. In 
subsequent analysis of the videos and the transcripts, we paid particular attention to how (or if) 
the students could describe the definite integral as a sum of products, and how (or if) they 
described the definite integral as area under a curve. Finally, we noted which of the concept 
images of the differential each student held, which were evoked during each interview question, 
and also attempted to identify other concept images that emerged from the data.  
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Data and Results 

All five students were able to describe the definite integral in terms of area under a curve, 
and most students sufficiently described it as the sum of very small rectangles, whose heights 
were values of !("). Some students described the width of the rectangles as dx and some as ∆x, 
and often used the two quantities interchangeably. Overall, we were satisfied with the students’ 
ability to describe a definite integral as the sum of products.   

All students initially used the Fundamental Theorem of Calculus (FTC) to justify why 
! " #"%

$ = − ! " #"$
% . Specifically, they were able to state that ! " #"%

$ = : ( − :(&), 
where :(") is the antiderivative of !("), and then that ! " #"$

% = : & − :((), which would 
have the opposite sign. Graphically, the students had much more difficulty explaining why one 
of the quantities should be negative. In the following analysis, we discuss students’ use of area 
under a curve and its connection to the FTC, their concept images of the differential, and the role 
of the application problem in their understanding of the backward integral.  

 
Using area under the curve and the Fundamental Theorem of Calculus 

All of the students seemed comfortable discussing the integral as the area under the curve. 
While they were able to consider the total area as the sum of small rectangles (or trapezoids), all 
students had difficulty explaining why the backward integral was negative in terms of area under 
a curve, and thus this ended up being an interesting part of our analysis.  

Sara, a sophomore mathematics and physics double major, evaluated 2"+#"8
9  by finding the 

area of the large triangle (Fig. 1a) and subtracting the area of the small triangle (Fig. 1b) to 
obtain the desired area (Fig. 1c). She noticed that these calculations corresponded to the values 
she obtained when applying the FTC to the same problem:  the area of the large triangle 
corresponded to :(3), and the area of the small triangle to :(1). Then, when computing 
2"+#"9

8 , she reversed the order of her subtraction, subtracting the area of the large triangle (Fig. 
1a) from the area of the small triangle (Fig. 1b), and said, “But I’m not sure why that order is. I 
mean I know why for the integral [symbolically] because it’s written that way, but if you were to 
solve this geometrically, I don’t know why you would change the order of the subtraction.”   
 

   
Figure 2:  Sara’s method of computing the area 

Matt, a junior math major, also was able to justify the relationship between the forward and 
backward integral symbolically using the FTC, but also struggled to justify the result graphically. 
When computing the area under the function 2x between " = 1 and " = 3, he recognized it as a 
trapezoid. Instead of using Sara’s method of subtracting the smaller triangle from the larger 
triangle (Fig. 1), Matt added the area of the lower rectangle (Fig. 2a) to the area of the upper 
triangle (Fig. 2b) to obtain the total area (Fig. 2c).   

 

1a

1 2 3 x

y

1b

1 2 3 x

y

1c

1 2 3 x

y
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Figure 3:  Matt’s method of computing the area!

Matt’s solution is perfectly valid, but did not mimic the calculations from the FTC, as did 
Sara’s method. Matt tried several different ways to graphically justify the negation of the 
backward integral but was never completely content with his justification. He noted that the 
backward integral represented the same area as the forward integral, but the backward integral 
would have to be negative since the limits were reversed “because I already know that, like as a 
fact, that it’s a negative if you want to flip the bounds.”  He did state that he believed there 
should be a graphical justification, but he did not know what one would be. We do not mean to 
imply that Sara’s solution was in some way better than Matt’s, but simply note the connection to 
the FTC in Sara’s solution. In fact, both Sara and Matt used solutions that sidestep the need for 
thinking about the Riemann sum and the dx specifically. 

 
Student thinking about the differential 

Most of the students were able to think about dx in at least two ways. Many of the students 
mentioned that the dx refers to the variable of integration, and most also were able to describe 
∆x, but not dx as the width of individual rectangles under a curve. Subsequent data analysis will 
note which concept images for dx and ∆x were evoked in different circumstances, which concept 
image was evoked first, and if/when the students changed the way in which they thought about 
the quantities ∆x and dx. Of particular interest to us is whether or not the students can conceive 
of dx as a signed quantity, as either a negative width, or as a negative value obtained from "? −
"9. According to our preliminary analysis, none of the students thought about dx as a signed 
quantity on their own accord, but with prompting from the interviewers, some were able to do so.  

Near the end of Sara’s interview, we pushed her to consider each rectangle under the curve, 
which she had described at the beginning of her interview. Sara was comfortable with !(") 
being negative or positive, depending on if it was above or below the x-axis, but when she was 
directly asked if dx could have a sign, said, “Well no, I don’t think dx would ever be negative 
because it’s just a distance, it’s not like an actual value.” 

Matt eventually was able to think about Δ" as a negative quantity and described dx as the 
limit as Δ" approached zero. After many attempts from Matt, the interviewer asked him if dx 
could be negative. His response indicated that he was not confident in his answer, saying,  

“That’s probably the hidden spot that I couldn’t figure out before. Yeah I would say that this dx 
would be negative [from a to b] and this one would be positive [from b to a] because it’s 
approaching 0 so this [from a to b] would still stay positive […] and this one [from b to a] would 
stay under, yeah I’m going to say this dx here [from b to a] is negative and this dx is a positive dx 
[from a to b], and I guess that’s where it’s hidden and that’s what their difference is? I don’t 
know.”  

Anna, a senior math major, spoke often of ∆x, but rarely of dx. She had no trouble thinking 
about ∆x as a negative width, but did not seem comfortable thinking about dx as being positive or 
negative. Her explanation of why the backward integral was negative was because the width was 
negative, and she used an explanation referring to the sum of the areas of a finite number of 
rectangles to explain, “You’re going to have that negative width times a positive value, which is 

2a

1 2 3 x

y

2b

1 2 3 x

y

2c

1 2 3 x

y
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going to give you a negative number, so you’re going to get the addition of a bunch of negative 
numbers.” Much later in the interview, one of the interviewers asked Anna if it was possible for 
dx to be positive or negative, and Anna responded, “I’ve actually never thought of that. So I’m 
not sure. I mean I guess it could, but I just always viewed the dx as the indication of what term to 
integrate to. So I’m not actually sure, I guess.” 

Nick, a mathematics graduate student, focused his explanation as to why the backward 
integral was negative on direction. He said that the dx represents a change, and that change 
implies motion. He seemed to be thinking about the variable x representing time, and mentioned 
more than once that the backward integral would be like playing a movie in reverse. On another 
note, Nick spent a great deal of time during the interview talking about the two terms that made 
up the product in the definite integral, namely the 2x and the dx in 2"+#"9

8 . He knew that when 
multiplying two quantities to obtain a negative result, exactly one of the terms multiplied must be 
negative. He debated if the x turned negative or the dx turned negative. He “voted” for the dx to 
be negative, again tying this to the direction. But this answer did not sit well with him: “I’ve just, 
in my head for so long, always assumed dx to be a positive, you know, change in x and for so 
long never thought this deep into the pieces.” He said to be sure, he would have to go back to the 
definition of ∆" in the textbook to see if he was right.  

 
The role of the physics context in student thinking  

Our data suggest that the spring task seems to evoke the concept images of dx as a small but 
finite amount, change, or difference in the position of the end of the spring in students who 
already were engaging with the idea of the differential. 

Matt had indicated a concept image of dx as a variable indicator, but during the spring 
extension discussion, he said that it would be “the change in the distance from each, like, 
individual from like your x1 to x2 and it’s going to be every, like, small small distance.” � Upon 
prompting from an interviewer about the change in his view of dx, Matt responded, “when you 
think about just, like, the pure math problems, that’s all you really think about — just the fact 
that dx is just telling you […] what variable to use […] But […] here, it represents, it represents 
something…” Given physical meaning, Matt was able to interpret dx as a small displacement of 
the spring. 

Similarly, Anna pointed out that before the interview, she thought of dx as “the term you’re 
supposed to integrate to.” She had a clear sense of the product layer and of the adding up pieces 
conceptualization of the definite integral, multiplying ! "  by ∆" “to get the area limits” for a 
Riemann rectangle. She immediately realized that ∆" is negative for the backward integral in the 
first task, and how that leads to the negative sign on the result: “you’re going to have that 
negative width times a positive value, which is going to give you a negative number, so you’re 
going to get the addition of a bunch of negative numbers.” During the discussion of the spring 
compression integral, she stated that dx is “kind of representative of that infinitely small piece 
which would still be able to have a negative change as we are heading smaller, because it’s 
directional so because it’s getting smaller it’s negative.” 

However, we also saw a case where this context did not promote this particular concept 
image of dx as an infinitesimal signed quantity. In the math contexts, Alex displayed reasonable 
area under the curve and antiderivative images of the definite integral, although he did show 
some confusion graphically with the integrand representing the area. He never mentioned dx in 
his discussion (except when reading the definite integrals aloud); instead focusing on more 
macroscopic differences, either ∆" or the whole interval (( − &). His image of ∆" was primarily 
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as a width (he says “length”) on the x-axis; this could be a signed quantity, since reversing the 
limits of the integral “would make your width negative.” But Alex had a strong aversion to the 
idea of negative area; for him the negative sign was added when limits were reversed “to negate 
the negative distance” because otherwise you would have an negative area, “which isn’t really a 
thing.” Similarly, he did not connect the sign of the backward integral (for a positive function) to 
the sign of ∆".  

With the spring task, Alex considered that the forward work integral represented the energy 
put into the spring and that the backward integral was energy lost. He discussed the meaning of 
this: “It is totally okay for there to be negative work, but that’s usually, that’s defined upon 
reference frames. Whether work was done on a system or by a system.” As Alex continued, his 
discomfort with a negative integral emerged: 

“Whether you start at x1 or you start at x2, it’s still the same amount of force over the same amount 
of distance so there’s no reason why the flipped bound, this second, x2 to x1, there’s no reason why 
that shouldn’t be able to have a positive answer because it is still the same amount of force over 
the same amount of distance.” 

It seems as if Alex used the idea of reference frame to justify the arbitrary positive sign of the 
integral and avoided the need to consider the sign of the differential quantity. Our interpretation 
of Alex’s response is that his concept image was limited by his failure to acknowledge dx in the 
discussion and thus he failed to recognize the role of dx in determining the sign of the integral. 

The inclusion of the physical context of the spring, as well as Nick’s evoking of motion or 
time contexts for the integrals, seemed to help subjects make sense of the differential itself and 
also of the sign thereof. This supports our reasoning for including the spring task in the 
interviews, and is consistent with earlier reports of students invoking physical contexts on their 
own in order to interpret a negative integral, either a backward integral of a positive function or a 
forward integral of a negative function (Bajracharya et al., 2012; Wemyss et al., 2011). On the 
other hand, it is possible that any reasoning on the spring task about the differential in backward 
integrals may have arisen due to priming of this issue in the previous two tasks of the interview. 
While Alex could be considered a counterexample of this, to be certain, additional data would 
need to be collected with a rearranged or otherwise varied protocol.  

 
Discussion and Conclusion 

Students recognized the negative value of the backward integral based on the 
FTC/antiderivative difference formula, but when asked for a geometric interpretation, most said 
they hadn’t thought about it before and had difficulty making a reasonable interpretation on their 
own. Most students’ graphical explanations of why the backward integral yields a negative result 
seemed to invoke the direction of the integration, treating the area as a macroscopic negative 
quantity, but failed to recognize the role of the differential in generating that sign. We know from 
the literature and our own prior research (Bajracharya et al., 2012; Sealey, 2006; Thompson & 
Silverman, 2008) that students often lack an understanding of why or how area under a curve is a 
representation of a definite integral. Our subjects, who we acknowledge may be more advanced 
than the average calculus student, did not seem to have this difficulty: they were able to describe 
the definite integral as the sum of the areas of very small rectangles, and adequately described 
the product layer that makes up these small rectangles. They could all explain that !(") 
represented the height of the rectangles and that ∆" (and sometimes dx) represented the width of 
the rectangle.  
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However, thinking about the backward integral adds another level of difficulty to describing 
the definite integral in terms of area. The students did not always recognize that ∆" and dx could 
be negative values. Instead of thinking about ∆" as a difference, (e.g., as "DE9 − "D  or as %.$/ ), 
they initially thought of Δ" as the width of a rectangle, and usually assumed it was always a 
positive value, leading to the assumption of a positive backward integral. Alex’s use of this 
reasoning above in the spring task is consistent with previous work in this area (Bajracharya et 
al., 2012; Wemyss et al., 2011), and suggests the consequence of a limited concept image of the 
differential.  

We certainly do not mean to imply that Δ" and dx should never be thought of as a width. In 
fact, research by Hu and Rebello (2007) suggested that dx-as-width is an important perspective 
for problem solving in physics. Instead, we emphasize the necessity for being able to think about 
dx as positive or negative widths and the change between two quantities. With moderate 
prompting, most of our research subjects were able to do this; future research will examine what 
type of instruction or intervention enables students to make this connection.  
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Supporting preservice teachers’ use of connections and technology 
in algebra teaching and learning 

 
Eryn Stehr Hyunyi Jung 

Michigan State University Purdue University 
 
 

The Conference Board of the Mathematical Sciences recently advocated for making connections 
and incorporating technology in secondary mathematics teacher education programs, but 
programs across the United States incorporate such experiences to varying degrees. This study 
explores opportunities provided by secondary mathematics teacher preparation programs for 
preservice teachers (PSTs) to (1) expand their knowledge of algebra by making connections and 
using technology and to (2) learn how to incorporate their own use of connections and 
technology in algebra teaching. We explore the research question: What opportunities do 
secondary mathematics teacher preparation programs provide for PSTs to learn about 
connections and encounter technologies in learning algebra and learning to teach algebra? We 
examine data collected from five teacher education programs chosen from across the U.S. Our 
data suggest not all secondary mathematics teacher preparation programs integrate experiences 
with making connections of different types and using technology to enhance learning across 
mathematics and mathematics education courses. We present overall findings with examples. 

Key words: Algebra, Technology, Connections, Secondary Teacher Training 
  

Algebra plays a prominent role in mathematics education reform efforts because it is 
valued both as a foundational subject in mathematics and as a gatekeeper for college entrance 
and careers (Kilpatrick & Izsák, 2008). Particularly in the United States, preparing future 
secondary mathematics teachers to teach algebra has gained importance because of changing 
populations and changing perspectives on effective algebra teaching. First, in response to 
algebra-for-all initiatives, more states include algebra as a high school graduation requirement 
(Teuscher, Dingman, Nevels, & Reys, 2008). Due to these new requirements, not only are more 
secondary mathematics teachers teaching algebra in their first professional position, but these 
new teachers are also expected to teach algebra to a more diverse population of students than 
ever before (Stein, Kaufman, Sherman, & Hillen, 2011). Hence it is critical to study how 
teaching programs prepare preservice teachers (PSTs) for teaching algebra. Second, reform 
initiatives (e.g., NCTM, 1989, 2000; CCSSO, 2010) have changed expectations of teachers. In 
The Mathematical Education of Teachers II (METII), the Conference Board of the Mathematical 
Sciences argued that “a careful look at the mathematics [e.g., algebra] that is taught in high 
school reveals that it is often developed as a collection of unrelated facts that are not always 
justified or precisely formulated” (p. 56, CBMS, 2012). CBMS recommended increased attention 
to how future mathematics teachers are supported in developing a deep understanding of 
mathematics, with algebra as one large area of focus. Although may experiences may occur in 
mathematics education courses, CBMS recommended that experiences supporting the 
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development of connected, coherent understanding of mathematics should also occur in 
mathematics courses.  

The current study is situated within a larger project that explored opportunities that 
teacher preparation programs provide PSTs to learn algebra and learn to teach algebra. In this 
smaller study, we have chosen to focus particularly on two approaches to learning algebra and 
learning to teach algebra: making algebraic connections and using technologies strategically. 

Standards for both secondary mathematics content and teacher preparation have 
emphasized the importance of developing PSTs’ abilities to make connections and to use 
appropriate educational technologies in their own mathematical learning and in their future 
mathematics teaching. Particularly with respect to PSTs' mathematics courses, Mathematics 
Education of Teachers II (METII) recommended that instructors of mathematics courses support 
PSTs in “forming connections” (p. 56) and that experience with technology “should be integrated 
across the entire spectrum of undergraduate mathematics” (CBMS, 2012, pp. 56-57). 

Standards developed for teacher preparation program accreditation agencies have 
emphasized the importance of developing PSTs’ abilities to see mathematics as a complex, 
connected system woven through other non-mathematical disciplines as well as a way to make 
sense of the real world (Council of Chief State School Officers [CCSSO], 1995; National 
Council of Teachers of Mathematics [NCTM], 2012). Although different research and policy 
documents may use the term making mathematical connections in slightly different ways, here 
we mean, broadly, identifying relationships between mathematical ideas, objects, structures, etc. 
For example, identifying the many ways functions may be represented or used within a particular 
domain, across multiple mathematical domains, in real-world relationships, or in the 
mathematics of other disciplines. 

PSTs must think about mathematics as a “whole fabric” as they make connections among 
mathematical topics and in relation to others (NBPTS, 2010). To support this view of 
mathematics, PSTs need to make connections within algebra, and between algebra and other 
mathematical fields, while linking algebra with real-world situations. PSTs should prepare to 
teach using "rich mathematical learning experiences" and provide their future students with 
opportunities to "make connections among mathematics, other content areas, everyday life, and 
the workplace (NCTM, 2012). Further, PSTs should also be able to prepare to support their 
future learners in reflecting "on prior content knowledge, link[ing] new concepts to familiar 
concepts, and mak[ing] connections to learners' experiences" (CCSSO, 1995). 

Teacher preparation standards have emphasized the importance of PSTs’ encountering 
technologies in mathematics and mathematics education courses (CBMS, 2001, 2012; CCSSO, 
1995; NCTM, 2012). In this study, we define technology broadly as electronic software, such as 
calculators, mathematical software, and online applets. METII recommended that PSTs have 
experiences with technology “integrated across the entire spectrum of undergraduate 
mathematics” (p. 56). METII warned that technology should not be used “in a superficial way, 
without connection to mathematical reasoning” (p. 57) but that PSTs should have opportunities 
to encounter a variety of technologies and to learn to use technology in a variety of ways; for 
example, to offload routine computations, operations, representations; to apply previous 
knowledge to more complex problems; and to explore and experiment to understand subtle 
mathematical concepts. Teachers also need support in critically evaluating and strategically using 
technology in mathematics teaching and learning (CBMS, 2012; CCSSO, 1995; NCTM, 2012). 
That is, PSTs should have opportunities in mathematics and mathematics education courses to 
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learn to use a variety of technologies in support of three big ideas: using technology as practical 
expedient, using technology to enhance learning, and thinking critically about the choice and use 
of technologies in mathematics teaching and learning. 

This study explores opportunities provided by secondary mathematics teacher preparation 
programs for PSTs to (1) expand their knowledge of algebra by making connections and using 
technology and to (2) learn how to incorporate their own use of connections and technology in 
algebra teaching. We explore the following research question: “What opportunities do secondary 
mathematics teacher preparation programs provide for PSTs to learn about connections and 
encounter technologies in learning algebra and learning to teach algebra?” Making connections 
in the service of algebra teaching and learning might include making connections within algebra, 
between algebra and other mathematical fields, between algebra and non-mathematical fields, 
and between ideas in advanced algebra and school algebra. Encounters with technology in the 
service of algebra teaching and learning might include using or learning about a variety of 
algebra-appropriate technologies, as well as thinking critically about technology use.  

Method 
This study is part of Preparing to Teach Algebra (PTA), a mixed-methods study that 

explores opportunities provided by secondary mathematics teacher preparation programs to learn 
algebra and to learn to teach algebra. The PTA project consists of a national survey of secondary 
mathematics teacher preparation programs and case studies of five universities. The current 
study is a qualitative analysis of the case studies focusing on the opportunities provided to PSTs 
to encounter technology and to make connections in learning algebra and learning to teach 
algebra. 

The PTA project purposefully chose to explore secondary mathematics teacher 
preparation programs at five universities. We refer to these universities as Great Lakes 
University (GLU), Midwestern Research, Midwestern Urban, Southeastern Research, and West 
Coast Urban Universities. We chose the first three before beginning the project, and the latter 
two after analyzing results of a national survey. We initially chose to focus on three universities 
(Great Lakes, Midwestern Research, Midwestern Urban) to deliberately vary the type of 
institution, location, demographics, and type of program. Some details are shown in Table 1 
below. Great Lakes, Midwestern Research, and Midwestern Urban Universities varied in their 
context, Carnegie Classification, and the average number of graduates. For example, Midwestern 
Research University was a doctorate-granting institution with very high research activity, while 
Great Lakes and Midwestern Urban Universities were large master’s-level universities. In 
addition, Great Lakes University was unique in that the mathematics educators and 
mathematicians both were in the Department of Mathematics (mathematics educators at 
Midwestern Research and Midwestern Urban Universities were in the College of Education). 
Midwestern Urban University was unique in its ethnic diversity: only 40% of its students were 
Caucasian with 32% Hispanic and 10% African American. Great Lakes and Midwestern 
Research Universities had populations of 91% and 83% Caucasian, respectively.  

We chose two additional sites (Southeastern Research and West Coast Urban) based on 
responses from a national survey that we developed and administered early on in the project. 
While Great Lakes, Midwestern Research, and Midwestern Urban Universities are all located in 
the Great Lakes region of the United States, Southeastern Research is in the Southeast and West 
Coast Urban is in the Far West. West Coast Urban University was chosen because its program is 
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post-baccalaureate, so students do not take any mathematics course requirements in the program, 
but only mathematics education and general education courses. 

 
 

Table 1. 
Demographic Characteristics of the PTA Case Study Programs and Universities. 

 Great Lakes Midwestern 
Research 

Midwestern 
Urban 

Southeastern 
Research 

West Coast 
Urban 

Context Small City Mid-size City Large City Mid-size City Large City  
Carnegie 

Classification1 
Master’s L2 Doctorate 

RU/VH3 
Master’s L2 Doctorate 

RU/VH3 
Master’s L2 

 
Degree-Seeking 
Undergraduate 
Race/Ethnicity 

Enrollment 
Percentages4 

2% Asian 
5% Black 

4% Latin@ 
84% White 

3% Multiracial 

4% Asian 
4% Black 

5% Latin@ 
71% White 

4% Multiracial 

9% Asian 
10% Black 

35% Latin@ 
37% White 

2% Multiracial 

9% Asian 
7% Black 

5% Latin@ 
73% White 

3% Multiracial 

16% Asian 
5% Black 

59% Latin@ 
8% White 

2% Multiracial 
Avg. Number of 

Graduates5 34 22 12 39 30 

Degree upon 
Completion 

4-year Bach 4-year Bach 4-year Bach 4-year Bach None  
(Post Bacc) 

Secondary Math 
Program 

Academic Home 

Mathematics 
Department 

College of 
Education 

College of 
Education 

College of 
Education 

College of 
Education 

1 The Carnegie Foundation for the Advancement of Teaching (2010). 
2 Master’s L: Master's Colleges and Universities (larger programs) 
3 RU/VH: Research Universities (very high research activity) 
4 Race-Ethnicity enrollment statistics were collected from the Common Data Set for each university (2013-14). Only 
categories with at least 2% in at least one of the universities were included in the table. Nonresident aliens and 
race/ethnicity unknown categories were not included.  
5 Average annual number of graduates across three academic years (2009-10, 2010-11, 2011-12). 
 

We compiled data by conducting two focus groups of 3-4 PSTs and 10-13 instructor 
interviews at each site and collected corresponding instructional materials from each instructor 
we interviewed. In the instructor interviews at each site, we included required mathematics, 
mathematics for teachers, mathematics education, and general education courses selected for 
potential algebra content. West Coast Urban University, as a post-baccalaureate program, 
required no mathematics courses and so we conducted only 3 interviews with instructors of 
mathematics education and general education courses. 

Among other interview questions, we asked instructors which types of technologies they 
used in a particular course and how they supported PSTs in making connections in algebra. 
Similarly, we asked PSTs in focus groups to identify required courses that incorporated 
opportunities to make connections or to use technology in learning algebra or learning to teach 
algebra. We asked PSTs explicitly about their required or shared experiences with connections 
and with technology. 

Prior to considering the data for mentions of connections or technology, the PTA project 
team had coded data for algebraic content. In analyzing data, four researchers worked in pairs, 
reading the interview and focus group transcripts and discussing potential opportunities reported 
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by instructors or PSTs. For this study, we focus more narrowly on Abstract Algebra, Linear 
Algebra, and Secondary Mathematics Methods courses at the five universities. Different 
universities required different sequences of Secondary Mathematics Methods: Great Lakes 
required two courses, Midwestern Research required two, Southeastern Research required three, 
and Midwestern Urban and West Coast Urban required one each. Also, we asked mathematics 
instructors approximately how many PSTs were in each course. Table 2 shows the percentages 
of PSTs in the Abstract Algebra and Linear Algebra courses at each university. Note that West 
Coast Urban University did not require these courses, so they are not listed. The Midwestern 
Research Abstract Algebra course was a mathematics for teachers course, so it only included 
PSTs. 

 
Table 2.  
Number of Students and Proportion of Preservice Teachers in Linear Algebra and Abstract 
Algebra courses at Great Lakes, Midwestern Research, Midwestern Urban, and Southeastern 
Research Universities. 

University Linear Algebra Abstract Algebra 

Great Lakes 21 (50%) 20 (70%) 

Midwestern Research 50 (unknown) Algebra for Teachers: 19 (100%) 

Midwestern Urban 25 (50%) 15 (about 50%) 

Southeastern Research 33 (33%) 24 (60%) 
 

For connections, the two researchers individually coded data sources based on the major 
four types of connections (e.g., connections within algebra, connections between algebra and 
mathematics) and met to make consensus on the coding. We then developed summary 
documents of each university, including tables of the number of opportunities and quotations in 
each course. We will analyze the quotations to document different types of opportunities that 
were reported (e.g., algebraic topics that PSTs were exposed, specific activities that PSTs 
engaged with, or/and opportunities to help PSTs learn to teach connections). 

For technology, the two researchers have considered instructors’ interviews and 
instructional materials. We captured types of technologies mentioned by course instructors, as 
well as details of the experiences the rationale (if any) given by the instructor detailing why (or 
why not) technology were used (e.g., “dulls the mind” or “representations help students 
understand quantitative situations”). Based on previous research, we will analyze instructors’ 
reports of technology use to understand why opportunities are or are not provided in particular 
mathematics or mathematics education courses, and to understand the types of experiences 
provided, whether the experiences are as a “practical expedient,” or to “advance learning,” or to 
provide opportunities for PSTs to think critically about choice and use of technology by 
engaging with potential affordances and limitations (CBMS, 2001). 

Results 
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For the purposes of this paper, we focus on finding exemplars of types of experiences 
provided to PSTs across the four different programs and focus on experiences in Abstract 
Algebra, Linear Algebra, and Secondary Mathematics Methods courses. That is, we are not 
evaluating the programs; rather, exploring strengths and challenges of each program to 
understand what rich experiences across a program’s offerings could look like, and to understand 
the challenges that arise. First, we consider connections; we describe the types of experiences 
making algebraic connections that instructors told us they provided PSTs. Then, we consider 
technologies and the types of encounters with technologies and algebra that instructors reported 
providing. 
Connections 
 In terms of connections, we describe the types of connections that the instructors reported 
PSTs had opportunities to learn and learn to teach about, the purposes of making these 
connections, and the ways of providing such connections to PSTs in Linear Algebra, Abstract 
Algebra, and Secondary mathematics methods courses. 

Types of connections. We focused on four types of connections provided in these courses: 
connections (a) within algebra, (b) between algebra and other mathematics, (c) between algebra 
and non-mathematics, and (d) between school and college algebra. We provide examples of each 
type of connections in this section.  

Of the connections within algebra, instructors of Linear Algebra and Abstract Algebra 
discussed connections around common structures or big ideas. For example, an Abstract Algebra 
instructor at Great Lakes said, “We certainly emphasize connections within algebra. In looking at 
common structures, and themes behind different number systems and the way algebra works in 
those number systems.” Similarly, a Linear Algebra instructor at Midwestern Urban remarked, 
“Once they have studied how to solve systems of equations, they see that everything that is being 
done in linear algebra is modeled using that. So that is the big idea. So we spent quite a number 
of time, quite a number of classes at the beginning studying how to solve systems of equations.” 
In the former example, the instructor described students’ connecting common algebraic 
structures across number systems; in the latter, the instructor described students making 
connections by recognizing a big idea in Linear Algebra: that systems of equations are used to 
model “everythign that is being done” in Linear Algebra. 

Instructors of Secondary Mathematics Methods emphasized how they could help PSTs 
make connections within algebra. An instructor at Great Lakes, for example, reported that “my 
focus a lot of times is on thinking about how they can make connections within the algebra 
themselves, how they can consolidate those ideas.” He continued, “I’m the one who’s making 
the connection. I feel much more comfortable that you make the connection.” That is, his 
emphasis was on supporting PSTs to make their own connections rather than simply being told 
about connections. Similarly, an instructor at Midwestern Urban described that students made 
representational connections within algebra: “having students make connections among graph, 
different representations. So graphs, tables, words and symbols.” Other instructors also 
mentioned different ways of engaging PSTs by using tasks and discussions that address algebraic 
connections. 

Of the connections between algebra and other mathematics, examples vary depending on 
topics that can be connected to algebra. A Linear Algebra instructor at Midwestern Research, for 
example, mentioned concepts around a tangent: “When you’re doing calculus you’re essentially 
approximating a graph by its tangent line, finding its tangent line, and then you use that to 
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approximate and that generalizes to a tangent plane, of a surface, or tangent space of a 
manifold.” Hence, the students would connect a basic algebraic idea of linear functions to ideas 
in Calculus. An Abstract Algebra instructor at Southeastern Research discussed algebraic 
connections to  geometric topics: “One of the things in this course, really the culminating section 
of the course talks about the non-constructability of certain geometric objects…You can’t square 
the circle, you can’t double the cube, you can’t trisect angles and that’s something that is a 
connection with high school geometry.” A Secondary Mathematics Methods instructor at Great 
Lakes provided a broader role of algebra: “We connect to geometry, probability, measurement, 
statistics. One of the conceptions of algebra that we talk about is algebra as kind of -- especially 
symbolic algebra -- as kind of the written language of mathematics and how being able to make a 
symbolic representation of an idea or a relationship gives us access to so many other tools -- 
that's a powerful problem-solving tool.” 

 Connections between algebra and non-mathematics were also discussed, making 
connections to subjects other than mathematics or to real-life situations. A Linear Algebra 
instructor at Great Lakes discussed building relationships between algebra and computer science 
when PSTs studied population dynamics. An Abstract Algebra instructor at Midwestern 
Research mentioned algebraic connections to cryptography: “Algebra and this cryptography is 
probably a connection between algebra and other fields because cryptography was done mostly 
by electrical engineers who are actually building machines.” A Secondary Mathematics Methods 
instructor at Great Lakes discussed connecting algebra to real-life situations, such as the price for 
a car wash: “Someone was looking at systems of linear equations and they were really 
struggling. I said, ‘I saw there was a gas station that was offering, it was this price for regular 
without a car wash and it was this price for regular if it was a car wash. Would something like 
that be helpful?’” Secondary Mathematics Methods instructors at other universities also 
discussed different examples of real-world connections, including the border problem at 
Midwestern Urban (generalizing the context using variables) and connections to other subject 
areas (e.g., geography) at Midwestern Research. 
 Lastly, connections between school and college algebra were discussed by only 
mathematics instructors. A Linear Algebra instructor at Southeastern Research provided a 
specific example of making connections between eigenvalues of matrices and polynomials: 
“When we went to find the eigenvalues of this matrix, so that came finding the characteristic 
polynomial which in this case was this [writing on board]. And then finding its roots so using the 
quadrant so there's a bunch of high school algebra, finding this polynomial, figuring out its roots, 
so those are x equal 1 plus or minus root 5 over 2.” Abstract Algebra instructors discussed such 
connections around topics of polynomials and set theory. An instructor at Great Lakes said, “We 
talk about polynomials, for instance, we talk about the relationships between problems that we 
might ask at this level and the corresponding problems at the high school level.” Another 
instructor at Midwestern Urban remarked, “I mainly see connections between is the college-level 
algebra and school algebra and this abstract notion of algebra in terms of let's start with number 
systems you're familiar with and then expand it to these more abstract settings.” Such 
connections were not reported by Secondary Mathematics Methods instructors, but shared by 
Mathematics for Teachers instructors (These results are discussed in other publications.) 

Purposes or ways of providing opportunities related to connections. Several purposes of 
making connections were described by the instructors: (a) to emphasize the application aspect of 
algebra, (b) to address the usefulness of algebraic connections, (c) to help PSTs teach 
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connections to their students, and (d) to develop PSTs’ conceptual understanding of algebraic 
concepts. The instructors also discussed diverse ways of providing such opportunities, including 
the use of previous chapters or other subject areas connected to algebra, the use of concepts or 
experiences that are familiar to PSTs, and discussions around tasks and textbooks. 

Of the Linear Algebra instructors, two instructors (at Midwestern Urban and Southeastern 
Research Universities) reported using connections for showing its applications in other 
mathematics. Instructor at Southeastern Research, for example, said, “Certainly algebra with 
other mathematical field, the reason we do Linear Algebra at this point in their career is that it 
has applications in so many other parts of math. And I bring those up whenever I can.” 
Instructors also described different ways of providing opportunities related to connections. An 
instructor at Midwestern Research described the use of related chapters to make connections. He 
reported, “The beginning chapter is building up the theory, understanding what a linear 
transformation is, its kernel, its image, being able to do row operations to answer various 
questions. The later chapter always use that stuff, it’s always talking in terms of that language 
that we’ve learned about.” An instructor at Great Lakes mentioned making connections by using 
relationships between algebra and computer science. He remarked, “we study population 
dynamics. We use this as kind of a model for dynamical systems.” Lastly, an instructor at 
Southeastern Research described a way to connect trigonometry with the eigenvalues of matrix. 
These examples are unique in that each Linear Algebra instructor reported different ways of 
providing opportunities related to connections. 

The Abstract Algebra instructors at Midwestern Urban and Midwestern Research 
universities reported the usefulness of algebraic concepts by making connections to other 
mathematical fields or real-life situations. For example, the instructor at Midwestern Urban said, 
“In terms of between algebra and other mathematical fields, I think they see the usefulness of 
number theory in the course. They see the usefulness of set theory.” An instructor at Midwestern 
Research reported, “my goal is to introduce how the modern algebra is used in real life.” A 
notable way to teach connections was to teach concepts that PSTs are familiar with. An 
instructor at Midwestern Urban said, “I have them think about what it means to solve for x in an 
equation they’re familiar with, which is from something they’re familiar with (college algebra, 
previous math classes) and then going to the abstract notion of what we mean by a group.” 
Another way of teaching connections was to promote discussions around relationships between 
school and college algebra. An instructor at Great Lakes reported, “We talk about the 
relationships between problems that we might ask at this level and the corresponding problems at 
the high school level. And the same thing with the integers.” The instructor also described how 
to connect the machinery in the division algorithm with the way that kids learn about division. 

In Secondary Mathematics Methods, examples of making connections for PSTs’ future 
students were shown in Great Lakes and Southeastern Research universities. Instructors 
described why making connections in college level is important in helping their students. A 
Secondary Mathematics Methods II instructor at Southeastern Research, for example, said, “We 
tried to help our students to be a little bit creative and try to find the connections and make it 
coherent for their students.” As a way to achieve this goal, the instructor described that “We 
talked about making connections between algebra and geometry to help students understand 
what is going on within the curriculum here in this State.” Another purpose of making 
connections reported by Secondary Mathematics Methods instructors was to develop PSTs 
conceptual understanding of concepts. A Secondary Mathematics Methods instructor at 
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Southeastern Research said, “We’ve focused so much on the cognitive demand and the 
conceptual understanding we try to show the connections to our students and bring it in and have 
them the investigations I try to have the kids go through is investigating ways that they can 
generalize so they’re not just memorizing rules.” An instructor at Great Lakes explained the 
ways that he helped PSTs make connections. He reported, “The connections that I’m hoping that 
they’re going to make are based on some of the workshops that they’ll do, the reading workshops 
as they’re doing that and seeing the connection to their own experience what’s going on in the 
classroom.” Other instructors also mentioned several ways of providing opportunities, such as 
discussions around mathematical tasks and textbooks (Midwestern Research) and discussions 
after watching a video tape that involves population growth (Midwestern Urban). 
Technologies 

In analyzing PSTs’ encounters with technology in learning algebra or to learning to teach 
algebra, we considered the types of technologies that instructors of the three courses reported 
using, their descriptions of their purposes in using particular technologies, and their descriptions 
of the ways that they or the course students used technologies. In considering how technologies 
were used, we thought about whether they were used for pragmatic use, to enhance learning, or 
to support critical thinking about the use of technologies. 

Types of Technologies. For four universities, the widest variety of technologies used 
occurred in Secondary Mathematics Methods courses. Of the Linear Algebra courses, only Great 
Lakes and Midwestern Urban instructors reported using technologies for class. At Great Lakes 
University, the Linear Algebra course had a computer lab component, where the class met in a 
computer lab one day each week; they used graphing calculators, Java applets created by the 
instructor, and Maple software. At Midwestern Urban University, the Linear Algebra instructor 
reported use of graphing calculators; at Midwestern Research, the instructor said he encouraged 
students to do some work using their favorite technology outside of class and also gave them 
access to Mathematica if they chose to use it, but said, “I’m interested in how this works, the 
brain, not how that [technology] works, so I don’t need to see the results of their computations.” 
At Southeastern Research University, the instructor said, “You’re not even allowed a calculator 
in the exams. Because I think it dulls the mind. Makes them rely on it instead of doing, learning 
mental arithmetic.” 
 Of the Abstract Algebra instructors, three instructors (at Great Lakes, Midwestern Urban, 
and Southeastern Research Universities) reported using a classroom management system for 
organization and communication of the course. Beyond that, the types of technologies varied: the 
Great Lakes instructor described use of GoogleDocs, Midwestern Research – any calculators, 
Midwestern Urban – Wolfram Demonstrations Project, and Southeastern Research – an iPad 
App called “Show Me.” 

In comparison, Secondary Mathematics Methods instructors reported a wide range of 
technologies including mathematics websites (i.e., Wolfram|Alpha, GeoGebra, Khan Academy), 
virtual manipulatives or applets (i.e., National Library of Virtual Manipulatives, National 
Council of Teachers of Mathematics: Illuminations), mathematics software (i.e., Geometer’s 
SketchPad, TinkerPlots, Fathom, GeoGebra, Excel), teaching websites or resources (i.e., TIMSS 
videos, classroom videos, Moodle), and hardware (i.e., SmartBoards, tablets).  

Ways of Using. We saw examples of each of our three categories of using technology: as 
a practical expedient, to enhance learning, and to support thinking critically about technology 
use.  
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In Linear Algebra, an example of using technology as a practical expedient was allowing 
students to perform row reduction operations on matrices using a calculator instead of by hand. 
Great Lakes and Midwestern Urban University instructors reported encouraging students to use 
graphing calculators (Great Lakes and Midwestern Urban) or Maple (Great Lakes). The 
Southeastern Research University instructor also encouraged students to row-reduce matrices 
“using their favorite technology,” but instead of asking students to report only their final answer, 
he said he asked students to explain or justify their answers. In Abstract Algebra courses, Great 
Lakes, Midwestern Urban, and Southeastern Research University instructors reported using 
course management systems for organization.  

As examples to enhance learning, Abstract Algebra instructors at two universities 
described their use of technology as supporting students’ exploration of and experimentation 
with mathematical ideas. At Midwestern Urban University, the instructor explained that he chose 
particular representations from Wolfram Demonstrations Project to support students in exploring 
symmetries and to “clearly understand what the different operations do.” At Midwestern 
Research University, the instructors asked students to use any calculator to perform experiments 
and said the use of calculators gave students a “better chance of seeing the pattern and coming up 
with better conjectures.” At Great Lakes University, a Secondary Mathematics Methods 
instructor also described using Wolfram|Alpha as a tool for student experimentation: “you’re 
making conjectures, you’re gathering data, and now you’re trying to go about proving it.” The 
Midwestern Research Secondary Mathematics Methods instructor described a big idea of his 
course as using “technology as a tool for learning.” 

The Secondary Mathematics Methods instructors at Great Lakes, Midwestern Research, 
Midwestern Urban, and Southeastern Research described opportunities PSTs had to think 
critically about using technology in algebra through use of different tasks and activities. At Great 
Lakes, Midwestern Research, and Southeastern Research Universities, instructors described 
discussions with PSTs focused on consideration of how different schools provide access to 
different technologies, so considering what is or is not available and how to consider why and 
how to use technology to support learning. The Great Lakes instructor described discussions with 
students asking, “what technology is available [at a school] and what can you do with it? And 
why use it?” Similarly, the Midwestern Research instructor had discussions asking “What does 
GSP [Geometers SketchPad] afford? What does – what can you do if you don’t have something 
like this? In terms of developing ideas about co-variation of quantity as a basis for functions.” 
The Southeastern Research instructor explained, “I feel like we try to emphasize not using the 
technology and the resources for the sake of using them but making sure that there is a purpose 
and a reason behind why are we using this.” The Midwestern Urban instructor described one 
activity that PSTs engaged in as choosing a particular technology and writing a lesson plan that 
would use the technology.  

Discussion 
Our preliminary results show different types of opportunities that PSTs were provided 

related to the learning of algebraic connections and the use of technology to learn and learn to 
teach algebra. There was a wide range of opportunities that instructors provided related to 
algebraic connections: some instructors provided lists of topics and ways that they made 
connections (e.g., Linear Algebra at Great Lakes); others reported specific activities that engaged 
PSTs to make connections (e.g., Secondary Mathematics Methods at Midwestern Urban). At 
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Great Lakes University, mathematics instructors described how they emphasized different types 
of connections, while the mathematics education instructor focused on how PSTs made 
connections in his class. At Midwestern Urban University, instructors described connections 
among not only algebraic topics (e.g., systems of equations, variables), but also practices that can 
be used in different courses and grade levels (e.g., proofs, generalization), along with how 
technology can be used to make such connections (e.g., Linear Algebra instructor).  

We heard concerns from both mathematics and mathematics education instructors that 
technology could impede PSTs’ learning. Some mathematics education instructors argued, to the 
contrary, that use of technology enabled PSTs to increase their understanding of algebra topics in 
ways that were not possible otherwise. At each university there was at least one opportunity for 
PSTs to think critically about their future educational use of technology, but experiences varied.  

Endnote 
This study comes from the Preparing to Teach Algebra project, a collaborative project between 
groups at Michigan State (PI: Sharon Senk) and Purdue (co-PIs: Yukiko Maeda and Jill Newton) 
Universities. This research is supported by the National Science Foundation grant numbers DRL-
1109256/1109239 and by the National Science Foundation, Spencer Foundation. 
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Examining the role of a secondary teacher’s image of instructional constraints on his 
enacted subject matter knowledge 

 
Michael A. Tallman 

Oklahoma State University 

I present the results of a study designed to determine if there were incongruities between a 
secondary teacher’s mathematical knowledge and the mathematical knowledge he leveraged 
in the context of teaching, and if so, to ascertain how the teacher’s enacted subject matter 
knowledge was conditioned by his conscious responses to the circumstances he appraised as 
constraints on his practice. To address this focus, I conducted three semi-structured clinical 
interviews that elicited the teacher’s rationale for instructional occasions in which the 
mathematical ways of understanding he conveyed in his teaching differed from the ways of 
understanding he demonstrated during a series of task-based clinical interviews. My analysis 
revealed that that the occasions in which the teacher conveyed/demonstrated inconsistent 
ways of understanding were not occasioned by his reacting to instructional constraints, but 
were instead a consequence of his unawareness of the mental activity involved in 
constructing particular ways of understanding mathematical ideas. 

Key words: Mathematical Knowledge for Teaching; Enacted Knowledge; Instructional 
Constraints; Trigonometry. 

Introduction 

[S]tudents’ mathematical learning is the reason our profession exists. Everything we do as 
mathematics educators is, directly or indirectly, to improve the learning attained by 
anyone who studies mathematics. Our efforts to improve curricula and instruction, our 
efforts to improve teacher education, our efforts to improve in-service professional 
development are all done with the aim that students learn a mathematics worth knowing, 
learn it well, and experience value in what they learn. So, in the final analysis, the value 
of our contributions derives from how they feed into a system for improving and 
sustaining students’ high quality mathematical learning (Thompson, 2008, p. 31).  

 
Research in the area of teacher knowledge in mathematics education has progressed 

significantly since Shulman’s conception of pedagogical content knowledge (Shulman, 
1986). However, this domain of mathematics education scholarship still has much to 
contribute to the development of instructional, curricular, and pedagogical innovations that 
seek “to improve the learning attained by anyone who studies mathematics” (ibid.). The 
overwhelming majority of research in this area has attended to one, or more, of the following 
foci: (1) characterizing the nature of mathematical and pedagogical knowledge teachers must 
possess to support students’ conceptual mathematical learning (e.g., Ball, Thames, & Phelps, 
2008; Fennema & Franke, 1992; Rowland, Huckstep, & Thwaites, 2005; Shulman, 1986, 
1887); (2) understanding the experiences by which teachers might construct such knowledge 
(e.g., Harel, 2008; Harel & Lim, 2004; Silverman & Thompson, 2008); (3) developing 
assessments to measure teachers’ knowledge (e.g., Hill, Ball, & Schilling, 2008; Herbst & 
Kosko, 2014, Thompson, 2015), and (4) demonstrating the causal link between teacher 
knowledge and student achievement (e.g., Baumert et al., 2010; Campbell et al., 2014; Hill, 
Rowan, & Ball, 2005) or instructional quality (e.g., Charalambous & Hill, 2012; Copur-
Gencturk, 2015; Even & Tirosh, 1995; Hill et al., 2008). Stated succinctly, research on 
teacher knowledge in mathematics education has largely focused on what teachers need to 
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know, how they might come to know it, how one might measure it, and the effect of this 
knowledge on instructional quality and student performance. While these seemingly 
comprehensive foci are essential to the enterprise of improving students’ mathematical 
learning, they neither identify nor characterize the effect of the factors that mediate the 
enactment of teachers’ knowledge in instructional contexts, which is the only knowledge that 
has the potential to affect our field’s raison d’être: the mathematics students have the 
opportunity to learn. A focus on characterizing, developing, assessing, and discerning the 
effect of teachers’ professional knowledge without attending to the factors that compromise 
its enactment, while necessary, is not sufficient for ensuring “that students learn a 
mathematics worth knowing, learn it well, and experience value in what they learn” (ibid.).  

The knowledge teachers leverage in the context of practice is regulated by a host of 
cognitive and affective processes that have thus far not received sufficient attention in the 
literature on teacher knowledge in mathematics education. Identifying the influences that 
condition the knowledge teachers utilize in the context of practice, and ascertaining the effect 
of such influences on the nature and quality of teachers’ enacted knowledge, is imperative for 
satisfying Thompson’s (2008) exacting proposal that our research contributions should “feed 
into a system for improving and sustaining students’ high quality mathematical learning” (p. 
31). For current scholarship on mathematics teacher knowledge to realize its intended effect 
of ensuring teachers are equipped to engage students in experiences that support their 
construction of rich mathematical ways of understanding and their development of productive 
ways of thinking, it is crucial to apprehend the effect of those factors that condition the 
enactment of the knowledge teachers do possess in addition to characterizing the knowledge 
teachers should possess. Ascertaining the factors that mediate the knowledge that resides in 
teachers’ minds and the knowledge they bring to bear to support students’ mathematical 
learning is indispensible for fashioning well-informed teacher preparation programs and 
professional development initiatives that take seriously the effect of teacher knowledge and 
those influences that compromise it. The present study seeks to contribute to this end. 

In this paper, I present the results of a study in which I examined the effect of an 
experienced secondary mathematics teacher’s image1 of instructional constraints on the 
nature and quality of his enacted subject matter knowledge of trigonometric functions. While 
there are many factors that potentially mediate the enactment of teachers’ professional 
knowledge, my decision to focus specifically on an in-service teacher’s image of instructional 
constraints was motivated by the well-documented pervasiveness of teachers’ resistance to 
contemporary educational reform initiatives, particularly within British and American 
educational systems. Such initiatives are often championed by those who conclude that 
deficits in teacher aptitude and motivation lie at the heart of modest student achievement. 
Opponents of this perspective contend that teachers operate under progressively crippling 
circumstances—many of which they consider occasioned by current reforms—that severely 
obstruct teachers’ ability to engage students in high quality learning experiences. For 
instance, one often hears it said, at least in the United States, that engrained cultural practices, 
an overreliance on high-stakes testing and accountability, policymakers’ aspirations to 
privatize education, decaying teacher-student relationships, the de-professionalization of 
teaching, unsupportive administrators and colleagues, insufficient emphasis on early 
childhood education, inadequate instructional and curricular resources, increasing proportions 
of students living in poverty, and the escalation of unsupportive parents all impose obstacles 
that severely limit what many teachers believe they can achieve in the classroom (Hargreaves 
                                                
1 The “image of” qualifier suggests my constructivist approach to defining instructional constraints, which I 
discuss in the section entitled, “Theoretical Framing.” 
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& Shirley, 2009; Nichols & Berliner, 2007; Ravitch, 2010, 2013; Sahlberg, 2004, 2006, 2011; 
Stigler & Hiebert, 1999). However, the specific ways in which mathematics teachers’ 
appraisal of, and accommodations for, such instructional constraints inhibits them from 
enacting the full extent of their professional knowledge to support students’ learning has not 
yet been characterized. To address this limitation, the present study explored the following 
research questions: 

RQ 1: Are there incongruities between an in-service secondary mathematics teacher’s 
subject matter knowledge and the subject matter knowledge he enacted while 
teaching?2 

RQ 2: If so, in what ways did the teacher’s image of instructional constraints condition 
the nature and quality of his enacted subject matter knowledge? 

It is essential in the contemporary climate of mathematics education to apprehend 
whether teachers do indeed teach what they know. When mathematics teacher educators 
assume teachers leverage the full extent of their professional knowledge in an 
uncompromised way, they design preparation programs and professional development 
experiences that focus on supporting teachers in constructing more advanced knowledge 
structures—knowledge that ultimately might not inform teachers’ instructional practices and 
thus the mathematics students have the opportunity to learn. A focus on the factors that 
condition the enactment of teachers’ knowledge has the potential to inform instructional and 
curricular designs that seek not only to advance teachers’ knowledge but also to equip them 
with skills and strategies to minimize the unfavorable effects of such factors. 

 
Theoretical Framing 

The “image of” qualifier in the title of this paper suggests my radical constructivist 
approach to defining instructional constraints. I take the position that environmental 
circumstances per se in the absence of a teacher’s construal of them cannot constrain his or 
her practice, but the teacher’s construction and appraisal of environmental circumstances can 
and often does. For this reason, I contend that particular circumstances cannot maintain an 
ontological designation as instructional constraints, however consensual are teachers’ 
construction and appraisal of such circumstances. Therefore, in consonance with radical 
constructivism’s skeptical position on reality, I define instructional constraints as an 
individual teacher’s subjective construction of the circumstances that impede the teacher’s 
capacity to achieve his or her instructional goals and objectives. Such subjective 
constructions are the only “constraints” that maintain the potential to influence teachers’ 
instructional actions. Accordingly, I locate instructional constraints in the mind of 
individuals, not the environment. This conceptualization stands in stark contrast to the 
common perception of instructional constraints as external pressures that exert influence on 
the quality of teachers’ instruction. According to this view, the pressure comes from without 
instead of from within. My interest in understanding how a secondary teacher’s image of 
instructional constraints conditioned the mathematical ways of understanding and ways of 
thinking he utilized in the context of teaching necessitated my constructing a model of the 
teacher’s construction of those circumstances he appraised as constraints on his practice. 

As a result of my view that instructional constraints are subjective constructions that 
reside in the minds of teachers, I consider anything that a teacher appraises as an imposition 
                                                
2 I note that the identification of incongruities between the teacher’s subject matter knowledge and the subject 
matter knowledge he enacts while teaching is from my perspective. Similarly, characterizing the effect of a 
teacher’s image of instructional constraints on his enacted mathematical knowledge is also a characterization 
from my perspective.  
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to achieving his or her instructional goals and objectives to be an instructional constraint. The 
appraisal need not even be of an external circumstance. A teacher may appraise internal 
characteristics such as his or her mathematical self-efficacy, social endowments, creativity, 
tolerance, attitude, perseverance, temperament, empathy, confidence, etc., as imposing limits 
on the quality of his or her instruction. Since a teacher’s appraisal of such intrinsic 
characteristics is a subjective construction in the same way that a teacher’s appraisal of 
external circumstances is, both types of appraisals have the capacity to influence teachers’ 
practice in the same way.  
 

Methods 

My experimental methods proceeded in three phases. In the first phase, I conducted a 
series of nine task-based clinical interviews (TBCIs) (Clement, 2000; Goldin, 1997; Hunting, 
1997) that allowed me to construct a model of the participating teacher’s (David’s) 
mathematical knowledge of various topics associated with trigonometric functions. In the 
second data collection phase, I used video data from 37 classroom observations to construct a 
model of the mathematical knowledge David utilized in the context of classroom practice. 
Finally, I employed a phase of three semi-structured clinical interviews to construct a model 
of David’s perception of instructional constraints and to discern the role of this image on the 
quality of his enacted mathematical knowledge. 

The goal of the series of task-based clinical interviews was to facilitate my construction 
of a model of David’s ways of understanding and ways of thinking (Harel, 2008) relative to 
angle measure, the outputs and graphical representation of sine and cosine, and the period of 
sine and cosine. Constructing a model of an individual’s cognition by projecting or imputing 
one’s cognitive schemes to the individual constitutes developing a first-order model (Steffe & 
Thompson, 2000). This is in contrast to developing a second-order model, in which the 
researcher attempts to make sense of the individual’s actions by interpreting them through the 
lens of his or her model of the individual, not through his or her own cognitive schemes 
(ibid.). It is important to note that the goal of the series of task-based clinical interviews I 
conducted was to construct a second-order model of David’s mathematical knowledge. 
Although I constructed a second-order model of David’s mathematics, this model does not 
constitute a direct representation of David’s knowledge, but rather a viable characterization 
of plausible mental activity from which his language and observable actions may have 
derived. Constructing such a model involved my generating prior to, within, and among task-
based clinical interviews tentative hypotheses of David’s ways of understanding that 
explained my interpretation of the observable products of his reasoning. I developed these 
provisional hypotheses by attending to David’s language and actions and abductively 
postulating the meanings that may lie behind them. I designed and modified tasks for 
subsequent interviews to test, extend, articulate, and refine my tentative hypotheses of 
David’s mathematical knowledge. 

All task-based clinical interviews took place in David’s classroom after school on the 
days that best suited his schedule. I attempted to schedule the interviews so that there was at 
least one day between each to accommodate for ongoing analysis, and accomplished this with 
the exception of the last two task-based clinical interviews. In each interview, I obtained 
video recordings that captured David’s writing, expressions, and gestures. I also created 
videos of my computer screen via QuickTime Player to capture the didactic objects 
(Thompson, 2002) David and I discussed as well as any work David completed on the 
computer. Additionally, I collected and scanned all written work that David produced during 
the interviews. 
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I collected daily video recordings of two of David’s Honors Algebra II class sessions over 
a seven-and-a-half-week period, which resulted in 37 videos of classroom teaching. The only 
days I did not intend to collect videos of David’s teaching were those days students were 
testing or the days David was teaching content unrelated to the angle measure, sine, or cosine. 
While the classroom observations did not demand the type of ongoing analysis that was part 
and parcel of the series of task-based clinical interviews, I documented, in the form of 
memos, the mathematical understandings and ways of thinking David afforded his students 
the opportunity to construct. I must emphasize that I characterized the ways of understanding 
and ways of thinking David allowed his students to construct, and not the understandings and 
ways of thinking his students actually constructed. In essence, I documented the 
understandings that I would be able to construct, and the ways of thinking that I would be 
able to develop, were I an engaged student in the class with sufficient background 
knowledge, uninhibited by unproductive understandings or disadvantageous ways of 
thinking. 

The objective of the third phase of my experimental methodology was to obtain data that 
allowed me to construct a model of David’s image of those aspects of his environmental 
context that he appraised as constraints on the quality of his instruction, and to determine the 
way in which this image conditioned the mathematical knowledge he employed in the context 
of teaching. Constructing such a model and determining the effect that David’s image of 
instructional constraints had on his enacted subject matter knowledge involved my 
conducting a series of three semi-structured clinical interviews after David completed his 
instruction of trigonometric functions. 

The content of these semi-structured clinical interviews was heavily informed by my 
analysis of the data I obtained from the series of task-based clinical interviews as well as 
from David’s teaching. Based on my analysis of this data, I selected video clips to discuss 
with David during the clinical interview sessions to discern the role of David’s image of 
instructional constraints on the quality of his enacted mathematical knowledge. I devoted 
particular attention to ascertaining David’s rationale for those instructional actions in which 
the mathematics he allowed students to construct differed from the mathematical ways of 
understanding he demonstrated during the series of task-based clinical interviews. It is 
essential to point out that I did not assume David recognized the discrepancies I noticed in the 
videos excerpts I selected to discuss. Therefore, after having presented pairs of videos to 
David that I believed demonstrated him conveying/supporting discrepant meanings, I asked 
him to compare the ways of understanding he communicated in both videos. My rationale for 
doing so was to determine if David recognized the same inconsistencies that I noticed in the 
ways of understanding he demonstrated/conveyed. 

 
Analytical Framework 

I leveraged explicit formalizations of quantitative reasoning (Smith & Thompson, 2007; 
Thompson, 1990, 2011) in the design of the present study and my analysis of its data. A 
growing body of research (e.g., Castillo-Garsow, 2010; Ellis, 2007; Moore, 2012, 2014; 
Moore & Carlson, 2012; Oehrtman, Carlson, & Thompson, 2008; Thompson 1994, 2011) has 
identified quantitative reasoning as a particularly advantageous way of thinking for 
supporting students’ learning of a wide variety of pre- and post-secondary mathematics 
concepts. Additionally, this body of research has demonstrated the diagnostic and 
explanatory utility of quantitative reasoning as a theory for how one may conceptualize 
quantitative situations. 
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 Quantitative reasoning is a characterization of the mental actions involved in 
conceptualizing situations in terms of quantities and quantitative relationships. A quantity is 
an attribute, or quality, of an object that admits a measurement process (Thompson, 1990). 
One has conceptualized a quantity when she has identified a particular quality of an object 
and has in mind a process by which she may assign a numerical value to this quality in an 
appropriate unit (Thompson, 1994). It is important to note that quantities do not reside in 
objects or situations, but are instead constructed in the mind of an individual perceiving and 
interpreting an object or situation. Quantities are therefore conceptual entities (Thompson, 
2011). 

Conceptualizing a quantity does not require that one assign a numerical value to a 
particular attribute of an object. Instead, it is sufficient to simply have a measurement process 
in mind and to have conceived, either implicitly or explicitly, an appropriate unit. 
Quantification is the process by which one assigns numerical values to some quality of an 
object (Thompson, 1990). Note that one need not engage in a quantification process in order 
to have conceived a quantity, but must have in mind a quantification process whereby she 
may assign numerical values to the quantity (Thompson, 1994). Defining a process by which 
one may assign numerical values to a quantity often involves an operation on two other 
quantities. In such cases we say that the new quantity results from a quantitative operation—
its conception involved an operation on two other quantities. Quantitative operations result in 
a conception of a single quantity while also defining the relationship among the quantity 
produced and the quantities operated upon to produce it (Thompson, 1990, p. 12). It is for this 
reason that quantitative operations assist in one’s comprehension of a situation (Thompson, 
1994). It is important to note the distinction between a quantitative operation and a numerical 
or arithmetic operation. Arithmetic operations are used to calculate a quantity’s value 
whereas quantitative operations define the relationship between a new quantity and the 
quantities operated upon to conceive it (Thompson, 1990). 

 
Results 

On several occasions David demonstrated ways of understanding during the series of 
task-based clinical interviews (TBCIs) that were inconsistent or incompatible with the ways 
of understanding his instruction supported. I selected three such occasions to discuss with 
David during a phase of clinical interviews I conducted after David completed his instruction 
of trigonometric functions. Specifically, I presented David with three pairs of videos, each 
containing an excerpt from the series of task-based clinical interviews and an excerpt from 
his classroom teaching. From my perspective, these pairs of videos exemplified David 
communicating discrepant mathematical meanings. My purpose in presenting David with 
these pairs of videos was to determine if he willingly compromised the quality of his enacted 
mathematical knowledge in response to the circumstances and events he appraised as 
instructional constraints. The following is a presentation of my analysis of our conversation 
around two of these three pairs of video excerpts. I do not discuss my analysis of David’s and 
my conversation around the third pair of video excerpts since the conclusions drawn 
therefrom are consistent with those I present below. 

I presented David with a video excerpt from Lesson 1 in which he explained that the 
measure of an angle is unit-less since the standard linear units one uses to measure the length 
of the subtended arc and the circumference of the circle containing the subtended arc 
“cancel” when one computes the ratio of these lengths (see Excerpt 1). During this episode 
David was discussing the image displayed in Figure 1. 
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1/8 of the
circumference

 
Figure 1. Angle measure as a fraction of the circle’s circumference. 
 
Excerpt 1 
David: So the angle subtends 1/8th of the circumference of the circle. (Pause) Now do 

units matter here? … Why do units not matter here? 
Student: ‘Cause you’re using a proportion. 
David: Why does that matter? … 
Student: Because even though you’re making the radius larger you’re also making the 

whole circle larger. 
David: So what happens when you do your proportion? Think in science class. (Long 

pause) ‘Cause we’re comparing it to our circumference, right? We’re comparing 
arc length to circumference? What would happen to the units then? (Long pause) 
So lets just say for the sake of argument 1/8th could be a circumference of, uh, a 
circumference of 16, that would mean that the arc length would be two, if it’s an 
eighth. So two inches divided by 16 inches is? 

Student: One-eighth.  
David: One-eighth. What are the units now? (Long pause) What happens when you put—

and again think in terms of science class—what happens when you put two inches 
divided by 16 inches (writes “2in/16in”), your science teacher would say that’s 
1/8th. What are the units? 

Student: It doesn’t matter.  
David: It does matter. What are the units? 
Student: Inches. 
David: Inches divided by inches give you inches? 
Student: No. 
David: What does it give you? 
Student: One-eighth. 
David: What are the units? 
Student: It doesn’t have units. 
David: It doesn’t have units? Why not? 
Student: Because the inches cancel. 
David: ‘Cause inches cancel inches! … ‘Cause I’m not just measuring arc length. What 

am I measuring? I’m measuring arc length and comparing it to what? 
Student: Circumference. 
David: Circumference! How am I comparing them? 
Student: By length. 
David: By length? What operation is going on here? Am I subtracting the circumference? 

(Pause) It’s division! We’re creating a ratio! Then do the units matter? 
Student: No. … 
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David: What happens when we do the ratio? The units stop mattering, right? Because the 
units end up canceling. We’re interested in the ratio. We’re not interested in the 
units from the ratio because the units are going to reduce. 

 
Excerpt 1 demonstrates that David did not provide students with an opportunity to 

interpret the division of subtended arc length and circumference as the numerator measured 
in units of the denominator but rather as the ratio of two values. David therefore supported 
students’ understanding of the ratio of subtended arc length to circumference as an arithmetic 
operation as opposed to a quantitative operation. After showing David the video, I asked him 
to describe the meaning he conveyed. David’s response, “Because we’re comparing 
proportions of arc length to circumference, then we no longer care about the units of 
measure” led me to believe that he interpreted the video in the way I expected him to. I then 
showed David a video excerpt from TBCI 3 in which he responded to the task in Table 1. 
Excerpt 2 contains David’s response to the task.  
 
Table 1 
Task 5 from TBCI 3 
Nick claims that the measure of the angle shown is 3/8ths and Meghan claims that the measure 
of this angle is three. How is Nick thinking about measuring this angle? How is Meghan 
thinking about measuring the angle? Are they both correct? 

 
 
Excerpt 2 
Michael: Taking a look at this picture, what do you see in this picture here? 
David: Uh, I see an, a central angle inscribed inside a circle. Uh, we have an arc, um, that 

seems to be in a bolder line that, um, subtends the circle and that would be our 
angle measure. 

Michael: Okay. What about the red dots? 
David: Uh, the red dots seem to be evenly spaced around the, um, around the circle. So it 

appears that we have basically divided the circle into, um, eight pieces. … 
Michael: Okay. So let’s assume that that’s the case. Let’s assume that these red dots are 

evenly spaced around the circumference of the circle so that we’re splitting up the 
circumference into eight equal pieces. And let’s suppose that Nick claims that the 
measure of this angle is 3/8ths and let’s say that Meghan claims that the measure of 
this angle is three. Um, how might Nick, who claimed that the measure of the 
angle is 3/8ths, how might he be thinking about measuring this angle? 
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David: (Pause) Well if he’s thinking of it as 3/8ths then he is thinking that the arc is 3/8ths 
of the whole. So his unit of measure is not the red dots, his unit of measure is the 
full circumference. Uh, so, um, where Meghan is saying it’s three so her unit of 
measure is the, um, individual, um, arc lengths, uh, between the dots. And so she’s 
saying that the arc is three units of measure where eight units of measure, where 
eight make up the whole. And he is saying it’s 3/8ths of the whole. And so his unit 
of measure is the whole not the parts. 

Michael: So are they both correct in their, in saying that the measure of this angle is, in 
Nick’s case 3/8ths and in Meghan’s case three? 

David: Yes. It’s just that they’re using different units. 
 

David’s remarks in Excerpt 2 suggest that he recognized that Nick measured the 
subtended arc length in units of circumference and Meghan measured the subtended arc 
length in units of 1/8ths of the circumference. David therefore assimilated Nick and Meghan’s 
claims as two different instantiations of the same process—measuring the subtended arc 
length in a particular unit—and in doing so demonstrated a quantitative way of understanding 
angle measure. After having watched the video clip in which he responded to the task in 
Table 1, David reluctantly made the remark in Excerpt 3. 

 
Excerpt 3 
David: Now that I’m thinking about it and listening to what I said, I’m not even sure if I 

would call the full circle a unit. I think he’s thinking more in terms of a proportion 
of the whole. I’m not really even sure if I want to call it a unit. … Meghan is using 
a unit; she’s using three quips or whatever. … He’s thinking of it as a proportion. 
Like I said I’m not sure if I would even want to call it a unit.  

 
After having reflected for a few minutes, David recognized, “The only units that 3/8ths 

could go with is circumference. It’s 3/8ths of circumference. That’s the only unit, if we were 
to assign it a unit that’s the only unit that I can think of that would be appropriate.” David’s 
hesitation and reluctance suggests that his interpretation of the way of understanding he 
conveyed in his response to the task in Table 1 was not entirely consistent with my 
interpretation. David nonetheless acknowledged that the circumference is only unit to which 
Nick’s measure of 3/8ths could refer. 

Once I assessed the extent to which David’s interpretation of the video excerpts was 
consistent with mine, I asked him determine whether the ways of understanding he conveyed 
in the video clip from Lesson 1 (wherein he explained that angle measures are unit-less 
because units cancel when one computes the ratio of subtended arc length to circumference) 
was consistent with the way of understanding he conveyed in the video clip from TBCI 3 (in 
which he recognized that both Nick and Meghan measured the length of the subtended arc, 
albeit in different units). 
 
Excerpt 4 
Michael: Is the way of understanding that you discuss in this clip (TBCI 3) consistent with 

the way of understanding you conveyed in this one here (Lesson 1)? 
David: Um, yeah because we’re trying to get to like Nick’s way of thinking. So like Nick 

was just talking about the proportion and how he like didn’t really kind of have 
units. … So we were kind of leading to Nick’s way of thinking about it so it does 
kind of match along with Nick’s way of thinking.  
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David’s response in Excerpt 4 reveals that he did not recognize the discrepancy I noticed 

in the way of understanding angle measure he conveyed in both video excerpts. David 
interpreted 3/8ths, the measure of the angle Nick proposed, as being a unit-less measure, 
which is consistent with the way of understanding he emphasized in the video clip from 
Lesson 1. I subsequently asked David to describe what he would change about the 
instructional episode depicted in the video excerpt from Lesson 1. David responded, “I don’t 
know if I would actually change any of it because I do like the fact that when we get to 
radians that radians are kind of without units. So I do like the fact that we’re talking about the 
units kind of canceling.” David’s failure to recognize that he conveyed what I consider vastly 
different meanings of angle measure in the two video excerpts, as well as his assertion that he 
would not change anything about his instruction from the Lesson 1 video, even after having 
seen a video in which he demonstrated a productive way of understanding, suggests that 
David was not consciously aware of the mental actions that comprise the meanings he 
intended to promote in his instruction. Such conscious awareness would likely have equipped 
David with the cognitive schemes to recognize the discrepant and incompatible ways of 
understanding he conveyed in both video excerpts. 

I subsequently presented David with a video from the fourth task-based clinical interview 
in which he used an applet (see Table 2) to successfully approximate the values of sin(0.5) 
and cos(¾). During this interview David interpreted the task of approximating the value of 
sin(0.5) as, “Estimate how many radius lengths is Joe north of Abscissa Boulevard when the 
angle traced out by his path is 0.5 radians.” In particular, David interpreted the 0.5 as 
representing the number of radius lengths that Joe had traveled along Euclid Parkway and 
sin(0.5) as representing Joe’s distance north of Abscissa Boulevard in units of radius lengths. 
David similarly interpreted the task of approximating the value of cos(¾) in the following 
way: “Estimate how many radius lengths Joe is to the east of Ordinate Avenue when his path 
has traversed an arc that is 3/4ths times as long as the radius of Flatville.” David’s response to 
the task of using the applet in Table 1 to approximate the values of sin(0.5) and cos(¾) 
suggests that he had constructed the outputs of sine and cosine as quantities; that is, as 
measurable attributes of a geometric object. After David watched the video except from the 
fourth task-based clinical interview, he described the way of understanding he demonstrated 
in a way that was consistent with my interpretation. 

 
Table 2 
Applet Designed to Support a Quantitative Understanding of Sine and Cosine Values 
Suppose Joe is riding his bike on Euclid Parkway, a perfectly circular road that defines the 
city limits of Flatville. Ordinate Avenue is a road running vertically (north and south) through 
the center of Flatville and Abscissa Boulevard is a road running horizontally (east and west) 
through the center of Flatville. Assume Joe begins riding his bike at the east intersection of 
Euclid Parkway and Abscissa Boulevard in the counterclockwise direction. 
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Ordinate
Ave.

Abscissa
Blvd.

Euclid
Pkwy.

Joe

 
 
After David watched the video excerpt from the fourth task-based clinical interview, I 

presented him with a video excerpt from Lesson 7 (which occurred four days after the fourth 
task-based clinical interview) in which he defined the outputs of sine and cosine relative to 
the following two cases: (1) when the radius of the circle centered at the vertex of an angle 
has a measure of one unit and (2) when this radius does not have a measure of one unit. 
Specifically, in the video excerpt David claimed that if the radius of the circle has a measure 
of one unit, then the sine and cosine values of the angle’s measure are respectively equal to 
the y- and x-coordinates of the terminus of the subtended arc. David then explained that if the 
radius of the circle centered at the angle’s vertex does not have a measure of one unit, then 
the values of sine and cosine are given by the respective ratios of the y- and x-coordinate of 
the terminal point to the length of the radius. It is noteworthy that David’s explanation did not 
support students in conceptualizing sine and cosine values as the measure of a quantity in a 
particular unit. In other words, David’s explanation in Lesson 7 did not support students in 
being able to answer the question, “What are the attributes to which sine and cosine values 
may respectively be applied as measures and in what unit are these attributes being 
measured?” In contrast to the quantitative way of understanding the outputs of sine and 
cosine David demonstrated in the fourth task-based clinical interview, during Lesson 7 David 
conveyed sine and cosine values as respectively representing y- and x-coordinates of the 
terminal point, or as arithmetic operations (i.e., sin(θ) = y/r and cos(θ) = x/r).  

After David viewed the two video excerpts, I asked him to determine if the way of 
understanding he supported in the excerpt from Lesson 7 differed from the understanding he 
employed to approximate the value of sin(0.5) and cos(¾) in the excerpt from the fourth task-
based clinical interview (Excerpt 5). 

 
Excerpt 5 
Michael: Is there any way that the understanding of sine and cosine you convey in this clip 

(Lesson 7) is different from what you did here (Task-Based Clinical Interview 4)? 
David: Only in the units of measure that we started with to obtain the ratio, but in the end 

we end up with an output that is a proportion of the entire radius. So in the end, no 
[they aren’t different]. In the end they end up giving me the same thing. 

 
David did not appear to recognize the way of understanding he demonstrated in the first 

video excerpt as being fundamentally different from the way of understanding he conveyed in 
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the second. David’s remark in Excerpt  focused primarily on the outcome of his application 
of two discrepant (from my perspective) ways of understanding instead of attending to the 
ways of understanding themselves. Like several occasions in other interviews in which David 
demonstrated an incapacity to attend to ways of understanding—either his own or his 
students’—his remarks in Excerpt  demonstrate that he had not achieved clarity relative to the 
mental activity involved in his own ways of understanding, nor of those he intended to 
support in his teaching. Had David done so, he would likely have been positioned to notice 
the discrepant meanings he conveyed in the videos I presented. David similarly failed to 
identify the inconsistent meanings he communicated in the other two pairs of video excerpts I 
presented to him.  
 

Discussion 

To investigate the role of David’s image of instructional constraints on his enacted 
subject matter knowledge, I provided opportunities for him to rationalize occasions in which 
the ways of understanding he supported in his teaching differed from the ways of 
understanding he demonstrated during a series of task-based clinical interviews. My analysis 
of our conversation around all three pairs of video excerpts revealed that David failed to 
notice the discrepancy in the ways of understanding he conveyed/demonstrated in these 
excerpts. David’s inability to recognize such discrepancies suggests that he was not 
consciously aware of the mental actions that comprise the meanings he intended to promote 
in his teaching, as such awareness would likely have equipped David with the cognitive 
schemes necessary to recognize the inconsistent and often incompatible ways of 
understanding he conveyed in the excerpts we discussed. My analysis further revealed that 
the occasions in which David conveyed/demonstrated discrepant, inconsistent, or 
incompatible ways of understanding were not occasioned by his responding to or 
accommodating for the circumstances and events he appraised as constraints on his practice, 
but were rather a consequence of his unawareness of the mental activity involved in 
constructing particular ways of understanding mathematical ideas. 

The results of this study suggest that inconsistencies between mathematics teachers’ 
subject matter knowledge and their enacted subject matter knowledge do not necessarily 
result from teachers’ making conscious concessions to the quality of their enacted knowledge 
in the process of accommodating for the circumstances and events they appraise as 
constraints on their practice. Such inconsistencies might be a byproduct of teachers’ 
unawareness of the mental activity that constitute their ways of understanding mathematical 
ideas. Accordingly, the main findings of this study suggest that the mathematical knowledge 
required for effective teaching involves more than powerful understandings of mathematical 
ideas; it involves an awareness of the mental actions and operations that constitute these 
understandings. Therefore, what might be called mathematical content knowledge for 
teaching entails both strong subject matter knowledge as well as an awareness of the mental 
processes that characterize such knowledge. Pre-service mathematics teacher educators and 
in-service professional development specialists should thus make an effort to provide 
opportunities for teachers to have explicit answers to questions like, “When my students read 
the symbols ‘sin(θ)’ what do I want them to imagine?” and “When my students look at an 
angle and think about measuring it in radians, what do I want them to visualize?” While it is 
beyond the scope of this paper to substantiate this claim, I believe that Piaget’s (2001) notion 
of reflected abstraction can be leveraged as a particularly powerful instructional design 
principle for supporting teachers in becoming consciously aware of the mental processes that 
comprise their own ways of understanding mathematical ideas. Providing opportunities for 
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teachers to achieve such conscious awareness of the mental activity involved in particular 
ways of understanding might minimize the potential that teachers will not leverage the full 
extent of their subject matter knowledge to support students’ mathematics learning. 
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Mathematicians’ ideas when formulating proof in real analysis 
 

Melissa Troudt 
University of Northern Colorado 

This report presents some findings from a study that investigated the ideas professional 
mathematicians find useful in developing mathematical proofs in real analysis.  This research 
sought to describe the ideas the mathematicians developed that they deemed useful in moving 
their arguments toward a final proof, the context surrounding the development of these ideas 
in terms of Dewey’s theory of inquiry, and the evolving structure of the personal argument 
utilizing Toulmin’s argumentation scheme. Three research mathematicians completed tasks 
in real analysis thinking aloud in interview and at-home settings and their work was captured 
via video and Livescribe technology.  The results of open iterative coding as well as the 
application of Dewey’s and Toulmin’s frameworks were three categories of ideas that 
emerged through the mathematicians’ purposeful recognition of problems to be solved and 
their reflective and evaluative actions to solve them.   

Key words: proof construction, Toulmin argumentation scheme, inquiry, real analysis, 
mathematicians 

Writings of mathematicians and mathematics education researchers note that the 
mathematical proving process involves a formulation of ideas; specifically, for 
mathematicians, there is a reflection, reorganization of ideas and reasoning that “fill in the 
gaps” so a proof will emerge (Twomey Fosnot & Jacob, 2009).  Byers (2007) described an 
idea as the answer to the question “what’s really going on here?”, and Raman, Sandefur, 
Birky, Campbell, and Somers (2009) observed three critical moments in the proving process 
in which there were opportunities for a proof to move forward.  Tall and colleagues (2012) 
gave a description of proof for professional mathematics that “involves thinking about new 
situations, focusing on significant aspects, using previous knowledge to put new ideas 
together in new ways, consider relationships, make conjectures formulate definitions as 
necessary and to build a valid argument” (p. 15).  Rav (1999) stated that the term “proof” can 
describe the written product used to “display the mathematical machinery for solving 
problems and to justify that a proposed solution to a problem is indeed a solution” (p. 13, 
italics in original); however the process of constructing proof involves informal and formal 
arguments to find methods to attack the problem as well as incomplete proof sketches 
(Aberdein, 2009).  Despite these writings, little research describes the context around the 
formulation of ideas that a professional mathematician finds useful and how these ideas 
influence the development of the mathematical argument.  This study focused on describing 
mathematicians’ development of these ideas when constructing proofs in real analysis made 
evident in changes in the structure of the argument (Toulmin, 1958/2003) utilizing Dewey’s 
(1938) theory of inquiry to describe the problem situation.   
 

Research Questions 

Part of a larger project, this report focuses on the findings for the research questions:  
What ideas move the argument forward as a professional mathematician’s personal argument 
evolves?  What problem situation is the mathematician currently entered into solving when 
s/he articulates and attains an idea that moves the personal argument forward? 
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Theoretical Perspective 

This research conceived of the mathematical proving process as an evolving personal 
argument.  The personal argument is a subset of one’s total cognitive structure associated 
with the proof situation (described as a statement image by Selden and Selden (1995)) that 
the individual deems relevant to making progress in proving the statement.  The personal 
argument is graded in that some aspects of the statement image may be central and others 
may lie on the periphery.  The personal argument evolves or moves forward when an 
individual develops an idea that s/he sees as useful in making progress in proving the 
statement.  The focus of this study was to describe the ideas incorporated and the inquirential 
context surrounding that development. 

Toulmin’s (1958/2003) argumentation model provided a means of describing structurally 
the evolution of the personal argument as the individual incorporated new ideas.  The 
framework notes the content of the statements given in the argument (either explicitly or not) 
as well as the purposes that those statements serve.  The framework classifies statements of 
an argument in six different categories.  The claim (C) is the statement or conclusion to be 
asserted. The data (D) are the foundations on which the argument is based. The warrant (W) 
is the justification of the link between the grounds and the claim. Backing (B) presents further 
evidence that the warrant appropriately justifies that the data supports the claim. The modal 
qualifiers (Q) are statements that indicate the degree of certainty that the arguer believes that 
the warrant justifies the claims. The rebuttals (R) are statements that present the 
circumstances under which the claim would not hold.  

New ideas result from periods of ambiguity or when engaged in non-routine problem 
solving (Byers, 2007; Lithner, 2008).  John Dewey (1938) posited in his theory of inquiry 
that persons engage in two types of experiences: non-cognitive experiences (everyday life) 
and inquirential experiences (engagement in the intentional process to resolve doubtful 
situations).  Moreover, the theory of inquiry insists that new knowledge or ideas are 
developed when one is engaged in active, productive inquiry into a problem.  The inquirential 
process involves the cyclical process reflecting on problem situations to select or create tools 
to apply to the situation; acting to apply those tools (actively or hypothetically); and 
evaluating the effectiveness of the tools (Hickman, 1990).   The term tool encompasses 
theories, proposals, actions, or knowledge chosen to be applied to a situation. Persons 
engaged in everyday, non-inquirential thought may also act and deploy tools; however, 
choosing and deploying tools is not an experiment requiring reflection and constant 
evaluation.  Dewey’s theory provided a framework for understanding the context surrounding 
the emergence of new ideas from the participant’s point of view.  

 
Related Literature 

This research followed the lead of other researchers who have conceived of the proof 
construction process as a particular type of problem solving (i.e. Savic, 2012; 2013; Weber, 
2005).  Selden and Selden (1995; 2013) maintained that there is a close relationship between 
problem solving and proof, and that two kinds of problem solving could occur in proof 
construction:  solving the mathematical problems and converting an informal solution into a 
formal mathematical product.  Building upon extensive work in understanding the problem 
solving process and investigating the problem solving processes of twelve mathematicians, 
Carlson and Bloom (2005) developed a Multidimensional Problem Solving framework 
providing a description of the cyclical progression through the phases of problem solving 
(orientation, planning, executing, and checking), cycling, and problem-solving attributes.  
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Savic (2013) found that the four phases of Carlson and Bloom’s framework could be used to 
code and describe most portions of the proving process.  However, he found some differences 
including the mathematician cycling back to orienting after a period of incubation and one 
participant not completing the full cycle; Savic hypothesized additional problem solving 
phases could be added.  

Some research has been conducted and documented the existence of and provided initial 
descriptions of the types of ideas that this study sought to describe.  Raman (2003) 
characterized three types of ideas involved in the production of a proof: heuristic ideas (ideas 
based on informal understandings linked to private aspects of proof), procedural ideas (ideas 
based on logic and formal manipulations), and key ideas (heuristic ideas that can be mapped 
to formal proofs).  In later work Raman and colleagues (Raman, Sandefur, Birky, Campbell, 
& Somers, 2009) identified the potential for three critical moments when constructing proof 
(1) attaining a key idea (later termed conceptual insight; Sandefur, Mason, Stylianides, & 
Watson, 2012) that gives a sense of why the statement is true; (2) gaining a technical handle 
for communicating a key idea, and (3) the culmination of the argument into a standard form.  
The potential for a key idea to exist apart from a technical handle exists when a prover is 
engaged in some informal mathematical reasoning.  Sandefur et al. demonstrated how 
students could achieve alignment amongst the conceptual insight and technical handle when 
using examples in their proving process.  This work as documented critical moments that 
may occur in the proving process characterized by the generation of certain types of ideas. 
Sandefur and others later showed how example-use can aid students in developing and 
utilizing these ideas.  

Although they did not describe them as ideas, Inglis, Mejia-Ramos, & Simpson (2007) 
found mathematics graduate students used warrants based on both formal mathematical 
deductions (deductive warrants) and non-deductive reasoning including inductive reasoning 
(inductive warrants)and intuitive observations or experiments with some kind of mental 
structure (structural-intuitive warrants).  Noting these ideas’ existence is interesting but calls 
for further research into descriptions of how these ideas are developed and what kinds of 
ideas are deemed important when formal or informal reasoning is utilized. It is unclear 
whether these ideas identified are the only useful ideas. Additionally, there is a need for more 
description of the thinking and perception of the problem situation surrounding the 
emergence and evaluation of these ideas, how these ideas are tested and utilized in the 
development of the argument.  

 
Methods 

Three professional mathematicians with faculty appointments at four-year universities 
who specialized in researching or in teaching courses in real analysis served as the 
participants for this study.   Each participant worked on a task or tasks in a “think-aloud” 
interview setting, continued to work on the tasks on their own, turned in their at-home work 
captured via Livescribe technology, participated in a follow-up interview replaying the video 
and Livescribe capture of their previous work, and repeated this process with new tasks in the 
next interview.  Each participant worked on three to four tasks in total.   

Data analysis proceeded in two phases. In the preliminary analysis of the participants’ 
work on the tasks, I noted moments where participants articulated insights, observations, or 
hypotheses, and these acted as markers in the transcripts.  I hypothesized Toulmin models of 
the participants’ personal argument as well as the inquirential context while these ideas were 
formulated (perceived problem, contributing actions and tools, and anticipated outcomes of 
applying the tools) prior to and following these markers.  These hypotheses informed the 
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questions asked at the follow-up interview.  In the primary analysis, the follow-up interviews 
provided information to complete and modify the initial analyses.  For each task, I wrote 
stories of the participant’s complete work on the task sectioned by the ideas in order to 
capture the evolution of the argument.  I conducted open iterative coding of each idea, the 
problem situation encountered, the tools that influenced the generation or articulation of the 
idea, and the anticipated outcome of said tools.  Most analysis was inductive; however, I 
borrowed language from the literature when elements fit the descriptions given by other 
authors.  I analyzed across the ideas of each participant and across participants along the 
common tasks to look for emerging themes and patterns.  This paper reports findings 
regarding the types of ideas formulated and the problems encountered when ideas were 
articulated.   

 
Results 

In presenting these results, I first give an overview of the characteristics of the ideas that 
moved the argument forward and then brief descriptions of each idea category and idea type.  
I illustrate how these ideas developed through one participant’s work on a task. Finally, I 
describe the problems that participants were entered into solving when they developed these 
ideas. 
Ideas that moved the argument forward 

The ideas that moved the argument forward either were accompanied by a structural shift 
in the personal argument captured by a Toulmin diagram, provided a means for the 
participant to communicate their personal argument in a logical manner, gave a participant a 
sense that his way of thinking was fitting, or were explicitly referred to by the participant as a 
useful insight.  While pictures, examples, or individual actions were not included as ideas, the 
insights extracted from performing and reflecting upon these tools or a collection of tools 
were included.  Ideas were coded in terms of the work they did for the participant.  In total, I 
identified fifteen sub-type ideas grouped into three categories: ideas that focus and configure, 
ideas that connect and justify, and monitoring ideas (see Table 1).  Note that three of the idea 
sub-types that connect and justify are meant to keep in the spirit of the descriptions given by 
Inglis et al. (2007), inductive warrants, structural-intuitive warrants, and deductive warrants. 

An action or evaluation of that action from one particular moment could solve multiple 
problems or give rise to multiple feelings.  Therefore, multiple idea-types at times 
characterized a single moment.  For example, an insight that provided a deductive warrant 
could also give the prover a sense of I can write a proof.   
Dr. C’s work on the additive implies continuous task 

To illustrate some examples of these idea-types and the mechanism for their development 
and incorporation into the personal argument, consider Dr. C’s work on the task: Let f be a 
function on the real numbers where for every x and y in the real numbers, f(x + y)= f(x)+ 
f(y).  Prove or disprove that f is continuous on the real numbers if and only if it is continuous 
at 0.   

Upon his initial reading of the problem, Dr. C declared that he believed the statement was 
true for the rational numbers but not generally true for the real numbers.   

Dr. C: I was thinking about the well-known fact that the only continuous linear 
functions in the reals to the reals are those of the form 𝑦 = 𝑚𝑥 for some fixed 
𝑚.  And one shows that those are continuous on the rationals fairly easy, 
linear functions are continuous on the rationals pretty easily by doing some 
induction. 
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Table 1 
Descriptions of ideas that moved the argument forward sub-types  
 

Idea sub-type Description  
Ideas that focus and 
configure 

Ideas that gave a sense of what was relevant, what claims 
to connect to the statement, fitting strategies to achieve 
connections, and how to structure and articulate the 
argument 

Informing statement 
image 

Ideas that broadened or narrowed the conception of the 
situation. 

Task type Assessments about what tools or ways of approaching 
developing connections between the conditions and the 
claim would be fitting 

Truth proposal Participant-generated conjectures about the validity of a 
given claim based on a warrant of any type 

Identifying necessary 
conditions 

A sense that “The statement can’t possibly be true unless 
this condition is fulfilled” 

Envisioned proof path A proposal of a series of arguments that will lead to a 
solution that may be missing connections 

Logical structure & 
representation system of 
proof 

Decisions regarding structuring and communicating the 
formal argument 

Ideas that connect and justify Warrants and backing, the means of connecting data with 
claims 

Deductive warrant*1 Reasoning based on generalizable logical statements 
Inductive warrant* Reasoning based on specific examples 
Structural-intuitive 
warrant* 

Reasoning based on a feeling that is informed by 
structure or experience 

Syntactic connection Symbolic manipulations deemed useful to connect given 
evidence to a claim that may not be supportable by 
deductive reasoning or attend to the mathematical objects 
that the symbols represent 

Proposed backing Proposed support for previously identified non-deductive 
warrants or vague senses of what would underlie a 
possible warrant 

Ideas that monitor the 
argument evolution 

Ideas or feelings about the mathematicians’ progress 

Truth conviction Personal belief as to why a statement must be true 
“I can write a proof” A feeling of formulating the connections necessary to 

communicate the argument in a final proof 
Unfruitful line of inquiry An idea that persuaded the participant that the tools or 

actions pursued or considered were not optimal for 
achieving the set goal 

Support for line of 
inquiry 

A sense that one’s actions were fitting 

 

                                                 
1 The asterisks indicate that the titles of idea sub-types of deductive warrant, inductive warrant, and structural-
intuitive warrant borrow from the descriptions of reasoning given by Inglis et al. (2007). 
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Dr. C was reflecting on the problem of determining the truth of the statement. Dr. C based his 
initial claim about the truth of the statement to be proven on a connection between the 
additive property of the function and linearity of functions as well as his past experience with 
linear functions. This was coded a truth proposal idea-type based on a structural-intuitive 
warrant. The Toulmin structure is after this utterance is given in Figure.  

 
Figure 1. Toulmin model of Dr. C’s personal argument with initial truth proposal. 

Dr. C then set about the task of determining a means of supporting his initial inclination 
by looking for a counterexample to the statement. He proposed a counterexample function 
that was continuous at zero and the rational numbers but discontinuous on the reals, namely, 
the piecewise defined function that has an output of zero when the input is rational and the 
value of the input otherwise.   

Dr. C: Well, I knew that it had to work for the rationals. So I thought I would try 
something that had one definition in the rationals and something else in the 
irrationals. And it seemed to me that x in one case and zero in the other case 
would be the easiest thing to try as a first effort 

He then moved to verify the function could serve as a counterexample to the statement by 
checking to see if it satisfied the additive property. He chose to input two irrational numbers 
whose sum was rational and found the function not possess the additive property. He paused 
for a moment while he was working before concluding that the given statement might be true. 

Dr. C:  It turned out that didn’t work.  And if the easier ones didn’t work, then the 
harder ones probably wouldn’t either.  Matter of fact, if the easier one didn’t 
work, then it seemed likely that none of the harder ones would work.   

I:  Okay.  So I was going to ask about that.  So after you found that it didn’t 
work, it didn’t satisfy it.  You paused for a while.  Was it because you were 
trying to think of different examples, or were you convincing yourself that it- 

Dr. C:  Yeah.  I was trying to convince myself that if this didn’t work, then nothing 
would. 

Dr. C recognized an unfruitful line of inquiry, moved back to the problem of determining 
the truth of the statement.  The deliberation was inaudible but Dr. C reflected on his previous 
ideas about the types of functions that would not be continuous in light of the results of 
exploring the example function.  He gave a new truth proposal which was based on the 
generated example coupled with his knowledge of functions (an inductive warrant). These 
moment characterized ideas that moved the argument forward as illustrated in the Toulmin 
model in Figure. 

D: 
 𝑓 𝑥 + 𝑦 = 𝑓 𝑥 + 𝑓 𝑦  
 
The only continuous 
functions on the reals are in 
the form 𝑦 = 𝑚𝑥 
 
Prove linear functions are 
continuous easily by 
induction 
 

Q/R: “I don’t 
believe it” 

W: No clear way of 
proving it for the 
reals 

C: f is not continuous on 
the reals 

B: The induction 
argument won’t work 
for irrational numbers. 

19th Annual Conference on Research in Undergraduate Mathematics Education 450

19th Annual Conference on Research in Undergraduate Mathematics Education 450



 
Figure 2. Toulmin model of Dr. C’s personal argument after reevaluating his truth proposal. 

 
He then moved to try to prove the statement was true (look for a deductive warrant).  In 

exploring, he developed a string of inequalities based on instantiations of the definition of 
continuity and logical mathematical deductions, and he identified the necessary condition that 
lim
𝜀→0

𝑓 𝜀 = 0.  He recalled a proof that 𝑓 0 = 0 and that the function was given to be 
continuous at zero to fulfill the condition.  Dr. C symbolically evaluated that his written 
assertions were correct and declared a sense that he could now write the proof based on his 
deductive warrants.  Because his work in proving the task was based on deductive warrants 
within the representation system of proof, the writing of the proof did not require the 
formulation of any new ideas.   
Process of developing ideas: Problems encountered 

No distinct pattern involving the types of problems and tools that contributed to the 
generation of certain ideas.  However, the ideas that moved the argument forward were 
developed as a result of the pattern of a participant proposing or articulating an idea or tool, 
testing the usefulness of the proposed idea or tool or the prior ideas against the consequences 
of the new idea, and then articulating a new idea or evaluation.  This process involved the 
passing through, perhaps multiple times, the inquirential cycle of reflecting, acting, and 
evaluating against the ideas’ abilities to solve a perceived problem.  The problems posed 
played a role in the decisions the mathematicians made about what tools or propositions would be 
useful. The focus of this paper is to elaborate on the problems encountered and tackled when 
ideas emerged. The participants transitioned through the following four phases of problems to 
tackle or tasks to complete in order to finish the construction of the proof. 

1. Understanding the statement and/or determining truth 
2. Determining a warrant of some kind 
3. Validating, generalizing, or articulating those warrants 
4. Writing the argument formally 

D: 
 𝑓 𝑥 + 𝑦 = 𝑓 𝑥 + 𝑓 𝑦  
 
The only continuous 
functions on the reals are 
in the form 𝑦 = 𝑚𝑥 
 
Prove linear functions are 
continuous easily by 
induction 
 

Q/R: “maybe” 

W: No function can be 
continuous at 0, continuous 
on the rational numbers, 
but discontinuous 
otherwise and additive 

C: f is continuous on the 
real numbers. 

B: The generated function 
was not a counterexample. 
It is the simplest function 
of this type.  
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Figure 3. Illustration of the problem phases observed and the potential to cycle back. 

 
The first phase involved the mathematicians engaging in efforts to get a sense of what the 

statement meant, definitions of objects described in the statement, and how objects in the 
statement related. On the one “prove or disprove” task, the mathematicians also engaged in 
determining the truth value of the statement.  

The second phase of determining a warrant encompassed work to find a reason that a 
statement or participant-generated conjecture is true that they could eventually render into a 
final written proof. In the example above, Dr. C did look for a counterexample which, if 
found, could have been used in a final, formal proof. However, this phase also encompassed 
the work to find inductive and structural-intuitive warrants that provided personal feelings 
about understanding why the statement was true.   

Once the mathematicians proposed a warrant, they worked to test the warrant, looked for 
ways to generalize the warrant, or articulate it in a symbolic or written way. If the warrant 
found previously was based on logical deductions, then this phase sometimes coincided with 
writing a rough draft of the proof formally. In the example above, Dr. C tested the function he 
generated to determine if it could serve as a warrant. Once the mathematicians articulated or 
felt they could articulate their reasoning for why the statement would be true in general, they 
indicated they were ready to write the final proof, the fourth phase listed above.  

The first three phases listed could coincide with genuine problems for the mathematicians 
in the inquirential sense. If a problem was encountered, the participants passed through the 
cycle of reflecting, acting, and evaluating until an idea that moved the argument forward was 
developed. Sometimes, however, the mathematicians passed through without problem as they 
could enact a previous insight or follow symbol manipulation through. For example, once Dr. 
C had formulated his truth proposal and proposed a possible counterexample, it was not 
problematic for him to find an efficient way to test the function.  

In addition to the four above major problems to solve, the participating mathematicians 
also tackled problems parallel to or embedded within these problems (phases) such as dealing 
with a found problem with a tool.  Writing the argument formally typically was not 
problematic for the professional mathematician once they had developed a deductive warrant.   

Understanding 
the Statement 

or 
Determining 

Truth

Looking for a 
warrant

Justifying, 
validating, 

symbolizing the 
warrant

Writing the 
final proof
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At times the participants proceeded linearly through the four phases; however, there were 
instances where participants needed to cycle back to a previous phase when a proposed idea 
or tool was not fitting or if no tool (or proposition) could be found to solve the current 
problem (see Figure 1).  Dr. C’s work above provides an example of cycling back from the 
third phase of validating the warrant to the second phase of determining truth, he began (1) 
determining the truth of the statement, (2) worked to develop a counterexample (a deductive 
warrant), (3) worked to validate the warrant and found that he could not. In light of this new 
information, he cycled back to the first phase as he (1) reevaluated his truth determination.  
This prompted (2) searching for another warrant for why the statement would be true that he 
could render into a proof. This study also observed mathematicians cycling back from phase 
(3) to phase (2) and back from phase (4) to phases (2) or (3).  

 
Discussion and Conclusions 

The purpose of this larger research project was to identify ideas that mathematicians 
generated that pushed their arguments forward and to provide context to the situation when 
these ideas emerged. Dewey’s theory of inquiry was  

The mathematicians in this study developed ideas that moved their arguments forward in 
that their personal arguments structurally evolved upon the development of these ideas. The 
multiple idea-types are grouped into three categories.  Every participant on each task 
identified ideas from each of the three idea categories.  As was described above with Dr. C, 
the evolution of the personal argument was not linear in identifying focusing and configuring 
ideas, identifying connections and justifications, and then making monitoring decisions. 
Instead, multiple idea-types from any or all of these categories could characterize a single 
moment.  The process of articulating ideas, testing the new idea or previous ideas against 
these new ideas, and then proposing new ideas was apparent.  The process of testing ideas 
varied, but the process involved active, productive inquiry in that ideas were tested against 
their abilities to do work in solving a perceived problem.  Four major types of problems or 
phases of the process of constructing proof were identified to coincide with the emergence of 
ideas. The mathematicians progressed through these four phases but needed to cycle back to a 
previous phase when the ideas that the mathematicians had previously incorporated into the 
personal argument were insufficient in resolving a situation in a later phase.   

The four identified phases of understanding the statement or determining truth, looking 
for a warrant, working to validate, generalize, justify or articulate their warrant; and writing 
the formal proof are reminiscent of findings of other researchers.  The following aspects have 
been identified as part of the proof construction process: understanding the statement or 
described objects (Alcock, 2008; Alcock & Weber, 2010; Carlson & Bloom, 2005; Savic, 
2013); determining the truth of the statement (Sandefur et al., 2012); determining why the 
statement is true (Raman et al., 2009; Sandefur et al., 2012); translating ideas into analytic 
language (Alcock & Inglis, 2008; Alcock & Weber, 2010; Weber & Alcock, 2004); and 
justifying a previous idea (Alcock, 2008; Alcock & Weber, 2010).   

This research is unique in its specific efforts to identify the problems encountered as 
participants developed new ideas and in its use of Dewey’s theory of inquiry to explain how 
ideas were developed and tested against these problems.  Using Dewey’s theory of inquiry as 
a framework to describe the context surrounding the generation of these ideas focused the 
research on the question of identifying the problems encountered instead of the actions 
performed in isolation. We know that students and novice provers can apply heuristic 
strategies in non-purposeful ways (e.g. Alcock & Weber, 2010), and they may not recognize 
generated statements as relevant and useful ideas (e.g. Raman et al, 2009).  The 
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mathematicians in this study appear to have developed (perhaps unconsciously) a routine for 
approaching proof problems. There may be value in viewing a proof task as consisting of 
sub-tasks to be explored and resolved. 

The findings presented in this paper are linked to a larger study, and there are limitations.  
The participants in this study selected some of the tasks. This resulted in imprecise 
formulations of two instances (out of ten) of tasks used.  Additionally, the study was limited 
to three male mathematicians working in isolation on tasks within the realm of real analysis. 
The context of the interview situation was not representative of a research mathematician’s 
typical practice. While the tasks presented genuine problem solving situations, they were still 
“school tasks”. Therefore, the participants, informed by their training in school mathematics, 
brought with them conceptions about “hints” in the statement formulations, what were 
reasonable expectations for a solution, and what theorems they were allowed to assume.  

 
The choice to conceive of the proof construction process as involving an evolving 

personal argument was made due to a desire to talk about all the ideas, relationships, 
concepts, pictures, and so on that an individual personally judges as important to providing a 
final proof and the relationships amongst these elements at various points in time.  This 
conception allowed for attending to moments when ideas were generated that the prover saw 
as useful which broke the construction process into significant events to illustrate the story of 
the argument’s evolution.  As researching the proving process in this manner is relatively 
unexplored, many avenues of research are open to explore how these ideas develop, how they 
are tested, and the consequences their development provides for the evolution of the 
argument.  The findings of this study were descriptive and exploratory and the fifteen idea 
sub-types found may not be salient in other studies.  It is probable that varying the 
mathematical content area or narrowing the research questions would provide new and 
clarifying findings to refine the categorizations or provide insight as to how the proof 
construction process compares across mathematical content.  
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Exploring pre-service teachers’ mental models of “doing math” 
 

Ben Wescoatt 
Valdosta State University 

This study explored the mental models pre-service teachers hold of doing math. Mental 
models are cognitive structures people use while reasoning about the world. The mental 
models related to mathematics would influence a teacher’s pedagogical decisions and thus 
influence the mental model of mathematics that their students would construct. In this study, 
pre-service elementary teachers drew images of mathematicians doing math. Using 
comparative judgements, they selected an image that best represented a mathematician doing 
math. The drawings and participants’ responses to prompts were analyzed for common 
themes. The pre-service teachers generally believed that mathematicians do math through 
teaching and mathematicians really enjoy doing math. The appearances of the 
mathematicians generally adhered to stereotypes found in the literature. 

Key words: Mental Models, Drawing Research, Pre-service Teacher Mathematics Beliefs, 
Comparative Judgement 

In a recent article of the MAA FOCUS magazine, Francis Su, newly installed president of 
the MAA was asked the following question, “What is your earliest memory of doing 
mathematics?” Dr. Su spoke of solving arithmetic problems on worksheets, prior to being of 
kindergarten age, given to him by his father. He further clarified that, at that time, this was 
what he believed mathematics to be (Peterson, 2015). What does it mean to do math? What 
does it mean to do math? Due to their early interactions with students and mathematics, better 
understanding of teachers’ perceptions regarding this question is important. This current 
study aims to explore mental models held by pre-service elementary teachers to better 
understand their perceptions of what it means to do math. 

Mental Model Theory 

Mental model theory is a theory of how people reason about the world. A mental model is 
a cognitive structure constructed by an individual as a representation of a possibly real, 
imaginary, or hypothetical external reality (Gentner, 2002; Jacob & Shaw, 1999; Johnson-
Laird, Girotto, & Legrenzi, 1998; Jones, Ross, Lynam, Perez, & Leitch, 2011). Due to 
cognitive limitations of an individual, models cannot contain every detail of the reality and 
thus are not complete or technically accurate representations (Gentner, 2002; Jones et al., 
2011; Norman, 1983/2014). However, structural relations present in the reality will have 
analogous representations in the individual’s mental model (Johnson-Laird, 1998). Thus, a 
model will have structural features in common with the represented domain and be as iconic 
as possible (Johnson-Laird, 2004).  

An individual constructs a mental model through experience, by perceiving or imagining 
the reality, or by understanding discourse and gaining formal knowledge (Jacob & Shaw, 
1999; Johnson-Laird et al., 1998; Jones et al., 2011). An individual uses mental models as 
conceptual frameworks through which to interpret, understand, and reason about the world 
(Gentner 2002; Jacob & Shaw, 1999). New information filters through the model (Jones et 
al., 2011), and the individual reasons about situations, leading to predictions and decisions 
through mental manipulations of the models (Johnson-Laird, 2005). Because of how models 
are constructed, a mental model is contextually bound, constrained by an individual’s 
experiences with the represented domain (Norman, 1983/2014). In addition to experience, an 
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individual’s goals and motives for construction of the model also influence the structural 
aspects of the reality that end up being represented in the model (Jones et al., 2011).  

In addition to representing physical aspects of a particular domain, mental models also 
incorporate an individual’s beliefs related to the domain; thus, mental models are reflective of 
belief systems (Libarkin, Beilfuss, & Kurdziel, 2003; Norman, 1983/2014). This connection 
allows an exploration of belief systems through an individual’s mental model. Yet, being 
internal constructs, mental models are difficult to explore. While one method of exploration 
is the direct questioning of an individual’s beliefs, people generally have difficulty clearly 
articulating their beliefs (Gentner, 2002). As a result, novel methods can be useful in 
constructing external representations of internal mental models (Jones et al., 2011). 

Efforts continue in order to improve methods for constructing such representations. 
Mental models are more general instances of a mental image. Hence, underlying any mental 
image is a mental model, with the image being the projection of the mental model’s 
visualizable aspects (Johnson-Laird, 1998; Johnson-Laird, Girotto, & Legrenzi, 1998). Some 
recent studies have explored mental models via participant-made drawings, which would be 
physical manifestations of mental images. For example, drawings were analyzed to explored 
elementary and middle school students’ mental models of circuits (Jabot & Henry, 2007), 
pre-service teachers’ mental models of themselves as teachers of science (Thomas, Pederson, 
& Finson, 2001), pre-service agriculture teachers’ mental models of effective teaching 
(Robinson, Kelsey, & Terry, 2013), and pre-service teachers’ mental models of the 
environment (Moseley, Desjean-Perrotta, & Utley, 2010). While not explicitly using mental 
model theory, other studies have used a drawing methodology to explore pre-service 
elementary teachers’ visual images of themselves as mathematics teachers (Utley & 
Showalter, 2007) and middle and secondary students images of mathematicians at work 
(Aguilar, Rosas, Zavaleta, & Robo-Vazquez, 2014; Picker & Berry, 2000; Rock & Shaw, 
2000). 

In their work, Picker and Berry (2000) theorized how a stereotypical cultural image of 
mathematicians and their work is formed. A young learner, someone unfamiliar with the 
stereotypical cultural view of mathematics, begins school. Through exposure to cultural 
stereotypes via media, adults, and peers, through interactions with teachers lacking rich 
images of mathematics, through a pedagogy that reinforces stereotypes, and through the lack 
of clear intervention by the mathematics community, the student begins forming a deficient 
image of mathematics. Stereotypes fill the void left vacant by desirable alternatives, and the 
student’s forming mental model is validated through experience. Teachers play a key early 
role in inculcating students into the stereotypes of mathematics. However, the teachers would 
need to hold a healthy model of mathematics themselves to have any positive effect, as a 
teacher’s beliefs influence the mathematical experiences they have with their students and so 
can influence the model that the students form (Mewborn & Cross, 2007). If students do not 
have healthy images of mathematics, they may choose to pursue other vocations, potentially 
robbing society of valuable mathematical innovation. Thus, exploring pre-service teachers’ 
mental models related to mathematics is of importance. 

Doing Math 

From a survey of twenty-five post-secondary mathematics professors, Latterell and 
Wilson (2012) formulated a working definition of doing math, stating that in order to be 
considered doing math, mathematicians must be creating new mathematics. Schoenfeld 
(1994) stated, “research – what most mathematicians would call doing mathematics – 
consists of making contributions to the mathematical community’s knowledge store” (p. 66). 
As a result of their definition, Latterell and Wilson excluded teachers of mathematics from 
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being considered as mathematicians and only included mathematics professors if they were 
engaged in research mathematics. However, the general populace does not necessarily hold to 
this same understanding. 

Through a survey of children in grades K-8, Rock and Shaw (2000) determined that the 
students believed mathematicians did the same kind of math the students did in the 
classroom, only with larger numbers. Students also tended to believe mathematicians solved 
the hard problems no one else wanted to do. Many images drawn by the participants showed 
a mathematician in a classroom setting.  Picker and Berry (2000) found similar results when 
they explored the images that 12-13 year olds had of mathematicians at work. About one-fifth 
of the drawings were of a teacher. The images of mathematicians adhered to some 
stereotypes found in the research of images of scientists; most of the images were of men, 
and some of the drawings resembled Einstein. In a follow-up prompt, the plurality of students 
mentioned that mathematicians were hired to teach math, suggesting that students actually 
did not have a clear idea of what mathematicians did. As a result, Picker and Berry suggested 
that mathematicians and their work were basically invisible to the students.  

From a study of images of mathematicians at work created by high-achieving high school 
students attending a mathematics and science school, Aguilar, Rosas, Zavaleta, and Romo-
Vázquez (2014) discovered that while the images were mostly male figures and contained 
many images of teachers, the students had a richer conception of what mathematicians did. 
They suggested this richer view developed from more exposure to advanced mathematics. 
Also, since many of the images contained items found in school settings, the students’ limited 
interactions with math, mainly in the schools, heavily influenced their image of what it means 
to do math. 

Due to the important role that teachers and the school setting play in the formation of a 
student’s mental model of mathematics, this study explored the following question: 

What shared mental model of doing mathematics is held by pre-service elementary 
teachers in a mathematics content course? 

Theoretical Framework 

This study used participant-made drawings in order to explore the mental models 
preservice teachers have of doing math. The use of drawings to explore concepts has its 
origins in Goodenough’s Draw-a-Man psychological test developed in 1926. The test was 
adapted through the years, notably as the Draw-a-Scientist test in 1983 by Chambers (Finson, 
2002). Participant drawings were analyzed through the Farland-Smith framework (2012) as 
adapted by Bachman, Berezay, and Tripp (2016). To analyze scientists at work, Farland-
Smith (2012) suggested analysis along the dimensions of the appearance of the scientist, the 
location in which the scientific activity is taking place, and the scientific activity being 
conducted. In analyzing participant drawings of scientists at work, Farland-Smith used the 
categories of appearance, location, and activity. Using these categories, Bachman, Berezay, 
and Tripp coded participant drawings of themselves doing math to analyze students’ 
mathematical affect related to doing math. Including issues of affect makes sense in light of 
other research into drawings of mathematicians; for example, research into images of 
mathematicians and mathematics has included extreme images, including images suggesting 
violence (e.g., Picker & Berry, 2000; Lee & Zeppelin; 2014). Images such as these may have 
little mathematical content but would contain valuable insight into peoples’ beliefs about 
math and doing math.  

In the current study, as the original drawing prompt requested students to draw a picture 
of a mathematician doing math, analysis of the drawings focused on the mathematician, what 
the mathematician was doing, and what elements in the drawings could be considered 
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mathematical in nature. Thus, the categories of analysis were Action, Mathematics, 
Appearance, Location, and Affect. The action and mathematics categories were a splitting of 
the activity category from the Farland-Smith framework in order to better capture elements 
that the participants consider to be mathematical. 

The drawings created by the participants were assumed to be external representations of 
their own mental images, which were in turn the projections of the visualizable aspects of 
their corresponding internal mental model. An individual’s mental model was influenced by 
the culture (classroom) to which he or she belonged, forming shared mental model, which is 
an overlapping of mental representations of members of the culture (Van den Bossche, 
Gijselaers, Segers, Woltjer, & Kirschner, 2011). That is, the formation of the shared mental 
model occurred in a fashion as described by Picker and Berry (2000). 

Methodology 

The study was conducted at a regional university in the southeastern United States. 
Participants, or pre-service teachers (PSTs), in the study were undergraduate students in a 
teacher preparation program. The PSTs were enrolled in one of three sections of a 
mathematics content course for pre-service teachers. The course was the third in a sequence 
of four mathematics content courses required by the program. Forty-six PSTs were enrolled 
in the sections. The PSTs were divided between two disciplines, early childhood education 
(31, 67.4%) and special education (15, 32.6%). Of these students, 4 (8.7%) were male and 42 
(91.3%) were female. Additionally, 2 were Hispanic (4.3%), 10 were African-American 
(21.7%), and 34 (73.9%) were Caucasian. 

During the sixth week of classes, PSTs responded in an at-home activity consisting of 
several drawing activities. Germane to this current study was the prompt: Draw a picture of a 
mathematician doing math. PSTs had approximately one week to create the drawings. The 
drawings were subsequently collected and scanned to create electronic files. The 
Mathematician doing Math drawings were uploaded to the No More Marking website 
(nomoremarking.com), a website that facilitates and calculates comparative judgements to 
explore preferences. Comparative judgement is a method to measure qualities that are 
subjective in nature, such as individual’s beliefs, and is based on the idea that a person 
assigns a value to a phenomenon; when asked to choose between two phenomena, the person 
will base the decision on a comparison of the phenomena’s values; the values are based upon 
a shared consensus of those making the judgements (Pollitt, 2012). In other words, with many 
judges participating, the preference of a phenomena is based upon the shared cultural 
preferences of the judges. As an example, Jones and Alcock (2014) used comparative 
judgement to explore whether or not calculus students performed well as peer assessors in the 
absence of assessment criteria. Through a website, students were presented 20 pairs of 
student work and asked to judge which one showed better conceptual understanding. The 
work receiving the highest overall score, determined through appropriate formulae, was the 
work that showed the most understanding, as judged by the students. 

During the ninth week, for an at-home activity, PSTs were invited to perform 
comparative judgments on the two sets of drawings with the following question: Which best 
represents a mathematician doing math? Furthermore, PSTs were instructed to compare each 
drawing and choose the one they believed best answered the questions, to give honest 
responses, and to not judge the pictures on artistic merit. Each PST made 40 comparisons per 
data set. Figure 1 shows what the PST would see on his or her screen while judging. The 
image receiving the highest overall score, estimated by using the Bradley-Terry model and 
calculated internally on the website, was taken to be the image that best represented a 
mathematician doing math in the opinion of the participants. That is, the image was taken to  
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Figure 1. Screen judges while judging at No More Marking website.  
 
represent the ideal image based upon shared standards of the students. Finally, during the 
twelfth week, for an at-home bonus activity, PSTs were shown the image selected through 
comparative judgment as the best representative of a Mathematician doing Math and 
answered the following prompts: 1.) Why do you believe this picture was selected as the best 
representation of a mathematician doing math? 2.) To what extent does this picture align with 
your beliefs of what it means for a mathematician to do math? 3.) To you, what does it mean 
to be a mathematician? 

The participant drawings of mathematicians doing math were analyzed using the 
categories of action, mathematics, appearance, location, and affect as modified from the 
Farland-Smith framework. The drawings were analyzed one category at a time with the 
analysis focused on commonalities across the drawings. Colored pencils were used to circle 
common elements across the drawings and then a name was chosen for the subcategories to 
represent the common themes. The drawings were reanalyzed until elements in the drawings 
were exhausted. The cyclical process continued for the other categories in the framework. 

In order to analyze the responses to the prompts in the bonus activity given during week 
12, the participant responses were analyzed using an open coding approach, reading through 
the responses, then rereading each response and underlining common themes across each 
response to create categories. Finally, each response was reread and coded according to the 
themes present, with frequencies in each category tallied. As needed, categories were 
adjusted until the essence of each response could be categorized. 

Results 

This section contains the results of the analyses of the drawings and the participant 
responses to the first prompt on the bonus assignment.  
 
Participant Drawings 
 
Action 

The focus of analysis for action found in the participants’ drawings was on identifying 
what a person was doing in the drawing. Thus, a person needed to be visible in the drawing in 
order to identify an action. Table 1 includes the analysis of the drawings along the action 
category. Only one drawing did not have a person visible; this drawing showed a construction 
site with a crane and a building. Thus, this image was not coded for an action. Six categories 
of action evolved from the analysis. The first four categories were mutually exclusive while 
the remaining two categories could be action found in tandem with another category action.  
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Table 1 
 
Actions Performed by Mathematicians 
Action Category Description Frequency 
Writing The person has finished 

writing, is in the act of writing, 
or will be writing in the future. 
The person is holding a writing 
implement such as a pencil or a 
piece of chalk. The writing 
occurs on a vertical surface 
such as a chalk board or on a 
horizontal surface such as a 
piece of paper. 

Vertical: 24/43 (55.8%) 
 
Horizontal: 2/43 (4.7%) 
 
Total: 26/43 (60.5%) 

Pointing The person uses a pointer or 
hand to direct the audience’s 
attention to another element in 
the drawing.  

9/43 (20.9%) 

Presenting The person is standing, facing 
outward to the audience with 
arms outstretched, in a “ta-da” 
pose. The person stands in front 
of some mathematical writing. 

4/43 (9.3%) 

Manipulating The person uses physical 
manipulatives pieces such as 
those found in elementary 
mathematics classrooms. 

1/43 (2.3%) 

Talking A speech bubble is apparent or 
a mouth is drawn in a way to 
suggest speech. 

10/43 (23.3%) 

Pondering The person has a thought 
bubble filled with utterances 
related to a problem, is in a 
position identified as related to 
thought, or other elements 
related to thinking are present. 

9/43 (20.9%) 

  
Mathematics 

This category focused on those elements in the picture that could be construed as 
intending to be mathematical. Two equations well-known in everyday culture, the 
Pythagorean theorem equation and the energy-mass equation, were present in nearly half of 
the drawings. The Pythagorean theorem appeared in some form, either being named or as an 
equation, in 13 out of 43 drawings (30.2%). Ten drawings (23.2%) contained either the 
equation 𝐸 = 𝑚𝑐2 or the expression 𝑚𝑐2. As 3 drawings contained both equations, about 
46.5% of the drawings contain one, the other, or both of the equations. In 12 drawings 
(27.9%), the person had written an algebraic expression containing alphanumeric symbols, 
not including the Pythagorean theorem equation, although some drawings had both the 
Pythagorean theorem equation and other algebraic expressions. Moreover, 28 drawings 
explicitly included the equal sign, while another 5 drawings contained notions of equivalence, 
such as geometric congruency or arithmetic problems written in a stacked algorithm, meaning 
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that 76.7% of all drawings conveyed a notion of equivalence. In eight drawings (18.6%), a 
geometric drawing such as a triangle or a geometric concept such as angle was included. A 
doubling sum, such as 1 + 1 occurred in 8 drawings (18.6%), while another 6 drawings 
(14.0%) contained basic operations involving single-digit whole numbers such as 1 + 2 = 3. 
Symbols such as 𝜋 or ∞ were found in 8 drawings (18.6%). Four drawings (9.3%) contained 
overly complex mathematics or overly complicated expressions. For example, one drawing 
contained the formula for a Taylor polynomial, including the remainder term formula. This 
same image also included the number 1729, written out in its two taxicab decompositions. A 
calculator could be found in four drawings (9.3%). Finally, 2 drawings (4.7%) had elements 
of a proof and 2 drawings (4.7%) showed physical manipulatives. 

 
Appearance 

The physical appearances of the people present in the drawings were analyzed. One 
drawing did not contain any people; thus, this image was not analyzed for appearance. One 
drawing contained seven people, one teacher standing at the front of the room at a board with 
six students in two rows of desks. The other drawings contain one individual person. In many 
of the drawings, people were standing (33/43, 76.7%). To be counted as standing, the feet of 
the person needed to be visible in the drawing. People were sitting in 4 images (9.3%). When 
standing, the person was nearly always standing near a vertical surface containing writing. 
The person in the drawing was either drawn in a facing (24/43, 55.8%), profile (10/43, 
23.3%), or back position (8/43, 18.6%). To be considered facing, both eyes needed to be 
visible; in profile, only one eye was visible. Of the 34 drawings in the facing or profile 
position, in 15 of the drawings (44.1%; 34.9% overall), the person was wearing glasses. The 
Einstein effect (Picker & Berry, 2000) appeared in 13 drawings (30.2%); 4 drawings were a 
facsimile of Albert Einstein, and in 9 drawings, the mathematician had a wild hair style, 
usually sticking upward. To be considered a wild hair style, the upstanding hair needed to 
have an exaggerated appearance and not merely be due the participants’ crude art skills. That 
is, the exaggerated hair style needed to appear purposeful. 
While it appeared that most of the people in the images were male, this facet of analysis was 
not pursued in more detail as gender in many of the images was ambiguous in nature; 
additionally, many of the drawings were of stick figures. Furthermore, due to the stick figure 
nature of many drawings, an analysis of their clothing was not attempted. 
 
Location 

The location category contains descriptions of the environment surrounding the 
mathematician. Physical objects depicted in the drawings were noted and counted. A 
vertically-positioned rectangle containing some form of symbols was present in 37 drawings 
(86.0 %). Many of these rectangles represented chalk boards or white boards as they were 
either named as such in the drawing, a board was present on the rectangle similar to those 
found on chalk or white boards, or a tray along the bottom of the rectangle containing erasers, 
chalk, and/or markers was drawn. Seven drawings contain either a table or a desk (16.3%). 
As previously mentioned, one drawing was of a classroom setting with both a teacher and 
students present; this drawing contained both a vertical board and desks. Paper with writing 
was usually present on the tables/desks (5/43, 11.6%). Books were not present in any of the 
drawings. 

 
Affect 

Each drawing was analyzed for affective factors related to the doing of mathematics. One 
aspect analyzed was the mouth on each person that was facing or in profile, totaling 34 
drawings. Of these 34 drawings, 24 contained a person with a smiling mouth (64.7%); 

19th Annual Conference on Research in Undergraduate Mathematics Education 462

19th Annual Conference on Research in Undergraduate Mathematics Education 462



omitted from these possibilities were those drawings in which the person was determined to 
be talking. Additionally, 4 drawings contained the people saying or thinking positive words 
about math or their abilities. “Math is easy” & “I love Pi” and “Doubles, doubles, I can do 
doubles!” were written in thought bubbles with smiling people, while “See…it is quite 
simple” and “I’ve almost got it” were in a speech bubble and not already counted. 
Furthermore, 2 drawings contained positive writing on boards; “I love Math!” was written on 
the board with a smiling person, and the phrases “Woohoo,” “so much fun,” and “I love 
math” are written on the board with a person in a back position. Potentially negative elements 
in the drawings were scant. One board in a drawing of a smiling person contained the writing 
“Math…Blah Blah Blah.” The classroom setting drawing showed a sleeping student, with 
“zzz” emanating from the head of the student. Some of the pictures showing a pondering 
person were neither positive nor negative in nature; instead, these drawings depicted the 
struggle involved while solving problems. In two drawings, the person had question marks in 
thought bubbles, while another drawing showed the person saying, “Hmm,” with a tilde for a 
mouth. A more extreme pondering drawing showed perspiration dripping from the head of 
the person as he slumped his head forward into his hands. Overall, 26 of the 43 (55.8%) 
drawings contained positive elements, 4 of the 43 (9.3%) depicted the uncertainty and 
struggle in problem solving, 1 drawing had both positive and negative elements, 1 drawing 
had only negative elements, and 12 drawings were not coded for affect elements due to either 
a back position, talking, or no discernible affect elements (including the 1 drawing without a 
person). 
 
Table 2 
 
Example Drawings and Their Analysis 

 
Participant Drawing Themes 

 

Action: Presenting 
Mathematics: Pythagorean, algebra, 
equivalence 
Appearance:  Facing, Standing 
Location: Board 
Affect: Smile/Positive 
 

 

Action: Writing, pondering 
Mathematics: Energy-mass, geometric, 
infinity, complex, equivalence 
Appearance: Back 
Location: Board 
Affect: None 
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Action: Writing 
Mathematics: Doubles, equivalence 
Appearance: Facing, Standing 
Location: Board 
Affect: Smile/Positive 

 

Action: Writing 
Mathematics: Pythagorean, energy-mass, 
geometric doubles, basic, infinity, 
equivalence 
Appearance: Back, Standing, Einstein 
effect 
Location: Board 
Affect: Writing/Positive 

 

Action: Pondering 
Mathematics: Manipulatives/cubes 
Appearance: Profile, Sitting 
Location: Table/desk 
Affect: Problem solving  

 

Action: Manipulating 
Mathematics: Manipulative/attribute 
blocks 
Appearance: Facing, Standing 
Location: Table 
Affect: Smile/Positive 

 

Action: Writing 
Mathematics: Pythagorean 
Appearance: Facing, Sitting, glasses 
Location: Table 
Affect: Smile/Positive 
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Action: Pointing, Talking 
Mathematics: Proof, geometric, 
equivalence 
Appearance: Facing, Standing, glasses 
Location: Board 
Affect: None 

 

Action: Writing, Talking, Pondering 
Mathematics: Pythagorean, Doubles, 
Basic, pi 
Appearance: Facing, Standing 
Location: Board 
Affect: Smile, words/Positive 

 
Extra Credit Prompt 
 

The image in figure 2 was selected as the drawing that best represented a mathematician 
doing math. A reliability of 0.89 was achieved, suggesting a stability of the results. 
Furthermore, the interrater reliability was 0.77. In the first extra credit response, participants 
explained why they believed the particular drawing was chosen as the best drawing through 
comparative judgement. Through these responses to the prompt, students commented on five 
aspects of the drawing: Artistic merit, Stereotypes, Teaching activity, Affect, and 
Mathematical content. 

 
Artistic merit 

Despite being asked to not judge the drawings on artistic quality, 20 out of 37 participant 
responses commented about the artistic quantity. Comments were similar to the following 
examples: “For one, I have to say that the drawing is really good” and “I believe the artist is 
really talented at drawing and the depiction is detailed, realistic and aesthetically pleasing.” 

 

 
Figure 2. Image selected as best representing a mathematician doing math. 
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Stereotypes 
Participants expressed a belief that stereotypes about mathematicians were found in the 

drawing. Specifically, they commented that the mathematician was male, he was wearing 
glasses, and that he was dressed in a specific manner. Of the 37 responses, 18 (48.6%) 
mentioned the fact the mathematician wore glasses. Additionally, some participants added 
that the glasses made the mathematician appear smart, implying intelligence was a quality 
needed in a mathematician. For example, one participant stated, “It includes the standard 
picture of a man with glasses, which is a stereotype for smart people.” Another said, “He also 
is wearing glasses, and we tend to think that people who wear glasses are smarter.”  

To be counted as a male stereotype, the participants had to specifically mention the 
choice due to being male and not just refer to the mathematician as a man. Thirteen 
participants (35.1%) mentioned the male stereotype. Example comments included, “I think of 
mathematicians as a male,” “This mathematician is a man, which we sometimes 
automatically think of when we think of a mathematician,” and “The person is a guy and 
generally when you think of a mathematician, it is a guy.”  

Furthermore, eleven participants (29.7%) commented that the person was dressed in the 
way a mathematician would dress, explaining that the mathematician was dressed in a fashion 
that was stereotypical. For example, one participant claimed, “The mathematician looks how 
a lot of people think a mathematician does look, with the glasses, buttoned up shirt, and 
sweater vest.” “The character appears to be conservatively dressed which indicates an 
organized approach to problem solving,” another participant stated. 

 
Teaching activity 

When responding to why they believe the drawing was chosen as the best representation 
of a mathematician doing math, 21 of the 37 participants specifically mentioned that the 
mathematician was teaching (56.8%). Here are some example comments: 

To me, the picture looks like that of a teacher and we also perceive our math teachers as 
mathematicians. 
I think the first example of a mathematician that comes to our minds is a math teacher so 
that would be one of the first things we would draw. 
I also see him at a board and it looks like he is teaching math. I see a mathematician as 
someone who not only works out math problems but teaches as well. 
I believe that this picture was chosen because, not only do mathematicians sit there and 
solve math problems all day in an office, but they also share their solutions and findings 
with the world. … Most math teachers that I have experienced get very excited about 
specific topics because that is what makes them happy and they cannot wait to share it 
with the world. 

In these statements, participants professed the belief that teachers of math were 
mathematicians and thus doing math, and vice versa. 
 
Affect 

Of the 37 participant responses, 20 (54.1%) of them commented on the positive elements 
found in the drawing, suggesting that overall, mathematicians enjoy doing mathematics. 
Common words appearing in the responses were enjoy, smile, happy, and excited. Comments 
displaying the joy of math were similar to the following: 

Math makes mathematicians happy. 
The man is also smiling, and it looks like he is enjoying teaching the math. 
Mathematicians obviously love doing math, and this person [the illustrator] wanted to 
show that. 
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I think that in order to be a mathematician, the mathematician must enjoy doing the math. 
Then with the smile, it makes me believe that this individual is sharing his knowledge and 
teaching it to others. 
There is a smile on his face meaning that he is excited to teach the class about math and 
enjoy the subject overall. This mathematician seems happy to be able to teach his children 
the things that he has planned on the board. 
 

Mathematical content 
Participants commented on the fact that the mathematician was working with formulas or 

mathematical content, leading to the conclusion that the person was a mathematician doing 
math. More specifically, several participants commented on the familiarity of the material on 
the board. For example, one participant commented, “Our class was learning about the things 
on the board.” Another comment read, “I also believe it was picked because of the familiar 
formulas he is depicting.” Similarly, a participant commented on choosing drawings with 
familiar mathematics, stating, “Many of us may have felt a connection to the mathematical 
concept being presented on the chalkboard since we recently discussed Euler’s formula. It 
appears we picked what we were the most familiar to.” 

Discussion and Implications 

This study explored the shared or cultural mental models pre-service teachers have of 
doing mathematics by analyzing participant-made drawings and analyzing student 
commentary of a prototypical mathematician doing math drawing selected through 
comparative judgement. The results of the analyses of the participant drawings and prompt 
responses were used to draw conclusions about the PSTs mental models. 

One of the themes of the analysis was that familiarity breeds comfort. Martin and 
Gourley-Delaney (2014) suggested that students will consider activities more mathematical in 
nature if they have actual experience with the activity. Thus, many students comments on 
being familiar with the math in the prototypical drawing. Furthermore, much of the 
mathematics in the drawings was basic in nature or very common equations in everyday 
culture such as the Pythagorean theorem equation or the energy-mass equation. Moreover, 
pre-service teachers would generally have had limited experience with mathematicians. As 
their experiences in what they consider math up to this point in their lives has occurred in 
school settings, the only people they could possibly consider to be mathematical would be 
teachers.  

The other possible exposure to mathematicians would be in popular culture such as 
television or movies in which mathematicians generally adhere to the stereotypes named by 
the participants. This exposure to mathematics through culture could also explain the 
phenomena of the Einstein effect, including Einstein as a mathematician. With a limited 
knowledge of mathematicians and what they do, Einstein could be a ready placeholder. 
Regardless, PSTs’ mental models appear to contain stereotypes of mathematicians and 
limitations on the power of mathematics. 

Another explanation for choosing teachers of mathematics as mathematicians was 
mentioned by several participants and best encapsulated by the following comment: “I 
believe that this picture was chosen because, not only do mathematicians sit there and solve 
math problems all day in an office, but they also share their solutions and findings with the 
world.” Thus, according to the PSTs, a mathematician is a teacher; he or she solves difficult 
problems and then must effectively communicate this knowledge to others. Hence, part of 
doing math is teaching math, passing along knowledge. That PSTs emphasized the teaching 
aspect recalls the communication process standard of the NCTM. That is, mathematics is not 
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merely solving problems, reasoning, proving, connecting, and representing. Communication 
is important, and communicating appeared to be a necessary facet of the PSTs’ mental model 
of doing math. 

The PSTs also believed that mathematicians loved interacting with mathematics and 
reveled in the joy of mathematics. As one participant wrote, “Math makes mathematicians 
happy.” This facet of the mental model could be a bit troubling. If people do not feel joy 
when doing math, then perhaps they would believe they could not be a mathematician, or 
perhaps they are not doing math at all. While these last statements are a bit speculative, that 
strong, positive feelings for doing mathematics is an important feature of the mental model 
cannot be denied. 

While more data would need to be collected from different populations, there does appear 
to be some misalignment between the mathematics community and the general population 
regarding doing math. Perhaps discussion within the mathematics and education communities 
would be warranted in order to help PSTs develop a mental model of math that would 
encourage robust models within students. If students view doing math as just teaching math, 
then they may become discouraged from entering the mathematics field. Or perhaps a new 
definition of doing mathematics should be promoted. For example, Chick and Stacey (2013) 
explained that mathematics teachers act as applied mathematicians in order to solve teaching 
problems. Such a definition would align with the results of this study. 

Overall, the pre-service teachers were sensitive to the importance of mathematics in the 
world and their future place in facilitating a positive of mathematics in there students. As one 
participant so eloquently put it: 

A mathematician is someone that does not only deal with numbers, equations, or 
solutions. A mathematician is a contributor to the world; whether they are a teacher, an 
engineer, or a scientist. They share their ideas with the entire world, all the way from a 6th 
grade student to an elderly man reading a research article. They never stop questioning 
the world around us and are always looking for new ways to solve problems. When a 
mathematician is a teacher, all they are doing is trying to instill the passion they have for 
their career into a student, so they will hopefully go on and question ideas, and maybe one 
day discover something nobody knew existed, or maybe inspire a student to be a 
mathematician. 
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Abstract 

 The flipped classroom has garnered attention in post-secondary mathematics in the past 
few years, but much of the research on this model has been on student perceptions rather than its 
effect on the attainment of learning goals.  Instead of comparing to a “traditional” model, in this 
study we investigated student-learning gains in two flipped sections of Calculus I.  In this paper, 
we focus on the question of determining learning gains from delivering content via video outside 
of the classroom.  In particular, we compare student-learning gains after watching more 
conceptual videos versus more procedural ones.  We share qualitative and quantitative data 
gathered from surveys and quizzes, as well as results from in-class assessments.  We conclude by 
sharing some implications for future research. 
 

Keywords: Flipped Classroom, Video Lessons, Learner-Centered Teaching, Calculus 
 

Background 
 Learner-centered or active classrooms are those which change the role of the instructor 
from “sage on the stage” to “guide on the side” and encourage students to construct their own 
meaning while engaging in authentic problem-solving.  Recent research has consistently showed 
that active classrooms improve student learning in a variety of fields.  For example, in 2014 the 
National Academy of Sciences published a meta-study of 225 studies on student performance 
and failure rates in undergraduate science, technology, engineering, and mathematics [STEM] 
classrooms employing active learning components.  Their analysis suggests that students in 
traditional lecture classrooms are 1.5 times more likely to fail than students in classrooms 
including any type of active learning technique, and failure rates in lecture classrooms are 55% 
higher than in active classrooms (Freeman et al., 2014).  In addition, a 2013 report from the 
President’s Council of Advisors on Science and Technology [PCAST] called for 1 million more 
college graduates in STEM over the next decade (PCAST STEM Undergraduate Working 
Group, 2013).  Given the current retention rate in STEM majors during the first two years of 
college and the decreased failure rate in active learning classrooms reported in Freeman et al. 
(2014), a majority of this goal could be met by employing more active learning and less lecturing 
during classroom time. 
 The flipped (or inverted) classroom structure is one example of an active learning method 
that has become increasingly popular.  This classroom structure takes on many forms, but the 
common trait is that most of the initial content delivery happens outside of the classroom while 
in-class time is spent solving problems, often in small groups, to assimilate the new knowledge 
and to deepen understanding.  Some instructors deliver content through assigned readings from a 
text or other source, while others use videos curated from those available online or create their 
own videos.  The core idea is to use classroom time for challenging problem-solving where 
students can draw support from their peers and instructor; this design more effectively uses the 
experience and knowledge of the instructor to guide students through the topic at hand. 
 

Literature Review 
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Much of the initial literature on flipped classrooms only described the varying structures 
of such classrooms or the particular technologies employed by teachers using a flipped 
classroom.  The controlled studies published on this classroom model have often focused on 
student perceptions of and attitudes towards the structure rather than its effect on the attainment 
of learning goals.  For example, Foertsch, Moses, Strikwerda, and Litzkow (2002) described the 
use of a specific video streaming software in an engineering classroom, and reported student 
opinions of the videos and software, and Ford (2015) described the activity structure in a math 
content course for pre-service elementary teachers.  Strayer (2007) gathered data on a traditional 
and flipped introductory statistics classroom to evaluate the learning environment of each 
structure, and found that students enjoyed the innovation and cooperation in the flipped class, but 
had a low “comfortability” with the learning activities in this environment.  Roach (2014) found 
that 76% of students in an economics class believed that video lectures helped them learn, and 
the same percentage would take another class using the flipped format.  Bishop and Verlager 
(2013) did a meta-analysis of the literature on flipped classrooms in all areas of STEM, as well 
as economics and sociology, and found that there were few studies examining student 
achievement and advocated for more controlled research.   

While lecturing has been a staple of academia for close to a millennium, the flipped 
classroom structure might be seen as a return to an even older system of teaching where 
classroom time was centered around academic debate and discussion rather than the transmission 
of information.  Modern flipped classrooms are now returning to this classroom structure and 
also taking advantage of newer technologies like video and the Internet.  This recent resurgence 
dates to at least the mid-1990s when Eric Mazur, a physics professor at Harvard, started using 
team learning and in-class activities as ways to stop lecturing (Mazur, 1996).  Jonathan 
Bergmann and Aaron Sams (2012) started using video lectures in the mid-2000s and are often 
credited with pioneering the flipped classroom and its current popularity.  Since then, many 
educators in a variety of fields and at a wide range of institutions have started using this 
structure.  For example, Gaughn (2014) wrote about their experiences running a flipped history 
classroom, and Findlay-Thompson and Mombourquette (2014) published research from their 
flipped business classroom. Additionally, research has been done on flipped classrooms at levels 
ranging from from high school (Johnson, 2013; Moore, Gillett, & Steele, 2014) to upper division 
medical courses (Sharma, Lau, Doherty, & Harbutt, 2015).  Education-focused video repositories 
like Khan Academy are available on the web, and many have spoken about their experiences 
with various forms of the flipped classroom at local and national professional meetings (e.g., in 
2014 the Joint Mathematics Meetings included a session titled Flipping the Classroom with 37 
different talks).   
 As the flipped classroom has gained popularity among undergraduate STEM educators, 
more research studies are using classroom data to evaluate the success of flipped classrooms.  
Lape et al. (2014) and Mason, Shuman, and Cook (2013) compare grades on individual 
assessment questions in engineering between flipped and traditional sections of the same course 
and found few cases of statistically significantly higher scores in the flipped classroom, but no 
cases where students in a lecture section outperformed students in a flipped section.  Similarly, 
Day and Foley (2006) compared grades on several course components in a senior level computer 
science elective and found that the flipped section earned higher average scores on every 
component of the grade, with statistically significant differences in the case of homework based 
on lectures/video lectures.  Moravec et al. (2010) found statistically significant score increases 
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over previous years in matched exam questions related to topics delivered in an inverted fashion 
in a large introductory biology course.  

In mathematics in particular, McGivney-Burelle and Xue (2013) flipped a unit in a 
Calculus II course and showed that student grades on exams and homework were higher for the 
flipped section than the traditional section.  Wilson (2013) found that students in a flipped 
section of statistics outperformed their lecture counterparts on exams and the course post-test.  
Love, Hodge, Grandgenett, and Swift (2014) found that students in a flipped linear algebra 
course had greater improvement in exam scores than those in a traditional section, and had 
higher averages on the final exam.  Additionally, Problems, Resources, and Issues in 
Mathematics Undergraduate Studies (PRIMUS) has a forthcoming special issue on research in 
flipped classrooms that will increase the literature within mathematics education. 

Some researchers have also considered the format, use, and effectiveness of video 
lectures, both in flipped classrooms and in general.  For example Zappe, Leicht, Messner, 
Litzinger, and Lee (2009) investigated how students used online lecture videos to learn in an 
undergraduate engineering course, including the percentage of videos watched, students 
reviewing unclear segments, and time spent per video.  Mayer and colleagues have published a 
number of papers considering specific attributes of videos, like the use of graphics and 
animations, or the style and tone of the voice in the video, and how they help or hinder student 
learning (e.g., Mayer, Hegarty, Mayer, & Campbell, 2005; Mayer, Sobko, & Mautone, 2003). 
 

Research Question 
 Since students in the flipped classroom model do introductory learning of topics outside 
of the classroom, it is prudent to investigate the effectiveness of the content delivery method.  
The classroom in our study most often introduced new content outside of class through the use of 
the instructor's own video-recorded lessons.  In this study we investigate the effectiveness of 
these videos on the learning gains made by students enrolled in two sections of a standard first 
semester undergraduate calculus course.  In particular, we explore student-learning gains from 
watching videos outside the classroom to determine students’ development of conceptual 
understanding and procedural skills in calculus. 
 

Methods 
Participants 

The participants were undergraduate students in a first semester calculus course at a large 
comprehensive public university in the Mid-Atlantic United States.  Of the 59 students in the 
study, 51 (86%) were freshmen, 5 (8%) were sophomores, 2 were juniors, and 1 was a senior.  
The majority of the students were male (64% male, 36% female).  Four students withdrew from 
the course before the end of the semester.  More than 80% of the students had previously had a 
course in calculus, generally in high school.  The majority of the students were majoring in 
STEM fields.  The students were divided into two sections (34 students in one section, 25 in the 
other) and generally covered the same material on the same days. 

 
Classroom 

The data was collected during the instructor’s third semester running a flipped Calculus I 
classroom.  Before each class, students had a pre-class assignment, such as watching a video or 
completing a reading.  Nearly all class sessions started off with a short open-note quiz related to 
their pre-class assignment.  The majority of class time was spent on group-work activities.  
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These activities were often sets of questions designed to reinforce, clarify, deepen, and extend 
the content in the pre-class assignment, address misconceptions, and provide practice.  At times 
throughout the semester, activity were discovery or guided-inquiry, meant to allow students to 
develop a key concept or idea on their own through the use of a carefully chosen set of leading 
questions and problems.  The students worked in groups of two to four students and the 
instructor would interact with the groups one-on-one.  Students were also given homework and 
practice problems to be completed outside of class. 

 
Data Sources 

Over the course of the semester, we gathered qualitative data from the students, including 
student feedback about specific video lectures (for example, questions like “What did you find 
confusing?” or “What helped clear up confusion?”), student answers to post-video or post-
activity questions or problems (calculus content questions to evaluate learning gains), and 
student surveys about their perceptions of the class structure and their learning gains.  Aggregate 
quantitative data, such as assessment scores and exam grades, were also recorded.  We used 
video recording on certain class days to help the instructor objectively evaluate and improve 
student-teacher interactions in the classroom.  Collected data was used to make changes to 
course structure and activities in order to increase potential learning gains. 

 
Analysis 
 We created rubrics to analyze the students’ responses to assessment questions.  For 
example, the rubric shown in Table 1 was used to analyze responses to a conceptual question 
asking students to describe L’Hôpital’s Rule.  We then used two-tailed pairwise comparisons (α 
= 0.05) to compare groups of students (e.g., students who had previously viewed a more 
conceptual video about the mathematical content versus students who had viewed a more 
procedural video) or to compare pre- and post-assessment results.  Written responses were also 
categorized so that we could view trends in the data.   
 
Table 1. 
Rubric Used for Scoring Responses to Conceptual L’Hôpital’s Rule Question 
Score Explanation 

0 Answer was blank or made no mention of tangent lines. 

1 Answers either lack "functions act like their tangent lines", or say something about 
tangent lines but neither "slope" nor "compare”. 

2 
Answer states that functions act like their tangent lines near a point, and that one can 
find limits of f (x)/g(x) (or compare f (x) and g(x)) which have indeterminate forms by 
comparing the slopes of their tangent lines. 

 
 Students were also given in-class surveys consisting of Likert-scale and multiple-choice 
questions.  The surveys generally asked students about their perceptions of the class structure 
and their learning gains.  Their answers were categorized to look for trends in the responses.  
Aggregate quantitative data, such as scores on specific questions from class assessments, were 
also used as a measure of student learning gains. 
 

Results 
 In this section we share a subset of results from our larger study.  In particular, we share 
students’ overall opinions about video use and data on content learning for three individual 
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topics, including one class period specifically designed to help us see differences in the ways 
students learn conceptual and procedural content via video. 

First, we share data on the students’ beliefs about video usage.  Several times throughout 
the semester, students were given surveys where they could voice their opinions about the 
structure of the class.  When asked to compare learning a new topic outside of class via reading 
assignment versus watching a video, students overwhelming preferred videos (86%).  However, 
when asked what part of their class structure had the greatest positive impact on their learning, 
56% of students said the pre-class videos and readings, whereas 46% said the in-class activities 
and interactions.1  We also asked the students to state their beliefs on how the videos increased 
both their conceptual understanding and computational skills in the class (see Table 2).  For both 
questions, the majority of the class believed the videos greatly or significantly helped their 
mathematical understanding and skills, although more of the students found video helpful for 
their conceptual understanding than their computational skills. 
 
Table 2. 
Students’ Beliefs About Video Usage 

 Greatly Significantly Moderately Slightly 
Conceptual understanding  38% 38% 24% 0% 

Procedural skills  20% 40% 30% 10% 
 

The data suggests that the students believed the videos contributed to their content 
learning, but what objective evidence for learning gains can be seen in the students’ work in the 
classroom? Prior to an in-class activity about L’Hôpital’s Rule, we had the students watch an 
introductory video about the topic.  However, we split the classes into two groups: one group 
watched a more conceptual video, and the other watched a more procedural video (n = 23 for 
each group).  At the beginning of class, the students were given a content-driven assessment 
about L’Hôpital’s Rule, with one question asking for a more conceptual explanation (“Describe 
how L’Hôpital’s Rule works geometrically.”) and the other asking for a more procedural 
explanation (“How does one calculate a limit using L’Hôpital’s Rule?”).  We then assigned the 
students to groups of two to three so that each group contained at least one student who had 
watched each video.  We videotaped the class session to capture the students’ interactions with 
and explanations to each other.  At the end of class, students were given the same assessment as 
before to measure what changes in their understanding occurred due to their group discussions. 

We scored their responses to the pre/post assessment using rubrics similar to the one 
described above (0–2 scale).  The students’ average results can be found in Table 3.  The results 
indicate that students who watched the more conceptual video were able to answer the more 
conceptual question on the pre-class assessment, but were not able to answer the more 
procedural question.  The opposite was true for the students who had watched the procedural 
video.  
 
Table 3. 
Average Scores on L’Hôpital’s Rule Assessment 

 Conceptual Question Procedural Question 
Group Pre Post Pre Post 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Percentages add up to more than 100% because students could choose more than one answer. 
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Watched  
conceptual video 1.39 1.48 0.09 1.26 

Watched  
procedural video 0.04 1.35 1.74 1.57 

Significantly different? 
(p-value) 

Yes 
p < 0.001 

No 
p = 0.210 

Yes 
p < 0.001 

No (barely) 
p = 0.057 

Effect Size (r) 0.839 0.119 0.909 0.235 
 
 After working with their peers, both groups of students were generally able to answer the 
conceptual and procedural questions.  No statistically significant differences were found in the 
two groups’ post-class assessment average scores.  However, the difference in their post-
assessment scores for the procedural question was just barely insignificant.  (We will discuss this 
finding further in the next section.)  These are preliminary analyses, but they seem to indicate 
that students gained mathematical knowledge from watching the videos and were able to share 
that knowledge with other students.   
 We also found that the learning gains from the L’Hôpital’s Rule videos were similar to 
the gains from other videos in the class.  For example, two of the videos the students watched 
covered the formal definition of the limit and the intermediate value theorem.   After each, the 
students had an in-class activity to explore the topic in more depth.  This was similar to how the 
students were introduced to L’Hôpital’s Rule 
 After watching each of these two videos, students took post-video surveys.  For the 
definition of the limit, they were asked to write the definition in their own words.  For the 
intermediate value theorem, students were asked to explain the importance of assuming 
continuity in the statement of the theorem.  We created rubrics (0–2 scale) and scored their 
responses on these items (see Table 4).  The average score on the limit definition survey was 
1.07, and the average score on the intermediate value theorem survey was 1.26.  However, these 
scores may hide the range of solutions given by the students.  For example, on the limit 
definition survey more than 75% of the students had at least some understanding of the limit 
definition.  In both cases, students exhibited at least moderate content learning gains after only 
watching the videos. 
 
Table 4. 
Score Distribution for Two Surveys 

Score 0 1 2 
Limit Definition survey 18% 57% 25% 

IVT survey 10% 43% 36% 
 
 For the limit definition and for L’Hôpital’s rule, we gave the students an additional 
assessment question after they had watched the video and discussed the topic in class.  (For the 
limit definition, this was an exam question, and for L’Hôpital’s rule this was the post-activity 
assessment.)  We found the students had similar results on these assessments, with an average 
score of 71% on the L’Hôpital’s Rule question and 75% on the definition of limit question. 
 Last, we compared the students’ solutions to specific questions on their final exam (see 
Table 5).  We looked at the results from the final exam about three different topics from the 
course: two of which were introduced via video and one of which was introduced via a guided-
inquiry activity, the second most common form of content delivery in this classroom.  Topics in 
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this table are listed in the order they were covered in the course.  The students’ final exam scores 
on these three topics were virtually identical, which seems to indicate learning gains for these 
two methods of content delivery are nearly equivalent for these students. 
 
Table 5. 
Final Exam Results 

Topic! Delivery Method! Percent!
Definition of Limits! Video! 76%!

Definition of Derivatives! Guided-Inquiry Activity! 78%!
L’Hôpital’s Rule! Video! 75%!

 
 In summary, the results from our data imply that students are gaining at least some 
conceptual and procedural understanding of the mathematical content from video lessons.  In the 
next section we discuss some possible implications of these results, along with areas of future 
research. 
 

Discussion 
 Our study contains many different types of research data that may at first seem 
disconnected.  This was our first attempt to quantify student learning gains in a flipped calculus 
classroom, specifically via video lectures.  We collected data from a wide range of sources to 
help narrow down the research questions we wanted to explore in more depth in later studies.  As 
such, this data may give us an initial overall picture of student learning gains through the 
semester but it does not allow us to go into depth for any one topic.  However, we will use this 
data to help us design future studies to investigate the role that video lectures play in student 
learning in a flipped classroom. 
 In reviewing the results of the pre-activity assessment for the videos on L’Hôpital’s Rule, 
we were not surprised by how well the students did on the question that related to the video they 
had viewed.  However, more than 80% of the students in the class had taken at least one calculus 
class before, so we predicted that some students would initially be able to answer both questions 
successfully, which was not the case.  Also, we were surprised by the students’ improvement in 
both conceptual and procedural understanding after working in groups.  Our results seem to 
indicate that students learned conceptual and procedural content from the videos and were able to 
share that knowledge effectively with their peers. 

There are still some open questions from the data.  The L’Hôpital’s Rule post-activity 
assessment scores between the two groups of students on the procedural question were just 
barely insignificantly different and students felt the videos helped them more with conceptual 
knowledge than with learning procedures.  This could mean we need to take into consideration 
what content educators deliver via video.  However, because of the small number of students in 
this study, more research needs to be done to determine if there is a statistically significant 
difference in learning gains from more procedural videos than more conceptual ones. 
 One result that stands out is the low average on the post-video assessment on the limit 
definition.  While in most other cases, the average scores were typically 65–75% on post-video 
assessments, in this case the average was just over 50%.  As this topic is one of the most difficult 
and most conceptual of the entire course regardless of delivery method, this may not be as 
surprising as it initially seemed.  It is also significant to note that this topic appeared early in the 
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course, and it is possible that students had not yet developed productive ways of interacting with 
the video. 

There are two important caveats to our findings.  First, we had no control group against 
which to compare our results from the flipped course.  We can anecdotally compare to our prior 
experiences teaching Calculus I at other institutions and with our colleagues’ experiences in 
other sections of this course, but the goal of this study was not to make comparisons.  Instead, we 
wanted to investigate learning gains in the flipped classroom, although we do advocate for 
research comparing learning gains from different pedagogical techniques.  Second, while we 
attempted to specifically investigate learning gains from videos watched outside the classroom, 
we must remember the videos were not used in isolation.  In some of our data, such as exam 
data, the effect of the videos on the students’ understanding is difficult to separate from the 
effects of the other learning activities that happen afterwards (e.g., in-class discussion and 
activities, homework, office hours, studying for exams).  As we continue our research, we hope 
to be able to isolate the learning gains from videos and also investigate how the structure of the 
video-watching experience affects student learning, which we will discuss in more detail below. 

Last, teachers thinking about using videos in their classes should know that students will 
at least get a basic understanding from videos, whether the videos are more conceptual or 
procedural.  Moreover, some may be disappointed that our results indicate that introducing 
material via video does not necessarily improve learning gains as compared to learning via other 
methods.  However, our data does seem to indicate that student content learning gains from 
video are at least equivalent to those from the other content delivery methods used in this course.   

 
Implications for Future Research 

 While the results of this preliminary study seem to indicate that students can and do learn 
mathematical content from video lessons, our data have also opened other lines of future inquiry.  
For example, one might investigate what balance of conceptual and procedural videos should be 
used to have the greatest impact on student-learning gains, or the effect of video-recorded 
lessons on specific student demographics.  Another possible avenue of investigation would be to 
determine the effect of this classroom structure on student communities of learning.  Anecdotal 
evidence suggests that students may form cohorts within a flipped classroom that persist in future 
courses. 

It is important to note that flipped classrooms do not consist solely of video lessons.  
Moving primary instruction out of the classroom creates time in class for students to clarify and 
reinforce content through discussion with peers and to actively participate in authentic problem-
solving.  This inversion allows instructors to be present while students engage with deep 
mathematical ideas, which is a more effect use of their knowledge and instructional abilities. 

In future research we plan to focus specifically!on the ways in which students interact 
with videos.  We want to determine if they are actively engaging with the video lessons or 
passively listening as though they are in a lecture.  We are also curious about their video-
watching habits and what they do when they are confused during a video.  One of our primary 
goals is to find ways to structure the video-watching experience to improve student learning, 
including helping them build mathematical integrity (knowing what you do and do not know 
about mathematics).  If students can accurately assess what they do and do not understand from 
the videos before each class session, the instructor can more productively run the class session.  
The results of this research could provide instructors with ways to make videos more effective 
and help students interact with videos more productively.!
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This study explores how in- and pre-service teachers make connections between advanced 
mathematics, specifically abstract algebra, and secondary mathematics. To better understand 
these connections, we draw on three areas of research: mathematical knowledge for teaching 
(e.g., Ball, Thames, & Phelps, 2008), mathematical practices (e.g., Council of Chief State School 
Officers [CCSSO], 2010; RAND, 2003) and habits of mind (e.g., Cuoco, Goldenberg, & Mark, 
1996). In order to investigate how exposure to and instruction in abstract algebra impact the 
way teachers understand secondary mathematics and approach instruction, this study utilizes 
two main frameworks. To characterize mathematics understanding, we used the action, process, 
object, and schema (APOS) framework (Asiala, 1997). To unpack approaches to discussion, we 
use the construct of knowledge of content and teaching, part of pedagogical content knowledge 
in mathematical knowledge for teaching (Ball, Thames, & Phelps, 2008). Our analysis 
uncovered two broad themes related to understanding and approach to instruction—
understanding and interpreting inverse, and use of mathematical language. 
 
Keywords: Algebra and Algebraic Thinking, Teacher Knowledge, Advanced Mathematical 
Thinking.  
 

There has been a longstanding debate in the mathematics and mathematics education 
communities concerning the knowledge secondary mathematics teachers need to provide 
effective instruction. Central to this debate is what content knowledge secondary teachers should 
have in order to communicate mathematics to their students, assess student thinking, and make 
curricular and instructional decisions. Many researchers believe that mathematics teachers 
should have a strong mathematical foundation along with the knowledge of how advanced 
mathematics is connected to secondary mathematics (Papick, 2011). But according to others, 
more mathematics preparation does not necessarily improve instruction (Darling-Hammond, 
2000; Monk, 1994). Therefore, it is important that, as a field, we investigate the nature of the 
present mathematics content courses offered to (and required of) prospective secondary 
mathematics teachers to gain a better understanding of which concepts positively impact 
teachers’ instructional practice. 

The Mathematics Education of Teachers II (MET-II) (Conference Board of the Mathematical 
Sciences [CBMS], 2012) calls for prospective mathematics teachers to have opportunities to 
examine the connections between the mathematics taken at the university level and the 
mathematics taught in high school. The importance of understanding such connections is 
highlighted by the fact that in order for secondary school teachers to be able to develop 
mathematical reasoning skills in their students, they must themselves have a coherent view of the 
structure of mathematics and the way in which new knowledge can be connected to and develop 
from prior knowledge (CBMS, 2012). However, while many have defended this idea that the 
mathematics education for future secondary teachers must involve “seeing the discipline as a 
coherent body of connected results derived from a parsimonious collection of assumptions and 
definitions” (CBMS, 2012, p. 56), less is known about how this might happen in traditional 
mathematics courses, such as abstract algebra. 

This exploratory study aims to advance our understanding of how prospective mathematics 
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teachers make sense of and understand mathematical connections between secondary 
mathematics and abstract algebra. This work furthers the field’s understanding of what 
connections could be leveraged to positively impact teachers’ knowledge of the structure of 
mathematics as well as their ability to use such structure to develop their own students’ 
mathematical reasoning skills. The research questions for this study are as follows: (1) How does 
exposure to and instruction in abstract algebra impact the way teachers understand secondary 
mathematics? (2) How does exposure to and instruction in abstract algebra impact the way 
teachers approach secondary classroom instruction? 

Background 
We consider connections between advanced and secondary mathematics to be ones that 

encompass both mathematical content and ways of thinking about and engaging with that 
content. To better understand these connections, we draw on three areas of research: 
mathematical knowledge for teaching (e.g., Ball, Thames, & Phelps, 2008), mathematical 
practices (e.g., Council of Chief State School Officers [CCSSO], 2010) and habits of mind (e.g., 
Cuoco, Goldenberg, & Mark, 1996). 

Since Shulman’s seminal work on content and pedagogical content knowledge (Shulman, 
1986), researchers and policy-makers have been investigating how teachers’ understand the 
mathematics they teach, and how this understanding can help them clearly present it to students. 
Because of the growing interest in teacher knowledge and its relation to student learning (e.g., 
Bolyard & Moyer-Packenham, 2008; Hill, Rowan, & Ball, 2005; Piccolo, 2008), teacher 
education programs in the U.S. have begun to include a variety of courses designed specifically 
to improve teachers’ content and pedagogical content knowledge. 

Secondary mathematics teachers are generally required to complete the equivalent of an 
undergraduate degree in mathematics for certification. However, research has shown that more 
mathematics preparation does not necessarily improve instruction (Darling-Hammond, 2000; 
Monk, 1994). In fact, some research has shown that more mathematics preparation may hinder a 
person’s ability to predict student difficulties with mathematics (Nathan & Koedinger, 2000; 
Nathan & Petrosino, 2003). Even so, many still believe that mathematics teachers should have a 
strong content foundation that includes understanding connections within and between 
mathematical topics (Papick, 2011). But questions remain about what secondary content stems 
from advanced connections, which connections are important, and how knowledge of such 
connections may impact classroom practice. 

Mathematical knowledge for teaching (MKT) (Ball et al., 2008) incorporates both subject-
matter knowledge and pedagogical content knowledge. One component in the larger domain of 
subject-matter knowledge we focus on is horizon content knowledge (HCK). We believe this 
specific aspect of MKT is particularly useful for thinking about what advanced content 
knowledge prospective mathematics teachers at the secondary level need for teaching. HCK 
focuses on the relation of a sequence of mathematical concepts and considers how understanding 
is intended to progress across a curriculum. 

One component in the larger domain of pedagogical content knowledge we focus on is 
knowledge of content and teaching (KCT) (Ball et al., 2008). This particular component 
highlights the interaction between specific mathematical knowledge and a teacher’s 
understanding of pedagogical issues that could impact a student’s learning. In particular, 
teachers need to draw on their mathematical knowledge to make decisions about sequencing 
content for instruction, choosing examples, and evaluating “the instructional advantages and 
disadvantages of representations used to teach a specific idea and identify what different 
methods and procedures afford instructionally” (Ball et al., p. 401). This knowledge is also 
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important as teachers facilitate classroom discussions. That is, teachers draw on their KCT to 
make decisions regarding when they need to ask for clarification of a student’s understanding or 
offer alternative explanations. Each of these requires an “interaction between specific 
mathematical understanding and an understanding of pedagogical issues that affect student 
learning” (Ball et al., 2008, p. 9). 

To expand the notion of MKT, it is also useful for us to consider what secondary teachers 
need to know beyond content and concepts and to encompass mathematical habits of mind (e.g., 
Cuoco et al., 1996) and engagement in mathematical practices (e.g., CCSSO, 2010). These 
include looking for patterns, making conjectures, attending to precision, utilizing visualizations, 
and connecting representations. Such habits and practices in mathematical thinking and learning 
extend across content areas and levels of mathematical study. Therefore, as we consider how 
advanced mathematical content impacts teachers’ knowledge and understanding of the teaching 
and learning of secondary mathematics, it is important for us to consider habits and practices that 
may also influence how advanced ideas are learned and interpreted for teaching. 

We drew on these tasks to engage practicing middle school mathematics teachers in 
mathematics tasks highlighting a particular connection between abstract algebra and secondary 
mathematics. This study seeks to show how connections can be not only mathematical in nature 
and relate directly to subject-matter knowledge, but to also illustrate how connections can go 
beyond knowledge of mathematics and encompass engagement in mathematics through the lens 
of mathematical knowledge for teaching, mathematical habits of mind, and mathematical 
practices. 

Analytical Framework 
Teacher Understanding of Specific Content 

When considering a course such as abstract algebra, a course typically required in a 
traditional mathematics major, Cuoco and Rotman (2013) have argued that topics such as 
groups, rings, and fields are not well connected to high school mathematics in university 
courses. One possible explanation is that university professors are unaware of the connections 
between the content they teach and secondary mathematics (Hodge, Gerberry, Moss, & Staples, 
2010). Therefore, in order to build prospective teachers’ content knowledge in a way that could 
support their teaching, courses such as abstract algebra should provide occasion to encounter 
links between advanced and secondary mathematics (Blömeke & Delaney, 2012). 

In order to investigate how exposure to and instruction in abstract algebra impact the way 
teachers understand secondary mathematics, this study utilizes the action, process, object, and 
schema (APOS) framework (Asiala, Brown, DeVries, Dubinsky, Mathews, & Thomas, 1997). 
APOS characterizes the learning and understanding of mathematics according to four levels of 
mathematical understanding. The most fundamental level of understanding of a mathematical 
concept is referred to as an action—a transformation of mathematical objects which are 
perceived to be, at least in part, external to the individual. Actions are composed of previously 
constructed mental or physical objects. For the purpose of our study, these objects are the set of 
numbers and mathematical symbols that comprise mathematical language. Any operation carried 
out on these mathematical objects is done in response to external cues; an individual simply 
manipulates the given objects to form another object. When an individual can perform these 
operations mentally, not necessarily according to a prescribed algorithm, these actions have been 
interiorized, marking the attainment of the process level of understanding (Breidenbach, 
Dubinsky, Hawks, & Nichols, 1992). 

At the process level, a learner is carrying out operations while simultaneously considering 
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the object produced by these operations. Another characteristic of process-level understanding is 
the ability to reverse an action by decomposing an object produced by a binary operation back 
into the original objects and operation. When an individual is able to transform a process by 
using actions, they are said to have encapsulated the process, thereby transforming it into an 
object (Clark et al., 1997). At object-level understanding, a learner is able to view processes in 
terms of both its operational and elemental components. 

The highest level of understanding for a mathematical concept is the schema level, or the 
“individual’s collection of actions, processes, objects, and other schemas which are linked by 
some general principles to form a framework in the individual's’ mind that may be brought to 
bear upon a problem situation involving that concept” (Dubinsky & McDonald, 2001, p. 3). This 
approach towards inverse, in form of function, is also aligned to the perception of ‘undoing’ to 
reach a certain outcome. Thus, the different perspective of inverse laid confusion regarding the 
different methods of determining inverse. In elementary and middle school, when students are 
primarily familiar with four basic operations, then inverse is determined an operation nullifying 
the effect of another, but with advanced grade level, the operational approach changes to 
functional approach. According to Wasserman (2016), it is the responsibility of the teachers to 
develop the overarching theme of inverse despite the different ways inverse is referred to during 
different course level of study. Below we discuss how the APOS framework can be used to 
unpack one’s understanding of inverse, identity, and binary operation, the building blocks of the 
important structures at the core of abstract algebra. 
Understanding inverse, identity, and binary operation 

The conceptual understanding of inverse changes as students progress through grade levels. 
In elementary school, children learn the fundamental arithmetic operations of addition, 
subtraction, multiplication and division and the relationship between them. In considering the 
relationships between addition and subtraction, and multiplication and division, this is perhaps 
the first time that children are introduced to the concept of inverse operation. According to 
Wasserman (2016), the primary focus of elementary school education is to develop and refine 
students’ procedural skills as well as their ability to justify mathematical results. Gilmore and 
Bryant (2008) stated, “Improvements in conceptual understanding can lead to advances in 
procedural skill and vice versa” (p. 302). This bidirectional relationship between procedural skill 
and conceptual understanding constructs the foreground of students’ conception of inverse.  

In middle school, students’ perception of number systems faces a challenge with the 
introduction of negative and rational numbers and mathematical operations on these numbers 
(Wasserman, 2016). During this time, the inverse operation of subtraction, taking one positive 
number from itself, (e.g., 8 – 8), tends to be reconsidered as the equivalent operation of adding 
one positive number with its opposite, (e.g., 8 + -8). Under such circumstances, though the 
operations are different, the ultimate outcome is same. At this time, students often struggle with 
the transition of the concept of inverse operation to inverse element. Eventually, students 
become familiar with one of the most ubiquitous components of secondary mathematics, the 
concept of function. A function and its inverse are connected to each other in several ways. For 
example, the domain of the function is the range of the inverse function and vice versa. Also, if 
we consider composition as the binary operation associated with the set of functions, inverse 
elements become inverse functions. 

Advanced content knowledge helps teachers understand the different applications and 
conceptions of inverses. Advanced knowledge can also help teachers and students further their 
conceptual understanding of inverse beyond action and process levels towards understanding 
inverse as “objects in a set based on connecting inverse function to abstract algebra” 
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(Wasserman, 2015, p. 22). 
Language in the Mathematics Classroom 

As presented above, a teacher’s knowledge of content and teaching plays a role in the 
decision-making a teacher needs to sequence and choose examples and tasks and facilitate 
classroom discussions. Therefore, as we consider how exposure to and instruction in abstract 
algebra impact the way teachers may approach secondary classroom instruction; we use the 
construct of KCT and its relation to the use of language in the classroom. 

A widely held belief about mathematics knowledge is that it is precise and unambiguous. 
This view extends to the language in the mathematics classroom. According to Barwell (2005), 
when it comes to mathematical language, “Any ambiguity, that is, any possibility of more than 
one interpretation for a mathematical expression arises from sloppy use of language rather than 
any uncertainty of mathematical ideas" (p. 118). However, Barwell argues that as students 
explore mathematical ideas, they are better able to participate in mathematical practices and 
further develop their mathematical thinking. In this way, ambiguity “acts as an important 
resource for students and teachers, serving as a means of articulating between thinking and 
discourse” (p. 125). 

Hauk, Toney, Jackson, Nair, and Tsay (2014) use the idea of discourse in the mathematics 
classroom as a central tenet of an expanded model of PCK for secondary and postsecondary 
mathematics focused on the use of language. This expanded model aims to bring attention to 
“mathematical appropriateness, clarity, and precision that are integral to thinking, learning, and 
communicating, especially in advanced mathematics” (p. A24). In their framework, Hauk et al. 
connect the elements of PCK to knowledge of discourse, to help address the fundamental 
question: “What is the interplay among advanced mathematical understandings, teaching, and 
culturally mediated communication in defining and growing pedagogical content knowledge” (p. 
A21). This knowledge of discourse helps relate PCK components to ways of thinking. In 
particular, KCT is connected to knowledge of discourse through implementation thinking. 
Implementation thinking draws on knowledge of discourse and mathematics-specific 
instructional practices, such as questioning, as a teacher adapts teaching based on content and 
classroom context. 

For example, Hauk et al. (2014) present vignettes of a novice undergraduate instructor, Pat, 
to illustrate his development in implementation thinking. In his first semester, Pat’s 
implementation thinking focuses on students getting the correct answer. He evaluates students’ 
contributions and student-to-student interaction as less important. In Pat’s fifth semester of 
teaching, he begins to attend to student thinking and works to make sense of and reason about 
the mathematics content with his students, which indicates growth in his implementation 
thinking. The goal of presenting these vignettes is to illustrate how effective teaching needs to 
extend “beyond precise and accurate transmission of facts or uptake by students of information 
and includes taking into account the background and experiences (mathematical and otherwise) 
of the people in the room” (p. A34). 

As we consider the relationship between approaches to instruction, KCT, and 
implementation thinking, we work to uncover how language in the classroom can impact the 
teaching and learning of mathematics. In particular, we consider how exposure to and instruction 
in abstract algebra may change one’s perspective on their use of language, and thus alter how 
one draws on discourse to inform the sequencing and choice of examples and tasks and the 
facilitation of classroom discussions. 

Methods 
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To explore how exposure to and instruction in abstract algebra impact teachers’ 
understanding of secondary mathematics and approach to instruction, we conducted a pilot study 
with pre- and in-service teachers enrolled in a mathematics master degree program with a 
concentration in mathematics education. In this pilot, we developed an instructional unit focused 
on solving equations. The goals of the unit were to have participants consider mathematical 
properties used when solving equations and how these properties were related to algebraic 
structures. One of the researchers, Murray, used this unit to teach one 2.5-hour class session. The 
class was videotaped and all written artifacts were collected. A more detailed description of the 
participants, data collection, and data analysis follows. 
Participants 

Participants were 12 students in a mathematics education course, titled Selected Topics in 
Mathematics Education, which focuses on topics often taught during high school or the early 
years of college. Students in this course are exposed to subject matter viewpoints from advanced 
college-level mathematics courses such as abstract algebra, geometry, number theory, and 
analysis. The class met once a week for 2.5 hours over a 15-week semester. Of the 12 
participants, four were male and eight were female with zero to fifteen years teaching 
experience. One out of the twelve participants was a special education teacher, two were pre-
service teachers, and nine were in-service high school and middle school mathematics teachers. 
Data Collection 

We relied upon three data sources: audio and video classroom data, written artifacts, and 
participant interviews. The instructional unit began by engaging participants in an investigation 
of the mathematical properties used to solve three different linear equations. Participants were 
asked to provide rationale for every step used to solve the equations. The purpose of this section 
was to challenge teachers’ understanding of mathematical properties used for solving equations 
and to consider how attention to the algebraic structures and their properties may inform 
procedures and solutions. 

After conversation of the initial problems, Murray facilitated a discussion on abstract 
algebra, specifically groups, rings, fields and their properties. Throughout the class, participants 
were encouraged to engage in small group discussions and explore different aspects of each 
algebraic structure with the help of various examples. Every small-group discussion was 
followed by whole-class discussion where participants shared their own solutions and rationale 
supporting their answers. The session was filmed to capture participant responses for future 
analysis. At the end of the session, participants reflected upon their classroom experience by 
answering a series of four questions asking about the impact the class might have on their 
perception of solving equations. 

Following the classroom lesson, participants were emailed a request to participate in a 
follow-up interview; the purpose of which was to clarify ideas discussed in class and to probe 
participants’ thinking on the impact of tertiary knowledge on the understanding of secondary 
mathematics and instruction. Only one participant volunteered for the interview session and his 
replies were recorded for future analysis. 
Data Analysis 

Due to the exploratory nature of this study, we used qualitative methods to analyze the data. 
APOS theory is well-suited to characterize conceptual understanding of mathematics; for our 
purposes, we used this framework to describe teachers’ knowledge of secondary mathematics, 
particularly with regard to the concept of inverse. Having the ability to assess teachers’ 
understanding helped us to answer our first research question, as it provided a starting point from 
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which to discern changes in participants’ understanding of the use of inverses before and after 
exposure to and instruction in abstract algebra. We additionally employed the MKT framework, 
and specifically KCT, to address our second research question. In particular, we used this 
framework to investigate how participants discussed secondary mathematics instruction after 
exposure to and instruction in abstract algebra. 

We conducted preliminary analysis of the audio and video data with the intention of isolating 
episodes that contained connections between abstract algebra and secondary mathematics. For 
the initial analysis, we independently reviewed the video data and isolated episodes where 
connections were believed to have occurred. The researchers then came together to discuss the 
isolated portions of data. Once the significance of these episodes was mutually ratified, the 
segments were transcribed. The segments of data were then re-analyzed by reading through the 
transcripts. Initial or “open” coding methods were used, searching for words or phrases that 
showed evidence of participants’ understanding of secondary mathematics or connections 
between secondary mathematics and abstract algebra. Although the analysis of our transcribed 
data was guided by our initial research questions, open coding was the preferred method of 
initial analysis as it allowed for the development of tentative codes that led to further inquiry, 
thereby allowing the study to take direction organically (Saldana, 2009). 

Once initial codes had been elicited from the transcribed data, the codes were refined by 
employing inductive, constant-comparative methods (Merriam, 2009). This structural coding 
was particularly well-suited for our study as the study was exploratory in nature, incorporated 
multiple participants, and elicited data via semi-structured data-gathering protocols. We were 
able to assign more focused codes that served as a labeling and indexing device for our 
preliminary analysis. Finally, we used axial coding to categorize and organize the codes that had 
been generated during the initial and secondary coding phases. This coding resulted in two broad 
themes related to abstract algebra and teachers’ understanding of secondary mathematics— 
understanding and interpreting inverse, and use of mathematical language. 

Results 
We report results from classroom data, e.g., transcriptions from the video-taped lesson and 

written artifacts. Although we also interviewed one participant after the instructional unit, this 
data continues to be analyzed, and will not be discussed here. 
Impact on Understanding Secondary Mathematics 

In considering how exposure to and instruction in abstract algebra impact the way secondary 
teachers understand secondary mathematics, we found some participants moving from an action 
or process-level of understanding towards an object-level of understanding. To illustrate this 
change in understanding, or lack thereof, we present evidence from the data focused on the 
concept of inverse. To explain this characterization of participant knowledge, we adapted the 
definitions from the APOS framework for the concept of inverse (see Table 1). 
 Definition (Asiala, Cottrill, 

Dubinsky, & Schwingendorf, 
1997, p. 400). 

Our Characterization 

Action [A]n action is a transformation of 
mathematical objects that is 
performed by an individual according 
to some explicit algorithm and hence 
is seen by the subject as externally 
driven. 

An action conception of inverse involves being able to use 
inverses to perform particular mathematical tasks. In the case 
of this study, we began by discussing the use of inverses to 
solve equations. In this instance, when the students saw 
addition or multiplication as an external cue, they thought 
subtraction or division in response. That is, they were using the 
inverse to isolate the variable and determine the solution to a 
problem. 
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Process When the individual reflects on the 
action and constructs an internal 
operation that performs the same 
transformation, then we say that the 
action has been interiorized as a 
process. 

A process conception of inverse involves more 
generally thinking about inverses, so that an inverse is an 
operation, as well as a mathematical property that one can use 
in a variety of situations. For example, inverses were being 
thought of as operations and the students discuss properties of 
equality as a way to think about solving equations. 

Object When it becomes necessary to 
perform actions on a process, the 
subject must encapsulate it to become 
a total entity, or an object. In many 
mathematical operations, it is 
necessary to de- encapsulate an object 
and work with the process from which 
it came. 

An object conception of inverse involves seeing the inverse as 
an element of a set, consisting of elements and a binary 
operation. Here, students think about the inverses as being 
elements in the set, but then are able to use the process to 
determine what that element is for each specific member of the 
group. 

Schema A schema is a coherent collection of 
processes, objects and previously 
constructed schemas that are invoked 
to deal with a mathematical problem 
situation. As with encapsulated 
processes, an object is created when a 
schema is thematized to become 
another kind of object, which can also 
be de-thematized to obtain the original 
contents of the schema. 

The schema conception of inverse includes 
acceptance of the operational/elemental duality of 
inverses. The utility of inverses as not only an 
element with an associated binary operation, but 
also its relation to other mathematical properties 
and applications to problem solving are understood. 

Table 1: Characterization of Student Understanding of Inverse According to the APOS Framework. 
In the sections to follow, we illustrate how before exposure to and instruction in abstract 

algebra, participants relied on external cues within problem structure to determine and describe 
solution strategies. Some participants possessed a more generalized view of inverses and were 
able to establish a connection between the use of operational inverses and existing properties of 
equality. After the unit on abstract algebra, some participants were able to demonstrate 
characteristics of object-level understanding, yet still tended to rely on process to participate in 
the tasks. In all cases, conversation on inverses predominantly centered around the operational 
aspect; those students who attempted to reconcile the operational-elemental duality of inverses 
were viewed to demonstrate essential characteristics of object-level understanding and 
reasoning. 
Understanding Prior to Exposure to Abstract Algebra 

To begin the lesson, participants were provided three linear equations, x+5=12, 3x=12, and 
5x+7=3+2x, with worked out solutions. They were asked to describe the steps and properties 
used to solve the equations. For the first example, participants cited the mathematical properties 
of “inverse of addition” and the “subtraction property of equality” to justify the step of 
subtracting 5 from both sides of the equation. [Author] followed up by asking, “Are those two 
things different?” Participants replied both yes and no, which led to the follow-up question of 
why they might be different. 
P1: I think they are different because, um…the, calling it an additive inverse is referring to 

why they chose subtraction. Subtraction property of equality refers to the fact that its 
subtraction on both sides. 

P2: That’s, that’s true. 
Murray: So how are they the same then? 
P1: They’re both subtracting. I mean, if you’re calling it the inverse of addition, that’s 
subtraction, and the subtraction property of equality is obviously subtraction. 

This brief episode at the beginning of the lesson sheds light on the participants’ prior 
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knowledge of secondary mathematics, particularly with respect to the use of inverses as an 
aspect of performing algebraic operations. In stating, “additive inverse is referring to why they 
chose subtraction,” participants used the presence of addition as an indicator within the structure 
of the equation to employ subtraction as a solution step. Reliance on external cues embedded in 
the problem demonstrated an action-level understanding of inverse. The participants also viewed 
the inverse of addition as the subtraction property of equality, an established mathematical 
property, thereby signifying an understanding of the utility of inverses beyond that of an external 
process for ‘undoing’. This interpretation indicates a more general perception of inverse and 
shows that some viewed inverses as serving an algebraic application other than reversing an 
operation, indicating a process-level of understanding. 

The steps used to solve the second equation, 3x=12, were viewed similarly. When asked to 
describe the step of dividing by 3 students replied, 
P1: Division property of inequality, equality? 
Murray:   Division property of equality. Anyone calling it anything different than that? 
P2: Inverse multiplication? 
Murray:  Inverse multiplication. So, is that the same thing what just happened with the… 
P2: Mmhm. 
Murray:  So, when you talk about the inverse property, so you said inverse property of, what? 
P2: Multiplication. 
Murray:  Of multiplication. So, what’s the inverse? 
P2: Division? 
Murray:  Ok. So you are saying, you are saying that because multiplication division are inverse 

operations? All right. Is that how other people are interpreting that? 
P3: Multiplied by the reciprocal. 
Murray:  We are multiplying by the reciprocal. What’s the reciprocal? 
P3: Of three it's one-third. 
Murray:  One-third. So will that look different if I was thinking about it as multiplying by the 

reciprocal? 
P3: Same thing. It’s dividing by three. 
P4: It will look, it would look different written in the equational form, obviously because 

instead of having the division sign it is having the multiplication sign. 
As in the first problem, participants demonstrated a reliance on cues within the equation’s 

structure to describe operations. In this equation, students observed that 3 and x were multiplied 
together to yield 12; the use of multiplication prompted the participants to employ division to 
reverse multiplication. When considering the use of the multiplicative inverse as an alternative to 
division, one participants stated, “it would look different written in the equational form, 
obviously because instead of having the division sign it is having the multiplication sign,” 
demonstrating that some were still concerned with differences in notation in equivalent solution 
steps. According to our framework, the reliance on external cues to select or justify an operation 
indicates that the participants demonstrate an action-level of understanding of inverse. 

Continuing the discussion, the students posit that the equation can be solved in two ways, by 
dividing both sides by three or multiplying by the multiplicative inverse. Although there was still 
some confusion over exact language use, all participants agreed that the outcome, or the object 
produced by either action would be the same. By arriving at the same result through the use of 
different actions, participants demonstrate a process-level understanding of inverse. 

For the equation, 5x+7=3+2x participants were asked to justify the operation of subtracting 
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2x. As they discussed this step, rather than discussing additive inverse as before, a new idea 
came to light. 
Murray:  Ok then for the last one, what happens…what are we doing there? So for the first side 

we are subtracting the 2x, what’s that? 
P1: Combining like terms. 
Murray:   Combining the like terms? What would other people say about that? 
P2:  It’s still subtraction property of equality. 
Murray:   Ok. So it’s still subtraction. So, what makes it different than the last problem? Like 

why it…why would combined like terms maybe pop-up there? 
P3: Because it is a variable? 
Murray:  Still they look different right? So, we are kind of combining like terms but in order to 

do that we have to use the property. 
P2:  I only use combining like terms when things are on the same side of the equal sign, 

maybe it’s my preference in my class, but like I, I try to distinguish them because 
when I say combining like terms I mean there are things on the same side of the equal 
sign that can be combined. And then when we are moving things from side to side, I 
use subtraction property or addition property just so that they know kind of 
distinction I am trying to make. But I also teach pre-algebra kids, so I try to create the 
distinction. 

Unlike  the  discussion  of  the  first  two  problems,  in  this  segment  we  did  not  find  any 
discussion of the use of inverses. Instead one participant explained this step as “combining like 
terms.” There was no mention of using subtraction to reverse the operation of adding 2x, nor was 
there mention of the additive inverse, -2x. Students viewed this problem as structurally different 
than the first two because they performed actions on a variable rather than a constant term. By 
performing intermediate steps to isolate the variable or combine like terms, students did not 
recognize they were utilizing the same properties as the first problem, namely inverse of 
addition. By slightly altering the structure of the problem and requiring students to reconcile 
operations on a variable term, at least one participant thought differently about essentially the 
same operations. The participants’ perception that a different idea must be used in this situation 
showed reliance on external cues within the structure of the problem, evidencing action-level 
reasoning. In summary, prior to the introduction of abstract algebra content there is evidence that 
most participants possess an action and/or process-level understanding of inverses. 
Understanding After Exposure to Abstract Algebra 

After the introduction to abstract algebra, participants were prompted to explain the nature of 
inverse operations within a group structure. During this conversation, some participants 
displayed an object-level understanding of inverse, while others continued to show 
understanding of inverse at an action-level. Below is an exchange that illustrates the object level 
of understanding. 
P1: We said when you were talking about a group that each element needs an inverse 

element and that in order to find an inverse element, you are thinking about an 
inverse operation. 

Murray: So it means something different, when I say inverse operation I mean something 
different than when I say additive inverse. 

P1: Sort of. When we are talking about the set of integers not that a specific element like 
2, and I want to find its inverse, I am thinking about subtraction in a way to come up 
with additive inverse, I am thinking about the inverse operation. 
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The requirement that each element in the group has a corresponding inverse element is a 
property unique to the group structure, and knowledge of this requirement changed the direction 
of discourse on inverses. For the first time, participants discussed whether an inverse may or 
may not exist. Participants attended to the relationship between an element, its inverse, and the 
associated binary operation. By contemplating the existence of an inverse element for a given 
element with respect to a single operation, participants began to consider the elemental-
operational duality of inverses. Within the APOS framework, by accommodating the notion that 
inverses consist of both an elemental and operational component, some participants were able to 
encapsulate the concept of inverse and demonstrate object-level understanding. These 
participants continued to display object-level understanding in a later activity in the unit. 

One of the final activities included solving linear and quadratic equations in Z5 and Z6. For 
solving the linear equations, most participants used a guess-and-check method by either referring 
to the Cayley tables they generated or solving the equations over the set of real number and 
determining the solutions’ equivalence class in Z5 or Z6. During small group discussion, 
however, Murray encouraged participants to consider using properties to solve the equation 
x+5=1 in Z6: 
P1: Like I can use the additive inverse of 5 on both sides or something. Is that what you 

are saying?  
Murray:  Maybe. Yeah. So if you did that... 
P2: You want something that’s one. Ah, well, but that’s… 
P1: Because that would give me a zero, which is what I was looking at. 
Murray:  So you’re just saying, so she was like, if I added the additive inverse to both sides. 
P2: Of five. 
Murray:  Of five. Yeah. 
P1: Which, I have to think about. 
Murray:  Yeah. 
P2: Because the additive inverse of five in six will be 
P1: Is one? 
P2: One. 
Murray:  One. So, if I did x+5, 
P2: Add one to both sides. 
P1: So add one to both sides. 
Murray:  Which would give me this. 
P1: And get me x plus zero equals two. 

In this discussion, participants considered the implications of adding the additive inverse of 5 
to 1 in Z6, which would result in x plus the additive identity on the left side of the equation, and a 
new object - the solution on the right. Furthermore, the participants considered what the solution 
would look like within the domain of Z6 rather than on the set of real numbers. This indicated an 
object-level understanding of inverse as participants were thinking about the inverse as an 
element of Z6, but were using a process to determine the solution. 

However, not all participants were able to develop this level of understanding. In another 
activity, participants were asked to determine if Z5 or Z6 satisfied the field axioms. One 
participant, Steven (pseudonym), observed that multiplicative commutativity held for all 
elements within Z5 and Z6. But confusion arose around a discussion of the inverses. Steven 
claimed “The inverse is zero. Both the additive and multiplicative inverse is the same. 0 times a 
is 0.” A few moments later Steven continued, “here they are saying, the inverse of a times a is 
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the additive identity.” In testing Z5 and Z6 against the field axioms, Steven seemed to be 
emphasizing the importance of the operations, but ignoring the significance of the objects 
created by these operations. It appeared that Steven misread the multiplicative inverse axiom, 
taking e to be the additive identity. Steven remained focused on the operation to be performed, in 
this instance—multiplication, but ignored the fact that the axiom was dedicated to producing the 
multiplicative identity by multiplying an element with its multiplicative inverse. 

When determining if Z5 and Z6 satisfy the multiplicative commutativity and identity axioms, 
Steven relied heavily on the notation within the axioms to analyze the structure of these residue 
classes. In all field axioms, the binary operation is multiplication, however; Steven failed to 
realize that multiplying a’ and a should yield the multiplicative identity. Steven attended to the 
operations prescribed by the axioms without regard for the resultant object, thereby overlooking 
the fact that e represented different elements depending on the operation. The application of 
operations without consideration of the object produced provided evidence of action-level 
understanding. 
Impact on Approaches to the Use of Language in Secondary Classroom Instruction 

In considering how exposure to and instruction in abstract algebra impact the way teachers 
may approach secondary classroom instruction, we found participants focusing on language use 
in the classroom. To illustrate this focus, we present evidence from the data primarily after the 
introduction of a particular classroom scenario about solving quadratic equations. 

It is interesting to note that throughout the instructional unit, Murray tried to engage 
participants in discussion about the influence of advanced mathematical concepts on secondary 
school mathematics. For example, after the extensive discussion about inverse operation and 
inverse elements associated with different groups, Murray stated: 

“So, when I talk about inverse operation, I wonder how much that maybe helps or hinders 
students’ ideas about what an inverse is. [W]e have all these inverses, right? I have additive 
inverse. I have multiplicative inverse. I have functional inverse…So this word inverse keeps 
coming up over and over and over again, but it means different things in different situations.” 
Even with prompting comments such as this, participants did not seem to consider the impact 

of abstract algebra on their instruction until the final activities in the unit. 
Recall that as participants solved linear and quadratic equations in Z5 and Z6, we saw some 

moving towards an object understanding of inverse. While solving quadratics, participants 
realized was there were four solutions in Z6; namely the zero divisors in the ring. Immediately 
following discussion about the nature of the quadratic solutions for Z5 and Z6, [Author] 
introduced a vignette about a high school algebra teacher, Clark Freeman. The scenario below 
appeared in the instructional unit: 

Clark Freeman is teaching in an Algebra classroom. He has mostly first year high school 
students, but there are some second and third year students repeating the course. The class 
has been discussing quadratic functions for a week, and has discussed finding the x-
intercepts, y-intercept, and axis of symmetry. During one class, Mr. Clark is presenting 
solving simple quadratic equations. He first shows the students how to solve x2 − 4=0. He 
describes adding four to both sides to obtain x2=4, then takes the square root of each side to 
obtain x = 2, -2. He then shows the students x2+4=0. He describes subtracting four from 
both sides to obtain x2=-4. He says, “When we try to take the square root of both sides, we 
have to take the square root of a negative number, which we can’t do, so there are no 
solutions.” 
Participants then considered the questions: (1) What do you think of Clark’s presentation? 
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(2) What does Clark mean by “no solution?”, and (3) Is there any situation where the equation, 
x2+4=0 would have a solution? 

By connecting their experience of finding four solutions for the quadratic equation 
x2+2x+3=0 in Z6 to Mr. Freeman’s instruction, participants considered the struggle students go 
through when first introduced to quadratic equations with complex solutions. Specifically, 
participants agreed that it is the responsibility of the teachers to choose, make, and use 
mathematical representations effectively (Ball et al., 2008), and use mathematical language in 
the classrooms carefully to avoid conflicts in students’ understanding of mathematical concepts. 
One participant stated, “There’s gotta be a distinction between ‘no solution’ and ‘no real 
solution’. The wording has to be a little more precise.” 

Additionally, within the written responses at the conclusion of the unit, participants reacted 
to the question, “In what ways, if any, have these discussions impacted your thinking about 
instruction of solving equations for students?” Several responses indicated a focus on language 
use in the classroom and its impact on student learning. Comments included, “to be careful with 
wording of answers—consider all possibilities and their perspectives,” “I care about words a lot 
and will think about that more,” and “[there is a] difference of having absolutely no solution and 
having a complex number as a solution.” 

 
Conclusions and Implications 

Prior to the instructional unit on abstract algebra, participants demonstrated action and/or 
process-level understanding of inverses. In most cases, participants viewed the inverse as an 
operation that could be used to undo another operation performed on the unknown variable. This 
indicated that use of inverse was prompted by cues within the structure of the equation, 
evidencing action-level understanding. Some participants saw the link between inverses and 
established properties of equality, demonstrating the algebraic utility of inverses as a problem-
solving tool, which showed process-level understanding. 

Post-instructional unit, some participants exhibited object-level understanding, while some 
remained at action or process-level. None of the participants displayed schema-level 
understanding. Specifically, when solving x+5=1 on Z6, participants attended to inverses with 
respect to a binary operation, solution elements in the domain of Z6, and the additive identity. 
The incorporation of the operational and elemental aspects of inverse along with contemplation 
of the object created as a result of the operation showed object-level understanding. Participants’ 
knowledge of group structure, an essential component of abstract algebra, caused them to 
consider inverse elements with respect to a given binary operation, facilitating the transition 
from action/process-level understanding to object-level understanding. According to Wasserman 
(2016), this movement from an action/process-level of understanding of inverses towards 
viewing inverses as objects in a set reflects the APOS framework. This illustration of object-
level understanding was indicative of the participants expanding their sense of number and 
operation. In fact, we claim the participants who were able to transition from the action/process-
level of understanding toward an object-level understanding were able to do so because they 
began to view inverses as elements rather than operations. 

We also found that participants were not concerned about the existence of solutions until 
they themselves were baffled by four solutions of the quadratic equation, x2+2x+3=0, in Z6. 
This result is opposed to the Fundamental Theorem of Algebra, according to which a polynomial 
of degree n should have at most n roots. The contradiction of this mathematical theorem, that 
participants themselves have used since middle school, challenged them. Later, when Murray put 
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forward the story of Mr. Clark, participants realized the conflict faced by students of secondary 
mathematics as they accommodated a new, unfamiliar number system. By the end of the study, 
we found our participants became aware of the importance of maintaining a proper progression 
of related mathematical concepts for effective teaching and learning practice. This realization 
about sequencing mathematical concepts is aligned with KCT (Ball et al., 2008). According to 
KCT, effective teaching is the outcome of the perfect combination of knowledge of teaching and 
content. Teachers should be able to “choose which examples to start with and which examples to 
use to take students deeper into the content” (Ball et al., 2008, p. 401). 

Even so, there are benefits to ambiguous language in the mathematics classroom for the 
continued development of concepts (Barwell, 2005). In fact, it may not necessarily be a problem 
that students are exposed to ambiguities, such as “no solution” versus “no real solution”. Rather, 
it is up to the teacher to confront ambiguities in productive ways that allows students to develop 
a deeper understanding of a concept. In the context of solutions, this could mean that students 
themselves can question the idea of no solution and come to understanding that solutions to 
equations are closely related to the domain over which the equation is being solved. Therefore, 
while it is not surprising that our participants were questioning the use of language as they 
themselves experienced disequilibrium around the number of solutions, we claim that their 
students should have the opportunity to expand upon and alter their understandings of particular 
words, like solution, as their mathematical knowledge increases. 

In this exploratory study, we investigated the impact of exposure to and instruction in 
abstract algebra on mathematics teachers understanding of secondary mathematics and approach 
to instruction. Many researchers of mathematics and mathematics education may intuitively 
understand how secondary mathematics teachers’ deep knowledge of mathematics is related to 
the ability to be an effective mathematics instructor in secondary schools. However, the field still 
lacks deep understanding of how secondary teachers use their knowledge of tertiary mathematics 
during instruction. This understanding could lead to a better sense of the kinds of mathematics 
courses that can provide teachers with the content and pedagogical content knowledge they need 
to make best use of these connections to improve their own understanding and during classroom 
instruction. 
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Service-learning in a precalculus class: Tutoring improves the course performance of 
the tutor 

 
Ekaterina Yurasovskaya 

Seattle University 

We have introduced an experiment: as part of a Precalculus class, university students have 
been tutoring algebra prerequisites to students from the community via an academic service-
learning program. The goal of the experiment was to improve university students’ mastery of 
basic algebra and to quantitatively describe benefits of service-learning to students’ 
performance in mathematics. At the end of the experiment, we observed 59% decrease of 
basic algebraic errors between experimental and control sections. The setup and analysis of 
the study have been informed by existing research on tutor learning and cross-age tutoring, 
as well as mathematical pedagogy for social justice. 

Key words: Precalculus, design experiment, service-learning 

Introduction and Research Questions 
Academic service-learning consists of two integral components: a useful service to the 

community, and a meaningful learning opportunity to the students, which is relevant to the 
material covered in the course (Hadlock, 2013). The type of service is largely determined by 
the needs of the target community, and can range from a one-time day-long event to a project 
that spans several months. Service experience is linked directly to an academic course, and is 
guided by the course instructor, as well as by the supervisors from the community. While 
providing service, students practice and directly apply skills and knowledge acquired in the 
course, and bring to the classroom a real-life perspective on the material which they may 
have until now viewed as purely theoretical. Astin, Vogelsang, Lori, Ikeda, and Yee (2000) 
found that service-learning showed positive effects on academic performance (GPA, writing 
and critical thinking skills) and values of participating students.  

Academic service-learning has traditionally been associated with social sciences, 
psychology, counseling, and social work, while service-learning in mathematics courses has 
recently been gaining prominence (Hadlock, 2005). By engaging in mathematical service-
learning, students are meeting the needs of the community by providing mathematical and 
statistical modeling to local organizations, by offering tutoring in the fields of mathematics 
and STEM disciplines, or by organizing Math Fests for schoolchildren. Our present study 
was motivated in part by the need for a quantitative analysis of the benefits of service-
learning to students’ mathematical performance.  

Our second motivation was the ever-present need to improve student success and 
retention in Calculus in effort to increase attrition in STEM disciplines (Bressoud, Mesa & 
Rasmussen, 2015). Results from a recent national study show that “a total of 48 percent of 
bachelor’s degree students and 69 percent of associate’s degree students who entered STEM 
fields between 2003 and 2009 had left these fields by spring 2009. Roughly one-half of these 
leavers switched their major to a non-STEM field, and the rest of them left STEM fields by 
exiting college before earning a degree or certificate” (U.S. Department of Education, 2013).  
Edge and Friedberg (1984) show that solid algebra skills are one of the main factors 
determining success in Calculus. Success of the service-learning project raises students’ 
fluency in algebra and leads to a stronger chance of their mastering Calculus, and staying 
within their chosen technical field. At the same time, students in the community receive 
additional mathematical one-on-one instruction, raising their chances of high school 
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graduation. University students, especially athletes, often serve as role models for those who 
may consider going to university. 

Our study explored the following research questions: 
 
Question 1: Will students who engage in tutoring algebra pre-requisites to middle-school 

and returning students demonstrate fewer ‘fundamental’ mistakes than students from the 
control section without the tutoring experience? By ‘fundamental’ mistakes we mean the 
following: 

1. Mistakes that result from misunderstanding the addition/subtraction algorithm of 
a. numerical fractions 
b. rational expressions 

2. Cancellation mistakes in 
a. numerical fraction arithmetic 
b. rational expressions 

3. Mistakes in operations on radicals 
4. Mistakes in operations with exponents. 
5. Mistakes in basic factoring using formulas. 
6. Other – may be added after consultations with other mathematics faculty, or after 

marking the final exam. 
 

Question 2: What will be the reaction of students to the service-learning experience 
introduced in a scientific course that has not traditionally been associated with community 
work at this and other institutions? 
 
Theoretical Perspective 

Our framework for the present study follows a standard pseudo-experimental setup as 
described by McKnight, Magid, Murphy, and McKnight (2000): baseline performance for 
experimental and control sections is determined via a diagnostic test; the two sections receive 
equivalent instruction for the duration of the course, except for the difference in the tutoring 
service-learning component. The two sections are given identical final exam, and their 
performance is analyzed via a rubric. Qualitative data is also compared. To our knowledge 
ours is the first study that quantitatively analyses benefit to mathematical performance of 
service-learning students engaged in tutoring. 

In designing the course and analyzing the results of the experiment, we consider sources 
in literature on understanding the phenomenon of tutor learning. Our idea to use tutoring as a 
means to help student-tutors learn mathematics starts with a well-known saying ‘I hear and I 
forget. I see and I remember. I do and I understand’. We rely on work of Allen and Feldman 
(1976), as well as Gartner, Kohler, and Riessman (1971), who show that cognitively 
demanding tasks of organizing subject matter knowledge, as well as explaining and 
questioning in the process of working with a tutee, contribute to tutor knowledge. In 
designing reflective mathematical journal activities to reinforce tutoring experience, we rely 
on the work of Roscoe and Chi (2007), who name reflective knowledge-building, “which 
includes self-monitoring of comprehension”, as fundamental to tutor learning. 

Inspired by the stated mission of Seattle University to promote justice, our overall study 
is situated in the context of teaching and learning mathematics for social justice, as described 
by Gutstein (2006). 

When designing and implementing the service-learning structure, we closely follow the 
suggestions and project design outlined in the Special Issue on Service-Learning in 
Mathematics, PRIMUS: Problems, Resources, and Issues in Mathematics Undergraduate 
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Studies (2013), particularly Schulteis’ (2013) experience of building a course with university 
students’ satisfying the tutoring needs of local institutions and non-profit organizations.  

 
Methodology 

Our work took place at Seattle University: a medium-sized urban Catholic university in 
the heart of Seattle, WA, with a long tradition of incorporating service-learning and 
community work into students’ coursework and extra-curricular education. University’s 
Center for Community Engagement runs Seattle University Youth Initiative which has 
provided tutoring to schools in close proximity to the University. In years 2014-2015, 112 
members of Seattle University faculty implemented academic service-learning in their 
courses. Such high participation rate is largely due to the Center for Community Engagement 
that carries most of the administrative work in organizing student placements and in 
establishing effective communication with community partners.  

Mathematics Department at Seattle University has traditionally been involved in outreach 
activities. Annually, several sections of a standard Mathematics Core course for students 
majoring in humanities involve a social justice service-learning component with university 
students tutoring math to elementary school students. The course was first developed and 
implemented by Allison Henrich, who demonstrated a decrease in math anxiety in 
participating university students (Henrich & Lee, 2011). Seattle University mathematics 
professor Leanne Robertson runs Seattle University Math Corps: a highly successful 
mathematics outreach program that employs mathematics majors and provides tutoring to 
local elementary school students. No STEM-related courses at the Mathematics Department 
have yet involved an academic service learning component as part of mathematics course 
curriculum except for the Precalculus course described below.  

 
Experimental Design 
The setting for our study was two sections of a standard Precalculus course that served as a 
pre-requisite for the science and engineering track Calculus sequence. The course focused on 
algebra material and served as a mathematics refresher for students whose ACT and SAT 
scores would not allow them to be placed directly into a Calculus I course.  

Topics covered in the course included quadratic, radical, and rational equations and 
inequalities, functions, inverses, and graphing, roots of higher-degree polynomials, 
exponential and logarithmic functions, as well as applications of all the above topics.  Course 
audience in both sections consisted of first- and second-year university students of traditional 
age, majoring in a variety of fields: engineering, nursing, biology, business. Students’ prior 
mathematical background varied: some students may have difficulty with basic exponents, 
while others are comfortable solving standard radical and rational equations.  

 Both experimental and control sections numbered 21 students each. The experimental 
section of the Precalculus course involved a service-learning component, while the other 
section served as control and consisted of standard in-class instruction only.  

All students in the experimental section took part in the SU Service Learning program. 
Over the course of the quarter, they spent 2-3 hours per week tutoring basic algebra and 
sometimes arithmetic to middle school and high-school students, as well as adults returning 
to obtain their GED. The students put in a total 18-21 hours of tutoring work over the 
duration of the quarter. Service-learning component constituted 10% of students’ grade, 
while homework, web-work, tests, and in-class participation made up the remaining 90%. 
On the first day of class, students in the experimental section received an overview of the 
service experience as community partners introduced their respective organizations and 
described the target populations that used their services. Representatives from Seattle 
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University Center for Community Engagement distributed necessary paper-work, explained 
the process and the timeline of contacting community partners, and conducted an interactive 
presentation on aspects of cultural competency that could be relevant in work with diverse 
populations. 

During the first week of the quarter, students in the experimental section contacted the 
community partners of their choice, filled out various clearance documents, received training, 
and started tutoring. In the meantime, mathematical part of the course started as it usually 
would, with lectures, homework, and class-work. Tutoring continued through the quarter, and 
ended on the last week of the course, to give students time to prepare for the final exams.  

The control section was identical to the service-learning section in every aspect of the 
course syllabus, such as the topics covered, the number of exams, attendance and make-up 
policy, etc.  The only difference was the lack of the tutoring component in the control section, 
as well as a slight difference in grading weights assigned to exams and homework. The 
control section also received some amount of extra homework intended to balance the 
additional workload faced by experimental section.  

 
Diagnostic test 

We established a baseline of the students’ prior knowledge and preparation by using a 
diagnostic pre-test. The pre-test was given to both sections on the first day of class and 
covered the pre-requisite material including arithmetic with fractions and radicals, basic 
factoring, and solving basic equations. In order to make sure the task was taken seriously, the 
students received a small amount of credit for completing the pre-test. 

 
Written Reflection 

In order to fully benefit from the service-learning experience, students must have an 
opportunity to engage in structured reflection and connect for themselves the tutoring 
experience with the content of the course (Bringle & Hatcher, 1999). An integral part of the 
experimental service-learning section was a weekly guided reflective diary of tutoring 
experiences, helping students analyze mathematical, as well as social and pedagogical, 
aspects of their work with the students from the community. 

Each journal entry included a mathematical and a non-mathematical component. 
Mathematical reflection helped the students engage with and analyze the mathematical aspect 
of the tutoring experience and reflect on the following and similar questions: 

 
o What is the topic that your student is studying? With which component did the 

student need help? 
o What problem did you discuss with your student? What mathematical concept did 

you address? 
o What piece of knowledge was missing from the students’ understanding that 

prevented them from moving forward? 
o What method did you use to approach the solution and how did you explain the 

material? 
o Can you predict which future mathematical topics will rely on the problem you 

discussed with the student? 
o Did you discover any gaps in your own mathematical knowledge?  What steps did 

you take to address them? 
o Did you discover any parallels between the topics you tutored and our 

mathematical lectures and problems from class? 
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Mathematical part of the journal became a place for conceptual analysis of mathematics 
discussed in the tutoring sessions, as well as an aid in reflective teaching. 

The free-form non-mathematical reflection was intended to help the students process the 
human aspect of their experience with service-learning and tutoring. The following guiding 
questions were suggested to the students: “You may think about your pedagogical 
observation of your student. What do you think is holding this student back and what can be 
done to help the student succeed? How was your tutoring week? What non-mathematical 
problems did you encounter? Any thoughts on what you are seeing and experiencing while 
tutoring? Any questions you would like to ask me, or your fellow students, or the 
management of the organizations where you tutor?” 

The non-mathematical part of reflection was optional, reserved for the time when students 
wanted to share a personal experience, however, most of the time students chose to write 
down their observations of service sites and of people they met there. Service-learning 
journal served as an effective communication tool between students and instructor, and 
readily alerted the latter as to potential problems or issues at the service sites. 
 
In-class reflection 

In addition to completing reflective journal entries, the experimental section held two in-
class reflection meetings. Students split in groups according to their respective tutoring sites, 
which gave them opportunity to meet others who worked at the same location, exchange 
information, and discuss common issues, such as transportation, time commitment, and 
communication with the community partners.  

 In-class reflection meetings offered the participants an opportunity to discuss the 
pedagogical issues raised by the students themselves, through the journals or in class: How 
do you motivate an unmotivated student? How do you explain a concept of a variable? Of an 
equation? How do you guide a student through word problems? How do you deal with 
discipline problems?  

Everyone was asked to contribute, and students from different tutoring groups offered 
valuable pedagogical suggestions, arriving on their own at well-known mathematics 
education techniques: the need to build on the basics (arithmetic) before proceeding to 
algebra, to move from concrete to abstract in explanations of material, to ensure that the 
given and the unknown were clearly identified before a word problem can be solved. 

What I have noticed most after tutoring at Seattle Central is that if you truly want to 
succeed you need to master the basics if you even want to excel at the next level of math. 
Barely grasping the concept is not enough to get through that current level of math, never 
mind the next. (post-meeting journal entry) 
 
Reflection meetings fostered a sense of a community in the classroom, brought out a 

shared experience, and helped create a common bond among the students.  
 
Anonymous end-of-term reflection 

 At the end of the course, the students submitted a typed anonymous reflection where they 
were free to comment on any aspect of their experience, to offer suggestions for 
improvement, and to voice any additional concerns regarding the course. Results of 
anonymous reflection are discussed in the Results section below.  
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End-of-term examination. 
At the end of the quarter, both sections took a standard final exam with identical 

questions. Relevant statistics were computed and compared for both sections. The number of 
fundamental mistakes (see Introduction) was determined via a special rubric, which we will 
describe in the Results section along with the data obtained from the exams. 

  
Results 

Our diagnostic pre-test indicated that the experimental and control sections were 
comparable in preparation and abilities and showed similar score distributions, with the 
experimental section showing a slightly better average, but the difference between the two 
sections not being statistically significant.  

Research question 1 was answered affirmatively. We compared the number of 
fundamental mistakes in the final exams for both sections: there were only 13 fundamental 
mistakes made by the 21 students of the experimental section, while the 21 students of the 
control section made 32 fundamental mistakes. Thus, there were 59% fewer fundamental 
mistakes in the experimental section than in the control one. 

The following error types were analyzed and recorded via a grading rubric. In the list 
below, the shorthand Error Code is followed by an explanation of the mathematical error. 

Arithmetic: 
• R1: Subtracting polynomials without use of parentheses 
• R2: leave square roots unsimplified 
• S1: signs remain unchanged when a term is moved from one side of equation to 

another 
• P1: failing to distribute multiplicative term to all terms in parentheses 
• C1: mistakes in longer arithmetic calculations performed without a calculator. 
• R3: miscellaneous errors in calculating square roots of real numbers. 
• E1: failing to apply laws of exponents correctly 

 
Algebra: 

• A1: distributing exponents over sum or difference; ex: square of sum equals sum 
of squares 

• A2: miscellaneous errors in algebra of radicals. 
• A3: splitting radicals over sum/difference 
• A4: reluctance to use formulas: ex: foiling every time instead of applying formula: 

(𝑎 + 𝑏)2 = (𝑎 + 𝑏)(𝑎 + 𝑏) = 𝑎2 + 𝑎𝑏 + 𝑏𝑎 + 𝑏2 
• A5: fundamental misunderstanding of formulas and reasoning behind them, 

leading to algebraic mistakes: ex: in applying square of difference (𝑎 − 𝑏)2 =
𝑎2 − 2𝑎𝑏 + 𝑏2 to example (𝑎 − 3)2, b is assumed to be (-3), not 3. Applying 
above formula leads to result (𝑎 − 3)2 = 𝑎2 + 6𝑎 + 9 

 
The following table summarizes final exam errors from experimental and control 

sections: 
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Error Code Error Type Experimental 

Section 
Control Section 

Arithmetic 
R1 If  y=a+b then x-

y=x- a + b 
3 4 

R2 
leave�125

4  

unsimplified 

 1 

S1  x= - 2 equivalent to  
x-2=0 

 2 

P1 4(a-b)=4a-b 1 4 
C1 Mistakes in longer 

arithmetic 
computations w/o 

calculator 

5 7 

R3          R^2=d^2/2   1 
E1 32=8  1 

Algebra 
A1 (𝑎 + 𝑏)2=𝑎2 + 𝑏2 1 6 
A2 Root misc 3 3 
A3 √𝑎 + 𝑏 = √𝑎 + √𝑏  1 
A4 Foil without use of 

formula: (𝑎 + 𝑏)2 =
(𝑎 + 𝑏)(𝑎 + 𝑏) =
𝑎2 + 𝑎𝑏 + 𝑏𝑎 + 𝑏2 

 1 

A5 (𝑎 − 𝑏)2
= 𝑎2 + 2𝑎𝑏 + 𝑏2 

 1 

 
Totals: 13 32 

 
The course average for the experimental section was higher, due to the difference in the 

weights given to individual course components.  
Data from the reflective diaries and the end-of-term anonymous reflection indicate that 

the answer to the second research question was also positive: out of 21 submitted anonymous 
reflections, 20 were positive, reflecting a sense of accomplishment and a clear understanding 
of the privilege of university education, as well as the appreciation of new friendships.  

I learned how to better explain everything and how important it is to verbalize the why 
and not just the how. I also think learning how to deal with children, and learn patience is 
essential in growing up. (end-of-term anonymous student-tutor reflection) 
 
Similarly to Butler (2013), we observed a number of service-learning benefits that went 

far beyond the original goal of the project, including an increased level of confidence in oral 
communication skills mentioned by the international students. After the quarter ended, 
several students voluntarily continued their work with the community partners.                

In their diaries, the students frequently pointed out multiple connections between the 
mathematical concepts covered in class and the topics they had explained in the tutoring 
sessions.  
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Another mathematical challenge he is facing is remembering to flip the sign of the 
inequality when you multiply or divide by a negative number.  This draws incredible 
parallels to what we are studying in class.  Just today we learned the exact same thing 
while working with inequalities except that we use non-linear equations and my student 
only uses linear equations.  Sometimes I have to be careful to remember this step as well 
so it is good practice for both of us. (weekly student-tutor journal entry) 
 
…The topic of focus for the week was helping Alfred understand the variables of a linear 
equation. We covered what “y = mx + b” represented (a linear graph) and discussed how 
to find the slope and y-intercept using just two coordinate points. This was actually 
coincidentally perfect, because we have been learning about the coordinate plane in our 
pre-calculus class. Although I was already very familiar with linear equations and the 
coordinate plane, analyzing the comparisons and contrasts between how I had explained it 
to Alfred versus how professor explained it to the class helped me to gain perspective. In 
listening to your explanations and taking notes, I was able to learn better ways that I 
could explain the linear graph to help Alfred understand it better. So, I started out by 
presenting him with the definition that “a graph is a drawing that represents all of the 
solutions of a linear equation.”… Since Alfred already knew the basics of drawing a 
graph, we used his graphing abilities to understand how the slop (m) of the equation 
corresponded to the rise over run of the graph and how the y-intercept represented the “b” 
variable. (weekly student-tutor journal entry) 
 
Many students rediscovered for themselves that the underlying concepts and definitions 

were in fact the same for the polynomial graphs and the radical equations covered in class, 
and the basic linear graphs and equations their tutees had studied in middle school.  As 
Roscoe and Chi (2007) point out, peer tutors manifest highest levels of tutor learning as a 
result of explaining conceptual rather than process-based questions to the tutees. In our case, 
reflection diaries worked as a tool to reinforce mathematical knowledge gains made by the 
tutor as a result of the tutoring session. 

In the non-mathematical section of their journals, the students often spoke of various life 
circumstances faced by their tutees and were able to directly observe complex interplay of 
social position and education and their often cyclical effect on each other. 

One thing that is clearly holding my student back in math is a language barrier.  Since 
English is not his first language, it is difficult for him to read and interpret the word 
problems in his math workbook.  It is also sometimes challenging for him to read 
explanations of how to do problems in the book.  This makes the process of learning math 
more laborious and time consuming.  On a positive note though, my student seems very 
determined to learn math so that he can pass his GED test and hopefully go to college 
later.  He is very optimistic and likes to practice math on his own outside his tutoring 
sessions.  I am excited to help him as much as I can next week. (weekly student-tutor 
journal entry) 
 
Another Precalculus student watched her adult pupil miss more and more tutoring 

sessions and classes due to family problems, putting the GED further out of reach. 
Tutoring at Seattle Central Community College is really eye opening. It's really made me 
think of my blessings and truly be grateful for them…Recently one of the people I tutor 
(let's call her Hana) has dropped out of school. This was a woman that I admired and 
looked up to from the moment I met her. I took a while to really put my thoughts together 
on how to go about to write about this because when she told me of her decision over the 
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phone, I was surprised by how big the blow was to me. She was a 57 year old woman 
aiming to be a nurse. She showed me how determined a person can be even when the 
odds and/or circumstances are against them. She had dropped out due to medical reasons 
which really upset me due to how well she was picking up on her material in class. 
(weekly student-tutor journal entry) 
 
As instructor, it was a privilege to be part of student experience and to hear their thoughts 

and impressions of what they saw and experienced. Running a service-learning course can be 
an extremely rewarding experience for all involved, however, instructor who wishes to 
implement such an experiment, should be aware of potentially high time commitment that is 
involved. Seattle University faculty is deeply grateful for the work of the Center for 
Community Engagement that establishes contacts with community partners, finds placements 
for students, and largely takes care of the administrative overhead involved.  

Ongoing project work 
At the time of writing, academic service-learning experiment in pre-calculus course is 
ongoing, and we are still collecting and analyzing data.   
Further projects may include: 
- Introducing optional service-learning component into a regular pre-calculus course, with 

student given an option to participate. Instructor will introduce advantages of service-
learning to mathematical knowledge. Course grade for participating students will be 
computed using a different grading scheme, giving students an option to earn a higher 
mark. 

- Repeating service-learning experiment in pre-calculus, with university students tutoring 
elementary school kids. Difference in mathematical gains will be compared with the 
present results. 

- Repeating Allison Henrich’ service-learning experiment in the mathematics course for 
students of humanities (Henrich & Lee, 2011) and measuring mathematical gains of 
students involved. 

- Measuring potential shift in attitudes towards mathematics in all participating and non-
participating university students. 

Conclusions and Implications for Mathematics Education 
Our research statistically establishes a number of tangible benefits of service-learning to 

students’ mathematical performance in class. The non-mathematical benefits have been 
widely explored, and they are confirmed by our study. Our research opens venues to further 
exploration of the long-term academic and non-academic benefits of service-learning to the 
university students, as well as to students from the community. Service-learning requires 
commitment of time and sometimes additional funding: our findings may encourage 
Mathematics departments and university administration to promote service-learning in 
mathematics courses. 
 
 
 

19th Annual Conference on Research in Undergraduate Mathematics Education 504

19th Annual Conference on Research in Undergraduate Mathematics Education 504



References 

Allen, V., & Feldman, R. (1976). Studies on the role of tutor. In V. Allen (Ed.), Children as 
teachers: Theory and research on tutoring (pp. 113-129). New York: Academic 
Press. 

Astin, A.W., Vogelgesang, L.J., Ikeda, E.K. & Yee, J.A. (2000). How service learning affects 
students. (Paper 144). Los Angeles, CA: Higher Education Research Institute. 
Retrieved from http://digitalcommons,unomaha.edu/slcehighered/144 

Bressoud, D., Mesa, V., & Rasmussen, C. (2015) Insights and recommendations from the 
MAA national study of college calculus. Washington, DC: Mathematics Association 
of America. 

Bringle, R.G. & Hatcher, J. A. (1999). Reflection in service-learning: Making meaning of 
experience. Educational Horizons (pp. 179–185): Summer 1999. 

Butler, M. (2013). Learning from service-learning. PRIMUS: Problems, Resources, and 
Issues in Mathematics Undergraduate Studies, 23(10), 881-892. 

Edge, O.P., & Friedberg, S.H. (1984). Factors affecting achievement in the first course in 
calculus. The Journal of Experimental Education, 52(3), 136-140. 

Gartner, A., Kohler, M., & Riessman, F. (1971). Children teach children: Learning by 
teaching. New York: Harper & Row. 

Gutstein, E. (2006). Reading and writing the world with mathematics: Towards a pedagogy 
for social justice. New York, NY: Routledge. 

Hadlock, C. (2005). Mathematics in service to the community. Washington, DC: Mathematics 
Association of America. 

Hadlock, C. (2013). Service-learning in the mathematical sciences. PRIMUS: Problems, 
Resources, and Issues in Mathematics Undergraduate Studies, 23(6), 500-506 

Henrich A. & Lee, K. (2011) Reducing math anxiety: Findings from incorporating service 
learning into a quantitative reasoning course at Seattle University. Numeracy, 4(2). 

McKnight, C., Magid, A., Murphy, T.J., & McKnight, M. (2000). Mathematics education 
research: A guide for the research mathematician. Providence, RI: American 
Mathematical Society. 

Roscoe, R.D., & Chi, M.T.H. (2007). Understanding tutor learning: Knowledge-building and 
knowledge-telling in peer tutors’ explanations and questions. Review of Educational 
Research, 77(4), 534-574. 

Schulteis, M. (2013) Serving hope: Building service-learning into a non-major mathematics 
course to benefit the local community. PRIMUS: Problems, Resources, and Issues in 
Mathematics Undergraduate Studies, 23(6), 572-584.  

U.S. Department of Education. (2013). STEM attrition: College students’ paths into and out 
of STEM fields. Retrieved from http://nces.ed.gov/pubs2014/2014001rev.pdf 

 
 
 
 

19th Annual Conference on Research in Undergraduate Mathematics Education 505

19th Annual Conference on Research in Undergraduate Mathematics Education 505



 

1 
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Given the prevalence of work in the RUME community to examine student thinking and 

develop instructional materials based on this research, we argue it is important to document the 
ways in which undergraduate mathematics instructors make sense of this research to inform 
their own teaching.  We draw on Horn’s notion of pedagogical reasoning in order to analyze 
video recorded conversations of over twenty mathematicians who elected to attend a workshop 
on inquiry-oriented instruction at a large national mathematics conference. In this context, we 
examine the questions: (1) How do undergraduate mathematics instructors engage in efforts to 
make sense of inquiry-oriented instruction? (2) How does variation in facilitation relate to 
instructors’ reasoning about these issues?  Preliminary findings suggest that differences in 
facilitation relate to how participants engaged in the mathematics, and that the nature of 
participants’ engagement with the mathematics was related to their subsequent pedagogical 
reasoning. 
 
Key words: mathematicians, pedagogical reasoning, inquiry-oriented instruction 
  

Given the prevalence of work in the RUME community to examine student thinking and 
develop instructional materials based on this research (e.g. Wawro et. al., 2013; Larsen, Johnson 
& Bartlo, 2013; Rasmussen & Kwon, 2007), we argue it is essential that our community consider 
issues related to the dissemination and use of findings from our research.  This work aims to 
serve that goal by examining our efforts to engage practitioners (instructors of undergraduate 
mathematics) in thinking about research-based, inquiry-oriented instructional materials for 
undergraduate mathematics courses.  In this preliminary report, we begin to explore two research 
questions: (1) How do instructors of undergraduate mathematics (who are interested in inquiry-
oriented instruction) reason about instructional issues, particularly in the context of inquiry-
oriented mathematics instruction? (2) How does variation in facilitation relate to the ways in 
which instructors engage in reasoning about these instructional issues? 
 

Theoretical Framing and Literature  
         National organizations have called for instructional change in undergraduate STEM 
courses, relating poor instructional quality to a lack of student interest and persistence (e.g., 
Fairweather, 2008; PCAST, 2012; Rasmussen & Ellis, 2013).  Researchers from a range of 
STEM fields have developed and documented student-centered instructional approaches that 
result in greater conceptual learning gains and student attitudes when compared with classes in 
which lecture is the dominant form of instruction (e.g. Kogan & Laursen, 2013; Kwon, 
Rasmussen, & Allen, 2005; Larsen, Johnson, & Bartlo, 2013).  While it is well-documented that 
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instructional change is difficult to achieve at scale (Henderson et. al., 2011), there is evidence 
that suggests a sizable number of faculty in undergraduate STEM fields are making efforts to 
offer their students the kinds of student-centered learning experiences supported by these studies.  
Indeed, though 61% of STEM faculty report they use extensive lecturing when they teach, a full 
49% of STEM faculty report they incorporate cooperative learning into their courses (Hurtado et. 
al., 2012).  Given the rates at which STEM faculty now report use of cooperative learning in 
their instruction, we argue that there is a pressing need to document and leverage the pedagogical 
reasoning of those faculty who are working to implement these kinds of instructional approaches. 

In this work, we follow Rasmussen & Kwon’s (2007) characterization of inquiry-oriented 
instruction in which students are actively inquiring into the mathematics (e.g. by developing, 
justifying, and generalizing their own solution methods to open ended problems) and instructors 
are actively inquiring into students’ thinking about the mathematics so as to build on students 
informal and intuitive ideas to help them make sense of and engage in more formal and 
conventional forms of mathematical reasoning. 

We take a situated perspective, in which we view knowledge and learning to be 
evidenced in the interactions among members of a community (Lave & Wenger, 1991) – in this 
case, the community of instructors of undergraduate mathematics.  As such, we look to 
document mathematicians’ pedagogical reasoning by examining their conversations about 
instruction.  We follow Horn’s (2007) characterization of pedagogical reasoning, considering it 
to be instructors’ reasoning about issues or questions about teaching “that are accompanied by 
some elaboration of reasons, explanations, or justifications” (p. 46).  Analytically, we draw on 
the vertices of the instructional triangle (teaching, students, and mathematics) as a conceptual 
tool for organizing our analysis of these conversations about instructional issues. 
  

Data Sources and Methods of Analysis  
The data under consideration in this study were collected from a workshop conducted as 

part of a national mathematics conference, and these data are part of a broader project that is 
developing and analyzing a set of instructional supports for undergraduate mathematics 
instructors interested in implementing inquiry-oriented instruction.  The workshop focused on 
implementing inquiry-oriented instruction, and was organized around research-based curricula 
that have been developed in the areas of linear algebra, abstract algebra, and differential 
equations.  The workshop lasted a total of four hours, which was split across two 2-hour sessions 
on consecutive days.  On each day, about half of the time was devoted to content-specific work 
in breakout groups (self-selected by the participants), and the other half of the time was spent 
discussing issues of inquiry-oriented instruction that cut across all three curricula.  On Day 1, 
facilitators planned to engage participants with an overview of inquiry-oriented instruction, 
followed by time to engage in mathematical tasks from the curricula in the area of their selected 
breakout group.  On Day 2, the focus was to be on student thinking related to the day 1 tasks and 
instructional moves designed to help instructors implement inquiry-oriented curricula.  
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The workshop included 25 participants, 21 of which responded to a workshop pre-survey 
that provided us with information about their background and home institutions.  All participants 
except one were housed in Mathematics departments, and the group represented a diverse group 
of institutions and positions (see Figure 1).  Less than a third of survey respondents reported that 
they prefer to lecture most of the time, and more than 70% reported that they like to have 
students work in groups on problems in class, and more than 60% report they frequently ask 
students to explain their thinking to the whole class when they teach. This was significant to our 
research because it suggests our sample is part of the sizable subset of undergraduate STEM 
faculty working to teach in student-centered ways, and the choice to attend the workshop also 
points to an interest, outside the RUME community, in research-based instructional approaches.   
  

 
Figure 1. Position and Institution Types of Survey Respondents 

 
           In each of the two 2-hour workshop sessions, all whole-group and breakout segments 
were video- and/or audio-recorded for subsequent analysis.  We began analyzing this recorded 
data by generating content logs to document the sequence of events in each segment of the 
workshop.  Each content log was organized in a table with four columns: timestamp, description 
of events, focus of talk, and other comments.  The ‘focus of talk’ column aimed to help us track 
whether the focus of talk was on the mathematics (M), the teacher (T), or students (S), and 
whether it was the facilitator or participants who were doing that talking.  From these content 
logs, we generated summaries of each session to describe the focus and use of the time along 
with initial characterizations of the participants’ pedagogical reasoning.  We noted stark 
differences in the conversations of the linear algebra breakout group as compared to those in the 
abstract algebra group, so we decided to conduct our analysis as a comparative case study of 
these two groups (Yin, 2003).  Content logs were then used to generate codes for the focus of 
participants’ talk during the session and to identify conversational moments (selectively 
transcribed for closer analysis) when participants were engaged in pedagogical reasoning.  
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Findings 
  Our preliminary findings are two-fold: First, differences in facilitation appear to have 
played a role in how participants engaged in the mathematics on the first day of the workshop.  
Second, the nature of participants’ engagement with the mathematics was related to their 
subsequent pedagogical reasoning.  In this preliminary report, we focus primarily on the different 
ways in which participants in two of the breakout groups engaged in the mathematics on the first 
day of the workshop, and the variation in facilitation that may help explain those differences in 
engagement.  In our presentation, we will provide further elaboration on differences in 
subsequent pedagogical reasoning of the two groups.   

The facilitators of both the linear algebra and the abstract algebra group intended for the 
entire hour of the first day’s breakout group to be focused on working through the mathematics 
in the respective task sequences.  However, our content logs revealed the Abstract Algebra group 
spent a much larger portion of their hour-long breakout session on the first day of the workshop 
working through the math (86% of the time spent working through the math) than did the Linear 
Algebra group (30% of the time spent working through the math).  Additionally, the nature of the 
mathematical talk of the two groups differed in that the abstract algebra group appeared to 
engage in the mathematics much more deeply than did the linear algebra group.  We coded talk 
into six categories: logistics (e.g. “Does everyone have a handout?”), introductions, 
implementation questions (e.g. “How many times a week does your class meet?”), pedagogical 
moves (e.g. “I have them present their work as soon as we finish a task”), discussing 
mathematics (e.g. “They [students] came to different conclusions based on whether or not they 
considered all linear combinations”), and doing mathematics (e.g. “We want to show the additive 
inverse we’d expect from the big group stays in the small group.”).  Table 2 summarizes each 
breakout group’s conversational focus on day 1 according to these categories.  

 

 
Figure 2: Conversational focus during Day 1 Breakout Groups 
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It was initially unclear why such differences in participants’ engagement in the 
mathematics were observed.  Analysis of the facilitation across the two breakout groups points to 
several factors that help explain these differences. 

At the outset of the Abstract Algebra breakout session, the facilitator handed out the task 
statement and asked participants to turn and work together in small groups.  As participants 
begin working, she circulated amongst them, listened, and occasionally chimed in with questions 
about their thought processes, methods, or mathematical assumptions.  One participant later 
described the work of this breakout group, saying that the facilitator “modeled some instructor 
behaviors… pressing us on why we were thinking how we were thinking, pressing toward the 
subtlety without leading.  We realized that because we understand abstract algebra, there are a 
bunch of similar ways to work with the definitions that are not obviously equivalent to a new 
user.”   

In the Linear Algebra session, the facilitator (who is one of the authors) also distributed 
the mathematical tasks for participants to work on, but devoted several minutes at the beginning 
to introductions in an effort to help create a safe, collaborative environment for sharing.  
However, this opportunity for participants to contextualize their institution (size and type of 
college, which students take linear algebra, etc.) also seemed to encourage speakers to bring up 
topics not directly related to the mathematics at hand (airing concerns about content coverage, 
logistics, student prerequisites, etc.).  Additionally, there were moments in which the facilitator -- 
endeavoring to strike a balance between math instructor and professional development leader, 
and to respect the assumed content knowledge of her group members – inadvertently set norms 
that discouraged participants from fully engaging with the mathematics.  Specifically, the 
facilitator began small group work by asking participants to begin by working on the second task 
in a sequence of related tasks, rather than starting with the first task, positioning the initial 
mathematical work as “easy.”  We posit that this created a setting with implicit professional risk: 
the participants were more or less strangers to one another, and several expressed feeling out of 
practice with the subject, so this potentially increased the pressure on those already feeling 
vulnerable.  Later, in an attempt to refocus the group on the math, the facilitator suggested 
working through a task from the vantage point of a “typical student.”  Interestingly, instead of 
easing the mathematical pressure, this also created a barrier, with at least two participants later 
remarking that they didn’t know how their students might approach the task.  Finally, one of the 
participants had previously used the materials and was introduced as a potential resource for 
other instructors.  Many of the digressions from the mathematics in the Linear Algebra group 
came in the form of specific questions directed to this participant.  
 Initial analysis suggests that this set-up up participants’ mathematical engagement on the 
first day of the workshop was consequential for participants’ subsequent pedagogical reasoning; 
in our presentation we will provide more detail on the differences in this subsequent reasoning. 
 

Questions for Audience 
● Might different content lend itself to participants engaging differently (e.g. linear algebra 

vs. abstract algebra)? If so, how can we account for this? 
● Can we define or operationalize the kinds of tasks or activities that are productive for 

advancing participants’ pedagogical reasoning? 
● In what ways is it (or might it be) important for the facilitator to be inquiry-oriented in 

their stance toward participants’ pedagogical reasoning (during workshop facilitation)?   
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Active Learning in Undergraduate Precalculus and Single-variable Calculus 

Naneh Apakarian Dana Kirin 
  San Diego State University Portland State University 

The study presented here examines the active learning strategies currently in place in the 
Precalculus through single variable calculus sequence. While many lament the lack of active 
learning in undergraduate mathematics, our work reveals the reality behind that feeling. 
Results from a national survey of mathematics departments allow us to report the proportion 
of courses in the mainstream sequence utilizing active learning strategies, what those 
strategies are, and how those strategies are being implemented.  

Key words: Census Survey, Precalculus, Calculus, Active Learning, Instructional Methods 

Research suggests experiences in introductory mathematics courses can significantly 
influence student persistence within the STEM fields (Bressoud, Mesa, & Rasmussen, 2015; 
PCAST, 2012; Seymour & Hewitt, 1997; Wake, 2011). In the United States, the Precalculus 
to Calculus 2 (P2C2) sequence often serve as key prerequisite courses for students intending 
to pursue degrees in STEM fields, and difficulties in these courses often prevent students 
from continuing on in STEM. One approach that shows great promise for improving student 
success in the P2C2 sequence is the use of student-centered instruction. Recent studies have 
highlighted the educational benefits of using active learning strategies in post-secondary 
mathematics classrooms, including improved STEM retention rates (Ellis, Kelton, & 
Rasmussen, 2014; Ellis, Rasmussen, & Duncan, 2013; Rasmussen & Kwon, 2007; Seymour, 
& Hewitt, 1997) and narrowing achievement gaps (Kogan & Laursen, 2014; Laursen, Hassi, 
Kogan, & Weston, 2014). The use of such practices was also identified as a characteristic of 
programs with successful Calculus I programs (for a more detailed discussion see Bressoud 
& Rasmussen, 2015). Despite these educational benefits, Kuh (2008) points out that these 
instructional practices are currently not the norm in higher education. 

The study presented here reports preliminary findings from data collected as part of a 
larger study, Progress through Calculus (PtC). The main research question addressed in this 
report is how, and to what extent, are active learning strategies being implemented in the 
P2C2 sequence? Narrowing down on this broad question, this presentation addresses the 
following questions: 

1. How prevalent are active learning strategies in the P2C2 sequence? 
2. What particular active learning strategies are being used, and how common are they? 
3. What (if any) institutional factors relate to the use of active learning strategies? 

Methods 

The data reported here comes from a census survey undertaken as part of a larger, multi-
phase project studying departmental and institutional factors that influence student success 
through the P2C2 sequence. The survey was administered to the 341 departments across the 
country that award graduate degrees in mathematics. The survey closed with an impressive 
overall response rate of 68%. The survey elicited information about many aspects of each 
department’s implementation of the P2C2 sequence as a whole, informed by the results of the 
CSPCC study (Bressoud, Mesa, & Rasmussen, 2015; Bressoud & Rasmussen, 2015). This 
presentation reports on a subset of the data wherein participants provided detailed 
information about the individual courses that make up the mainstream P2C2 sequence. 

The details requested about these mainstream courses included questions about course 
delivery to ascertain the primary format for regular class meetings and recitation sections 
(when applicable). 201 institutions completed these details, giving us information on 904 
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P2C2 courses. The following section includes descriptive statistics (frequencies, proportions, 
etc.) gathered from these responses. Ongoing analysis is examining the relationships between 
the use of active learning strategies and other factors (e.g., importance of active learning, 
DFW rates, instructor type). 

Results 

To frame our findings, we begin by noting that 44% of all mathematics departments 
responding to this survey reported that active learning strategies are “very important” for 
successful P2C2 courses, but 75% of those reported that they are not very successful at 
implementing those strategies. Overall, 14% of institutions report being “very successful” 
with active learning strategies, 60% report being “somewhat successful,” with the rest 
marked “not successful” or “not applicable.” 

The first question we answer relates to the usage of active learning strategies in 
introductory undergraduate mathematics courses across the country. Participants were asked 
to identify the primary instructional format for regular class meetings of each course in their 
department’s mainstream P2C2 sequence. The proportions that follow in this section refer to 
the proportion of courses taught in a certain way, not the proportion of institutions offering 
such structures. Perhaps unsurprisingly, over 60% of courses are primarily taught in a lecture 
format. Of particular interest to us is the discovery that approximately 16% of courses 
incorporate some active learning techniques, while a further 3% are taught using mainly 
active learning techniques. Further investigation revealed that these proportions fall off 
through out the P2C2 sequence. While nearly 26% of precalculus courses incorporated at 
least some active learning techniques, this drops to 20% in first calculus courses, and drops 
again to 13% in secondary calculus. These proportions did not vary significantly between 
MA- and PhD-granting institutions.  

Data was also collected regarding the instructional format of recitation sections (or labs) 
when applicable. Approximately one-third of the reported courses have recitation sections, 
and 15% of these use active learning strategies (5% of all courses). Overall, we found that 
22% of reported courses have some active learning in the instructional approach in regular 
course meetings, recitation sections, or both.  

Our data also allows us to look at what “active learning strategies” mean when usage is 
reported. Note that the responses to this question were not exclusive, as a course might utilize 
several different strategies. The most prevalent technique was group work, reported in 78% 
of courses and 92% of recitations that included active learning. IBL, clicker surveys, and 
flipped classes were each reported in 15-20% of lectures, and a sizable proportion indicated 
that they use something other than the options provided. The story is similar in recitation 
sections, except for the use of clicker surveys (only appeared in 2% of “active” recitations). 
The patterns of usage do not change across courses in the P2C2 sequence. 

Conclusion & Future Directions 

Our current quantitative analysis reveals some of the patterns of active learning in the 
P2C2 sequence. Only 22% of P2C2 courses incorporate at least one active learning 
component, but we also found that 40% of institutions have an active learning component in 
at least one mainstream P2C2 course. This suggests that active learning strategies are not 
being used consistently through the P2C2 sequence, but only in select courses. However, in 
courses that implement active learning strategies, we see a consistent trend in the types of 
active learning strategies being implemented across the P2C2 sequence. At this time, analysis 
of our existing data is still ongoing. Further analysis of this data will link active learning 
strategies and implementation to institutional factors (e.g., understanding of importance, 
school size) as well as student factors (e.g., DFW rates, target audience), thus providing a 
more complete picture of the role active learning plays in the P2C2 sequence. 
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Talking about teaching: Social networks of instructors of undergraduate mathematics 
 

Naneh Apkarian 
San Diego State University 

 
The RUME community has focused on students’ understandings of and experiences with 
mathematics. This project sheds light on another part of the higher education system – the 
departmental culture surrounding undergraduate mathematics instruction. This paper reports on 
the interactions of members of a single mathematics department, centered on their conversations 
about undergraduate mathematics instruction. Social network analysis of this group sheds 
important light on the informal structure of the department.  
 
Keywords: Social networks, instructors, organizational culture, community 
 

It is widely known that experiences with introductory undergraduate mathematics courses are 
a significant factor affecting retention rates in STEM majors (Bressoud, Mesa, & Rasmussen, 
2015; PCAST, 2012; Seymour & Hewitt, 1997). This has led to increased research and attention 
to these introductory courses. Very little of that research, however, uses a systems-level 
approach. In thinking about undergraduate mathematics education, we must consider the entire 
system at work and the cultures and communities at play at each level. Students and instructors 
function as individuals embedded in a variety of cultures and communities, each with their own 
pressures, values, beliefs, assumptions, and practices.  

Focusing on the department as a unit of analysis makes particularly good sense when 
considering introductory mathematics courses. Many institutions offer multiple sections of 
courses such as Calculus I each term, taught by a range of instructors. The potential variation in 
experiences at a single institution is remarkable, and so case studies of individual classrooms do 
not capture the entire picture. This position is supported by the findings of the Characteristics of 
Successful Programs in College Calculus (CSPCC) study, wherein a coordination system was 
found to be one of the seven key features of successful programs (Bressoud & Rasmussen, 
2015). Another reason to take a department-level approach is the potential of the department as a 
unit of change (e.g., Gibbs, Knapper, & Piccinin, 2008; Wieman, Perkins, & Gilbert, 2010). 
Work in education and organization science has shown that change is a social construct, best 
effected and sustained by a group rather than an individual (Corbo et. al., 2015; Daly, 2010).  

Methods 
Social network surveys were distributed to 61 individuals in the mathematics department at a 

large research university, one that was identified in the CSPCC study as being relatively more 
successful at implementing Calculus I. Network questions were used to ascertain the ties that 
exist between members of the community of calculus instructors, as well as the strength of those 
ties, and a variety of Likert scale and demographic questions were used to characterize the actors 
between whom ties do or do not exist (Coburn & Russell, 2008). Five relational networks were 
measured: advice about teaching (R1); sharing of instructional materials (R2); discussions about 
teaching (R3); friendship (R4); and influence on instruction (R5). The survey also included 
Likert scales designed to characterize the individuals, subgroups, and the larger community in 
terms of trust, innovative climate, professional learning community collaboration and 
involvement, as well as mathematical affect and beliefs. 

Findings 
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Looking at the different networks, I note differing levels of inclusivity, from a high of 85% 
included (R3) to a low of 52% (R5). I further note the split, in terms of inclusivity, of the 
networks into R1, R2, and R5 vs. R3 and R4. This indicates that more actors are involved in 
discussions about instruction and friendship within the department than the sharing of advice, 
instructional materials, or influence. One possible interpretation of this is that R3 and R4 are 
more general relations than the others. Another is that R1, R2, and R5 all seem to involve 
acknowledging another as “expert” at something, while R3 and R4 may be relations between 
equals. 

Instructors of the Precalculus through Calculus 2 (P2C2) courses are disproportionately 
active in the networks, especially in R1, R2, and R5. This is gauged by looking at the makeup of 
the main component of each relationship graph (in each case the only component) and how many 
of each instructor type are included in that component (Table 1). In R1, R2, and R5, P2C2 
instructors account for significantly more of the graph component than their overall 
representation. In R3 and R4, the distribution of P2C2 and non-P2C2 is close to their overall 
distribution (within 3 people). The coordination of superficial aspects of P2C2 course structure 
(e.g., textbook, exams) seems to explain the over-representation of P2C2 instructors in the 
materials network (R2), but it does not directly explain their over-representation in advice (R1) 
and influence (R5). These network results seem to indicate that there is more to this coordination 
system than simply shared course elements. 
Table 1: Components of relational networks, including P2C2 instructor breakdown. 
Relation Component  

(V, E) 
Proportion of component that 
is P2C2 instructors 

P2C2 instructors in 
component (n=23) 

Non-P2C2 instructors in 
component (n=38) 

R1 (38, 83) 0.500 0.826 0.500 
R2 (36, 65) 0.528 0.826 0.447 
R3 (52, 120) 0.385 0.870 0.842 
R4 (51, 138) 0.431 0.957 0.763 
R5 (32, 55) 0.500 0.696 0.421 

Given the network investigations under investigation, it is natural to look for individual 
actors who are the “most” at something: Who asks for advice the most? Who is asked for advice 
the most? Who is the most influential? When looking for standout actors, we turn to their degree, 
the number of ties attached to their node. By asking about in-degree, out-degree, and total 
degree, we can begin build a rough picture of important actors. For sake of brevity, this proposal 
attends only to the advice network (R1) while the presentation will attend to all five. Total 
degree had mean 2.7 and standard deviation 4.7; in-degree had mean 1.4 and s.d. 3.7, and out-
degree had mean 1.4 and s.d. 1.9. There is more variation in actors’ out-degrees than in-degrees, 
which implies that while actors in the network seek different amounts of advice, they seek that 
advice from a select few. There is a clean break in the in-degree distribution separating three 
actors from the rest by more than two standard deviations.  

Discussion 
Since the data collected represents a snapshot of the department in its current state, it is 

impossible to establish causality between the coordination system in place and the social 
relations measured in this study. One explanation is that this department is made up of 
community-minded faculty members, the most communicative of whom are teaching the 
coordinated P2C2 courses. Another explanation is that the coordination system and the 
coordinators have developed a sense of community and shared responsibility for teaching these 
introductory courses, leading to an increase in communication about instruction. The discovery 
that the coordinators, who are formally in charge of P2C2 instruction, are also informal 
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community leaders confirms Rasmussen and Ellis’s (2015) finding that coordinators do more 
than simply manage the uniform elements of courses – they are central to active communities of 
instructors engaged in teaching mathematics. 
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Ways in which engaging in someone else’s reasoning is productive 

Naneh Apkarian Chris Rasmussen Tommy Dreyfus 
San Diego State University San Diego State University Tel Aviv University 

   
Matthew Voigt Hayley Milbourne Xuefen Gao 

San Diego State University San Diego State University Zhejiang Sci-Tech University 
 

Typical goals for inquiry-oriented mathematics classrooms are for students to explain their reasoning 
and to make sense of others’ reasoning. In this paper we offer a framework for interpreting ways in 
which engaging in the reasoning of someone else is productive for the person who is listening. The 
framework, which captures the relationship between engaging with another’s reasoning, decentering, 
elaborating justifications, and refining/enriching conceptions, is the result of analysis of 10 individual 
problem-solving interviews with 10 mathematics education graduate students enrolled in a 
mathematics content course on chaos and fractals. The theoretical grounding for this work is that of 
the emergent perspective (Cobb & Yackel, 1996). 

Keywords: Decentering, Argumentation, Social Norms, Fractals, Paradox. 

Typical goals for inquiry-oriented mathematics classrooms are to foster particular social norms, such as 
students explaining their reasoning, listening to others’ reasoning, and making sense of that reasoning 
(Yackel & Cobb, 1996). Indeed, such goals for student participation have been central to a long line of 
recommendations in the United States (National Council of Teachers of Mathematics, 2000; National 
Governors Association Center for Best Practices & Council of Chief State School Officers, 2010). The 
purpose of this paper is to offer a framework for understanding the various ways in which engaging in 
the reasoning of someone else is productive for the person who is listening to and attempting to make 
sense of this reasoning. Prior research has documented ways in which teachers can initiate and sustain 
such norms for participation (e.g., Lampert, 1990; Stephan & Whitenack, 2003), but most research into 
the benefits of such engagement focuses on the students’ thinking, not that of the one engaging in the 
other’s reasoning (e.g., Teuscher, Moore, & Carlson, 2015). While there has been some research into 
mutual intellectual benefit stemming from peer-to-peer engagements (e.g., Kieran & Dreyfus, 1998), it 
has not been at the collegiate level. Our work contributes to this surprisingly sparse literature, extends 
notions identified in disparate settings, and adds nuance to existing notions of engaging and 
decentering. 

The theoretical grounding for this work is that of the emergent perspective (Cobb & Yackel, 1996), 
which coordinates the individual cognitive perspective of constructivism (von Glasersfeld, 1995) and 
the sociocultural perspective based on symbolic interactionism (Blumer, 1969). A primary assumption 
from this point of view is that mathematical progress is a process of active individual construction and 
a process of mathematical enculturation. The interpretive framework, shown in Figure 1, lays out the 
central constructs in the emergent perspective. The within row relationships between respective 
collective and individual constructs is said to be reflexive, meaning that they are mutually constitutive, 
evolving together in a dynamic system. For example, (Yackel & Rasmussen, 2002) analyze individual 
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students’ evolving beliefs about their and others’ role in relation to evolving classroom social norms. 
This work speaks to one way in which engaging in the reasoning of others (a social norm) is productive 
for the individual; namely doing so positively shapes beliefs.  

Collective Perspective Individual Perspective 
Classroom social norms Beliefs about own role, others’ roles, and the 

general nature of mathematical activity 
Sociomathematical norms Mathematical beliefs and values 
Classroom mathematical practices Mathematical conceptions and activity 

Figure 1. The interpretive framework 

In furthering the relationships between the constructs in Figure 1, we argue for across row 
relationships. In particular, we take the stance that classroom social norms are also inextricably 
intertwined with individual mathematical conceptions and activity. In so doing we make an empirically 
grounded argument for a theoretical connection between the upper left hand cell of the interpretive 
framework and the bottom right hand cell.  

In our broader research program (Hershkowitz, Tabach, Rasmussen, & Dreyfus, 2014; Tabach, 
Rasmussen, Hershkowitz, & Dreyfus, 2015), we are investigating the coordination between individual 
and collective processes. In this report, however, we focus on analyzing individual mathematical 
conceptions and activity in an individual interview setting, with the subsequent goal of coordinating 
this analysis with an analysis of classroom video-recordings. This report lays a foundation for this 
subsequent analysis, but the framework for ways of engaging in someone else’s reasoning is potentially 
significant on its own.  

Methodology 

The methodological approach for the larger study falls under the genre of  “design-based research” 
(Cobb, 2000; Design-Based Research Collective, 2003). The study took place in an intact graduate 
level mathematics course about chaos and fractals with 11 students (10 of whom agreed to participate 
in individual interviews). Students were (or intended to be) secondary school teachers or community 
college instructors. Their masters degree program required a substantial component of mathematics, 
and the chaos and fractals course qualified as one of their mathematics courses. The course was taught 
by one of the research team members. Data collected as part of the larger study included video-
recordings of each class session, individual problem solving interviews conducted at the middle and 
end of the semester, and copies of all student work. In this paper we report on an analysis of the 10 
individual, mid-semester problem-solving interviews.  
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The following question from the mid semester interview is the focus of this analysis: 

The Sierpinski Triangle is a fractal, and is the result of an infinite iterative process that begins with an 
equilateral triangle. Connecting the midpoints of its sides results in another equilateral triangle with 
sides half the length of the original’s and area that is one-fourth of the original’s, which is then 
removed. Repeating this process, ad infinitum, results in the Sierpinski Triangle. At each step of the 
process, the area of shrinks by a factor of  ¾ and the perimeter grows by a factor of 3/2. The perimeter 
of the Sierpinski Triangle can be described by the limit, as n→∞, of P0×(3/2)n, and the area by the limit, 
as n→∞, of A0×(3/4)n, where P0 and A0 refer to the perimeter and area of the starting triangle. Thus the 
Sierpinski Triangle has a perimeter of infinite length and an area of zero. This apparent contradiction 
comes from the fact that it is a fractal with Fractal dimension log2(3), putting it between one- and two-
dimensions. 

The question was structured so that we would first gain insight into students’ own reasoning about the 
area and perimeter of the Sierpinski triangle, followed by an opportunity for them to engage in the 
hypothetical reasoning of “Fred.” The basis for Fred’s reasoning was taken from a whole class 
discussion that took place several weeks before the interview. Thus, Fred’s reasoning is authentic to the 
students and provides an ideal opportunity for us to subsequently coordinate individual and collective 
analyses.  

While most studies of decentering and engagement have involved interactions between two or more 
people, ours involves one person interacting with the work of another, who cannot respond. While this 
setup potentially restricts the ability of interviewees to engage with Fred and his argument, it has 
certain affordances as well. One affordance is that all interviewees reacted to the same statement, 

In class, we discussed the Sierpinski Triangle. How do you think about what happens to the perimeter 
and the area of the Sierpinski Triangle as the number of iterations tends to infinity? 

 
Follow-up questions: 

a. One a scale from 1 to 10 with 10 being the most confident, how confident are you about what 
happens to the area? Can you say more about why you said [confidence number]?  

b. On a scale from 1 to 10, with 10 being the most confident, how confident are you about what 
happens to the perimeter? Why do you say [confidence number]? 

c. A student named Fred claimed the following. Please read it out loud. What do you think about 
his argument? (Please explain) 

 
Fred’s Argument: The computation shows that the perimeter goes to infinity because the perimeter is 
given by 3×(3/2)n which increases to infinity as n tends to infinity. But, the perimeter can’t really be 
infinitely long, because there is nothing left to draw a perimeter around, since the area goes to zero. 
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allowing us to make direct comparisons. This setup also controls for a variety of other features, such as 
personal histories, that may influence how people react to each other in face-to-face settings.   

The transcripts and student work produced during the interview were open coded using methods from 
grounded theory (Strauss & Corbin, 1998). This open coding, which was conducted collaboratively by 
the authors to minimize bias and ensure interpretations were grounded in the data, was informed by 
literature on student thinking about infinity, and in particular infinite iterative processes (Núñez, 1994; 
Mamolo & Zazkis, 2008), but did not rely on an a priori coding scheme. 

The initial open coding of these interviews revealed differences between students’ initial responses and 
those that followed reading Fred’s argument. It also revealed a variety of ways of engaging and 
responding to Fred. We then supplemented our initial coding, using Toulmin’s argumentation scheme 
(Toulmin, 1969) to analyze the pre- and post-Fred arguments presented by the students. Finally, each 
transcript was distilled into an argumentation log (Rasmussen & Stephan, 2008), coupled with the 
primary ways of reasoning being used in each argument and instances of engagement, and 
supplemented by statements about the mathematics that were not necessarily part of a coherent 
argument. Again using grounded theory, these were analyzed for shifts and relationships. 

Results 

Our analysis of students’ responses revealed that responding to Fred’s argument was a productive 
experience for most students. There was variation across students with regards to both the extent and 
nature of their engagement and growth, but we note two major categories of productivity that stemmed 
from an ability to engage in Fred’s reasoning and decenter from their own: elaborating justifications 
and refining/enriching conceptions of particular mathematical ideas. Figure 2 is intended to capture the 
relationship between engaging with another’s reasoning, decentering, elaborating justifications, and 
refining/enriching conceptions. Specifically, engaging with another’s thinking can be foundational for 
(re)engaging with one’s own thinking. That is, the act of decentering provided the means for 
elaborating justifications and refining one’s thinking. The intersecting ovals in Figure 2 for these two 
acts signify the reciprocal relationship between justifying and refining conceptions. 

 
Figure 2. Productivity of engaging in another’s reasoning 

Since all of the interviewed students were or intended to be teachers at the secondary or postsecondary 
level, it is particularly interesting to look at their ability to engage with another’s thinking. Doing so is 

Evaluating, indicating (dis)agreement, connecting with own 
reasoning, connecting with others’ reasoning, entertaining 

another’s reasoning, interpreting, empathizing

(Re)engaging with one’s own thinking

Elaboration of 
justification using new or 
improved argumentation

Reflecting and/or revising 
individual mathematical 

conceptions

Engaging with another’s thinking

Decentering
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foundational to teacher noticing (Jacobs, Lamb, & Philipp, 2010) in which teachers can instructionally 
build on student thinking. We found that all of the interviewees exhibited the ability to engage with 
Fred’s thinking. We identified the following ways that interviewees engaged in Fred’s reasoning: a) 
evaluating (with or without justification); b) indicating (dis)agreement (with or without justification); c) 
making connections to their own reasoning; d) making connections to classmates’ reasoning; e) 
entertaining Fred’s reasoning; f) interpreting Fred’s reasoning; g) diagnosing Fred’s reasoning; and h) 
empathizing with Fred. These ways of engaging provide an opportunity for the individual to decenter. 
By decenter, we mean putting aside one’s own reasoning in an attempt to understand another’s 
reasoning (Steffe & Thompson, 2000; Teuscher, Moore, & Carlson, 2015). Many interviewees, through 
decentering, engaged or re-engaged with their own thinking in a way that furthered their own thinking. 
This analysis lays the groundwork for coordinating individual and collective ways of participating in 
discourse since evaluating (with justification) and indicating (dis)agreement connect strongly to 
foundational classroom social norms. 

In this paper we give a few brief examples of engaging and decentering. Most students gave some 
indication of agreement or disagreement with Fred’s argument, e.g. “I agree with him that the perimeter 
increases to infinity […] but I disagree with his second line.” This example shows a fairly superficial 
engagement in which the interviewee attended to Fred’s reasoning but viewed it from her own point of 
view. Other students went further, e.g. “I disagree because we thought about it in terms of fencing […] 
so eventually it’s all fence.” The second student’s explanation makes it clear that while she has not 
necessarily built a model of Fred’s line of reasoning, she is aware of her own model and believes 
Fred’s is different. This second student then elaborated and improved upon her original argument.  

Interviewees also demonstrated a range of depth when engaging with Fred by interpreting his 
reasoning. Some interpreted Fred’s thinking from their own point of view, but others made clear 
attempts to deduce Fred’s reasoning from his point of view – in one case an interviewee requested 
more information about Fred’s argument before settling on an interpretation. We saw evidence, across 
all interviews, that each act of engaging functioned as a potential stepping-stone to decentering, an 
opportunity that some students took up while others did not. We saw that students who engaged deeply 
with Fred’s thinking and decentered from their own point of view appeared to (re)engage with their 
own thinking.  

As a consequence of decentering, many of the students clarified and even advanced their own lines of 
mathematical reasoning as expressed by Figure 2. As Fred’s argument was in response to a question 
they had already answered, many reacted by re-explaining or expanding their initial justification. 
Within mathematical thinking we observed two main subcategories: the elaboration of justification for 
their claims and the expansion of their thinking regarding the mathematical concepts involved in the 
task. By elaboration of justification, we mean that students were observed adding new or improved 
warrants and backings to strengthen their argument or even providing entirely alternative explanations. 
As an example, one student, Sandor, reacted to Fred’s argument by noting that that it is because the 
area of the Sierpinski Triangle goes to zero that the perimeter goes to infinity, and explicitly connected 
the removal of triangles at each recursive step to adding the perimeter of these triangles to the total 
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perimeter. Prior to engaging with Fred’s statement, he had treated the two results as essentially separate 
features of the process – the connection between the two had gone unnoticed or at least unexplained.  

With regards to the underlying mathematical concepts, we observed students exploring the nature of 
infinity, perimeter, and the Sierpinski Triangle itself in greater depth than they had in their initial 
arguments. Some students appeared to become aware of a distinction between potential infinity (the 
unending process) and actual infinity (the final resultant state) in their attempts to clarify their 
reasoning. Many students took the opportunity to define, or re-define, the perimeter of an object. 
Students also reflected on the fractal nature of the Sierpinski Triangle, noting that it exists “between” 
dimensions and therefore does not act in the way that a “normal” one- or two-dimensional object 
might, and that therefore traditional thinking about a perimeter enclosing area is not necessarily valid in 
this context.  

While we identify decentering and mathematical thinking as distinct, we note that they are not disjoint. 
All of these examples of expanded thinking and reasoning occurred to some extent as a reaction to the 
thinking of someone else. We posit that decentering functioned as a catalyst for this process. Seeing 
Fred’s argument, interviewees demonstrated a variety of strategies for engaging with student reasoning, 
which were taken up with varying depth. Deeper engagement took the form of decentering, which 
predicated (re)engagement with and growth of their own reasoning. That is to say, the greater the extent 
to which students engaged with Fred and decentered, the more productive the experience was with 
regards to their own thinking. 

The Case of Curtis 

To clarify the constructs and interpretations outlined above, we present the case of a single student, 
with pseudonym Curtis. We choose this student as an example because of the brevity and clarity of this 
portion of his interview, as well as the range of constructs identified in his experience with Fred. Figure 
3 shows Toulmin analyses of Curtis’s pre- and post-Fred arguments, as well as his comment about 
infinite processes. 

   
Figure 3. Toulmin analysis of Curtis’ arguments. 

Toulmin analysis of Curtis’ pre- and post-Fred argumentation revealed shifts and changes. A small 
shift occurred in Curtis’ claim: initially he showed that the perimeter is infinite, afterward he showed it 
could not be finite. This new claim is drawn from different data and is supported by a different warrant. 
Where initially Curtis used formal/symbolic reasoning, his second argument draws on heuristics and a 
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sense that the Sierpinski Triangle is not a real object. He also brings up the fact that infinite processes 
do not have a ‘final step’ after which they reach their final state, something that was not mentioned 
prior to Fred. 

Retracing the emergence of new topics for Curtis, we found that they were directly linked to his 
engagement with Fred’s reasoning, and in particular resulted from his ability to decenter and look at 
Fred’s reasoning in ways not related to his own. Curtis comments that Fred’s “logic doesn’t work,” 
addressing more than just his faulty claim. The new warrant that Curtis provides, that the Sierpinski 
Triangle is not a physical object but rather “kind of just a concept,” directly addresses an unspoken 
assumption on Fred’s part. It seems that Curtis has identified and reacted to an implicit backing in 
Fred’s argument – that the Sierpinski Triangle is a geometric object that obeys two-dimensional rules. 
Curtis’ diagnosis of a misconception underlying Fred’s reasoning implies that he has considered Fred’s 
argument from a different viewpoint, effectively trying to put himself in Fred’s shoes and understand 
fully his reasoning. 

In addition to presenting a new argument, Curtis presents it in a new style. While his original argument 
was based in formal limits and notation, his new argument adopts some of Fred’s informal, heuristic, 
and geometric language. Again, this supports the idea that Curtis is working from Fred’s point of view, 
rather than his own. 

Finally, Curtis’ added commentary about infinite processes comes from his interpretation of Fred’s 
argument.  He says that Fred’s argument is equivalent to there being a final step, a point where 
something is taken away and the area becomes zero, and notes that this is not how infinite processes 
work. This seems to address Fred’s data, that the object becomes something with no area. 

Altogether, we see that Curtis addresses all the pieces of Fred’s argument (not just the claim) by 
thinking through Fred’s reasoning (not just comparing it to his own). This includes an implicit backing 
that Fred does not explicitly state. He does so using Fred’s style of reasoning, and (re)engages with his 
own reasoning to present a second argument and an observation about infinite processes. Throughout 
his response to Fred, Curtis addresses Fred’s reasoning and explains why it does not work, rather than 
simply asserting that his own original ideas are correct. 

 
Figure 4. Curtis’ productivity from engaging with Fred’s reasoning. 
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Conclusion 

In conclusion, we return to classroom social norms and the ultimate role we envision for our 
framework. We argue that the ways of engaging we observed in these interviews are closely related to 
particular classroom social norms.  The relevant social norms related to engaging in others’ reasoning 
include listening to others’ reasoning, attempting to make sense of this reasoning, and indicating 
agreement or disagreement, with reasons. Moreover, acting in accordance with these norms led, 
through decentering, to enriched and refined mathematical conceptions and activity. The case of Curtis 
illustrates that decentering is an individual cognitive mechanism triggered by engaging with another’s 
reasoning.  

Prior work posits a reflexive relationship between engaging in others’ reasoning (i.e., social norms) and 
individual beliefs. In Figure 1, this relationship coordinates the cells in the top row of the interpretive 
framework. As far as we are aware, the analysis in this paper is the first to coordinate social norms and 
individual mathematical conceptions and activity. That is, we provide evidence for a relationship 
between social norms (upper left hand cell of the interpretive framework in Figure 1) and individual 
conceptions (bottom right hand cell). This importance of this work lies in coordinating different 
analytic tools that separately address collective and individual phenomenon. Thus, our framework not 
only contributes to a nuanced understanding of engaging and decentering with another’s reasoning, but 
also leads to links between individual mathematical conceptions and social activity. 
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Students’ understanding of mathematics in the context of chemical kinetics 
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Abstract: This work explores general chemistry students’ use of mathematical reasoning to solve 
quantitative chemical kinetics problems. Personal constructs, a variation of constructivism, 
provides the theoretical underpinning for this work, asserting that students engage in a 
continuous process of constructing and modifying their mental models according to new 
experiences. The study aimed to answer the following research question: How do non-major 
students in a second-semester general chemistry course and a physical chemistry course use 
mathematics to solve kinetics problems involving rate laws? To answer this question, semi-
structured interviews using a think-aloud protocol were conducted. A blended processing 
framework, which targets how problem solvers draw from different knowledge domains, was 
used to interpret students’ problem solving. Preliminary findings describe instances in which 
students blend their knowledge to solve kinetics problems.  
Keywords: Rates, Problem Solving, Blended Processing, Chemistry, Kinetics 

Understanding fundamental concepts in chemistry is intrinsically tied to understanding 
mathematical symbolism and operations, as well as translating between equations and physical 
realities.  Because of this reality, studies in science education have begun to focus on students’ 
understanding of and use of mathematics in scientific contexts (e.g. Becker & Towns, 2012).  
Findings from such studies allow researchers and practitioners to find ways to enhance students’ 
abilities to interpret and use mathematical expressions in conjunction with conceptual 
understanding, rather than blindly applying routine mathematical procedures. 

Research on quantitative problem solving investigates students’ abilities to solve the 
problem correctly (e.g. Wilcox, Caballero, Rehn, & Pollock, 2013), to understand and set up the 
problem (e.g. Bodner & McMillen, 1986), or to execute problem-solving steps (e.g. Reif & 
Heller, 1982).  However, such studies rarely examine how individuals use equations (Kuo, Hull, 
Gupta, & Elby, 2013).  Because of the great importance of mathematics in chemistry, it is of the 
utmost importance to understand how equations are used and understood by chemistry students.  
Kuo et al. (2013) propose that equations could be used in two ways, where the second is more 
sophisticated and expert-like: 1) as computational tools to obtain an answer or 2) as holding 
meaning when blended with conceptual understanding. 

This study explores undergraduate chemistry students’ quantitative problem solving in 
the context of chemical kinetics because it is an anchoring concept of the undergraduate 
chemistry curriculum that requires the use of mathematics to understand and solve problems 
(Holme, Luxford, & Murphy, 2015; Holme & Murphy, 2012; Murphy, Holme, Zenisky, 
Caruthers, & Knaus, 2012).  It has the power to provide insight into the nature of chemical 
reactions and processes, because it ties observable phenomenon with theoretical aspects of 
chemistry that are modeled mathematically (Çakmakci, Leach, & Donnelly, 2006).  In addition, 
studies in this content area are understudied when compared to other topics in chemistry 
education research (CER) (AUTHOR, 2016, submitted). 

The aim of this study is to identify how undergraduate chemistry students understand and 
use equations to solve kinetics problems.  The guiding research question for this work is: How 
do non-major students in second-semester general chemistry and a non-majors physical 
chemistry course understand and use mathematics to solve kinetics problems involving rate 
laws?  This study will provide insight into the mathematical processing stage of quantitative 
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problem solving, providing instructors with an understanding of how students studying kinetics 
understand and use both the concepts and mathematics involved.   

The theoretical framework for this study is personal constructs, a variation of 
constructivism, a framework that presents individuals as making sense of their experiences by 
inventing knowledge constructions and continually modifying them as they encounter more 
experiences (Bodner, 1986; Bodner, Klobuchar, & Gleelan, 2001).  Specifically, Kelly’s (1955) 
theory of personal constructs, a combination of personal and social constructivism, argues that 
while individuals differ in their knowledge constructions, one individual’s constructs can be 
similar to another’s, due to social interaction.  A cognitive framework called blended processing 
is used to help describe and analyze problem solving.  Blended processing describes a cognitive 
process that explores and models human information integration (Coulson & Oakley, 2000; 
Fauconnier & Turner, 1996, 1998, 2002).  It provides a way to describe and understand 
individuals’ mental spaces (or knowledge constructions) and their interactions (Bing & Redish, 
2007; Hu & Rebello, 2013).  In the context of science education research, blended processing 
can describe the “opportunistic blending of formal mathematical and conceptual reasoning 
during the mathematical processing stage” (Fauconnier & Turner, 2002; Hull, Kuo, Gupta, & 
Elby, 2013; Kuo et al., 2013; Sherin, 2001).   

The primary data source for this study is individual semi-structured interviews with 
undergraduate chemistry students, which are conducted using a think-aloud protocol (Becker & 
Towns, 2012).  This interview technique has students perform a task while explaining their 
thought process out loud.  During these interviews participants solve kinetics problems involving 
rate laws, tables of data, and graphs.  The written work is recorded physically on Livescribe™ 
paper and digitally by a Livescribe™ smartpen that captures both audio and writing in real time.  
The protocol is adapted from Kuo et al. (2013) to use a chemical kinetics context.  It contains 
equations that the participants are asked to explain and problems they would be asked to solve in 
a general chemistry or upper-level undergraduate physical chemistry course.   

The participant sample was selected using a homogenous sampling technique (Patton, 
2002).  Student participation is voluntary.  Fall 2015 data collection yielded 21 individual 
interviews with second-semester general chemistry students.  Spring 2016 data collection is 
ongoing with both second-semester general chemistry students and physical chemistry students.  
For completing the interview, students are compensated with a $10 iTunes gift card. 

Audio data is transcribed verbatim following the interviews.  To condense our data in a 
way that is conducive to answering our research question, we organized interviews into problem 
solving maps. To make the maps, we identified problem solving “steps” in large tables, where all 
data from the interview corresponding to each step were categorized with a brief descriptor, such 
as “highlights purpose of the equation.”  Keeping in mind a conceptual framework of blended 
processing, an open coding approach was used to analyze the problem solving maps.  Frequently, 
codes were assigned to excerpts of data as they were organized into steps in the map, which 
meant that a problem-solving step received one code. However, there were also instances where 
multiple codes were assigned to all the data in one step or different codes were assigned to 
different parts of the data in one step.  Preliminary thematic findings will be presented and 
discussed.  Evidence of blended processing will be explored, in conjunction with evidence of 
other modes of reasoning. 

This study holds the promise of developing a better understanding of how non-major 
chemistry students understand chemical kinetics, but more importantly how they use and 
understand mathematics in chemistry contexts.   
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Using learning trajectories to structure teacher preparation in statistics 
Abstract 

As a result of the increased focus on data literacy and data science across the world, there has 
been a large demand for teacher preparation in statistics. However, exactly how this preparation 
should be structured remains an open question. The purpose of this paper is to report on the NSF-
funded Project-XXX professional development program. Project-XXX provided professional 
development to enhance teachers’ statistical knowledge for teaching. The project constructed two 
hypothetical learning trajectories for teacher learning and subsequently used the hypothetical 
learning trajectories to structure the professional development curriculum. This main goal of this 
paper is to illustrate how the utilization of the learning trajectory structure to design professional 
development curriculum allowed participating teachers to develop several aspects of Statistics 
Knowledge for Teaching (Groth, 2013).  

Introduction 
Large-scale research provides some indication of the key characteristics of effective 

teacher training (Doerr, Goldsmith, & Lewis, 2010; Garet, Porter, Desimone, Birman, & Yoon, 
2001; Heck, Banilower, Weiss, & Rosenberg, 2008; Gersten et al., 2014).  These include a focus 
on content knowledge, opportunities for active learning, and coherence with other learning 
activities (Garet et al., 2001).  

The purpose of this article is to report on how using teacher learning trajectories to design 
teacher training offers a structure to develop teacher content knowledge in deep and meaningful 
ways. This study is based on the implementation of Project-XXX, a project funded by the 
National Science Foundation to develop professional development curriculum materials to 
enhance teachers’ content knowledge of two fundamental statistics topics – sampling variability 
and regression. Project-XXX first developed hypothetical learning trajectories for teacher 
learning for these two topics and then designed a professional development curriculum around 
these learning trajectories.  In exploring the results of the implementation of this professional 
development curriculum, we recognized the important role that the learning trajectories played in 
creating opportunities for teacher participants to achieve key developmental understandings in 
relation to knowledge of the content.   
 We aim to answer the following research question: How did the use of learning 
trajectories to design professional development curriculum support the development of teachers’ 
statistics knowledge for teaching The findings suggest that learning trajectories offer a promising 
structure for aiding teacher professional development curriculum design.   

Learning Trajectories 
Given a specific topic, a learning trajectory (or learning progression) for that topic can be 

thought of as a framework that serves as a map for how to achieve different cognitive learning 
levels or learning outcomes. Learning trajectories (LTs) represent recent advances in 
instructional and curriculum design (Duschl, Schweingruber, & Shouse, 2007; Mohan, Chen, & 
Anderson, 2009; Stevens, Delgado, & Krajcik, 2010) that promote deep and integrated 
understanding of target topics by providing a model for the successive and gradual thinking 
about a topic one must go through to achieve depth of understanding. However, while learning 
trajectories essentially organize learners’ thinking and learning, how a learning trajectory is built 
and the scope for which it is used differs in the literature.  

Some authors build learning trajectories as a descriptive tool formed from extensive 
descriptive research and observations of students’ learning in various settings.  In this sense, 
learning trajectories are a way to synthesize how learners acquire increasingly advanced ways of 
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thinking independent of instruction of a particular topic. For example, learning trajectories can 
be viewed as incrementally more sophisticated ways to think about a concept that emerge 
naturally while one moves toward expert-level understanding (Stevens, Shin, & Krajcik, 2009). 

Another way learning trajectories can be built is through the consultation of expert 
opinions of how learners acquire advanced ways of thinking given a particular instructional 
treatment.  For example, Confrey and Maloney (2010) describe LTs as “a researcher-
conjectured, empirically-supported description of the ordered network of constructs a student 
encounters through instruction (i.e. activities, tasks, tools, forms, of interaction and methods of 
evaluation), in order to move from informal ideas, through successive refinements of 
representation, articulation, and reflection, towards increasingly complex concepts over time” 
(Confrey, 2008; Confrey et al., 2008, 2009).  
 Project-XXX focuses on developing learning trajectories for teachers’ thinking and 
learning. The Project-XXX learning trajectories are defined as a curricular map for sampling 
variability and regression for teachers. The trajectories are based on the analysis of statistical 
content and consultation of previous literature on the teaching and learning of sampling 
variability and regression along with a team of expert opinions of sensible sequences of this 
content. The trajectories therefore describe how teachers can acquire advanced ways of thinking 
about sampling variability and regression given a particular instructional path. 

Theoretical Framework 
We employed LTs as a map for teacher learning. In this sense, the LTs were used to 

create a teacher curriculum, through a series of instructional tasks and assessments, for teacher 
learning of sampling variability and regression. The LTs in this study therefore served to guide, 
develop, and order a sequence of instructional tasks for teacher training. In applying the LTs to 
teacher learning, we intersect LTs with frameworks of teacher knowledge.  In particular, we 
draw upon the Mathematical Knowledge for Teaching (MKT) framework and the Statistical 
Knowledge for Teaching (SKT) framework (Groth, 2013).   

 
Figure 1 SKT Framework (Groth, 2013, pp. 143) 

Groth (2013) identified Key Developmental Understandings (KDUs) as landmarks in the 
teachers’ development of subject matter knowledge. Building from the work of Simon (2006), 
Groth describes KDUs as significant conceptual shifts. According to Groth, these landmarks or 
conceptual shifts can occur in each of the three types of subject matter knowledge in his 
framework (common content knowledge, specialized content knowledge, and horizon content 
knowledge). Groth’s SKT framework also incorporates ideas outlined by Silverman and 
Thompson (2008) regarding the development of pedagogical content knowledge. In particular, 
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Silverman and Thompson assert that teachers’ development of KDUs with regard to subject 
matter knowledge are a necessary, but perhaps insufficient, first step with regard to improving 
student learning.  

The primary purpose of the Project-XXX professional development was to develop 
teachers’ SKT. Prior to the design of the professional development course, as part of the project, 
teacher LTs were constructed for the topics of sampling variability and regression. These LTs 
served as guides for the structure of the professional development. Figure 2 represents the 
relationship between teacher learning trajectories, professional development, and SKT. This 
study focuses on understanding how this process might work.  
 
 
 
 
 
 

 
Figure 2. Project-XXX Conceptual Framework 

 
Methods 

Participants 
Nine secondary teachers completed the entire pilot course. Seven of the 9 teachers taught 

in the local public school district. Two of the teachers taught in a private school within the city. 
Their average number of years teaching statistics was 2.4.  
Data Sources 
End-of-Loop Assessment Tasks. Assessment tasks were completed by the teachers at critical 
points of the LT in order to measure understanding with respect to the content included in the 
LT. The scoring of each part was modeled after the AP Statistics scoring of: E (Essentially 
Correct); P (Partially Correct); or I (Incorrect). The assessment tasks were scored each week by 
two scorers who were part of the research team but not present during the professional 
development session. The scorers graded the papers separately and then discussed their scores to 
come to a consensus on the final scores.  
End-of-LT Assessment. At the completion of the content of each LT, teachers were assigned as 
homework an assessment intended to bring together the content of the entire trajectory.  
Video of Class Sessions. Each class session of the professional development was videotaped. 
Outlines of the videos were created and portions of the videos were transcribed. The videos 
provide a means to confirm and elaborate on the observed patterns of teacher learning 
documented from the teachers’ written work.  
Analysis 
 A two-phase process was used to investigate how the use of LTs supported the 
development of Statistical Knowledge for Teaching (SKT), with a particular focus on Key 
Developmental Understandings (KDUs). The first phase took place during the analysis of 
teachers’ written work on the End-of-Loop Assessment Tasks and the end-of the LT projects. 
This analysis provided insight into which ideas were pivotal to teacher understanding thus 
permitting the research team to identify a preliminary list of KDUs. 

In the second phase of the data analysis, these prospective KDUs were then examined 
through the analysis of classroom interactions. During this phase, the videos were examined in 
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Learning!
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Design!
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order to determine how teachers’ Statistical Knowledge for Teaching developed as they 
progressed through the LTs. Results of this analysis will be presented in the conference talk. 

 
Results 

We present illustrative examples of the KDUs that we identified along with supporting evidence 
consisting of samples of teacher work or transcript segments. While analyzing the teacher written 
work, several points were identified as being pivotal to teachers’ development of SKT.  Such 
ideas were those that repeatedly surfaced in multiple teachers’ written work throughout the PD as 
well as in-class discussions. 
Example 1 Common Content Knowledge KDU: Sample Size and the Sampling Distribution 
 One of the most persistent ideas that surfaced in teachers’ work and discussion involved 
the relationship between sample size and the shape and spread of the sampling distribution. We 
have identified this as a KDU reflecting Common Content Knowledge in Groth’s framework 
insofar as this is not a concept specific to the domain of teaching.  

Teachers repeatedly made statements alluding to the fact that when repeated samples 
were taken and a sample mean was computed, then the shape of the sampling distribution should 
become more bell-shaped and the variability of the sampling distribution should decrease. For 
example, an assessment task for sampling variability asked teachers to compare three different 
approximate sampling distributions taken with samples of n=5, 15, and 30 according to their 
shape, variability, and center. There is evidence at this point that the nine teachers developed an 
understanding of the effect of the sample size on the spread, even if they were not yet clearly 
articulating the relationship to shape. Three samples of teacher responses are provided: 
Assessment task question: Compare the three distributions that you constructed. What can 
you say about the shape of the distribution as the sample size, n, increases? What can you 
say about the mean? What can you say about the standard deviation? 

Teacher Example 1: As n increases, the data gets more “compact” around the population 
mean $27,000 – thus the variation decreases.  The mean income was closer to the 
population mean when n=15 than when n=30, but still both close to $27,000.  The 
standard deviation decreases as n increases. 

Teacher Example 2: As the sample size increase, the distributions are becoming less 
spread out. There is less variability in the distributions as the sample size increases. 

Teacher Example 3: The shape of the distribution is more unimodal and symmetric, 
becoming more approximately normal. There is less variation as the sample size n 
increases. The mean got smaller and then bigger as the sample size increased. However, 
the mean stayed in the same interval between 25,000 and 30,000. The standard deviation 
decreased as the sample size n increased. I would expect that trend to continue, but the 
standard deviation was decreasing at a slower rate as n increased. 

The videos of the class sessions provide further support for the assertion that this was a KDU for 
teachers that the loop design of the LTs fostered. After investigating these ideas over a period of 
time, teachers expressed different “aha” moments around the effect of the sample size. For 
example, the activity for Loop 3 engaged the teachers in sampling from four populations with 
vastly different distributions (bimodal distribution, skewed distribution, roughly normal 
distribution, and scattered distribution). The teachers took samples of size n=5, n=10, and n=25 
and generated approximate sampling distributions for each sample size. They compared the 
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sampling distributions of different sizes and noted the similarities in the effect of the sample size 
on the sampling distribution.  

Instructor: So, tell us what you’ve got there from Jamal [the bimodal distribution] and 
what happened with the samples of different sizes? 

 Teacher 6: As you can see, as you increase the sample size, the variability gets smaller 
 and smaller, if you look you are going from 20 to about 110, versus the spread going 
 from 20 to about 80 where for size 10 you are going about 52 to 66, your variability is 
 decreasing.  
As the discussion continued, several teachers also compared the sampling distributions to the 
corresponding population distributions, noting the way in which the distributions with the larger 
sample sizes behaved in a similar manner, regardless of the distribution of the population. In 
particular, even when the population had a non-symmetric or bimodal shape, as the sample size 
increased, the variability of the sampling distribution decreased. During this comparison of the 
different distributions, one of the teachers, focused on the behavior of sampling distributions of 
the bimodal population distribution, began to talk through the reasons behind what she had 
observed.  

Teacher 5: No matter what the population looked like, there was a mean. And our data, or 
our samplings, were samplings of the average. So, they all should have been near the 
average of the population. No matter what [the population] looked like.  

Another teacher builds on this idea and offers an argument for why the variation of the sampling 
distribution should logically decrease with an increase in the sample size:  

Teacher 7: I guess they can’t do this because they are obviously…cards, but if we had 
done N=60, a.k.a. all the cards, it would have just been a straight line at 60… So that like 
N = 60 literally is just 60, 60, 60, 60 [the mean of the sample] over and over again, just a 
straight line of 60, but that would have been a good thing to compare to n = 4, n=10, n = 
30. [Note: The example to which she was referring had a population mean of 60 and a 
population size of 60.] 

In this segment, the teachers appear to not only recognize the effect of the sample size on the 
spread of the sampling distribution (as with their written work, their descriptions of the shape are 
not as explicit at this point). They also appear to be creating corresponding mental images of 
why this makes sense, no matter what the shape of the population is.  
 The significance of this idea as a KDU is reflected in their own comments a few minutes 
after the observations from Teacher 5 and 7 described above.  

Teacher 3: You know…I’m not sure that I ever understood that…I’m serious. 
Teacher 5: The light did come on, in terms of understanding what was happening in this 
activity. 

Example 2 Specialized Content Knowledge KDU: Line of Best Fit Counterexamples 
Specialized content knowledge, defined in the SKT framework as knowledge of content needed 
in the practice of teaching, may include teachers’ ability to comment on student work and 
strategize ways they can address student errors. One way to illustrate to students their errors 
would be to provide students with examples for which their solution will not work.  The ability 
to develop such counterexamples is knowledge specific to teaching. 

In the regression LT, the teachers were asked to examine a scatterplot of drop heights 
versus bounce heights of a golf ball and place a piece of spaghetti on the scatterplot in such a 
way that they believed represented a line of best fit.  Teachers also had to explain what their 
criterion was for the placement of the line and why they chose to place it there. This same 

19th Annual Conference on Research in Undergraduate Mathematics Education 535

19th Annual Conference on Research in Undergraduate Mathematics Education 535



!

! 6!

activity had been given to 8th grade students. A second component to the teacher activity was 
then for the teachers to comment on the 8th grade students’ work and, if the work showed a 
misunderstanding, then provide a counterexample scatterplot that would illustrate to the student 
that their placement criterion would not be successful in general.  

During part one of the activity, all of the teachers created criteria that matched that of the 
previously collected student data.  For example, one teacher asked “do you assume it [the 
spaghetti] goes through (0,0)?” She noted that in the context of the problem, dropping balls, if 
you dropped the ball from 0 height, you would get a 0 bounce height. She thus concluded that 
her line of best fit must go through the origin. This same reasoning was also seen in the student 
work.  Another teacher stated that she placed her line in such a way that “there are 4 dots above 
and 4 dots below and so it is in the middle.”  Again, similar reasoning was uncovered in the 
student work with a student stating that they wanted to “split” the points.  
 When teachers were given the student results to analyze, they were asked to evaluate 
whether the criteria the students used to place their line was one that would work for any data 
set.  If not, then the teachers were to give an example scatterplot for which their student criteria 
would not work.  This proved difficult for the teachers.  For example, one student had the origin 
criteria similar to one of the teachers. Looking at the student work, she stated: “I think that is a 
good idea.” However, teacher 8 responded by saying “in this case, it [going through the origin] is 
ok but not all the time.” At this point, a conversation emerged as to whether the criterion the 
student applies must work for any set of linear data or just the golf ball data in front of them.  
After a short deliberation about what defining a criterion means and how it should be applied, it 
was accepted that a criterion must work for any set of data. Then, the teachers created the 
counterexample of a data set that had a negative association and thus would require a line to have 
a negative slope so it would not enable the line to go through the origin.  Although the teachers 
were able to develop counterexamples to help guide student misunderstandings in the context of 
the line of best fit, the work was non-trivial.  

Discussion & Conclusion 
As noted by Simon (2006), for someone to develop a Key Developmental Understanding, 

one must have repeated exposure to the concept.  Additionally according to Simon, students 
without a KDU “do not tend to acquire it through explanation or demonstration” (p. 362); instead 
a KDU must emerge through discovery. In this way, a person would be able to shift their 
understanding and gain a Key Understanding. We gathered evidence to show that the Project-
XXX LTs offered a platform for teachers to develop KDUs by scaffolding more complex ideas 
and repeatedly looping for each topic.  Due to limitations in space, only two examples were 
presented above. We assert that the design of the Project-XXX activities to progress teachers 
through the LT facilitated the development of Statistical Knowledge for Teaching and the 
emergence of KDUs. In addition, the LT also allowed for the conceptual unpacking necessary to 
develop teachers’ knowledge.  

The LT’s mapping created clearly-defined conceptual boundaries that allowed us to 
recognize when inadequate connections were begin made to horizon content knowledge. Thus, 
although this is a small study with nine teachers, we see great promise in the use of LT’s in the 
design of teacher preparation curriculum to support the growth of teachers’ knowledge. The SKT 
construct asserts that teacher statistical knowledge for teaching consists of both content 
knowledge and pedagogical knowledge.  We saw evidence in this small scale study that building 
professional development using LTs shows promise in helping teachers advance both their 
content knowledge and their pedagogical knowledge. In addition to the development of subject 
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matter knowledge, we also saw evidence of the translation of this subject matter knowledge into 
pedagogically powerful ideas.  
 The goal of this paper was to analyze the affordances of LTs in the design of professional 
development. In particular, we sought to understand how the use of LTs might support the 
development of Statistics Knowledge for Teaching, with a particular focus on the key 
developmental understandings that emerged. Doerr et al. (2010) have identified this type of 
small-scale study as making important contributions to our understanding of professional 
development. In particular, through the description and analysis of the “critical elements” (Borko 
et al., 2008) of the program, it is possible to better understand the teacher learning process and 
the potential of the program for sustained success. 

We view the findings in this paper contributing to the advancement of knowledge and 
literature base in three ways. First, this study provides small-scale evidence that learning 
trajectories can not only be used to map student curriculum and learning, but also can be used as 
maps for teacher curriculum and learning.  Prior to this study, learning trajectories have been 
used in the professional development only as tools to discuss student learning.  However, this 
study illustrates several advantages that learning trajectories can offer to actually build, organize, 
and structure teacher learning.  The LTs in this study were used to guide the nature and order of 
the sequence of content. 

A second contribution of this study is the connection of learning trajectories to existing 
teacher learning constructs such as Statistical Knowledge for Teaching, Key Developmental 
Understandings, and Pedagogically Powerful Ideas.  This study provides evidence that learning 
trajectories offer a means to observe and develop such constructs with teachers. 

An additional contribution of this study is the presentation of two teacher learning 
trajectory maps for the challenging statistical topics of sampling variability and regression. These 
trajectories and accompanying materials can be utilized by others to teach teachers these topics.  

The analysis of the use of the hypothetical LTs as a “critical element” of the program 
suggests that LTs can offer similar structures for teacher learning that mirror those previously 
documented for student learning. In particular, the LTs offered a framework for identifying and 
achieving KDUs and making instructional decisions based on the KDUs. The LTs gave the 
research team a way to see how KDUs were directly related to the development of SKT.  
Furthermore, the LTs provided a means for teachers to achieve KDUs due to their repeated 
exposure while moving through the loop structure of an LT. By construction, the LTs provided 
scaffolding for KDU development. The repeated exposure illustrated when cognitive shifts were 
occurring in teachers’ thinking. In addition, this repetition allowed teachers to transform KDUs 
into pedagogically powerful ideas.  
 While Project-XXX has a specific focus on teachers’ statistics knowledge, we suggest 
that the implications for mathematics teacher training are broader than this teacher population. In 
particular, by focusing on a “critical element” of Project-XXX– the use of LTs for teacher 
knowledge – we submit that the model has potential for other content within mathematics teacher 
professional development. One of the goals of Project-XXX was to focus on statistical content. 
While sampling variability and regression represent two important statistical content topics, there 
are various other topics about which teachers are likely to have had limited opportunities to 
develop knowledge for teaching (e.g., transformational geometry). The use of LTs for teacher 
learning offers a potentially powerful strategy for developing teachers’ knowledge of these 
concepts, as well as others within the larger mathematics curriculum.  
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A case study of developing self-efficacy in writing proof frameworks 

Ahmed Benkhalti  Annie Selden   John Selden 
New Mexico State University   New Mexico State University   New Mexico State University 

This case study documents the progression of one non-traditional individual’s proof-writing 
through a semester. We analyzed the videotapes of this individual’s one-on-one sessions working 
through our course notes for an inquiry-based transition-to-proof course. Our theoretical 
perspective informed our work with this individual and included the view that proof construction 
is a sequence of (mental, as well as physical) actions. It also included the use of proof 
frameworks as a means of initiating a written proof. This individual’s early reluctance to use 
proof frameworks, after an initial introduction to them, was documented, as well as her later 
acceptance of, and proficiency with, them. By the end of the first semester, she had developed 
considerable facility with both the formal-rhetorical and problem-centered parts of proofs and a 
sense of self-efficacy. 

Key words: Transition-to-proof, Proof Construction, Proof Frameworks, Self-efficacy 

This case study concentrates on how one non-traditional mature individual, in one-on-one 
sessions, progressed from an initial reluctance to use the technique of proof frameworks (Selden, 
Benkhalti, & Selden, 2014; Selden & Selden, 1995) to a gradual acceptance of, and eventual 
proficiency with, both writing proof frameworks and completing many entire proofs. This case 
study further illuminates the well-known, and documented, tendency of students to write proofs 
from the top-down, and consequently, to be unable to develop complete proofs. (See the case of 
Willy, who focused too soon on the hypothesis, in Selden, McKee, & Selden, 2010, pp. 209-
211). We also consider how this approach to proof construction helped this individual gain a 
sense of self-efficacy (Bandura, 1994, 1995) with regard to proving. 

Theoretical Perspective 

 In our analysis and in our teaching, we consider proof construction to be a sequence of 
mental and physical actions, some of which do not appear in the final written proof text. Such a 
sequence of actions is related to, and extends, what has been called a “possible construction 
path” of a proof, illustrated in Selden and Selden (2009a). For example, suppose that in a partly 
completed proof, there is an “or” in the hypothesis of a statement yet to be proved: “If A or B, 
then C.” Here, the situation is having to prove this statement. The interpretation is realizing the 
need to prove C by cases. The action is constructing two independent sub-proofs; one in which 
one supposes A and proves C, the other in which one supposes B and proves C. 

When several similar situations are followed by similar actions, an automated link may 
be learned between such situations and actions. Subsequently, a situation can be followed by an 
action, without the need for any conscious processing between the two (Selden, McKee, & 
Selden, 2010). When students are first learning proof construction, many actions, such as the 
construction of proof frameworks (Selden, Benkhalti, & Selden, 2014; Selden & Selden, 1995), 
can become automated. A proof framework is determined just by the logical structure of the 
theorem statement and associated definitions. The most common form of a theorem is: “If P, 
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then Q”, where P is the hypothesis and Q is the conclusion. In order to construct a proof 
framework for it, one takes the hypothesis of the theorem, “P”, and writes, “Suppose P” to begin 
the proof. Immediately afterwards, one takes the conclusion of the theorem, “Q”, skips towards 
the bottom of the page, and writes “Therefore Q”, leaving enough space for the rest of the proof 
to emerge in between. This produces the first level of the proof framework. At this point, one 
should focus on the conclusion and “unpack” its meaning. It may happen that the unpacked 
meaning of Q has the same logical form as the original theorem, that is, a statement with a 
hypothesis and a conclusion. In that case, one can repeat the above process, providing a second 
level proof framework in the blank space between the first and last lines of the emerging proof. 
(For some examples, see Selden, Benkhalti, & Selden, 2014). 

Prior Research 

While studies on students’ learning to write proofs have been made before, they have not 
so specifically focused on proof frameworks. Hazzan (1999) has written about how students cope 
with the transition to upper level proof-based mathematics, specifically when they take their first 
undergraduate abstract algebra course. Dahlberg and Housman (1997) were interested in how a 
student develops his/her concept image when learning a new mathematical concept. They found 
that students who engaged in example generation and reflection during the study of definitions 
were able to attain a more comprehensive understanding. Housman and Porter (2003) found a 
correspondence between students who used transformational proof schemes and those who 
successfully generated examples when asked to do so. Selden, McKee, and Selden (2010) 
reported instances of students’ tendencies to write proofs from the top down and their reluctance 
to unpack and use the conclusion to structure their proofs. This study extends that work.  

Methodology: Conduct of the Study 

We met regularly for individual 75-minute sessions with a mature working professional, 
Alice, who wanted to learn how to construct proofs. Alice followed the same course notes 
previously written for an inquiry-based course used with beginning mathematics graduate 
students who wanted extra practice in writing proofs. The sessions were almost entirely devoted 
to having Alice attempt to construct proofs in front of us, often thinking aloud, and to giving her 
feedback and advice on her work. The notes had been designed to provide graduate students with 
as many different kinds of proving experiences as possible and included the kinds of proofs often 
found in typical proof-based courses. They covered some sets, functions, real analysis, and 
algebra, in that order.  

Alice had a good undergraduate background in mathematics from some time ago and also 
had prior teaching experience. She only worked on proofs during the actual times we met. While 
she usually came twice a week to see us and work on constructing proofs, sometimes when her 
paid work got a bit overwhelming, she would take a week off. Thus, unlike the graduate students 
who took the course as a one-semester 3-credit class, Alice worked with us on our course notes 
for two semesters at her own pace and did not want credit.  

   
We met in a small seminar room with blackboards on three sides, and Alice constructed 

original proofs at the blackboard, eventually using the middle blackboard almost exclusively for 
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her evolving proofs. After several meetings, she began to use the left board for definitions and 
the right board for scratch work. She did not seem shy or overly concerned with working at the 
board in front of us, and from the start, we developed a very collegial working relationship. She 
seemed to enjoy our interactions as she worked through the course notes. Thus, we gained 
greater than normal insight into her mode of working. We videotaped every session and took 
field notes on what Alice wrote on the three boards, along with her interactions with us. For this 
particular study, we reviewed the first semester videos and field notes several times, looking for 
signs of progression in Alice’s approach to constructing proofs. 

The Progression 

Our First Meeting with Alice 
We introduced Alice to the idea of proof frameworks and explained in detail how and 

why we use them. We also introduced her to the idea of unpacking the conclusion and mentioned 
that proofs are not written from the top down by mathematicians. With guidance, she was able to 
prove “If A �B, then A�C � B�C.” In addition, she worked three exercises on writing proof 
frameworks--one on elementary number theory and two on set equality. Near the end of this 
meeting, Alice produced a proof framework for the next theorem in the notes. We felt that she 
not only understood our reasoning for using proof frameworks, but also how to construct them. 

Our Second Meeting with Alice—Her Reluctance to Use Proof Frameworks Surfaces 
At the beginning of the second meeting, Alice went to the middle board and produced the 

same proof framework, as she had done five days earlier at our first meeting (Figure 1). 

Theorem: Let A, B, and C be sets. If A � B, 
then C – B � C – A. 
Proof: Let A, B, and C be sets.  
Suppose A � B. Suppose x ∈ C – B. So x ∈ C 
and x is not an element of B. 
 
 
 

 
 
 
 
 
Thus x ∈ C and x is not in A.  
Therefore x is in C – A.  
Therefore, C – B � C – A. 

Figure 1. The proof framework that Alice produced on the middle blackboard. 

Then Alice stopped and after a long silence of 65 seconds, much to our surprise, said, “I 
have a question for you. I find it very difficult to see the framework. Let me show you how I do 
it, because somehow I get confused with the framework.” We asked her what it was about the 
framework that was confusing, but she seemingly could not put it into words. So we encouraged 
her to write the proof the way she preferred. Thus, on the left board, Alice began to write the 
proof in her own way in top down fashion (Figure 2). She then paused for 15 seconds, and said, 
“We need to have one more,” and wrote into her proof attempt, “and x ∈ A” immediately below 
“x ∈ C – B”, indicating with a caret that “and x ∈ A” was also part of her supposition (Figure 3). 
Then, after a 35-second pause, she added to her proof attempt, “Since x ∈ A and A is a subset B. 
Then x ∈ B.” Shortly thereafter, Alice quietly said, “Oh, a contradiction”. This was followed by, 
“Yeah, ‘cause x doesn’t belong to B. Yeah, problem here.”  
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Theorem: Let A, B, and C be sets. If A � B, then C – B � C – A. 
Proof. Let A, B, C be sets.  
Suppose A is a subset of B. We need to prove that C – B is a subset of C – A. 
Suppose x ∈ C – B. We need to prove that x ∈ C – A. 

Figure 2. Alice’s attempt at constructing a proof in her own way. 

Then, after a ten second pause, Alice said, “The problem is right here, isn’t it?” pointing 
and underlining “B” and the statement “and x ∈ A.” We asked, “And what do you think that 
problem is?” Alice replied, “I assumed that [pointing to “and x ∈ A”], but I do not know. I only 
know this [pointing to “A is a subset of B”]. We replied, “So that’s a good point you’ve made.” 

Theorem: Let A, B, and C be sets. If A � B, then C – B � C – A. 
Proof. Let A, B, C be sets.  
Suppose A is a subset of B. We need to prove that C – B is a subset of C – A. 
Suppose x ∈ C – B. We need to prove that x ∈ C – A. 
              and x ∈ A. 

Figure 3. Alice’s adjustments to her proof attempt, done in her own way. 

After that, for a few minutes, we talked about the structure of proofs, and why we use 
proof frameworks. Then we asked Alice to elaborate on why “and x ∈ A” is a problem. She said, 
“I didn’t write it right. I should have said here [pointing to the blank space to the left of “and x ∈ 
A”] I’m going to make an assumption like ‘Suppose x belongs to the A’, and then since x 
belongs to the A and I know that A is a subset of B, then the x will belong to the B.” She 
continued, “I also know that x belongs in the C – B, because I said it earlier. Then x belongs to 
the C but x does not belong to the B.” To which one of us replied, “And then you said 
something. I thought I heard you say the word ‘contradiction’.” Alice explained, “Yeah, I got a 
contradiction because then I’m saying here [pointing to the board] the x belongs to the B, and the 
x doesn’t belong to the B.” We agreed, and she offered, “That assumption [pointing to “and x ∈ 
A”] was bad.” We then reiterated why proof frameworks are structured the way they are, and 
suggested that we could take Alice’s original framework (Figure 1) and what Alice had written 
on the left board (Figure 3), and change the order to write a proof. We proceeded to help Alice 
do this. 

Subsequent Meetings with Alice 
As the meetings went on, we observed that Alice became very methodical in her 

approach to proving, and also somewhat more accustomed to writing proof frameworks. We 
hypothesize this was because of her technical work experience and perhaps because of her 
natural tendencies. By the 12th meeting, Alice had developed the following pattern of working: 
She would write the statement of the theorem to be proved on the middle board, then look up in 
the course notes the definitions of terms that occurred in the theorem statement, write them 
exactly as stated on the left board, and use the right board for scratch work. Indeed, during the 
12th meeting, when she got to the theorem, “Let X, Y, and Z be sets. Let f: X→Y and g: Y→Z be 
1-1 functions. Then f○g is 1-1,” she wrote the first and second level frameworks ostensibly on 
her own, and with some guidance from us, completed the proof and read it over for herself aloud.  
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By the 19th meeting at the end of the first semester, Alice was more fluent with writing 
proof frameworks than on the 12th meeting, and she had adopted the technique of writing 
definitions on the left board and changing the variable names to agree with those used in the 
theorem statement – all without prompting from us. This is remarkable as our experience has 
been that many students do not change variable names in definitions even when we suggest 
doing so, and this can often lead to difficulties. Alice continued meeting with us and working on 
the course notes at her own pace during the second semester. We plan to continue our analysis of 
those videos for Alice’s continued progression. 

Summary of Results 

Alice came to us apparently with a reasonable undergraduate mathematics background, 
some of which she had forgotten. At the first meeting we explained the use of proof frameworks 
and our rationale for using them, and she practiced producing several of them. However, at the 
second meeting she told us that she found this way of working confusing. When she attempted 
her own alternative method of proving, she got into difficulty, and as a result, was more willing 
to try using proof frameworks again. Over the course of our subsequent meetings that semester, 
Alice became fluent with writing both first and second level frameworks, and adopted a 
methodical way of working. As time went on, she was able to complete proofs with less 
guidance from us. Indeed, she often mainly required some help with the problem-centered parts 
of proofs. In the following semester, she continued meeting with us and working on the course 
notes. We feel that, by the end of the second semester, she had developed a sense of self-efficacy 
(Bandura, 1994, 1995) regarding her proving ability and expect to document that further. 

Implications 

 The initial tendency of many university students to write proofs in a top-down fashion 
tends to fade after sufficient exposure to writing proof frameworks. One might ask where this 
tendency comes from. According to Nachlieli and Herbst (2009), it is the norm among U.S. high 
school geometry teachers to require students, when doing two-column proofs, to follow every 
statement immediately by a reason. This implies top-down proof construction. However, as 
noted previously, automating the actions required to write the formal-rhetorical part of a proof 
can allow students to “get started” writing and exposes the “real problem” to be solved in order 
to complete the proof (Selden & Selden, 2009b). For this, persistence and self-efficacy are 
needed.  

Discussion Questions 

1. What more should we look for when we analyze the second semester videos? 

2. In our experience, mathematicians just know how to structure proofs (e.g., including how 
proofs can begin and end). Apparently, they have tacitly learned this, as well as the importance 
of “knowing where they are going” (e.g., unpacking the conclusion). How and when do 
mathematics majors learn this, when not introduced to doing so explicitly via an inquiry-based 
course like ours?  
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RUME- and Non-RUME-track students’ motivations of enrolling in a RUME 
graduate course 

 
Ashley Berger, Rebecca Grider, Juliana Bucher, Mollie Mills-Weis, Fatma Bozkurt, Milos Savic 

University of Oklahoma 

The purpose of this ongoing study is to investigate students’ motivations in taking a graduate-
level RUME course. Seven individual semi-structured interviews were conducted with graduate 
students enrolled in a RUME course at a large Midwestern university that has a RUME Ph.D. 

option in the mathematics department. Our analysis of those interviews utilized two theoretical 
frameworks: Self-Determination Theory (Ryan & Deci, 2000) and Hannula’s (2006) needs and 
goals structure. Preliminary analysis of the interviews indicates that non-RUME-track students 
are extrinsically, need-motivated, while RUME-track students are intrinsically, goal-motivated 
when taking a RUME course. The researchers conjecture that knowing what influences non-

RUME-track students may aid in closing the gap between the mathematical and RUME 
communities. 

Introduction 
There is a limited amount of research with regard to motivation in mathematics education 

(Wæge, 2009). Particularly, in our search, there appears to be little research regarding motivation 
of future mathematics educators at the tertiary level (e.g., Herzig, 2002). Hannula (2004) defined 
motivation to be “a potential to direct behaviour that is built into the system that controls 
emotion. This potential may be manifested in cognition, emotion and/or behaviour.” According 
to Wæge (2009), motivation can be influenced by teachers: “students’ motivation for learning 
mathematics, although it is considered relatively stable, can be influenced by changes in the 
teaching approach” (p. 90).  

Pedagogy courses are sometimes offered within mathematics departments to help shape and 
educate graduate students who will go on to teach at the college level. These courses are 
sometimes referred to as Introduction to RUME courses. The purpose of this ongoing study is to 
investigate students’ motivations in taking a graduate-level RUME course. In particular, our 
research goals for the current study are (a) to classify students’ motivations for enrolling in and 
participating in the course, and (b) to investigate what the students took away from the course 
with respect to their academic goals, their career goals, their future course selections, and/or their 
current teaching practices.  We are especially interested in the similarities and differences 
between RUME- and non-RUME-track students with respect to these questions. 

Theoretical Perspective 
Self-Determination Theory (SDT) is a general motivation theory that focuses on 

psychological needs (Ryan & Deci, 2000). They distinguish between psychological needs by 
looking at intrinsic and extrinsic motivation. Intrinsic motivation is defined as “doing an activity 
for the inherent satisfaction of the activity itself” while extrinsic motivation is “the performance 
of an activity in order to attain some separable outcome” (Ryan & Deci, 2000, p. 71). From their 
studies, Ryan & Deci developed the Self-Determination Continuum (see Figure 1).  
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Figure 1; The Self-Determination Continuum (Ryan & Deci, 2000, p. 72) 

Hannula (2006) says that “as a potential, motivation cannot be directly observed. It is 
observable only as it manifests itself in affect, cognition, and behaviour” (p. 175). He gives the 
examples of motivation being observable through beliefs, values, and emotional reactions. Needs 
(e.g., “autonomy, competency, and social belonging” (Hannula, 2006, p. 167)) which may 
transfer to goals, are used to structure this potential. Hannula’s (2006) needs and goals structure, 
combined with Ryan & Deci’s (2000) intrinsic and extrinsic framework, together will inform our 
analysis of the data. 

Methodology 
Seven individual semi-structured interviews up to 30 minutes in length were conducted. The 

individuals were students from a large Midwestern university who were enrolled in an 
Introductory to Math Pedagogy Research course. Four participants were interested in a RUME-
track Ph.D. in mathematics. The class met for fifty-minute class periods three days a week. A 
research team member who was not enrolled in or teaching the course recruited the participants 
and conducted the interviews. In these interviews, students were asked about their motivations 
for taking the course, how those motivations have changed over time, how mathematics and 
RUME are related, and what they expect to leave the course with. 

Preliminary Results 
“I will admit that one primary reason is for the RUME teaching certificate that you get when you get your Ph.D. 

However, I am interested in the way that students learn math.” –Student G (Non-RUME-track) 
“My real passion is in teaching and in not so much teaching but in researching ways to create better teachers.” –

Student C (RUME-track) 
 

Student G is expressing intrinsic motivation with the potential being rooted in needs while 
Student C is expressing extrinsic motivation with the potential being rooted in goals. A 
preliminary conjecture is that the non-RUME-track students’ motivations are extrinsic, while the 
RUME-tracked students are more intrinsic. The potential motivators between the RUME-track 
students might tend toward goals, while the non-RUME-track students might tend toward 
competence, i.e. needs. Through this study, the researchers hope to gain a better understanding of 
why students take RUME courses and what they get out of them. Specifically, knowing the 
influences of non-RUME-track students can aid in closing the gap between the mathematical and 
RUME communities. Future research should include why non-RUME track students do not take 
RUME or pedagogy courses when given the opportunity.  
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How Calculus students at successful programs talk about their instructors 

Annie Bergman Dana Kirin Ben Wallek 
Portland State University Portland State University Portland State University 

The CSPCC (Characteristics of Successful Programs in College Calculus) project was a 5-
year study focused on Calculus I instruction at colleges and universities across the United 
States with overarching goals of identifying the factors that contribute to successful 
programs. In this poster, we draw from student focus group interview data collected from 
schools that were identified by the CSPCC project as being successful. The analyses we will 
present in this poster will characterize the ways in which calculus students talk about their 
instructors in an attempt to understand how their perceptions shape their experience.  

Key words: Calculus, Student Perception, Thematic Analysis, Instructors 

Over the past decade, numerous reports point to the need for national efforts to increase 
the number of students pursuing and professionals with degrees in science, technology, 
engineering, and mathematics (STEM) fields (see for example NSB, 2007; PCAST, 2012; 
Thomasian, 2011). According to the PCAST report (2012) increasing the retention rate of the 
students who enter college intending to major in a STEM field has the potential to 
significantly decrease the gap between the number of STEM degrees produced and the 
projected number of STEM degrees needed to sustain the United States position in the global 
market. While there are many reasons students leave STEM fields, there is a growing body of 
research that suggests that intending STEM students are switching out of STEM fields due to 
experiences in their introductory mathematics courses (Ellis, Kelton, & Rasmussen, 2014; 
PCAST, 2012; Rasmussen & Ellis, 2013), including experiencing poor instruction (Bressoud, 
Mesa, & Rasmussen, 2015; Seymour & Hewitt, 1997). In the United States each year over 
300,000 students enroll in tertiary Calculus, many of which are just beginning their post-
secondary education (Blair, Kirkman, Maxwell, 2013; Bressoud, Carlson, Mesa, & 
Rasmussen, 2013). To this end, we seek to better understand student experiences in 
successful Calculus courses by answering the question, how do students in successful 
Calculus programs talk about their instructors? 

Methods 

The CSPCC (Characteristics of Successful Programs in College Calculus) project was a 
5-year study focused on Calculus I instruction at colleges and universities across the United 
States with overarching goals of identifying the factors that contribute to successful 
programs. The study consisted of a national survey conducted in fall 2010, followed by 
explanatory case study visits at seventeen institutions that were identified as successful 
because of student persistence (continuing to the next course in the calculus sequence) and 
reported increases in students’ interest, confidence, and enjoyment of mathematics as a result 
of taking Calculus 1.  

During site visits the research team conducted semi-structured student focus group 
interviews with current Calculus students in which they were given an opportunity to discuss 
various course components, their instructor, and overall course experience. We began data 
analysis by reading the interviews in their entirety and then choosing a subset of interview 
questions we felt were most relevant to our research goal. This subset of questions included: 
● What types of things happen in class that help you learn calculus content? 
● What would you say is your instructor’s attitude towards calculus? 

○ Does your teacher seem to care about your learning? 
○ Does your teacher think students are capable of understanding calculus? 
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○ Do you think that this is typical of teachers in this math department? 
● What do you think makes this program special? 

Ongoing thematic analysis (Braun & Clarke, 2006) is being conducted on student responses 
from this subset of questions to identify overarching ways in which students at these 
institutions talk about their instructors. In the following section we highlight some initial 
themes that have emerged from our analysis. 

Initial Findings 

Currently our findings include three distinct perceptions of calculus instructors and their 
roles/characteristics in the classroom: (1) Students report instructors overwhelming 
helpfulness as an attempt to directly aid in students academic success; (2) a generally friendly 
demeanor; and (3) the instructor promoted an encouraging atmosphere in the classroom 
where students can interact with mathematics. To illustrate these findings we present experts 
from student interviews in Table 1. 

Table 1 

Emerging Themes Regarding How Students Talk About Instructors 
Preliminary 

Theme 
Institutional 

Level Excerpt 

Helpfulness 

Bachelors She's willing to help you as much as she possibly can 
if you're willing to try. 

Masters 
She actually loves math so she wants to do everything 
possible for us to love math. She tries absolutely as 
hard as she can. 

Friendliness 
Bachelors She's never condescending. 

Doctoral I went to his office hours and he's really friendly and it 
makes it a lot easier to actually enjoy doing the math. 

Great atmosphere 

Bachelors 

… Ms. M is interested in us doing well so it's a great 
atmosphere. That really helps…  I mean you definitely 
have down there that the teacher definitely helps to 
make the experience, right? 

Bachelors 
He creates a very comfortable environment and he 
(has) a really cool way of putting concepts together 
and making it connect with everything.  

Conclusion 

Overall students in successful Calculus programs speak highly of their experiences in the 
classroom and with the instructor. While analysis is still ongoing, one particularly interesting 
finding is the difference in the manner in which students at various institutional levels speak 
about their instructors.  For instance, at bachelors granting institutions students tend to speak 
about their instructors with a very familiar tone while students at doctoral granting 
institutions give a real sense of distinct between them and their instructors, both physically 
and personally. Through ongoing analysis we hope to further develop current themes, 
illuminate more themes, and continue to investigate differences across institutional levels. 
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Student problem solving in the context of volumes of revolution 
 

Anand M. Bernard       Steven R. Jones 
Brigham Young University  Brigham Young University 

The literature on problem solving indicates that focusing on strategies for specific types of 
problems may be more beneficial than seeking to determine grand, general problem solving 
strategies that work across large domains. Given this guideline, we seek to understand and map 
out different strategies students’ used in the specific context of volumes of revolution problems 
from calculus. Our study demonstrates the complex nature of solving volumes of revolution 
problems based on the multitude of diverse paths the students in our study took to achieve the 
desired “epistemic form” of an integral expression for a given volume problem. While the large-
grained, overarching strategy for these students did not differ much, the complexity came in how 
the student carried out each step in their overall strategy. 

Key words: problem solving, calculus, volumes of revolution, epistemic games 

Introduction 

Helping students become proficient in problem solving, or the ability to complete a task 
where a solution is not immediately known, is an important goal in mathematics education 
(Lester, 2013; National Research Council, 2001; Schoenfeld, 1992). In the last several decades, 
researchers have studied problem solving and students’ problem solving abilities (Lesh & 
Zawojewski, 2007; Schoenfeld, 1992), and one critical finding has been that it is difficult to 
determine general problem solving strategies that are useful for any situation. Researchers argue 
that coming up with a list of strategies for problem solving is difficult because lists are either too 
small and cannot account for all situations, or too broad such that students are left without a 
sufficient guide for which strategies to use (Lesh & Zawojewski, 2007). While it is difficult to 
find strategies to solve problems generally, some researchers have suggested that it may be more 
beneficial instead to develop strategies for particular types of problems (Lesh & Zawojewski, 
2007; Schoenfeld, 1992). 

Calculus problems involving volumes of revolution may provide just such a context, since 
they are not so broad that it becomes impractical to develop general problem solving strategies, 
yet are complex in that there is no single set procedure to find a solution and students cannot 
simply memorize one template to apply to all problems. Students need to choose between using 
the disk, washer, and shell methods and must choose whether to integrate with respect to dx or 
dy. Students must also be able to recall and apply knowledge from a range of different 
mathematical topics (e.g. integration techniques, geometry, and solving equations). Also, we 
have found no literature on student understanding of volumes of revolution, meaning that it is an 
area in need of exploration. Thus, in this paper we examine the strategies students use to solve 
volumes of revolution problems. In particular, this paper is meant to address the following 
questions: (1) What strategies did students use when solving volumes of revolution problems? 
(2) What particular features of the problems guided or focused the students in their problem 
solving strategies?  
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Epistemic Forms and Games 

In investigating problem solving strategies for volumes of revolution, we employ the lens of 
epistemic games (Collins & Ferguson, 1993). Epistemic games provide a useful language for 
describing how students go from a starting condition, which in our case is the initial volume of 
revolution problem, to a desired outcome called an epistemic form. An epistemic form consists of 
“an external structure or representations and the cognitive tools to… interpret that structure” 
(Redish, 2004, p. 30). Collins and Ferguson provided examples of possible epistemic forms like 
lists, charts, and diagrams, and Redish added to the list things like an abacus or a graph. In our 
study, the specific “external structure” that makes up the epistemic form is an integral expression 
that is set up to match the volume of the particular solid given in a problem. 

In order to advance from the starting condition to the epistemic form, one must make moves, 
which in our case consists of actions (mental or physical) that a student performs to achieve the 
desired form. The overall activity of taking the starting condition, making moves, and arriving at 
an epistemic form is called an epistemic game (Collins & Ferguson, 1993). Recently researchers 
in physics education have used epistemic games as a means to analyze how students problem 
solve in physics tasks (Black & Wittmann, 2007; Tuminaro & Redish, 2007), and we extend this 
to investigate students’ problem solving strategies in mathematics contexts as well. Depending 
on the grain size one uses in analyzing the moves that constitute an epistemic game, the 
description one provides of a student’s epistemic game can vary (Black & Wittmann, 2007). In 
this study, we examine both larger-grained and smaller-grained games, and we define a global 
game as one that describes the general moves a student makes and a local game as one that is 
played out within each of the moves of a global game. 
 

Methods 

For this study, eight students from a second semester calculus course were invited to 
participate in a one-hour interview regarding volumes of revolution problems. The students came 
from a course in which the instructor had attended to a conceptual development of the disk and 
shell methods and had also given examples of some cases where each method would not work, 
given the techniques available to the class. In order to get a range of participants, students were 
chosen based on their responses to four quiz problems given in class. Three students (Gabi, 
Doug, Trevor) got all four quiz problems correct, two students (Sarah, Frank) got three correct, 
two students (Bryan, Claire) got two correct, and one student (John) got only one correct. In the 
interview, the students were asked to set up integrals for four standard, textbook-style volumes of 
revolution problems, where a region bounded by certain curves is rotated around either the x- or 
y-axis (such as in Stewart, 2012, p. 430-445). The problems indicated in words to take the region 
bounded by the following curves and rotate it around the specified axis, and to determine the 
volume of the generated solid: (1) 1y x � , 2y x , 0y   around x-axis; (2) 1y x � , 

2y x , 0y   around y-axis; (3) 41
2( ) 4f x x x � , 0y   around y-axis; (4) 41

2( ) 4f x x x � , 
0y   around x-axis. Graphs of the functions in each problem were also provided to the students. 

The students were asked to discuss their thinking aloud and the interviewer asked clarifying 
questions while the student worked. 

The videotaped interviews were first watched to record the steps the individual students took 
in setting up the integrals. These steps were used to define a set of “moves” for the global 
epistemic games the students played. Once these moves had been described, the videos were 
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shown in this paper to be anything but trivial, but is also confined to a more narrow domain, so 
that strategies can be (and were!) developed by students. No student had a memorized template 
for all volume problems, meaning that they all engaged in problem solving at some level. 

 In regards to being able to solve volumes of revolution problems specifically, our data 
suggests that some moves may be especially useful, including visualizing the volumes of 
revolution, being equally comfortable with all available methods, checking to see which methods 
are feasible, determining which method uses fewer integrals, and examining which methods 
involve simpler algebra. Consequently it may be useful for calculus instructors to spend time 
developing some of these local games. For instance, an instructor may wish to have their 
students draw out solids of revolution so that they can become comfortable visualizing the 
desired object, or to have students examine the number of integrals required to work out a 
problem with respect to dx versus dy. While this list certainly does not contain all useful 
strategies in solving volumes of revolution problems, we believe that understanding which 
moves are useful can help students develop flexible problem solving strategies regarding 
volumes of revolution. 
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Equity in Developmental Mathematics Students’ Achievement at a Large Midwestern 
University 

 
Kenneth Bradfield 

Michigan State University 
 
With so many students entering college underprepared for the mainstream sequence of 
mathematics courses, mathematics departments continue to offer developmental or remedial 
courses with innovative methods of delivery. In order to support students in their college 
education, researchers continue to investigate the effectiveness of undergraduate remediation 
programs with mixed results. This paper provides quantitative data from an NSF-funded project 
from a large Midwestern university over three years of a developmental mathematics course. 
Pre- and post-measures show that both urban and African-American students benefited the most 
from supplemental instruction in contrast to the online-only format. Based on these results, I 
offer recommendations for undergraduate mathematics departments to support equitable 
opportunities for marginalized students ensuring a successful developmental mathematics 
program. 
 
Keywords: Developmental mathematics; Equity and diversity 
 

Mathematics departments across the country offer developmental courses or remediation to 
support the entering students they deem unprepared to meet the entry standards of their 
introductory courses. Researchers estimate more than a third of all incoming freshman sign up 
for a developmental course upon entering college often resulting in an over-abundance of 
students enrolling in developmental courses (Bettinger et al., 2013; Scott-Clayton, Crosta, & 
Belfield, 2014). With the cost of these programs nationwide for institutions of higher learning in 
the billions of dollars (Bettinger, Boatman, & Long, 2013), mathematics departments search for 
innovative solutions to ensure they can afford to support the education of as many students as 
possible. 

The variety of delivery methods that mathematics departments use to provide content and 
instruction often lack in research-based teaching methods or resources creating an inequitable 
environment in terms of educational opportunity in developmental programs. TAs or faculty with 
little to no training in teaching strategies typically instruct these courses coupled with the over-
representation of minorities in developmental courses can potentially cause students more harm 
in the first years of college (Attewell et al., 2006; Larnell, 2013). Designed as gateways to future 
mathematical success for all students, Bonham and Boylan (2011) acknowledged that 
“developmental mathematics as a barrier to educational opportunity represents a serious concern 
for the students as well as higher education policy makers” (p.2). 
 Considering these concerns, our NSF project1 team reviewed three years of quantitative data 
collected from the developmental mathematics program at a large Midwestern university to 
compare the effects of various instructional methods between groups of students with similar 
backgrounds. Results in this paper compare how urban, low-income, and African-American 
students (who made up approximately one-eighth of the entire population of students enrolled in 
the online math course over the three year period) faired in an online-based tutoring program 
                                                           
1 This project was supported, in part, by the National Science Foundation awarded to Kristen Bieda (PI), Beth 
Herbel-Eisenmann, Raven McCrory, and Pavel Sikorskii (Co-PIs) under the grant DUE-1245402. 
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with or without additional face-to-face instruction faired compared to each other. The success of 
the urban and African-American students with additional face-to-face instruction compared to 
their peers provides a window into how researchers can evaluate and mathematics departments 
make changes to their developmental program to ensure more equitable opportunities for all 
students. I will first provide some background literature to further situate this study. 
 

Literature Review 
 

 Current issues surrounding developmental mathematics consist of how mathematics 
departments select students and deliver content to ensure students’ successful completion of their 
degree requirements and how researchers evaluate the effectiveness of programs providing 
reliability and generalizeability. Scott-Clayton, Crosta, and Belfield (2014) found that placement 
methods, typically involving the use of an exam, fail to correctly identify the students who need 
remediation. Other community college programs have experimented with incorporating high 
school transcript data (Jackson & Kurlaender, 2013); however, Bettinger et al. (2013) 
acknowledged that tests and high school performance still ignore the unseen qualities of students 
that influence their success in their first year of college, e.g. study habits and perseverance. 
Researchers continue to search for the right combination of indicators for placement and 
eventual success in developmental mathematics course (Scott-Clayton et al., 2014). 
 Mathematics departments are often limited by their resources and materials to offer their 
students research-based mathematics resources and instruction. Bonham and Boylan (2011) 
argued that successful programs incorporate technology and innovative materials for the 
classroom, extracurricular resources for students, and professional development for instructors. 
Since not all institutions can provide these opportunities for their students, innovative solutions 
arise that include online resources or tutoring programs paid by student tuition money. 
Researchers continue to search for opportunities for mathematics departments to provide 
resources and instruction to support the students who need them most. 
 In addition to the selection of students and the delivery methods, scholars have discussed 
methods to evaluate developmental mathematics programs to ensure reliability and provide 
higher education policy makers justification to enact institutional changes. Bettinger et al. (2013) 
noted that the amount of variation due to geography, student backgrounds, and other factors that 
currently go unseen that cannot be measured quantitatively or provided on a high school 
transcript and called on more studies to explore this variability. In providing data from particular 
geographic areas and groups of students, researchers can begin to explore similarities and 
differences to facilitate discussion around a complex solution to the complex problem of 
inequitable opportunities in developmental mathematics education. 

Considering these discussions, the NSF-funded project investigated quantitative data from a 
census of all students in three years of the developmental mathematics course at a large 
Midwestern university to answer the following question: 

� What effects does a supplementary face-to-face instruction in a developmental 
mathematics course have on different subpopulations of students’ performance and future 
participation in mathematics? 
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Methods 
 
 I present quantitative data over three years of an NSF-funded project comparing the various 
methods of delivery of a developmental mathematics course at a large Midwestern university.  
Approximately 800 students each year enrolled in the online version of the developmental 
mathematics course, as determined predominately by placement exam score. The program 
ALEKS is the curriculum for the online course. Freshman identified by advisors as at-risk for 
failing first-year courses enroll in groups of around 15-20 students in a supplementary face-to-
face section that meets twice a week with each class lasting two hours. Each class is taught by 
mathematics graduate students with the exception of one section taught by senior pre-service 
mathematics teachers as part of an NSF-funded project in concert with the teacher education 
department. While the sections led by mathematics graduate instructors engaged in material 
directly supporting the students’ work on the ALEKS program, the seminal section with pre-
service mathematics teachers engaged in a curriculum and instructional methods grounded in 
mathematics education research. 
 The project investigated the effect of taking any of the supplementary face-to-face sections 
on students’ success in the online developmental course and on their performance in subsequent 
math courses. In this paper, I present comparisons of the percent difference between the means 
of quantitative pre-measures (ACT mathematics score, university placement exam, ALEKS pre-
score) and post-measures (ALEKS post-score, final exam, final grade) to determine differences 
in outcomes between African-American, urban, and low-income2 students who enrolled in the 
online-only version of the course and those who enrolled in the supplementary face-to-face 
sections. These particular students were selected based on the large percentage of students self-
reported as African American and low-income hailing from the large urban area nearest to the 
university (75% and 90% respectively) and the teacher education department’s interest in 
potential future summer enrichment programs for students from this area. I also provide similar 
comparisons between the enrollment and grades in the pursuant credit-bearing mathematics 
course for the students in the first year of the data set.  
 

Results 
 

 The data for each of the three years demonstrates that African-American, urban, and low-
income students who took the supplementary face-to-face course made significant gains in the 
online course compared to their peers who were not enrolled in the face-to-face enrichment 
course. 

Table 1 includes the percent difference between the face-to-face and online only students 
within the subpopulations of students from the large urban area, low income, and African-
American separately. Overall the data demonstrates that the face-to-face students started slightly 
behind and finished significantly ahead in both the urban and African-American groups and 
started significantly behind and finished slightly ahead in the low-income group. Considering 
this data also represents census data for a university over three years, this data shows the 
supplementary face-to-face instruction associates with a significant gain in post-measures across 
each of these subpopulations. 
                                                           
2 Ethnicity was self-reported while the urban and low-income information was provided by researchers’ map of the 
state near the urban area in question in conjunction with income information by zip code provided by the 
University of Michigan’s Institute for Social Research: http://home.isr.umich.edu/. 

19th Annual Conference on Research in Undergraduate Mathematics Education 564

19th Annual Conference on Research in Undergraduate Mathematics Education 564



Table 1 Percentage Difference between Face-to-Face and Online Group 
Urban 

 
Pre-measures Post-measures 

 
ACT Math Placement ALEKS Pre ALEKS Post Final Exam Grade 

2012 -2.6% -6.4% 2.5% 13.7%** 26.9%** 21.5%** 
2013 -6.8** -6.3% -11.3% -2.2% 16.7%** 10.6%* 
2014 -3.7% -2.0% -17.4% 2.6% 9.3% 9.7%* 

Low income 
 

Pre-measures Post-measures 

 
ACT Math Placement ALEKS Pre ALEKS Post Final Exam Grade 

2012 -5.6%** -10.0%* 3.3% 5.5% 8.1% 7.6% 
2013 -6.2%* -4.3% -6.3% 0.4% 21.2%** 12.5%** 
2014 -4.5%* 1.0% -17.0%* 2.2% 2.4% 6.5% 

African-American Pre-measures Post-measures 

 
ACT Math Placement ALEKS Pre ALEKS Post Final Exam Grade 

2012 0.7% 0.5% -2.2% 11.1%** 15.8%** 12.5%* 
2013 -5.5%* -12.9%** -14.3% -2.4% 15.3%** 9.1%** 
2014 -1.7% -0.5% -5.4%   7.0% 17.9%** 14.9%** 

Note: * p < 0.05, ** p < 0.01 
 
 

Table 2 Percent Enrolling and Passing Next Math Course in 2012 
N N enroll % Enroll N pass % Pass 

Urban Face to face 47 35 74.5%** 18 38.3%* 
Online 55 26 47.2% 14 25.5% 

Low income Face to face 75 52 69.3%** 26 34.7% 
Online 122 69 56.6% 41 33.6% 

African American Face to face 84 64 76.2%** 31 36.9%** 
Online 113 63 55.8% 29 25.7% 

All students Face to face 171 130 76.0%** 68 39.8% 
  Online 619 394 63.7% 221 35.7% 
Note: * p < 0.05, ** p < 0.01 

 
 Table 2 shows the percent of students who enrolled and passed the proceeding 

mathematics course offered by the mathematics department within each of the subpopulations. 
Overall the data demonstrates that a significantly higher percentage of students enrolled in the 
next math course across not only all subpopulations but also the entire population of students. In 
addition, significantly higher percentage of students in the urban and African American 
subpopulations passed the course (receiving GPA>2.0). 
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A common theme of both of these tables indicates that the supplementary face-to-face 
section benefits not only students’ performance in the online course for these subpopulations, but 
also potentially contributes to success in the next math course. 
 

Discussion and Future Directions 
 

 These results provide an example of Bettinger et al.’s (2013) call for researchers to compare 
groups of students with similar backgrounds demonstrating how characteristics through 
information provided by the registrar can provide an avenue for a positive change in providing 
students opportunities in developmental programs. Factors to consider for determining students 
placement that include test scores and high school transcript information (Jackson & Kurlaender, 
2013) can potentially include demographic information as well. 

Providing students with face-to-face instruction increased the performance of the urban and 
African-American subgroups in this student population. Universities that offer online-based 
opportunities could experience strong gains in performance by providing supplementary face-to-
face instruction sections to underprivileged students. This is not to say that engaging students in 
these opportunities is a panacea as students come from diverse backgrounds with a variety of 
different ways of learning and knowing. Even with the variety of student backgrounds, the data 
demonstrates sub-populations of student based on demographics that benefited the most from the 
resources offered by their institution. Although providing students with these sections could 
improve gains in performance, other mathematics departments should tread carefully and provide 
instruction that improves students’ mathematical proficiency and not knowledge of correct 
procedures alone (Larnell, 2013; Kilpatrick, Swafford, & Findell, 2001). 

As “success” in a mathematics course goes beyond just performance on course exam, future 
studies could dig deeper into how the students experienced the developmental mathematics 
program as well as track students’ success longitudinally. Although the selection of students 
attending this institution was not a random sample of the nation, the scale of this case provides a 
window into a single university over three years to anticipate similar results for other large, 
public universities. Other mathematics departments could then take their own nuanced steps 
based on their results to ensure more equitable opportunities for their students’ education and 
ameliorate the inequities in the first year of undergraduate mathematics. Further questions 
continue to remain to continue the goal of spurring the growth of developmental mathematics 
programs across the country to meet the needs of all students entering their respective 
universities: 

� What makes face-to-face supplemental courses more successful for students than online-
only courses? 

� Which universities have similar demographics as the one referenced in this report? 
� How can we motivate mathematics departments to make changes supported by evidence 

to invest in students’ developmental mathematics programs? 
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Exploring student understanding of the negative sign in introductory physics contexts 
 

Suzanne White Brahmia, Rutgers University 
Andrew Boudreaux, Western Washington University 

 
Recent studies in physics education research demonstrate that although physics students 
are generally successful executing mathematical procedures, they struggle with the use of 
mathematical concepts for sense making. In this poster we investigate student reasoning 
about negative numbers in contexts commonly encountered in calculus-based introductory 
physics.  We describe a large-scale study (N > 900) involving two introductory physics 
courses: calculus-based mechanics and calculus-based electricity and magnetism (E&M). 
We present data from six assessment items (3 in mechanics and 3 in E&M) that probe 
student understanding of negative numbers in physics contexts. Our results reveal that 
even mathematically well-prepared students struggle with the way that we symbolize in 
physics, and that the varied uses of the negative sign in physics can present an obstacle to 
understanding that persists throughout the introductory sequence.  
 

Introduction 
Signed numbers carry rich information about physics contexts. A confounding feature in 

physics is that the operations of addition and subtraction (represented by the symbols “+” and  
“−”) can easily be confused with the descriptors, positive and negative, that can characterize the 
opposite natures of some physical quantities (position, charge, velocity, etc.)  

Developing flexibility with negative numbers is a known challenge in math education. 
Vlassis(1) used written diagnostic questions and interviews to investigate the understanding of 
negative numbers by Belgian students taking algebra.  She found that in order to fully understand 
the concept of a negative number, students had to develop a flexibility with the various ways in 
which negative numbers are used in context.  The most challenging context is common to 
physics – quantifying opposites.  

Sherin(2) refers to quantifying opposites in physics as the symbolic form “competing terms 
cluster,” which includes the notion of zero to represent balance, and positive and negative 
quantities as competing terms in an expression.  This cluster is built on a stable set of 
coordinated resources that includes a conceptual understanding of signed numbers and zero.  He 
observes that flexibility with this symbolic form is a feature of expert problem solving in 
introductory physics.  

Bajracharya, Wemyss, and Thompson(3) investigated student understanding of integration in 
the context of P-V diagrams in introductory physics. Their results suggest an incomplete 
understanding of the criteria that determine the sign of a definite integral.  Students struggle with 
the concept of a negative area, and with the concept of positive and negative directions of 
integration. Even for students in calculus-based physics, negative quantities pose challenges.   
Experimental Design 

We administered a set of three questions at the end of the fall 2015 semester in the calculus-
based introductory courses in Mechanics, and in E&M; a portion of each class was given a MC 
version of the questions while the rest were given an open ended version and asked to explain 
their reasoning.   Each set probes the use of a signed quantity: 1) to represent a component of a 
vector quantity in 1-D, 2) to quantify opposites, and 3) to represent a difference of a position 
dependent quantity measured at two different locations (see Fig. 1). 
Discussion 

 Our results show that engineering students really struggle to make sense of the physics use 
of the negative sign in almost every context except the one that is familiar from math class.  
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Surprisingly after a semester of calculus-based physics, one-third of the engineering students fail 
to recognize the context in which they learned about negative numbers - the position on a 
number line (see Fig 1, Mech 3) 
Figure 1:  Assessment items, “Mech” was administered in the Mechanics course and “EM” was 
administered in the E&M course. 
Mech 1: An object moves along the x-axis, and the acceleration is measured to be ax = –8 m/s2.  Consider the 
following statements about the “–” sign in “ax = –8 m/s2”. Pick the statement that best describes the information this 
negative sign conveys about the situation. 

a. The object moves in the negative direction 
b. The object is slowing down 
c. The object accelerates in the –x-direction 

d. Both a and b 
e. Both b and c 

 
Mech 2: A hand exerts a force on a block as the block moves along a frictionless, horizontal surface. For a particular 
interval of the motion, the hand does W =  – 2.7 J of work. 
Consider the following statements about the “–” sign in the statement W = –2.7 J. The negative sign means: 

I. the work done by the hand is in the negative direction     II. the force exerted by the hand is in the 
negative direction  
III. the work done by the hand decreases the mechanical energy associated with the block 

Which statements are true? 
a. I only 
b. II only 
c. III only 

d. I and II only 
e. II and III only 

 
Mech 3: A cart is moving along the x-axis.  At a specific instant of time the cart is at a position x = –7 m.    
Consider the following statements about the “–” sign in “x = –7 m”.  Pick the statement that best describes the 
information this negative sign conveys about the situation. 

a. The cart moves in the negative direction 
b. The cart is to the negative direction from the origin 
c. The cart is slowing down 

d. Both a and b 
e. Both a and c 

 
EM 1:  At a location along the x-axis, the electric field is measured to be Ex = –10 N/C.  Consider the following 
statements about the “–” sign in “Ex = –10 N/C”. Pick the statement that best describes the information this negative 
sign conveys about the situation. 

a. The test charge is negative 
b. The field is being created by negative charge 
c. The field points in the –x-direction 

d. Both a and b 
e. Both b and c 

 
EM 2:  Valeria combs her hair in the winter and there is a transfer of charge such that DQcomb= –5 mC.   Consider 
the following statements about the “–” sign in the mathematical statement DQcomb= –5 mC. The negative sign means: 
I.  negative charge was added to the comb.    II. charge was taken away from the comb.   
III.  all of the electric charge in the comb is negative 
Which statements could be true? 

a. I only 
b. II only 
c. III only 

 
d. I and III only 
e. II and III only 

EM 2:  In physics lab, a student uses a voltmeter to measure the voltage across the terminals of a battery.  The 
voltmeter reads –5V.   
Consider the following statements about the “–” sign in the voltmeter reading “– 5V”. Pick the statement that best 
describes the information this negative sign conveys about the situation. 

a. the voltage is in the opposite direction as the current 
b. there are 5V of negative charge in the battery  
c. the voltage is in the negative direction 

d. the voltage at one terminal is 5V less than 
the voltage at the other  terminal  
e. this battery has negative voltage 

 
Table 1:  Response rates, Mechanics(n=310) and E&M (n=402).  Correct response rate is in bold type 

Choice Mech 1 Mech 2 Mech 3  EM 1 EM 2 EM 3 Explanations (from open-
ended responses, Mechanics 
n=85, E&M, n=138) 
Excerpts to be included in 
poster 

 

a 8% 17% 6%  16% 33% 32% 
b 26% 17% 67%  21% 28% 14% 
c 26% 23% 6%  36% 18% 18% 
d 6% 29% 19%  12% 15% 33% 
e 34% 14% 2%  14% 5% 3% 
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Mary, Mary, is not quite so contrary: Unless she’s wearing Hilbert’s shoes 

Researchers (Leron, 1985; Harel & Sowder, 1998) have argued that students’ lack a preference 
for indirect proofs and have argued that the lack of preference is due to a preference for 
constructive arguments. Recent empirical research (author, 2015), however, which employed a 
comparative selection task involving a direct proof and an indirect proof of the contraposition 
form, found no evidence of a lack of preference for indirect proof. Recognizing that indirect 
proofs of the contradiction form may differ from those that employ the contraposition, this study 
documents students’ proof preferences and selection rationales when engaging in a comparative 
selection task involving a direct proof and an indirect proof of the contradiction form.  

Key words: Indirect proof, Proof preferences, Proof by contradiction 

It has been argued by many that indirect proofs, that is, proof by contraposition and proof 
by contradiction, are particularly difficult for students (Tall, 1979; Robert & Schwarzenberger, 
1991) and that students’ difficulties are related to a lack of preference for these forms of proof 
(Leron, 1985; Harel & Sowder, 1998). Several reasons for students’ difficulties and lack of 
preference have been proposed. Tall (1979) conducted an empirical study of 37 students’ levels 
of confusion in relation to proofs by contradiction of the irrationality of the √2 using an 
instrument that included the standard proof and two alternative proofs. He found that students 
experienced significantly lower levels of confusion with one of the alternative forms; namely, 
that which employed generic structures (i.e., proof structures that were not specific to the 
numbers used). Tall argued that use of generic proofs will aid students’ understanding of indirect 
proofs. In a reflective account of multiple teaching experiments, Leron (1985) noted that not only 
are students perplexed by proofs by contradiction but that such proofs stand in contrast to much 
of students’ mathematical activity, for they call on students to not only build up a “false world” 
but to destroy this world. Hence, according to Leron, students’ difficulties are related to the 
coupling of non-constructive reasoning and a detachment from one’s “real” mathematical world. 
Using the standard proof of the infinitude of primes, Leron reported that constructive 
approaches, which explore and analyze mathematical objects in their own right prior to their use 
as tools for obtaining contradictions, may enhance students’ understanding of proofs by 
contradiction. Harel and Sowder (1998) have also argued that students are not convinced by 
proof by contradiction and lack a preference for this form of proof. Drawing of data from 6 
teaching experiments they argue that students’ dislike of indirect proofs represents a particular 
manifestation of the constructive proof scheme: a scheme in which “students’ doubts are 
removed by actual construction of objects – as opposed to mere justification of the existence of 
objects” (p. 272). Lastly, Antonini and Mariotti (2008) studied students’ views and production of 
indirect proofs. Drawing on the theory of Cognitive Unity and a specific characterization of 
Mathematical Theorems (Mariotti, Bartolini Bussi, Boero, Ferri & Garuti 1997), this research 
has sought to explore: (a) linkages between students’ informal, indirect geometric arguments in 
technological environments and their production of proofs by contradiction; and, (b) the nature 
of students’ difficulties with indirect proofs. Specifically, within their work a distinction is made 
between mathematical theories (e.g., Euclidean geometry; Riemannian geometry; Number 
theory) and metatheories (e.g., Standard logic, Constructive logic). Drawing on interviews with 
university students, Antonini and Mariotti demonstrated that students’ difficulties with indirect 
proof may be tied to students’ lack of acceptance of metatheorical properties (e.g., P→Q ≡ 
~Q→~P). For instance, when presented with a proof by contraposition of the statement, “If n2 is 
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even then n is even,” students readily accepted the contrapositive proof as a proof of the 
statement, “If n is odd then n2 is odd” but struggled to accept the proof as a proof of the original 
statement. Speaking to this issue, a student remarked, “… The problem is that in this way we 
proved that n is odd implies n2 is odd, and I accept this; but I do not feel satisfied with the other 
one” (p. 407). Antonini and Mariotti’s work is novel, for their work is the only research that 
proposes students’ lack of acceptance of indirect proofs may be due to metatheoretical issues. 
 Four aspects of research on students’ difficulties and lack of preference for indirect proof 
are noteworthy. First, research on students’ difficulties with indirect proof is unique in that it is 
the only area of research within the broad spectrum of research on students’ difficulties with 
proof in which researchers have linked students’ difficulties to a lack of preference for that form 
of proof. Second, while researchers (Tall, 1979, Healy & Hoyles 2000, Knuth, 2002) have 
routinely engaged students in comparative selection tasks to determine which form of proof 
students’ find most convincing, researchers have not examined students’ preferences (or lack of 
preference) for indirect proofs using comparative selection tasks involving a direct and an 
indirect proof. Indeed, there is a scarcity of empirical evidence to support current claims 
regarding students’ lack of preference. Third, while Antonini and Mariotti (2008) have provided 
evidence of students’ lack of acceptance of metatheoretical statements there is the question of 
whether it is a lack of acceptance or a lack of recognition of these statements that is prevalent 
and at the root of students’ difficulties. Fourth, current accounts of students’ dislike of indirect 
proofs and preference for constructive and generic proofs have ignored the fact that these 
reactions may be the result of the mathematics community’s practices related to introducing 
novices to indirect proofs and the discourse that occurs around such proofs. For instance, in How 
to Solve It, a famous problem solving text by Polya (1957), the section on reductio ad absurdum 
and indirect proof1 concludes with a section titled “Objections,” in which Polya states:  
 

We should be familiar both with ‘reductio ad absurdum’ and with indirect proof. When, 
however, we have succeeded in deriving a result by either of these methods, we should 
not fail to look back at the solution and ask: Can you derive the result differently (p. 169).  

 
Arguably, Polya’s remarks do not provide the reader with a strong endorsement of either method. 
Moreover, such sentiments are not difficult to obtain as illustrated by the textbook excerpts 
shown in Figure 1. 
 

[Concluding remarks, section on proof by contradiction] Many mathematicians feel that if a result can be verified 
by a direct proof, then this is the proof technique that should be used, as it is normally easier to understand.  
Text: Mathematical Proofs: A Transition to Advanced Mathematics (Chartrand et al., pg. 132) 
A proof by contradiction is often easier, since more is assumed true; you are able to assume both the hypothesis 
and the negation of the conclusion. On the other hand, a proof by contradiction is likely to be less elegant than a 
proof by contrapositive. In any case, for elegance and clarity, it is better to choose a direct proof over an indirect 
proof whenever possible. 
Text: Introduction to Advanced Mathematics (Barnier & Feldman, 2000, p. 43).  
There are times when it is not easy to see how to prove a mathematical statement, say ψ. When this happens one 
should try the strategy called proof by contradiction. This strategy is perhaps the strangest method of proof. 
Text: A Logical Introduction to Proof (Cunningham, 2012, p. 93).  

Figure 1. Proof by Contradiction Text Excerpts 

                                                
1 Polya refers to proof by contraposition as indirect proof and proof by contradiction by its Latin 
name, reductio ad absurdum. 
2 Hardy referred to reductio ad absurdum (proof by contradiction) as a mathematician’s “finest 
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These excerpts are not meant as backing for the claim that the mathematics community as a 
whole has exhibited a lack of preference. Indeed, the writings of Hardy (1940/2005), Euclid, 
Archimedes, and many contemporary mathematicians, as well as the famous proofs by 
contradiction of Hilbert (cf. Hilbert, 1890), stand in contrast to the remarks shown above.2 
Instead, the excerpts illustrate how a lack of preference might be due to various enculturative 
acts rather than an attribute of students. Yet, much of the research on indirect proof has ignored 
students’ rationales for either preferring or exhibiting a lack of preference for such proofs. To be 
certain, there is a need for research that not only documents students’ comparative preferences 
but also students’ selection rationales; that is, their reasons for choosing a particular proof form.  
 In (author, 2015), a study was reported in which 53 mathematics majors were surveyed 
using a comparative selection task (see Figure 2) involving a direct and a (contraposition-form) 
indirect proof of the following theorem: Suppose a set A has the property, for any subset B, A ⊆ 
B, then A = ∅. The proofs were presented side-by-side and students were asked, “Which proof, 
in your opinion, is the most convincing? In other words, which proof better persuades you of the 
truth of the theorem” and “Please explain your selection.” The two proofs in the selection task 
were designed so as to control for various proof features; namely, the proofs were similar in 
length, and designed with the intent to be equal in their level of familiarity and complexity. For 
instance, complexity was equated by the prevalence of the proofs’ content in the same textbook 
chapters in multiple texts. These controls were employed because pilot work had shown that 
when either complexity or familiarity were not equated, each were individually predictive of 
students’ selections regardless of the proof type (i.e., direct or indirect). 

 
Figure 2. Comparative Selection Task 

 
Surprisingly, the survey results indicated that the indirect:direct selection ratio for the Theorem 3 
proof comparative selection task was 27:26. Thus, no evidence of a lack of preference was 
found. This finding lies in contrast to the findings of prior research and raises several questions: 
(1) to what extent is a lack of preference prevalent; and, (2) if prevalent, what are the 
characteristics of contexts in which a lack of preference is manifested? Furthermore, analyses of 
the students’ selection rationales demonstrated that students’ primary rationales were certainty 
and complexity. Certainty refers to the degree to which a student is certain of his/her 
understanding of the given proof and complexity refers to students’ identification of one proof as 
being more complex than the other. What is of particular interest is that students’ rationales did 
not identify a “more complex” proof nor were students more certain of one proof than the other. 
Instead students’ responses demonstrated that complexity and certainty were subjective; that is, 

                                                
2 Hardy referred to reductio ad absurdum (proof by contradiction) as a mathematician’s “finest 
weapon.” 
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dependent on the individual and his or her understanding of the content employed. Drawing on 
Balacheff’s cK¢ theory, (author) argued that preferences are mediated by students’ conceptions. 
 While providing grounds for questioning the extent to which a lack of preference is 
prevalent among undergraduate students, reasons to continue investigating students’ preferences 
remain. To begin, proof by contradiction and proof by contraposition differ at the metatheoretical 
level, with contraposition proofs requiring a direct proof of the contrapositive statement and use 
of the logical equivalence, (P→Q) ≡ (~Q→~P), while proofs by contradiction require learners to 
not only negate a conditional statement (which is arguably more difficult than negating a premise 
and a conclusion separately) but also to produce an unspecified contradiction and to correctly 
interpret the ramifications of that contradiction (e.g, as the negation of a negated statement rather 
than as an error). In the previous study, the Theorem 3 selection task engaged students in a 
direct:indirect proof selection involving a direct proof:proof by contraposition comparison. 
Hence, there is reason to question if the lack of definitive preference, as evidenced by the 
students’ selection ratio, is predictive of students’ preferences in comparisons involving a proof 
by contradiction; especially, given the differences cited above. With this said, there are cultures 
in which the two forms of proof (contraposition and contradiction) are not distinguished at a 
nominal level, e.g., in Italian (cf. Antonini & Mariotti, 2008). Moreover, pilot data showed 
students’ may categorize a proof by contraposition as a proof by contradiction. Consequently, it 
may be that students’ lack of definitive preference when engaging in direct proof:proofs by 
contraposition comparisons is predictive of students’ preferences during direct proof:proof by 
contradiction comparisons. Certainly, more research is needed. The aim of this study is to 
address this need by pursuing the following research questions: 
 
1. Do undergraduate mathematics students exhibit a lack of preference for indirect proof, when 

engaging in comparative tasks involving both a direct proof and proof by contradiction? 
2. Which rationales do students provide for their selection of the most convincing proof, when 

engaging in comparative tasks involving both a direct proof and proof by contradiction? 
 

The Study 
 The research reported in this paper is part of a larger research program generally focused 

on undergraduate mathematics students’: (a) development of hypothetico-deductive reasoning 
(Piaget, 1968/1964); and (b) emerging conceptions of indirect proof, where conception is used in 
the sense of Balacheff’s cK¢ model (2010; 2013). To investigate students’ preferences, as these 
relate to selecting the most convincing proof, 85 mathematics students were recruited and given 
a paper survey containing Theorem 3 and two proofs of the statement, which were a direct and 
an indirect proof of the contradiction form (see Figure 3). The form was similar to that used in 
the previous study, with two exceptions; namely, the indirect proof form and a slight adjustment 
to the wording of the direct proof so as to produce proofs with equated lengths, (as determined 
by word counts of 40 and 41 words). As was the case in the prior study, complexity and 
familiarity were viewed as equated due to the content occurring in the same chapter in multiple 
introduction to proof texts.   

The surveys were administered in either an abstract algebra or analysis course. Students 
completed the surveys under the supervision of the researcher and returned the surveys directly 
to the researcher. Proof order was randomized to avoid a priming effect. Analyses of the data 
involved the determination of selection ratios and the coding of students’ rationales using a 
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constant comparative methodology (Creswell, 1994). Multiple codes were employed when 
multiple rationales were provided by the students. 
 

Theorem 3: Suppose a set A has the property, for any subset B, A ⊆ B. Then, A = ∅. 
 

Proof A 
 

Assume A has the stated property. Recall, that 
∅ is a subset of every set. Thus, ∅ ⊆ A. By 
the given property, since ∅ is a subset of A, 
A ⊆ ∅. It follows from that, A = ∅.  
 

 
Proof B 

 
Assume A has the stated property and A ≠ ∅. 
If A ≠ ∅ then A⊄ ∅. By the given property,    
A ⊆ ∅. Since, it cannot happen that A⊄ ∅.  
and A ⊆ ∅, it follows that, A = ∅.  
 

Figure 3. Theorem 3 Contradiction-Form Comparative Selection Task  
 

Results 
 Data from the Theorem 3 comparative selection task indicate that students found the 
direct proof more convincing than the proof by contradiction with a direct:indirect selection ratio 
of 56:29. Thus, the students’ preferences differ considerably from those observed in the 
direct:indirect comparative tasks involving a proof by contraposition (direct:indirect selection 
ratio of 26:27). Analyses of students’ selection rationales also indicate differences in students’ 
comparative assessments. Specifically, while the vast majority of students’ rationales focused on 
certainty and complexity when engaging in the contraposition comparison, the selection 
rationales for the contradiction comparison were more varied. Indeed, six rationales were present 
in students’ written remarks, which are reported with students’ selection ratios in Table 1. 
 
Selection Rationale Selection Ratio (Contra-d: Direct) n Percent of Students 
Simplicity / Ease 7:21  28 32.9% 
Error (in Alternative) 4:14 18 21.2% 
Directness / Straightforward 4:23 20 31.8% 
Matched My Thinking 9:8 17 20.0% 
Familiarity  1:12 15 15.3% 
Stronger Argument 6:4 12 11.8% 

Table 1. Students’ Selection Rationales 
 
Due to space limitations, examples of students’ rationales will be restricted to: simplicity, error, 
and matched my thinking. Though directness was common, it is not included as it is self-evident 
in meaning. Below (Figure 4) are two examples of students’ rationales coded as simplicity.  
 
[Example 1.] The second is a proof by contradiction. I tend to find these proofs easier to follow. 
Proof A is not hard to follow as well but I think, in general, proof by contradiction is easier. 
(Selection: Indirect) 
 [Example 2.] Proof A is simpler. Proof B forces the reader to think about it more deeply. 
(Selection: Direct) 

Figure 4. Simplicity Rationales 
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As can be seen by these remarks, students viewed both proofs as simple. However, as indicated 
by the direct:indirect selection ratio of 21:7, the simplicity rationale was more prevalent among 
students who selected the direct proof. The code error was used to denote student rationales that 
indicated a proof contained an error or that there was a statement that the student was uncertain 
about. Below (Figure 5.) are two examples of student rationales coded as error.  
 
[Example 3.] Proof A stated the property that we need to prove and we cannot do that. 
(Selection: Direct) 
[Example 4.] Proof A states that condition as an assumption which immediately made me 
question the validity of the proof. Proof B follows a standard version of a proof and make more 
sense than A. (Selection: Direct) 

Figure 5. 
 
As indicated by these students’ rationales, there was a tendency among some students to view the 
contradiction argument as flawed. Indeed, the data indicate that 14 students (16.5%) selected the 
direct proof and provided this rationale. This finding suggests that rather than lacking a 
preference for indirect proof, students may have difficulty comprehending and/or validating 
indirect proofs of the contradiction-form.  
 The code matched my thinking was used for rationales that focused on students’ 
statements of an alignment between their own approaches to proving and that taken in the 
selected proof. Four examples, which illustrate students’ remarks, are provided in Figure 6. 
 
[Example 5.] While thinking about how I would prove this theorem, Proof B seemed to match 
what I would have said. (Selection: Direct) 
[Example 6.] Personally, I like working with direct proofs rather than contradictions. In Proof B 
the logic makes sense. (Selection: Direct) 
[Example 7.] It was contradiction and I like to use contradiction to solve proofs. (Selection: 
Contradiction) 
[Example 8.] When something seems obvious or believe it’s true, it’s easier for me to assume not 
and follow that way. (Selection: Contradiction) 

Figure 6. 
These responses, accompanied by a direct:indirect selection ratio of 8:9, suggest that the 20% of 
students who attended to their own approaches to the theorem (i.e, their habits of reasoning) did 
not demonstrate a preference for the direct proof by rather lacked a dominant preference. While 
the sample size for this rationale (and the others) is small, one must question if a preference 
would be evident in a larger data set. Nevertheless, it is particularly interesting that those who 
attended to their own approaches did not demonstrate a direct proof preference. Lastly, a note 
regarding the familiarity code is warranted. This code was used to indicate rationales focused on 
students’ who cited familiarity with containment arguments (e.g., A ⊆ B, B ⊆ A, thus A = B) and 
their recognition that the direct proof employed a known proof technique.  

Discussion 
 Findings from the survey suggest, as indicated by prior research (Leron, 1985; Harel & 
Sowder, 1998), that students may lack a preference for indirect proofs of the contradiction-form. 
Moreover, when these findings are considered in relation to the contraposition-form results, were 
no preference is evident, it appears that the two forms of proof are not the same in the eyes of 
undergraduate mathematics students. With this said, there are reasons that claims related to a 
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lack of preference should be stated with caution. First, while the indirect contraposition-
form:direct proof comparative selection task did not elicit the error rationale, this rationale was 
proposed by 16.5% of students in relation to the contradiction proof during the indirect 
contradiction-form:direct proof comparative selection task. Thus, it may be the case that students 
are more prone to comprehension difficulties with contradiction proofs rather than lack a 
preference for this form of proof. Second, while Tall (1979), Knuth, (2002), and Healy & Hoyles 
(2000) all reported results in which students’ proof selections were impacted by familiarity, it 
was only the latter experiment, where a contradiction-form:direct proof comparison selection 
task was used, that students employed a familiarity rationale and stated that the direct proof 
employed a known technique. Familiarity is interesting in that while cognitive psychologist have 
argued that familiarity can create an immediate “feeling of rightness” it may also be the case that 
familiar proof forms are selected because students know those proof forms are accepted by the 
mathematics community or believe that the alternative is less favorable – a belief that could arise 
from reading texts like those in Figure 1. Thus, it is unclear if students’ task-specific inclusion of 
the familiarity rationale is due to students’ seeking “feelings of rightness,” a type of deference to 
the community’s argumentation norms, or something else. Certainly, more research is needed. 

Furthermore, since familiarity strongly influences preferences and claims of preference 
have been predicated on assumptions of comprehension, it is worth examining those students 
who neither viewed the contradiction-form proof as flawed (error rationale) nor cited familiarity. 
Among the 85 students surveyed, 12 reported familiarity with containment arguments as their 
primary rationale and 1 reported familiarity with the contradiction proof. Additionally, while 14 
reported an error in the contradiction argument, only 4 students viewed the direct proof as 
flawed. Removing these two categories of students from the population reduces the 
direct:indirect selection ratio3 of 56:29 to a selection ratio of 31:24. Thus, the proportion of 
students selecting the direct proof (0.56) is not statistically significantly different from a 0.5 
proportion (z = 0.067, p < 0.05). To be certain, among those who did not demonstrate a lack of 
comprehension and who did not defer to a “known technique,” there is little evidence of a 
preference for the direct proof. Thus, while far from providing a definitive conclusion, this 
research raises multiple questions regarding students’ preferences for or against proof by 
contradiction – perhaps with the exception of those who, like Hilbert, developed contradiction as 
a habit of reasoning.  
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When nothing leads to everything: Novices and experts 
working at the level of a logical theory 
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Building on Antonini and Mariotti’s (2008) theorization of mathematical theorem and research 
on students’ meta-theoretical difficulties with indirect proof, this study examines mathematics 
majors’ and mathematicians’: (1) responses and approaches to the validation tasks related to 
the assertion S*→S, when given a primary statement, S, of the form ∀n, P(n) ⇒ Q(n)) and a 
secondary statement, S*, of the form used in proofs by contradiction; namely, ∄n, P(n) ∧ ~Q(n)); 
and, (2) selection of a statement to prove given the choices S* and S. Findings indicate that 
novice proof writers’ responses differ from advanced students’ and mathematicians’ both in their 
approaches and selections, with novices tending to become entangled in natural language 
antonyms and engage in the chunking of, rather than parsing of, quantified statements.  
 

Key words: Indirect proof, Proof by contradiction, Meta-theoretical Difficulties 

How does one know that a mathematical theorem is true? Mariotti (2006) has proposed that 
to know truth in a mathematical sense requires not only a mathematical theory but also a logical 
theory:  

 
In their practice, mathematicians prove what they call ‘true’ statements, but ‘truth’ is 
always meant in relation to a specific theory. From a theoretical perspective, the truth of a 
valid statement is drawn from accepting both the hypothetical truth of the stated axioms 
and the fact that the stated rules of inference ‘transform truth into truth’ (p. 184).  
 

These remarks align with definitions of proof, which focus on the elements of proofs and their 
use of logic; such as that proposed by Akin (2010), “Proofs are sequences of statements which 
can, in theory, be reduced to: (1) axioms, definitions, and previously proved results; or (2) 
statements obtained from earlier statements by the (formal – logical) rules of inference. To be 
certain, this definition points to the fact that without a mathematical theory from which to draw 
axioms, definitions, and previously proved results and without a logical theory to guide 
inferences, one cannot produce mathematical proofs. Indeed, we would obtain quite distinct 
results working in Riemannian rather than Euclidean geometry; especially if we were to use 
intuitionistic logic, such as that used by Brouwer, rather than the standard logic of mathematics. 
Working to clarify the systems that make ‘truth’ possible in mathematics Mariotti, Bartolini 
Bussi, Boero, Ferri & Garuti (1997) have argued that what characterizes a mathematical theorem 
is the triplet (statement, proof, reference theory), where reference theory is used to describe “a 
system of shared principles and deduction rules” (p.8).  
 Building on this characterization of mathematical theorem, Antonini and Mariotti (2008) 
examined a form of proof researchers (Robert, & Schwarzenberger, 1991) describe as highly 
problematic for students; namely, indirect proof. Drawing on data from interviews with tertiary 
students, Antonini and Mariotti demonstrated that while students may gain conviction from 
indirect proofs, this conviction is tied to the specific statements proved, as opposed to their 

19th Annual Conference on Research in Undergraduate Mathematics Education 579

19th Annual Conference on Research in Undergraduate Mathematics Education 579



logically equivalent statements. For instance, given a proof of ~Q → ~P, students may gain 
conviction but fail to do so in relation to the statement P → Q. Drawing on these findings, 
Antonini and Mariotti argue that when examined through the lens of that which characterizes 
mathematical theorems, indirect proofs are unique for they call on learners to employ theorems 
not only within the mathematical theory but also within the logical theory. Consequently, 
Antonini and Mariotti proposed a refinement of the (statement, proof, reference theory) triplet 
for indirect proofs, arguing that indirect proofs involve “the pairing of the sub-theorem (S*, C, T) 
and the meta-theorem (MS, MP, MT)” (p. 405). Meta-statement (MS) refers to statements such 
as “S → S*” where S refers to a primary statement (e.g., P → Q) and S* refers to a secondary 
statement, such as the contrapositive of S (i.e., ~Q → ~P). Meta-proof (MP) refers to the proof of 
S → S* within the meta-theory (MT), i.e., the logical theory. Drawing on this model, Antonini 
and Mariotti argue students’ difficulties with indirect proofs are metatheoretical; that is, due to a 
lack of acceptance of the meta-theorems employed. 
 Antonini and Mariotti’s (2008) account of students’ difficulties with indirect proof is 
unique among accounts of students’ difficulties. Indeed, while researchers have argued that part 
of students’ difficulties with indirect proof arise from difficulties negating statements (Wu Yu, 
Lin & Lee 2003; Antonini 2001, 2003; Thompson 1996), it is also the case that few have 
attended to the role of logic in such proofs. In Tall’s (1979) study of students’ levels of confusion 
related to indirect proofs of the irrationality of √2, students’ confusion was attributed to the lack 
of generic structures in standard contradiction proofs rather than to difficulties at the level of the 
logical theory. One reason for this may be that the particular statement Tall (1979) examine was 
not a compound statement. Hence, the difficulties associated with negating conditional 
statements were not relevant.  Drawing on reflective accounts of multiple teaching experiments, 
Leron (1985) explored students’ responses to standard proofs of the infinitude of primes – that is 
to a mathematical theorem which did not take the form of a compound statement – and found 
that students’ experience difficulties with the destructive, as opposed to constructive, nature of 
the indirect proof, as well as the “negative stretches” that accompany working in a “false world.” 
Hence, working within the logical theory was not a primary source of difficulties. Through 
analyses of data from multiple teaching experiments, Harel and Sowder (1998) examined 
students’ reactions to contradiction proofs and found that students lack a preference for this 
particular form of proof. They argued, like Leron (1985), that students’ prefer constructive 
approaches and that such preferences are indicative of a constructive proof scheme. Beyond the 
rationales of Tall (1979), Leron (1985), and Harel and Sowder (1998), are Reid and Dobbin’s 
(1998) emotioning rationale and Thompson’s (1996) argument that indirect proof instruction 
tends to lack connections to students’ informal reasoning. Indeed, multiple rationales have been 
proposed, though few take into account the specific meta-theorical nature of indirect proofs. This 
has been the case even though Goetting (1995) noted in relation to proof by contraposition, 
students were “wary of the validity of the ‘backwards’ arguments” (p. 124) and Leron (1985) 
noted in the case of proofs by contradiction, “we must be satisfied that the contradiction has 
indeed established the truth of the theorem (having falsified its negation), but psychologically, 
many questions remain” (p. 323) – remarks suggestive of attention to metatheoretical issues.  

Arguably, Antonini and Mariotti’s (2008) metatheoretical rationale represents a 
potentially critical advance in research on indirect proof in that it offers a route by which to 
explore aspects of indirect proof that are both unique and essential to that form of proof. With 
this said, little is known about tertiary students’ metatheoretical reasoning. That this is the case 
may be due to the fact that there are a plethora of studies that focus on the development of proof 
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through the refinement of students’ informal arguments and that argues against the direct 
transition to formal proof and, consequently, do not advocate approaches involving training in 
logic (Jahnke, 2010; Maher & Martino, 1996). Moreover, many “Introduction to Proof” texts 
include instruction on logic but focus on building students’ understandings through natural 
language activities rather than through instruction on logic as a theory (cf. Chartrand et al., 
2013). Thus, one could conclude that there is little interest in metatheoretical issues for they run 
counter to current perspectives on productive approaches to proof and pedagogical practices in 
commonly used texts. On the other hand, the lack of research on metatheoretical reasoning is 
surprising since, as evident in Akin’s definition, our basic definitions of proof rely on the 
existence of a logical theory. Furthermore, there is a profusion of research from cognitive 
psychology demonstrating that humans’ ways of reasoning do not fully align with the forms of 
reasoning used in standard logic (cf. Oaksford & Chater, 2010). Specifically, general tendencies 
for interpreting conditional statements (P → Q), do not align with those used in mathematics, 
with the exception of direct reasoning processes; e.g., accepting P → Q when P and Q are true. 
Thus, there are grounds for questioning pedagogical approaches premised on the idea that the 
logical theorems employed in mathematics will be readily employed by students. To be certain, 
there is reason to argue that further research is needed on students’ approaches to and extent of 
success with metatheoretical work, especially in relation to those forms of proof for which such 
work is essential; namely, indirect proofs.  

The Study 
The purpose of this study is to address the need for research on students’ approaches to 

and extent of success with metatheoretical work, by exploring three research questions: 
 

1. To what extent are mathematics majors and mathematicians successful, when answering 
questions regarding the validity of S* → S; that is, when asked if a secondary statement 
S* is sufficient to prove a primary statement S? 

2. What are the similarities and differences observed among these populations when 
approaching questions regarding the validity of S* → S? 

3. Which formulation, the statement or the secondary statement, do mathematics majors and 
mathematicians prefer, when asked to select a statement to prove? 
 

These questions are of interest for they provide various avenues with which to explore the issue 
of students’ potential difficulties working at the level of a logical theory. Indeed, if experts 
(mathematicians) are able to successfully verify metatheoretical statements, while novices 
struggle, then the findings will provide further evidence of Antonini and Mariotti’s (2008) claim; 
whereas, if neither experience difficulties then an alternative to the metatheoretical hypothesis 
may be needed. Furthermore, if experts and novices avoid selection of secondary statements, 
then such data will provide further evidence of the preference hypotheses generated by Leron 
(1985) and Harel and Sowder (1998). In contrast, if no preference is evident then there will be 
cause to question the preference hypothesis.  
Methods 
 To investigate mathematics students’ and mathematicians’ metatheoretical reasoning, 
three stages of data collection occurred. In the first stage, electronic surveys were sent to 
undergraduate mathematics majors who were within one year of completion of an introduction to 
proof course. The students were provided with Theorem 5 and Statement A (see Figure 1.) and 
asked to indicate if the following statement was true or false, “You can prove Theorem 5 by 
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proving Statement A.” Following this prompt, students were queried “If you were asked to prove 
Theorem 5 which would you pursue first?” and given the choices Theorem 5 and Statement A. 
 
Theorem 5. For all positive integers n, if nmod(3) ≡ 2 then n is not a perfect square. 
Statement A. There exists no positive integer n such that nmod(3) ≡ 2 and n is a perfect square. 

Figure 1. Theorem 5 Task 
 
In stage 2, clinical interviews were conducted with 21 mathematics majors, who met the criteria 
described above. In stage 3, clinical interviews were conducted with 6 mathematicians. In all of 
the clinical interviews, the manner in which the Theorem 5 task was posed matched that of the 
electronic survey. Interview responses were analyzed to gather categorical data for the validation 
and selection questions, as well as data regarding participants’ approaches to the validation 
question. Using a constant-comparative methodology, descriptive codes were generated and used 
to further characterize participants’ video-recorded responses. 
Theorem 5 Task Design  
 The Theorem 5 validation task was designed with the assumption that at the conclusion 
of a proof by contradiction the prover would need to recognize that having shown Statement A, 
he or she can conclude that Theorem 5 was proven. This assumption is predicated on the 
following sequence of proving actions. First, to prove Theorem 5 using a proof by contradiction, 
one begins by assuming the negation of a statement of the form ∀n∈Z+, P(n) ⇒ Q(n). Thus, by 
assuming ~(∀n∈Z+, P(n) ⇒ Q(n)), which is logically equivalent to ∃n∈Z+, P(n) ∧ ~Q(n). Second, 
the prover must arrive at a contradiction to an axiom, definition, previously proved theorem or an 
existing assumption (i.e., something within the mathematical theory) and conclude from this 
contradiction that the statement ∃n∈N, P(n) ∧ ~Q(n) is false; i.e., ~(∃n∈N, P(n) ∧ ~Q(n)). While 
formally, one might say “It is not the case that there exists a positive integer such that …”, 
informally one might argue, “no such n exists” or the more common, though grammatically more 
awkward, “there exists no positive integer n such that …”.  Lastly, one must recognize that the 
proven statement is sufficient to prove the original statement – in Antonini and Mariotti’s terms, 
that S* proves S. Hence, the Theorem 5 validation task was designed with the last phase of this 
sequence in mind; that is, to explore mathematics majors’ and mathematicians’ perceptions of 
validity related to a standard phrasing of the result of a proof by contradiction. Furthermore, as 
was the case in Antonini and Mariotti’s work, the task focused on the inferences to be drawn 
rather than the, perhaps technically more appropriate, determinations of equivalence. 

Findings 
 In regard to the electronic survey, 35 mathematics majors who were advanced in terms of 
course work; that is, who had completed not only an introduction to proof course but also real 
analysis and abstract algebra courses, responded to the survey. The categorical responses are 
shown in Table 1 and indicate that: (a) the majority of advanced students were successful at 
recognizing the validity of the metatheoretical statement S* → S; and, (b) demonstrated only a 
slight preference for the primary (Theorem 5) over the secondary statement (Statement A), which 
was not significantly different from a near even split (χ2 = 0.458; p = 0.499, χ2 Good of Fit test).  
 

Prompt 1: You can prove Theorem 5 by proving Statement A. 
Response N % 
True 29 83 
False 6 17 
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Prompt 2: If you were asked to prove Theorem 5, which would you pursue first? 
Responses N % 
Theorem 5 20 57 
Statement A 15 45 

Table 1. Advanced Mathematics Students’ Survey Responses 
 

 While the surveys were predominantly taken by advanced students, the majority of 
interview volunteers were novice proof writers; i.e., they had recently completed an introduction 
to proof course, had not completed both real analysis and abstract algebra courses but rather were 
enrolled in at most one of these courses at the time of the interviews. Thus, the interviews were 
conducted with a different population in terms of prior coursework. Findings from the interviews 
indicate that the novices’ validation responses fell into four categories: don’t know, no, yes-no-
yes, and yes. For clarification, don’t know was used for students who after deliberating indicated 
they were unable to determine if the statement “You can prove Theorem 5 by proving Statement 
A” was true or false. Yes-no-yes refers to responses in which the student initially articulated an 
intuitive response, sought to validate their intuition, decided “no” and then through further 
analyses decided (often with uncertainty) that their response was, “Yes, it’s true.” As seen in 
Table 2, where the novice proof writers’ responses are shown by category, the most frequent 
response was no at 42.8%, with the majority of these students (67%) arguing that Statement A 
was the negation of Theorem 5. However, if the yes (28.6%) and yes-no-yes (23.8%) response 
categories are collapsed, then roughly half of the students were able to correctly respond to the 
validation statement. It is interesting to note that a secondary analysis of the sample’s verbal 
responses, which coded students’ responses for multiple instances of expressed hesitancy, 
equivocation, or doubt, found that 16 of the 21 students (76%) repeatedly articulated uncertainty. 
Lastly, interview participants overwhelming selected Theorem 5 for their “statement to prove.” 
 

Prompt 1: You can prove Theorem 5 by proving Statement A. 
Response N % 
True (Yes) 6 28.6% 
True (Yes-no-yes) 5 23.8% 
False (No) 9 42.8% 
Uncertain (Don’t Know) 1 4.8% 
Prompt 2: If you were asked to prove Theorem 5, which would you pursue first? 
Responses N % 
Theorem 5 16 76.2 
Statement A 2 9.5% 
No Response 3 14.3% 

Table 2. Novice Proof Writers’ Theorem 5 Task Responses 
 

Not surprisingly, the 6 mathematicians who were interviewed were, without exception, 
successful at the Theorem 5 validation task. Moreover, like the advanced students, their selection 
of a statement to prove was more balanced than that of the novices, with some expressing the 
selection “either.” Data for the mathematician sample is provided in Table 3. 

Furthermore, like the novices, 4 of the mathematician’s (75%) expressed hesitancy or 
equivocations even though they did not shift their response to Prompt 1. However, unlike the 
novices, who doubted their responses, the mathematicians’ expressions of uncertainty tended to 
be geared towards their own reasoning at the time of the interview; e.g., one remarked “I’m 
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doubting myself right now for some reason” and another mentioned that it was “too early” in the 
morning for such questions.  
 

Prompt 1: You can prove Theorem 5 by proving Statement A. 
Response N % 
True 6 100 
False 0 0 
Prompt 2: If you were asked to prove Theorem 5, which would you pursue first? 
Responses N % 
Theorem 5 2 33.3 
Statement A 2 33.3 
Either 2 33.3 

Table 3. Mathematician’s Theorem 5 Task Responses 
  

Beyond the observed similarity of expressed hesitancy, the novices and mathematician 
responses were quite dissimilar. Indeed, while 5 of the 6 mathematicians approached the 
question of proving Theorem 5 by proving Statement A semantically, none of the novices were 
observed using a semantic approach. Instead, the novice proof writers tended to move away from 
the linguistic statements and work at a symbolic level, with many moving to truth tables to prove 
various equivalences. While it might seem that working at a symbolic level leads to a higher 
error rate, it appears that this is not the case. The same percentage of students who worked 
symbolically immediately responded yes, as did those who argued no; approximately 67% of 
each cohort. With this said, it is interesting to note that all (100%) of those who responded “yes-
no-yes” worked symbolically. Since several students expressed a lack of comfort with the 
content as a rationale for moving to symbols, it may be that the mathematicians’ greater content 
expertise played a role in their approaches to the Theorem 5 validation task. This finding raises 
questions about the skills novices need to evaluate statements with unfamiliar content. 
 A second important distinction between the novice proof writers’ and mathematicians’ 
approaches concerns how the two cohorts went about understanding Statement A. Specifically, 
the majority of novices (14 of 21; 67%) tended to engage in chunking; that is, they tended to 
break Statement A into two chunks, with the first containing the quantifying phrase, “there exists 
no positive integer,” and the second chunk containing the open sentence, “nmod(3) ≡ 2 and n is a 
perfect square.” Hence, when responding to Prompt 1, they sought relationships between the 
quantifying chunks of Statement A and Theorem 5 and then the open sentences, rather than 
holistically comparing the quantified statements, as illustrated in the transcript excerpt below. 
 
Linda: This (Statement A) is the negation of this (Theorem 5) because this one says for all and 
this one says there exists no and this one is if P then Q and this one is P and not Q. 

Figure 2. Chunking Transcript Excerpt 
 

In contrast, the mathematicians and 4 of the successful students (3 who replied yes and 1 who 
responded yes-no-yes) engaged in parsing; that is, consideration of the various components of 
the quantified compound statements and their logical relations to each other.  In other words, 
quantifiers were considered in relation to the open sentences they quantified rather than as 
separate sentence components. This approach is illustrated in the interview excerpt in Figure 3, 
where the student considers the negation of the quantifier in relation to the modified statement. 
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Nicolas: Because when you say "there exists no," that's a "for all" but then … but then you have 
to negate …  (places fingers on P and ~ Q statements) … you, you have to negate Q.  

Figure 3. Parsing Transcript Excerpt 
 

Similarly, several mathematicians spoke aloud while responding to the Theorem 5 task, with 
many providing comments akin to the following mathematician’s remark, “there exists no … so 
there is nothing that satisfies this (points to “nmod(3) ≡ 2 and n is a perfect square”).”  

Lastly, those who were observed chunking Statement A; that is, isolating the quantifying 
phrase “there exists no …” where also frequently observed becoming entangled in the natural 
language meanings and linguistic antonyms of “for all” and “there exists no.” For instance, 
Patrick argued, as did others, that “for all” means “everything,” “there exists no” means 
“nothing,” and that “the opposite of nothing is everything.” Thus, for some students, natural 
language functioned as an obstacle to validating the claim S* → S. 

Discussion 
 The findings of the electronic survey of advanced mathematics students and the clinical 
interviews with novice proof writers and mathematicians indicate that while advanced students 
and mathematicians are quite successful validating the claim “You can prove Theorem 5 by 
proving Statement A,” these determinations are quite difficult for novice proof writers who may 
engage in potentially unproductive chunking practices and employ inappropriate linkages 
between mathematical statements and natural language. While it is easy to argue that the 
majority of novices were simply weak in the content area of quantifiers and did not interpret 
them appropriately, for they neither engaged in valid parsing practices nor did they interpret the 
terms in a logically appropriate manner, there is reason to caution against this reaction. Many 
“introduction to proof” texts use natural language when introducing students to quantifiers and 
their negations. Moreover, in a review of these texts, it was found that none addressed the 
ambiguities that arise from natural language in relation to quantification (cf. Epp, 2003). Indeed, 
as was evident from a survey of dictionaries, and is illustrated in Figure 4, neither is there a 
transitive property for antonyms nor is there a lack of ambiguity to natural language when it 
comes to quantifying terms such as for all (everything), exists no (nothing) and exists 
(something; some), when expressed and negated using natural language antonyms. 
 

  

 
 

Figure 4. Natural Language Examples of Quantified Terms 
 

Finally, the novices “statement to prove” selections, which indicated a strong preference for 
Theorem 5, stand in contrast to those of advanced students and mathematicians, with neither 
group demonstrating a preference. Given that many novices had difficulty parsing Statement A 
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this result is not surprising. With this said it appears that, at least for novices, the metatheoretical 
issues described by Antonini and Mariotti (2008) may play a role in students’ interpretations and 
sense of certainty in the context of the results of a proofs by contradiction. In particular, given 
that in response to Prompt 1, 42.8% of novices replied false and only 28.6% replied true, there is 
reason to believe that – as Antonini and Mariotti have argued – students experience difficulties at 
the metatheoretical level in relation to the theorem S* → S, with the current work indicating that 
a potential source of these difficulties may be validating the relationships between S* and S. 
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Students’ explicit, unwarranted assumptions in “proofs” of false conjectures 
 

Kelly M. Bubp 
Ohio University 

Although evaluating, refining, proving, and refuting conjectures are important aspects of doing 
mathematics, many students have limited experiences with these activities.  In this study, 
undergraduate students completed prove-or-disprove tasks during task-based interviews.  This 
paper explores the explicit, unwarranted assumptions made by six students on tasks involving 
false statements.  In each case, the student explicitly assumed an exact condition necessary for 
the statement in the task to be true although it was not a given hypothesis.  The need for an 
ungiven assumption did not prompt any of these students to think the statement may be false.  
Through prompting from the interviewer, two students overcame their assumption and 
correctly solved the task and two students partially overcame it by constructing a solution of 
cases.  However, two other students were unable to overcome their assumptions.  Students 
making explicit, unwarranted assumptions seems to be related to their limited experience with 
conjectures. 

Key words: Conjectures, Unwarranted Assumptions, Mathematical Proof, Task-Based 
Interviews 

The proving process is a complex combination of creativity and rigor that encompasses a 
multitude of activities including analyzing and identifying patterns and relationships, 
generating conjectures and generalizations, and evaluating, refining, proving, and refuting 
mathematical conjectures (Committee on the Undergraduate Program in Mathematics 
(CUPM), 2004; de Villiers, 2010; Durand-Guerrier, Boero, Douek, Epp, & Tanguay, 2012).  
However, many students have limited experience with the activities in the proving process that 
involve uncertainty and decision-making, such as exploring conjectures (Alibert & Thomas, 
1991; de Villiers, 2010; Durand-Guerrier et al., 2012).  This limited experience may inhibit 
students’ development of “an attitude of reasonable skepticism” with respect to mathematics 
(Alibert & Thomas, 1991; de Villiers, 2010; Durand-Guerrier et al., 2012, p. 357). 

Prior research has shown that high school and undergraduate students make unwarranted 
assumptions in proofs (Dvora, 2012; Selden and Selden, 1987; Weiss, 2009).  In these cases, 
the students seem to be either unaware they had made an unwarranted assumption or the 
assumption was based on their perception of a geometric figure and was unrecognized as 
unwarranted.  But what leads students to knowingly make unwarranted assumptions in a non-
geometric proof context?  Especially when the truth value of the statement is unknown?  What 
makes a student explicitly assume an ungiven assumption rather than consider a statement may 
be false?  These are the questions I investigate in this paper, but my actual research questions 
are: Why do students explicitly make unwarranted assumptions on prove-or-disprove tasks?  
What types of explicit, unwarranted assumptions do students make?  Under what conditions do 
students overcome their explicit, unwarranted assumptions? 
 

Literature Review 

“One of the most important steps in [mathematical] research is to conjecture what is the 
truth and then attempt to verify it by hunting down a proof” (Burger, 2007, p. xii).  Suppose a 
mathematician believes a certain conjecture is true, but while attempting to prove it, the 
mathematician needs an assumption that is not a hypothesis?  There seem to be three 
reasonable courses of action commonly practiced by mathematicians: (a) consider that the 
conjecture may be false and search for a counterexample, (b) add the assumption to the 
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hypotheses and prove a weaker conjecture, or (c) assume the needed assumption and justify it 
later (Burger, 2007; Selden & Selden, 1987; Weiss, Herbst, & Chen, 2009).  Although (a) and 
(c) should lead to a decision on the truth value of the conjecture, in (b), the conjecture has 
been weakened and there is no verification of the truth value of the original conjecture. 

In order for students to experience mathematics the way mathematicians do, they need to 
be engaged in exploring, proving, and refuting conjectures.  CUPM (2004) suggests that 
students majoring in the mathematical sciences “learn a variety of ways to determine the truth 
or falsity of conjectures…to examine special cases, to look for counterexamples,” and to 
analyze “the effects of modifying hypotheses” (p. 45).  In his article on teaching proving, 
Dean (1996) suggests that when students are exploring a conjecture, “if little progress is 
being made, the student might add an additional hypothesis and see if this leads anywhere” 
(p. 53).  In Burger’s textbook, Extending the frontiers of mathematics: Inquiries into proof 
and argumentation (2007), directions for each problem statement in the text are ‘Prove and 
extend or disprove and salvage’ (p. xii).  Burger (2007) offers many suggestions for 
extending a proven conjecture or salvaging a refuted conjecture, including weakening or 
adding to the hypotheses, respectively.  Lastly, some high school teachers believe allowing 
students to make an assumption with the caveat that they must return and justify it later is a 
valuable instructional strategy (Weiss et al., 2009). 

Despite the recommendations of CUPM (2004), many students have limited experiences 
exploring and refuting conjectures (Alibert & Thomas, 1991; de Villiers, 2010; Durand-
Guerrier et al., 2012).  In particular, “students are rarely, if ever, presented with false 
mathematical statements and asked to determine whether or not they are true” (Durand-
Guerrier et al., 2012, p.357), and high school “students are rarely held accountable for finding 
the conditions under which a claim could be true (Herbst & Brach, 2006)” (Nachlieli, Herbst 
& Gonzalez, 2009, p. 432). 

High school and undergraduate students’ limited experiences may partially account for 
the difficulties they have studying conjectures.  Students struggle with (a) knowing how to 
begin an exploration, (b) formulating ideas and opinions about the truth of a conjecture, and 
(c) connecting ideas and opinions to proofs or counterexamples (Alibert, 1988).  Durand-
Guerrier and Arsac (2005) suggest that students’ difficulties determining the truth value of 
conjectures may stem from their narrow collection of possible counterexamples and limited 
mathematical knowledge as novices.  In geometric contexts, high school students often make 
unwarranted assumptions based on geometric figures or diagrams even though they are taught 
not to do so (Weiss, 2009). 

Other difficulties students have may be related to the inappropriate use of the strategies 
used by mathematicians and suggested by educators for exploring conjectures.  Some high 
school and undergraduate students unknowingly make unwarranted assumptions that reduce a 
general conjecture to a special case (Selden & Selden, 1987; Weiss, 2009).  Although 
mathematicians examine special cases when exploring conjectures, they do so knowingly and 
realize the general conjecture still needs to be considered (de Villiers, 2010).  Weiss et al. 
(2009) reported on high school teachers’ reactions to a video episode of a teacher allowing a 
student to make an unwarranted assumption in a proof under the condition that the student 
returned to justify the assumption later.  Some teachers expressed concern that students 
would distort this practice (common of mathematicians) by developing a habit of making 
unwarranted assumptions and failing to return to them (Weiss et al., 2009). 
 

Method of Inquiry 

The data in this paper come from a larger study that (a) examined the reasoning students 
use to evaluate conjectures, (b) identified systematic errors students make during the proving 
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process, and (c) investigated cognitive unity between students’ evaluation of conjectures and 
construction of associated proofs and counterexamples. 
 
Participants 

The participants were twelve undergraduate students from a public university in Ohio who 
had passed at least one proof-based mathematics course with a grade of B or better.  Ten 
students were in their fourth year of undergraduate study, and eleven students were 
mathematics or secondary mathematics education majors. 
 
Procedures 

I conducted two task-based interviews with each participant which were audio-recorded 
and transcribed.  Participants were asked to think aloud during the completion of four tasks and 
to clarify or expand on their thinking as necessary.  Each task was provided one at a time on a 
separate sheet of paper.  Participants were provided with a list of definitions of terms in the 
tasks, but no other materials were allowed.  Participants used a LiveScribe Pen and paper that 
recorded synchronously audio and writing.  After each task, I asked follow-up questions on the 
participants’ work on the task.  Upon completing all tasks, I asked each participant general 
questions about their approaches to and understanding of proof and disproof. 
 
Tasks 

Each task required the participants to evaluate a conjecture and prove or disprove the 
conjecture accordingly. The tasks involve basic properties of functions and were chosen to be 
accessible to the participants.  In line with Alcock and Weber (2010), each task referred to 
general objects and their properties and should have been approachable with either semantic or 
syntactic reasoning.  The following three tasks will be discussed in this paper: 

Injective Function Task: Let 𝑓: 𝐴 → 𝐵 be a function and suppose that 𝑎0 ∈ 𝐴 and 𝑏0 ∈
𝐵 satisfy 𝑓(𝑎0) = 𝑏0.  Prove or disprove: If 𝑓(𝑎) = 𝑏 and 𝑎 ≠ 𝑎0, then 𝑏 ≠ 𝑏0. 

Monotonicity Task: Prove or disprove: If 𝑓: ℝ → ℝ and 𝑔: ℝ → ℝ are decreasing on an 
interval I, then the composite function 𝑓 ∘ 𝑔 is increasing on I. 

Global Maximum Task: Prove or disprove: If 𝑓 is an increasing function, then there is no 
real number 𝑐 that is a global maximum for 𝑓. 

Each statement in these tasks is false.  Any noninjective function is a counterexample for 
the Injective Function Task.  A counterexample for the Monotonicity Task requires a function 
𝑔 with outputs that are not elements of the chosen interval I.  Finally, any increasing function 
defined on a closed interval serves as a counterexample for the Global Maximum Task. 
 
Analysis 

I identified all errors made by participants in the proving process.  Instances in which 
participants made assumptions that were not given hypotheses in the task were classified as 
unwarranted assumptions.  An unwarranted assumption was further categorized as explicit if 
the participant expressed awareness of making it. 
 

Results 

Six of the twelve students in this study made an explicit, unwarranted assumption.  Each 
of these students did so on exactly one task.  In each case, the assumption the student made 
was exactly what was needed to make the statement in the task true, but was not a given 
hypothesis.  Additionally, in the face of the needed assumption, no student considered the 
possibility that the statement may be false without prompting from the interviewer.  In this 
section, I describe these students’ explicit, unwarranted assumptions and the extent to which 
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they overcame them.  First, I discuss Edward and Jalynn, each of who overcame their 
explicit, unwarranted assumptions and correctly solved the associated tasks.  Next, I present 
Evan and Inigo, who partially overcame their explicit, unwarranted assumptions by 
constructing task solutions involving cases.  Lastly, I discuss Aurelia and Jay who failed to 
overcome their explicit, unwarranted assumptions and incorrectly solved the associated tasks. 
 
Edward and Jalynn 

Edward and Jalynn each made an explicit, unwarranted assumption while attempting to 
prove the statements in the Monotonicity and Injective Function Tasks, respectively.  With 
prompting from the interviewer, they eventually realized that their assumptions were 
problematic and correctly decided the statements were false. 
 
Edward 

Edward decided that the statement in the Monotonicity Task was true and constructed a 
proof for it.  Within his proof, Edward made the explicit, unwarranted assumption that the 
range of the function 𝑔 was in the interval I.  Upon completing his proof, he noted, “I’ll say 
it’s increasing on I.  Although I didn’t do a good job at all of proving where I is or working 
with where I is.”  I asked him how concerned he was about that, and he said: 

If they are both decreasing on an interval I, that doesn’t necessarily mean the intervals 
overlap…Because we would need the range of 𝑔 to be in I…we would need the 
domain of 𝑓 to be the same decreasing interval as the range of g, and we’d need the 
domain of g to be decreasing.  So, and I didn’t prove that connection.  I should have. 

I inquired, “Does that invalidate your proof?”  He responded, “Yes.  I would not necessarily 
believe this proof because I didn’t match up the range to the domain.” 

I pressed further regarding this assumption in his proof, and he indicated that it was a 
necessary but unwarranted assumption: “If I make that assumption,…it does work…But 
without making that assumption, I don't think it holds….I don’t think that’s an assumption I 
can legitimately make.”  Upon making sense of why the assumption was necessary for the 
statement to be true, Edward finally decided that the statement was false.  He concluded: 

Without this [the assumption], 𝑓…could be increasing or decreasing on I.  I mean, 
depending on where the range of g is mapped onto the domain of 𝑓 and what, whether 
it’s increasing or decreasing at that interval…‘cause the interval…doesn’t necessarily 
line up at 𝑓 and 𝑔.  That makes this statement false. 

Thus, through interviewer prompting and analysis of the necessity of his assumption, 
Edward realized that he could not justify his assumption and the statement was false. 
 
Jalynn 

Jalynn knew that the Injective Function Task was related to the concept of one-to-one, but 
was confused by the notation 𝑓: 𝐴 → 𝐵, wondering whether it only indicated the domain and 
range of the function or if it also implied that the function was onto or one-to-one.  After she 
began her proof, she realized she needed the assumption that the function 𝑓 was one-to-one 
and said, “I can assume that it’s one-to-one….There would just be a condition for it then.”  
With this explicit, unwarranted assumption, Jalynn constructed a proof for the statement. 

After she completed her proof, I asked Jalynn if she thought that the assumption that 𝑓 
was one-to-one was a necessary condition for her proof.  She said that she was unsure 
because she was still confused about whether the notation indicated that the function was 
one-to-one.  So, I asked her what she thought if we just assumed that the notation only 
indicated the domain and range of the function, and she replied “[that] probably would 
change it, but, I’m just trying to think of an example.”  She wrote 𝑓(𝑥) = 𝑥2, and showed 
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that 𝑓(3) = 𝑓(−3) = 9.  She indicated that this function was not one-to-one and that 𝑓 being 
one-to-one was a necessary condition for this statement to be true. 

Finally, I asked Jalynn to clarify whether she thought the statement was true or false, and 
she replied “it’s true if it’s one-to-one and it’s false if.  Overall it would be false in any case, 
just like how here [referring to her counterexample 𝑓(𝑥) = 𝑥2]…I guess it just asks for the 
general case.”  Like Edward, through prompting to consider the necessity of her explicit, 
unwarranted assumption, Jalynn analyzed it in the context of an example and realized she 
needed to consider the general case in which the statement was false. 
 
Inigo and Evan 

Inigo and Evan each made an explicit, unwarranted assumption while proving the 
statements in the Injective Function and Global Maximum Tasks, respectively.  They were 
able to partially overcome these assumptions by constructing cases–one with and one without 
the assumption–for their solutions to the tasks.  However, neither student realized that only 
one of the cases applied to the given task. 
 
Inigo 

Inigo assumed the statement in the Injective Function Task was true.  While constructing 
his proof, in order to claim 𝑓(𝑎) = 𝑓(𝑎0) implies 𝑎 = 𝑎0, Inigo said he needed to assume 𝑓 
was one-to-one.  He did so, making an explicit, unwarranted assumption, and completed his 
proof.  He then said, “I know there’s a flaw in some logic there because of this [underlining 
his assumption that 𝑓 is one-to-one], but I’m finished.”  Inigo was content to stop with an 
invalid proof, but I was not willing to let it stand.  I asked him if he could tell me why he 
thought it was wrong, and he said “I am assuming that this is one-to-one.  And it’s not 
necessarily one-to-one….And I know you can’t actually make that assumption here”.  Inigo 
then realized that 𝑓(𝑥) = 𝑥2 served as a counterexample and said “So when it’s one-to-one, 
that holds [indicating his proof]; and then when it’s not, there [underlining his 
counterexample]….I broke this into cases.”  Thus, through prompting, Inigo only partially 
overcame his explicit, unwarranted assumption, deciding that a complete solution to the task 
included two cases.  He did not realize that only the case without the assumption applied to 
the statement in the given task. 
 
Evan 

On the Global Maximum Task, Evan thought mistakenly that the given statement said the 
function did have a global maximum rather than saying it did not have a global maximum.  
Thus, Evan decided the statement was false and constructed a proof by contradiction to 
disprove the statement (proving the function did not have a global maximum).  However, this 
proof included the implicit, unwarranted assumption that the domain of the function 𝑓 was ℝ. 

Because Evan had misread the statement, I confirmed with him that he thought the 
statement was false and asked him to reread the statement to ensure he was saying what he 
wanted to say.  Upon looking back at his disproof, he realized he made the assumption that 
the domain of 𝑓 was ℝ and said he would “add a disclaimer” to his proof.  He included his 
assumption in his disproof which made it an explicit, unwarranted assumption.  Additionally, 
Evan wrote a second case in which the domain was a closed interval and proved the statement 
was true in that case.  Like Inigo, Evan concluded he had two cases, but did not realize only 
one actually solved the given task. 
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Aurelia and Jay 
Aurelia and Jay each made an explicit, unwarranted assumption while proving the Global 

Maximum and Injective Function Tasks, respectively.  Both students failed to overcome these 
assumptions and incorrectly solved the tasks. 
 
Aurelia 

Aurelia struggled to determine the truth value of the Global Maximum Task.  Upon first 
reading the statement, Aurelia said “So, I’m assuming that means if 𝑓 is increasing 
throughout the whole entire function?  So, this is obviously not true if you have…[a] function 
that stops at a certain point.”  However, she questioned whether a function could have a 
restricted domain.  She drew a graph of 𝑓(𝑥) = 𝑥2 restricted to [0,2] and asked herself “is 
that considered a function?”  She was uncertain whether it was a function, but decided to 
assume that it was not a function because she thought I was “not trying to trick [her]”.  Thus, 
she made the explicit, unwarranted assumption that a function cannot have a restricted 
domain.  This allowed her to assume that the function in the task was defined on ℝ, and she 
used this assumption to incorrectly “prove” the false statement. 
 
Jay 

Jay assumed the statement in the Injective Function Task was true and constructed a proof 
in which he made the explicit, unwarranted assumption that the function 𝑓 was one-to-one.  
After he completed his proof, I asked him what the key step was in his proof, and he said 
“Well, just, for me, the idea since 𝑎 ≠ 𝑎0, then, I, sort of, made a jump and assumed that 
𝑓(𝑎) then is not equal to 𝑓(𝑎0).”  I inquired about making this “jump”, and he replied 
“That’ll only be true if the function was one-to-one, but from just the given information, I 
don’t know exactly if it is one-to-one.”  I continued attempting to draw information out of 
him about his use of one-to-one despite being uncertain whether 𝑓 was one-to-one, but I was 
unable to get him to reconsider his assumption.  He repeated that his proof would work if he 
knew the function was one-to-one, but he never indicated decisively whether he knew this.  
Despite my pressing, Jay was unable to overcome his explicit, unwarranted assumption and 
was satisfied with his “proof” for this false statement. 
 

Discussion 

Consistent with prior research with high school and undergraduate students, the students 
in this study seemed to lack key strategies for thinking about and identifying false statements.  
Some students made explicit, unwarranted assumptions rather than consider a given 
conjecture was false.  In each case, the student completed a “proof” of a false statement that 
relied on and included the explicit, unwarranted assumption.  Multiple students in this study, 
including Edward and Inigo, said they are rarely asked to consider statements in which the 
truth value is unknown.  Inigo noted, “All throughout math classes, we’re bombarded with 
what’s true and not with what’s false.”  It seems possible that limited exposure to conjectures 
may have inhibited these students’ development of a healthy skepticism toward mathematics, 
as has been suggested in the literature (Alibert & Thomas, 1991; de Villiers, 2010; Durand-
Guerrier et al., 2012).  This may have led the students to do whatever it took to prove the 
statements rather than consider their potential falsity.  This suggests students need more 
opportunities to engage in evaluating, refining, and refuting conjectures. 

Another possible explanation for the students’ behavior, as indicated by the concerns 
voiced by the high school teachers in Weiss et al.’s (2009) study, is that these students were 
misusing a common technique practiced by mathematicians.  Edward was the only student 
who indicated he knew he should have returned to his assumption to justify it.  The other 
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students seemed content with simply adding to the hypotheses, even though some expressed 
concern over doing so.  It is possible that these students were misusing a legitimate strategy 
they had seen mathematicians use, which may account for their uneasiness.  However, these 
students also expressed a clear understanding of the logical nature of proofs during follow-up 
questioning, so perhaps their concern resulted from their knowing the assumptions were 
unwarranted, but not knowing what else to do.  This would suggest again that the students’ 
struggles were related to their limited experience with statements of unknown truth value. 

Each explicit, unwarranted assumption made by the students in this study was an ungiven 
hypothesis that was necessary for the statement to be true.  Thus, the need for each 
assumption should have indicated the potential falsity of each statement as well as exactly 
what was needed in a counterexample.  On the Monotonicity Task, Edward assumed the 
range of the function 𝒈 was in the interval I.  On the Injective Function Task, Jalynn, Inigo, 
and Jay each assumed the given function 𝒇 was one-to-one, and on the Global Maximum 
Task, Evan and Aurelia assumed the domain of the function 𝒇 was ℝ.  For each task, the fact 
that these assertions are not necessarily true is precisely why the statements are false.  If 
students were accustomed to Burger’s (2007) instructions to ‘prove and extend or disprove 
and salvage,’ the realization that they needed these assumptions to prove the statements 
should (a) indicate the statements are false, (b) provide the necessary conditions for a 
counterexample, and (c) specify an assumption to add to the hypotheses to salvage the 
statements.  This would make the need for the assumption in a proof attempt a powerful tool 
in solving the task.  However, it does not seem as though the students in this study were 
trained to recognize this power of needed assumptions. 

Despite some of the students’ concerns regarding their assumptions, prompting from the 
interviewer to reconsider their “proofs” or assumptions seemed necessary for them to 
overcome or partially overcome their explicit, unwarranted assumptions.  However, this did 
not work in all cases as Aurelia and Jay were unable to overcome their assumptions.  
Interestingly, Inigo, Evan, and Jay each indicated during follow-up questioning that prove-or-
disprove tasks are more difficult than prove tasks because if they got stuck in the middle of a 
proof, they would have to question whether they were trying to prove a false statement and 
consider looking for a counterexample.  However, none of these students did this when 
confronted with the need for an ungiven assumption.  Perhaps they did not consider or 
recognize this as a form of ‘getting stuck.’  Either way, it seems they possessed knowledge of 
an appropriate strategy to use the situation, but failed to use it. 

The results of this study suggest a couple ideas for dealing with students making explicit, 
unwarranted assumptions.  First and foremost, engage students in evaluating conjectures, 
including false conjectures.  And so often.  If students are rarely faced with conjectures, then 
it will be difficult for them to develop and use appropriate strategies for dealing with 
situations that are common in conjecturing contexts but not in contexts in which the truth 
value of a statement is known.  Additionally, it seems as though students may not be inclined 
to question explicit, unwarranted assumptions on their own.  They may need prompting from 
their instructors in order to recognize that needing an ungiven assumption means that they are 
‘stuck.’  And we need to encourage students to explore this special type of being ‘stuck’ 
because of its potential power to indicate why a statement is false, what is needed for a 
counterexample, and what is necessary to make it true.  Engaging students in evaluating 
conjectures and helping them recognize the potential power of a needed assumption may 
allow them to move ever closer toward thinking like mathematicians think. 
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Limitations of a “chunky” meaning for slope 
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This paper will investigate the question “What mathematical meanings do high school 
mathematics teachers hold for slope and rate?” It will also investigate to what extent these 
meanings for slope and rate are multiplicative, that is built on an image of quotient as a 
measure of relative size. A multiplicative meaning for rate of change is powerful because it 
allows the teacher to better differentiate between additive and multiplicative situations. The 
data comes from the administration of the diagnostic instrument named “Meanings for 
Mathematics Teaching Secondary Math” (MMTsm).  

Key words: Secondary Teacher Preparation, Slope, Rate, Diagnostic Instrument 

Coper-Gencturk (2015) followed 21 K-8 teachers for three years to determine how their 
mathematical knowledge and teaching changed over time. She found that the improvement in 
teachers’ mathematical knowledge as a result of the master’s program and their overall level 
of mathematical knowledge played significant roles in “indicating the extent to which 
teachers were successful in constructing meanings for mathematical rules and articulating 
what mathematical ideas students were supposed to learn” (Coper-Gencturk, 2015, p. 314). 
Teachers with lower content knowledge for teaching made superficial changes to their 
instruction such as putting students in groups to discuss procedures, or adding real-world or 
hands-on activities that were not clearly connected to the mathematical ideas being taught 
(Coper-Gencturk, 2015). It is important to understand and address mathematical weaknesses 
of teachers to help them implement meaningful changes in their classrooms. 

Studies that employed time intensive methods such as interviews to study small samples 
(less than 10) of teachers described teachers who conveyed computational or additive 
meanings for slope (Coe, 2007; Stump, 1999). Project Aspire developed the instrument 
named Mathematical Meanings for Teaching Secondary Mathematics (MMTsm) to help 
professional developers and researchers more quickly and meaningfully diagnose teachers’ 
mathematical thinking. This study builds on prior researchers’ understandings of teachers’ 
meanings for slope and rate, by investigating the following questions in a much larger sample 
of teachers using items related to slope and rate of change from the MMTsm. 

1. What meanings for slope and rate might teachers’ responses convey to their 
students? 
2. To what extent do these meanings build on an image of quotient as a measure of 
relative size? 

Theoretical Perspective 
Thompson’s (2013, 2015) work on meaning is the theoretical foundation of Project 

Aspire. Thompson defined “meaning” in the context of earlier research on the development 
of children’s mathematical schemes. Harel and Thompson used the Piagetian notion of 
scheme to define a stable meaning as the “the space of implications that results from having 
assimilated to a scheme. The scheme is the meaning” (Thompson, Carlson, Byerley, & 
Hatfield, 2014, p. 13). Glasersfeld (1995) identified the three parts of schemes as follows: 

1. Recognition of a certain situation. 
2. A specific activity associated with that situation. 
3. The expectation that the activity produces a certain previously experienced result 
(p. 65). 
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A person’s meaning for a mathematical idea includes both what comes to mind when they 
encounter an idea and what is immediately implied by whatever comes to mind—what might 
come to mind easily next. 

Literature Review 
The explanations of constructs will use examples from interviews with teachers 

conducted in prior qualitative research. We will explain one non-multiplicative “chunky” way 
of thinking about slope and the limitations of this way of thinking. According to Castillo-
Garsow (2010; 2012) a “chunky” way of thinking about quantities changing entails imagining 
completed chunk, that is an unit chunk. Thus, an individual using a “chunky” way of thinking 
is likely to imagine only changes in chunks instead of continuous change. Stump (2001) 
interviewed pre-service teachers named Joe, Tracie and Natalie and observed their teaching 
as part of a study on pre-service teachers’ understandings of slope and how they expressed 
their meanings in the classroom. Joe planned and taught lessons on slope after discussions in 
a methods course designed to help teachers develop stronger meanings for slope. “Joe 
eventually defined slope as ‘vertical change/horizontal change,’ and presented a graph of the 
line passing through the points (0,0) and (3,2). He emphasized that the slope as a fraction, 
2/3, up 2, over 3” (Stump, 2001, p. 216). One student in Joe’s class “was having difficulty 
understanding how the two fractions 5/-6 and -5/6 could both represent the same slope. 
Although at the time Joe struggled in vain to help her understand, he later described her 
difficulty with the following insight: ‘They think you are describing a movement as opposed 
to you describing a number, a measurement’” (Stump, 2001, p. 216). Although Joe’s personal 
meanings were sufficient to allow him to see ‘5/-6’ and ‘-5/6’ as the same slope, the meaning 
for slope he conveyed to the student (namely, slope tells us how to go up and over) limited 
the student’s ability to use slope productively. Further, the meaning for slope Joe conveyed to 
this student was strongly connected to the conventional Cartesian coordinate system and the 
act of moving over and up in chunks of 2 and 3. His meaning for slope could not be applied 
to polar coordinate systems or real world situations where two quantities change together, but 
do not move horizontally and vertically. 
 Joe conveyed a chunky, non-multiplicative meaning for slope because he did not say 
for any size change in x the change in y is 2/3 as large. Other teachers also did not strongly 
connect the idea of slope to the notion of a quotient as a measure of the relative size of the 
change in x and the change in y. Coe (2007) asked Peggy “why do we use division to 
calculate slope?” and she replied that she didn’t know because “she never really thought of it 
as the division operation” (p. 207).  Even though Peggy realized that there is a division 
symbol in the formula for slope she seemed not to have questioned how it related to her 
meanings for division.  

Some teachers’ tendency to avoid using a multiplicative meaning for quotient in 
explanations of slope may be because their meanings for quotient are weak. McDiarmid and 
Wilson (1989) gave a written instrument to 55 alternatively certified secondary teachers with 
mathematics degrees. He presented them with four story problems and asked them to choose 
which story problem could be solved by dividing by ½. Only 33% were able to identify 
quantitative situation that involved division by a fraction. In interviews by McDiarmid and 
Wilson (1989) some alternate route secondary teachers could see no real world application 
for division by fractions. 

Ball (1989) asked prospective teachers  “to develop a representation—a story, a model, a 
picture, a real-world situation—of the division statement 1 !! ÷

!
!” (p. 21). Five out of 9 

prospective secondary teachers and 0 out of 9 elementary teachers were able to generate an 
appropriate representation (p. 22). Byerley and Hatfield (2013) asked 17 pre-service 
secondary teachers to draw a picture representing a particular division problem. Six out of 17 
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were able to represent the relative size of 7.86 and .39 in an image to explain the meaning of 
a quotient (Byerley & Hatfield, 2013). Without an image of quotient as a measure of relative 
size, it is hard to build a meaning for slope as a measure of the relative size of the change in x 
and the change in y. 

Item Development 
The motivation for Project Aspire was to design items and scoring rubrics that allow 

researchers and teacher educators to categorize teachers’ meanings with a written diagnostic 
instrument. Thompson (2015) summarized the process of creating items and rubrics for the 
MMTsm: 

(1) Create a draft item, interview teachers (in-service and pre-service) using the draft 
item. A panel of four mathematicians and six mathematics educators also reviewed 
draft items at multiple stages of item development. In interviews, we looked for 
whether teachers interpret the item as being about what we intended. We also looked 
for whether the item elicits the genre of responses we hoped (e.g., we do not want 
teachers to think that we simply want them to produce an answer as if to a routine 
question); (2) Revise the item; interview again if the revision is significant; (3) 
Administer the collection of items to a large sample of teachers. Analyze teachers’ 
responses in terms of the meanings and ways of thinking they reveal; (4) Retire 
unusable items; (5) Interview teachers regarding responses that are ambiguous with 
regard to meaning in cases where it is important to settle the ambiguity; (6) Revise 
remaining items according to what we learned from teachers’ responses, being always 
alert to opportunities to make multiple-choice options that teachers are likely to find 
appealing according to the meaning they hold; (7) Administer the set of revised items 
to a large sample of teachers. 

We designed the item in Figure 1 to reveal teachers’ meanings for slope in the context of 
teaching. The inspiration for the name of the item came from Coe (2007) and his observations 
that the three teachers he interviewed did not connect the idea of slope with a measurement 
meaning of division. We designed Part B to prompt teachers to reflect on the relationship 
between any size change in x and the associated change in y because we anticipated many 
teachers would give responses to Part A that were similar to the student’s explanation in Part 
B. We wanted to see if teachers could move beyond thinking of slope in terms of one-unit 
changes in x. Part B of “Slope and Division” gives teachers a chance to extend their meanings 
for slope to situations where x does not change by one, or alternatively reveal the limitations 
of their meanings for 3.04.  
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Mrs. Samber taught an introductory lesson on slope. In the lesson she divided 8.2 by 2.7 to calculate 
the slope of a line, getting 3.04. 
 
Convey to Mrs. Samber’s students what 3.04 means. 
 
Part B.  
Mrs. Samber taught an introductory lesson on slope. In the lesson she divided 8.2 by 2.7 to calculate 
the slope of a line, getting 3.04. 
 
A student explained the meaning of 3.04 by saying, “It means that every time x changes by 1, y 
changes by 3.04.” Mrs. Samber asked, “What would 3.04 mean if x changes by something other than 
1?”  
 
What would be a good answer to Mrs. Samber’s question? 

Figure 1. The item "Slope and Division" was designed to reveal meanings for slope. © 2014 
Arizona Board of Regents. Used with permission. 

Rubric Development 
After the first round of data collection from 144 teachers in Summer 2012 we categorized 

the thinking revealed in the items using a modification of a grounded theory approach 
(Corbin & Strauss, 2007). The modification is that we began our data analysis with strong 
theories of understanding magnitudes and rates of change, and of the nature of mathematical 
meanings and of characteristics that make them productive in instruction. We developed 
rubrics by grouping grounded codes into levels based on the quality of the mathematical 
meanings expressed. 

We read the teacher’s response literally, asking, “If this is what they said to a class, what 
meanings for the mathematical idea might students’ learn?” During team discussions of 
rubrics and responses, we continually asked ourselves. “How productive would the teacher’s 
response be for a student if this is what she or he said while teaching?” and, “How might 
students understand what the teacher said were they to take it at face value?” 

The summary rubric for Slope and Division is given in Table 1. The rubric was refined 
many times as the project team conducted multiple rounds of scoring on data collected in 
Summer 2013. 

 
Table 1. Rubric for Part A of "Slope and Division." 

Level A3 
Response: 

The teacher conveyed that x can change by any amount and that y changes by 3.04 
times the change in x. 

Level A2a 
Response: 

Any of following: 
− The teacher wrote that for every change of 1 in x, there is a change of 3.04 in y. 
− The teacher wrote that for every change of 2.7 in x, there is a change of 8.2 in y.  
− The teacher wrote that a difference in x values is compared to a difference in y 

values. 
Level A2b 
Response: 

The teacher conveyed in words or graphically that the slope gives information about 
how to move horizontally and vertically. For example: 
− If x moves to the right 1 space, y moves up by 3.04. 
− If x runs by 2.7, y rises by 8.2. 
− The slope tells us to move horizontally by one and vertically by 3.04. 

Level A1 
Response: 

Any of following: 
�� The teacher conveyed that 3.04 is the result of a calculation. 
�� The teacher used a phrase such as “average rate of change”, “constant rate of 
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change” or “slantiness” without addressing the question of how 3.04 relates 
changes in x and changes in y. 

�� The teacher simply stated the idiom “rise over run” without describing the 
changes. 

 
Level A3 responses convey a multiplicative meaning for slope. A multiplicative meaning 

for slope builds on the meaning for quotient as a measure of relative size. Level A2a and 
level A2b responses convey an additive or chunky meaning for slope. Level A2a responses 
are considered slightly more productive for students than A2b responses because the meaning 
of slope in Level A2a responses is not constrained to horizontal and vertical motion on a 
Cartesian graph, but could be used productively in real world situations. Level A1 responses 
on our rubric represented more than one possible meaning for slope, but each of these 
meanings are similar in the sense that they convey that the meaning of slope is something to 
memorize. We scored responses that did not fit any other category at level A0. In cases where 
teachers responded with multiple meanings for slope in one response we decided to 
categorize their response according to the highest level meaning they conveyed. 
Table 2. Categorization for Part B of "Slope and Division." 

Gave reasonable 
meaning for 3.04 

The teacher gave a mathematically reasonable explanation of what 
3.04 means. For example “3.04 is the ratio” or “3.04 tells us how many 
times as large ∆y is as ∆x.” 

Gave explicit 
computations to find ∆y 

The teacher gave a clear instruction to find the change in y, the change 
in x should be multiplied by 3.04. 

Gave vague 
computations to find ∆y 

The teacher answered the question “how to you find the change in y?” 
but does so without explicitly mentioning the change in y. For example 
they said “multiply it by 3.04.” 

 
The purpose of Part B is to allow teachers to think about the change in x varying 

continuously instead of in jumps of a fixed amount.  
Briefly, common responses to Part B included explaining what 3.04 means, explaining 

how to find the change in y given an arbitrary change in x, or giving an example of how much 
y would change by if x changed by two. The quality of responses in each category varied 
from teachers who gave clear and understandable explanations of the meaning of 3.04 to 
those who explained what 3.04 meant by saying only “multiply it by 3.04.” In scoring Part B 
we noted mathematical mistakes such as confounding y with ∆y in a separate score not 
reported here. Although a portion of the responses at each level do contain mathematical 
errors, we categorize responses by the primary meaning conveyed ignoring mathematical 
mistakes. The categorization in Table 2 is based on our rubric for Part B. We will give the 
rubric for Part B and data in the longer paper. 

Administration and Scoring 
We administered the MMTsm to 157 high school teachers in two different Southwestern cities 
in Summer 2014. The high school teachers took the diagnostic exam at the beginning of 
professional development programs. The first author scored all responses to “Slope and 
Division.” To estimate interrater reliability (IRR) an outside collaborator scored 50 
overlapping responses. Scorers had perfect agreement on 84% of responses to Part A and 
72% on responses to Part B. Non-perfect agreement was scored as disagreement. These IRR 
scores are lower than most other items on the MMTsm due to the complexity of teachers’ 
responses. Responses were often not written in complete sentences and used pronouns with 
unclear antecedents so it was difficult to determine whether or not a student could make sense 
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of the teacher’s explanation. Because of the probability that the scorers might pick the same 
level by chance we also computed Cohen’s Kappa for Part A (.773) and Part B (.621).  

Results 
The most common meaning conveyed in our sample was a chunky, additive meaning for 

slope (See Table 3). 
Table 3."Responses to Part A "Slope and Division." 

Response Math Majors Math Ed Majors Other Majors Total 
A3-relative size 0 0 3 3 
A2a-chunky 12 8 21 41 
A2b-chunky graphical 19 29 30 78 
A1-memorized 4 11 13 28 
A0-other/IDK 1 1 2 4 
No response 0 0 3 3 
Total 36 49 71 157 

 
Only three teachers out of 157 used a multiplicative meaning for quotient in explanations 

of slope in Part A. Approximately 76% of teachers showed a chunky or additive meaning for 
slope. Interestingly, about 86% of teachers who majored in mathematics and 82% of teachers 
who majored in mathematics education answered a chunky, additive meaning. Although 
chunky meanings for slope can be used productively in some situations, the responses to Part 
B often indicated that the teachers struggled to extend their chunky meaning to situations 
where the change in x is not equal to one. The response in Figure 2 conveys that slope gives 
information about how to move vertically and horizontally on a graph. The response conveys 
a chunky meaning for slope because the changes occur in chunks of one and 3.04. The 
meaning of 3.04 seems to be tightly tied to the change in y and only loosely connected to the 
associated change in x. 

 
Figure 2. One teacher’s “chunky” response to Part A and B. 

The Part B response provides confirmation that for this teacher 3.04 is more strongly 
associated with the change in y, then a comparison of the relative size of the change in y and a 
change in x. It might convey to students that the slope gives information about vertical and 
horizontal motion on the graph and that the number 3.04 is only associated with the change in 
y and not with a comparison of changes in x and y. 

The response in Figure 3 conveys that the slope is strongly associated with the change in 
y. In this case, the response incorrectly confounds the change in y with the slope. When the 
meaning for slope conveyed emphasizes that x changes by one the value of the slope and the 
change in y are identical and it becomes easier to confuse the two concepts. 
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Figure 3. One teacher’s response to Part A and associated chunky Part B response. 

Some chunky responses conveyed that the only points on the line that “mattered” were 
the points obtained by the process of moving over and up in fixed chunks (see Figure 4). This 
response is not consistent with imagining that between any two points on the line there are 
infinitely many points.  

 
Figure 4. Chunky response conveying that the points on the line only occur at fixed intervals. 

There are a variety of consequences of conveying that points on the line only occur at 
fixed intervals. If points only occur at fixed intervals it is possible to conceptualize slope as 
the distance between two points on a line. Some teachers in our sample explicitly responded 
that the slope is a distance between two points and some Calculus students who were 
interviewed on “Slope and Division” also told us explicitly that slope is the distance between 
the two points used in the slope formula. After confirming that, to the student, slope is a 
length, the interviewer asked the student, “Why do you divide the change in y and the change 
in x to get a length?” The student responded, “Because, it’s you’ve got the one x here and the 
other one here and so you are trying to find the way which they both get to each other 
basically.” 

 
Table 4. Responses to Part A and Part B of "Slope and Division." 

 
 
 
 
 
 
Part 
A 
 

 Part B Response 
 Gave reasonable 

meaning for 3.04 
Gave explicit 
computations 
to find ∆y. 

Gave vague 
computation
s to find ∆y. 

Other 
 

IDK 
Blank 

Total 

A3-relative size 1 2 0 0 0 3 
A2a/A2b chunky 30 31 18 40 0 119 
A1-memorized 2 8 6 8 4 28 
A0-other 2 0 0 0 1 3 
IDK/blank 
 

0 0 1 0 3 4 

Total 35 41 25 48 8 157 
In the case of the 48 responses categorized as “other” it was clear that the teacher 

struggled to respond to a situation with a change of x not equal to one. Note that 40 out of the 
119 teachers who conveyed a chunky meaning in Part A were unable to cope with Part B in 
even a limited way. 

19th Annual Conference on Research in Undergraduate Mathematics Education 602

19th Annual Conference on Research in Undergraduate Mathematics Education 602



  
Figure 5. Two teachers (who conveyed chunky meanings in Part A)’ responses to Part B  

The two teachers in Figure 5 wrote chunky meanings in Part A and had difficulty explaining 
what 3.04 means when x changes by something other than 1. This is evidence that holding a 
chunky meaning for slope does not necessarily enable a teacher or learner to understand the 
proportional relationship between changes in x and changes in y. 

Conclusions 
The results show that many teachers have chunky meanings for slope that do not appear 

to be connected to an image of the relative size of ∆x and ∆y. If their meaning for slope was 
based on an understanding of the relative size of ∆y and ∆x, it should be easy to note that ∆y 
is always 3.04 times as large as an arbitrary ∆x in Part B. An inability to deal with an 
arbitrary sized ∆x is problematic because in Calculus ∆x becomes arbitrarily small yet retains 
a relationship of relative size with ∆y. Although the results are not from a nationally 
representative sample of teachers, the sample size is large enough to strongly suggest that 
Stump’s (1999;2001) and Coe’s (2007) descriptions of a few teachers’ meanings for slope are 
apparent in a much larger sample of teachers. Further investigations could use this instrument 
to research a nationally representative sample of teachers. 
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Students’ difficulty in learning school algebra has motivated a plethora of research on 
knowledge and skills needed for success in algebra and subsequent undergraduate mathematics 
courses. However, in gateway mathematics courses for science, technology, engineering, and 
mathematics majors, student success rates remain low. One reason for this may be to the lack of 
understanding of thresholds in student mathematical problem solving (MPS) practices necessary 
for success in later courses. Building from our synthesis of the literature in MPS, we developed 
Likert scale items to assess undergraduate students’ MPS. We used this emerging assessment 
and individual, task-based interviews to better understand students’ MPS. Preliminary results 
suggest that students’ issues in algebra do not prohibit them from using their typical problem 
solving methods. Thus, the assessment items reflect students’ MPS, regardless of possible 
misconceptions in algebra, and provide a mechanism for examining MPS capacity separate from 
procedural and conceptual issues in algebra. 

 

Keywords: college algebra, problem solving, algebra learning 
 

Issues in Algebra 
Research shows several sources of difficulty in learning algebra. For example, students 

struggle in understanding the meaning of variables. In algebra instruction, x is frequently called a 
variable, accompanied with statements such as “x can be anything.” But this conception is 
particularly misleading for equations such as        , in which x is actually an unknown 
quantity (Kieran, 2007). Additionally, in functions, variables stand for inputs and outputs. Many 
students use x and y to write equations and functions but do not actually attend to the meaning of 
those symbols; Students use these letters solely as a placeholder in equations and functions to 
replicate examples they have seen (Chazan, 2000). This confusion increases student difficulty 
converting word problems into equations (Kieran, 1992). 

Algebra students also struggle with the meaning of the equal sign. Although the equal sign is 
often used to indicate a relationship between two quantities, for a function, the equal sign 
represents a naming of an object. Further, many students view the equal sign as a connector or 
operation, with little meaning beyond indicating the direction of the solution path (Schoenfeld & 
Arcavi, 1988). This connector usage leads to student concatenating operations using an equals 
sign as if they are using a calculator (i.e. 4 + 7 = 11 + 3 = 14). In elementary school, students use 
a “guess and check” method of solving equations. However, formal procedures taught in algebra 
can be difficult for students to internalize, as they have not previously needed to maintain 
symmetry across the equal sign (Kieran 1992). Further, in solving         , elementary 
students place 3 in the blank, which appears to add 3 to only one side of the equation. 

Although Kieran (2007) asserts that the use of technology in the algebra classroom improves 
student understanding of functions, technology can also lead to some misunderstandings about 
equations. Though the equations        and         are equivalent, if such an 
equations are part of a system of equations, x and y correspond to specific values in a solution set 
rather than inputs and outputs (Chazan & Yerushalmy, 2003). 

Studying mathematical problem solving 
Nationwide, more than 40% of undergraduates pursuing science, technology, engineering, 

and mathematics (STEM) majors failed to complete their degrees (President’s Council of 
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Advisors on Science and Technology, 2012), and for many students, progress is blocked by their 
lack of success in foundational mathematics courses. For example, as few as 10% of calculus-
bound STEM intended College Algebra students reach calculus (Dunbar, 2005). Though 
important skills and procedures needed for success in calculus are identified in the research (e.g., 
Carlson, Oehrtman, & Engelke, 2010), the specific knowledge and skills emphasized in gateway 
mathematics courses seems insufficient for students’ progression in  STEM majors. Students 
appear to lack the necessary mathematical problem solving (MPS) skills and reasoning to be 
successful. MPS is at the forefront of instructional goals in mathematics education (e.g., National 
Governors Association Center for Best Practices & Council of Chief State School Officers, 2010; 
National Council of Teachers of Mathematics, 2000);  however, little is understood the 
thresholds students must meet at various levels to ensure success in subsequent courses.  

Campbell (2014) synthesized the research literature in MPS and separated MPS into five 
components. These components are sense-making, representing/connecting, reviewing, 
justification, and challenge/difficulty. Building from this work, we developed items to assess 
student’s MPS in these areas. The MPS components or domains attend to three of the six 
problem solving components identified by Jonassen (1997) and the other components are 
controlled for in the design of the items. The roles of different components of MPS are largely 
unstudied due to the time and effort that must be invested to use existing tools (e.g. Oregon 
Department of Education, 2000; Dawkins & Epperson, 2014). By contrast, the goal of the 
emerging tool is to create a set of problem solving items that can be machine scored to quickly 
learn about students’ problem solving techniques and practices. In the instrument, students 
complete a series of problems and then items targeting specific components of MPS. The items 
and instrument development are explained fully in Epperson, Rhoads, and Campbell (in press). 

Student understandings in MPS and Algebra 
This research takes place at a large, public university in the Southwest. We administered the 

MPS instrument to 70 (calculus-bound) College Algebra students and selected 11 for individual, 
one-hour problem-solving video-recorded interviews. In an interview, the researcher asks the 
student to explain his or her usual problem solving approaches and the specific MPS used on the 
problems and items from the assessment. The interview participants also complete a new 
problem and associated items. The recorded interviews were transcribed for analysis. The 
research adopts a mixed grounded theory approach to characterize the MPS used by the 
participants (Corbin & Strauss, 2008; Charmaz, 2006). 

Interviews show interesting trends in students’ MPS. First, participants only used diagrams 
and representing/connecting practices at the beginning of the problem solving process and did 
not incorporate them later. In addition, participants fixated on the problem statement, spending 
extra time rereading or rewriting the problem statement before attempting to solve the problem. 
These activities aligned with MPS capacity identified by their work on the MPS items. 
Participants’ difficulties in algebra arose in the interviews. Students used confusing language 
pertaining to variable or unknown, such as “running through variables” to mean checking 
multiple values. A student also suggested that the needed function was an inequality. Despite 
these difficulties with algebra, students showed reluctance to use less analytical approaches. The 
students desired elegant functions or equations even if they proposed adequate solution paths 
using other logical means. However, many eventually used their less-preferred approach. These 
results indicate that students’ limitations in algebra do not necessarily halt their problem solving 
practices. The implications of equal sign confusion are also under investigation. Separating the 
challenges of algebra learning from problem solving can provide a window into aspects of MPS 
necessary for student success in gateway mathematics courses for STEM. 
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Calculus students’ deductive reasoning and strategies when working with abstract 
propositions and calculus theorems 
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In undergraduate mathematics, deductive reasoning is an important skill for learning 
theoretical ideas and is primarily characterized by the concept of logical implication. This 
plays roles whenever theorems are applied, i.e., one must first check if a theorem’s 
hypotheses are satisfied and then make correct inferences. In calculus, students must learn 
how to apply theorems. However, most undergraduates have not received instruction in 
propositional logic. How do these students comprehend the abstract notion of logical 
implication and how do they reason conditionally with calculus theorems? Results from our 
study indicated that students struggled with notions of logical implication in abstract 
contexts, but performed better when working in calculus contexts. Strategies students used 
(successfully and unsuccessfully) were characterized. Findings indicate that some students 
use “example generating” strategies to successfully determine the validity of calculus 
implications. Background on current literature, results of our study, further avenues of 
inquiry, and instructional implications are discussed. 

Key words: Logic, Implication, Calculus, Theorems, Conditionals 

Background and Research Question 
Calculus plays a fundamental role in many science, technology, engineering, and 

mathematics (STEM) areas such as physics and engineering. Thus, many STEM majors will 
take at least one semester of calculus as part of their major, during which they will encounter 
propositions, lemmas, and theorems. For example, students encounter the “If a function is 
differentiable at a point, then it is continuous at that point” theorem. Students must then apply 
this theorem in a variety of situations, such as when they are given a function that is 
differentiable or when they are given a function that is continuous. This deductive process, 
characterized by logical implication, is a hallmark of mathematical thinking. It seems natural 
to assume that to use a theorem effectively, a student must comprehend logical implication, 
which requires the understanding of the four classic reasoning patterns. These patterns are 
provided below with the assumption that the rule “A implies B” holds. 

 

Modus ponens: Suppose A is True. Then B is True. 
Inverse: Suppose A is False. Then it is not known whether B is True or False. 
Contrapositive: Suppose B is False. Then A is False. 
Converse: Suppose B is True. Then it is not known whether A is True or False. 

  

Applying this reasoning can enable a student to know, for example, that a function being 
continuous at a point does not necessarily imply that it is differentiable at that point.  

It is well-established that both children and adults struggle with these kinds of logical 
reasoning tasks (O'Brien, Shapiro, & Reali, 1971; Wason, 1968). However, it appears that 
people are more successful when the questions are posed in a context (as opposed to 
abstractly) (Stylianides, Stylianides, Philippou, 2004). Also, it is well known that students 
struggle with calculus ideas such as limits, differentiation, and integration (e.g., Carlson & 
Rasmussen, 2008; Tall, 1993; Orton, 1983; Zandieh, 2000). The instruction students receive 
about these key calculus ideas often includes theorem or theorem-like statements and students 
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are expected to reason logically from them. Although much work has been done separately 
on the issues of logical implication and calculus learning, we know little about how students 
engage with logic tasks that are set in a calculus context. In particular, we were interested in 
whether calculus students had the same kinds of difficulties with calculus-based tasks as they 
did with the purely abstract tasks. In other words, are calculus theorems enough of a 
“context” to support students’ productive reasoning or are those tasks treated in the same way 
as the classical, abstract tasks? This research project was designed to examine the following 
questions: How successful are calculus students with logical implication tasks set in calculus 
and abstract contexts? What strategies do students use when engaged in calculus theorem 
tasks involving logical implications? Answers to these questions can provide insights into 
student sense-making that can be then used to inform instructional design aimed at improving 
student understanding of theorems and definitions in calculus. 

 
Research Methods 

Similar to much of the prior work on student thinking about calculus, this study was done 
from a cognitive theoretical perspective and thus students’ written and spoken statements 
were used as data on their thinking and understanding of the ideas. Surveys were given in a 
first semester differential Calculus I class at a university in New England near the end of the 
fall semester. There were a total of 52 participants. The surveys consisted of two parts. Part I 
consisted of calculus theorem tasks that were modeled after the four reasoning patterns on the 
previous page. In Part II, the same four tasks were given but presented in an abstract manner. 
Many of these tasks resembled syllogisms (e.g., All men are mortal. Socrates is a man. 
Therefore, Socrates is mortal) but were stated in a formal context using letters and symbols to 
represent statements. See Figure 1 for sample tasks. Although other researchers have 
established the difficulties students have with these kinds of abstract tasks, we sought to 
establish the extent to which these difficulties were apparent in the (relatively) less abstract 
context of calculus theorems.  

To learn about student strategies, ten students were interviewed. During these clinical 
interviews (Hunting, 1997), participants were asked to work through a version the survey. 
They were also asked to explain the reasons for their answers. Interviews were recorded 
using LiveScribe technology to capture both their written work and spoken answers. 

 
Theorem: For all functions f, if f is differentiable at a 
point x = c, then f is also continuous at the point x = c. 
 
2) Suppose h is a function that is continuous at x =7. Then  
a. h is differentiable at x = 7. 
b. h is not differentiable at x = 7. 
c. not enough information to decide whether or not h is 
differentiable at x = 7.  
 
Explain the reason for your answer: 

Proposition: For integers a and b, if a§b then aba§bab. 
 
8) Suppose (7)(4)(7)§(4)(7)(4) is true. 
Then 7§4 is 
a. True. 
b. False. 
c. Not enough information to decide if True or False. 
 
Explain the reason for your answer: 

 
 

Figure 1. (Left) A sample task from Part I. (Right) A sample task from Part II. 

Data Analysis 
Survey responses were coded as “correct” or “incorrect.” In addition to coding 

interviewees’ responses as correct or incorrect, during the initial analysis of the interviews, 
notes were taken concerning the manner in which interviewees explained their answers. The 
focus was on the kinds of strategies participants used when working through the problems. 
This phase of the analysis was informed, in part, by prior research on student thinking about 
implication and additional rounds of analysis utilized techniques from Grounded Theory 
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(Strauss & Corbin, 1990) to further characterize student strategies. Categories and sub-
categories were developed to characterize these strategies. This work builds off a previous 
work (Case, 2015) and the primary, new contribution in this report is a detailed analysis of 
the interviewee strategies for carrying out the tasks. 

Survey Results 
Consistent with prior research, students had difficulties with the abstract tasks. However, 

as Figure 2 shows, students were more successful on the calculus tasks than on the abstract 
tasks. On the calculus tasks, 63% answered at least three of the four tasks correctly and 33% 
answered all four correctly. In contrast, only 8% of students produced correct answers for at 
least three of the abstract tasks and none got all four correct. These differences between the 
calculus and abstract consistency percentages were statistically significant, suggesting that 
the context of calculus prompts students to engage differently with the calculus tasks than 
with the abstract tasks.  

 
Figure 2. Student Performance on Calculus and Abstract Tasks from Survey Data. 

 

We were also interested in potential relationships between success on one type of task and 
success on the other. For example, given that a student identified the correct answer to an 
abstract task, what is the conditional probability that they also answered the calculus version 
of that same task correctly? Given that a student did not correctly answer an abstract task, 
how likely are they to answer the calculus version of that same task correctly? The results 
(see Table 1) show that, for the modus ponens, converse, and inverse tasks, using a 2-
proportion z-test, there was no statistically significant advantage when answering the calculus 
version of a task given a correct answer on the abstract version. However, for the 
contrapositive task, there does seem to be an advantage. Overall, these probabilities suggest 
that students who answer an abstract task correctly may not necessarily be more likely to 
answer the calculus version correctly. Stated differently, students can make sense of calculus 
theorems/definitions whether or not they are able to answer abstract logical reasoning tasks. 

 

Interview Results 
 Although analyses of the survey data provided some insights (e.g., the calculus context 
seems to make some of the reasoning patterns easier for students to understand, the abstractly 
stated tasks are generally much more difficult for students, etc.), we wanted to understand 
more about student thinking concerning the inferences to gain further insight into the findings 
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from the survey data analyses. From analysis of the interview data, we identified several 
different ways in which students approached the tasks. As displayed in Figure 3, there were 
three main ways of thinking (plus “other’), some of which had sub-categories that 
characterized the thinking at even finer levels of detail.  
 

 Probability of Correct Calculus 
Answer Given a Correct 

Abstract Answer 

Probability of Correct Calculus 
Answer Given an Incorrect 

Abstract Answer 

p-value 

Modus Ponens .89 .88 p > 0.05 
Converse .89 .65 p > 0.05 

Contrapositive .85 .56 0.01 < p < 0.05* 
Inverse .56 .63 p > 0.05 

Table 1. Conditional Probabilities of Answering Calculus Tasks Correctly (* indicates 
statistical significance with α = 0.05) 

 
We first consider the strategy located on the left-most branch. Interviewees who 

responded with “Child’s Logic” (O'Brien, Shapiro, & Reali, 1971) tended to match truth-
values (that is, they responded with “True” given a true premise and responded with “False” 
given a false premise). This strategy generates correct answers to two of the four tasks. 
Responses based on some formal knowledge of conditionals were also given a category. 
Here, participants explained their work by following some rule(s) (e.g., the converse of a 
conditional statement does not necessarily hold). Responses were also provided that involved 
the generation of examples. For example, some interviewees drew graphs or verbalized a 
particular mathematical scenario. Finally, some responses were difficult to categorize and/or 
did not seem to fit the previous three categories. 

 
Figure 3. Types of Reasoning Exhibited by Interviewees. 

 
 Although each of the strategies provided insights into student thinking, here we discuss 
just one in detail. This strategy involves generating contradictory examples or situations in 
order to deduce the correct answer. This method was most often used on the calculus 
converse task and the calculus inverse task and it generated rich data on student thinking, and 
has potentially useful instructional implications (discussed later). We now examine a 
transcript excerpt that illustrates this kind thinking. 

Jack: So, it’s just like [pauses to draw axes and says something inaudible] and 
something goes like…this [draws a continuous function with a sharp corner]. And I 
mean you could define it as maybe two different line segments and try to do it that 
way, but the function itself isn’t continuous [we suspect, from the context, that he 
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meant “differentiable”] because at that point there’s no specific, um, rate of change. 
However, for “b”, um…a function…very well could be not continuous and not 
differentiable. Say the function just [draws a linear function with a hole]…so you have 
some function that just has a hole in it. It’s not continuous and it’s not differentiable. 
 
 
 
 
 
 
 

Figure 4. Jack’s Contradictory Examples to the Calculus Inverse Task. 
 

Here Jack produces two function graphs that invalidate two of the multiple-choice options (“f 
is continuous at the point” and “f is not continuous at the point”) in order to infer the correct 
answer: “not enough information to decide.” This strategy allows participants to take 
advantage of the familiar calculus materials presented in the problem so that the correct 
answer becomes clear. Five interviewees used examples at some point during the calculus 
portion of the interview. Four out of these five interviewees used contradictory examples. 
 On the abstract portion, only one student tried to answer a task with a generated example. 
As discussed above, survey participants did not perform as well on the abstract tasks. This 
may be in part because they are unable to create scenarios based on the task that they can 
work and reason with. 
  

Implications and Further Avenues of Inquiry 
Not surprisingly, our findings corroborate the established claim that students find abstract 

logic tasks challenging. However, in contrast, students responded to the calculus tasks in 
ways similar to how others have responded to logic tasks set in familiar contexts. In other 
words, although calculus ideas can be consider quite “abstract,” students manage calculus-
based tasks in ways that suggest that the context enables them to reason more productively in 
comparison to the purely abstract tasks. On one hand, these results suggest that calculus 
students may need more preparation in formal logic, however, even without complete 
command over formal logic, they are still able reason appropriately when calculus ideas are 
involved and when they utilize “example generating” strategies. This suggests that it might be 
useful for instructors to help students develop this strategy. For example, when introducing a 
theorem such as “differentiability implies continuity”, instructors can model the “example 
generating” strategy while working through the various cases that might come up when faced 
with different functions. Some students may believe that they should just know answers to 
these kinds of tasks and by modeling how to reason through them with examples, instructors 
can strengthen students’ problem-solving skills. These findings also generated new questions 
for further research. It would be productive to investigate whether the wording of the theorem 
and theorem premise affect participant performance (for example, how would participants 
work through the four tasks if the given theorem structure resembled “if not A then B” rather 
than “if A then B?”). It might also be useful to examine the impact of instruction about 
“example generating” (and other) strategies on performance with the goal of enhancing 
students’ abilities to make sense of the theorems and definitions that are such an essential part 
of calculus. Questions posed to the audience will include: What other theorems or 
propositions might be worth examining in a study like this? Are there any other teaching 
implications that may be potentially derived from this study? 
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Use of strategic knowledge in a transition-to-proof course: Differences between an 
undergraduate and graduate student 
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The ability to construct proofs has become one of, if not the, paramount cognitive goal of every 
mathematical science major. However, students continue to struggle with proof construction 
and, particularly, with proof by contradiction construction. This paper is situated in a larger 
research project on the development of an individual’s understanding of proof by contradiction 
in a transition-to-proof course. The purpose of this paper is to compare proof construction 
between two students, one graduate and one undergraduate, in the same transition-to-proof 
course. The analysis utilizes Keith Weber’s framework for Strategic Knowledge and shows that 
while both students readily used symbolic manipulation to prove statements, the graduate 
student utilized internal and flexible procedures to begin proofs as opposed to the external and 
rigid procedures utilized by the undergraduate. 

Key words: Mathematics Education; Strategic Knowledge; Proof by Contradiction 

Introduction and Overview 

The ability to construct proofs has become one of, if not the, paramount cognitive goal of 
every mathematical science major (Schumacher & Siegel, 2015). However, students at all levels 
struggle with proof construction (Stylianou, Blanton, & Rotou, 2014), and in particular struggle 
with constructing proofs by contradiction (Brown, 2013). The purpose of this paper is to report 
on the results of a pilot study on student’s understanding of proof by contradiction in a transition-
to-proof course. In particular, this paper will address the following research question:  Is there a 
difference in proof by contradiction strategies between two students, an undergraduate and a 
graduate student, enrolled in the same transition-to-proof course? The Strategic Knowledge 
framework, outlined in Weber (2004), will be used to analyze the strategies these students 
utilized in constructing proofs. The following section will give a brief overview of the Strategic 
Knowledge framework.   

Strategic Knowledge Framework 

Weber (2004) developed a framework for describing undergraduate proof construction 
processes based on the observations of 176 undergraduate students’ proofs over multiple studies. 
This framework classified the types of proofs produced as one of the following: procedural, 
syntactic, or semantic.  

In a proof using a procedural method, “one attempts to construct a proof by applying a 
procedure, i.e., a prescribed set of specific steps, that he or she believes will yield a valid proof” 
(Weber, 2004). The procedure can either be an algorithm or a process. Algorithms are 
characterized as external and highly mechanical to the student, whereas a process is internal and 
flexible. By external, it is meant the procedure came from outside of the student, such as from an 
instructor. By internal, it is meant the procedure has been interpreted and constructed by the 
individual. 

In a proof using syntactic methods, “one attempts to write a proof by manipulating correctly 
stated definitions and other relevant facts in a logically permissible way” (Weber, 2004). Proofs 
of this form are no more than unpacking definitions and using tautologies to manipulate symbols 
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to achieve the desired conclusion. Students using this method do not need to consider the 
meaning of their syntactic statements.  

In a proof using semantic methods, “one first attempts to understand why a statement is true 
by examining representations (e.g., diagrams) of relevant mathematical objects and then uses this 
intuitive argument as a basis for constructing a formal proof” (Weber, 2004). Very few 
undergraduate research subjects, if any, attempted semantic proofs; 0 of 56 proofs in abstract 
algebra and 17 of 120 proofs in real analysis.  

Methodology 

This case study is situated in a larger research project on the development of an individual’s 
understanding of proof by contradiction in a transition-to-proof course. Bridge to Higher 
Mathematics/Thinking Mathematically: Intro to Proof is the first course in which students are 
formally introduced to mathematical proofs and their accompanying methods at a large, public 
university in the southeastern United States. Data for this report consists of written student 
attempts to prove three number theory statements1 as well as individual interviews detailing their 
thought process while constructing the proofs.  

Two students volunteered to be interviewed in Spring 2015: one undergraduate and one 
graduate student. The undergraduate, James, is a double major, in Computer Science and 
Mathematics, while the graduate, Frank, is an Economics major. Despite the difference in degree 
program, both James and Frank have completed similar mathematics courses and can be 
considered to have similar mathematical backgrounds. 

Data Analysis 

A problem-by-problem analysis of the two interviewees using the Strategic Knowledge 
framework follows. This analysis will begin with an overview of their exhibited proof strategies 
for the problem, followed by a copy of their written proof for the problem, and ending with an 
in-depth analysis utilizing the participants’ responses during the interview. Due to page 
limitations, analysis of only two of the three proofs will be provided.  

To code proof methods, the following guidelines were used. First, any mention or 
consideration of the meaning of a mathematical statement was coded as “semantic”. If there was 
no mention or consideration of the meaning of the mathematical statements and the proof was 
primarily written with symbolic manipulation, the proof was coded as “syntactic”. For the 
remaining methods, rigid (i.e. specific to the particular problem) and external (i.e. rules set by 
another party) methods were coded as “algorithmic” and flexible (i.e. adaptable to a range of 
problems) and internal (i.e. synthesized rules for the individual) methods were coded as 
“process”. 

Problem 1: If a is an irrational number, then a+2 is an irrational number.  
For problem one, James began with an algorithmic approach to the proof. Once he converted 

the statement to symbolic notation, he then primarily used a syntactic approach to complete the 
proof. At no time during the proof did he exhibit or profess a semantic approach to the statement. 
James’ written work for problem one is displayed in Figure 1 below. 

                                                           
1 All three statements could be proved by contradiction, though contradiction was not necessary. 
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Figure 1: James’ Proof for 1st Statement 

When asked how he started the proof, James stated “So I guess I did more practice on them 
[proofs by contrapositive], during Discrete and Bridge, that’s where I got used to it.” James’ use 
of the phrase “I got used to it” indicates a passive and external role in writing proofs by 
contrapositive. When asked why he chose contrapositive, he continued to repeat that he uses 
contrapositive with “these types of proof”; his inability to articulate exactly what this type of 
proof was illustrates the external nature of why he completed the proof as he did.  

For problem one, Frank utilized a syntactic method to write the proof by converting the 
statement to symbolic notation, after which he manipulated the symbols to complete the proof. 
He also displayed a flexible procedure for proof by contradiction, though at no time during the 
proof did he exhibit or profess a semantic approach to the statement. Frank’s written work for 
problem one is displayed in Figure 2 below. 

 
Figure 2: Frank’s Proof for 1st Statement 

When asked how he started the proof, Frank stated “I basically set it up so that I could say 
that a+2 is rational and solved it out and said that by subtracting the two to the other side, you 
would still get a rational number and then you would get a is rational, which is not true because 
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of the givens.” This flexible overview of his proof is evidence of procedural knowledge and, in 
particular, a process for proving statements by contradiction.   

As evidenced above, Frank began the proof by converting the statement to be proven into 
prepositional logic notation and mainly uses syntactic methods to continue in the proof. He does 
not consider the meaning of the statement, evidenced by his explanation: “But I think once I got 
here [Suppose a+2 is rational], it was very obvious that I could just solve it out.”  

Problem 2: Every non-zero real number has a unique multiplicative reciprocal. 
For problem two, James utilized a syntactic approach for the entire proof. However, he 

showed a procedural approach to the proof in general through his structure and reliance on 
definitions to fill the holes of the syntactic method. During the discussion of his proof, James 
showed he explicitly did not use a semantic approach to the statement. James’ written work for 
problem two is displayed in Figure 3 below. 

 

 
Figure 3: James’ Proof for 2nd Statement 

James’ structure of proof highlights an external procedure to proving the statement. When 
James cannot prove a statement by symbolic manipulation, he relies on definitions. For example, 
in the proof above, James makes no justification as to why this reciprocal is unique. When 
probed whether he used the multiplicative inverse of x is 1/x by definition, he says “Is that a 
definition? That’s not a definition, is it? I don’t think it is a definition, in my opinion.” However, 
when probed specifically about why the reciprocal is unique, he states “Because x is unique, 
right? So it is a unique, a unique multiplicative inverse.” As no other justification was conveyed, 
it must be by definition of a multiplicative inverse. This reliance on definitions can thus be seen 
as an external rule to justifying a statement when a justification is unknown. 

For problem two, Frank utilized a syntactic approach for nearly the entire proof. However, he 
showed a procedural approach to the existence statement. At no time during the proof did he 
exhibit or profess a semantic approach to the statement. James’ written work for problem two is 
displayed in Figure 4 below. 
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Figure 4: Frank’s Proof for 2nd Statement 

Frank began his proof by rewriting the statement in symbolic notation, just as he did in 
problem one. When explaining how he solved the proof, he stated “For number 2, I … basically 
put it into a more mathematical format. And then I … did some scratch work to solve for what 
the multiplicative reciprocal would be.” Again, Frank relies on symbolic manipulation to proceed 
in the statement. However, when asked what type of proof this is, Frank said it was a direct 
proof. While it was suggested that multiple proofs could be combined, Frank used process of 
elimination to say the proof did not use contradiction, contrapositive, or induction. Since Frank 
still successfully proved that the multiplicative inverse is unique with a proof by contradiction 
(not explicitly), it can be said he has an external procedure to prove the existence of a 
mathematical object.  

Discussion 

 While both James and Frank used syntactic methods to prove this statement, James relied on 
rigid, external procedures to each problem to begin proofs, whereas Frank relied on flexible, 
internal approaches to begin proofs. When possible, both participants utilized symbolic 
manipulation, and thus exhibited a (productive) use of syntactic knowledge. Furthermore, since 
participant thought about the meaning of the mathematical concepts in the statements, we 
conclude that neither used semantic knowledge in their proof constructions. 

This case study of two students, one undergraduate and one graduate, builds on the results of 
Weber (2001), in which Weber interviewed four undergraduate and four doctoral mathematics 
majors to examine differences in their proof construction. In this case study, the students have 
similar mathematical preparation and yet, the graduate student utilizes processes exhibited by the 
doctoral mathematics students in Weber’s research. While it is reasonable to expect a difference 
in proof construction between students with different mathematical background, it is not clear 
why there should be a difference between students with the same mathematical background and 
different levels of program. Therefore, more research is needed to examine the differences 
between undergraduates and graduates with the same mathematical background with respect to 
their proof construction. 

Questions for the Audience 
x How does major affect the types of strategic knowledge used to construct proofs? 
x How does strategic knowledge fit within a student’s proof schema? 
x How much of an issue is the concept of infinity when students write contradiction proofs? 
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Root of Misconceptions – the Incorporation of Mathematical Ideas in History 
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The evolution of a mathematical concept in history has been the process of merging different 
ideas to form a more rich, general, and rigorous concept. Ironically, students, when learning 
such well-developed concepts, have similar difficulties and make the same misconceptions again 
and again. To illustrate, despite the well-developed and defined concept of real numbers, many 
students still have difficulties in comparing fractions or doing basic operations on irrational 
numbers. In this poster, the incorporation of different ideas to form a general and rigorous 
mathematical concept in history is examined. Students’ struggles and misconceptions in learning 
the concepts are investigated from the perspective of the incorporation process. Finally, a model 
for differentiating and validating the variations of a general mathematical concept is suggested 
for resolving learning difficulties and misconceptions. 
 
Key words: Misconceptions, History of Mathematics, Formation of Concepts. 
 
Misconceptions due to no differentiation 

Things don’t always turn out the way you want, and don’t always work the way you expect. 
One common kind of mathematical misconception is no differentiation (Schechter, 2009), for 
example, adding variables and numbers together (e.g., 5x+3=8) or adding fractions like integers 
(2/3 + ½ = 3/5). Some no differentiation cases are about properties. For example, everything is 
additive (e.g., 1/(x+y) = 1/x + 1/y; (! + !) = ! + !; sin(x+y)=sinx+siny). Everything is 
commutative (e.g., log2x=2logx, sin2x=2sinx). It seems students are lost in the bigger 
misconception of “general” in mathematics and overlook the variations of operations, properties, 
or methods embedded in a “general” mathematical concept.  
The possible reason of the misconceptions 

Generality is emphasized in mathematics. For example, mathematics is applicable to 
different fields or mathematical methods work for all cases. However, rather than generality, 
different mathematical ideas were incorporated in history in terms of extending or modifying 
existing mathematical structures, or creating general construct to encompass different ideas, for 
instance, the real number line and the concept of function (Benson, 2003; Kleiner, 1989; Kline, 
1972; Ponte, 1992). The incorporation of different ideas to form a general and consistent concept 
or system may make it difficult for students to differentiate differences. For example, there is 
rich mathematics education literature about students’ struggles in differentiating different 
operation rules regarding to different kind of numbers (whole numbers, fractions, irrational 
numbers). Therefore, knowing how different ideas were incorporated in history may help 
recognize the threads of differences embedded in a general concept of mathematics (e.g., 
different rules, properties, or methods). 
The formation of a mathematical concept in history 

In this study, the formation of the concept function and real number line in history were 
examined. In particular, the original meanings of real-life contexts, operations, and methods that 
have been lost or hidden in the current meaning of the two concepts were examined. In history, 
the concept of function started with “tables” (e.g., the values of square roots). The concept of 
function then was developed as the corresponding values on a graph in analytical geometry in 
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16th and 17th centuries. After 17th century, with the development of algebra, the focus of 
function was shifted to analytical expressions (e.g., algebraic expressions), departed from graphs. 
Since functions as analytical expressions are only a small subset of all functions, the idea of 
function was gradually changed to the correspondence between sets, numerical or non-
numerical, to replace the perspective of analytical expression.  

Fractions were invented as a method for dealing with real-life problems (taxes, commercial 
exchange) in ancient Egypt and China. A fraction was not a number, but a method. Every natural 
thing exists in the form of natural numbers. The operations on fractions (e.g., adding or 
multiplying fractions) were based on the idea of ratio, not “numbers”. For example, 
Pythagoreans took fractions as commensurable ratios. Moreover, a square root of a number was 
not a “number”, but a magnitude that could not be explained for a long time in history. 

In summary, there are different contextual meanings, rules, and properties incorporated to the 
concept of function and real numbers, as we have seen in the history. Students’ difficulties and 
misconceptions regarding to the concepts, to some extent, are related to the incorporation 
process. 
The model of differentiation and validation 

A model was constructed based on the incorporation of ideas in history. The model (See 
Figure below) is the backtracking process regarding to the five levels of mathematical entities: 
(1) mathematical object (2) operation (3) property (4) method (5) theorem/theory. There are 
different purposes in the backtracking process for avoiding or correcting misconceptions. The 
special feature of multiple cycles of backtracking process is possible if needed.  

Misconceptions on the mathematical object level (e.g., negative numbers, irrational numbers) 
were corrected by backtracking to the physical world or the existing mathematical models to 
search for meanings or explanations for new mathematical objects. Misconceptions on the 
property level (e.g., additive or commutative property) were corrected by backtracking to the 
mathematical object level to validate new mathematical objects (e.g., quaternions, matrices), and 
to differentiate new mathematical objects and their operational rules from the existing ones. 
Misconceptions on the method level (e.g., an infinitesimal is a fixed number) were corrected by 
backtracking to the operation level (e.g., a variable approaching to a point) and property level 
(e.g. a continuous function) to refine and replace the idea of infinitesimal. Misconceptions on the 
theorem/theory level (e.g., continuous functions are not differentiable only at some points) were 
corrected by counterexamples, which were new mathematical objects with new properties (e.g., a 
continuous function with nowhere differentiable, concave polyhedrons).  
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Computer-based courses (e.g., online or hybrid) have significantly changed the design of 
pedagogy and curriculum in the past decade, which include online teaching and learning on 
mathematics education. As beliefs play an essential role on achievement, the impact of 
computer-based courses on mathematical beliefs is still underdeveloped. In particular, we are 
interested in whether mathematics hybrid class (blend of online and face-to-face) has different 
impact on students’ mathematical beliefs compared to regular face-to-face class. A two-by-two 
design of instruction method (hybrid vs. regular) and mathematics performance (high vs. low) 
was employed. The results showed that both hybrid and regular class students believed 
understanding and memorization were equally important in mathematics learning. Hybrid class 
students showed more flexibility in selecting solution methods compared to regular class 
students on their beliefs about problem solving.  
 
Key words: Hybrid Course, Mathematical Beliefs, Quantitative Research, Developmental 
Mathematics 

 
Introduction 

Computers have been used comprehensively in education in the past decade. The major 
computer-based course designs have been developed in the form of online (or internet) or hybrid 
(blend of online and face-to-face). Such course designs make it possible for students to learn any 
time anywhere (Lemone, 1999; Kadlubowski, 2001). The pedagogy has also been changed 
significantly (Czerniewicz, 2001; Macdonald et al., 2001) compared to the traditional one. For 
example, in mathematics, students can watch video lessons, follow step-by-step interactive 
tutorials, communicate through Internet, and do homework and tests online. Teachers are no 
longer troubled by pile of homework assignments and tests for grading (Engelbrecht & Harding, 
2005; Juan et al., 2011) 

A growing research about computer-based mathematics courses addressed a variety of issues 
including online curriculum/course design (Lee, 2014; Wenner, Burn, & Baer; 2011), factors 
related to online course achievement (Kim & Hodges, 2012; Kim, Park, & Cozart, 2014; 
Wadswarth et al., 2007), teaching (Cavanagh & Mitchelmore, 2011; Engelbrecht & Harding, 
2005; Juan, Steegmann, & Huertas, 2011), and assessment (Engelbrecht & Harding, 2004; 
Groen, 2006). However, as mathematical reasoning and problem solving are the core of 
mathematics practice (Polya, 1954; Schoenfeld, 1992), a Google scholar and Eric Index search 
find little study about the effect of computer-based courses on students’ mathematical beliefs 
about mathematical reasoning and problem solving methods and strategies. Mathematical beliefs 
play an essential role in the learning process of mathematics (Schoenfeld, 1983, 1985, 1989) or 
even academic performance (Carlson, 1999; Schommer-Aikins, 2002). Briefly speaking, one’s 
mathematical beliefs affect his/her ways of thinking and mathematical practice, and ultimately 
affect his/her mathematics performance. 

Therefore, the purpose of the study is to examine students’ mathematical beliefs to explore 
the impact of mathematics hybrid course. In particular, we are interested in the differences of 
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mathematical beliefs between hybrid (blend of online and face-to-face) and regular (face-to-face) 
class students. This study may contribute to the underdeveloped literature about the impact of 
online learning on students’ mathematical beliefs. 

 
Literature Review 

This section will review mathematical beliefs, particularly on mathematical reasoning and 
problem solving. 
Mathematical Reasoning 

According to the literature in mathematics and mathematics education, mathematicians or 
experts emphasize on reasoning and understanding while novice mathematics learners emphasize 
on memorization and replication. Polya (1954) noted: “The result of mathematician’s creative 
work is demonstrative reasoning, a proof; but the proof is discovered by plausible reasoning…” 
(p. vi). Ross (1998) noted: “It should be emphasized that the foundation of mathematics is 
reasoning. While science verifies through observation, mathematics verifies through logical 
reasoning” (p. 254). Mathematical reasoning includes the sense making of numbers and symbols, 
the derivation of rules, properties, and theorems, the emergence and utilization of mathematical 
methods, and the logical connection and analysis of mathematical statements. Rather than 
focusing on reasoning and understanding, novice mathematics leaners tend to memorize solution 
procedures and replicate them in problem solving. For example, a learner may be able to apply 
the method of isolating the variable for solving linear equations without understanding the 
equivalent relationship between the right and left side of an equation, or the equivalent equations 
that are transformed from the original equation. In other words, students may be able to apply the 
addition and multiplication properties by rote in solving equations without knowing the 
properties. Ross (1998) mentioned: “if reasoning ability is not developed in the student, then 
mathematics simply becomes a matter of following a set of procedures and mimicking examples 
without thought as to why they make sense.” (p. 254) 
 
Problem Solving 

Mathematicians or expert problem solvers try to solve difficult or challenging problems, 
while novice mathematics learners tend to master routine problems. Schoenfeld (1992) 
mentioned: “The unifying theme is that the work of mathematicians, on an ongoing basis, is 
solving problems - problems of the "perplexing or difficult" kind” (p. 15). He noted Halmos’ 
argument that “students' mathematical experiences should prepare them for tackling such 
challenges. That is, students should engage in "real" problem solving, learning during their 
academic careers to work problems of significant difficulty and complexity.” (p. 16). Indeed, 
solving difficult or perplexing problems enable one to think, overcome obstacles, and come up 
with some ways to apply mathematical methods to work out the answer. Novice mathematics 
learners tend to practice and master certain types of routine problems, which help focus on 
memorizing and replication. For example, mastering problem types and their corresponding 
procedures helps one identify similar problems and replicate solution procedures.   

While novice mathematics learners try to memorize problems/problem types and their 
corresponding solution procedures, expert problem solvers try to see the way general rules can 
be used and worked out in solving challenging problems. As Carlson (1999) noted, an expert in 
mathematics is the one who “needs to concentrate more on the systematic use of general thought 
process rather than on memorizing isolated facts and algorithms” (p.247) Indeed, Polya 
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emphasized general rules as “one must have them assimilated into one’s flesh and blood and 
ready for instant use” (Pólya and Szegö, 1925, preface, p. vii.)  

The use of general rules does not mean to use only one way for solving a problem. Multiple 
ways of solving a problem means to try different plans or strategies, which may involve the same 
or different general rules, or different ways general rules or properties are applied. Star and 
Rittle-Johnson (2007) noted Dowker’s (1992) study that “expert mathematicians know and use 
more strategies than novices, even choosing to use different strategies when attempting identical 
problems on different occasions”. In other words, experts in mathematics may try different ways 
in exploring a problem instead of seeking an authoritative way for solving problems. As Carlson 
(1999) noted, the expert view in mathematics “examine situations in many ways…rather than 
follow a single approach from an authoritative source”. (p. 247) 

 
Theoretical Framework 

Four pairs of contrasting mathematical beliefs are constructed based on the above literature 
review on mathematical reasoning and problem solving. The first pair of contrasting beliefs is 
about mathematical reasoning. The rest three pairs are about problem solving. The first pair of 
contrasting beliefs is “understanding versus memorization”. The second pair is “solving 
challenging problems versus solving routine problems”. The third pair is “using general methods 
versus using case-based methods”. The fourth pair is “using flexible methods versus using 
authoritative methods”.  

The four pairs of contrasting beliefs, according the literature review above, can be 
characterized as the contrasting of expert beliefs versus novice beliefs. In the study, experts and 
novice learners were characterized as high and low performance students. Combined with the 
two types of Hybrid and Regular instruction methods, a two-by-two design of instruction method 
(hybrid vs. regular) and mathematics performance (high vs. low) was employed. The two-by-two 
table is illustrated below (see Table 1). The two independent variables are the instruction method 
(Hybrid, Regular) and student performance (High, Low). The dependent variable is student’ 
mathematical belief scores.  

 
Table 1: The Two-by-Two Research Design 

 Hybrid Regular 
High Four beliefs Four beliefs 
Low Four beliefs Four beliefs 

 
The Likert scale of 5 points has been widely used in the literature (Mason & Scrivani, 2004; 

Schommer-Aikins, Duell, & Hutter; 2005) for measuring mathematical beliefs. A Liker-type 
item contains the following features: (1) response levels are arranged horizontally; (2) response 
levels are anchored with consecutive integers; (3) response levels are also anchored with verbal 
labels which connote more-or-less evenly-spaced gradations and (4) verbal labels are bivalent 
and symmetrical about a neutral middle (Kislenko & Grevholm, 2008; Uebersax, 2006). A 
common Liker-type item for measuring mathematical belief ranges from 1 (= totally disagree) to 
5 (= totally agree). However, to measure a pair of contrasting beliefs, the points will be arranged 
in the way that the two ends (1 and 5) mean strongly agreeing to each of the two contrasting 
beliefs. The two points (2 and 4) close to the middle point (3) mean somewhat agreeing. The 
middle point (3) remains neutral. 
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Method 
The two research questions of the study are: (1) What are the differences between high and 

low performance students about their mathematical beliefs? (2) What are the differences between 
hybrid and regular class students about their mathematical beliefs? In the study, the mathematical 
beliefs refer to mathematical reasoning beliefs (mathematical understanding vs. memorization) 
and problem solving beliefs (challenging problems vs. routine problems, general methods vs. 
case-based methods, and flexible methods vs. authoritative methods). 
 
Participants and Procedure 

Students who took developmental mathematics courses (e.g., Foundations for Algebra, 
Introductory Algebra, or Intermediate Algebra) at a university in the west region of the U.S were 
invited to participate in this study. The students were given a questionnaire two weeks before the 
finals week in the Spring Semester 2013. There were 229 students involved in this study, where 
204 student data were valid. Among the 204 students, 60 students were from 7 hybrid classes and 
144 students were from 11 regular classes. Students’ enrollment in either regular or hybrid class 
was based on their own will. They were not assigned to the classes.  
 
Instruments 

The questionnaire contains 15 questions based on the four types of contrasting mathematical 
beliefs, as described in the framework. In particular, there were two questions (#5, #14) about 
mathematical understanding (understanding vs. memorization), two questions (#4, #12) about 
challenging problems (challenging vs. routine problems), four questions (#1, #6, #7, #13) about 
generality (general methods vs. case-based methods), and three questions (#2, #3, #11) about 
flexibility (multiple methods vs. authoritative methods).  

A Likert-type item was used for each question in the questionnaire (see Table 2 for an 
example). The scale is from 1 to 5 where 4 and 5 mean the answer is toward (a) (e.g., somewhat 
(a) for 4 and far more (a) for 5), and 2 and 1 mean the answer is toward  (b) (i.e., somewhat (b)  
for 2 and far more (b) for 1). The number 3 on the scale means equally (a) and (b).  
 
Table 2: An Example of the Likert-type Question 
My confidence in preparing for mathematics exams depends on 
      (a) how many problems I attempted 
      (b) how many challenging problems I attempted 

Far Somewhat Equally Somewhat Far 
More (a) More (a) (a) & (b) More (b) More (b) 

1 2 3 4 5 
 

The following Table 3 shows one example question for each of the four mathematical belief 
categories.  

 
Table 3: Categories and Example Questions of the Mathematical Belief Questionnaire 

Category Example Question 
Mathematical 
understanding 

When studying mathematics in a textbook or in course materials:  
(a) I find the important information and memorize it the way it is presented. 
(b) I organize the material in my own way so that I can understand it. 

Challenging My confidence in preparing for mathematics exams depends on: 
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problems (a) how many problems I attempted. 
(b) how many challenging problems I attempted. 

 
Generality 

To me, it is important to: 
(a) find one method that can be used to solve many problems. 
(b) memorize different methods for solving different problems. 

 
Flexibility 

For learning to solve problems, it is important to: 
(a) follow the way my teacher teaches or the textbook suggests. 
(b) find the way I feel like and/or comfortable with. 

 
The questionnaire items were designed in the way that some items had higher score (e.g., 4 

or 5) for expert beliefs, and some items had lower score (e.g., 1 or 2) for expert beliefs. This 
design was to prevent students from seeing any pattern in answering the questionnaire. 

 
Analysis 

Students’ performance levels (High and Low) were characterized by their final letter grades. 
Grades A, A– or B+ were grouped as high performance. Grades B or below (including no pass) 
were grouped as low performance. Students received B+ if their final number grades were 87 or 
above.  

The scores of some Liker-items of the questionnaire were transformed to match the score 
distribution of 1 to 5 from novice beliefs to expert beliefs.  

Four 2-by-2 two-way ANOVA tests were conducted for the average mean of each of the four 
belief categories – mathematical understanding, challenging problems, generality, and flexibility. 
Each test contained two independent variables (instruction method, student performance) and 
one dependent variable (mean score of mathematical beliefs).  

 
Results 

Beliefs about Mathematical Understanding  
A two-way ANOVA test of instruction method (Hybrid, Regular) and student performance 

(High, Low) on beliefs about mathematical understanding showed a significant main effect for 
student performance. The high performance students significantly recognized the importance of 
understanding (M=3.21) in mathematics learning compared to the low performance students 
(M=2.96). However, there was no main effect for instruction method. Both hybrid (M=3.00) and 
regular (M=3.08) class students’ belief about mathematical understanding are close to neutral 
(M=3.00). All hybrid and regular class students believed understanding and memorization were 
equally important. The statistics of the ANOVA test are shown in Table 4. 

 
       Table 4:  The Statistics of ANOVA Test on Beliefs about Mathematical Understanding 

 M SD F-score Interaction p-value 
Instruction Method   F(1, 191)=0.05 No 0.819 
    Hybrid 3.00 1.05    
    Regular 3.08 0.95    
Student Performance   F(1, 191)=4.40 No 0.037* 
    High 3.21 0.93    
    Low 2.96 1.00    

        Note. *p<.05. **p<.01 
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Beliefs about Challenging Problems in Problem Solving 
A two-way ANOVA test of instruction method (Hybrid, Regular) and student performance 

(High, Low) on beliefs about challenging problems showed a significant main effect for 
students’ performance. High performance students significantly recognized the value of 
challenging problems (M=3.39) in learning to solve problems compared to low performance 
students (M=3.00). Low performance students took both of challenging problems and the 
amount of problems equally important in preparing for a test. There was no significant main 
effect for instruction method. Both hybrid (M=3.14) and regular (M=3.15) class students slightly 
favored doing challenging problems in learning to solve problems. The statistics of the ANOVA 
test are shown in Table 5. 

 
        Table 5:  The Statistics of ANOVA Test on Beliefs about Challenging Problems 

 M SD F-score Interaction p-value 
Instruction Method   F(1, 190)=0.18 No 0.673 
    Hybrid 3.14 1.00    
    Regular 3.15 0.86    
Student Performance   F(1, 190)=7.72 No 0.006** 
    High 3.39 0.86    
    Low 3.00 0.96    

         Note. *p<.05. **p<.01 
 
Beliefs about Generality in Problem Solving 

A two-way ANOVA test of instruction method (Hybrid, Regular) and student performance 
(High, Low) on beliefs about generality (regarding problem-solving methods) showed that there 
were no significant main effects for both of instruction method (Mhybrid=2.92, Mregular=3.13, 
p=0.136) and student performance (Mhigh=3.15, Mlow=3.01, p=0.207).  
 
Beliefs about Flexibility in Problem Solving 

A two-way ANOVA test of instruction method (Hybrid and Regular) and student 
performance (High, Low) on beliefs about flexibility showed significant main effects. Hybrid 
class students were significantly more flexible in choosing problem-solving methods (M=3.33) 
compared to regular class students (M=3.11). High performance students were significantly more 
flexible (M=3.31) compared to low performance students (M=3.09) in choosing problem-solving 
methods. The statistics are showed below in Table 6. 

 
         Table 6:  The Statistics of ANOVA Test on Beliefs about Flexibility 

 M SD F-score Interaction p-value 
Instruction Method   F(1, 191)=7.10 No 0.008** 
    Hybrid 3.33 0.71    
    Regular 3.11 0.66    
Student Performance   F(1, 191)=7.19 No 0.008** 
    High 3.31 0.66    
    Low 3.09 0.68    

             Note. *p<.05. **p<.01 
 

Discussions 
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The ANOVA tests show that there were no differences between hybrid and regular class 
students on the mathematical beliefs of understanding, challenging problems, and generality. For 
mathematical understanding, both of the hybrid and regular class students believed 
understanding and memorization were equally important in learning mathematics (i.e., the belief 
mean scores of the two groups are 3.00 and 3.08). A possible explanation could be that teachers 
in the face-to-face developmental mathematics lectures might not emphasize enough on 
mathematical reasoning (e.g., teaching why), but more on mathematical facts and procedural 
skills. For challenging problems, both of the hybrid and regular students slightly preferred doing 
challenging problems in problem solving (i.e., the belief mean scores of the two groups are 3.14 
and 3.15). A possible explanation for no difference between the two groups could be the problem 
solving opportunities (e.g., solving difficult problems) for both hybrid and regular students were 
similar. Homework problems teachers assigned to the students might have similar level of 
difficulty for both hybrid and regular classes. This may be due to that all developmental 
mathematics courses had the same departmental final exam. For generality, a possible 
explanation for no difference between the two groups could be that the teachers focused mainly 
on (general) standard algorithms without enough introductions to multiple ways of solving 
problems. Both of the regular and hybrid students received help from their teachers about the 
benefit of general methods in solving problems (i.e., hybrid courses have face-to-face sections). 
For the students’ beliefs about flexibility, the hybrid class students were significantly more 
flexible in selecting solution methods (M=3.33) compared to the regular class students (M=3.11). 
It is possible that the hybrid students received less authority or emphasis from their teachers (i.e., 
less face-to-face time) about the selection of solution methods in problem solving. 

The ANOVA tests show that there were significant differences between high and low 
performance students on the mathematical beliefs of understanding, challenging problems, and 
flexibility. The results are consistent to the literature. High performance students show more 
appreciation on mathematical reasoning (Carlson, 1999). They are more willing to take challenge 
in problem solving (Schoenfeld, 1983, 1985). High performance students are also more flexible 
in the selection of problem-solving methods (Dowker, 1992). However, there was no significant 
difference between high or low performance students in the use of general or case-based solution 
methods. A possible explanation could be it is difficult to differentiate general methods from 
case-based methods in developmental mathematics. Another possible explanation could be that 
the idea of general methods might not be emphasized in teachers’ teaching. 

 
Implications 

High performance students may hold more factors of success in computer-based learning 
context. They may also hold more potential of being enriched and promoted by the extended 
materials computer-based course can offer. The reasons are: first, hybrid or online classes 
significantly require self-efficacy and self-regulated learning ability (Hung et al., 2010; Smith, 
Murphy, & Mahoney, 2003). High performance students, according to this study, hold 
significantly more positive beliefs in mathematical reasoning and understanding compared to 
low performance students. The beliefs may strengthen students’ confidence in self-regulated 
learning in understanding mathematics in computer-based learning context. Second, hybrid or 
online courses have more flexibility in offering students challenging problems or extended 
materials to challenge students compared to traditional face-to-face classes (Lin & Hsieh, 2001; 
del Valle & Duffy, 2009). High performance students, according to this study, are more likely to 
do challenging problems in learning to solve problems. Traditional face-to-face classes generally 
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have more constraints on lecture time, lecture content, and homework assignments due to the 
different performance levels of students in a class. Hybrid or online mathematics courses may 
allow high performance students to move faster in watching lecture videos and doing homework, 
and therefore, to invest more time on self-regulated exploration as well as doing more 
challenging problems for extra credit. Third, hybrid or online mathematics courses provide more 
freedom and less authority in problem solving activities (Rosa & Lerman, 2011; van de Sande, 
2011). According to the study results, the hybrid and high performance students were 
significantly more flexible in choosing solution methods. High performance students, therefore, 
may have more space to develop their own methods or knowledge in problem solving. 

Finally, we hope this study sheds light on students’ mathematical beliefs under computer-
based learning context, and contribute to the effort of enriching online mathematics education.  

 
Limitations 

This study has two unfortunate limitations. The first limitation is that this study was not a 
pre-post research design. The initial design was to attain the gain scores of the pre-post belief 
items. This study was initiated to help the developmental mathematics department make decision 
about retaining or dropping hybrid courses. Due to the timeline of decision making as well the 
IRB (Institutional Review Board) process, the experiment was finally conducted as a one-shot 
experiment (i.e., questionnaires at the end of the semester for hybrid and regular students). The 
second limitation is the categorization of high/low performance students. Due to the need of 
quantitative study, the classification of mathematics performance based on grades was a practical 
way for this study, but it could result in debates due to different definitions on high/low 
performance (e.g., the cutting grade could be C for high/low performance). Sometimes, it is even 
acceptable to differentiate grade A students just because there are different types of grade A 
students. We understand the limitation, but it seems inevitable. 
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On the axiomatic formalization of mathematical understanding 
 

Daniel Cheshire 
Texas State University 

This study adopts a property-based perspective to investigate the forms of abstraction, 
instantiation, and representation used by undergraduate topology students when acting to 
understand and use the concept of a continuous function as it is defined axiomatically. Based 
on a series of task-based interviews, profile cases are being developed to compare and 
contrast the distinct ways of thinking and processes of understanding observed by students 
undergoing this transition. A framework has been established to interpret the participants’ 
interactions with the underlying mathematical properties of continuous functions while they 
reconstructed their concept images to reflect a topological (axiomatic) structure. This will 
provide insight into how such properties can be successfully incorporated into students’ 
concept images and accessed; and which obstacles prevent this. Preliminary results reveal 
several coherent categories of participants’ progression of understanding. This report will 
outline these profiles and seek critical feedback on the direction of the described research. 

Key words: Continuous Functions, Topology, Axiomatic Formalism, Abstraction, Properties 

Since Hilbert’s program at the turn of the last century, modern mathematics has rested on 
the notion of an axiomatic system (Zach, 2015). These consist of collections of declarative 
statements, or axioms, whose interactions describe the properties and relationships of the 
primitive elements in the system. Other properties can be logically deduced from the axioms, 
without the need for intuition. Reasoning in this manner is considered the ideal goal for 
students of advanced mathematics, although it may not be natural for many at first 
(Freudenthal, 1991; Tall, 2013). 

This research seeks to illuminate the transition that learners face when attempting to alter 
and embed their informal and more formal ways of understanding within axiomatic 
structures. By exploring the participants’ transformative use of abstraction in the 
reconstruction of their concept images for continuous functions in axiomatic contexts, this 
study contributes to an emerging perspective on the construction of axiomatic mathematical 
understanding in general. The dual processes involved in the abstraction and instantiation of 
such properties should play an essential role in the development of axiomatic knowledge 
structures. 

Background 

Axiomatic mathematical understanding 
Advanced mathematical thinking has been shown to be different from its earlier forms 

(Harel, 2000; Harel & Sowder, 2005; Sfard, 1994; Sierpinska, 1990; Tall, 2013). Students of 
advanced mathematics must revise their concept images for earlier ideas in ways that no 
longer rely on embodied metaphors and intuition about objects in the physical world (Sfard, 
1994). Instead, mathematical properties gain importance as they are transformed from 
descriptions into definitions (Freudenthal, 1991; Tall, 2013). Eventually, the need for 
axiomatic understanding demands a complete reversal of the relationship between properties 
and mathematical objects (Freudenthal, 1991; Garcia & Piaget, 1983/1989).  

The transition to axiomatic processes of understanding is fundamentally different than 
earlier transitions faced by mathematics students. It requires a substantial shift in the 
students’ thinking—from descriptive activities concerning the properties of mathematical 
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objects, to the construction of axiomatic systems and definitions based a priori on collections 
of those properties. As students are led toward increasingly abstract forms of thought that are 
less grounded in everyday experience, this can result in profound difficulties and 
misconceptions as they build their formal understanding of advanced mathematical topics 
(Freudenthal, 1991; Harel & Tall, 1991; Tall, 2013). Learners’ abstractions, instantiations and 
representations of mathematical properties are therefore a vital research focus for the 
exploration of their transitions to axiomatic understanding. This is the primary unit of 
analysis in the study described here. 

 
Cognitive structures in advanced mathematical thinking 

Tall and Vinner (1981) use the term concept image to describe “the total cognitive 
structure that is associated with the concept, which includes all the mental pictures and 
associated properties and processes” (p. 152). In this definition, the “structure” of the concept 
image was left largely without description; used as a holistic notion to refer to its totality, 
rather than as an explicit description of its organization. However, several elements of that 
structure have since been outlined in detail, such as: 
1. Basis for categorization—Whether students categorize pre-requisite concepts through 

exemplar representations, prototypical abstractions, or metaphorical comparisons is a 
significant factor in their ability to generalize continuous functions to broader contexts 
(Alcock & Simpson, 2011; Lakoff, 1987). 

2. Defining activities—The properties that have been abstracted into a student’s personal 
concept definition may not coincide with the formal definition, or even the examples they 
consider relevant to the concept. Analyzing participants’ defining activities according to 
the DMA framework (Zandieh & Rasmussen, 2010; Dawkins, 2012) creates a context for 
the interpretation of the relationship between concept image and concept definition. 

3. Example space structure—Several factors involved in the structure of a student’s example 
space have been examined by researchers in recent years including: density, 
connectedness, and axiological nature (Sinclair, Watson, Zazkis and Mason, 2011); and 
its dimensions of variation and range of permissible change (Watson & Mason, 2005). 
The example space will be a key structural component in this analysis of the concept 
image. 

4. Use of metaphor and embodiment—Many students will continue to use embodied 
metaphors and their physical intuition to guide their understanding, rather than axioms 
and definitions. Whether this is intrinsic to mathematical thought (Lakoff & Nunez, 2000) 
or an obstacle that may be overcome (Sfard, 1994), it remains a factor in any complete 
study of transitions in understanding. 

5. Abstraction types—Hershkowitz, et al. (2001) defined abstraction as “an activity of 
vertically reorganizing previously constructed mathematics into a new mathematical 
structure” (p. 202). As participants reconstructed and reorganized their understanding of 
continuous functions, certain activities related to abstraction were observed and can now 
be analyzed. Piaget’s four types of abstraction will play an important role here (as cited in 
von Glasersfeld, 1995), as well as Hamton’s (2005) explanation of the importance of 
context in abstraction and instantiation. 
While these constructs have been considered in isolation, there has been less work in 

seeking relationships between these separate elements of the concept image structure. The 
main contribution of the described research will be to explore a number of distinct cases of 
interaction between these five elements, forging the way toward a more complete 
understanding of how the concept image is structured and re-structured as the participants’ 
transition to axiomatic formalism proceeds. 
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Significance 

This study contributes to the theoretical knowledge about advanced mathematical 
understanding by: 1) providing insight into students’ transitions to axiomatic content, 
especially in the important context of continuous functions; and 2) exploring the effect of 
shifting the focus of mathematical learning research onto learners’ mental representations of 
mathematical properties rather than mental or mathematical objects. 

The continuous function concept is of great importance, not only as a window into the 
transition of students’ understanding toward axiomatic settings, but also in its own right. The 
long historical formulation of this idea led to the development of the important field of 
topology (Moore, 1995), and is central to the exploration of topological invariants through its 
role in the definition of homeomorphism, the defining criteria for the preservation of 
topological properties (Munkres, 1975/2000). 

By studying the transition to an axiomatic system in the context of continuous functions, 
this research spotlights the participants’ abstraction activities relating to important 
mathematical properties. Not only is continuity itself a property of the reified notion of a 
function (Dubinsky,1991; Sfard, 1994), but it is a complex of relationships between sub-
properties, such as sets that are open or closed, sequences that converge, and 
images/preimages of a given function. These interactions generate the property of continuity 
at higher levels of abstraction, and are therefore worthy of investigation. The advanced study 
of properties and their relationships will be needed to effectively model students’ transitions 
to axiomatic formalism in undergraduate and graduate mathematics classrooms.  

There are a number of research perspectives about how students acquire mathematical 
understanding (Arnon, et al., 2014; Sfard, 1994; Tall, 2013) through the cognitive 
representations of actions, objects, or symbols. Alternatively, Slavit (1997) demonstrated a 
“property-oriented view” (p. 263) of students’ understanding of functions, blending with 
Sfard’s (1994) operational-structural perspective to “discuss how a student can reify the 
notion of function as a mathematical object that possesses or does not possess various 
functional properties” (Slavit, 1997, p. 263). This investigation aims to elaborate this 
perspective greatly, establishing a scheme to describe the structure of participants’ concept 
images for continuous functions in terms of mathematical properties and students’ mental 
actions upon them. The cases constituted in this study will enable future research on targeted 
instructional techniques to accommodate diverse profiles of student learning in axiomatic 
contexts. 
 

Methods 

This qualitative, case-oriented research was first informed by several cycles of grounded 
theory-building that occurred over three semesters at a large university in the southwest 
United States. The initial studies aided in the development of a categorization scheme for 
possible factors and obstacles involved in the development of an axiomatic understanding of 
continuous functions. These categories served as the basis for the constitution of archetypal 
cases, which came to be organized around learners’ uses of abstraction and instantiation of 
mathematical properties in axiomatic contexts. 

 
Research design 
Grounded theory framework for preliminary data generation  

The evolution of the theoretical background for this study relied on several iterations of 
applied grounded theory methodology, which provided enough initial data to extract 
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meaningful dimensions for further study. Three semesters of preliminary interviews served as 
the ultimate basis for discovering categories in the emerging theoretical model, although 
those categories were also informed by a pre-existing theoretical framework derived from the 
research literature. This research guided the formation of interview tasks and questions, 
designed to elicit specific, observable acts of understanding. These tasks and questions were 
then modified based on participants’ responses and the researcher’s own reflective insights. 
Categories were formulated through this iterative process, which were then modified via 
reflexive feedback and sharpened into relevant dimensions for study. 
 
Case analyses 

The next phase of research used these theoretical categories to develop cases of particular 
ways of thinking and processes of understanding students use in combination to develop 
axiomatic understanding. Although it is not claimed that these cases are generalizable, they 
contribute to an understanding of the interaction among various types of abstraction and 
instantiation students might use at this stage in their mathematical development. This will be 
an essential first step to conducting further research in this area.  

The choice of case-oriented research for this purpose was justified by the complexity of 
the phenomena being investigated. Whereas a variable-oriented approach presupposes a 
homogeneous population from which to select a randomized sample, case studies seek to 
draw out differences in the population and to explore complex relationships between 
conditions and outcomes. Through in-depth investigations of cases, Ragin (2004) explains 
that qualitative researchers can often account for “causal heterogeneity” and “conjunctural 
causation” (p. 135); providing models for phenomena with multiple factors that the analytic 
tools of variable-oriented researchers cannot manage. 
 
Participants and Selection Criteria 
 Five participants from an undergraduate topology class of approximately 30 students 
were selected for profiling. They were chosen for their theorizing capacity based on their 
answers to a prerequisite knowledge assessment and brief interviews. Criteria for selection 
were divided into four categories relating to their understanding of the prerequisite concepts: 
1) categorization schemes and types of abstract representations, 2) personal concept 
definitions and their alignment with the formal definition, 3) example space structure and 
coherence, and 4) use of metaphor, visualization and multiple representations. 
 
Procedures 
 This investigation is a multiple-case analysis consisting of five distinct cases of 
participants’ cognitive transformations as they reconstructed their concept images for 
continuous functions to reflect an axiomatic structure. The cases were chosen based on 
classroom observations, a preliminary assessment, and a brief interview with each individual 
in the sample pool. The theoretical criteria for the constitution of these cases came from the 
research literature and insights that have emerged from preliminary study data as described 
above, as well as a textbook and curricular analysis. 

 
Textbook analysis 

Twelve topology-related textbooks, used widely in introductory topology courses across 
the U.S., were analyzed in the preliminary data collection process. In particular, one textbook 
(Croom, 1989) was chosen by the participating professor as the course textbook for the 
semester of the study. The goal was to discern the intended learning that authors expect 
students to follow while transitioning to an axiomatic understanding of continuity. These 
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sequences represent classical categorization schemes for the central notion of continuous 
functions and several pre-requisite and co-requisite concepts such as: functions, open and 
closed sets, sequences, and limits. Such schemes are the goal state for the structure of 
students’ concept images and not representative of the natural categorization schemes that 
most students will adopt at first. 

The approaches that were studied varied widely with respect to these topics, affected in 
some cases by the need to construct the concepts from prior knowledge, and in others by the 
authors’ willingness to present an abstract definition without explicit motivation. Codes for 
each of the analysis categories reached saturation, with themes becoming redundant among 
the twelve textbooks. Nevertheless, these codes represent a large variety of potential 
didactical approaches to the wider subject of continuous functions. Different blends of the 
above approaches might be chosen by the professor, with more or less emphasis on examples, 
prototypical abstractions, categorization rules, or metaphors. Variations in the presentation of 
the content may influence students’ approaches to understanding the topics, presenting 
possible future avenues for research. 
 
Task-based interviews and artifact analysis 

Since a learner’s enactment of understanding is fluid and context dependent (Duffin & 
Simpson, 2000; Sierpinska, 1994) qualitative, task-based interviews were deemed the most 
appropriate manner of eliciting appropriate actions and capturing the evolving state of her or 
his cognitive structure. However, there are challenges involved in eliciting a full, reasoned 
solution or proof in a time-limited setting. Participants may demonstrate some of their 
reasoning processes in this way, but they cannot necessarily demonstrate their ability to 
formally produce a proof, or work through complex threads of logical reasoning. For this 
reason, classwork (e.g. quizzes, exams) and homework was also analyzed in order to gain 
insight into the participants’ full range of mathematizing abilities. 

Analysis was centered on participants’ in-class work and the results of three rounds of 
task-based interviews held throughout the semester. These hour-and-a-half long interviews 
were focused on these three broad topics: 1) the description and use of open/closed sets, 
sequences, and real-valued continuous functions; 2) the description of continuous functions in 
abstract contexts; and 3) the use of continuous functions in abstract contexts. The interview 
questions were designed to elicit the participants’ personal concept definitions and elements 
of their concept images for these topics, such as salient metaphors, the example space 
structure and the basis for their categorization schemes. Students were then tasked with 
reconciling their definitions to divergent elements of their concept images and/or the formal 
definitions for these topics. Further tasks were designed to provoke acts of abstraction from 
the participants as they tried to enact their understanding in proof and problem-solving 
contexts. 
 

Questions for Audience 
 

1. Might it be possible to find different cases of student thinking in different classroom 
contexts (e.g. metric space courses, geometrically-oriented introductions, or more 
abstractly presented material)? 

2. To what extent are a student’s uses of abstraction and instantiation related to each 
other? In other words, could we hope to predict how a student uses a mathematical 
concept by the process they used to define it? 

19th Annual Conference on Research in Undergraduate Mathematics Education 637

19th Annual Conference on Research in Undergraduate Mathematics Education 637



3. In what other ways might the transition to axiomatic formalism reflect or contrast 
with earlier transitions? 
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Calculus Students’ Understanding of the Vertex of the Quadratic 
Function in Relation to the Concept of Derivative 

 
Annie Burns Childers     Draga Vidakovic 

University of Arkansas at Little Rock        Georgia State University  
 

Abstract 
The purpose of this study was to gain insight into thirty Calculus I students’ understanding of the 
relationship between the concept of vertex of a quadratic function and the concept of the 
derivative. APOS (action-process-object-schema) theory (Asiala et al., 1996) was used in 
analysis on student written work, think-aloud, and follow up group interviews. Students’ 
personal meanings of the vertex, including misconceptions, were explored, and how students 
relate the vertex to the understanding of the derivative. Results give evidence of students’ lack of 
connection between different problem types which use the derivative to find the vertex.  
Implications and suggestions for teaching are made based on the results. Future research is 
suggested as a continuation to improve student understanding of the vertex of quadratic functions 
and the derivative.  
 
Keywords: Quadratic function, Vertex, Derivative, APOS 
 
It is well documented that students have trouble with quadratic functions (Afamasaga-Fuata’i, 
1992; Eraslan 2008; Metcalf, 2007; Zaslavsky, 1997). It is also well documented that students 
have trouble with the concept of the derivative. As the derivative can be used to find the 
maximum or minimum of a quadratic function, also known as the vertex, this study aims to 
explore thirty Calculus of Variable I students’ understanding of the relationship between the two 
concepts, vertex of a quadratic function and its’ derivative. Understanding of a vertex by calculus 
I students is closely tied to students’ understanding of a quadratic function for which the vertex is 
a particular point; a point with respect to which many algebraic and graphical properties of a 
quadratic function could be described (such as, the extreme value, axis of symmetry, 
increasing/decreasing values of a function). For this study, understanding the relationship 
between the vertex of a quadratic function and the derivative function includes recognizing that 
at the vertex of a quadratic function, the slope of the tangent line is zero, as well as being able to 
relate other properties between a quadratic function 𝑓 and its derivative 𝑓’, such as where the 
function is increasing or decreasing in relation to the values of the slope of the tangent line. This 
presents the following research question: How do Calculus I students perceive and relate the 
concept of the vertex of a quadratic function to the derivative in different problem situations? 
  
There are some studies that specifically include a component on the vertex of a quadratic 
function (Borgen and Manu 2002; Ellis and Grinstead, 2008) Most of the studies that focus on 
the vertex of quadratic functions were done with students in classes that usually precede Calculus 
I.  Studies with Calculus I students often involve concepts such as functions and variables 
(Vinner & Dreyfus, 1989), limits and continuity (Ferrini-Mundy & Graham, 1991), derivative 
(Maharaj, 2013; Orton, 1983a), and integrals (Orton, 1983b) without a specific focus on the 
vertex of a quadratic function. Asiala, Cottrill, Dubinsky, & Schwingendorf (1997) explored 
calculus students’ graphical understanding of a function and its derivative and suggested that 
students who had an instructional treatment based on theoretical analysis may have more success 
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in fostering an understanding of the graph of a function and its derivative versus those in 
traditional courses. Other studies, such as White and Mitchelmore (1996) found that calculus 
students had an “underdeveloped concept of a variable” (White & Mitchelmore, 1996, p. 88).  
However, most studies do not necessarily make an explicit connection between the derivative 
and the vertex of a quadratic function. This study aims to look at Calculus I students’ 
understanding of the relationship between these two concepts. 
 
Analysis of student written work, think-aloud sessions, and follow up group interviews were 
done using APOS theory as an assessment tool to classify and make distinctions in students’ 
answers and reasoning on problems relating the vertex of a quadratic function and the derivative 
(Asiala, Brown, DeVries, Dubinsky, Mathews, & Thomas, 1996). APOS framework was most 
appropriate to analyze student perception and understanding of the concept of vertex of the 
quadratic function in relation to the derivative because of the theories ability to describe and 
analyze possible mental constructions representing different levels of students’ understanding. 
This theory has been proven useful for constructing a genetic decomposition of a function 
(Breidenbach et al., 1992), as well as a good model for studying about learning and teaching of 
other important mathematical concepts (Asiala et al., 1997; Clark et al., 1997; Cottrill, Dubinsky, 
Nichols, Schwingendorf, Thomas, & Vidakovic, 1996). By attempting to characterize student 
understanding of the vertex of a quadratic function in relation to the derivative based on the 
action, process, and object levels, this framework proved to be a useful tool in interpreting 
students’ performance and understanding.   
 
As part of a larger study, this poster presentation offers results from two questions from the think 
aloud interviews, an algorithmic problem and a real world application problem, used to 
determine if students could recognize the relationship between the vertex of a quadratic function 
and the derivative in two different problem contexts. Misconceptions of the vertex of a quadratic 
function, including misconceptions of the vertex as always being an intercept, misconceptions of 
the vertex as the origin, and misconceptions of the vertex as a point of inflection all contributed 
to student difficulty with answering and describing questions pertaining to the relationship of the 
vertex of a quadratic function and its’ derivative function. Many of the students work appeared to 
be consistent with action conception of understanding the vertex and its’ relationship to the 
derivative according to APOS. On the other hand, the more a student was able to talk and 
describe about the vertex accordingly, the more conceptually the student was able to talk about 
the concepts and the relationships between the vertex of the quadratic function and the derivative 
function. According to APOS, those students who could speak with meaning possibly exhibited 
at least a process level of understanding, as they could reflect and describe the reasons behind the 
steps. 
 
Several implications for teaching are suggested based on the results and discussion. First, since 
many students appear to be performing at an action level of understanding, it is important to 
reassess how students are taught. It is understood that teaching goals should be to help students 
to develop their understanding of concepts beyond the action level. Pedagogical methods might 
include students talking out loud either in groups or as a class to explain reasons behind their 
procedures. A combination of individual and group activities on various APOS levels, class 
discussion, and individual exercises could help foster conceptual growth in students. 
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 A Study of Common Student Practices for Determining  
the Domain and Range of Graphs 
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This study focuses on how students in different postsecondary mathematics courses perform on 
domain and range tasks regarding graphs of functions. Students often focus on notable aspects of 
a graph and fail to see the graph in its entirety. Many students struggle with piecewise functions, 
especially those involving horizontal segments. Findings indicate that Calculus I students 
performed better on domain tasks than students in lower math course students; however, they did 
not outperform students in lower math courses on range tasks. In general, student performance 
did not provide evidence of a deep understanding of domain and range. 

Keywords: Graphs of functions, Domain and range, Cognitive research 

Functions are important because they model quantitative relationships and serve as 
foundational notions for more advanced mathematics topics (Blair, 2006). However, the concept 
of a function, the different representations of functions, and how they are linked post challenges 
for students (Kaput, 1989; Kleiner, 2012; Sierpinska, 1992; Tall & DeMarois, 1996). Domain and 
range play key roles in understanding relationships between the two variables in a function 
(Carlson, Jacobs, Coe, Larsen, & Hsu, 2002). Yet, there has been little research on common 
practices students use to determine the domain and range, specifically for the graph of a function. 

 
Common Practices: Strategies, Transitional Conceptions, Use of Representations 

During the meaning-making process, individuals often rely on their own practices. These 
practices, which are based on conceptions that have developed around mathematical ideas, include 
strategies that individuals choose to employ to help develop understanding and solve items. Chiu, 
Kessel, Moschkovich, and Muñoz-Nuñez (2001) defined a strategy as “a sequence of actions used 
to achieve a goal, such as accomplishing a particular task or solving a particular problem” (p. 219). 
Following Smith, diSessa, and Roschelle (1993), Moschkovich (1999) defined a transitional 
conception as “a conception that is the result of sense-making, sometimes productive, and has the 
potential to be refined” (p. 172). To study individuals’ meaning-making processes, it is crucial to 
consider their transitional conceptions along with the strategies they employ and the 
representations they use when engaged in mathematical tasks.  

In previous research (Cho & Moore-Russo, 2014), ten common practices on tasks involving 
the domain and range of a function’s graph were identified. Building on the findings from that 
study, this study considers the following research questions:  

1. How do common student practices align with students’ performance on tasks involving the 
domain and range of a function’s graphical representation?  

2. How do students in different mathematics courses perform on tasks involving the domain 
and range of functions in graphical form?  
 

Methods 

The study participants were students enrolled in one of three mathematics courses at a four-
year college in the eastern United States. Algebraic Problem Solving (APS), Pre-calculus (Precalc), 
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and Calculus I (Calc) courses were selected for this study, since these courses address both the 
concept of function, in general, as well as the notions of domain and range, in particular. Six of 
the courses were APS classes, two were Precalc classes, and three were Calc classes. In total, there 
were 219 participants in the study: 128 APS students (under four instructors), 54 Precalc students 
(under two instructors), and 37 Calc students (under two instructors).  

The APS course, commonly known as College Algebra at other institutions, is open to all 
students, meets the basic mathematics competency requirement for the college, and introduces the 
ideas of function, domain, and range. In Precalc, instructors concentrate on how to identify the 
domain and range of the graphical representations of functions, and students work with a variety 
of functions, including piecewise functions. In the Calc course, students use the concept of domain 
and range on graphs, but instructors do not directly teach those concepts. 

 
Data collection 

The research team members had over 40 years combined experience teaching secondary and 
postsecondary courses. Based on their experience and previous research, the researchers developed 
a paper-and-pencil multiple-choice test that consisted of 20 graphs. The graphs consisted of a 
variety of functions and included both continuous and discontinuous piecewise functions. Odd 
numbered items required a response to a function’s domain and even numbered items required a 
response to its range; hence, there were a total of 40 items. Each item had five options. The 
instrument reliability was acceptable (Cronbach’s α = .69).  

To remind students of the concepts of functions, domain, and range, the definitions for all three 
were listed on the front page of the test. Students were motivated to complete this test as a means 
to check and develop their concepts of domain and range. They did not receive any compensation, 
and their participation was voluntary. After obtaining consent from student volunteers, the 
multiple-choice test was administered in class at a time most convenient for the instructors. All 
students completed the test within 20-30 minutes.  
 
Data analysis 

The data were analyzed using SPSS software. All statistical tests used α = .05 when assessing 
statistical significant and were two-tailed (where appropriate). A MANOVA was used to analyze 
if students’ performance on the domain and range tasks in the 40 items varied according to the 
college mathematics course in which they were enrolled. This was appropriate since domain and 
range task performance are both dependent variables in this study. In addition, choosing a 
MANOVA (as opposed to two separate ANOVAs) reduces the likelihood of committing a Type I 
error, as well as accounts for any correlation between the dependent variables. In addition, a series 
of Bonferroni-corrected post hoc comparisons were used to find which math courses differed in 
domain and range performance.  

 
Results 

The first research question examines how students’ practices align with their performance on 
tasks involving the domain and range of functions in their graphical form.  

 
Significant transitional conceptions or strategies 

This study looks for relationships between how often students used common conceptions, 
strategies, or representations in light of their performance on the domain and range items. The 
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research team used the most common student practices identified in previous research (Cho & 
Moore-Russo, 2014), which are listed in Table 1 with their codes. 

 
Table 1 
Common Practices Associated with Incorrect Responses 
Abbreviation Common Practice 
EdptFocus Focusing on the endpoints of a graph or the interval endpoints of a discontinuous graph 
ConfuseDR Confusing the domain and range 
IntDescend Representing an interval in set notation in descending order 
NoOverlap Not combining abutting or overlapping intervals 
Intercept Focusing on either x- intercept or y-intercepts 
IntNotation Confusing the notations for open ( ) and closed [ ] intervals 
RangeLtoH Treating the range as continuous from the lowest to the highest value for a 

discontinuous, piecewise function 
OpenPoint Not noticing or ignoring an open point  

 
To show how items were coded for common practices, Table 2 provides examples of the coding 

used for two items. Note that for each of the 40 items, codes were not assigned to the item’s correct 
answer nor were they assigned to option E, “None of the above.” 

 
Table 2 
Examples of Codes Assigned to the Options of Selected Items 

Test items Multiple choice options Assigned Codes 
11. Find the domain  

       

A) (-∞, 2) or x < 2 
B) (2, -∞) 
C) {-3.2} or x = -3.2 
D) (-∞, 6) or x < 6 
E) None of the above 

None (correct answer) 
EdptFocus, IntDescend 
Intercept  
ConfuseDR  
None 

24. Find the range  

      

A) [60, 20]∪[20, 20]∪[20, 40]∪[40, 50) 
B) [20, 60] or 20 ≤ y ≤ 60 
C) [20, 50) ∪ (50, 60] 
D) [60, 50) 
E) None of the above 

NoOverlap, IntDescend 
None (correct answer) 
NoOverlap 
EdptFocus, IntDescend 
None 

 
The occurrences of the coded practices for each student were tallied and compared against the 

percentage of domain and range items the student had answered correctly. The correlation matrix 
in Table 3 displays those results. Results in Table 3 suggest that the practices students used did not 
have the same relationship with student performance on the domain and range items on the test. 
For example, more frequent use of the Intercept, IntNotation, and OpenPoint strategies tended to 
have more of a negative influence on performance on domain items than range items. Interestingly, 
neither the Intercept nor the OpenPoint strategy appeared to be related to students’ performance 
on range items. There were also strategies that had a stronger, negative relationship with 
performance on range items. The more often students used the EdptFocus, IntDescend, or 
NoOverlap strategies, the fewer range items they answered correctly. It should be first noted that 
the NoOverlap strategy only applied to range tasks. Next, there does appear to be an issue of multi-
collinearity between the EdptFocus and the IntDescend strategies (r = .94). This is most likely 
because these strategies were often present in many of the same items. In addition, the lack of a 
relationship between the RangeLtoH strategy with both performance on domain items (r = -.09) 
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and range items (r = -.06) seem to suggest that the use of this strategy neither helps nor hinders a 
student’s performance on domain and range tasks. 

 
Table 3 
Summary of Correlations between the Frequencies of Common Practices Associated with 
Incorrect Responses and Performance on Domain and Range Items 

Variable 1 2 3 4 5 6 7 8 9 10 
1.   % Domain Correct   1          
2.   % Range Correct   .63**   1         
3.   EdptFocus -.49** -.66**   1        
4.   ConfuseDR -.52** -.50**  .31**  1       
5.   IntDescend -.45** -.66**  .94** .34**    1      
6.   NoOverlap -.26** -.46**  .50** .11   .47**   1     
7.   Intercept -.28**   .00  .01 .05   .02 -.02   1    
8.   IntNotation -.54** -.35**  .39** .19**  .30**  .25** -.07  1   
9.   RangeLtoH -.09 -.06 -.08 .15* -.12 -.07   .02 .09  1  
10. OpenPoint -.25**   .00 -.08 .04 -.19** -.23** -.12 .21** .27**  1 
Note. n = 219; *p < .05; **p < .01 
 
Most difficult items for students  

The six items with the lowest percentage of correct responses are displayed in Table 4. Items 
27, 28, and 29 involved piecewise function graphs with several horizontal segments or open end 
points. Most students who selected incorrect options for these items either did not notice or ignored 
the open point to measure the domain or range. Many students also chose option E as the answer 
for these items, which might suggest they did not have a strategies for how to solve these tasks. 
Item 34 was a piecewise function graph whose output values overlapped. Most students who 
selected an incorrect option for this item either did not notice or ignored the overlapped portion. 
Item 38 was a piecewise function graph with one horizontal segment and two end arrows denoting 
that the function continued both as the inputs approached negative and positive infinity. Many 
students seemed to focus on this and selected option C, which stated “all real numbers”. However, 
many students’ transitional conceptions failed to take into account the vertical gap in outputs 
between the values of 2 and 3. The graph displayed in item 17 showed part of a parabola with two 
open points, one on the x-axis and one on the y-axis. Many students did not notice or ignored the 
open point on the y-axis. 

 
Table 4 
Occurences of Common Practices Associated with Incorrect Responses on Most Difficult Items 

Item Correct 
Responses 

Common Practices Associated with Incorrect Responses 
EdptFocus ConfuseDR IntDescend NoOverlap IntNotation RangeLtoH OpenPoint 

27 20.55%  X  X  X X 
29 22.37% X     X X 
34 24.20% X   X  X  
38 24.20% X X X  X   
17 26.03% X X X    X 
28 27.85%  X    X X 
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A matched pairs t-test was conducted to see if there was any statistically significant difference 
between how well students performed on the domain items as opposed to the range items. On 
average, students answered 52.26% of the domain items correctly (SD = 22.16%), whereas they 
only answered 43.54% of range items correctly (SD = 21.47%). This mean difference of 8.72% 
was statistically significant, t(218) = 6.91, p < .01, d = .47. On average, students performed nearly 
a half standard deviation better on the domain items, which is a moderate difference. This result 
concurred with the previous study’s findings, which found that range items were more difficult 
than domain items for students (Cho & Moore-Russo, 2014).  

 
Performance on items involving piecewise functions 

Students seem to lack strategies, even ones related to transitional conceptions, to make 
meaning of piecewise functions when determining domain and range. Many participants selected 
option E indicating that none of the response options provided for an item was correct. However, 
the correct response was located in options A through D for each item on the test. The research 
team found that a higher percentage of students selecting option E came from piecewise functions 
that included horizontal segments or disconnected points in their graphs. In fact, the six items with 
the highest percentages of students choosing E were domain and range tasks related to three graphs 
of piecewise functions that included horizontal segments or disconnected points. Those items were 
item 21, 22, 27, 28, 29, and 30 (see Table 5). Recall that odds items involved domain tasks, and 
even items involved range tasks. 

 
Table 5 
Items with Highest Percentages of Option E Responses 

 Graph on Test and Associated Items  
(Odds Items for Domain Tasks, Even Items for Range Tasks) 

 
 

 
Items 21 and 22 

 
Items 27 and 28 

 
Items 29 and 30 

% of Option E  
Responses 

Domain 20.55 19.63 24.20 
Range 23.74 24.20 23.29 

 
The percentages of option E responses was 20.55% for item 21, 23.74% for item 22, 19.63% 

for item 27, 24.20% for item 28, 24.20% for item 29, and 23.29% for item 30. This could indicate 
that participants struggled to make meaning of the items involving piecewise function graphs and 
horizontal segments or points. 

 
Student levels and performance 

The second research question considered differences between students in different levels of 
courses and their performance on domain and range tasks for functions in their graphical forms. 
The research team found that the level of math had a significant effect on performance on the 
multiple-choice test, Λ = .90, F (4, 430) = 5.74, p < .01.  From here, the research team decided to 
examine how class level related to domain and range performance individually. The math course 
level had a significant effect on domain performance, F (2, 216) = 9.09, p < .01. 
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Table 6 
Results for Items Related to Domain and Range (Reported as Percentages) 
Course Domain Range 

M SD M SD 
APS 47.70 21.63 40.16 20.32 
Precalc 54.91 21.73 49.07 22.13 
Calc 64.19 19.91 47.16 22.66 
Overall 52.26 22.16 43.54 21.47 

 
As Table 6 illustrates, on average, students who enrolled in Calc had the best domain 

performance, while those in the APS course had the worst. A series of Bonferroni-corrected post 
hoc comparisons were run to find which math courses differed in domain performance, and found 
that the only statistically significant difference in domain performance (using a familywise α = 
.05) occurred between Calc students and APS students. On average, Calc students performed over 
three-quarters of a standard deviation better than the APS students (d = .77). The math course level 
also had a significant effect on range performance, F (2, 216) = 4.02, p < .05. On average, Precalc 
students performed the best on range items (doing better than Calc students), while those in the 
APS course performed the worst. With the series of Bonferroni-corrected post hoc comparisons, 
the researchers found that the only statistically significant difference in range performance (again, 
using a familywise α = .05) occurred between Precalc and APS students. As Table 6 illustrates, 
Precalc students, on average, performed almost 9% better than the APS students; this effect was 
moderate (d = .42). 

 
Discussion and Conclusions 

Learning about the domain and range of functions, including studying them in a function’s 
graphical form, is common in many secondary and early postsecondary mathematics courses. 
Students in Calc should easily make meaning of tasks that involve these topics. Our results, on the 
other hand, suggest that this is not the case. Overall, many of the study participants seemed to have 
difficulty performing domain and range tasks on graphs of functions. As Table 6 indicates, the 
average participant’s performance was only 52.26% for domain tasks and 43.54% for range tasks. 
These findings also confirm what had been noted in previous research that college students, in 
general, have more difficulty on range tasks than on domain tasks. While our sample illustrates 
the notion that students’ performance on domain tasks tends to improve as they advance to higher 
level mathematics courses, we did not have statistical support to generalize these findings across 
the three courses involved. Even though Calc students, on average, had a better understanding of 
domain than students in the other two math courses; we only had enough evidence to support that 
students enrolled in Calc had a better understanding of domain than APS students. There was not 
enough evidence to support the claim that Calc students, on average, had a better understanding of 
range than APS students or Precalc students.  

The relationship between student practices and performance were not the same for the domain 
and range tasks. As Table 3 suggests, more frequent use of the Intercept, IntNotation, and 
OpenPoint strategies tended to have a negative influence on performance for domain tasks, while 
the EdptFocus, IntDescend, or NoOverlap strategies tended to have a negative influence on 
performance for range tasks. We can conclude that students do not necessarily utilize the same 
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strategies when solving for both domain and range tasks; rather, they discriminate the type of 
practice they use depending on the need to determine domain or range. 

When the participants engaged in the domain and range tasks, many seemed to have traced the 
graph from the start to the end (i.e., left to the right or bottom to top). Even though the piecewise 
sections of the functions often abutted or overlapped in their intervals, students seemed to hyper-
focus on the “micro” and not the “macro”– forgetting to look at the graph in its entirety and hence 
failing to combine abutting or overlapping intervals. They also struggled with piecewise functions 
in ways that suggest that students often fail to take into account the graph as a whole. Just as the 
saying that a “person can’t see a forest for the trees” goes, students might get so involved in 
identifying notable aspects of a graph (particularly graphs that lack continuity) or tracing a graph 
through particular points that they fail to see the graph in its entirety. Participants struggled with 
range items when horizontal segments were part of a discontinuous function’s graph. This finding 
corresponds with the results of previous study and seems to provide evidence that instructors need 
to recognize that some transitional conceptions students hold need to be revisited to help students 
make meaning of domain and range at both the micro and macro levels. 

 
Limitations and Future Research 

For each item, participants had five response options, including option E “none of the above.” 
Many students selected this response, especially for items with horizontal segments. If the 
participants had been prompted to write in their answers when selecting the “E” response, they 
might have more insight to their strategies and transitional conceptions. In addition, we also note 
that multiple strategies could have been used when students selected a particular choice for each 
item. This was most likely the reason for the multi-collinearity witnessed in Table 3 between the 
EdptFocus and the IntDescend strategies. Hence, there are study limitations that result from the 
design of the instrument items. Repeated interviews over time with students or longitudinal studies 
involving pretests and repeated post-tests would provide more detailed insight on how students’ 
transitional conceptions, strategies, and uses of representations develop or persist. 

Another limitation relates to the follow-up contrasts conducted for the second research 
question. We used Bonferroni-corrected post hoc contrasts rather than assume which classes might 
differ in terms of performance. While our post-hoc contrasts allow us to examine differences 
between all three class levels, we had to control for the possibility of making a Type I error. 
Consequently, we may have been too conservative in our findings. Had we determined planned 
contrasts a priori instead, we might have found more significant differences between math class 
levels, as our alpha level would have been much higher for determining significance. 

Suggestions exist on how high school teachers can emphasize connections while teaching 
functions (e.g., Moore-Russo & Golzy, 2005), and studies provide evidence that explicit 
presentation of multiple representations of mathematical ideas and reference to the connections 
between them using a multimodal approach are important instructional considerations (McGee & 
Moore-Russo, 2015; Moore-Russo & Viglietti, 2012; Wilmot et al., 2011). Research also suggests 
that the way ideas related to functions are taught in at the secondary level may vary from the way 
they are taught at the postsecondary level (Nagle, Moore-Russo, Viglietti, & Martin, 2013). A 
study of both high school and college instructors could help point out similarities and differences 
in methods for teaching domain and range and the connections explicitly made during instruction 
of these topics between the graphical representation and other representations. 
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Struggling to comprehend the zero-product property 
 

John Paul Cook 
Oklahoma State University 

 
The zero-product property (ZPP), typically stated as ‘if ab=0 then a=0 or b=0,’ is an important 
property in school algebra (as a technique for solving equations) and abstract algebra (as the 
defining characteristic of integral domains).  While the struggles of secondary mathematics 
students to employ the ZPP are well-documented, it unclear how undergraduate students 
preparing to take abstract algebra understand the ZPP as they enter abstract algebra.  To this 
end, this paper documents students’ understanding of the ZPP while also investigating how 
students might be able to develop and harness their own intuitive understandings of the property.   
 
Key words:  abstract algebra, secondary algebra, zero-product property 
 

Tall, de Lima, and Healy (2014) posed the following task to 77 high school algebra students 
(p. 7): 

 
To solve the equation (𝑥 − 3)(𝑥 − 2) = 0 for real numbers, John answered in a single 
line that ‘𝑥 = 3 or 𝑥 = 2.’  Is his answer correct?  Analyse and comment on John’s 
answer. 
 

Remarkably, only 30 out of the 77 students claimed that the solution was correct, and all of the 
students who attempted to find a solution distributed and applied the quadratic formula 
(sometimes incorrectly).  Of particular importance, not a single student referenced the property 
that if a product of two real numbers is zero, one of the two numbers must themselves be zero (if 
𝑎𝑏 = 0, then 𝑎 = 0 or 𝑏 = 0), commonly referred to as the zero-product property (ZPP).  Tall et 
al. suggested that this phenomena –students overlooking an efficient algebraic solution using the 
ZPP – resulted from an overemphasis on students learning to solve linear equations through 
“procedurally embodied symbol shifting” (p. 11).  He concluded that such a blind focus on 
procedure can lead to even greater difficulty with subsequent content.   In particular, Tall et al. 
reasoned that secondary algebra “[transforms] into an axiomatic formal world of set-theoretic 
definition and proof in university pure mathematics” (p. 12).  

This is consistent with characterizations of abstract algebra elsewhere in the literature.  
Ideally, an abstract algebra course is “the place where students might extract common features 
from the many mathematical systems that they have used in previous mathematics courses” 
(Findell, 2001, p. 12).  Indeed, much of school algebra involves solving equations, and the 
properties needed to solve the general linear equation 𝑎𝑥 + 𝑏 = 𝑐, for example, are precisely the 
field axioms (Kleiner, 1999).  These connections are completely natural and advantageous from 
an expert’s perspective.  However, there is substantial reason to believe that this is not the case 
for students (CBMS, 2001), who might see abstract algebra as “a completely different subject 
from school algebra” (Cuoco, 2001, p. 169).  The ramifications of this disconnect are potentially 
dire for affected pre-service teachers, who “will understandably have a very limited notion of 
what algebra is about, and will be unequipped to address the curricular breadth now 
encompassed in school algebra” (CBMS, 2001, p. 109).  At the very least, such teachers would 
likely be inhibited in their abilities to communicate the core ideas of the subject to their students. 
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The ZPP is uniquely situated to provide insight into such issues.  Though many of these 
algebraic properties from school algebra have important uses in abstract algebra, the ZPP is of 
particular importance as the defining characteristic of integral domains – a fundamental ring-
theoretic structure.  The typical student preparing to take abstract algebra is likely to have 
completed a significant amount of mathematics courses, including the calculus course sequence 
and linear algebra.  Moreover, the ZPP appears regularly in these courses in some form.  Thus, 
before reaching any conclusions regarding undergraduate students’ understanding of this 
property, additional research is needed, yet there are no studies that directly investigate 
undergraduate students’ understanding of the ZPP.  Thus, I designed the present study to 
investigate how undergraduate students’ might intuitively notice, reason with, and understand the 
zero-product property. 

 
Literature 

 
There are several studies documenting student activity with algebraic structures containing 

zero-divisors.  The students in each study generally do not recognize the implications for the 
zero-product property and continue to tacitly assume that the property holds.   

Simpson and Stehlikova (2006) documented a case study of one student (Molly, who had 
completed abstract algebra) and her largely self-guided attempts to make sense of a disguised 
(isomorphic) rendering of the commutative ring ℤ99 in an independent research project over a 
period of several years.  They noted that, early in the study (interviews 3 and 4), Molly’s 
correspondence with the researchers revealed that she had made note that multiples of 3 “cause 
the equation [𝑎𝑥 = 𝑏] to have multiple solutions,” and later cause “problems when cancelling” 
(p. 362).  These early observations of the consequences of zero-divisors are notable because she 
later (interview 8) solves quadratic equations of the form 𝑎𝑥2 + 𝑏𝑥 = 99 by factoring into 
𝑥(𝑎𝑥 + 𝑏) = 99 and invoking “her knowledge from ordinary arithmetic that a product is zero if 
and only if one of the factors is zero” (p. 363).  Despite her prior work demonstrating her 
awareness of elements that caused equations to have multiple solutions, she employed the ZPP 
and thus implicitly asserting that the only possibility was that one of the factors had to be equal 
to the additive identity.  At this point, the authors observed that she had “no obvious sense of the 
presence of zero-divisors at this point,” (p. 363).  It was not until a subsequent revision of her 
work occurring long afterwards (approximately 25 weeks) that she began to show signs of 
implicit attention to the effects of zero-divisors and even longer (an additional 23 weeks) until 
she explicitly linked zero-divisors to the ZPP, which certainly suggests that this was not an 
obvious or intuitive connection for her.  Other than to generally note that Molly struggled to 
focus her attention in productive ways (which was one of the principal findings of the study), the 
researchers did not hypothesize any specific explanations about her mathematical reasoning with 
zero-divisors and the ZPP.   

Ochoviet and Oktaç (2009) reported similar findings from a study of task-based surveys with 
both secondary and undergraduate mathematics students focused on using the zero-product 
property in different algebraic structures.  One such task presented secondary mathematics 
students with a multiplication table for ℤ6. After being asked to compute several calculations 
using the table and solve the equation 3 ⋅ 𝑥 = 0, they were asked, “𝑎 and 𝑏 are elements of the 
set 𝐴 as above.  It is known that 𝑎 ⋅ 𝑏 = 0; based on this information, what can you say about 𝑎 
and 𝑏?  Explain your answer.” (p. 130).   While specific data on the proportions of correct 
responses is not included, the researchers noted that “most” of the late secondary students 
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concluded that either  𝑎 or 𝑏 must be zero.  Students responded similarly to the same question for 
more familiar structures, including rings of functions and matrices.   

These studies indicate that students struggle to reconcile and notice the ramifications of 
zero-divisors for the zero-product property.  However, what is presently unclear is why students 
are reasoning in this way, as there are no empirically-based explanatory models of how students 
are thinking about zero-divisors and the ZPP in these situations.  To this end, in this paper I 
attempt to explore this phenomenon by answering the following research question:  Why do 
students struggle to make connections between zero-divisors and the zero-product property? 

 
Theoretical Orientation 

 
The research questions that frame this study are compatible with and supported by the theory 

of Realistic Mathematics Education (RME).  A central tenet of RME is that the starting point of 
an instructional sequence should be experientially real to the student so that the mathematical 
activity becomes personally meaningful (Freudenthal, 1991).  An RME design heuristic that 
informed the instructional design was guided reinvention, in which “the idea is to allow learners 
to come to regard the knowledge they acquire as their own private knowledge, knowledge for 
which they themselves are responsible” (Gravemeijer, 1999, p. 158).  A point of clarification is 
in order here.  The primary objective is not to have students reinvent the statement of the ZPP – 
the literature detailed above provides two instances in which the students are familiar with the 
statement of the property yet still struggle to employ it effectively.  While the statement of the 
property itself is certainly important, the objective is rather to investigate how students might be 
able to reinvent or discover particular notions related to this property.  Namely, how they might 
identify its potential uses, identify the connection with zero-divisors, or discern whether it holds 
for a particular algebraic structure.  

As a means of executing these design heuristics, I adopted the teaching experiment 
methodology (Steffe & Thompson, 2000) in order to “begin making essential distinctions in 
students’ ways and means of operating” (p. 275) while also “[experimenting] with the ways and 
means of influencing students’ mathematical knowledge” (p. 274).  In particular, the teaching 
experiment methodology provided a means to develop models students’ intuitive understandings 
of the ZPP.   The task design, following suggestions from the literature (e.g. Cook, 2012), 
centered on equation solving as an experiential real means for students to encounter the ZPP.   
 

Methods 
 

This preliminary proposal focuses on a pilot teaching experiment as part of a larger study to 
answer the stated research question.  The two participants, Steve and Lindsey, were selected on 
the basis of mathematical preparation (successful completion of linear algebra and a transition-
to-proof course, but no abstract algebra), and a willingness to participate in the study.  Data was 
collected using a recording Livescribe pen, which synchronized students’ written work with the 
corresponding audio.    

I employed two methods for data analysis:  ongoing and retrospective.  The ongoing analysis 
occurred during and between sessions as I attempted to construct more stable models of student 
thinking in situations involving zero-divisors and the zero-product property.  At the conclusion 
of data collection, I engaged in a retrospective analysis using Clement’s (2000) interpretive 
analysis cycle for generative task-based interviews.  Similar to Glaser and Strauss’s (1967) 
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constant comparative method from grounded theory, this interpretive analysis cycle was similar 
in nature to how I conducted the ongoing analysis, but allowed for the possibility of identifying 
common themes and observing conceptual change across the entire data set: 

� Segmenting the data; 
� Making observations of student behavior with zero-divisors and the ZPP from each 

segment; 
� Hypothesizing models of mental processes that can explain the observations; 
� Return to the data to refine and look for confirming or disconfirming observations; 

modifying and/or extending the models as needed. 

 
Results 

 
In this section I present themes emerging from the preliminary results in the pilot teaching 

experiment in this study: 
 
Noticing zero-divisors  

In an initial task in which Steve and Lindsey reviewed modular arithmetic (using clock 
arithmetic as a metaphor), they constructed both an addition and a multiplication table.  Steve 
noticed that several elements have repeating patterns, and commented, “My initial thought was, 
it’s the factor by which you are multiplying, um, a quantity.  In this case, 5 is going to produce 
unique numbers.  And that’s how 4 over here produces, can produce, one of three numbers.  So it 
won’t produce anything unique.”  Essentially, he has noticed that 4 and 5 are fundamentally 
different types of elements, but his attention appears to focus on the pattern itself, and not the 
multiple ways to multiply to obtain 0.  Soon after they solved 4(𝑥 − 5) = 0 in ℤ12 by the same 
method they used to solve the equation in ℝ.  Of course, in this case their second line (after 
distribution) read ‘4𝑥 − 8 = 0,’ leading to a solution of 𝑥 = 2.  Neither Steve nor Lindsey 
noticed that 𝑥 = 2 was different than their solution to the same equation in ℝ, and also did not 
recognize that there were multiple solutions.  Later, when I asked them to speculate about why 
4(𝑥 − 5) = 0 could have multiple solutions in ℤ12 but not in ℤ, Lindsey responded: “because it 
keeps wrapping around.”   

 
Confusion with the converse 

Towards the end of the teaching experiment, I asked Steve and Lindsey directly if the ZPP 
held in ℝ.  Both students agreed that the property held, and justified their claim by asserting that 
𝑎 ⋅ 0 = 0 and 0 ⋅ 𝑎 = 0.  While these are certainly true statements, they involve the converse of 
the ZPP instead of the ZPP itself (it should be noted that the converse of the ZPP is true in any 
ring).  Curiously, though the same line of reasoning could easily have led them to incorrectly 
assert that it held in ℤ12 as well, they made explicit connections with pairs of zero-divisors, 
which they had not done while solving equations.  Immediately after the task was posted, 
Lindsey asserted that the ZPP did not hold, and started citing a litany of counterexamples, 
including 2 times 6, 3 times 4, and 6 times 8.  That their initial line of reasoning did not interfere 
might indicate that searching for counterexamples occurred prior to any attempt at an abstract 
argument.   
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Discussion Questions 
 

(1) What other types of tasks might provide insight into student understanding of the ZPP? 
(2) In what ways can tasks force students to confront their avoidance of the ZPP?  
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An overview of research on the arithmetic mean in university introductory statistics 
courses. 

 
Samuel A. Cook 

Wheelock College 

There is a dearth of research on the arithmetic mean at the university level.  This poster will 
cover overlap of several studies (some unpublished) on university students’ understanding of 
the mean and university statistics instructors’ beliefs about their students’ understandings of 
the mean.  

Key words: Mean, Average, Arithmetic Mean, Introductory Statistics, Statistics 

Children through grade 8 have shown the ability to calculate a mean, but have trouble 
thinking of the mean beyond the procedure of calculating it (Mokros & Russell, 1995).  It is 
theorized that the early introduction of the procedure for calculating the mean may interfere 
with the ability to understand the mean conceptually as an object, as opposed to the result of a 
set of procedures, (Mokros & Russell, 1995) and that introducing the procedure early on would 
require a more difficult route towards a conceptual understanding (Cook & Fukawa-Connelly, 
2012).   This poster examines overlapping findings of university students’ understanding of the 
mean at the, and how it relates to what is being taught in introductory statistics courses at the 
university level.  
 

What Do University Students Understand About the Mean? 

In one study on incoming mathematics majors’ statistical knowledge, all participants 
believed they understood what the mean was and were confident in their responses when 
asked to describe the mean.   However, each participant only thought of the mean as the 
result of a procedure, often described as “add up all the numbers and divide by the amount of 
numbers”.  In contrast, when asked about the standard deviation, each participant who had 
knowledge of the standard deviation was unable to describe the procedure; however, some of 
these participants did go on to describe it as a measure of spread.  In the discussion of this 
paper, it was suggested that not knowing the procedure benefited the students as they had to 
think about standard deviation more conceptually, something they did not need to do with the 
mean (Cook & Fukawa-Connelly, 2015).   

In a different study that examined student understanding of mean, median and standard 
deviation at the conclusion of a first university course on statistics, some students described 
the mean more conceptually in comparison to the study of incoming knowledge.   In a survey, 
28% of the respondents used the notion of center or representativeness in their descriptions of 
the mean, and nearly all respondents cited the calculating formula either alone or in 
conjunction with more conceptual descriptions.  In contrast, very few respondents cited the 
calculating formula for the standard deviation and used phrases to describe smaller standard 
deviations as data sets with “more data in the middle” (Cook & Fukawa-Connelly, 2014), a 
finding consistent with a study exclusively on student understanding of the standard deviation 
(delMas & Liu, 2005). 
 This limited amount of research indicates that most students leave their first statistics 
course with a similar understanding of the mean as when they entered.  This understanding 
are similar to the understandings held by the children in Mokros and Russell’s study (1995). 
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What Do University Statistics Instructors Believe About their Students and the Mean? 

The following data comes from a small online survey of current introductory statistics 
instructors.  In the survey, 16% of respondents reported that they have no assumptions about 
their students’ understanding of the mean and 63% assume their students can calculate the 
mean of a set of data.  Additionally, 32% expect that their students will enter class with an 
understanding of what will happen to a mean if particular pieces of data are removed from the 
data, or new data points are included (ie get bigger, smaller or stay the same).   In the study 
referenced above, less than half of students were able to answer a question of this type correct 
at the end of a statistics course, with many citing that they needed to know what all the data 
points were. 
 This survey also asked what aspects of the mean that they explicitly cover in class, 
with the most common responses being: 

x Mean affected by outliers (100%) 
x Mean is a measure of central tendency (95%) 
x How to calculate a mean (89%) 
x How a mean will change if data is added or removed (84%) 

However, when asked how many minutes of class time they spend over then entire course 
covering the mean as it’s own concept, the average amount of time was 15 minutes (CI: 9, 
21), with 16% of respondents reporting they spend no time and 21% report spending under 5 
minutes.   Thus, despite 37% of respondents reporting they spend between 0 and 5 minutes 
teaching explicitly about the mean, over 80% report that the do explicitly teach the four items  
above.   This seems to imply that instructors see teaching the mean explicitly as a brief 
review, or that students have a robust enough understanding coming in that they will easily be 
able to pick up important concepts related to data fluency and inference.  This poster will also 
explore how university statistics text books introduce the mean and what conceptual aspect of 
the mean are explicitly covered. 
 

Implications.  

 I believe that instructors and students have both miss-assessed student understanding 
of the mean as a trivial concept, and these assumptions (of both students and instructors) 
potentially hinder learning of more advanced statistical concepts.  More research is required 
to defend this belief; however, these studies support that students rely on a procedural 
understanding of the mean and instructors believe they have (or can quickly develop) a 
conceptual understanding of the mean.  The actual implications of this misalignment are 
unknown. 
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Divergent definitions of inquiry-based learning in undergraduate mathematics 
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Inquiry-based learning is becoming more important and widely practiced in undergraduate 
mathematics education. As a result, research about inquiry-based learning is similarly becoming 
more common, including questions of the efficacy of such methods. Yet, thus far, there has been 
little effort on the part of practitioners or researchers to come to a description of the range(s) of 
practice that can or should be understood as inquiry-based learning. As a result, studies, 
comparisons and critiques can be dismissed as not using the appropriate definition, without 
adjudicating the quality of the evidence or implications for research and teaching. Through a 
large-scale literature review and surveying of experts in the community, this study begins the 
conversation about possible areas of agreement that would allow for a constituent definition of 
inquiry-based learning and allow for differentiation with non-inquiry pedagogical practices. 
 
Keywords: Inquiry, Inquiry Based Learning, Inquiry Oriented Learning, Definition 
 
            Over the past few years, a growing amount of literature has been published on 
undergraduate inquiry based mathematics education. This type of education puts the teacher in 
the place of a guide who has the role of asking thought provoking questions. From this, students 
learn by working through questions and frustrations to gain a deep understanding of a particular 
concept and reflect on what they just learned and what implications may be. The change in 
undergraduate teaching practices, in classes such as calculus and linear algebra that have 
traditional curricula, means that there is a concurrent growth in professional development, 
publications about teaching and curriculum, and research on inquiry-based instruction.   
Additionally, this increase in research, professional development and implementation has 
spurned an upcoming special interest group of the mathematical association of america in inquiry 
based learning. 

However, despite the growth of published materials on inquiry, we argue that the term is 
not consistently defined, and some publications do not define it  at all.  The lack of a definition 
has been the source of some debate in the past.  One published paper claimed that inquiry based 
learning does not work (Kirshchner, Sweller & Clark, 2006); however, criticisms of this paper 
centered on the fact that the authors misunderstood what inquiry based learning is and were over 
simplifying it as unguided discovery (Hmelo-Silver, Duncan, & Chinn, 2007).   In this paper we 
survey the literature for uses of the term inquiry and survey current experts in undergraduate 
mathematics inquiry to learn how they define inquiry.  In this survey some participants point out 
that people continue to over-simplify inquiry, a problem for the field if inquiry is going to be 
promoted as more effective than directive methods.   This paper is the beginning of a discussion 
about defining inquiry based learning in an undergraduate mathematics classroom in order to 
allow for meaningful discussion and evaluation. 

Background 
Inquiry based mathematics education has become more popular in undergraduate 

settings. However, the term “inquiry” lacks a clear and concise definition. Instead, throughout 
recent literature, we identified six major themes when defining the term inquiry. These six 
themes are all distinct, and, they show up individually and in clusters in papers about IBL in 
undergraduate mathematics. 
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The first theme is student ownership of knowledge (student ownership), Johnson (2014) 
described the idea as “Learners regard the knowledge they acquire as their own personal 
knowledge they are responsible for”. To add, in a separate paper, inquiry is defined as students 
being encouraged to create knowledge by themselves (Ko & Mesa, 2014).  

The second theme is new knowledge building on existing knowledge (knowledge 
building).  For example it is stated that  “Inquiry mathematics allows students to… find new 
ways to use prior knowledge to understand equations” (Keene & McNeil, 2014). 
         The third theme is students participating in mathematics (doing math).  Johnson added 
that inquiry is the “Expansion of what is experimentally real” while learning mathematical skills 
is “Synonymous with becoming a participant in the community” (2014).    

The fourth theme is the importance of the student/instructor relationship 
(student/instructor relationship). This relationship, as many papers state, is crucially important 
because it “Enables instructors to have a deeper understanding of students and learning” (Ko & 
Mesa, 2014) and “teachers need to understand student thinking” in inquiry (Larson, Wawro, 
Zandieh, Rasmussen, Plaxco, Czeranko, 2014), a statement that arises from Rasmussen and 
Kwon’s “Inquiry-Oriented Learning” (IOL), where the instructor inquiring into student learning 
is a key component (2007). 

The fifth theme is the importance of student to student interaction (peer involvement). 
Rasmussen and Kwon explain how part of inquiry includes a student's’ ability to “routinely 
explain and justify their thinking, listen to and attempt to make sense of others’ ideas” (2007). 
         The sixth theme is  better alignment with how people learn which leads to increased 
student success (student success).   Overall, students who take inquiry based mathematics classes 
do better in other classes because they have gained the necessary tools to be able to decipher 
future problem sets (Mantini, Trigalet, Davis, 2014; Yoshinobu & Jones, 2012).   A recent study 
showed some evidence that students in an IBL calculus class that covered fewer topics did at 
least as well as their directively taught peers when they took calculus II (Laursen et al, 2014). 
         These six themes appear to inform the concept of inquiry based mathematics education. 
With this, however, comes some debate on the definition of inquiry in regards to undergraduate 
mathematics education. In this study, our aim is to survey the entire undergraduate inquiry 
community to better understand how the community defines inquiry.  

Methods 
Literature search 

To orient ourselves, we attempted to collect all papers about inquiry-based instruction, 
broadly defined, in undergraduate mathematics education. In order to do so, the second author 
searched a database mutli-search that included over 20 databases, including JStor, ERIC, 
Academic Search Premier and more using criteria such as, ‘inquiry-oriented,’ ‘inquiry-
based,’‘guided-discovery,’ and ‘realistic mathematics education’ always in conjunction with 
undergraduate mathematics. Additionally, the second author searched the conference 
proceedings of the three most recent SIGMAA-RUME conferences.  Moreover, we asked experts 
in the field for recommendations of other articles. For each identified article, the second author 
carried out two tasks; first identifying the author(s) and any instructors of inquiry-based courses 
and adding them to a list of undergraduate faculty who teach or do research on inquiry-based 
courses. The second action was to extract the definition of inquiry-based, inquiry-oriented, or 
guided-discovery (hereafter shortened to inquiry-based) that the author(s) gave in the paper. If 
the authors did not specify a definition, that was also noted. Based on the literature review, we 
noted that many papers took as unproblematic the definition of inquiry-based teaching. As a 
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result, the first and second author also attempted to characterize the instruction that was 
described. There appeared to be significant differences in the range of practices that authors, 
even of research papers, described as inquiry-based instruction, meaning, there appeared to be 
little agreement about the defining features and the types of experiences that students might 
have, thus making large-scale evaluation of the efficacy problematic. 
Participants 

The population of this study is any author of a peer reviewed research article or 
conference proceeding dealing with inquiry in the undergraduate mathematics classroom, a 
person who has experience in professional development of inquiry in undergraduate mathematics 
classroom or a person who has authored a textbook or support materials with inquiry in the 
undergraduate classroom in mind that the first and second authors identified via their literature 
review and subsequent snowballing technique.   The authors identified 67 persons who fit in one 
of these 3 categories in an attempt to be as exhaustive as possible.   All 67 members of the 
population were invited to complete the survey and 18 persons participated. The participants 
included 10 mathematics educators, 6 mathematicians and 2 STEM educators, 4 of the 
mathematics educators were doctoral students while none of the mathematicians or STEM 
educators were.  
Survey and Coding 

The researchers developed a nine question survey with 2 demographic questions 
addressing employment position and asking each participant to identify themselves as a 
mathematician, math educator, scientist, science/STEM educator or other. There were 7 free 
response questions centering on various aspects and understandings of inquiry.  Survey 
responses were then independently coded by each researcher using a method most closely 
associated with grounded theory (Strauss & Corbin, 1990).  Each researcher read through the 
responses keeping in mind the 6 categories identified in the literature review, student ownership, 
knowledge building, doing math, student-instructor relationship, peer involvement and student 
success.  The research team developed a coding manual to identify when a response invoked a 
particular code. For example, we coded a response as invoking the notion of student ownership 
when it included such phrases as: 

● Students are doing the intellectual work of discovering 
● Students should as much as possible be responsible for the acquisition of knowledge 
● Investigation… generated by the learner 
● Student/learner engagement via their own problem solving… and active involvement 
● The problems are designed to encourage students to… contract their own justifications 

for their conclusions 
● Developing their own ideas 

In addition, researchers independently created their own codes for responses that did not fit in an 
identified category.  

Results 
We report three preliminary results.  The first of which describes commonalities among 

the different definitions. In particular, the definitions that the respondents provided 
overwhelmingly focused on three particular ideas; that the instructor-student relationship is 
different than in a traditional class (sometimes described as a guide or facilitator), that student 
curiosity is important and should be nurtured, and that the classes include peer-to-peer 
interactions. Here we present a representative examples of such a definition;  
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● A mathematician offered the definition: I always go with the AIBL.org folks on this one: 
"What this means is that we define IBL broadly, and support the use of a wide range of 
teaching methods in mathematics courses consistent with courses where students are (a) 
deeply engaged in rich mathematical tasks, and (b) have ample opportunities to 
collaborate with peers (where collaboration is defined broadly)." 

In this example the themes of instructor-student relationship, peer-to-peer discussion, and student 
curiosity are represented. Moreover, we note that the adjective ‘rich’ does not have a clear 
definition, meaning that different observers could come to different conclusions about whether or 
not students are engaged in such a task.  

Most definitions, 17 of the 18 participants, gave relatively few criteria, typically two or 
three criteria. There were instances where a respondent gave multiple sub-criteria describing, for 
example, the notion of student mathematical responsibility such as the mathematician who 
offered the following definition: 

● I believe that there are two essential elements to IBL. Students should as much as 
possible be responsible for: 

○ 1. guiding the acquisition of knowledge and 
○ 2. validating the ideas presented. (Students should not, that is, be looking to the 

instructor as the sole authority.) 
In this case, the respondent gave two related descriptions of the student’s actions in class that 
both relate to the ‘responsibility’ code. Similar are descriptions of the student role that include 
‘conjecturing’ and ‘questioning,’ although focused on different aspects of student activities. This 
trend of giving relatively few criteria for a definition was inclusive of all categories of 
respondents, including mathematics education researchers. 

The single most common definition used in research, given by four respondents, all 
mathematics education researchers, was that “students are inquiring into mathematics and the 
instructor is inquiring into student thinking.”  This definition is interesting in that the second 
clause gives some description about the instructor’s role in the class; that the instructor is to be 
doing on a daily basis; investigating and understanding the student thinking about the 
mathematics.  In terms of what the students are to be doing, the phrase ‘students inquiring into 
the mathematics’ is open to a wide-range of interpretations such that people could plausibly 
argue that almost any mathematical activity done by the students is inquiry. As a result, it 
appears that with this definition, the actions that the professor takes are more important than 
anything the students do.   

Less commonly, participants described what types of activities the students should 
engage in. Only 3 respondents did so. When they did, they gave responses similar to the below: 

● A math educator offered the following, noting it was used in research and served 
as a personal definition: I consider inquiry to involve student/learner engagement 
via their own problem solving, problem posing, questioning, and active 
involvement...this is as opposed to students/learners being passive participants in 
their learning of mathematics. 

In these instances, the participants used terms such as problem-posing, questioning, conjecturing, 
and introducing key mathematical ideas. This gives much more explicit description by which an 
observer might decide whether a particular class is engaging in IBL. Similar in tone were 
definitions that suggested that students should ‘regularly introduce key ideas.’  and one qualified 
the statement by writing that ‘as much as possible’ students should be the   
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A second preliminary result is that participants are largely in agreement that there is not 
much agreement in the details of IBL.  Three participants said they had never seen a published 
definition of it, three others said that they have experience with it being defined as simply group 
work or active learning, but that is not enough.  One participant stated that “definitions in the 
literature are all over the map.”  Another participant thought the definition was sometimes used 
without consideration of the instructor’s role in the inquiry.   In all, only 4 participants stated 
they had not come across a definition of inquiry that did not fit with their definition, with one of 
the four saying “(Some definitions) are not quite as detailed as mine, but the spirit is usually the 
same.”    

A third preliminary result is that inquiry involves “students doing meaningful work” or 
“being active participants in mathematics”; however the description of what is meaningful work 
differs from participant to participant if they describe it at all.  One participant suggests that the 
instructor must “put students in direct contact with mathematical questions, objects, and 
phenomena”, another offers more specific criteria stating “This involves working through 
mathematical activities and classroom discussions where knowledge of a mathematical concept 
is developed based on the students' prior knowledge. (Students) are expected to participate in the 
learning of a mathematical concept. Since the goal is to understand a mathematical concept, 
asking questions and making mistakes is viewed as part of the learning process.”.   In addition, 
similar phrases such as  “students are inquiring into mathematics”  were common in the data, but 
what it means to “inquire into math” is not clear.  The authors can guess what is meant by it and 
it may be assumed by the inquiry community, but it is not enough to be definitional.  Further 
investigation is required to understand what range of tasks would be considered in doing 
meaningful work and what it means to “inquire into mathematics”. 

Discussion/Future Directions 
 Given the most common aspects of these definitions there are a wide-range of 
pedagogical practices that can be described in these terms. If students commonly engaged in 
group work, no matter the tasks, even doing exercises, as long as the students talk to each other, 
the students express questions, and the professor is more conversational it would fit within the 
most commonly given definitional criteria. Moreover, if the professor inquires about student 
thinking it would possibly fit the most commonly given definition. As a result, it appears that 
there is no set of criteria that describe a classroom that would allow observers to reliably 
differentiate between an IBL class and one that is somehow not; that is, where can researchers 
agree to differentiate between a lecture-class and an IBL class?  

A next step is member checking the codes we identified in the data.  We will reach back 
out to the entire population and ask them for ranked input on the themes identified from their 
free responses to gauge how important these experts believe each theme is.  After member 
checking the data, we hope to offer a community definition of what inquiry based learning is for 
an undergraduate mathematics classroom.  

Preliminary Report Questions 
1. In the data the phrases “Student Centered” and “Student Responsibility” are used in very 

similar ways.  Are these different, or are people using two words (centered and 
responsibility) for the same meaning? 

2. A commonly stated characteristic of inquiry is students “doing math” or “participating in 
math”.   What does it mean to “do math”?   

3. Are there characteristics of inquiry we have not coded or found in the data and you 
believe are important in informing a definition of inquiry? 
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Paper title: Using Reading Journals in Calculus 
 

        Tara C. Davis    Anneliese Spaeth 
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We study the effects of using reading journals in a first semester calculus class. Students were 
given instructions on how to read the textbook before class, including keeping a reading 
journal. The student quiz scores were compared on weeks that journals were due and on 
weeks they were not due. We found inconclusive results, including some evidence suggesting 
that students score higher on quizzes when they are required to submit reading journals. 
Many students also indicated on surveys that the journals were beneficial to their learning 
and to their completion of pre-class reading assignments, although some felt otherwise.  

Key words: Calculus, Quizzes, Reading, Journals 

Introduction 

This study explores the use of reading journals in a first semester calculus class. Our 
goals were to find a way to get calculus students to read the textbook before class, and to do 
so in such a way that requires more effort than just skimming the pages. In addition to 
studying whether students actually read the textbook when we ask them to, we were further 
interested in whether doing so has any effect upon their course performance. We identified 
the following research question: Does the use of reading journals affect student performance 
or experience in Calculus? We also gave students surveys and final course evaluations where 
they had a chance to offer their opinion on their experience with the journals and whether 
they felt that their use was beneficial for learning. This study is based on a pilot study done in 
2009 at Vanderbilt University. 
 

The Math Course and Teaching Methods 

The course that we are implementing the journals in is Calculus I. This is the first 
semester of the calculus sequence. The course begins with the idea of average rate of change, 
and develops the concepts of limit, continuity, the derivative (instantaneous rate of change), 
antiderivative, and the definite and indefinite integral, including the Fundamental Theorem of 
Calculus and some applications of derivatives and integrals. The course is both a general 
education elective and a required course for many majors including math, and computer and 
natural sciences. The students at Hawaii Pacific University (HPU) are academically, 
culturally and ethnically diverse. HPU is one of the most culturally diverse universities in the 
world, with students from more than 80 countries. Huntingdon College is located in Alabama 
and has approximately 1100 students, many of whom are from Alabama. We will combine 
the data collected in Fall 2015 from parallel studies that took place at both schools.  
 

Intervention: Journals 

The purpose of the study is to determine whether pre-class reading journals have an 
impact on student performance. Every other week the students were given daily journal 
assignments. The journal was an aide to assist students in reading slowly and comprehending 
the textbook. The section in the textbook that was assigned reading as part of the journal was 
the section that would be discussed in the lecture during the class day that the journal was 
due. Therefore, the students were reading a preview of the material that they had not learned 
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yet. The journal consisted of a reading assignment in the textbook, to be covered in class the 
next day. Additionally the journal assignment instructed the student to take notes on the 
reading, including writing down all the important points covered in the text. Lastly, the 
journal instructed students to answer an open-ended conceptual question about the reading. 
The students also had the opportunity to ask the instructor questions.  

The instructor gave the students a verbal explanation on the first week of class about how 
to properly read a mathematics textbook. It was explained that it is different from reading a 
novel or a history book in that one cannot skim the pages and expect to understand them. The 
purpose of taking notes is to get the students to slow down and think about what they are 
reading. It was noted to the students that the journals can be useful later for studying for tests 
and quizzes, and it was suggested that students do not copy all the words and examples in the 
section, but rather just the most important formulas and definitions. A sample journal 
assignment was provided to students so they understood what was expected of them. After 
this initial explanation, no further instructions were given.  

The journals had to be submitted on time or they were not accepted. They were graded on 
a scale of 0, 1 or 2. A 0 score meant the journal was not submitted. A score of 1 meant that 
the journal was incomplete. A score of 2 meant the entire journal assignment was completed. 
The score of 2 did not necessarily mean that the notes were high quality or that the answer 
provided to the conceptual question was correct. However, the students did receive minimal 
written feedback on the journals they submitted. If a student asked a clarifying question or 
mentioned that something confused them, the instructor provided a written response. Most 
student journals took up approximately one page of loose-leaf paper, double sided.  

The journal assignments were given daily, but only every other week. On the weeks that 
no journal was assigned, students were not given any explicit instructions to read the 
textbook, but of course they were not prevented from doing so either. Every week in class the 
students took a quiz. The reason that we chose to compare quiz scores instead of scores on 
midterm and final tests had to do with the study design. We want to compare individual 
students to themselves and to distribute the difficulty of the materials relatively evenly. 
Sometimes the quiz and the journal questions were similar or related, but other times they 
were less so. The students were informed about what sections of the textbook would be on 
the quiz, the quizzes were announced ahead of time in the syllabus and during class, and 
again, the quiz questions were always similar to problems that were discussed in class and/or 
given on the online homework. 

In addition to collecting journals and quizzes, we did administer intake and exit surveys. 
The intake and exit surveys contained some paired questions, and the exit survey contained 
additional questions specifically about the journals and the student experience reading 
mathematics. The questions were given on a Likert scale, from Strongly Disagree, Disagree, 
Agree to Strongly Agree. These responses were coded into numbers from 1-4 when entered 
into data. Students were also given the opportunity on the exit survey to respond to open-
ended questions. 

Conclusions and Implications 

We will do an overall analysis of the data collected during 2015 in the parallel studies. In 
particular we will focus on analyzing whether student quiz scores appear to be improved by 
the use of journals to conclude whether this intervention is helpful to students and whether it 
should be adopted by calculus teachers to improve student learning. We will also analyze the 
results of the surveys to determine the student's perspective on how the journals aided their 
learning. 
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Why research on proof-oriented mathematical behavior should attend to the role of 
particular mathematical content 

 
Paul Christian Dawkins Shiv Smith Karunakaran 

Northern Illinois University Washington State University 
pdawkins@niu.edu shivk@math.wsu.edu 

 
Because proving characterizes much mathematical practice, it continues to be a prominent focus 
of mathematics education research. Aspects of proving, such as definition use, example use, and 
logic, act as subdomains for this area of research. To yield such content-general claims, studies 
often downplay or try to control for the influence of particular mathematical content (analysis, 
algebra, number theory etc.) and students’ mathematical meanings for this content. In this 
paper, we consider the possible negative consequences for mathematics education research of 
adopting such a domain-general characterization of proving behavior. We do so by comparing 
content-general and content-specific analyses of two proving episodes taken from the prior 
research of the two authors respectively. We intend to sensitize the research community to the 
role particular mathematical content can and should play in research on mathematical proving.  
 
Keywords: Proving, mathematical meanings, comparative analyses 

 
Since at least the time of Euclid’s geometry, proving has been understood to characterize 

mathematics as a discipline. Inasmuch as mathematics educators endeavor to engage students in 
authentic mathematical activity, they have expended much effort to provide students with 
meaningful proving experiences and document the emergence of proving as a mathematical 
practice among novices. While we certainly endorse this agenda for instruction and research, we 
are concerned that framing mathematical proving as a single, domain-general practice may 
inappropriately downplay the role particular mathematics content plays therein. We observe two 
trends in the research literature on mathematical proving: 1) making content-independent claims 
about mathematical proving using data from a particular mathematical context (i.e. analysis, 
algebra, number theory, geometry) or 2) eliciting student proving behavior in various 
mathematical contexts (and non-mathematical ones) to yield content-independent findings. In 
this paper, we consider the possible consequences for research on mathematical proving of 
downplaying the role of particular mathematical content. We do not at all intend to deny the 
validity or value of prior research framed in a content-independent manner (some of which we 
authored), but rather seek to sensitize the community to possible blind spots induced by common 
lenses applied to research data and to endorse a research agenda focused on the interplay 
between proving and particular mathematical content.  

To portray such blind spots induced by a research lens, this paper presents dual analysis of 
two episodes taken from prior studies conducted by the two authors respectively. In each case, 
we compare 1) a content-independent analysis focused on common constructs from proof-
oriented mathematics education research – example use, definition use, proof production, logic – 
with 2) a content-specific analysis focused on explaining students’ proving behavior in situ.  

Motivating Trends and Questions 
It is common to frame both the research questions and findings using these content-

independent constructs such that they form informal subdomains of proof-oriented research. One 
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can find numerous examples of studies on proof-oriented mathematical activity that make 
content-independent claims about  

• example use – Alcock & Inglis, 2008; Karunakaran, 2014; Sandefur, Mason, Stylianides, 
& Watson, 2013,  

• definition use – Alcock & Simpson, 2002; Ouvrier-Buffett, 2011,  
• proof production – Dawkins, 2012; Raman, Sandefur, Birky, Campbell, & Somers, 2009; 

Stylianides & Stylianides, 2009, 
• logic – Epp, 2003; Selden & Selden, 1995, and  
• understanding of proof – Sowder & Harel, 2003; Stylianou, Blanton, & Rotou, 2015. 

It is not our goal to critique these studies per se, but rather to sensitize mathematics education 
researchers to the consequences of consistently investigating proving while downplaying the 
mathematical meanings that populate the arguments that students produce.  

Why do many proof-oriented studies downplay mathematics content? Even if this question 
had one answer, no available evidence reveals it. Nevertheless, we proffer some possible 
explanations. One explanation is psychological. Proof’s role in mathematics as a discipline and 
the mathematics education community’s emphasis on mathematical process both lead researchers 
themselves to conceptualize proving in real analysis as one instantiation of a broader 
phenomenon. Because we as experts can see some uniformity across our broad experiences with 
proving, we assimilate instances of proving into our more general understanding. A second 
explanation involves empirical findings. The growing body of evidence of students’ difficulties 
interpreting, producing, and assessing proofs compels mathematics educators to improve upon 
proof-oriented instruction. Students perceive the transition into proof-oriented courses as a 
difficult transition, so it seems natural to partition such courses apart from other aspects of the 
curriculum (though we agree with Reid’s, 2011, argument that proving should become and is 
becoming integrated as a ubiquitous means of mathematical teaching and learning).  

A third explanation relates to the analytic process itself. Mathematics educators frequently 
use localized data to make analytic generalizations (Firestone, 1993) by constructing frameworks 
and in-depth characterizations of relatively few cases. While such studies rarely make explicit 
claims to sample-to-population generalizations, it remains unclear how to situate the resulting 
theory. For instance, Antonini (2003) presented findings suggesting conditions under which 
students may produce proofs by contradiction, which previous studies reported as challenging. 
Antonini describes students’ exploration of a geometric conjecture involving transversal 
configurations, but frames his research hypothesis in the following way:  

In task like “given A what can you deduce?” the conjecture can be produced via the 
analysis of a non-example. The argumentation that justifies the fact that the generated 
example is a non-example can be re-elaborated and become part of the argumentation of 
the conjecture. In this case, the argumentation takes an indirect form. (p. 50) 

If patterns in students’ proof-oriented behavior can be so characterized using content-
independent language, when and why should research findings be framed within the content 
domain at hand (i.e. geometry or the planar geometry of lines)? Antonini’s subjects’ proofs (and 
the solution of the given task) depended upon characterizing pairs of lines as intersecting or 
parallel, which happen to be familiar definitions that are also negations one of another. We posit 
that this content-specific feature of the task likely contributed to the students’ successful use of 
indirect proof. This raises the question, when and why should researchers emphasize the role of 
specific mathematical understandings and meanings in framing and explaining research findings 
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on proving? By providing dual analyses (content-independent and content-focused) of two 
example episodes, this paper sets forth some answers to these questions.  

Comparative Analyses 
The following sections set forth our two episodes and the dual analysis thereof. The first 

episode appeared during a sequence of task-based interviews as part of the first author’s 
investigation of student learning of neutral, axiomatic geometry. Episode 1 features two 
undergraduate mathematics majors trying to prove the equivalence of Euclid’s Fifth Postulate 
(EFP) and Playfair’s Parallel Postulate (PPP). Analysis of Episode 1 also appeared in Dawkins 
(2012). The second episode appeared during a sequence of task-based interviews with expert and 
novice mathematics students conducted by the second author. Episode 2 features a graduate 
student in mathematics, designated an expert prover, attempting a novel analysis task about 
sequences. Analysis of Episode 2 also appeared in Karunakaran (2014). For the sake of brevity 
and clarity in this theoretical paper, we omit presenting the full methodologies of these studies, 
which are available in the cited references.  
Episode 1: Proving the equivalence of geometric postulates 

For reference, the students’ statements and diagrams for EFP and PPP appear in Figure 1. As 
part of a homework assignment prior to the interview, Kirk and Oren had produced a proof of the 
equivalence of the two postulates using the auxiliary claim we shall call Theorem *, which states 
“Given two lines cut by a transversal, if the same side interior angles sum is 180, then the two 
lines do not meet on that side of the transversal.” When asked to explain the postulates, the pair 
found themselves using language from each to explain the other. Oren noted this circularity and 
attributed it to the statements’ mutual implication. Kirk rather explained that the statements “are 
the same.” Oren alternatively explained the postulates’ meaning by extending his forearms to 
represent parallel lines and noting that any amount of rotation from the parallel position would 
cause the lines to intersect.  

 
Figure 1: Kirk and Oren’s statements and diagram for EFP and PPP 

The students began the task intending to prove that EFP ⇒ PPP. The students’ argument 
depended upon dividing the line arrangements into three cases, depending upon the angle sum 
! + !. They successfully argued, using EFP and Theorem *, that:  

• if ! + ! < 180°, lines l and m meet on that side of line n, 
• if ! + ! = 180°, lines l and m do not meet, 
• if ! + ! > 180°, lines l and m meet on the other side of n.  

Kirk considered this argument sufficient to prove PPP because it guaranteed that there was only 
one instance in which the lines l and m are parallel. He said, “Playfair's Postulate basically states 
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Euclid’s Fifth Postulate (EFP): “Given two 
lines cut by a transversal, if the two interior 
angles on one side of the transversal sum to 
less than 180°, then the lines will intersect on 
that side of the transversal.” 
 
 
Playfair’s Parallel Postulate (PPP): “Given 
any line and a point not on that line, there 
exists only one line through the given point that 
does not intersect the given line.” 
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that there’s only one instance or case where the lines will not meet.” Oren disagreed because he 
was concerned about how the choice of lines through point P (in PPP) corresponded to the angle 
sums (in EFP). Through their discussion, Kirk also became concerned saying, “It's just hard 
because Playfair’s doesn't include this line n, so you are trying to find a way to go from having 
this line n to not having this line n in Playfair’s.” Ultimately, the interviewer invited the students 
to begin with the diagram for PPP to construct their argument. The pair was able to then use their 
three cases argument to complete the proof, and Oren correctly identified the need for warrants 
justifying the construction a transversal line n and guaranteeing that each line l through P 
corresponded to exactly one angle sum ! + !. Despite their work prior to the interview, Kirk and 
Oren’s proof production took over 40 minutes.  

Analysis 1 of Episode 1. The original study in which this episode occurred sought to 
investigate students’ interpretation and use of conditional (“if…then…”) statements. The first 
author used this task because EFP, PPP, and EFP ⇒ PPP can all be understood as conditional 
statements. Kirk and Oren’s initial difficulties in proving EFP ⇒ PPP can be reasonably 
attributed to the logical structure of their argument, specifically the proof frame (Selden & 
Selden, 1995). Zandieh, Knapp, and Roh (2008) also reported on students’ difficulties with this 
proof. They attribute this to the fact that students do not adopt a Conditional-Implies-Conditional 
(CIC) proof frame in which the proof proceeds from the hypotheses of the consequent statement 
(in this case the point and line arrangement of PPP) to the conclusions of that statement (exactly 
one parallel through P). Kirk and Oren displayed similar difficulty because they adopted the 
standard proof frame that begins with hypotheses (EFP) and ends with the conclusion (PPP). 
Kirk’s overall argument could be framed by the valid syllogism “EFP (and Theorem *) ⇒ 3 
Cases, 3 Cases ⇒ PPP, therefore EFP ⇒ PPP.” However, this argument failed to prove that the 
conclusions of PPP are entailed in its hypotheses, as the CIC proof does. In Raman et al.’s (2009) 
language, Kirk understood the key idea of the proof (3 Cases argument), but lacked the technical 
handle (the proof frame) to construct a valid proof. Ultimately, the interviewer had to prompt the 
pair to begin with the diagram from PPP, which implicitly introduced the CIC proof frame. This 
modification allowed the students to produce a valid and more normative proof.  

Analysis 2 of Episode 1. Several aspects of Kirk’s behavior in the episode are not explained 
by the absence of an appropriate proof frame. For instance, why was Kirk convinced by his 3 
Cases argument while Oren was not? Also, when Kirk described their intention to prove PPP 
from EFP, he appeared to metonymize (Zandieh & Knapp, 2006) the two statements by their 
diagrams. To get from EFP to PPP, one diagram needed to be transformed into the other, which 
required removing a transversal. We posit that a viable explanation for these phenomena requires 
attention to the geometric nature of Kirk’s reasoning (in a visual-spatial sense). Much like Oren’s 
explanation using his forearms to observe the possible arrangements of two lines, Kirk seemed to 
interpret the postulates as describing geometric possibilities in a quasi-empirical way. This 
explains why Kirk metonymized the postulates by their diagrams and said they were “the same” 
(rather than implied each other): the statements described the same set of geometric possibilities.  

Analytically, this account of Kirk’s reasoning suggests an alternative syllogistic model: “EFP 
(and Theorem *) ⇒ Only One Instance, PPP ⇒ Only One Instance, therefore EFP ⇒ PPP.” 
Though this argument is invalid, it reflects Kirk’s understanding that the statements are linked 
because they describe the same possible arrangements of lines. However, each implication in this 
syllogism is distinct in meaning. His explanation suggested that he viewed Only One Parallel as 
a paraphrase of PPP rather than a consequence of it. Furthermore, his initial argument did not 
suggest any directionality to his conclusion since the statements were “the same.” Thus, Kirk’s 
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empirical reasoning convinced him that the 3 Cases argument proved that EFP ⇒ PPP. Oren, in 
contrast, seemed to interpret the task of proving in a more conventional hypothetical-deductive 
manner in which warrants justify inferences that form a chain from hypotheses to conclusions. In 
short, a researcher imposing a deductive frame on Kirk’s reasoning easily misrepresents it. 
Episode 2: Proving and disproving conjectures about sequences of real numbers 

Upon being asked to validate or refute the mathematical statement given in Figure 2, Zander 
immediately stated, “So, the first thing that I would do is to see if [the series] obviously doesn’t 
converge.” He was asked to further talk about what he aimed to do, and Zander stated that he 
would search for a counterexample to the statement. That is, he would look for a sequence 
!! !!!

�  of real numbers satisfying the condition that 0 < !! ≤ !!! + !!!!!, such that the series 
!!!!� !! does not converge.  

 
Figure 2. The statement of the original Task 1 statement as presented to Zander. 

Zander quickly generated the valid counterexample sequence !! = 1!!∀!!. At this juncture, 
the interviewer asked Zander to prove a slightly modified version of statement in Task 1. The 
modified statement read, “Let !! !!!

�  be a sequence of real numbers such that 0 < !! ≤ !!! +
!!!!!, ∀!!! ∈ ℤ!!&!! ≥ 1. Then the series !!!!� !! diverges.”  

As before, immediately after being given the modified task statement, Zander stated, “Ok. 
Uh well … right so then I would have to find an example where it converges.” The interviewer 
asked Zander to confirm whether this meant that he was looking for a counterexample to the 
modified statement, which he did. Also, Zander quickly considered and discarded the use of 
various tests for convergence and divergence (e.g. ratio test; comparison test) because he 
anticipated that none of the tests would “guarantee divergence.”  

Then, Zander recalled an example of a convergent series with which he seemed familiar: the 
series !!!!� !

!! . He stated his intentions for choosing this example saying, “maybe we can find 
a way uh to make a sequence where !! [term from the sequence described in the task] is equal to 
!
!! or smaller than or something like that. Cause then that would converge as well.” However, he 
noted that the corresponding sequence does not satisfy the inequality condition 0 < !! ≤ !!! +
!!!!!. To work around this, he attempted to generate a counterexample by modifying the 
sequence !

!! !!!

�
 such that each of the terms repeat using the rule !!! = !

! !! and !!!!! = !
! !!, 

and with !! = !! = !! = !! = 1. At this point he realized that “halving” the terms was the 
“best–case scenario” in order to satisfy the inequality since “it’s sort of the cutoff I mean because 
if we take it to be any smaller a half, say like a tenth of a tenth and then it no longer fulfills this 
second inequality.”  

At this point, he stated that he now believed the modified task statement to be true. Zander 
then called on the harmonic series to attempt to prove that the modified statement is true, even 
though the harmonic series does not satisfy the inequality condition. He explained that he would 
like to show that the terms of the harmonic series (or some variant of it) would be a necessary 
lower-bound to the corresponding terms of the series in the task and thereby the series in the task 
would also have to diverge (using the comparison test). 
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Analysis 1 of Episode 2. The study in which this episode occurred focused on finding 
similarities and differences between expert and novice’s proving behaviors. As such, the original 
analysis characterized Zander’s proving behaviors across the various real analysis tasks 
provided. Zander used the strategy of searching for a counterexample on this and other tasks. 
When asked about why he did so, he replied, “Because the counterexample might tell you why it 
always diverges … or rather the inability to find a counterexample might tell you why it always 
converges.” So, on multiple tasks Zander used this strategy of searching for a counterexample to 
either successfully find a counterexample invalidating the statement or to gain knowledge about 
why the statement is valid through the inability to find a counterexample. The interviewer also 
asked Zander why he called on the series series !

!! !!!

�
 and the harmonic series, even though 

neither one satisfies the inequality condition. He explained that he routinely looked for examples 
that was relevant to the task context and would provide him with “a picture” or a “prototypical” 
example that helped him understand the task better.  

Thus, this episode supports the general claim that Zander’s proving strategy often included 
searching for counterexamples (regardless of whether he believes one exists), which he 
perceived useful because he can either successfully find a counterexample or he would gain 
some insight into why the search for the counterexample is failing and that could tell him why 
the statement may be true. Furthermore, Zander’s work within this episode also supported the 
claim that he routinely used what he considered “prototypical” examples or visualized “pictures” 
to gain insight into why a particular claim is true, consistent with previous finding associating 
visualization and examples with conviction and insight (e.g. Alcock & Simpson, 2004).  

Analysis 2 of Episode 2. Even though we can make the content–general claims present in 
Analysis 1, this may not account for his “expertise” or his relative success on this task. We 
observe nuances within Zander’s search of counterexample and his choice of example series 
( !
!! !!!

�
 and the harmonic series) that provide insights about his use of his content-specific 

knowledge about series. Throughout the task, Zander paid particular attention to the growth 
patterns of various series, which can rightly be considered a link between the inequality 
condition and the convergence of monotone increasing series. When Zander searched for a 
counterexample for the modified task statement, he called on the series !

!! !!!

�
because he knew 

this to be a series that converged. However, he noted that this series did not satisfy the inequality 
condition, but by examining the rate at which the terms of the this sequence decreased, he 
switched his strategy to find “a way uh to make a sequence where !! is equal to !!! or smaller 
than or something like that … then that would converge as well.” So, Zander deduced that 
“halving” the terms of the sequence would be the “best–case scenario” since,  

“if we take it to be any smaller a half, say like a tenth of a tenth and then it no longer 
fulfills this second inequality [and] if we take something that was bigger than a half then 
that’s only more problematic because you’re just throwing in bigger numbers into the 
sequence … I think this if I’m right in saying that this sequence always diverges this 
actually might be a key to the reason why.”  

In what ways was this scenario “best?” Zander wanted to find a series that converged, so the 
added terms must decrease, but the inequality limited the rate at which they decreased. Zander’s 
modified example was his “best” possibility to have a minimal growth rate (so as to converge) 
while satisfying the inequality condition in the task. It seems that a pivotal reason for Zander 
beginning to believe that the modified statement is valid is because he noticed that the terms of 
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any sequence that would satisfy the inequality condition would have to have a particular growth 
rate that was not too fast or not too slow. He called upon the harmonic series (even though it is 
not a series that satisfies the inequality condition) as a “prototypical” example of a divergent 
series with a small growth rate, since the sequence of terms added converges to 0. Part of what 
made Zander’s proving successful (his “expertise”) was his ability to interpret the conditions in 
the task as constraints on the growth rate of the series and call upon canonical examples that 
displayed particular growth behaviors. Both his knowledge and use of the prototypical examples 
point to his analysis-specific knowledge of series, growth rates, and comparison proof methods.  

Discussion and Conclusions 
We present dual analyses of these two brief proving episodes to portray the alternative 

insights gained by content-general analysis (of logic, argumentation, example use, etc.) versus 
content-specific analysis (of empirical or hypothetical/deductive reasoning, growth rates of 
sequences and series, etc.). Our two studies reflect common research paradigms within 
mathematics education: 1) task-based interviews intended to elicit instances of mathematical 
behavior related to a general topic of interest and 2) comparing and contrasting expert/novice 
mathematical behavior. While both studies employed grounded theory methods, affording these 
various analyses, these studies still began with guiding questions and theoretical framings (as no 
investigation can avoid being, on some level, theory-laden). Regarding Episode 1, it was only 
after attempts to generally characterize Kirk and Oren’s interpretations of conditional statements 
failed that the author attended to the broader differences between the ways they interpreted the 
statements and the task at hand, which explain their very different assessments of their proving 
activity. Regarding Episode 2, the second author designed the study to include tasks in various 
mathematical contexts, but later refined the study tasks to only include real analysis tasks. While 
the content-general claims about Zander’s proving expertise are supported by Zander’s proving 
practice and his self-reflection, they may also hide the role and value of Zander’s extensive 
experience with real analysis in his interpretation and progress on the task.  

As we stated before, our goal is not to deny the value of content-general proof research, but 
rather to sensitize the mathematics education research community to the liabilities of such a 
research lens. When and why should researchers attend to the role of particular content in their 
findings? The first episode suggests that content-general models of student activity such as logic 
may be broadly applied, but may also be misleading or dishonest to a student’s reasoning 
process. We maintain that the two syllogisms are, in some sense, viable renderings of Kirk’s 
reasoning, but the non-uniqueness of such logical models of his reasoning is troubling. Also, the 
three “implications” in the latter model of his reasoning are all distinct in meaning and likely 
gloss over the nature of Kirk’s inferences. To hazard an analytic generalization, researchers must 
be wary applying a content-general model to student reasoning, especially when the chosen 
model reflect the researcher’s questions more than the students’ mathematical behavior.  

The second episode suggests that characterizations of “successful proving” or “expertise” 
must account for the fact that both proving behavior and expertise are highly multi-dimensional. 
Certainly example use is an important dimension of Zander’s proving behavior, as evidenced by 
his own awareness and explanations thereof. However, the use of such content-general heuristics 
for further research and instruction necessitate awareness of how example use interacts with 
other elements of Zander’s experience and understanding to afford the behaviors observed in 
Episode 2. In general, we encourage more research on proving behavior to attend to the role of 
mathematical meanings (Thompson, 2013). Furthermore, the growing presence of (content-
general) introduction to proof courses (Selden, 2012) entails a great need for research on the 
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existence and development of content-general proving behaviors and how they can be fostered 
within and across mathematical contexts.  
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Mathematicians’ rationale for presenting proofs: A case study of introductory abstract 
algebra and real analysis courses 
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Proofs are essential to communicate mathematics in upper-level undergraduate courses. In an 
interview study with nine mathematicians, Weber (2012) describes five reasons for why 
mathematicians present proofs to their undergraduate students. Following Weber’s (2012) study, 
we designed a mixed study to specifically examine what mathematicians say undergraduates 
should gain from the proofs they read or see during lecture in introductory abstract algebra and 
real analysis. Our preliminary findings suggest that: (i) A significant number of mathematicians 
said undergraduates should gain the skills needed to recognize various proof type and proving 
techniques, (ii) consistent with Weber’s (2012) findings, only one mathematician said 
undergraduates should gain conviction from proofs, and finally (3) some mathematicians 
presented proof for reasons not described in Weber’s (2012) study such as to help their students 
develop appreciation for rigor. 

 
Key words: Proof, Purpose of proof, Proof presentation, Undergraduate mathematics 
 
In upper-level mathematics courses, mathematicians regularly use proofs to convey 

mathematics to their students.  As a result, mathematicians expect their students to gain some 
understanding from the proofs they present. A plethora of research suggest that student find the 
concept of proof problematic (Harel & Sowder, 1998; Inglis & Alcock, 2012; Moore, 1994; A. 
Selden & Selden, 2003). Research on undergraduates interaction with proofs suggests that 
undergraduates often times have difficulty with determining the validity of a proof and/or 
constructing a valid proof (Alcock & Weber, 2005; Inglis & Alcock, 2012, Selden & Selden, 
2003; Weber, 2010). For instance, Selden and Selden (2003) argued that when reading proofs 
undergraduates tend to focus on surface features of mathematical arguments as opposed to its 
global feature. Participants in their study showed only limited ability to determine if a 
mathematical argument is valid or qualifies as a proof or not.  

Empirical studies focusing on what mathematicians expect their upper-level undergraduates 
to gain from proofs are rare. In a semi-structured interview with nine mathematicians, Weber 
(2012) argued that most mathematicians present proofs mainly to facilitate their students’ 
understanding of mathematical concepts and/or illustrate some proving techniques. Yopp (2011) 
also reports that in advanced undergraduate mathematics courses, mathematicians mainly present 
proofs to show their students how to prove theorems.  

The extent to which students actually learn mathematical concepts from seeing proofs 
remains an open research problem. However, one can infer from existing research that 
undergraduates actually do not gain mathematical understanding from proofs (Conradie & Frith, 
2000). Weber (2012) also evidenced that mathematicians rarely present proofs to convince their 
students that a theorem or a proposition is true; this is in contrast to the primary role of proof in 
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mathematics scholarship (Hersh, 1993). Alternatively, Hersh (1993) maintains that in 
mathematics classroom, the primary goal of presenting proofs should be to provide an 
explanation for why a theorem is true. Interestingly, some participants in Weber’s (2012) study 
expressed doubt if proof is indeed an effective way to convey mathematics to all their students. 
Our study contributes to the growing body of literature on the purpose of proof in undergraduate 
mathematics instruction by examining the following research question: What roles do proofs 
play in the teaching of introductory abstract algebra and/or real analysis courses? In what 
follows, we discuss the theoretical framework guiding this study. 

Theoretical framework and literature review 

The three most important roles of proofs discussed in the proof literature are: (1) conviction 
or verification,  (2) explanation, and (3) illustrating proving techniques. Convincing is the idea 
that a proof demonstrates that a theorem is true. Although undergraduates and surprisingly 
mathematicians (e.g., Weber, Mejia-Ramos, & Inglis, 2014) are sometimes convinced without 
proof, De Villiers (1990) writes that “the well-known limitations of intuition and quasi-empirical 
methods” underscore the vitality of proof as a useful means of verification (p.19). Convincing is 
perhaps the primary goal of any proof. Indeed, some such as Hersh (1993) actually define proof 
simply as “a convincing argument, as judged by competent judges” (p. 389).  

Convincing may be the primary goal of any published proof; however, there is a consensus 
that the functionality of a proof is not, and should not, be limited to verifying that a theorem is 
true (De Villiers, 1990; Hersh, 1993).  The fact that we have different published proofs in peer-
reviewed journals of a single known result inevitably leads us to believe that proofs are far more 
than a certificate of truth. Indeed, it appears that there is considerable interest in the insight that 
is gained from the reasoning utilized in a proof. For a mathematician, a proof—beyond 
convincing—also functions as an explanatory argument. To explain is to provide insight as to 
why a theorem is true (De Villiers, 1990; Hersh, 1993; Knuth, 2002; Thurston, 1995; Weber, 
2002; Weber, 2008).  Explanatory proofs are insightful precisely because they make “reference 
to a characterizing property of an entity or structure mentioned in the theorem, such that from the 
proof it is evident that the result depended upon the property” (Steiner, 1978). According to De 
Villiers (1990), explanatory proofs provide “psychological satisfactory sense of illumination” 
(p.19). 

Mathematicians’ desire for explanatory proofs is evident in the controversy surrounding 
Appel and Haken’s joint proof of the Four-Color theorem (Thurston, 1995). Appel and Haken’s 
joint proof heavily depended on a computer; for that reason, renowned mathematicians such as 
Paul Halmos showed dissatisfaction toward the proof, as it apparently did not provide any insight 
for why the theorem must be true. Stressing the importance of the explanation in a proof, Hanna 
(2000) writes: “[a proof] becomes both convincing and legitimate to a mathematician only when 
it leads to real mathematical understanding” (Hanna, 2000).  In fact, all eight mathematicians 
interviewed in Weber (2008) claimed that the primary reason they read published proofs is to 
gain insight.  In particular, in undergraduate mathematics education, Hersh (1993) argued that 
the primary role of proofs should be to offer insights and provide complete explanations why a 
given theorem is true.  Harel and Sowder (2007) complement this when they say: 
“…mathematics as sense making means that one should not only convince oneself that the 
particular topic/procedure makes sense, but also that one should be able to convince others 
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through explanation and justification of her or his conclusions” (p. 808-809). In addition, Hersh 
(1993) maintains that one should consider the explanatory power of a particular proof when 
making the decision whether or not a proof is worth presenting in class. Hersh (1983) writes: 
“proof can make its greatest contribution in the classroom only when the teacher is able to use 
proofs that convey understanding” (p.7).  Therefore, it is important that instructors make use of 
more explanatory proofs in their instruction when possible. 

Proofs, beyond convincing and explaining, can function as  tools to communicate techniques 
or ways of reasoning that can later be used to tackle other problems. Thurston (1995) argued that 
mathematicians sometimes use proofs to communicate a developed body of common knowledge 
or new techniques in the case of truly novel proofs. For example, mathematicians interviewed in 
Weber’s (2010) study stated that when reading a proof, they would hope to learn new techniques 
that might eventually help them prove conjectures or problems they have been thinking about in 
their research. 

De Villiers (1990) proposes even more roles of proofs: proofs as a means of discovery and 
proofs as a means of systematization. He argues that proofs are our only tool “in the 
systematization of various known results into deductive system of axioms, definitions and 
theorems” (p.20). Take, for example, the proof of the intermediate value theorem for continuous 
functions; he asserts that the primary function of this proof is basically a systematization of 
continuous functions.  Systematization, among other things, provides global perspective, 
simplifies mathematical theories, and enables us to identify inconsistencies, circular reasoning, 
and hidden assumptions (De Villiers, 1990). In addition, a proof enables us to explore, 
generalize, analyze, and discover mathematical ideas (De Villiers, 1990). For example, the 
invention of non-Euclidean geometries would have been completely unthinkable without our 
capacities of deductive reasoning and proof, since these ideas are unintuitive. 

Research methodology 
Fifteen mathematicians agreed to participate in our study. All participants were solicited 

from a large public university in the United States. The mathematicians come from a wide range 
of research interests including, but not limited to, analysis, algebra and topology. The lead author 
provided the mathematicians a written task asking them to briefly describe what they would hope 
an undergraduate student enrolled in introductory abstract algebra and/or real analysis would 
gain from reading or seeing proofs during lecture. Fourteen of the 15 mathematicians who agreed 
to complete the written task have at least seven years of teaching experience in tertiary 
institution. While a significant number of the participants taught at least two proof-based 
mathematics courses, four mathematicians said they have not taught any proof-based course at 
this institution. 

We also conducted task-based interviews with three mathematicians (an algebraist, and 
analyst and a topologist). Two of the mathematicians who agreed to be interviewed did not 
complete the written task. The two algebraists and the one analyst that we interviewed have at 
least ten years of experience teaching introductory abstract algebra and real analysis respectively. 
During the interview we asked the mathematicians the following questions: 

 
• Why would you present the proof of Lagrange’s theorem? 
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• In general, what would you say is the purpose(s) of presenting proofs 
during lecture in undergraduate mathematics courses such real analysis (or abstract 
algebra if the interviewee is algebraist? 

• Is there a proof that you would consider a ‘must see’ in your introductory 
real analysis (or abstract algebra if the interviewee is algebraist) (adopted from 
Weber’s (2012) study) 

Results and discussion 
We present our preliminary results as follows. Recall that the main goal of this study is to 

explore what mathematicians hope their undergraduate students gain from the proofs they 
present in upper-level undergraduate courses such as abstract algebra and/or real analysis. Two 
researchers independently coded participants written response based on categories presented in 
Weber’s (2012 study. As it is evidenced in Table 1, the majority of mathematicians (60%) said 
that they would hope undergraduates develop proficiency in recognizing proof type. This 
includes, but is not limited to, identifying whether the proof is a direct proof, a proof by 
contradiction, a proof by cases, or a proof by mathematical induction. We find this surprising 
because we were expecting that mathematicians would only say this for undergraduates in intro-
to –proof courses. Consistent with Weber’s (2012) study, we found that (1) a significant number 
of our participants (46.67%) said they would hope undergraduates would learn new proving 
techniques from seeing proofs during lecture, and (2) only one mathematician described 
conviction as an important role of proof for undergraduates. The following interview excerpt 
indicates that mathematicians present proofs to illustrate some proving techniques. 

 
I: Is there a proof that you consider a must-see in your abstract algebra course? 

P: A proof that I consider a must-see um there are a number of types of proofs that I think that they 
should see um for instance um when some either the uniqueness of the zero element, the uniqueness of 
inverses of elements, something to that effect. I think it’s a must-see. Um um what other things? Uh um 
either the idea that a kernel of an image of a homomorphism is a subgroup  

I: Why would you think that is a must-see or is important for them to see? 

P: to see? Well because many constructions or many ideas that we use to study groups are based on the 
study of homomorphisms between groups.  

 Additionally, some mathematicians said they would hope that undergraduates would develop 
proficiency in logical inferences from seeing proofs presented in upper-level undergraduate 
mathematics courses. Also, a small percentage of mathematicians (13.33%) said they presented 
proofs so that students can appreciative the rigor that goes into writing proofs. We find this 
interesting because it has not been evidenced, to our knowledge, in any empirical study.  
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Table 1 Mathematicians’ reasons for presenting proofs in upper level mathematics 
courses 

Reason Percentage of participants 
To help students recognize proof type 60% 
To illustrate proving techniques 46.67% 
To develop proficiency in logical 

inferences 
33.33% 

To illustrate why a theorem is true 33.33% 
To help students recognize proof type 20% 
To develop appreciation for rigor 13.33% 
To communicate mathematical ideas 13.33% 
To establish that a theorem is true 6.67% 

 
Discussion questions and implications for further research 

We believe that our preliminary study contributes to the scarce literature on the role proofs 
play in undergraduate mathematics education. We plan to analyze our interview transcripts to 
examine if there are additional reasons why mathematicians present proofs in upper-level 
mathematics courses. During our presentation, we would like to get some feedback on the 
following questions.    

 
(1) What methodological suggestions might you offer us to examine any non-

mathematical benefits, assuming that there are some, that one can acquire from 
reading or seeing a proof during lecture, and to what extent do we care? 

 
(2) Are there good reasons to believe that mathematicians present proofs in 

different classes for different reasons? How can we explore that? 
  
In summary, we believe that our study provides further evidence for the claim that 

convincing should not be the primary goal of presenting proofs in mathematics instruction. 
Finally, we hope that further research such as interviewing more mathematicians can provide 
insight into additional roles that proof can play in undergraduate mathematics education. 
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Undergraduate students proof-reading strategies: A case study at one research 
institution 

 
Eyob Demeke Matt Pacha-Sucharzewski 

California State University, Los Angeles University of New Hampshire 
 

Weber and Mejia-Ramos (2013) identified five effective proof-reading strategies that 
undergraduate students in proof-based courses can use to facilitate their proof comprehension. 
Following their study, we designed a survey study to examine how undergraduate students’ 
proof-reading strategies relate to what proficient learners of mathematics (mathematics 
professors) say undergraduates should employ when reading proofs. Our preliminary findings 
are: (i) Majority of the professors in our study claimed that undergraduates should use the 
strategies identified in Weber and Mejia-Ramos’ (2013) study, (ii) Professors’ response 
significantly differed from undergraduates’ in only two of the five proof-reading strategies 
described in Weber and Mejia-Ramos’ (2013) study (trying to prove a theorem before reading its 
proof and illustrating confusing assertions with examples), and finally (iii) Undergraduate 
students, for the most part, tend to agree with their professors’ preferred proof-reading 
strategies. 

 
Key words: Proof, Proof-reading strategies, Proof comprehension, Undergraduate mathematics 

 
      In upper level mathematics courses, mathematicians regularly use proofs to convey 

mathematics to their students.  As a result, students in these courses are expected to spend 
sufficient time reading and writing proofs (Weber & Mejia-Ramos, 2014). Research on 
undergraduates’ interaction with proofs suggests that undergraduates often times have difficulty 
with determining the validity of a proof and/or constructing a valid proof (Alcock & Weber, 
2005; Inglis & Alcock, 2012, Selden & Selden, 2003; Weber, 2010). For instance, Selden and 
Selden (2003) argued that when reading proofs undergraduates tend to focus on surface features 
of a mathematical argument as opposed to its global feature. Participants in their study showed 
only limited ability to determine if a mathematical argument is valid or qualifies as a proof or 
not. Studies also suggest that undergraduates often do not actually gain understanding from the 
proofs they read (Conradie & Frith, 2000; Cowen, 1991).  There is, however, very little research 
on how undergraduates read proofs with the intent of learning mathematics from them. In an 
effort to improve students’ understanding of proof, Weber and Mejia-Ramos (2013) developed 
five proof-reading strategies that undergraduates can use to improve their proof comprehensions, 
which form the basis for this study.  

Theory 

We designed our survey study based on Weber and Mejia-Ramos’ (2013) studies on effective 
proof-reading strategies. In a qualitative study, Weber and Mejia-Ramos (2013) observed four 
mathematics majors and prospective teachers read six proofs. The authors considered these 
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students to be strong because they were successful in both their content-based mathematics 
courses and on the follow up proof comprehension test that the authors designed based on Mejia-
Ramos et al’s (2012) proof comprehension assessment model. Their analysis revealed five proof-
reading strategies that the students used to facilitate their understanding of the proofs. These five 
strategies identified in their study are: (1) trying to prove a theorem before reading its proof, (2) 
comparing the assumptions and conclusions in the proof with the proof technique being used, (3) 
breaking a longer proof into parts or sub-proofs, (4) comparing the proof approach to the one’s 
approach, and (5) using an example to understand a confusing inference. Weber and Mejia-
Ramos (2013) followed up their qualitative study with a large-scale internet-based survey study 
that included mathematics majors and mathematicians from 50 large state universities in the 
United States. The purpose of their quantitative study was two-fold: (1) to explore whether 
mathematicians prefer mathematics majors to use these five proof-reading strategies and (2) to 
explore to what extent mathematics majors use these strategies. The main finding of their study 
is that the majority of mathematics major do not use these proof-reading strategies. This 
continues to be the case even though the majority of mathematicians believed that mathematics 
majors should use these strategies. This is an interesting finding since it sheds light on why 
undergraduate students often times gain little from proofs (e.g., Conradie & Frith, 2000; Cowen, 
1991; Rowland, 2001). Our study examines whether these findings hold in one large institution. 

 
Previous research on student comprehension of proofs 

The literature on proof comprehension is relatively sparse. Some earlier studies on proof 
assessment indicate that mathematicians do not necessarily evaluate their students’ 
understanding of a given proof effectively (Conradie & Frith, 2000, Weber, 2012). Conradie and 
Frith (2000), for instance, maintain that mathematicians’ ways of testing their students’ 
understanding of a proof usually require nothing beyond recalling the statements and its proof. 
The mathematicians interviewed in Weber’s (2012) study also conceded this. In Weber’s (2012) 
study mathematicians reported that they measured their students’ understanding of proofs by (1) 
asking students to construct a proof for a similar theorem to the one that was proven in class, 
and/or (2) asking them to reproduce a proof; and some said they do not assess their students’ 
understanding of a proof. Conradie and Frith (2000) maintain that students can pass simply by 
memorizing the statement and proof of each theorem as presented in class; this, however, as they 
point out, does not effectively reflect students’ understanding.  

There are fewer studies on what students do when they read proofs for understanding. For 
example, Inglis and Alcock (2012) conducted a study that compared and contrasted beginning 
undergraduate students’ proof-reading habits to those of research-active mathematicians.  By 
studying their participants’ eye movement while reading a proof, they concluded that 
undergraduate students, compared to the experts in their study, spend more time focusing on the 
“surface feature” of a mathematical proof.  Based on this observation, the researchers suggest 
that undergraduates spend less time focusing on the logical structure of the argument; this, in 
turn, seems to explain why students often have difficulty understanding the logical structure of a 
mathematical argument, as evidenced elsewhere in the literature (A. Selden & Selden, 2003).  
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There is a growing body of literature aimed at improving undergraduates’ proof 
comprehension. Recently, Hodds et. al (2014) put forward a pedagogical technique known as 
self-explanation training that they argued can improve students’ proof comprehension by 
improving their engagement with the proof. Additionally, Weber and Mejia-Ramos’ (2013) 
study  also describes five proof reading strategies that undergraduates can use to facilitate their 
understanding of proof. Our study contributes to the growing body of literature in proof 
comprehension by examining the following research questions: (1) To what extent do professors 
endorse the proof-reading strategies described in   Weber and Mejia-Ramos’ (2013) study? (2)To 
what extent do undergraduate students use proof-reading strategies described in Weber et.al’s 
(2013) study? 

Research methodology 

The population for this study consisted of undergraduate students who have at least taken or 
enrolled in a transition-to-proof course, and mathematics professors. All participants were 
solicited from a large public university in the United States.  Because we were investigating the 
relationship between professors’ suggestions and students’ uptake, we believed that asking both 
groups and attempting to relate them at the professor-and university-level is useful. We should 
note that although the majority of our undergraduate student participants were taking a 
transition-to-proof course, a significant number of them had at least two proof-based 
mathematics course, including, but not limited to, introductory abstract algebra and real analysis. 

We replicated the survey items in Weber and Mejia-Ramos’ (2013) study where they asked 
mathematics majors to indicate the extent to which the aforementioned proof-reading strategies 
are reflective of their own. For undergraduate students, one of the researchers visited all proof-
based undergraduate mathematics courses offered at this institution at the time this research was 
taking place and asked the students to complete the survey. Nearly all undergraduate students 
(92) who were enrolled in at least one proof-based course completed the survey. Most 
undergraduates completed the survey in less than 10 minutes. Following Weber and Mejia-
Ramos’ (2013) study, we also disseminated the survey to mathematics professors in this 
institution. Fifteen mathematics professors agreed to participate. The survey questionnaires for 
the professors were virtually identical questions; however, they were directed to reflect 
undergraduate students’ proof-reading experience as opposed their own. For instance, to examine 
to what extent undergraduate students employ proof-reading strategy #1 (trying to prove a 
theorem before reading its proof), we asked them to what extent they agreed with the following 
statement: When I read a theorem, I usually try to think about how I would prove the theorem 
before reading its proof. For professors, the item above was phrased as follows: when reading a 
theorem undergraduate students should usually try to think about how they would prove the 
theorem before reading its proof. All participants were asked to indicate their choice using a five-
point Likert scale (strongly agree (5), agree (4), neutral (3), disagree (2), and strongly disagree 
(1) ).We used to the statistical software JMP 12.1 Pro to determine if there is a statically 
significant difference between the two groups. We will present our findings in the next section. 
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Results 
We organize our results based on the research questions. Recall that the main goal of this 

study is to explore to what extent undergraduate students in one large research institution employ 
proof-reading strategies that professors in that same institution find desirable. As it is evidenced 
in Table 1, the majority of professors claimed that undergraduate students should employ all five 
proof-reading strategies described in Weber and Mejia-Ramos’ (2013) study. In particular, a 
significant number of professors (85.71%) strongly agreed or agreed that undergraduate students 
should use examples to verify the veracity of potentially confusing assertions in a proof; on the 
other hand, only 66.3% of undergraduate students claimed to employ this strategy. In fact, using 
Wilcoxon Each Pair Test we found that undergraduate students’ response on this proof reading 
strategy is significantly different from professors with an alpha-level of 0.05. 

Additionally, a large percentage of professors (73.33%) either strongly agreed or agreed that 
when reading a theorem, undergraduate students should attempt to prove the theorem before 
reading its proof (strategy #1), however, only 60.87% of undergraduate students claimed to have 
used this proof-reading strategy. Indeed, a Wilcoxon Each Pair Test revealed that undergraduate 
students’ response statistically significantly differed from professors with an alpha-level of 0.05. 
This finding is consistent with that presented in Weber and Mejia-Ramos  (2013) study where 
the majority of mathematicians (88%) agreed that mathematics majors should try to prove a 
theorem before reading its proof. Weber and Mejia-Ramos’ (2013) study also evidenced that 
only 31% of mathematics majors in their study said they would attempt to prove a theorem 
before reading its proof (strategy #1). In our study, we have no evidence to support this claim; on 
the contrary, our study revealed that the majority of undergraduate students did in fact claim to 
use these strategies. We will present a plausible explanation for this discrepancy in the next 
section. 

 
Table 1 Percentage of participants who strongly agree or agree on the survey items  (see 

Appendix 1) 
 

Strategy  Professors 
 

Undergraduates 
 

1. Trying to prove a theorem before reading its proof 73.33% 60.87% 
2. Considering proof’s frameworks 86.67% 88.04% 
3. Comparing proof method with one’s own   

approach 
60% 63.04% 

4. Breaking a long proof into parts 66.67% 69.57% 
5. Illustrating confusing assertion with an example 85.71% 66.3% 
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Table 2  p-values in Wilcoxon Each Pair Test (based on Wilcoxon rank scores, also called 
Mann-Whitney test) using the statistical software JMP 12.1 pro 

Participants Strategy 
 #1 

Strategy 
 #2 

Strategy 
#3 

Strategy  
#4 

Strategy 
#5 

Professors vs. 
Undergraduates 

0.0303 0.3663 0.645 0.7095 0.0471 

 
Discussion and implications for further research 

On proof-reading strategy, in this paper, we argued that statistically significant difference 
between undergraduate students and professors existed only in the two of the five proof-reading 
strategies (strategies #1 and #5), suggesting that undergraduate students mostly claimed to 
employ desirable proof-reading strategies. We have also argued that undergraduate students’ 
proof-reading strategy, for the most part, tend to agree with what their professors say 
undergraduates should do when reading proofs.  

The level of agreement between undergraduates and professors on strategy #4 (breaking a 
longer proof into parts or sub-proofs) is encouraging. It is encouraging because they are using a 
reading strategy that is identified in the literature as effective for proof comprehension (Weber, 
2015, Weber & Mejia-Ramos, 2013).  At the same time, we are surprised by this result because 
Weber and Mejia-Ramos (2013) in their survey study found that only 38% of mathematics major 
claimed to have employed it. We believe there are several plausible explanations for this 
discrepancy. First, while our survey questions were identical to theirs, the choices our 
participants had were slightly different. In their study, participants were given two choices and 
asked to indicate if they agree or disagree; in contrast, in our study, participants were asked to 
indicate their choice on a five point Likert scale. Second, their Internet based survey included 
participants from 50 large institutions in the United States; on the other hand, our pool of 
participants comes from a single institution. Thus, it could be the case that mathematicians in this 
institution explicitly discuss these proof-reading strategies with their students. Finally, our 
undergraduate participants were different from theirs in the sense that our participants were not 
only mathematics majors, our study incorporated participants majoring in computer science, and 
secondary mathematics education. We plan to conduct further analysis of our data to examine if 
our preliminary results hold for mathematics majors only, prior to this we would like to use our 
presentation to receive feedback regarding the inconsistency of our result to that of Weber and 
Mejia-Ramos’ (2013). In particular, we would like to focus on the following discussion 
questions: (1)To what extent do you agree or disagree with our potential explanation for 
inconsistency? (2) What further analysis of our survey data might explain the inconsistency? 

In summary, our study provides further evidence that the strategies described in Weber et.al’s 
(2013) are indeed considered effective in facilitating proof comprehension.  We have also 
argued, contrary to Weber and Mejia-Ramos (2013) study, the majority of undergraduate report 
to use these effective proof-reading strategies. As a result, we believe this study is a welcome 
addition to the paucity of the literature in proof comprehension. Finally, we hope that further 
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research such as interviewing these mathematicians might provide insight into the surprising 
level of agreement between them and their students. 

 
Appendix 1. Survey Items (slightly modified from Weber and Mejia-Ramos (2013) study) 
Strategy #1:  When I read a theorem, I usually try to think about how I would prove the 
theorem before reading its proof. 

Strongly agree  Agree  Neutral  Disagree Strongly disagree 

Strategy #2:  When I read a proof of a theorem, I consider what is being assumed, what is 
being concluded, and what proof technique is being used. 

Strongly agree  Agree  Neutral  Disagree Strongly disagree 

Strategy #3:  When I read a proof, I compare how the methods used in the proof compares 
to the methods I would use to prove the theorem.  

Strongly agree  Agree  Neutral  Disagree Strongly disagree 

Strategy #4:  When I read a long proof, I try to break it into parts or sub-proofs. 

Strongly agree  Agree  Neutral  Disagree Strongly disagree 

Strategy #5:  When I read a new assertion in a proof that I find confusing, I sometimes 
check whether that assertion is true with specific example. 

Strongly agree  Agree  Neutral  Disagree Strongly disagree 
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CLEARING THE WAY FOR MINDSET CHANGES THROUGH FORMATIVE 
ASSESSMENT 

Rebecca Dibbs  Jennie Patterson 
Texas A&M-Commerce   Texas A&M-Commerce 

One of the reasons for the exodus in STEM majors is the introductory calculus curriculum. 
Although there is evidence that curricula like CLEAR calculus promoted significant gains in 
students’ growth mindset, it is unclear how this curriculum promotes mindset changes. The 
purpose of this case study was to investigate which features of CLEAR Calculus promoted 
positive changes in students’ mindsets. After administering the Patterns of Adaptive Learning 
Scale to assess students’ initial mindset in one section of calculus, four students were selected 
for interviews. Although participants were selected for maximal variation in their mindset at 
the beginning of the course, there were a lot of similar themes in their interviews. Students 
cited that CLEAR Calculus curriculum challenges them in ways that facilitates deeper 
comprehensive learning than that of a traditional calculus course.  

Key words: Calculus, formative assessment, mindsets 

 
Prospective STEM majors who declare a non-STEM major are most likely to do so after 

introductory calculus (Bressoud, Rasmussen, Carlson, & Mesa, 2014); students cite their lack 
of a perceived relationship with their instructor and the inability to seek help as primary 
reasons for switching (Ellis & Rasmussen, 2014). One possible solution is the use of 
formative assessments such as exit tickets; such assignments show promise in helping 
students to perceive their instructor as more approachable and caring about their success 
(Black & Wiliam 1998, 2009; Author 2, 2014). 

However, the number formative assessments completed are a far stronger predictor of 
students’ success than their weight in the course grade would indicate (Author 2, 2015). One 
possible explanation for this effect was that students who completed more post-labs had 
different mindsets about learning mathematics than those that did not. It has been noticed that 
mindsets play a significant role in the overall success of calculus students.  Dweck (2006) 
defines mindset in two different ways: fixed mindset and growth mindset. Students classified 
under the fixed mindset, if not immediately successful in introductory calculus often leave the 
STEM field. However, growth mindset students can persist and succeed, even after failures as 
severe as failing a course (Dweck, 2007).  

We examined how CLEAR Calculus supports positive mindset changes in students 
through a case study of four students enrolled in an introductory calculus class taught using 
CLEAR Calculus. This research will be guided by the question: What are the features of 
CLEAR Calculus that promote positive changes in students’ mindsets? By understanding 
what makes this curriculum effective, interested practitioners who are not implementing 
CLEAR Calculus can learn what components to add to their classes if they would like to see 
a positive increase in their students’ mindsets. We argue CLEAR Calculus supports positive 
changes in students’ mindsets because the labs make challenge and conceptual understanding 
central components of the course, while the set routine of the class and the use of formative 
assessments helped to prevent students from feeling overwhelmed. 

The theoretical perspective for this case study (Patton, 2002) was Dweck’s (2006) 
mindsets. Participants attended a midsized rural regional university in the South, and were 
recruited from an introductory calculus course taught using CLEAR Calculus labs. These labs 
are built upon developing systematic reasoning about conceptually accessible approximations 
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and error analyses but mirroring the rigorous structure of formal limit definitions and 
arguments (Oehrtman, 2008, 2009).  

Students in the course took the Patterns of Adaptive Learning Scale (PALS) during the 
second week of the semester. Four participants participated in semi-structured interviews 
(Patton, 2002) to obtain a sample with maximum variation according to their mindset (Table 
1). Author 1 observed the class and consulted with the instructor of the course for 
triangulation of the interview data. After the interviews were transcribed, the data was 
analyzed using standards of evidence derived from the literature. 
Table 1 
Participants 

Overall, participants found the feature of the CLEAR calculus that caused them to 
become more growth mindset-orientated was the presence of safe challenges. Although the 
labs were always challenging for students, the labs were also seen as the central feature in the 
course and the main difference between their current calculus experience and their previous 
mathematics classes, particularly those taken in high school. While the labs provided the 
challenge needed to help students begin to examine their belief systems, the formative 
assessments were also seen as a key feature of the course. Even though postlabs required little 
time, they were aware that questions on the postlab would be answered by the instructor. For 
students with a more fixed mindset, this help was available with minimal effort and without 
admitting the need for help in front of peers, which made seeking aid more palatable. 
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Pseudonym Year Major Mindset 
Ian Junior Math Strong Growth 
Roland Freshmen Biology Weak Growth 
Penelope Sophomore Biology Weak Fixed 
Steven Freshmen Math Strong Fixed 
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What do students attend to when first graphing in R3? 
 

Allison Dorko 
Oregon State University 

This poster considers what students attend to as they first encounter R3 coordinate axes and 
are asked to graph functions with free variables. Graphs are critical representations, yet 
students struggle with graphing functions of more than one variable. Because prior work has 
revealed that students’ conceptions of multivariable graph are often related to their 
conceptions about single variable functions, I used an actor-oriented transfer perspective to 
identify what students see as similar between graphing functions with free variables in R2 and 
R3. I considered what students attended to mathematically, and found that they focused on 
equidistance, parallelism, and coordinate points. 

Key words: generalisation, multivariable calculus, multivariable functions, graphing  

Including multivariate topics in K-12 mathematics is one way to increase mathematical 
competence for all students (Ganter & Haver, 2011; Shaughnessy, 2011). Because 
multivariable topics share many similarities with their univariate counterparts, many 
researchers studying student learning of multivariable topics focus on how students 
generalise from the single- to multivariable context (e.g., Dorko & Weber, 2013; Kabael, 
2011; Yerushalmy, 1997). This poster exhibits some initial findings from a longitudinal study 
that seeks to explore how calculus students generalise function and limit from the single- to 
multivariable context. Specifically, it considers what students attend to as they first encounter 
R3 coordinate axes and are asked to graph functions with free variables.  

Graphs are critical representations in calculus, yet students struggle with creating graphs 
of multivariable functions (Kabael, 2011; Martinez-Planell & Trigueros, 2012). Students’ 
correct understandings about the shapes of graphs in R2, for instance, may interfere with their 
learning about graphs in R3. Some students graph f(x,y) = x2 as a parabola rather than as a 
parabolic surface. Students may also draw f(x,y) = x2 + y2 as a cylinder or a sphere because 
they are accustomed to x2 + y2 representing a circle in R2. These examples illustrate that part 
of students’ thinking about multivariable functions’ graphs comes from generalising the ways 
they think about graphs in R2. I sought to further explore this, with the hypothesis that 
learning more about what students attend to when graphing can help instructors emphasize 
the productive connections students see across situations and target students’ misconceptions. 
Toward that end, this poster focuses on the following research question: what do students 
attend to as they first think about graphing multivariable functions with free variables?    
 

Theoretical Framework 

I use an actor-oriented transfer lens to study student thinking about graphing. Actor-
oriented transfer focuses on what students see as similar across situations, even if their 
perceptions of similarity are not normatively correct (Lobato, 2003). From this perspective, 
students’ graphing activity in R3, even if incorrect, makes sense to them for some particular 
reasons, and the goal is to uncover those reasons. In the two examples given above, students’ 
reasons for drawing f(x,y) = x2 as a parabola and f(x,y) = x2 + y2 as a cylinder or sphere might 
indicate that they are attending to the way similar equations, f(x) = x2 and x2 + y2 = r2, look in 
R2. My use of an actor-oriented transfer perspective affords identifying more of these sorts of 
connections that students see and use as they think about what graphs of multivariable 
functions look like.  
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Methods of Data Collection and Analysis  

I asked 12 differential calculus students about multivariable functions so that I could 
observe the initial sense making of students who had not yet received instruction regarding 
these functions. I hypothesised that this would allow me to observe students’ abstractions in 
real time. This poster focuses on data from three tasks: students’ graphs of y = 2 in R2, y = 3 
in R3, and f(x,y) = x2 + 6 in R3. I asked follow-up questions such as “why did you draw a 
[line, plane, curved surface] here?” I analysed my data by first identifying instances of 
generalisation, defined as “the influence of a learner’s prior activities on his or her activity in 
novel situations” (Ellis, 2007, p. 225). A colleague and I then reviewed and discussed those 
episodes, with the goal of characterising the nature of those generalisations. Specifically, we 
looked for (a) any references on the students’ part to graphing or functions in R2, which we 
coded using Ellis’ (2007) generalisation taxonomy, and (b) what mathematical concepts or 
ideas students leveraged as they generalised.  

Results 

Due to space limitations, I focus on a particular student, Alex, and then give brief details 
about ways other students answered these tasks. Alex drew a correct graph of y = 3 in R3 
despite having seen R3 coordinate axes for the first time in the interview. Alex’s work is 
compelling because he gave two incorrect answers, then reasoned to a correct answer by 
connecting back (c.f. Ellis, 2007) to the graph of y = 2 in R2 and attending to two 
mathematical properties: equidistance and parallelism. He generalised these from the 
univariate case to describe the graph of y = 3 in R3 as a plane “that is 3 away from the plane 
that x and z creates”: 
 
Alex: Actually, y = 3 … would be an entire plane….It has to be parallel to x, and this has to 
be parallel to z, so it would be this plane right here that is 3 away from the plane that x and z 
creates… like for the last question when y is equal to 2, that is every value that is 2 away 
from y = 0, right? So I’m thinking that like y = 0 would be the same as this [shades xz plane]. 
So it’s 3, it’s 3 in the positive [y] direction, because it’s a positive 3, it’s y equals that… 
Interviewer: Tell me about this parallel, like you said it’s going to be parallel to x and z? 
Alex: It’s going to be parallel to x in the same way that this line right here [y = 2 in R2] is 
parallel to the x, to the x-axis. So it’s kind of the same thing except it’s like, it would be like 
that if it was a plane.”   

 
The sketching activity, and connecting back to the graph of y = 2 in R2, allowed Alex to 
generalize that y = b is a line in R2 and a plane in R3. He drew two incorrect graphs before 
drawing the correct one (“actually, y = 3 would be an entire plane”), and it was in the process 
of creating and reviewing these graphs that he appeared to focus on using the equidistance 
and parallelism to arrive at the correct answer. Alex’s thinking about these two ideas is 
representative of other students. Another, asked to graph y = 3 in R3, said “so on an xy [R2] 
graph at 3, would be going this way. So on the y, following the x. So [on R3 axes] this would 
be on the y, this is the 3 point on the y, and it’s following the x axis.” This student created a 
new situation (c.f. Ellis, 2007) that he viewed as similar to the current situation, and 
generalised by thinking about parallelism, which he stated as “following.” Other ways 
students thought about this question were in terms of plotting points; for instance, “y = 3 at 
all points on the graph, any point you evaluate, so if you say z = 2 and x = 2, it’s going to be 
3.” Hence the initial data analysis suggests that as students generalise, some of the things they 
attend to equidistance, parallelism, and coordinate points.  
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Investigating a mathematics graduate student’s construction of a hypothetical learning 
trajectory  

 
Ashley Duncan 

Arizona State University 

This study reports results of how a teacher’s mathematical meanings and instructional 
planning decisions transformed while participating in and then generating a hypothetical 
learning trajectory on angles, angle measure and the radius as a unit of measurement. Using 
a teaching experiment methodology, an initial clinical interview was designed to reveal the 
teacher’s meanings for angles and angle measure and to gain information about the 
teacher’s instructional planning decisions. The teacher participated in a researcher 
generated HLT designed to promote the construction of productive meanings for angles and 
angle measure and then constructed her own HLT for her students. The initial interview 
revealed that the teacher had several unproductive meanings for angles and angle measure 
that caused the teacher perturbations while participating in the tasks of the researcher 
generated HLT. This participation allowed her to construct different meanings for angles and 
angle measure which changed her instructional planning decisions. 

Key words: Hypothetical Learning Trajectories, Trigonometry, Graduate Teaching Assistant 
Education, Mathematical Meanings 

Students and teachers often have difficulty reasoning about topics related to trigonometric 
functions (Moore, 2010; Thompson, Carlson, & Silverman, 2007; Weber, 2005). Moore 
(2010) described several reasons that students may have difficulty reasoning about 
trigonometric functions including the approach that current curricular materials take when 
introducing the sine and cosine functions. Many teachers introduce trigonometric functions in 
both right triangle contexts and unit circle contexts, though they rarely make connections 
between the two. This approach hinders students’ ability to develop coherent meanings for 
these functions. This has led researchers to start working on how students reason 
quantitatively and covariationally about trigonometric functions (Moore, 2010, 2012, 2014; 
Moore & LaForest, 2014). For students to develop coherent meanings for trigonometric 
functions, they must first develop meanings for angles, angle measure, and the radius as a 
unit of measurement. Moore (2009) investigated students’ meanings for these concepts.  

Teachers should strive to have their students build coherent mathematical meanings 
(Thompson, 2013). Simon (1995) shared three episodes from teaching that paint the picture 
of a teacher guided by his conceptual goals for his students’ learning. A teacher’s 
consideration of this learning goal, the learning activities, and the thinking and learning in 
which students might potentially engage in make up a hypothetical learning trajectory (HLT). 
The term refers to a teacher’s prediction of the path by which learning may occur and 
characterizes expected tendencies of student learning. It is hypothetical in the sense that the 
actual learning trajectory of an individual is not knowable in advance. A teacher’s HLT for 
her students has three parts: the teacher’s goal for students’ learning, the mathematical tasks 
used to promote student learning, and hypotheses about the process of the students’ learning 
(Simon & Tzur, 2004). Simon and Tzur (2004) propose that having a teacher generate a HLT 
is a way for a teacher to teach based on her anticipation of how students might come to learn 
a particular concept, knowledge of what her students’ current understandings are, tasks that 
she can use to promote learning of the concept, and her own understandings of the goal of the 
lesson. The generation of a HLT requires a teacher to think about what meanings she needed 
to know in order to build the proposed meanings. I hypothesize that the act of generating a 
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HLT serves as an impetus for getting a teacher to focus on mathematical meanings and to 
leverage student thinking when designing instructional interventions. 

 
Methodology and Research Questions 

The primary goal of this study was to explore how a teacher’s mathematical meanings 
and instructional planning decisions change while participating in and then creating a 
hypothetical learning trajectory on angle, angle measure, and the radius as a unit of 
measurement. The study was conducted using a teaching experiment methodology (Steffe & 
Thompson, 2000). The subject is a graduate student in applied mathematics who was 
teaching Pathways Precalculus (Carlson, Oehrtman, & Moore, 2014) at the university level. I 
will refer to the subject as Lily. All sessions were videotaped and all written work produced 
was scanned and used for analysis. An initial clinical interview was conducted to build a 
model of the teacher’s meanings for angle, angle measure, and the radius as a unit of 
measurement and to gain information about the teacher’s instructional planning decisions for 
angle, angle measure, and the radius as a unit of measurement. The teacher then participated 
in two exploratory teaching sessions that were designed to resemble a hypothetical learning 
trajectory for a student’s meanings for angles, angle measure, and the radius as a unit of 
measurement. During each session, I gave the teacher tasks that I designed to reveal and push 
the boundaries of the teacher’s mathematical meanings. These tasks were designed before the 
initial interview and then modified to reflect the insights I gained from working with the 
teacher. The last part of the intervention was to have the teacher create a hypothetical 
learning trajectory for her students. The teacher was given a template for a HLT that was 
adapted from a Lesson Logic Form (Thompson, 2008). The HLT Lily created provided 
insight on how her meanings for angles and angle measure had changed as well as what 
meanings she wished her students to construct in class. The two research questions were “in 
what ways and to what extent does a teacher participating in and then generating a 
hypothetical learning trajectory on angles and angle measure affect the teacher’s 
mathematical meanings for angles and angle measure?” and “in what ways and to what extent 
does a teacher participating in and then generating a hypothetical learning trajectory on 
angles and angle measure affect the teacher’s instructional planning and decisions?” 
 

Conceptual Analysis of Angles and Angle Measure 
In order to produce a hypothetical learning trajectory for angles and angle measure, I 

needed to identify what meanings would comprise a propitious way of understanding of 
angles and angle measure. From these ways of understanding I identified six learning goals 
for students and then used prior research on students’ meanings for angle measure (Moore, 
2009) to design tasks that a teacher’s use of would promote his/her students’ construction of 
these desired understandings. Some of the tasks were adapted from the Pathways Precalculus 
curriculum (Carlson et al., 2014) as well as dissertation studies conducted by Moore (2010) 
and Tallman (2015).  

An angle is a geometric object that consists of two rays that meet at a common endpoint, 
often called the vertex of the angle. A measurable attribute of an angle is its “openness.”  
When a circle is centered at the vertex of the angle, one can quantify the measure of openness 
by measuring the length of the subtended arc in comparison to the length of either the radius 
or circumference of the circle, or, more generally, any unit of length that is proportional to 
the circle’s radius or circumference. An angle can be measured by quantifying what 
percentage of the circle’s circumference the subtended arc length is or by measuring the 
subtended arc length in units of the radius length. The six learning goals I identified for the 
researcher-generated HLT are students will understand: 

1. …that an angle is an object that consists of two rays that share a common vertex. 
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2. …that the measurable attribute of interest of an angle is its “openness.”   
3. …the “openness” of an angle in terms of the length of the subtended arc of the circle 

centered at the vertex of the angle. 
4. …that any particular angle subtends the same fraction of the circumference of all circles 

centered at the vertex of the angle. 
5. …that the unit of measure of this subtended arc length must be proportional to the 

circumference of the circle centered at the vertex of the angle so that the size of the 
circle does not matter.  

6. …that angles measured in radians are measured by measuring the subtended arc length 
in units of the length of the radius of the circle centered at the vertex of the circle and 
that angles measured in degrees are measured by measuring the subtended arc length in 
units of 1/ 360  of the circumference of the circle centered at the vertex of the angle.  

With these learning goals in mind, I selected and/or designed seven tasks that could be used 
to promote the construction of these ways of understanding. In combination with the learning 
goals, these made up the researcher generated HLT that was used during the study.  
 

Results 
The initial clinical interview began with Lily creating a lesson plan for angles and angle 

measure. Lily’s lesson plan began with asking her students “What is an angle?”  Lily’s 
answer to the question was that “an angle is an object that can be measured” and also that she 
“would love for them to relate it to a circle.” Next Lily planned to look at one picture and ask 
her students “How many angles can we measure in this picture?”  Lily’s intended answer to 
this question revealed that Lily’s meaning for angle and angle measure was potentially 
different from the meanings I outlined in the researcher-generated HLT. When asked what 
she wanted her students to understand about angle measure, Lily drew a picture similar to the 
following picture (colors added to ease discussion of what she was referencing): 

 
Figure 1: Lily’s initial image of two angles. 

Initially Lily drew the part of the picture that is in blue, identifying that the blue arc and tick 
mark she had drawn indicated that students should be thinking about the interior space 
between the two rays. Then Lily added the red arc and said that she also wanted students to 
recognize that “this” was another angle. This revealed that Lily did not view the object of an 
angle as two rays that met at a common endpoint, but that some other aspect was also present 
in her scheme for angles. When asked how we measure an angle, Lily stated that we could 
measure an angle by comparing the subtended arc to the circumference or radius. Lily then 
wanted her students to imagine that every angle can be drawn inside a circle and then said 
that she would return to asking her students what an angle was. Finally, she would conclude 
her lesson by asking, “How can we measure the angle?” and brought up that she expected 
students to mention protractors, SOHCAHTOA, radians, and degrees. Then she would ask 
students what a radian was and what a degree was.  

Following this, I proceeded to ask questions that I had designed to reveal more about 
Lily’s meanings for angles and angle measure. The first question I posed was “What is an 
angle?”  Lily’s answer revealed that the word angle invoked a lot of meanings for her and 
that she had not made a distinction between an angle and an angle’s measure. Her mental 
image of an angle included rotations and a circle. She stated “we have this notion of going 
around a circle, which is where I naturally think about angles now.”  She mentioned that 
something being 360 degrees was the same as something being 720 degrees, but did not 
mention what this “something” was. Lily was then presented with an image of an angle, 
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∠ABC , and asked how many angles were pictured. Lily’s answer was that there were 
infinitely many angles, depending on where you drew in an arc, or what you wanted to 
measure. This added evidence to the idea that Lily’s meaning for angle consisted of more 
than just two rays that have a common endpoint.  

 
Figure 2: Lily’s image of an infinite number of angles. 

I then asked Lily what it meant to measure an angle. Lily stated, “we’re looking at maybe 
a proportional relationship of what is cut off if we were to imagine the entire circle there. It’s 
the relationship between this arc here and the entire circle.”  I then asked her to clarify what 
was proportional and she responded, “we’re looking at the proportion of this arc to this 
radius.”  This revealed that Lily is able to think about angle measures as a ratio of the 
subtended arc length to the circumference and the ratio of the subtended arc length to the 
radius length, but that she was using these two ratios interchangeably. She was initially 
discussing the subtended arc length as a proportion of the circumference, but then drew a 
picture and defined an equation that found the proportion of the subtended arc to the radius. 
When asked what it means for two angles to have the same measure, Lily referred back to the 
ratio of subtended arc length to the length of the radius and stated that “two angles have the 
same measure if and only if s-one over r-one is equal to s-two over r-two where s-one and r-
one are from angle one and s-two and r-two are from angle two.”  S-one and s-two stood for 
the subtended arc length and r-one and r-two stood for the radius length of each angle. When 
asked further questions about measuring an angle in degrees or in radians, her lack of 
distinction between the two ratios she had identified caused her problems when writing 
equations that described what it meant for an angle to have a measure of one degree or of one 
radian. In summary, the initial clinical interview revealed that Lily’s definition on an angle 
was conflated with her process for measuring the angle. Lily did not make the distinction 
between the object of an angle and the measureable attribute of openness. Lily also had a 
strong conception of the measure of an angle being related to the portion of the circle 
subtended, though she used ratios of the subtended arc length to the radius and circumference 
interchangeably, and not always correctly. Identifying these meanings led to the researcher’s 
modification of some of the tasks and questions to try and address what the researcher viewed 
as unproductive meanings that Lily had.  

The next two sessions involved Lily working through 7 tasks with the researcher. I 
designed the first task to help Lily distinguish between an angle as an object and the measure 
of an angle as a quantity. I presented Lily with a Geometer’s Sketchpad (Jackiw, 2011) file 
that had an angle pictured and asked her to describe the picture. She was then able to drag a 
point located on one of the rays of the angle, which changed the openness of the angle and 
traced out an arc of the circle the point was located on in red. Even though the full circle was 
not drawn, Lily imagined that she could think about continuing to trace out the subtended arc 
as a way to create a circle that would be related to the subtended arc, and described that she 
could measure the amount of openness between the two rays by creating a relationship 
between the portion of the circle the arc subtended. Her initial description involved creating a 
ratio between the subtended arc length and the circumference but then Lily described that we 
could measure an angle by relating the arc length to the radius length. Throughout the 
sessions, Lily identified two consistent ratios that can be used to measure an angle: 
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length of the subtended arc

length of the circumference
 and length of the subtended arc

length of the radius
. However, Lily did not distinguish between these two 

ratios, often citing one in an explanation, but actually using the other in her work.  
In the second task, Lily used these ratios to again talk about how she could measure an angle. 
Lily was given that for a particular angle, the length of the subtended arc was 11.48 cm and 
the length of the circumference was 26.04 cm and asked if she would know what the length 
of the subtended arc would be if the circumference changed to 16.8 cm. She demonstrated 
fluency of using consistent ratios to find the missing subtended arc length. I then asked her if 
she was measuring the same angle in her picture. Lily’s response was that no, she was not 
measuring the same angle but was instead measuring two angles that have the same measure. 
I took the opportunity to further probe Lily’s definition of an angle (Excerpt 1).  This showed 
a shift in Lily’s definition of an angle from her initial clinical interview.  
Excerpt 1 
Interviewer: So why would there be different angles? 
Lily:  So again, we talked about that an angle is an object. So these are two different objects. 
I:  An object that consists of? 
Lily:  That consists of two rays meeting at a common point. 
I:  How many rays meeting at a common point have you drawn? 
Lily:  Well actually, I guess I’m thinking of line segments. If I were to think of it as rays, 
where rays go on forever, then they would have the same rays and so they would be the same.  
I:  So does changing the size of the circle you’re looking at change the original object of the 
angle? 
Lily:  I’m going to go with no, because if you’re thinking about rays, they go on forever.  

I used the next two tasks to help Lily distinguish between the need for a unit of measure 
that would be used to measure an angle and a unit of measure that would be used to measure 
the subtended arc. Lily was asked to create a protractor that would measure an angle in gips, 
given that any circle is eight gips. Initially Lily talked about measuring the angle and 
measuring the subtended arc length interchangeably, but as we discussed what we were 
measuring, Lily identified that units of measure for those two things should not be the same 
since one was a length and the other was an amount of openness. I took the opportunity to ask 
Lily what the difference was between something that had a measure of one radian and 
something that had a measure of one radius length. Lily articulated that if we are measuring 
using the radius, we are measuring a subtended arc length. If we are measuring in radians, we 
are measuring an amount of openness. Throughout subsequent tasks, Lily still used the 
radians and radius lengths interchangeably, though when it was brought to her attention, she 
could identify which one she had actually meant. Lily stated, “a radian is an angle measure 
that corresponds to the number of radius lengths in the arc subtended by said angle.”  

During the last session, I presented Lily with a template for a HLT and asked her to plan a 
lesson for angles and angle measure for her students. Lily identified five learning goals: 

1. An angle is formed when 2 rays meet at a common vertex. 
2. How do we measure angles? (Determine the openness between the rays, use circles) 
3. “openness” can be the larger or smaller value. 
4. We measure angles commonly in units called radians. A radian is a unit equivalent to     
1 radius length of the circle in question. 
5. There are 2π  radians in one circle. 

Lily then identified that students would need to be familiar with circles, including the 
circumference formula and how it relates to radius length, prior to the lesson. Lily then 
started designing/selecting tasks that she could use to promote students’ construction of the 
five learning goals she identified. As she went through this process, several of her learning 
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goals evolved as she continued to think about them. She wanted her students to understand 
that when they are measuring an angle, they are describing the openness between the rays that 
form the angle and intended to do this by starting with an example of an angle with a measure 
of ninety degrees because her students would be familiar with this angle. Her goal was to 
have students make the connection that an angle with a measure of 90 degrees also cut off 
one-fourth of the circumference of a circle. This led to her changing her third learning goal to 
“understand that the subtended arc and circumference have a consistent relationship that can 
be used to measure angles,” and the fourth goal became “a radian is a unit of measure often 
used for angles that is equivalent to one radius length on the subtended arc of the drawn 
circle.”  She later defined that “an angle that subtends an arc with a length of one radius (of 
the circle) is said to have a measure of one radian.”  Lily continued to select tasks that she 
would use in a lesson. She identified that she wanted to spend the first day of the unit 
focusing on the meaning of angles and angle measure and then spend a second day practicing 
these meanings in application problems.  
 

Discussion and Implications for Future Research 
Several changes occurred in Lily’s mathematical meanings for angles and angle measure 

between the initial clinical interview and her generation of a HLT for her students. Initially, 
Lily’s definition of an angle included more aspects than two rays that meet at a common 
endpoint. She believed that when she drew an arc between the two rays that the arc was part 
of the object of the angle, which meant that if she drew a circle centered at the vertex of the 
angle, she viewed this as creating two angles, where each subtended arc was part of a 
separate angle. This contributed to her unclear distinction between an angle as an object and 
an angle as a quantity. I hypothesize that this is because she viewed the subtended arc as part 
of the angle, and therefore the subtended arc was no longer a measurable attribute of an 
angle, but was instead part of the angle itself, thus making an angle a measureable attribute of 
another object, such as a triangle. Lily also used both radians and radius lengths when talking 
about measuring both an angle and an arc length. Lily was initially using these two units 
interchangeably. Lily also showed a tendency to talk about ratios whenever she was asked to 
explain the meaning or process of measuring an angle. At different times, Lily mentioned two 

consistent ratios when measuring an angle: subtended arc length

radius length
 and subtended arc length

circumference length
. Lily was 

aware that both of these ratios were consistent and on multiple occasions did not differentiate 
between which ratio she intended to use. Lily fluidly switched between saying that an angle 
will cut off the same portion of any circle’s circumference and saying that the ratio of 
subtended arc length to radius length would be the same for any circle.  

During the next three sessions, some of these initial meanings caused Lily perturbations 
while working through the tasks of the researcher generated HLT and when generating her 
own HLT. These perturbations caused Lily to make accommodations to her schemes for 
angle and angle measure. In the final session, Lily defined an angle as an object that is 
formed when two rays meet at a common vertex. This accommodation to her meaning for 
angles was a result of being confronted with tasks in which she was unable to assimilate the 
information in front of her to one of her already existing schemes. Specifically, this 
accommodation was a result of realizing that in order for you to be able to use a circle of any 
size to measure the same angle, you had to think of these different sized angles as still 
representing the same original angle.  

By the end of the study Lily also had a clearer distinction between a radian as a unit of 
measurement and a radius length as a unit of measurement. While writing her HLT she used 
radian when she meant radius length once, but was able to identify that she had done so and 
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made the change. Being asked to articulate what a gip measured in task 3 had required Lily to 
think about the difference between measuring a subtended arc and measuring an angle.  

While working on creating her HLT, Lily was still inconsistent in her use of the two 
ratios she had identified as staying consistent for the same angle. The first time the researcher 
asked Lily if she realized she had been using two different ratios was during the final session 
while Lily was creating her HLT. Lily identified that they were two different ratios but that 
she hadn’t really thought about that for herself. The opportunity for Lily to reflect on this 
distinction was lost because the researcher did not address this inconsistency in her use of the 
two ratios during the tasks of the hypothetical learning trajectory.  

Together, the implications of the changes that occurred and the changes that did not occur 
provide evidence of the importance of the initial model the researcher created of Lily’s 
mathematical meanings after the initial clinical interview. The researcher modified the 
questions asked during the tasks of the researcher-generated HLT to try to specifically 
address the meanings identified from the first interview. The activity of completing the tasks 
allowed Lily to make the necessary accommodations to her schemes for angle and angle 
measure. The only concept that is potentially still problematic for Lily is that she is 
inconsistent in her use of and meaning for the ratios of subtended arc length to radius length 
and to circumference length. This highlights the importance of identifying your student’s 
meanings as a starting point for constructing a HLT. These results also highlight the 
effectiveness of the tasks in the researcher-generated HLT on providing the activity for a 
teacher to make accommodations to his/her schemes invoked by the tasks in the HLT.  

These accommodations to Lily’s scheme showed up in the second lesson plan she created. 
I hypothesize that Lily recognized the usefulness of the meanings she had constructed during 
the tasks of the previous two sessions and wanted to help her students construct these same 
useful meanings. Several of Lily’s learning goals were meanings that she had either not had 
prior to the study, or had not been able to articulate. Lily’s third learning goal is a reflection 
of a meaning that Lily had prior to the study. This shows that Lily also recognized the 
importance of her prior meanings, and did not only model her HLT after the accommodations 
she was aware of making. I include this to highlight that teachers do not start as a blank slate. 
Teachers are unable to help their students construct productive meanings if they do not have 
these meanings for themselves. Thus any sort of hypothesized intervention for improving 
teaching has to take this in to account. This study provides evidence that working through the 
tasks in a researcher-generated HLT and then creating your own HLT is one possible way to 
help teachers make accommodations to their schemes and then recognize the impact that 
these accommodations can have on their students.  

Lily’s reflection on the tasks she had completed and the accommodations she had made 
helped her identify different learning goals for her students. The new learning goals she 
identified make up a more robust understanding of angles and angle measure than what her 
initial lesson plan contained. Lily’s second lesson plan also included specific activities and 
tasks that she intended to do with her students and conversations she hoped to have with her 
students, both of which were barely contained in the first lesson plan. This suggests that 
providing Lily with a template that specifically asked her to identify learning goals and tasks 
that would help students construct those understandings helped contribute to a more detailed 
and robust lesson plan.  

The results of this study suggest that having Lily work through tasks in a researcher 
generated HLT caused changes in both her schemes for angles and angle measure as well as 
what she identified as being important to teach her students. The study also suggested that the 
use of a HLT provided a way to encourage a teacher to think about student thinking as she 
planned her lesson. A future study involving these ideas will allow the researcher to identify 
what aspects of participating in the HLT caused this effect.  
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DOES IT CONVERGE?  A LOOK AT SECOND SEMESTER CALCULUS STUDENTS’ 
STRUGGLES DETERMINING CONVERGENCE OF SERIES 

 
David Earls Eyob Demeke 

University of New Hampshire California State University, Los Angeles  
 

Despite the multitude of research that exists on student difficulty in first semester calculus 
courses, little is known about student difficulty determining convergence of sequences and series 
in second semester calculus courses.  In our preliminary report, we attempt to address this gap 
specifically by analyzing student work from an exam question that asks students to determine the 
convergence of a series and follow-up semi-structured interviews.  We develop a framework that 
can be used to help analyze the mistakes students make when determining the convergence of 
series.  In addition, we analyze how student errors relate to prerequisites they are expected to 
have entering the course, and how these errors are unique to knowledge about series. 
 
Key words: Series, Framework, Convergence, Calculus, Undergraduate Mathematics 
 
 Researchers have noted that there is a lack of research in the area of infinite series 
(González-Martín, Nardi, & Biza, 2011).  Moreover, the research that does exist does not focus 
on undergraduates in second semester calculus, but rather on undergraduates in real analysis 
(González-Martín, Nardi, & Biza, 2011; Alcock & Simpson, 2004; Alcock & Simpson, 2005), 
how graduate students understand series (Martínez-Planell, Gonzalez, DiCristina, & Acevedo, 
2012), and humanities students’ difficulty with the concept of infinity when dealing with series 
(Sierpińska, 1987). 
 In this study, we begin to fill a gap in the literature by developing a framework that can 
be used to analyze student errors that occur while solving problems in second semester calculus 
courses related to sequences and series.  Moreover, since researchers have argued that first 
semester calculus students struggle because they lack the necessary prerequisite skills such as the 
function concept (Ferrini-Mundy & Graham, 1991; Carlson, Madison & West, 2010; Asiala, 
Cottrill, Dubinsky, & Schwingendorf, 1997), we also look to see how the errors students make 
are related to prerequisite skills they should have acquired prior to entering their second semester 
calculus courses.  In particular, we aim to (1) determine the errors students make when solving 
typical second semester calculus problems on series, (2) determine the relationship these errors 
have to prerequisite skills, (3) determine how the errors made are unique to series, and (4) 
develop a framework for analyzing student errors. 

Research methodology 
 The targeted population for this study is undergraduate students enrolled in a second 
semester calculus course in a large public university in the northeastern United States.  Fifty-five 
students in the course agreed to have their work on a sequences and series exam photographed. 
Thirty-four of these students also agreed to be interviewed working through problems on 
sequences and series similar to those seen on their exam, though only eight students responded to 
an e-mail to set up the interview with seven showing up for their interview. 
 Recall that the main research aims in this study restated from the introduction are to (1) 
determine what mistakes students make when they solve problems on series typically seen in a 
second semester calculus course, (2) determine how these mistakes relate to prerequisite skills 
students are expected to have prior to entering a second semester calculus course, (3) determine 
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what knowledge of series aside from prerequisite knowledge students need to avoid the mistakes 
seen in (1), and (4) develop a framework for analyzing student mistakes determining the 
convergence of sequences and series.   
 This preliminary report focuses on student responses to one question on their exam, a 
problem that focused on student knowledge of comparison tests (or integral test) to determine the 
convergence or divergence of a series: 
 Determine whether the following series converges or diverges.  Be explicit about any test 
you use to justify your response.  Calculate the sum of any convergent geometric series.  Justify 
your response by showing your work. 

! + 1
!!

!

!!!
 

 
 To address the aims in our study, we went through two rounds of coding.  Since we could 
not find any theoretical work in this area, we opted for open coding.  In the first round, we wrote 
a description of the type of error we saw.  In the second round of coding, we came up with 
categories to fit our descriptions into.  The categories, abbreviations, and an explanation of the 
categories are given below in table 1: 
Table 1: Categories, Abbreviations, and Explanation Table 
Categories, Abbreviations, and a Brief Explanation with an Example 
Category Abbreviation Explanation 
No Mistakes NM A completely correct answer 
Notational Error NE A notational error.  For example, a student 

says !! diverges without including the series 
symbol. 

Algebra of Series AS Student splits up a series when one diverges.  
For example, he may write 

1
! +

1
!!

!

!!!
= 1

! +
1
!!

!

!!!

!

!!!
 

Algebra A An algebraic error.  A student might, for 
example, “plug in” infinity, or incorrectly 
simplify a rational expression by 
“cancelling” through a sum 

Function Choice FC Wrong function choice when using a 
comparison test.  For example, a student 
might try to make a comparison with !!!. 

Unchecked Assumptions UA Student failed to check that the function 
satisfied the assumptions in the integral test. 

Algebra error leading to 
Incorrect Test Choice 

AITC Student reaches a false conclusion (usually in 
the ratio test) because of an algebraic 
mistake.  This mistake typically was 
cancelling through a sum. 

Incorrect Test Choice ITC Student chooses an incorrect test, such as an 
nth term test, or a geometric test. 
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(continued) 
 

 
Table 1: Categories, Abbreviations, and Explanation Table (continued) 
Category Abbreviation Explanation 
Wrong Conclusion in Test #1 WCT1 Student uses a test other than the integral 

test or a comparison test, and reaches an 
incorrect conclusion from that test.  For 
example, a student uses the ratio test and 
says that a value of 1 means the series 
converges.   

Wrong Conclusion in Test #2 WCT2 The student correctly chooses a comparison 
test or the integral test, but reaches an 
incorrect conclusion using that test.  For 
example, a student says the series converges 
because it is larger than the series !!. 

Preliminary results and discussion questions 
 In what follows we present the preliminary results of student responses to the question on 
the exam stated above.  Figure 1 below shows that most students, about 54.5%, answered the 
question correctly.  By a correct answer, we mean an answer that would have received full credit 
or only lost a point or two on the examination in the judgement of the authors of this paper, both 
of whom have experience teaching second semester calculus. 
Figure 1: Correct/Incorrect 

 
Frequencies 
Level  Count Prob 
Correct 30 0.54545 
Incorrect 23 0.41818 
NA 2 0.03636 
Total 55 1.00000 
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 Half of the students that got the problem correct made no errors whatsoever, and another 
30% only made notational errors.  Figure 2 shows the types of errors made by students that 
answered the question correctly.  Note that multiple errors were possible on the same problem. 
Figure 2: Distributions of Correct Responses 

 
Frequencies 
Level  Count Prob 
Incorrect Test Choice and Unchecked Assumptions 1 0.03333 
No Mistakes 15 0.50000 
Notational Error 9 0.30000 
Unchecked Assumptions 4 0.13333 
Unchecked Assumptions and Function Choice 1 0.03333 
Total 30 1.00000 
 Finally, figure 3 shows the types of errors made by students that answered the problem 
incorrectly.	
Figure 3: Distributions of Incorrect Responses 
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Frequencies 
Level  Count Prob 
Algebra error leading to Incorrect Test Choice 5 0.21739 
Algebra of Series 3 0.13043 
Algebra of Series and Unchecked Assumptions 1 0.04348 
Algebra of Series and Wrong Conclusion in Test #1 1 0.04348 
Algebra of Series, Wrong Conclusion in Test #2, Unchecked Assumptions 1 0.04348 
Function Choice 1 0.04348 
Incorrect Test Choice 2 0.08696 
Unchecked Assumptions and Algebra 1 0.04348 
Wrong Conclusion in Test #1 5 0.21739 
Wrong Conclusion in Test #2 3 0.13043 
Total 23 1.00000 
 The preliminary data in the three figures above indicate algebraic manipulation as a 
prerequisite skill that causes student mistakes.  While none of the students that answered the 
question correctly made an algebra mistake, 12 of the 23 students that answered the question 
incorrectly made some kind of algebra mistake.	
 Students also appeared to have difficulties that are somewhat unrelated to prerequisite 
knowledge.  Nine students of the 53 failed to check the assumptions in the test they were using.  
For instance, they often did not check the continuity or the monotonicity of the function when 
using the integral test.  Seven students chose the wrong test to use in this problem, and another 
10 students made a mistake regarding the conclusion of their selected test. 
 Moving forward, we plan to continue our analysis of the other problems on the exam as 
well as analyze interview transcripts to get a better idea on why students might be making some 
of these errors.  Prior to further analysis, we would like to use our presentation to receive 
feedback on the following questions: 

(1) Which of the categories we have used might be unique to this particular problem and 
not appear when we look at other traditional series problems? 
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(2) What categories might we need to add to encompass mistakes that we might see in 
other problems that we did not see here, particularly for problems related to 
sequences? 

(3) What other methodological suggestions might you offer us to examine the data 
further? 

Implications for further research 
 Once we have a better understanding of the types of errors students are making and why 
these errors are being made, we can begin investigating teaching strategies to help students avoid 
these errors.  In addition, by finding the most common prerequisite mistakes, we can investigate 
the curriculum and teaching of prior mathematics courses and help students be better prepared 
when entering second semester calculus courses.  Finally, we can continue studying student 
errors and improving upon our framework. 
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Learning to think, talk, and act like an instructor: A framework for novice tertiary 
instructor teaching preparation programs 

 
Jessica Ellis 

Colorado State University 
 

In this report I present a framework to characterize novice tertiary instructor teaching 
preparation programs. This framework was developed through case study analyses of four 
graduate student teaching assistant professional development (GTA PD) programs at institutions 
identified as having more successful calculus programs compared to other institutions. The 
components of the framework are the structure of the program, the departmental and 
institutional culture and context that the program is situated within, and the types of knowledge 
and practices emphasized in the program. In this report I characterize one of the programs 
involved in the development of the framework as an example of how it is used. In addition to 
characterizing existing programs, this framework can be used to evaluate programs and aid in 
the development of new novice tertiary instructor teaching preparation programs.  

 
Keywords: Graduate student teaching assistant, professional development, pedagogies of 
practice, mathematical knowledge for teaching, framework 

 
Theoretically driven research centered on teaching preparation of graduate students (and 

other novice tertiary mathematics instructors) pales in comparison to the literature related to 
professional development of K-12 mathematics teachers. While there are aspects of K-12 
professional development (PD) programs that can be highly relevant and informative to the 
tertiary level, there are also many ways in which tertiary level teaching preparation should be 
examined as its own field. In this report, I introduce a theoretical framework that draws on K-12 
PD literature and responds to the particular needs at the tertiary level, and use this framework to 
characterize one graduate student teaching preparation program as an example of its use.  

The National Science Board (NSB) uses the term professional development to refer both to 
teacher preparations (i.e. the teaching of pre-service teachers, prospective teachers, and teacher 
candidates) and to the development of practicing teachers (i.e. in-service teachers and practicing 
teachers) (National Science Board, 2012). Novice tertiary instructors, especially graduate 
students, have commonalities with both categories of teachers: the training they receive for these 
roles is typically the first training to teach they will have received, however often they receive a 
large portion of this training while they are teaching. For many practicing tertiary instructors, any 
professional development related to teaching they may have received as graduate students or 
post-docs is likely to be their only formal training as mathematics educators, rather than as 
mathematics researchers, and can help enculturate graduate students into academia (Austin, 
2002). Thus, the literature on professional development programs designed both for pre-service 
and in-service teachers at the K-12 level is relevant to tertiary teaching preparation. While there 
is extensive research into the professional development of teachers at the K-12 level, there is 
substantially less literature focusing on tertiary instructor teaching preparation, especially that is 
theoretically driven. A large portion of the studies focused on tertiary instructor teaching 
preparation report on the success of existing programs or needs (often unmet) of novice 
instructors (e.g. Hauk et al., 2009; Kung & Speer, 2009; Speer, Gutmann, & Murphy, 2005). 
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However, the body of research that connects aspects of these programs to identify commonalities 
and key features to consider when creating a new program is lacking.  

Ten years ago, Speer and her colleagues initiated the conversation among mathematics 
education researchers interested in novice tertiary instructor teaching preparation, calling 
attention to what we could learn from K-12 PD, and identified a number of research directions to 
pursue (Speer, Gutmann, & Murphy, 2005). Many of these directions have been pursued directly 
by Speer and others since this call, and as a result there are more productive models of novice 
tertiary instructor teaching preparation programs in existence. In this paper, I develop a 
theoretically driven model that connects such productive programs. This framework may be used 
to better understand (and make improvements to) existing programs as well as to influence the 
development of a new program geared at preparing GTAs and other novice tertiary instructors. 

Methods 

As part of a large, national study focused on identifying elements present in successful 
calculus programs Characteristics of Successful Programs in College Calculus (CSPCC) (MAA, 
2013), I studied the graduate student teaching preparation programs at four institutions with 
successful calculus programs where graduate students and post docs were involved in the 
teaching of calculus. Through analyses of survey data, the project team identified institutions that 
were more successful than comparable institutions, where success was viewed as a combination 
of retaining students’ positive dispositions towards mathematics, retaining students’ intentions to 
take Calculus II, and having a reasonable pass rate. We then conducted case studies (Stake, 
1995) at these institutions to learn what they were doing in calculus that may be contributing to 
students’ success, and how this success could be translated to other institutions. Robust novice 
instructor teaching preparation programs were one such element, and were then studied in depth 
in the national sample and at the case study institutions.  

As part of the MAA study, an abundance of data was collected surrounding four PhD-
granting institution’s GTA PD programs. This included the collection of all documents related to 
the GTA PD, observations of the training when possible, observations of instructor meetings, 
observations of graduate students teaching and leading recitation section, and interviews with 
graduate students, administrators, PD facilitators, and students. 

I drew on qualitative research strategies (e.g, Braun & Clarke, 2006; Miles & Huberman, 
1994; Stake, 1995, 2005; Yin, 2003) and employed three specific techniques for analyzing this 
data: pattern matching, explanation building, and cross-case syntheses. Through pattern 
matching I developed systematic groupings of data using inductive thematic analysis (Braun & 
Clarke, 2006). Inductive thematic analysis is a bottom-up approach, where the themes are data-
driven, though are not developed in an “epistemological vacuum” (p. 84). Through these analytic 
techniques I developed the framework for novice tertiary instructor teaching preparation 
programs, described below. While I attended to the ways in which these institutions prepared 
graduate students in their roles as instructors, these programs can be informative for preparing 
other novice tertiary instructors, such as post-docs, lecturers, and new tenure-track faculty.  

Components of framework 

The central component of this framework is the structure of the teaching preparation 
program; when it occurs, for how long, who participates, what is discussed, and how. Within this 
structural design, different aspects of knowledge are emphasized and to varying degrees, and 
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participants engage in different practices to gain this knowledge and to varying levels of 
authenticity. This structure, with the various types of knowledge emphasized through different 
practices, is like the structure of a house. The design of any house is influenced and constrained 
by the environment (the square footage available, the zoning laws, the terrain of the land, etc.) 
and the designer(s) (the architect and possibly the new owners). Similarly, the structure of a 
teaching preparation program is influenced and constrained by the environment within which it 
is situated: the institution and the department.  

The structure of the program is constrained, determined, and enabled by the surrounding 
environment. The institutional and departmental context and culture together comprise the 
environment within which the teaching preparation program exists. The institutional and 
departmental context guides the needs and capabilities of a teaching preparation program. For 
instance, the responsibilities of novice instructors are determined by (a) the number of graduate 
students, post-docs, and other novice instructors in the department in relation to the number of 
other faculty and in relation to the number of undergraduates served by the department, (b) the 
types of classrooms available (large lecture halls versus small classrooms), and other 
components of the context of the institution and department. The institutional and departmental 
culture shapes how the department responds to these needs and capabilities. For instance, 
whether graduate students serve as recitation leaders or course instructors will be shaped by (a) 
the institution and departments’ views on class size, (b) their orientation toward optimal learning 
environments, (c) their aspirations for undergraduate instruction, and other components of the 
culture of the institution and department.   

Within the structure of the program, different knowledge and practices are emphasized and in 
different ways. As part of developing as an instructor, one develops knowledge and practices 
surrounding instruction. Thus, the tertiary teaching preparation programs emphasize different 
types of knowledge and practices depending on the community and needs within than institution.  

 One way to characterize the types of knowledge needed to teach is the classic distinction 
by Shulman (1986), who differentiated between pedagogical knowledge (PK), content 
knowledge (CK), and pedagogical content knowledge (PCK). Pedagogical content knowledge is 
distinct from a blend of basic pedagogical knowledge and basic content knowledge and was 
introduced by Shulman in response to the wide-held belief that content knowledge alone was 
sufficient to teach. PCK is the particular form of content knowledge related to the aspects of 
content knowledge “most germane to its teachability”, including ways of representing content so 
that it is understandable to others (Schulman, 1986, p. 9).  

To characterize the practices graduate students can legitimately and peripherally engage in as 
they learn how to be tertiary instructors, I draw on Grossman et al.s’ (2009) pedagogies of 
practice. Grossman and her colleagues (2009) identified three concepts for describing ways to 
teach practices in professional education: representations of practice, decompositions of 
practice, and approximations of practice. Representations of practice comprise different ways 
practice can be represented for novices. In teacher education, one may represent the practices of 
teaching through written case studies, Videocases, photographs of the classroom, narratives, 
lesson plans, technological reproductions, among many others. The authors note that “the nature 
of the representation determines to a large extent the visibility of certain facets of practice” (p. 
2066) and thus different representations of the same practices have different affordances for the 
learner. Decompositions of practice break down a complex practice into its multiple parts, which 
has affordances as well as limitations. By decomposing a practice, it may remove the practice 
from the actual context within which it is situated (for an elaboration on this point see Putnam & 
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Borko, 2000) however it also enables the novice to focus on specific aspects of a practice 
without the complications of the actual context. Approximations of practice are activities that 
allow novices to engage in legitimate practices of a community in a peripheral way, meaning that 
they are “more or less proximal to the practices of a profession.” These approximations may take 
the learner directly to the practice, as is done during student-teaching, or bring the practice to the 
learner through various representations, such as video or role-playing.  

Teaching preparation programs provide many examples of representations, decompositions, 
and approximations of the practices of teaching with varying levels of authenticity. For instance, 
by watching Videocases, novice teachers are able to “enter” the classroom, observe student 
behavior and imagine how they would react as the teacher, without the actual responsibility of 
being in the classroom. This approximation of teaching has a low level of authenticity because 
real teachers do not have the opportunity to pause or rewind classroom activity in order to decide 
how to react or how to interpret the situation. Practice teaching is an example of an 
approximation of teaching with much higher authenticity. During practice teaching, novice 
teachers have limited responsibility in the classroom, but are able to experience it in real time 
and in a much more authentic way than by watching a video. Grossman and her colleagues 
(2009) highlight the benefits of representations, decompositions, and approximations of practice 
with varying levels of authenticity, which “quiet the background noise so that they can tune in to 
one facet of practice at a time” (p. 2083). As novices participate in the practices of a community 
(through approximations of practice, representations of practice, and/or decompositions of 
practice) they do not just develop the skills of the community, but also develop (to varying 
degrees) a shared knowledge base and shared dispositions. Figure 1 illustrates the relationships 
between them, and provides a visualize representation of the framework for novice tertiary 
teaching preparation. 

   
 

Figure 1 Framework of instructor teaching preparation programs 
 
Different tertiary teaching preparation programs necessarily focus on different types of 

knowledge depending on their goals and guiding philosophies, as well as depending on the 
department’s needs and the needs of the novice instructors. For instance, if novice instructors 
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typically come into their role as instructors at a specific institution with extensive teaching 
experience but are less confident in their mathematical knowledge, a tertiary teaching 
preparation programs may emphasize content knowledge related to teaching more than 
pedagogical knowledge. If, instead, novice instructors typically come into their role at a specific 
institution with very strong mathematical content knowledge but little to no experience 
interacting with students, than tertiary teaching preparation programs may emphasize 
pedagogical knowledge and pedagogical content knowledge, but not content knowledge.  

Within the structure of tertiary teaching preparation programs, different types of knowledge 
is emphasized to different degrees of depth and novices engage in different pedagogies of 
practices to varying degrees of authenticity. These varying degrees of depth and authenticity are 
represented in the framework by darker or lighter shading of the six smaller boxes in Figure 1, 
where darker represents knowledge emphasized more deeply or more authentic pedagogies of 
practice. These emphases are guided and constrained by the institutional and departmental 
environment that the program is situated within, and help to provide more information about the 
structure of the program. The level of shading was determined through the case study analysis. 

An Example 

Here I use the framework to visually represent one model of novice instructor teaching 
preparation programs, called the Apprenticeship Model. The Apprenticeship Model of novice 
instructor teaching preparation was enacted at a small university with around 5,000 
undergraduate students, where fall enrollment in Calculus 1 is around 270 and class sizes are 
around 45. Graduate students, both Master’s and Doctoral students, are involved in the teaching 
of Calculus I as teaching assistants, tutors, and course instructors. Post-docs are not involved in 
the teaching of Calculus I at this university.   

The primary guiding philosophy behind the Apprenticeship model is the desire to transition 
graduate students into the role of instructor, both as part of their immediate role as GTAs and as 
their (potential) future role as undergraduate mathematics instructors. Embedded within this 
philosophy is the belief that people learning a new profession (who will develop a professional 
identity surrounding it) must participate in the practices of the profession with growing 
responsibility. This belief is in line with a perspective in which learning is viewed as the process 
of engaging a novice in the practices of the profession with legitimate but peripheral 
participation (Lave & Wenger, 1991). The term “peripheral” indicates that the practices novices 
are involved in are less central versions of the authentic practices, or are central practices with 
limited responsibility. As one clinical psychology professor involved in the Grossman et al. 
(2009) study said when describing how clinical psychologists are prepared, “if you’re learning to 
paddle, you wouldn’t practice kayaking down the rapids. You would paddle on a smooth lake to 
learn your strokes” (p. 2026). The main components of the Apprenticeship model are: 

• A three-unit class, inspired by Lesson Study (Lewis, 2004), that takes place during the 
semester before the graduate student is placed as a course instructor. 

• A mentor instructor for whom the mentee acts as a teaching assistant in the class they will 
be teaching during the semester before the graduate student is placed as a course instructor. 

• Weekly course meetings once the graduate student is placed as a course instructor. 
• Observations and feedback once the graduate student is placed as a course instructor. 
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Graduate students are required to participate in a number of teaching development activities, 
both prior to teaching and while they teach. All new GTAs must attend a one-day seminar led by 
the mathematics department, with some of this time spent doing practice teaching presentations. 
During the seminar faculty conduct workshops on topics including pedagogical basics, such as 
how to write well on the board, as well as more advanced pedagogical topics, such as how to 
implement cooperative learning. Additionally, all first-year GTAs are assigned a faculty mentor 
during the orientation session.  

As shown in Figure 2, the framework representation of the Apprenticeship Model gives a 
clear overview of the structure and encompassing environment of the novice instructor teaching 
preparation program.  

 

   
Figure 2 Apprenticeship model 

 
The main structural components of the program are a lesson-study inspired course and 

mentoring that occur before the GGTA is placed as an instructor, and ongoing meetings and 
observations once the GTA is placed as an instructor. The shading provides a visual 
representation for the level of emphasis of the knowledge and the level of authenticity of the 
practices involved in the programs. Within this structure, pedagogical knowledge is emphasized 
more deeply than PCK or content knowledge, though PCK is emphasized through both the 
lesson-study inspired course and the mentoring. Content knowledge is potentially emphasized 
through the mentoring, although it is not a primary focus. During the lesson-study course, novice 
instructors participate in a number of pedagogies of practice to varying degrees of authenticity. 
Through the lesson-study-like iterations of developing, presenting, and refining lessons, graduate 
students engage in approximations of the practice of teaching to increasing degrees of 
authenticity. The practice of teaching is decomposed into planning, presenting, and refining 
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through the lesson-study course with medium level of authenticity. Through both the lesson-
study course and the mentoring, graduate students have multiple opportunities for teaching to be 
represented, by other graduate students, their mentor instructor, and by reading and watching 
cases. This program is situated within a small department that prioritized graduate students’ 
long-term development as instructors and encourages innovative teaching but does not require a 
certain pedagogical approach. 

Conclusion 

While the framework representation does not give the rich detail of the program on its own, it 
provides information useful in comparing across models, and can be used to ask and answer 
questions regarding the evaluation or implementation of an individual model. In the presentation 
of this report, I will use the framework to compare two novice tertiary programs to highlight this 
affordance. The framework can also be used to evaluate a program or to help with the creation or 
improvement of a teaching preparation program. To aid in the evaluation of a program, a 
mathematics department may determine that their GTAs and post docs seem to know very little 
about how their students may think about mathematics, their difficulties, and how to explain 
problems so that they will better understand them. They could use this framework to describe 
their current program and identify that they are not, in fact, spending time during the teaching 
preparation discussing PCK. To aid in the development of a program, this framework can help 
direct attention to important components to consider. In many mathematics departments, a more 
robust novice teacher preparation program is developed based on the initiative of one or two 
motivated individuals – the change agents. Often, these change agents are not necessarily 
mathematics education experts, or have good ideas about what the novice instructors need at 
their institution but do not know how to go about setting up a new program. The framework 
introduced in this report provides an organized and systematic way to think about the 
components of a teaching preparation program. 

Many institutions are currently seeking to make improvements to their GTA training 
programs – in fact, in a recent survey through the Progress through Calculus (PtC) project (an 
extension of the CSPCC project), the MAA has determined that 68 graduate degree granting 
mathematics departments are either currently implementing changes to their GTA PD program or 
are discussing changes for the future. In order to implement these changes, change agents at 
these institutions often draw from their own experiences as graduate students or knowledge of 
other programs to adapt to their institutions. One additional use for this framework would be to 
characterize a large number of programs and provide the visual representations to institutions 
looking to implement changes to their program. These condensed visual representations would 
enable the change agents to consider many different programs and compare specific aspects 
across the programs easily. Through the PtC project, we have collected data from 135 graduate 
degree granting mathematics departments regarding their GTA PD programs. A future stage of 
this work will be to use the framework discussed in this paper to characterize these programs to 
begin to create a visual library of novice tertiary instructor teaching preparation programs that 
can be then adapted by institutions for GTA PD or other novice teacher preparation.  
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Gender, switching, and student perceptions of Calculus I 
!

Jessica Ellis Rebecca Cooper 
Colorado State University Colorado State University 

 
We analyze survey data to explore how students’ reported perceptions of their Calculus I 
experiences relate to their gender and persistence in calculus. We draw from student free-
responses from several universities involved in a comprehensive US national study of Calculus I  
We perform a thematic analysis on the data, identifying numeric patterns via Dedoose, a mixed 
methods program, and inspecting student responses within identified themes. Our analyses 
indicate that female students report negative affect and a desire for authentic learning more 
often than males. Student preparation also plays a role in changes in confidence. We discuss 
potential factors that influence student persistence in calculus. 

 
Keywords: Calculus, gender, persistence, affect, thematic analysis, mixed methods 
 
Stemming from national need to increase persistence in Science, Technology, Engineering, 

and Mathematics (STEM), Ellis, Fosdick, and Rasmussen conducted a study focused on student 
persistence in calculus and investigated factors which may impact the likelihood of a student 
switching out of a STEM major (2015). They identified a striking relationship between gender, 
switching, and mathematical confidence. Specifically, females were significantly more likely to 
decrease their intentions to take Calculus II after taking Calculus I. When given a list of potential 
reasons for not continuing, female students cited that they, “do not believe [they] understand the 
ideas of Calculus I well enough to take Calculus II,” with significantly greater frequency than 
their male counterparts. These results highlight the role that calculus is playing in students’ 
decisions to leave STEM pursuits, and may help to explain the larger issue of the STEM Gender 
Gap (Eagan, Lozano, Hurtado, & Case, 2013; Seymour & Hewitt, 1997). This work motivated us 
to delve more deeply into student reports of their experiences in Calculus I. Specifically, we 
examine the relationships between students’ description of their experience in Calculus I, their 
gender, and their decisions to persist in calculus. 

Educators have long been interested in identifying factors that may contribute to the disparity 
in gender representation in STEM (Fennema & Sherman, 1976 & 1978; Griffith, 2010; Good, 
Rattan, & Dweck, 2012; Ellis, Fosdick, & Rasmussen, 2015). While there is consistent evidence 
against gender-based differences in mathematical ability (Fennema & Sherman, 1978; Islam, & 
Al-Ghassani, 2015; Lindberg, Hyde, & Peterson, 2010), there are clear distinctions between men 
and women in their persistence in STEM fields (Cunnigham, Hover, & Sparks, 2015; Eagan et 
al., 2013), and their self-reports of success in these fields (Griffith, 2010; Good, Rattan, & 
Dweck, 2012).  

Researchers have begun to articulate factors related to persistence and the representation of 
females and other minorities in STEM majors (Ellis, Fosdick, & Rasmussen, 2015; Fennema & 
Sherman, 1976; Graham, Frederick, Byars-Winston, Hunter, & Handelsman, 2013; Griffith, 
2010; Wolniak, Mayhew, & Engberg, 2012). Griffith found that certain environmental factors 
(such as the representation of females and minorities in graduate programs) can increase STEM 
participation and success by minorities (2010). Good, Rattan, and Dweck (2012) found that a 
sense of belonging was related to student persistence in math and that women who exhibited a 
fixed intelligence mindset coupled with gender stereotyping in the classroom experienced 
reduced sense of belonging (2012). Gender differences in confidence have also been identified as 
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a possible factor to explain why women discontinue pursuing mathematics at a higher rate than 
men (Ellis, Fosdick, & Rasmussen, 2015; Fennema & Sherman, 1978).  

Our research contributes to this literature by offering an inductive, qualitative analysis of 
student statements pertaining to their experiences in Calculus I. We draw on students’ responses 
to an open-ended survey question from the Characteristics of Successful Programs in College 
Calculus (CSPCC) project.  

In this report we address the following research question: How do student characterizations 
of their experience in Calculus I relate to student gender and persistence in calculus? 

Methods  

This work is embedded within a larger project aimed at investigating college calculus at a 
national level – the CSPCC project. The first phase of this work involved a survey of 
“mainstream” Calculus I students from a stratified random sample of colleges and universities. 
Two surveys were sent to students at the beginning and the end of the fall term. On the 
beginning-of-term survey, students were asked questions related to their demographics, previous 
mathematical experiences, affect towards mathematics, and career plans. On the end-of-term 
survey, students were asked questions related to their experience in Calculus I, affect towards 
mathematics, and career plans. At the end of the end-of-term survey, students were asked the 
open-ended question: “Is there anything else you want to tell us about your experience in 
Calculus I?”  We analyze students’ responses to this question in this report. The surveys provide 
us with information to distinguish students based on gender and whether they continued in 
calculus. Students who began Calculus I intending to take Calculus II and persisted in these 
intentions are referred to as Persisters, while students who began Calculus I intending to take 
Calculus II and switched these intentions are referred to as Switchers.  

There were 522 students who provided a response to the open-ended question, reported their 
gender in the beginning of the term survey, and were coded as a Switcher or a Persister. To 
characterize the ways these students discussed their experiences in Calculus I, and to relate these 
characterizations to student gender and persistence, we employed thematic analysis (Braun & 
Clarke, 2006).  

In this analysis we first familiarized ourselves with the student responses, blind to the gender 
and persistence of the students, though aware of the literature related to the STEM gender gap 
and, more specifically, aware of the relationship in this data set between gender, reported 
mathematical confidence, and persistence in calculus. We took an inductive approach, deriving 
themes from the data, but we brought to bear our knowledge of the literature in organizing these 
themes. The two authors each coded subsets of 50 student responses to develop and refine codes. 
The final codes, reported in Table 1, were finalized after multiple iterations of comparing codes 
and once 85% reliability was consistently achieved between researchers. One researcher then 
coded all responses, with a small percentage of questionable responses coded by both 
researchers. We weighted the codes on a scale of -1 to 1 to indicate a negative, neutral, or 
positive connotation. For each student response, we coded each sentence with as many codes as 
appropriate. The NA code was only used if the entire student response was irrelevant. 

To frame this work we draw on literature surrounding affect. We define and understand 
affect according to Phillip’s summary of research done on mathematical belief and affect from 
the years 1992 to 2007. By consolidating definitions from research, Phillip defines affect as “a 
disposition or tendency or an emotion or feeling attached to an idea or object. Affect is 
comprised of emotions, attitudes, and beliefs” (Phillip, 2007, p. 259). In our examination of 
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students’ open-ended responses about Calculus I, we analyze students’ reported affect towards 
Calculus I. Nearly all students’ responses could be viewed as affective statements. Thus, we 
narrowed our use of the “Affect” code to only capture statements about a student’s emotions, 
attitudes, or beliefs towards the calculus course, oneself as a learner, or mathematics in general. 
For instance, “This professor is pretty good at explaining the concepts,” is an example of a 
response that was coded as being about the teacher but not as a report of the student’s affect. By 
contrast, “I feel that I am loving math because my professor loves to teach it. She makes class so 
much fun and she believes in us,” is an example of a response that was coded with both the 
“Teacher” and “Affect” codes.  

 
Table 1. Codes, code descriptions, and examples.  
Code Includes statements about… 

Affect Student’s emotions, attitudes, and beliefs about (a) the calculus 
course, (b) mathematics, (c) themselves as learners. 

 For the first time in my life I really struggled in a math class. 
  

Assignments 
and assessments 

Assignments, and both formative and summative assessments.  
The exams tended to be stressful/time consuming. 

  

Pacing The pacing of the course in general and of class sessions. 

 The length of class … didn't really allow for … anything rather 
than the ‘spewing’ of material 

  

Preparation Preparation coming into the course and preparation going into the 
next course. 

 Taking calculus in high school helped me succeed in this class! 
  

TA The TA and his/her aspects such as communication, availability, 
helpfulness, etc. 

 The help desk hours with the T.A. were great. 
  

Teacher The teacher and his/her aspects such as communication, 
availability, helpfulness, etc. 

 I thoroughly enjoyed my professors teaching style and 
presentation of material. 

  

Teaching Specific teaching practices and teacher-controlled aspects of class 
room environment. 

 My instructor …had no passion for learning and lectured instead 
of taught. 

  

Other Other reasons and resources that may have impacted the student’s 
success 

 Without the math tutoring lab there is no way I would do well in 
this class or even pass. 

  

Not applicable Anything irrelevant to the calculus course. 

 If a teacher truly loves the subject, students can tell and learn to 
love it too. 
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Once the responses were coded, we used a software program called Dedoose to identify 
patterns between the coding, student gender, and persistence. Dedoose allowed us to easily 
identify the prevalence of codes in our data set, check code co-occurrence, and view student 
descriptor information.  

Results 

To understand the relationships between students’ responses, their gender, and their calculus 
persistence, we provide an overview of the distribution of the most prevalent codes among the 
four categories of students in Table 2. Of the 522 original student responses, 68 were coded as 
not applicable and were filtered out, leaving 454 relevant comments. Half of these comments 
came from Male Persisters, 9% from Male Switchers, 32% from Female Persisters, and 10% 
from Female Switchers. Among all students, the most frequent responses were related to Affect, 
the Teacher, Assignments and Assessments, and Preparation. However, the frequency of these 
responses within each student group varies; for instance, 37% of Male Persisters’ responses were 
coded as Affect while 63% of Male Switchers’ responses were coded this way.  

 
Table 2. Prevalence of codes among four student groups. 

 

Male 
Persister 

Male 
Switcher 

Female 
Persister 

Female 
Switcher 

 
(n=268) (n=43) (n=160) (n=51) 

Affect (n=238) 37% 63% 51% 61% 
Teacher (n=182) 32% 26% 43% 35% 
A&A (n=109) 19% 16% 24% 24% 
Prep (n=82) 12% 21% 19% 22% 
Content (n=78) 16% 9% 14% 16% 
Teaching (n=76) 15% 12% 13% 18% 
Pacing (n=18) 3% 5% 4% 2% 
Other (n=54) 7% 9% 16% 8% 

 
Much research has been done on mathematical affect and its role in student persistence (Ellis, 

Fosdick, & Rasmussen, 2015; Fennema & Sherman, 1978; Good, Rattan, & Dweck, 2012). In 
our data, affect was the most pervasive code – and more so among Switchers than Persisters. As 
shown in Table 3, of the 238 responses coded with affect, the majority were coded with a 
positive weight (109), followed by 71 weighted negative, 62 neutral, and 8 responses coded with 
mixed affect, such as including both a positive affect statement and a negative affect statement.  

 
Table 3. Prevalence of codes among four student groups. 

 

Male 
Persister 

Male 
Switcher 

Female 
Persister 

Female 
Switcher 

Affect (n=99) (n=27) (n=81) (n=31) 
Negative (n=71) 23% 37% 28% 48% 
Neutral (n=62) 18% 26% 22% 29% 
Positive (n=107) 56% 37% 43% 23% 
Mixed (n=8) 3% 0% 6% 0% 
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Among the 99 Male Persisters’ responses coded Affect, the majority (56%) were positive 

followed by 23% negative responses. Among the 27 Male Switchers, 37% of the Affect 
responses were negative and 37% were positive. Among the 81 Female Persisters, 43% were 
positive and 28% were negative. Strikingly, among the 31 Female Switchers, 48% of the Affect 
responses were weighted negative and only 23% were positive. These results indicate that 
Switchers, both men and women, are more likely to comment on their experience in Calculus I 
with an Affect statement (as shown in Table 2) and more likely for their Affect statements to be 
negative (as shown in Table 3). In order to better understand what aspects of their experiences in 
Calculus I the students expressed emotions, attitudes, or beliefs about we investigated the 
patterns that emerged within the Affect coding. Many interesting patterns emerged from the data 
within the coding, especially in the relationships among gender, persistence, and responses that 
were coded with Affect as well as something else. These responses point to aspects of Calculus I 
that students were especially emphatic about (either positively or negatively) and that possibly 
had a role in their decisions to persist in calculus. In this report, we focus on responses that are 
coded in such a way as to fall under the overlap of Affect and Teacher as well as Affect and 
Preparation. We investigated these relationships further by conducting a second level of thematic 
analysis on the responses. 

 
Affect and Teaching 

First, we analyzed the student responses coded with Affect and Teacher. Though thematic 
analysis, we refined the analysis further to uncover three subthemes related to affect – affect 
towards self, affect towards the course, and affect towards math. In this report, we focus on the 
most prevalent affect subtheme, affect towards self, and what role the teacher plays. 

Statements coded with affect towards self entailed evaluations of personal learning and 
sometimes of self-worth. Usually, the comments merely focused on how well students learned in 
the course, but some comments were more personal and connected performance in the classroom 
to assessment of their intelligence or ability. This subtheme was weighted -2, 1, 0, 1, or 2 to 
designate a negative change in self-perception,  negative self-perception, a neutral view of self, 
positive self-perception, and a positive change in self-perception, respectively.  

As seen in Table 4, over half of Male Persister affect towards self comments were negative.  
This proportion grew for Male Switchers. Female Persister made more Affect towards self/ 
Teacher comments in general, and their responses were spread across the entire spectrum of the 
subtheme. They were the only student group to report a negative change in affect or positive 
affect. Female Switchers also had a high proportion of negative comments.   

 
Table 4. Prevalence of Affect towards self/ Teacher subtheme and its weights 
among four student groups. 

 

Male 
Persister 

Male 
Switcher 

Female 
Persister 

Female 
Switcher 

Affect towards self (n=37) 9 3 20 5 
   Negative change (n=4) 0% 0% 20% 0% 
   Negative (n=16) 56% 67% 30% 60% 
   Neutral (n=10) 22% 33% 25% 40% 
   Positive (n=4) 0% 0% 20% 0% 
   Positive change (n=3) 22% 0% 5% 0% 
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An analysis of the quotes themselves were more revealing of some interesting patterns. For 

the male Persisters reporting a negative change in self-perception, they mentioned possible major 
or career changes rather than changes in self-worth. The female Persisters made more personal 
statements, such as, “This class really made me question my abilities in math through the 
instructor's poor teaching methods… I have a strong math background. However, this class 
completely destroyed that for me.” Among the students reporting negative self-perception, 
females generally made more personal statements than males, i.e. to report feeling stupid as 
opposed to struggling in the class. All student groups reported problems in the teacher’s ability to 
communicate.  However, only female students reported that teachers were not personable.  One 
female Persister commented saying, “If you asked the wrong question or gave the wrong 
response, he had a tendency to make you feel stupid.”  Female Switchers also described teachers 
who made them feel badly about themselves. 

For affect towards self, the neutral to positive change comments only mentioned learning 
and not more direct evaluations of self.  Interestingly, males only outnumbered females in 
making affective statements when reporting a positive change in self-perception.  For positive 
comments, both male and female students frequently mentioned teacher helpfulness, saying that 
the teacher presented challenging problems but made an effort to equip students to succeed.     
 
Affect and Preparation 

After determining that a large group of students’ responses were coded with an Affect code 
and a Preparation code, we isolated this group of 45 responses and did a second level of 
analyses. These responses were reviewed and grouped based on emergent themes. Four main 
themes emerged, and 37 of the 45 codes fit into one of these four themes. These themes related 
to previous mathematical/calculus experience and how this affected their college calculus 
experience. The responses that did not fit into one of these themes either mentioned how they felt 
about their preparation moving forward (4), mentioned that they were repeating college calculus 
(3) or did not make a clear enough statement about their preparation to code as one of the above 
four codes (1).  

The first theme related to having taken calculus in high school and that college calculus is in 
comparison worse, labeled “Bad in comparison”. These responses indicated that students entered 
college calculus with certain expectations of what calculus is and expecting to easily succeed in 
college calculus since they already took the course. Often these students blame the negative 
experience in college calculus, in comparison to high school calculus, for their dissuasion from 
pursuing more mathematics. The second theme related to having taken calculus in high school 
and glad that they are retaking it, labeled “Felt prepared”. These responses indicated that the 
students were appreciative of previously taken calculus and recognize that there was more to 
learn in college calculus. The third theme related to not having taken calculus in high school and 
feeling less prepared than others in the class because of this, labeled “Not prepared”. These 
responses indicated that students were aware that many of their classmates had previously taken 
calculus, and that they were at a disadvantage because they had not taken it before. The final 
theme related to not having taken calculus in high school and feeling empowered because of 
their success, labeled “Empowered”. These responses indicated that students were aware that 
many of their classmates had previously taken calculus and that they were in the minority for 
not, and so their success in the course in spite of this gave them increased confidence.  
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As shown in Table 4, among Male Persisters the most common Affect/Preparation response 
fell into the “Bad in Comparison” theme, closely followed by the “Empowered” theme. Among 
Female Persisters, the most common Affect/Preparation response also fell into the “Bad in 
Comparison” theme, closely followed by the “Felt Prepared” and “Not Prepared” themes no 
responses in the “Empowered” theme. Male Switchers had one response in each theme except 
for the “Empowered” theme, with two responses. All of the Female Switchers fell into the “Bad 
in Comparison” theme.  

 
Table 4. Prevalence of Affect/ Preparation subthemes among four student groups. 

 

Male 
Persister 

Male 
Switcher 

Female 
Persister 

Female 
Switcher 

 
(n=11) (n=5) (n=14) (n=7) 

Bad in comparison (n=20) 45% 20% 50% 100% 
Felt prepared (n=6) 9% 20% 29% 0% 
Not prepared (n=5) 9% 20% 21% 0% 
Empowered (n=6) 36% 40% 0% 0% 

 
While these numbers are small, the patterns are surprising: of the men whose responses who 

were coded as Preparation and Affect, 50% (n=8) mentioned having taken high school calculus. 
Of these, only two “Felt Prepared”. Of the women whose responses who were coded as 
Preparation and Affect, 86% (n=18) mentioned having taken high school calculus. Of these, none 
of the women Switchers but four of the women Persisters “Felt Prepared”. Of the 50% of the 
men who did not have calculus before entering college, 6 were in the “Empowered” theme while 
none of the women were. These numbers indicate that for the men in our sample, entering 
college without having already taken calculus could be an empowering experience; while for 
women this was not the case. Instead, the vast majority of women in this sample had previously 
taken calculus in high school, and only some of the Persisters felt that this improved their time in 
college calculus. 

Discussion 

This work was motivated by work that clearly linked gender to persistence in calculus, with a 
lack of confidence in mathematical ability as a major contributing factor for women’s decisions 
to leave calculus but not men’s. In this report, we further investigated aspects of male and female 
Calculus I students’ reports of their experience in calculus to try to better understand the link 
between gender and persistence in calculus. Our analyses identified a number of aspects of the 
Calculus I experience as related to gender and persistence. 

Women reported affect towards self in relation to the teacher more often than men. Females’ 
negative comments tended to relate their success directly to their self-worth. This may indicate 
that women are holding to a fixed intelligence mindset (Dweck, 2008). Due to the stereotyped 
nature of people who should perform well in math, a fixed mindset is especially detrimental to 
women and minorities (Good, Rattan, & Dweck, 2012). Females complained that teachers are 
not personable, while males did not. Unfriendly teaching practices may be reinforcing a fixed 
mindset, since students do not feel safe to make mistakes. Males and females made positive 
comments about teachers who challenged them, yet demonstrated a desire to help them succeed 
and took actions such as demonstrating multiple techniques to solve a problem. These actions are 
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more conducive to a growth mindset, which is beneficial for all students and could make a 
significant difference for underrepresented populations in STEM. 

We also saw interesting differences in the way students discussed their preparation. Often, 
students who have taken calculus in high school are recommended to take Calculus I in college 
for a refresher, and easy introduction to what college math is like, or just to have an easier first 
semester. It seems that this advice may be frustrating many students, especially women, giving 
them an inflated perspective on their understanding of calculus, and results in them having a 
more negative experience in Calculus I.  
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Supporting institutional change: A two-pronged approach related to graduate 
teaching assistant professional development  

 
Jessica Ellis Jessica Deshler Natasha Speer 

Colorado State University West Virginia University University of Maine 
 

Graduate students teaching assistants (GTAs) are responsible for teaching a large percentage of 
undergraduate mathematics courses and many of them will go on to careers as educators. 
However, they often receive minimal training for their teaching responsibilities, and as a result 
often are not successful as teachers. In response, there is increased national interest in 
improving the way mathematics departments prepare their GTAs. In this report, we share the 
initial phases of joint work aimed at supporting institutions in developing or improving a GTA 
professional development (PD) program. We report on findings from analyses of a baseline 
survey designed to provide insights into the characteristics of current GTA PD programs in 
terms of their content, format and duration. Results indicate that there are many institutions 
seeking improvements to their GTA PD program, and that their needs are in line with the change 
strategies that the joint projects are employing.   

Key words: Graduate student teaching assistants, Professional Development, Institutional 
Change 

It is well documented that graduate student teaching assistants and associates (GTAs) play a 
large role in undergraduate mathematics education (Belnap & Allred, 2009; Ellis, 2014), that 
GTAs often hold novice beliefs about the teaching and learning of mathematics (DeFranco & 
McGivney-Burelle, 2001; Gutmann, 2009; Hauk et al., 2009; Raychaudhuri & Hsu, 2012), have 
novice knowledge related to teaching (Kung, 2010; Kung & Speer, 2009; Speer, Gutmann, & 
Murphy, 2005), and yet are more open to student-centered teaching practices than more 
experienced mathematics instructors (Ellis, 2014; Seymour, 2005). It is also well documented 
that many GTAs are minimally prepared to teach, and that more robust teaching preparation can 
result in expert-like beliefs, knowledge, and practice (Alvine et al., 2007; Barry & Dotger, 2011; 
Hauk et al., 2006; Kung & Speer, 2009; Luft, Kurdziel, Roehrig & Turner, 2004).  

For the above-stated reasons, GTAs and their preparation to teach can play important roles in 
the effective teaching and learning of undergraduate mathematics. In particular, recent findings 
suggest that the presence of a robust GTA professional development (PD) program is 
characteristic of departments with successful calculus programs (Ellis, 2015). The context of two 
projects (under the auspices of the Mathematical Association of America (MAA) and funded by 
the National Science Foundation (NSF)) provides opportunities to examine the state of GTA PD 
nationally and the ways in which such programs interact with departmental efforts to improve the 
teaching and learning of calculus.  

The work reported on in this proposal is the first step in the larger and longer-term efforts to 
understand department change and GTA PD. Here we report on findings from analyses of data 
from a baseline survey that was designed to provide insights into the characteristics of current 
GTA PD programs in terms of their content, format and duration. In addition to being a basis for 
future comparisons, these data provide the mathematics community with information about the 
prevalence and features of currently-existing efforts to prepare graduate students for their 
teaching-related responsibilities. 
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As further context for this work we briefly describe the two projects and their goals related to 
institutional change and GTA PD. The first project, Progress through Calculus (PtC) (NSF DUE-
1430540), aims to observe and facilitate institutional change related to the Precalculus-Calculus 
II sequence. This project is a continuation of the Characteristics of Successful Programs in 
College Calculus (CSPCC) study and is specifically focused on observing and supporting 
graduate-degree granting mathematics departments in implementing the characteristics found to 
be related to student success in calculus through the CSPCC project. As noted above, one such 
characteristic was robust GTA PD programs (Ellis, 2015). The second project, College 
Mathematics Instructor Development Source (CoMInDS) (NSF DUE-1432381), aims to support 
mathematics departments in developing and improving GTA PD programs by broadening access 
to resources related to GTA PD and to support for individuals and departments implementing 
these resources.  

Together, these two projects aim to increase awareness of the need for GTA PD, help 
institutions think about how to implement robust GTA PD in relation to other needs of their 
departments, learn about different types of GTA PD programs, and have the resources to 
successfully implement such programs. As a first step in documenting and understanding 
departmental change, the two projects have collaborated to understand the current national 
landscape of existing GTA PD programs and the GTA PD-related needs of mathematics 
departments.  
 

Theoretical Background 

With the long-term goal of analyzing factors that influence how and why departments 
change, we approach this work with an eye towards change strategies. Henderson, Beach, and 
Finklestein (2010) conducted a large-scale meta-analysis of research on facilitating change in 
undergraduate science, technology, engineering, and mathematics (STEM) instruction. Through 
this work they determined four broad categories of change strategies: disseminating curriculum 
and pedagogy, developing reflective teachers, enacting policy, and developing shared vision. The 
change strategy of disseminating curriculum and pedagogy is focused on sharing experts’ 
knowledge with individuals and encouraging the implementation of the strategy, such as through 
journal articles, workshops, and research presentations. The change strategy of developing 
reflective teachers is focused on encouraging and supporting reflective practices by individual 
instructors that lead to instructor-identified and defined change outcomes. The strategy of 
enacting policy is focused on prescribing a new environment that requires or strongly encourages 
new practices. The last strategy, developing a shared vision, is focused on empowering and 
supporting stakeholders to collectively develop a new environment that encourages instructional 
change.  

The least successful change strategies were developing and testing “best practice” curricular 
materials and then making these materials available to other faculty and “top-down” policy-
making meant to influence instructional practices. Successful strategies involve shifting the focus 
from strategies with exact intended outcomes before implementation to those that acknowledge 
that the final outcomes will be shaped by the individuals and/or environment involved in the 
system. The most effective change strategies were aligned with or sought to change the beliefs of 
the individuals involved, were long-term interventions, sought to understand the system that was 
trying to be changed and designed a strategy that is compatible with the system. 

The larger PtC project involves identifying departments where changes are planned for their 
calculus sequence and documenting those efforts with a particular focus on the role that the 
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creation or enhancement of GTA PD programs plays in those efforts. The larger CoMInDS 
project involves identifying individuals within departments who are implementing changes to 
their GTA PD programs and working with their perspectives towards GTA PD in ways 
compatible with their university systems. Both projects seek to work with the beliefs of the 
change agents involved and work within the larger systems to implement changes. The lens of 
change strategies serves as a guiding framework for our baseline survey instrument design and 
data analysis that supports both larger projects’ goals.  

 
Methods 

A survey was sent to department chairs at all graduate-degree granting mathematics 
departments in the US (n = 341). The survey has three parts: Part I requested a list of all courses 
in the department’s mainstream precalculus/calculus sequence, Part II asked about departmental 
practices in support of the precalculus/calculus sequence and contained 18 questions about GTA 
PD and Part III asked for enrollment data and other specific information about each of these 
courses. The questions related to GTA PD were jointly designed by members of the CoMInDS 
and PtC teams and were designed to provide insights into the following questions: 

(a) What GTA PD programs are currently being implemented across the country?; and 
(b) What are the interests and needs of mathematics departments related to GTA PD? 

Department chairs were encouraged to have local experts in his or her department fill out the 
components of the survey with which they were most knowledgeable. For instance, many of the 
questions about GTA PD may not be known by the chair but instead by the facilitator of the 
GTA PD program, and so this person would hopefully be the one filling out this section of the 
survey. The survey was administered using Qualtrics and distributed by the MAA. Follow up 
emails and phone calls are ongoing to encourage full participation and response rate – currently, 
56.3% (n=192) of all institutions have responded, 63% (n=114) of PhD-granting and 48.8% 
(n=78) of Master’s-granting. The questions about GTA PD included multiple choice questions, 
Likert scale questions, and open-ended questions. In this report we discuss responses to the 
multiple choice and Likert scale questions.  
 

Results 

Results are reported from descriptive analyses of the survey response data that were aimed at 
addressing the two questions listed above.  
 
What GTA PD programs are currently being implemented across the country? 

There were eight questions on the survey to address various aspects of the structure and 
context of the department-lead GTA PD programs (we did not ask questions related to 
university-lead, non-mathematics specific GTA PD.) These questions addressed who the primary 
audience of the GTA PD is, how many GTAs participate and when, the format and activities 
included in the PD, the source(s) of the materials used in and who facilitated the PD. As shown 
in Table 1, three-quarters of PhD-granting institutions have department specific GTA PD, while 
only 35% of Master’s-granting institutions do. For the remainder of this report, we attend to the 
PhD-granting institutions unless otherwise noted.  

The primary audience for the department specific GTA PD was lead instructors (60%) and 
recitation leaders (59%). The majority of these programs were geared to all GTAs (61%), and 
most often before they teach the first time (67%) or during their first term of teaching (37%). 
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Almost half of these programs consist of a term-long course or seminar, while 28% involve a 
multi-day workshop and 17% involve a one- to four-hour long workshop or orientation. 
Although what is done during this time varies widely across institutions, it is uplifting to know 
that many departments have a specific course for preparing GTAs, and that it is possible to target 
efforts at improving these courses rather than convincing universities that such courses are 
helpful. The most common aspects reported as part of the programs were: Student evaluations of 
GTAs required by the institution or department (69%), GTAs observed by an experienced 
instructor while teaching in the classroom and receive feedback on their teaching (60%), GTAs 
are observed by a faculty member while teaching in the classroom (57%), GTAs practice  
teaching and receive feedback on their teaching (56%), GTAs develop lesson plans (35%), and 
GTAs learn classroom assessment methods (31%). The majority of departments use in-house 
materials for the teaching preparation (67%) while 31% use published materials. The majority of 
these programs are facilitated by one or more individuals for whom this is part of their official 
responsibilities for multiple years (61%). 
 
Table 1.  A sample of descriptive analyses related to the structure of the program 
 

Total 
(n=192) 

PhD 
Granting 
(n=114) 

Masters 
Granting 

(n=78) 

Minority 
Serving 

Institutions 
(n=27) 

Has a department specific GTA PD 66% 75% 35% 56% 
Primary audience     

Recitation leaders 44% 59% 14% 30% 
Primary instructors 53% 60% 28% 52% 

How many GTAs participate?     
All 54% 61% 28% 44% 

When     
Before teaching for the first time (e.g., pre-

term orientation) 57% 67% 31% 44% 

During their first term of teaching 32% 37% 15% 33% 
Format     

Term-long course or seminar 37% 47% 13% 30% 
Multi-day workshop 23% 28% 10% 19% 

Short workshop or orientation (1-4 hours) 17% 17% 13% 15% 
Activities     

Required student evaluations  60% 69% 31% 52% 
GTAs are observed by an experienced 

instructor while teaching in the classroom 
and receive feedback on their teaching 

52% 60% 27% 41% 

GTAs practice teaching and receive feedback 
on their teaching 45% 56% 18% 33% 

GTAs develop lesson plans 30% 35% 17% 33% 
GTAs learn classroom assessment methods 27% 31% 17% 30% 

Source of materials     
Created by the providers of GTA PD 59% 67% 32% 56% 

Published materials 28% 31% 15% 15% 
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Who facilitates     
One or more individuals for whom this is part 

of their official responsibilities  53% 61% 27% 41% 

 
What are the interests and needs of mathematics departments related to GTA PD? 

There were four questions on the survey to understand the interests and needs of the 
mathematics departments related to GTA PD. Only 19% of PhD-granting institutions reported 
that their GTA PD is preparing GTAs “very well,” while 41% reported they did well and 39% 
reported that they prepared their GTAs adequately. Over 60% of PhD-granting institutions report 
that the department is generally satisfied with the GTA PD program, and 33% responded that 
they were adequate but that there was room for improvement. It is these 38 institutions and the 
5% that are not satisfied with their programs for whom we will target our improvement efforts. 
Over a quarter of the institutions report that changes to their GTA PD program have recently 
been or currently are being implemented, and almost 20% report that changes are being 
discussed. When asked what resources would be most helpful to them in strengthening their 
GTA PD programs, institutions most often marked: research-based information about best 
practices in GTA teaching preparation (64%), tools for evaluating effectiveness of GTA teaching 
preparation (55%), collegial conversations or mentoring for GTA teaching preparation staff with 
colleagues at similar institutions (54%), professional development for GTA teaching preparation 
staff (e.g., workshops, conference sessions) (45%), and online library of tested resources (41%). 

 
Discussion and Next Steps 

Results indicate that there are many institutions that are seeking improvements to their GTA 
PD program, and that their needs are in line with the change strategies that are part of the PtC 
and CoMInDS projects. These findings provide both the baseline data needed to document and 
analyze change and substantiate the claim that there are departments that can serve as the context 
for carrying out studies of departmental change. 

Other sections of the survey aim to generate data on a different, but related topic – to situate 
the interests and needs of mathematics departments related to GTA PD in relation to the larger 
system of first and second year undergraduate mathematics instruction (often where GTAs are 
involved in the teaching). To address this goal, we will continue to analyze these results in 
relation to the other sections of the PtC census survey. We will specifically target institutions 
looking to make changes to their GTA PD program and investigate what other aspects of their 
programs they feel confident in and what aspects they are also looking to improve. For instance, 
are programs looking to improve their GTA PD programs also looking to improve the 
coordination of their precalculus through calculus sequence? If so, then we may look into ways 
in which we can capitalize on this relationship to better support these institutions. In doing so, we 
can develop data collection methods and analysis approaches that utilize the change strategies 
framework to understand specific institutions and to generalize across institutions. These efforts 
can then contribute to the mathematics education community’s understanding of factors that 
support and/or inhibit change occurring as departments strive to improve the teaching and 
learning of undergraduate mathematics beyond GTA PD. 
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Questions 

• In what ways do you see this work translating to other goals of undergraduate mathematics 
education reform? 

• Are there other characteristics of GTA programs or aspects of departmental culture that we 
should gather data on as we endeavor to understand the factors that enable and inhibit change? 
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A framework for examining the 2-D and 3-D spatial skills needed for calculus 
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Having well developed spatial thinking skills is critical to success in many STEM fields such 
as engineering, chemistry, and physics; these skills are equally critical for success in 
mathematics. We present a framework for examining how spatial skills are manifested in math 
problems. We examine established spatial skills definitions and correlate them with the spatial 
skills needed to successfully solve a standard calculus problem – find the volume of a solid of 
revolution. This problem is deconstructed into steps and analyzed according to what 2-D and 
3-D spatial skills are necessary to visualize and solve the problem.  

Key words: spatial skills, calculus, rotation about an axis, volumes of revolution 

Introduction 

Mathematics, especially areas like geometry and calculus, require both 2-D and 3-D 
spatial thinking skills. Spatial thinking skills can be learned and, as expressed by the National 
Research Council (2006), should be taught at all levels of the education system. These same 
spatial thinking skills, once acquired, can be applied in many areas of science and 
mathematics. Calculus, in particular, presents many situations that require students to move 
between 2-D and 3-D representations, such as when they are to determine the volume of a 
solid of revolution.  

Having well-developed spatial thinking skills is directly linked to future success in 
engineering careers (Adánez & Velasco, 2002; Miller, 1996; Sorby, 1999). In searching the 
literature, most programs that aim to increase the spatial thinking skills of students seemed to 
be targeted at engineers (Sorby, 1999). It is appropriate that there would be an emphasis in 
this area, but the authors argue that other majors, specifically STEM majors such as physics, 
chemistry and mathematics, also need these spatial thinking skills to be successful in their 
future careers and would benefit from similar skill building activities. We identified the 
spatial skills necessary to complete a common calculus problem – compute the volume of a 
solid of revolution. This problem was chosen as it requires spatial thinking skills that are 
known to be troublesome for students: rotations and cross-sections.     

Here, we provide applicable spatial skills definitions (focusing on 2-D and 3-D spatial 
skills) used by several authors. Next, we deconstruct a classic second semester calculus 
problem, identifying the requisite spatial skills. From this deconstructed problem, we 
construct a framework for analyzing spatial skills required for calculus problems.  

 
Spatial Skills Definitions  

Pittalis and Christou (2010) and Cohen and Hegarty (2012) define two spatial skills 
important to the study of calculus: spatial visualization and spatial orientation. Spatial 
visualization is defined as the ability to comprehend imaginary movements in 3-D space or 
the ability to manipulate objects in imagination. An example of the use of this skill would be 
imagining the 3-D cube that can be created from a 2-D net with the six faces of the cube 
outlined in a plane. Spatial orientation is defined as the ability to remain unconfused by 
changing the orientation in which a spatial configuration is presented. An example of the use 
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of this skill would be orienting disks or washers within the 3-D object when deciding how to 
compute its volume. 

Along with these definitions, Pittalis and Christou (2010) further define four other skills 
that are applicable to calculus and apply to 2-D and 3-D representations. These skills are 
representing objects, structuring, measurement, and mathematical properties. Representing 
objects is defined as manipulating forms of 2-D or 3-D objects and constructing a 2-D or 3-D 
model. An example of the use of this skill would be constructing a 3-D shape by rotating a 2-
D shape around an axis. Structuring is defined as constructing partitions of 2-D or 3-D 
objects and manipulating the partitioning of 2-D or 3-D objects. An example of the use of this 
skill would be using a cross section (disk or washer) to partition a 3-D shape to find its 
volume. Measurement is defined as calculating and estimating. An example of the use of this 
skill would be calculating or estimating the volume of a solid. The last of the four, 
mathematical properties, is defined as realizing, identifying, and comparing structural 
elements. Examples of the use of this skill would be finding intersection points, finding limits 
of integration, and realizing the interior and surface of the constructed 3-D object. 

Although there are many other spatial skills defined, we have chosen the ones deemed 
most applicable to the study of calculus, specifically 2-D and 3-D representations. In the next 
section we examine one such classic calculus problem and identify what spatial skills are 
being used to move toward the solution at each step in the process. 
 

A Classic Calculus Problem 

Below, we examine a solution to the problem: 
Find the volume of the 3-D shape generated by rotating the region bounded by 
the function 𝑓𝑓(𝑥𝑥) = −1

4
(𝑥𝑥 − 2)3 + 2, the x-axis and the y-axis. 

This is a typical second semester calculus problem. Upon close examination, it can be seen 
that there are many different spatial skills being used as a student proceeds toward a solution. 
Figure 1 presents the problem as a series of small steps that will later be classified using the 
suggested framework. While these steps are listed in the order a textbook or instructor might 
present them, they need not happen in this particular order. Rather, we are interested in 
capturing places where spatial skills might be useful to the problem solver.  

 

STEP 1:  
Graph function: 𝑓𝑓(𝑥𝑥) = −1

4
(𝑥𝑥 − 2)3 + 2. 

 
 
 

 

STEP 2: 
Create 2D region with 𝑓𝑓(𝑥𝑥), 𝑥𝑥 = 0,𝑦𝑦 = 0.    

 

STEP 3: 
Reflect the region about  
𝑦𝑦 = 0 .        

 

STEP 4: 
Complete the 3D shape by 
rotating about the specified 
axis. 
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STEP 5: 
Determine which way to 
slice:      
horizontally or 
vertically? 

STEP 6: 
Position 3D disks. 

STEP 7: 
Draw radius and 
measure. 
Determine limits of 
integration (0 to 4). 

 
 
 
 
 

STEP 8: 
Access volume of a cylinder formula: 
𝑉𝑉 = 𝜋𝜋𝑟𝑟2ℎ 

 
STEP 9: 
Set up integral with boundaries. 

� 𝜋𝜋(𝑓𝑓(𝑥𝑥))2𝑑𝑑𝑥𝑥 = 
4

0
� 𝜋𝜋(−

1
4

(𝑥𝑥 − 2)3 + 2)2𝑑𝑑𝑥𝑥
0

0
 

 

Figure 1. Spatial skills needed for rotating a region of the plane about an axis. 
 

Proposed Framework: Spatial Skills for Calculus 

Using the spatial skills definitions above, we constructed the framework in Figure 2 to 
classify the spatial skills needed to solve calculus problems. Figure 2 illustrates how the steps 
in the solution process in Figure 1 are mapped to one or more spatial skills.  
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Visualization Step 1: 

Draw 2D 
graph. 

Step 2: 
Identify 
region to be 
rotated. 

  Step 7: 
Determine 
the radius 
of a slice. 

Step 4: 
Imagine the 
2D region 
being 
rotated and 
the resulting 
3D shape. 

Step 6: 
Imagine 
slices 
filling up 
the figure. 

  

Orientation Step 3: 
Identify the 
axis of 
rotation. 

 Step 7: 
Determine 
the radius of 
a slice. 

Step 7: 
Determine 
the limits 
of 
integration. 

Step 5: 
Determine 
which way 
to slice- 
horizontally 
or 
vertically? 

 Step 8: 
Determine 
the volume 
of a slice. 

Step 9: Set 
up and 
evaluate the 
integral. 

Step 8: 
Identify 
the 
volume of 
a cylinder 
formula. 

Figure 2. Framework to analyze spatial skills required in calculus problems. This figure 
illustrates the spatial skills required for the problem in Figure 1. 

r=f(x) 

0 4 
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The row headings of visualization and orientation capture the broad spatial abilities of (1) 

being able to imagine and manipulate an object in 2-D or 3-D space, and (2) being able to 
remain unconfused when considering different perspectives of an object. There are two broad 
column headings of 2-D and 3-D, indicating that at various points in the problem solving 
process the student must think about either a 2-D object or a 3-D object. The four subskills – 
representing, structuring, measurement, and properties – identified by Pittalis and Christou 
(2010) may be required when thinking about either 2-D or 3-D objects and are represented by 
the columns under 2-D and 3-D respectively.  

Note that each step of a problem may require more than one spatial skill. For example, 
step 7 requires 3 distinct spatial skills. First, the student must identify the radius by 
visualizing a particular property of a slice in a particular orientation. Then, the student needs 
to identify the range of appropriate values for that radius by accounting for the orientation of 
the stack of slices.  

Using this framework to map other calculus problems that have spatial skills requirements 
(e.g., related rates, optimization, etc.) will allow us to identify which spatial skills are most 
used in the calculus curriculum and should get particular attention in remediation attempts. 
We now turn our attention to the spatial skills students possess when entering calculus. 

 
Discussion 

Although some programs have provided avenues for engineering students to improve 
their spatial thinking skills, there is a lack of attention to the development of spatial thinking 
skills for other majors. We need to promote students’ understanding of geometric concepts 
and properties beyond using an algorithm or formula to get an answer. There are many places 
in the calculus curriculum where a lack of spatial skills hinders the understanding of 
concepts. One of the largest obstacles to college success is that students are arriving 
unprepared for the rigors of the college math curriculum; in particular, more than 40% and as 
many as 75% of students entering college place into a developmental math course (Twigg, 
2013). While there are mechanisms in place for the development of other skills, such as 
arithmetic, algebra and geometry, not many colleges are addressing spatial thinking skills.  

Further refinement of the framework for classifying calculus problems will allow us to 
analyze more of the curriculum to determine appropriate diagnostics and interventions. 
Considering the findings from the analyses of the curriculum, we will choose diagnostic 
spatial skills tests that align with the skills needed. Two examples of possible tests are the 
Purdue Spatial Visualization Tests: Visualization of Rotations (PSVT:R) (Guay, 1976;Yoon, 
2011) and the Santa Barbara Solids Test (SBST) (Cohen and Hegarty, 2012). 

The next step in this project is to observe the development of a group of 10-12 first 
semester calculus students’ spatial thinking skills. We will obtain a baseline by using the 
PSVT:R and SBST tests and conducting semi-structured interviews with each student. The 
students will then be interviewed periodically over the course of several semesters as they 
encounter problems involving spatial thinking skills to identify how their spatial skills 
develop.  

This work is the first step toward understanding what spatial thinking skills students have 
when entering calculus and determining how we can better understand where they need to 
improve. From the findings, we hope to pinpoint areas in the curriculum that rely on spatial 
thinking skills and determine if students have those necessary skills. We intend to develop 
interesting activities, both non-technology and technology-based, that could be used at 
critical points in the curriculum to assist students in developing and refining these critical 
spatial thinking skills. Much like the program developed by Sorby (1999) for engineering 
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students, our goal is to determine which calculus students may have problems and with what 
concepts, and then provide additional activities to assist those students in the further 
development of their spatial skills.  

We are interested in receiving feedback from the audience on the following questions: 
1. What spatial skills are critical for success in mathematics that we have not 

captured? 
2. What categories of problems should we examine next? 
3. What ideas do you have for activities to build spatial skills? 
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Student responses to instruction in rational trigonometry 
 

James D. Fanning 
University of Massachusetts Dartmouth 

In this paper I discuss an investigation on students’ responses to lessons in Wildberger’s (2005a) 
rational trigonometry. First I detail background information on students’ struggles with 
trigonometry and its roots in the history of trigonometry. After detailing what rational 
trigonometry is and what other mathematicians think of it I describe a pre-interview, 
intervention, post interview experiment. In this study two students go through clinical interviews 
pertaining to solving triangles before and after instruction in rational trigonometry. The findings 
of this study show potential benefits of students studying rational trigonometry but also highlight 
potential detriments to the material. 

Key words: [Rational Trigonometry, Undergraduate Mathematics, Interviews] 

Introduction 
Students struggle with trigonometry. This struggle is a contributing factor to students not 

pursuing studies in the STEM fields. Students struggle with trigonometry at many points during 
their mathematical studies. While many pedagogical changes to trigonometry instruction have 
been tried (Bressoud, 2010; Kendal & Stacey, 1996; Weber, 2005) little has been done looking at 
replacing or augmenting trigonometry instruction with a mathematical alternative.  

Rational trigonometry is a system for studying triangles using different units to measure 
length and the separation between two lines instead of using distance and angle (Barker, 2008; 
Campell 2007, Franklin, 2006; Henle, 2007; Wildberger, 2005a, 2005b). The use of a different 
unit necessitates different formulas than traditional trigonometry. Wildberger (2005a, 2005b) 
claims that rational trigonometry is simpler to learn, understand, and use than its traditional 
counterpart. He believes this based on the formulas for rational trigonometry lacking the sine, 
cosine, tangent or other transcendental functions. Little if any research has been conducted 
looking into educational benefits of rational trigonometry.  

To investigate his claims I conducted task-based interviews before and after lessons in 
rational trigonometry to explore the following: How do mathematics majors approaches to 
solving problems pertaining to triangles change after studying rational trigonometry?  

Traditional Trigonometry 
Trigonometry as we know and teach it causes many difficulties for students. Previous 

research on students’ difficulties with trigonometry include studies using quantitative methods 
(Brown, 2005), teaching experiments (Moore, 2009, 2013; Weber, 2005, 2008), and theoretical 
pieces (Bressoud, 2010; Gilsdorf, Moore, 2012; Wildberger, 2005a, 2005b, 2007). 
What is trigonometry?  

This is a question that is rarely answered explicitly in mathematics texts (Wildberger, 2005a). 
One method to defining words is the etymological approach. “Tri” being the prefix for three, 
“gon” referring to a polygon (e.g. pentagon, hexagon etc.) and “metry” referring to measure. 
Putting these together yields trigonometry as the study of the measure of three sided polygons.  

A second way to define a word is to look at its use throughout history. The predecessor of the 
sine function was developed in the second century BCE (Bressoud, 2010). This was a 
relationship between central angles and chords of a circle (Bressoud, 2010; Gilsdorf, 2006). 
Using these techniques for triangles started in the 11th century CE and was formalized as sine 
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and cosine in the 16th century (Bressoud, 2010). Introducing students to the trigonometric 
functions through the use of triangles began in the 19th century (Bressoud, 2010).  

A third approach to defining trigonometry is to see how the word is currently used in the 
literature. Looking at texts yields the following list of topics: triangles, trigonometric functions, 
trigonometric identities, trigonometric equations, trigonometric graphs, imaginary numbers, 
polar coordinates, De Moivre's theorem, McClaurin Series, integral substitutions, waves, Fourier 
Analysis and more (Hirsch, Fey, Hart, Schoen, & Watkins, 2009a, 2009b; Larson & Edwards 
2014, Liebeck, 2005). This would lead us to defining trigonometry as the study of anything 
pertaining to angles, triangles, or the functions sine, cosine, and tangent. 

Based on these three perspectives, trigonometry is the study of everything pertaining to the 
functions, which resulted from applying the study of circles, to the study of triangles. For this 
study I am going to focus on the mathematics of triangles. 

Student difficulties with trigonometry. Many difficulties pertaining to trigonometry are 
well documented (e.g., Akkoc, 2008; Blackett & Tall, 1991; Bressoud, 2010; Brown, 2005; 
Marchi, 2012; Moore, 2009, 2012, 2013; Weber, 2005, 2008, Wildberger, 2005b). Most of the 
documented difficulties can be sorted into two categories: 1) difficulties pertaining to the concept 
of angle (Akkoc, 2008; Bressoud, 2010; Moore, 2009, 2012, 2013; Wildberger, 2005b), and 2) 
difficulties pertaining to the sine, cosine, and tangent functions (Bressoud, 2010; Brown, 2005; 
Marchi, 2012; Moore, 2012; Weber, 2005, 2008; Wildberger, 2005b).  

Student difficulties with angles. Moore (2012, 2013) and Akkoc (2008) claim that student 
difficulties with angles stem from gaps in their teachers’ understanding of angles. Bressoud 
(2010) attributes difficulties with angles to incompatibilities between the ratio and the unit circle 
approaches to understanding trigonometry. These approaches are associated with degrees and 
radians respectively. Students are then taught that they are interchangeable yet certain problems 
are to be done in terms of one and other problems in terms of the other without any justification 
for the decisions made (Akkoc, 2008; Bressoud, 2010). Wildberger (2005b) takes these views to 
an extreme by claiming that the unit itself is overly complicated and that with the exception of a 
few values cannot be calculated without a background in calculus. 

Student difficulties with trigonometric functions. Moore (2012) attributes flawed 
understandings of the trigonometric functions on the volume of inconsistent definitions used for 
them. Brown (2005) found that students compartmentalize two different definitions for sine and 
cosine. These two definitions for sine and cosine are as the ordinate and abscissa respectively of 
points on the unit circle and as ratios of side lengths of a right triangle. Some authors have found 
that the meanings of the trigonometric functions are obscured by the use of the unit circle instead 
of the use of ratios of side lengths of right triangles (Kendal & Stacey, 1996; Markel, 1982). 
Markel (1982) argues that the unit circle includes angles above 180° which are unnecessary and 
does nothing to help students differentiate sine and cosine. Kendal (1996) found that the unit 
circle approach gave students more opportunities to make mistakes. However, Weber (2005) 
states that the unit circle was a more effective pedagogical tool than right triangles. He found that 
students were more likely to recognize sine and cosine as functions if taught using a unit circle 
approach. Students have problems viewing sine, cosine, and tangent as functions due to their 
non-algebraic nature and as such are unsure about how to perform algebraic operations with 
them (Weber, 2005). This could be due to the pedagogy straying away from beginning with the 
study of circles and chords (Bressoud, 2010; Gilsdorf, 2006) or it may be due to the 
transcendental nature of the functions (Weber, 2005; Wildberger 2005b).  
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Need for trigonometry. One debated topic is the importance of studying traditional 
trigonometry. While the importance of many mathematical topics is debated in the K-16 
curriculum the inclusion and exclusion of trigonometry can be seen in multiple scenarios. 
Multiple groups believe that high school students are not being taught enough trigonometry and 
that it should be the penultimate high school course instead of calculus (Bressoud, 2012; Markel, 
1982). While many college calculus courses expect a prior knowledge of trigonometry many 
colleges now offer variants of their calculus courses that attend to the same topics with the 
exception of omitting trigonometry-based problems.    

Rational Trigonometry 
Rational trigonometry is a reformulation of trigonometry based on replacing the units of 

distance and angle, with the units of quadrance and spread (Wildberger, 2005a, 2007). 
Quadrance is distance squared. The spread between lines !! and !! is the quadrance of !" 
divided by the quadrance of !" shown in Figure 1. 

 
Fig. 1 The elements of the spread between two lines 

Replacing the concept of angle with the concept of spread, results with the main formulas in 
trigonometry needing to be reformulated. The result is that the traditional trigonometry laws are 
replaced with the laws of rational trigonometry. They are analogous to the tradition trigonometric 
laws but the trigonometric functions are replaced with algebraic operations shown in Table 1 
(Barker, 2008; Franklin, 2006; Henle, 2007; Wildberger, 2005a). 
 
Table 1. Analogous Formulas in Traditional Trigonometry and Rational Trigonometry 

Traditional Rational 
!! = !! + !! − 2!" cos! !! + !! − !! ! = 4!!!! 1− !!  
!

sin! =
!

sin! =
!

sin! 
!!
!!

= !!
!!

= !!
!!

 

! + ! + ! = 2! !! + !! + !! ! = 2 !!! + !!! + !!! + 4!!!!!! 
 
Curricular change 
For something new to be adopted by the mathematics community it needs one of two things. It 
needs to either be able to do old tasks better than older approaches or it must be able to do new 
things.  

Arguments in favor of rational trigonometry. Arguments in favor of rational trigonometry 
being simpler than traditional trigonometry are that it gets rid of the difficulties caused by the 
angle and the trigonometric functions by replacing them. With Rational Trigonometry, sine, 
cosine and tangent are no longer needed to study triangles (Barker, 2008; Franklin, 2006; Henle, 
2007; Wildberger, 2005a, 2005b). Wildberger (2005a, 2005b) claims that the most complex 
operation needed for trigonometry becomes the square root function and that a student who has 
learned the quadratic formula has the prerequisite skills needed to study rational trigonometry. 
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Arguments against rational trigonometry. Three arguments have been made against 
rational trigonometry. One of these is that the units are less intuitive (Campell, 2007; Gilsdorf, 
2006). Consecutive spreads of 1/4 and 1/4 combining to 3/4 is less intuitive than adding adjacent 
angles. Another is that many triangle problems would have irrational solutions when solved with 
rational trigonometry and that the irrational solutions from rational trigonometry are no more 
useful than the transcendental solutions from traditional trigonometry (Gilsdorf, 2006). A third is 
the inflexibility of the educational system (Campbell, 2007). Educational sequencing rarely 
changes and it pushes students to study traditional trigonometry before higher mathematics. 

Questions from the arguments. The two sides of this argument bring up some interesting 
points in comparing the systems. Is the benefit of avoiding trigonometric functions worth a unit 
that is less visually intuitive? Should simpler be defined in how one uses the material or in how 
one learns the material? Is there any benefit to rational trigonometry when you have to study 
traditional trigonometry anyway? 

While all of these are interesting my research question only addresses aspects of the first two. 
This study shows a glimpse at students working with quadrance and spread instead of the 
trigonometric functions. It also lets us see how two students use both trigonometric systems to 
address the same problems.  
Mathematical research 

As stated earlier there are two reasons for the mathematics community to adopt alternative 
mathematics. The second of these mentioned was that if it does something that has not been done 
before. There is a small yet existent body of literature in higher mathematics that makes use of 
rational trigonometry. Authors have applied the concepts of rational trigonometry to geometry 
(Alkhaldi, 2014; Le & Wildberger, 2013; Vinh, 2006, 2013; Wildberger, 2010), computer 
programming (Kosheleva, 2008), and robotics (Almeida, 2007).  
Factors influencing students pursuing mathematics.  

One of the factors that determines students’ course taking patterns in college mathematics is 
their overall confidence with mathematics. 

Students who expressed confidence in their mathematical abilities are more likely to take 
additional mathematics courses (Fennema & Sherman, 1977; Else-Quest, Hyde & Linn, 2010, 
Oakes, 1990). Those courses tend to be at a higher-level than the ones taken by their less 
confident peers (Fennema & Sherman, 1977; Else-Quest et al., 2010; Laursen, Hassi, Kogan, 
Hunter, & Weston, 2011; Stodolsky, Salk, & Glaessner, 1991). Typically, a loss in confidence is 
caused by performing lower than one’s expectations (Ahmed, van der Werf, Kuyper & Minnaert, 
2013). Improving students’ performance in trigonometry would help their confidence and 
positively influence their future studies.  
Students’ problem solving strategies.  

Students tend to use the strategies and techniques they are most recently familiar with when 
approaching problems (Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Owen & Sweller, 1985). 
This explains why students might solve a quadratic by formula instead of factoring or use the law 
of sines when solving a right triangle. This phenomenon is stronger in weaker students who are 
less likely to stray from the patterns established in examples (Chi et al., 1989). Situation and 
context also influence how students attempt to solve problems (Moore, 2012). A student is most 
likely going to use the formulas they think an instructor or exam wants them to use. 

As it pertains to trigonometric problems the strategies are the same in both rational and 
traditional trigonometry but the techniques are different. For example consider a problem where 
a student is given the measurements for two sides of a triangle and the vertex between them and 
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asked for the third side. A strategy would be to use a formula that relates those four quantities. In 
traditional trigonometry the technique would be to use !! = !! + !! − 2!" cos! while in 
rational trigonometry the technique would be to use! !! + !! − !! ! = 4!!!! 1− !! .   

Methodology 
The comparative nature of this study influences many design decisions. Only distances are 

given and asked for in these tasks. To give or ask for spread or angle would inherently design the 
questions towards the use of a particular approach. A second outcome of this is the triangles 
presented in both interviews are geometrically similar. Without similarity is it possible that one 
interview task was inherently simpler due to the triangles used. A third result is the tasks asking 
for an altitude, median, and vertex bisector. These three concepts have been studied since 
antiquity (Heath, 1956) and as such are not dependent upon rational trigonometry for analysis.  
Research Design 

The inquiry approach for this study is case study design. Case study is the study of a case 
across a timespan (Hatch, 2002; Yin 2009). Case studies can be exploratory or explanatory in 
nature (Yin, 2009). For this study the cases are the two participants and the timespan is five days 
(the pre-interview, three days of lessons, and the post-interview).  

Combining the need for a before and after and the exploratory affordances of task-based 
interviews (Confrey, 1981; Maher & Sigley, 2014; Schoenfeld, 2002) leads to the design of pre 
task based interview, lessons, post task based interview. The first interview is being used to look 
at strategies and techniques used by participants without a background in rational trigonometry. 
The lessons are used to create a background in rational trigonometry. The post interview is being 
used to see how a participant’s behavior and/or reasoning when approaching the same task is 
altered after studying rational trigonometry. 

Three video lessons on rational trigonometry were given to the participants. I designed these 
lessons to give familiarity with the units and formulas for rational trigonometry. The first lesson 
was focused on the units. The second lesson focused on the formulas !! + !! − !! ! =
4!!!! 1− !!  (the cross law) and !!!! =

!!
!!
= !!

!!
 (the spread law). The third lesson focused on 

!! + !! + !! ! = 2 !!! + !!! + !!! + 4!!!!!!!(the triple spread law). Each lesson was 
accompanied with a worksheet that acted as practice for the participant, additional data for 
myself, and verification that they watched the videos. 

The first lesson focused on the units of quadrance and spread. Quadrance was described as 
distance squared and spread was first defined geometrically. After that I detailed arithmetical 
properties of spread and showed examples of how to calculate the spread for lines given in both 
slope-intercept and standard forms. Spread bisection was also shown. The second lesson focused 
on the spread and cross laws. The lesson was an example of solving a triangle knowing the 
quadrances of two sides and the spread between them. It started with the cross law being used to 
find the missing side and was followed by using the spread law to find the two remaining 
spreads. The last lesson focused on the triple spread law. The lesson was an example of using the 
triple spread formula to find the third spread in a triangle if only two spreads were known.  
Participants 

Due to the comparative nature of this study, participants with a strong background in 
mathematics in general, trigonometry in particular, and with no background in rational 
trigonometry were recruited. To ensure this, mathematics students with a 4.0 in their first year 
mathematics courses including Euclidian trigonometry were chosen.  
Data Collection 

Data was collected through a pre-interview, three worksheets and a post-interview. 

19th Annual Conference on Research in Undergraduate Mathematics Education 745

19th Annual Conference on Research in Undergraduate Mathematics Education 745



Interviews. Task based interviews were used to gather information about the participants 
approaches to solving problems pertaining to triangles. The two interviews were audio recorded 
and occurred four days apart. Between the pre and post interviews the participants watched all 
three lessons and completed all three worksheets. Participants were supplied with pencil, paper, 
and a selection of traditional trigonometric formulas. During the second interview they were also 
given the rational trigonometry formulas from the lessons. From the interviews both their spoken 
word and written work were collected.  

The three tasks chosen for the interviews were chosen to have no inherent bias towards 
traditional or rational trigonometry. The first task was to find the length of an altitude of a 
triangle. This task is commonly shown in the high school curriculum and is often done with and 
without the use of the sine, cosine, and tangent functions (Keenan & Gantert, 1989; Hirsch, et al., 
2009b). The second task was to find the length of a median of a triangle. The last task was to find 
the length of a vertex bisector.  

Worksheets. The primary purpose of the worksheets was to ensure that the participants 
watched the videos. The work was analyzed with respect to the findings from the interviews for 
triangulation purposes. All three worksheets were collected at the second interview. 
Data Analysis 

I began my data analysis by transcribing the interviews. At this point I was already making 
decisions about what data had the potential to show interesting findings. After this my next step 
was coding the data. That data was separated and regrouped for organizational purposes 
(Creswell, 2014; Maxwell, 2013; Saldana, 2009; Seidman, 2012). My coding efforts were 
focused on the written work and verbal statements given during the interviews. Once this was 
done I focused on the findings that were most abundant and different between both interviews. 
The strongest examples are highlighted here.  

Findings 
After my analysis three themes emerged. These themes were strategies, numerical properties 

of triangles, and confidence. The strategies used involved the Pythagorean theorem and the 
relationships represented by the laws of sine and cosine and the spread and cross laws. 
Numerical properties were that distances must be positive, the triangle inequality, and that the 
longest sides of a triangle are across from the largest angles / spreads.  
Maureen 

Maureen is a mathematics major with the goal of becoming a high school mathematics 
teacher. Her undergraduate course on trigonometry ended four months before the study. 

Strategies. Maureen started the pre-interview using the Pythagorean theorem in an attempt to 
find the value of an altitude. After multiple iterations gave her more unknowns than equations or 
values that did not make sense to her she abandoned this strategy. Her next attempt was to use 
the Law of Cosines to find one of the angles. Her goal was to use that angle in the Law of sines 
to find the altitude. Once she found cos! = !"

!" she abandoned that approach as well.  
During the second interview Maureen used the cross and spread laws in the manner she 

intended to use the Laws of cosines and sines in the first interview. In this attempt she 
successfully used both formulas. Though her use of the spread law gave her the quadrance of the 
altitude she did not turn that value into a length as the question was asking for. When questioned 
she said that the answer she gave was the length of the altitude.  

Numerical properties. During the pre-interview Maureen made ample use of numerical 
properties of triangles. In particular she made use of the fact that side lengths cannot be negative 
and she made use of the triangle inequality. She used these to check her computational results. 
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The triangle inequality was also used to determine ranges for the answers to the interview tasks. 
Since she did not compute an angle there was no opportunity to observe if she would have used 
that the longest side is opposite the largest angle. 

In the post interview there was no use of the triangle inequality. This could have been used to 
alert her to not having the right answer in the first task. She did however use the property that the 
largest spread has to be across from the largest side of a triangle. 

Confidence. Maureen’s confidence in approaching these tasks appeared to increase after the 
lessons in rational trigonometry. In the first interview she spent a lot of time staring at the tasks 
without performing any calculations. After a particularly long silence she said:  

As much as I hate to admit that I can not remember how to solve for altitude, I'm just 
going to spend 20 minutes staring at this, because I'm not liking what I'm getting. I feel 
very bad saying that and admitting that, but it's not gonna happen. 

In the second interview the gaps in work and expressions of frustration lessened. After the 
interview she gave the following two statements: “That was really really cool the whole 
quadrance and [spread]” and “if I had more time to practice I think I could have gotten all 3.” 
These statements point towards a higher confidence level using rational trigonometry. 
Tom 

Tom is a mathematics major aiming towards graduate studies in applied mathematics. He 
took his trigonometry course approximately three years before the study. 

Strategies. In the first interview Tom’s strategy was to solve for anything he could find in 
hopes that he would come up with pieces he needed to solve the tasks. When he found 
cos! = !"

!" he used that value in another Cosine Law equation in order to solve one of the tasks. 
In the second interview his strategies were nearly identical. The biggest change between the 

two interviews was he was using the rational trigonometry formulas instead of the traditional 
trigonometry formulas. 

Numerical relationships. There was no evidence in either interview that Tom used the 
numerical properties listed above. He submitted answers to all three tasks and he could have but 
did not find two of them to be impossible due to the triangle inequality. In both interviews he 
was confident in his strategies (which would have worked) and his computations (which 
contained errors). 

Confidence. Tom showed no notable change in confidence.  
Discussion 

Based on the findings I believe it is safe to say there may be some benefits to students 
studying rational trigonometry. The strongest evidence for benefits come from Maureen’s case. 
Maureen falls into the category of students who are weaker with their algebraic manipulation of 
functions, which hindered her mastery of trigonometry (Weber, 2005). She seemed to increase in 
confidence after studying rational trigonometry and appeared more capable of solving problems 
when using the rational trigonometry formulas. Tom showed a strong mastery of the algebra of 
functions and little change in performance using the rational formulas. This may point to 
potential benefits being more likely for students with a weaker skill set pertaining to functions. 

Potential weaknesses also need to be mentioned. Maureen did not apply the numerical 
properties that she showed earlier evidence of using. She also at one point equated quadrance and 
distance. Quadrance being less intuitive than distance (Campbell, 2007; Gilsdorf 2006) is likely a 
contributing factor of this.  

In conclusion there is more to research here. While benefits may exist it is possible that they 
are outweighed by the costs.  
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One of the main issues STEM faculty face is promoting student success in large-enrollment classes 
while simultaneously meeting students’ and administrators’ demands for the flexibility and 
economy of online and hybrid classes. The Learning Glass is an innovative new instructional 
technology that holds considerable promise for engaging students and improving learning 
outcomes. In this report we share the results of an efficacy study between an online calculus-based 
physics course using Learning Glass technology and a large auditorium-style lecture hall taught 
via document projector. Both courses were taught with the same instructor using identical content, 
including exams and homework. Our quasi-experimental design involved identical pre- and post-
course assessments evaluating students’ attitudes and behavior towards science and their 
conceptual learning gains. Results are promising, with equivalent learning gains for all students, 
including minority and economically disadvantaged students. 
 
 Keywords: Learning Glass, Effective Online Classroom, Online Inquiry Oriented Courses 
 

Introduction  
 

Against the economic backdrop of workforce demands forecasted by the report of the 
President’s Council of Advisors on Science and Technology (PCAST, 2012), universities in the US 
are striving to meet the needs of their students with fewer resources. One way universities are 
trying to address these needs with shrinking resources is to offer large enrollment courses using 
large lecture halls or online or partially online (also called “hybrid”) formats.  

In this paper, we report the results of an investigation integrating an innovative new 
technology, the “Learning Glass”, and how it can be leveraged to meet these challenges. One of the 
authors developed the Learning Glass as a low-cost, open technology that facilitates 
communication in STEM courses by allowing a lecturer to look at his or her audience while writing 
on a transparent surface. The Learning Glass screen acts as a transparent whiteboard. The instructor 
writes on a glass screen with LED illuminated edges. A camera on the opposite side of the glass 
records the video and horizontally flips the image (and hence the instructor is not required to write 
backwards as seen in the Figure 1). The Learning Glass allows the instructor to use a full range of 
communication modes and visual cues to clarify ambiguous or subtle concepts, and engage 
students.  
 
 
 
 
 
 
 
Figure 1. Learning Glass enable the instructor to face the students while writing on the board  
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Schmid et al. (2014) defined an effective online classroom as one that provides learning 
outcomes equivalent to the same course offered face-to face. In order to assess efficacy of the 
Learning Glass in the undergraduate classrooms, we conducted a quasi-experimental study in two 
undergraduate calculus-based physics courses with the following research questions: 
Research Questions  

1. How does student success in the Learning Glass courses compare with student success in 
standard courses? In particular, does the Learning Glass environment mitigate differential 
student success by demographic subgroups? 

2. What instructor behaviors (e.g., gestures, modeling real time struggle and errors) take 
advantage of the affordances of the Learning Glass and contribute to student engagement? 
In particular, how do students perceive instructor presence in standard and Learning Glass 
classes? 

3. Is it effective to integrate the Learning Glass into online classrooms? 
 

Theoretical Background 
The PCAST report (2012) calls for the wide-scale adoption of empirically validated 

teaching and learning practices as one way to increase retention of STEM majors, and the key 
practice the report highlights is “engaged learning.” In this study we examine how the Learning 
Glass might help transform traditionally passive courses into more engaged courses by increasing 
instructor immediacy and facilitating communication. In the following paragraphs we describe 
each of these potential affordances of the Learning Glass in more detail. 

 
Media Richness 

Media richness theory is used to analyze communication and media choices with the goal of 
reducing ambiguity of communications (and increasing immediacy) by selecting the most 
appropriate media type (Newberry, 2001). The theory postulates that for ambiguous tasks, 
understanding improves when communicators use “richer” media. “Richness” is determined by the 
capacity of the medium to facilitate instant feedback, transmit verbal and nonverbal cues, enable 
the use of natural language, and convey a more personal focus (Daft & Lengel, 1984). Rich media 
are characterized as having the capacity to convey the most information, while lean media have a 
lesser capacity. The Learning Glass is very rich media having the capacity to provide all of the 
affordances associated with rich media when used in a synchronous manner.  
 
Immediacy, and Student Learning  

In online and hybrid settings, communication technologies vary in their capabilities to 
convey messages and verbal or visual “immediacy” cues. Immediacy has been defined as perceived 
psychological or physical closeness (Christophel, 1990), created in part by nonverbal physical cues 
such as smiling, a relaxed body posture, making eye contact, and verbal cues that include the use of 
humor and personal examples (Hostetter & Busch, 2006). In recent experimental studies conducted 
by Schutt, Allen, and Laumakis (2009) and Bodie and Bober-Michel (2014) confirmed that 
instructor behaviors that have been shown to reduce psychological distance in face-to-face settings 
also positively influenced learning outcomes in online settings. Interestingly, results of the Bodie 
and Bober-Michel (2014) study of cognitive learning showed that participants exposed to higher-
immediacy instructor behaviors using rich media performed significantly better at post-test, 
immediately following the teaching session.  
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Student engagement & Peer Instruction 
In a meta-analysis of existing literatures on online learning (Means, Toyama, Murphy, 

Bakia, & Jones, 2009) and on using technology in the classrooms (Schmid et al., 2014) researchers 
have concluded that “learning is best supported when the student is engaged in active, meaningful 
exercises via technological tools that provide cognitive support” (Schmid, et al., 2009, p. 285). A 
study by Zhang, Zhou, Briggs, and Nunamaker (2006) found that the effect of video on learning 
depended on the learner’s ability to control the video (“interactive video”).  

There is a wealth of research in mathematics and science education research demonstrating 
the effects of peer instruction in large classroom settings (Crouch, & Mazur, 2001). Peer instruction 
is a pedagogical strategy in which the lecture is interspersed with short conceptual tests designed to 
reveal typical difficulties and misunderstandings and to actively engage students during the lecture. 
Students’ interactive-engagement within the class has been shown to be correlated to students’ 
learning gain (Prince, 2004; Redish, Saul, & Steinberg, 1998).  

We conjecture that using the Learning Glass has significant potential for increasing the 
extent to which learners feel connected and form relationships with their instructor, even in large-
lecture and online/hybrid classes. Such connectedness and feeling of instructor presence 
(immediacy) has been shown to be a key indicator of persistence, especially for women and 
underrepresented students (Good, Rattan, & Dweck, 2012; Seymour, 2006).   

 
Research Design and Methods 

We used a quasi-experimental design to investigate the adaptation of Learning Glass 
technology during the spring 2015 semester. This study included two classes of Introductory 
Calculus-Based Physics, both taught by one of the authors, using identical pre- and post-course 
assessments to evaluate students’ attitudes and behavior towards science and their conceptual 
understanding of physics concepts. At the post assessment, we also included a survey to assess 
students’ measure of instructor immediacy. When signing up for the course students did not know 
that the two sections would be different. We also used the pre-assessments to create a baseline for 
our quasi-experiment study. We then used the results of the post-assessment to compare students’ 
conceptual understanding between the two classes, their attitude towards physics, and their view of 
instructor immediacy.  

 
Population and Setting 

The first class (LG section), which met at 8:00 AM, used Learning Glass in front of a live 
studio audience of rotating sets of 20 students that were enrolled in the course (shown in the Figure 
1). As seen in Figure 2, the lecture streams to the remote students via MediaSite and incorporates 
peer instruction techniques such as clicker questions via online breakout rooms and virtual 
whiteboard of Blackboard Collaborate technology to engage students at home. There were 215 
students in this class.   
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Figure 2. While instructor discussing students’ difficulties with a clicker question, students can 
interact online and discuss the questions with their peers and their instructor. 

 
The second class (standard face to face section) was delivered at 9:00 AM in a large 

auditorium-style lecture hall via document projector and used in-class clickers to engage the 
students.  This class had 327 students.  The content, homework, and exams were identical in both 
classes. Because of administrative difficulties, it was impossible to conduct a complete random-
control study with these two classes, but as previously mentioned, students did not know that the 
sections would be different when registering for the course. During the first week of the semester 
there was very little movement of students to different sections, about 10% attrition from Learning 
Glass to face to face section.   

In order to provide peer-instruction opportunities for the students in the Learning Glass 
section, we utilized an online conferencing system called “Blackboard Collaborate”. Blackboard 
Collaborate is an online system that allows users to conduct and record synchronous virtual classes 
and meetings. Synchronous viewers at home were able to participate in “clicker” questions posed 
by the instructor, using the Blackboard Collaborate toolbox (essentially a high-tech virtual chat 
room with common whiteboard). These students were also able to watch the rich media lecture 
using MediaSite TM created by Sonic Foundry (left part of Figure 2). Belvins and Elton (2009) had 
shown that among three instructional hardware/software packages, MediaSite is the preferred 
format when video and audio of the instructor are shown simultaneously with the power point 
slides (clicker questions).  

 
Data Collection  

To answer the first research question, we needed to build a baseline for students’ attitude 
and prior knowledge of physics concepts. Identical surveys were used as pre- and post- assessment 
so we could analyze how the Learning Glass intervention had impacted students’ conceptual 
understanding of physics and their attitudes. Our pre- and post-course assessments included the 
Force Concept Inventory (FCI) (Hestenes, Wells & Swackhamer, 1992) and Colorado Learning 
Attitudes about Science Survey (CLASS) (Adams et al., 2006). In order to answer the second 
research question, in addition to the conceptual understanding and attitude surveys, we used a well-
established instrument (Bodie & Bober-Michel, 2014) to measure the instructor immediacy at the 
end of the semester. Towards the end of the semester, we were also able to collect analytical data 
on the students’ usage of Learning Glass videos from the MediaSite server where the class videos 
were streamed and recorded and recently we were able to obtain the demographic data for our 
students in both classes. These data included students’ SAT scores, ACT scores, and their majors. 
Two indicators helped us distinguish minority and economically disadvantaged students: being part 
of the minority educational opportunity program and eligibility for financial aid.  

19th Annual Conference on Research in Undergraduate Mathematics Education 754

19th Annual Conference on Research in Undergraduate Mathematics Education 754



 

 
Data Analysis     

To answer the first research question, we used the students’ responses to the pre- and post- 
assessment surveys from both sections. To answer the second research question, we compared 
students’ responses to the immediacy survey. Based on the findings for first and second research 
questions, we addressed the third research question as well.  
 Students’ responses to the force concept inventory were assessed based on a rubric provided 
by the designers of the FCI (Hestenes, Wells, & Swackhamer, 1992). Each student received a 
comprehensive score for their correct responses to the FCI survey (out of maximum 30). Students 
also received a comprehensive score for their responses to the attitude survey.  

Most of the attitude survey’s questions were quantified based on the psychometric Likert 
scale. So if a student had chosen C on the second question of attitude survey (question 37 on our 
survey), their answer would be quantified as 3. Students’ responses on the immediacy survey were 
quantified similarly. Factor analysis of the CLASS survey had revealed several categories (Adams, 
et al., 2006) that we used in comparing the two sections: students’ attitudes on personal interest, 
real world connection, problem solving confidence, sense making efforts, and conceptual 
understanding.   

To compare the students’ learning gains between the two classes, the learning gains were 
calculated using the following formula for each student: 
𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝐺𝑎𝑖𝑛 =  𝑃𝑜𝑠𝑡−𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 𝐹𝐶𝐼 𝑆𝑐𝑜𝑟𝑒    −      𝑃𝑟𝑒−𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑛𝑡 𝐹𝐶𝐼 𝑆𝑐𝑜𝑟𝑒

30      −      𝑃𝑟𝑒−𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑛𝑡 𝐹𝐶𝐼 𝑆𝑐𝑜𝑟𝑒
  

   
Results 

The data was first cleaned to remove incomplete surveys; out of 215 students in the 
Learning Glass class we registered 125 valid surveys, for the face-to-face classroom we registered 
205 valid surveys. First we looked at the students’ performance on pre and post surveys between 
the two sections. Then we compared the learning gains between the two sections and the learning 
outcomes of minority and economically disadvantaged students. We then analyzed the results of 
immediacy surveys and the effects of Learning Glass on student learning.  

 
Students’ Performance on the Pre- Attitude Survey 

To compare students’ comprehensive scores on the attitude survey, we conducted an 
independent sample t-test. Levene’s test for equality of variances came out to be 0.183 which is 
larger than 0.10, so it confirmed the assumption that variances of students’ scores on the pre-
attitude survey for both sections were the same. The independent-samples t-test confirmed that 
there was no significant difference in comprehensive attitude score between the face-to-face class 
(section 2) (M=151.09, SD = 13.561) and the Learning Glass class (section 1) (M=148.63, 
SD=14.954). The magnitude of the differences in the means was small (eta squared = 0.007).  

Students in both sections had similar scores on the CLASS survey categories except in the 
conceptual understanding domain. Comparing to the students in the Learning Glass section (M = 
20.31, SD = 3.704), students in the standard face-to-face class (M = 21.39, SD = 3.361) had shown  
larger mean scores (p < 0.01) for the questions related to their understanding that physics is 
coherent and is about making sense, drawing connections, and reasoning not memorizing.  

 
 Students’ Performance on the Pre-FCI Survey   
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The one-way ANOVA test indicated a significant difference between the students’ 
performance on the FCI (p < 0.01). Students in the standard face to face section performed higher 
on the pre- FCI (M = 12.75, SD = 5.694) than the students in the Learning-Glass section (M = 
11.40, SD = 5.585).  

It appears that the difference in the mean value of students’ performance on the pre-
assessment FCI could be due to differences in the students’ majors (standard section had more 
engineering majors) or it could be due to students’ limited prior knowledge and skills necessary to 
advance in the undergraduate classroom. Analyzing the demographic data between the two sections 
illustrated that statistically there was a significant difference in student scores on SAT Math (p < 
0.05) with standard section scoring higher, while there was no significant differences on their 
scores in SAT Verbal exams or ACT scores.  

In order to see whether there was a significant difference in the student performance on pre 
FCI while controlling for their majors and their prior preparation (quantified by their SAT Math 
scores), we conducted one-way between-groups analysis of covariance. After adjusting for their 
majors and their prior preparation, there was no significant difference between the two section 
performances on Pre- FCI (F (1, 272) = 0.184, p = 0.668).  

 
Students’ Performance on Post Attitude Survey 

An independent-samples t-test was conducted to compare the students’ scores on the 
attitude survey for face-to-face class and the Learning Glass class. Similar to the pre-attitude 
results, there was no significant difference between the students’ comprehensive scores on the post-
attitude survey for face-to-face students (M = 143.57, SD = 14.872) and Learning Glass students 
(M = 140.62, SD = 18.40). The magnitude of the differences in the means was very small (eta 
squared = 0.007). The difference we had seen in the conceptual understanding category had been 
eliminated and both sections had similar mean scores on all the CLASS survey categories.  

 
Students’ Performance on the Post FCI 

Similar to the pre-assessment, the face-to-face class outperformed the Learning Glass 
students. An independent-samples t-test was conducted to compare students’ performance on the 
post FCI in face-to-face and Learning Glass classes. There was a significant difference (t (327) = -
2.694, p = 0.007) in the face-to-face students’ performance on post FCI (M = 17.54, SD = 5.933) 
versus the Learning Glass students (M = 15.72, SD = 6.006). The magnitude of the differences in 
the means was very small (eta squared = 0.009). In order to normalize these differences, students’ 
learning gains were compared.  
 
Learning Gains Comparison 

The independent-samples t-test was conducted to compare the students’ learning gains 
between the two classes. There was no significant difference in learning gains for students in the 
face-to-face class (M = 0.27, SD = 0.31) and students in the Learning Glass class (M = 0.24, SD = 
0.26). Students’ learning gains were the same between the two classes.  

 
Learning gains of minority and socially economically disadvantaged students 

A two-way between-group analysis of variance was conducted to explore the learning gains 
for minority and economically disadvantaged students for each section. The effect of being a 
minority (F (2, 323) = 0.006, p = 0.994), being in either section (F (1, 323) = 0.128, p = 0.226) and 
the interaction effect (F (2, 323) = 0.675, p = 0.24) did not reach statistical significance. So there 
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was no significant difference in the students’ learning gains between the two sections. One could 
claim that despite the differences in students’ prior knowledge, this instructor had created equal 
learning opportunities for the students from diverse backgrounds.   

 
Level of immediacy between the two sections 

The students in the Learning Glass section found the instructor more immediate. The 
independent samples t-test, a parametric test of significance was used to determine a significant 
difference between the Learning Glass students’ scores on the immediacy survey (M = 80.13, SD = 
11.790) and the traditional face-to-face section (M = 75.25, SD = 12.260; t (327) = 3.554, p = 
0.0001, eta squared = 0.04). The relation between level of immediacy students feel towards the 
teacher and learning gains in both sections was investigated using a Pearson product-moment 
correlation coefficient. There was a strong, positive correlation between the immediacy and 
learning gains in the Learning Glass section (r = +0.25, n = 125, p < 0.01) however there was no 
correlation between these two variables in the face to face classroom (r = 0.126, n = 204, p = 
0.073).  

 
Immediacy in the Learning Glass classroom 
 Students in the Learning Glass section felt their teacher being more immediate towards 
them. This could be due to the rich media provided by the MediaSite delivery method. We 
therefore looked at the correlation of MediaSite analytical data and level of immediacy. Level of 
immediacy was significantly correlated to the total number of times students watched the videos (r 
=0.306, n = 123, p < 0.01) and the number of times they watched the lecture live (r = 0.247, n = 
123, p < 0.01). There was no correlation between the immediacy and total number of hours 
students spent watching the lecture videos (r = 0.168, n = 123, p =0.064). The last piece of 
analysis is investigating the relationship between the learning gains and level of immediacy and the 
MediaSite analytical data.  
 
Effect of the Learning Glass on student learning 

The data obtained from the MediaSite hosting the Learning Glass videos showed three 
variables: For each student, it showed the number of times they watched the lecture live, the total 
number of times they watched the videos including asynchronous views, and finally the total 
number of hours they spent on watching the videos. In order to look at the predictability of these 
factors, we employed hierarchical multiple linear regression. Hierarchical multiple regression is a 
regression technique used to generate and compare the predictive models for a continuous 
dependent variable (learning gains in the Learning Glass section) using different sets of 
independent variables (level of immediacy, total number of live views, total number of times 
students watched the video and total number of hours spent watching the videos). The hierarchical 
multiple regression revealed that level of immediacy (p < 0.05) and total number of times students 
watched the lecture live (p < 0.05) contributed significantly to the learning gains (F(2,122) = 8.828, 
p < 0.001). 

Conclusion 
 
Based on this preliminary analysis we can claim that integrating Learning Glass technology 

into the online classroom can provide an effective learning opportunity where students reach the 
same level of learning outcomes as the students in a standard face-to-face classroom.  
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An ideal efficacy study would have had randomly distributed populations to create a 
baseline. As we saw in the results of the analysis, our two populations had a similar attitude 
towards physics to start with but performed differently on the pre-conceptual assessment. We saw 
the same differences occurred at the end of the semester, but the students in the Learning Glass 
class and the standard face to face class had similar learning gains.  

Students in the Learning Glass section had found the instructor more immediate than the 
face to face section. This feeling of connectedness is a key predictor of persistence in STEM fields 
so one can claim that Learning Glass technology has the potential to increase retention rates in 
undergraduate STEM majors. Learning Glass is an effective technological replacement to the large 
auditorium style classroom and has the capability of providing equal learning opportunities for 
students from all walks of life.  
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Prior research has shown several common student conceptualizations of integration among 
undergraduates. This report focuses on data from a written assessment of students’ views on 
definite integration and accumulation functions to categorize student conceptualizations and 
report on their prevalence among the undergraduate population. Analysis of these results 
found four categorizations for student descriptions of definite integrals: antiderivative, area, 
an infinite sum of one dimensional pieces, and a limit of approximations.  When asked about 
an accumulation function, student responses were grouped into three categorizations:  those 
based on the process of calculating a single definite integral, those based on the result of 
calculating a definite integral, and those based on the relationship between changes in the 
input and output variables of the accumulation function. These results were collected as part 
of a larger study on student learning in multivariable calculus, and the implications of these 
results on multivariable calculus will be considered. 

Key words:  Calculus, Integration, Accumulation 

Integration is a key concept in the undergraduate mathematics curriculum. Student 
conceptions and difficulties in that realm have been well-documented (Bezuidenhout, J. & 
Olivier, A., 2000; Orton, 1983; Rasslan, S. & Tall, D., 2002; Hirst, 2002). The central 
conceptions of a definite integral from the literature could be characterized as: 
antidifferentiation procedure, area, and accumulation. These categories are consistent with 
those used by Jones (2015) and Hall (2010).  

Students with an antidifferentiation conception focus their interpretation on the function 
whose derivative is the function being integrated. Students have been found to be generally 
competent in executing the procedure of integration (Mahir, 2009; Orton, 1983; Grundmeier 
et al., 2006). However, only a small proportion of students are able to translate to the 
graphical representation and solve when the original problem contains an expression not 
elementary for integrating (e.g. ⎣ ⎦x ) (Rasslan, S. & Tall, D., 2002; Mahir, 2008). 

In the area conception, students refer to the (signed) area bounded by the curve on a given 
domain on the graph of the function. The area can be conceived as an infinite collection of 
lines or limit of narrowing rectangles (or trapezoids) (Sealey 2006; Jones 2013; Czarnocha, 
B., Dubinsky, E., Loch, S., Prabhu, V., & Vidakovic, D., 2001). 

Accumulation is an important but less widely understood interpretation (Thompson, 
1994; Thompson & Silverman, 2008; Jones 2015). It represents the conception of the integral 
as a sum of amounts. Tall (1992) called it cumulative growth; Thompson (1994) called it 
accumulation; Jones (2013) called it adding up pieces; Jones (2015) called it multiplicative-
based summation. Understanding of this form is directly related to the ability to writing the 
integral for an application problem (Jones, 2015; Sealey, 2006). 

Whereas a definite integral has fixed boundaries, an accumulation function is an integral 
with at least one variable boundary, so the result is a function. Student conceptions on this 
particular aspect of integration have been less deeply explored. Its importance is clear from 
its appearance in the Fundamental Theorem of Calculus. 

Our desire with this study is to understand the current landscape of students’ 
conceptualizations of integration as they learn multivariable calculus. Our goal is to 

19th Annual Conference on Research in Undergraduate Mathematics Education 761

19th Annual Conference on Research in Undergraduate Mathematics Education 761



investigate the question, “What are the primary conceptualizations of integration present 
among students entering multivariable calculus who have completed single variable calculus, 
and how prevalent are the various conceptualizations in this population?” 

 
Theoretical Perspective 

 
In this study we chose to focus on students’ descriptions of integration rather than 

examine their ability to give correct or incorrect responses to mathematical questions.  This 
decision is based on our theoretical perspective which stems from Tall and Vinner’s (1981) 
work on concept images and concept definitions.  In short, our primary interest is in 
understanding the mental images, processes and connections that a student brings to mind 
when considering the topics of integration and accumulation, that is, their concept image of 
definite integration and accumulation functions.  It is important to keep in mind that students 
involved in our study may possess elements of their concept image that were never uncovered 
by their responses, for this reason we say that we are studying their evoked concept images in 
response to the questions posed to them. 
 

Methodology 
 

The data for this report comes from a larger project studying student learning in 
multivariable calculus at 26 universities. The preliminary results presented here were 
collected from 57 students in two separate classrooms from two separate universities. At the 
beginning of their multivariable calculus course, students in the study were asked to complete 
a collection of open ended written responses on various topics in introductory calculus. The 
current report will focus on student responses to the following two questions featuring the 
concept of integration in single variable calculus. 

 

 
 
Student responses were analyzed using an open coding scheme to sort them into distinct 

categories. Some student responses were unclassifiable due to misinterpreting the question, 
leaving the question blank, or responding in a manner that was uninterpretable. Among the 57 
students involved in the study, 55 gave classifiable responses to question #1 and only 35 gave 
classifiable responses to question #2. 

 
Preliminary Results 

 
Following are the categories which emerged during our preliminary analysis of student 

responses to questions #1 and #2 above regarding the concept of integral in single variable 
calculus. 

 
Categories of responses to question #1 on the definite integral 

Question #1:  Suppose the result of ∫ ݔ݀(ݔ)ݍ
  is a real number, k. Explain what 

k means and how it was measured. Sketch any images you have in mind in the 
space below. 

Question #2:  Suppose that a function G is defined: ܩ = ∫ ௧ݔ݀(ݔ)݂
 .  Is G a 

function of t or a function of x? Justify your response.  
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Integral as representing an antiderivative 

Students within this group primarily respond in terms of symbolic representations of 
functions and describe k as the computed result from manipulating those representations. 
Student responses typically omit sketched images or present symbolic representations as the 
‘image’ accompanying the description. 

Example response: “You take the antiderivative of q(x). Once you do that, you substitute 
b for x and a for x and subtract. The difference is k” 

 
Integral as representing an area 

Students within this group primarily describe the integral in terms of area without 
reference to how the area can be computed or interpreted. Accompanying sketches typically 
include the graph of a function with the area underneath the function shaded; however, the 
sketches contain no means of dividing the area into simpler shapes. 

Example response: “k is the area under q(x) between a and b” 

 
Figure 1: Sketch by a student interpreting a definite integral as area 

 
Integral as representing an infinite sum of one-dimensional objects  

Students within this group describe integration as a process of adding together an infinite 
number of infinitely small pieces, often referred to as ‘lines’ or ‘slices.’ Students within this 
group often describe this process as a means of measuring the area underneath the function. 
This category closely resembles the “collapse metaphor” of limit as described in Oehrtman 
(2009).  Sketches accompanying these descriptions often contain either a single 
representative ‘slice’ of the function or an area composed of vertical lines.   

Example response: “The area under the curve, q(x), is equal to some real number, k. k was 
measured by taking an infinite number of slices of the area under the curve.” 

  
Figure 2: Sketches by students interpreting a definite integral as an infinite sum of one-

dimensional objects 
 

Integral as representing a limit of approximations  
Students within this group describe integration as an approximation process, usually in 

terms of Riemann Sums. The students’ descriptions of the limiting process of these 
approximations can vary widely including descriptions of repeating the approximation 
process indefinitely, doing a single approximation at a very high level of accuracy, or 
creating approximations to meet a desired accuracy as described in Sealey and Oehrtman 
(2007). Like the previous category, students within this group often describe the 
approximation process as a means of measuring the area underneath the function. Sketches 
accompanying these descriptions often reflect the traditional images associated with Riemann 
Sums. 
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Example response: “k means area under the curve. It was measured by taking segments of 
the curve and multiplied by the height of the function, thus creating rectangles. This process 
was then repeated by taking a limit and taking smaller and smaller segments each time.” 

 
Figure 3: Sketch by a student interpreting a definite integral as a limit of approximations 
 
For question #1 55 of 57 students gave a classifiable response.  From those responses the 

majority of students (69%) describe the definite integral in terms of area and over half of the 
remaining students (16%) describe it in terms of an antiderivative.  The remaining students 
were divided evenly among those who represented integration as an infinite sum of one-
dimesional objects (7%) and those who represent the integral as a limit of approximations 
(7%). 
 
Categories of responses to question #2 on the accumulation function 

 
x and t are described by their role while performing integration 

Students within this group focus on the process of computing a single value from 
integrating and the roles of x and t within that process. Students within this group tend to 
describe x as the “variable” involved in the process and t as a “parameter” or “boundary 
value.” For this reason, students within this group respond that x is the variable present and 
argue based on the roles of either x or t rather than in terms of the function G. This may be 
due to a weak understanding of the covariational nature of functions (Carlson et al., 2002) or 
an unreified view of the process of integration (Sfard, 1991) 

Example responses: “G is a function of x. It’s not t because t is just a boundary.” “G is a 
function of x because x is the input.”    

 
x and t are described by their role after performing symbolic integration 

Students within this group tend to speak primarily in terms of the symbolic process of 
integrating; however, unlike the previous group of students, students within this category 
focus their attention on the result of integrating rather than the process of computing the 
integral. Students within this group respond that t is the variable because after using the 
fundamental theorem to integrate, t is substituted back for x to achieve the final answer. 

Example response: “G is a function of t because t will replace the x from f(x) when 
integrating.” 

 
x and t are described by how changes in each variable affect the value of the function, G 

Students within this group emphasize in the input-output nature of the function G and 
respond in terms of how changes in either t or x will result in changes in G. Students within 
this group respond that G is a function of t because changing the value of t changes the 
resulting value of G. 

Example responses: “G is a function of t. By modifying t, one can change the interval 
over which f(x) is integrated.” “A function of t, since any change in t would change the value 
of G.” 

 
For question #2 the preliminary analysis shows that among the students who gave a 

classifiable response, the majority (54%) described x and t in terms of their roles while 
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performing integration with most of the remaining students (34%) described x and t in terms 
of their role after performing symbolic integration.   

 
Table 1: Students with certain concept images for definite integral in Question #1  

Evoked Concept Image for Definite Integral % 
antiderivative 16 
area 69 
infinite sum of one-dimensional objects 7 
limit of approximations 7 

 
Table 2: Students with certain concept images for accumulation function in Question #2 

Evoked Concept Image for Accumulation Function % 
x and t are described by their role while performing integration 54 
x and t are described by their role after performing symbolic integration 34 
x and t are described by how changes in each variable affect the value of the 
function 

12 

 
Discussion 

 
These preliminary results confirm the primary conceptions of a definite integral from the 

literature. They also offer a new result, categories for the conceptualization of the 
accumulation function. The data indicate that the majority of the students in our study evoked 
conceptualizations of integration that fail to emphasize the underlying structure of the definite 
integral as a limit, a summation, and a product. Such conceptualizations could be an 
indication of pseudo-structural thinking (Sfard & Linchevski, 1994) among the students in 
our study. It is interesting that, although a majority of the students responded to question #1 
in terms of the area underneath the function, very few students used area as a means to reason 
about the roles of x and t in question #2, opting instead to reference the symbolic process of 
calculating a definite integral using the fundamental theorem of calculus. This is likely due to 
the increased complexity when moving from an integral with constant limits of integration to 
an integral with variable limits of integration. This requires the integral to be treated as an 
object within the function process defining the accumulation function, thus requiring a reified 
conceptualization of the definite integral.  It is also likely that students’ evoked images of the 
definite integral and accumulation functions are highly influenced by their experiences with 
each concept in the classroom. The impact of which interpretation is available for a student 
has been noted (e.g. Jones, 2015), but would benefit from further study. 

The data for this report is situated within a larger project exploring student learning in 
multivariable calculus. In particular, the authors are interested in exploring the implications 
of these results for teaching and learning multivariable integration. For these reason, we have 
chosen to focus our audience questions on the implications of these results for teaching and 
learning in multivariable calculus. 

   
Questions for discussion:  

• How do these results impact instruction and learning in multivariable calculus? 
• What effect would you expect multivariable calculus instruction to have on 

student responses to a post-test? 
• What types of multivariable calculus experiences would most likely influence 

students’ evoked images of integration? 
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oriented differential equations 
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There is more need for research on how mathematicians can alter their teaching style to a 
reform approach (Speer, Smith, & Horvath, 2010), especially if they have always been teaching 
the same way (Speer & Wagner, 2009; Wagner, Speer, & Rossa, 2007). One particular area that 
needs more work is investigations of support structures for mathematicians hoping to reform 
their teaching practice. This poster focuses on supports designed to aid in the reform of teaching 
practice and specifically discusses the Teaching Inquiry-oriented Mathematics: Establishing 
Supports (TIMES) project and one online working group (OWG) used as a mode of support in 
the project. Results indicate that facets of the OWG are successful support structures for 
mathematicians who desire to align their practice to an inquiry oriented (IO) approach to 
undergraduate differential equations (Rasmussen & Kwon, 2007; Rasmussen, 2003). 
 
Key words: inquiry oriented, differential equations, support, instructional reform 
 

There is clear evidence of the effectiveness of the inquiry oriented differential equations 
(IODE) curriculum and materials (Kwon, Rasmussen, & Allen, 2005; Rasmussen, Kwon, Allen, 
Marrongelle, & Burtch, 2006) and a plethora of research on the enactment of that curricula (e.g., 
Keene, Lee, & Lee, 2011; Rasmussen & Marrongelle, 2006; Rasmussen, Stephan, & Allen, 
2004; Stephan & Rasmussen, 2002). However, just because reform curricula have been proven to 
be effective in certain contexts does not mean that mathematics instructors will be able to 
effectively implement the reform curricula unless they have support to do so (Speer et al., 2010; 
Speer & Wagner, 2009; Wagner et al., 2007). 

The TIMES project is currently supporting the development and refinement of a set of 
instructional supports to aid university mathematics faculty in shifting towards an inquiry-
oriented (IO) practice. Important to the project is not just that the mathematics instructors use the 
IO materials, but that they receive multiple forms of contact with the lead researchers to aid in 
that desired shift of practice. The form of contact which this poster focuses on, is a weekly online 
working group (OWG) which uses lesson study (Lewis, Perry, & Hurd, 2009) that are composed 
of four week-long segments. In two of those weeks, instructors seek help from their fellow 
instructors and from the facilitators to improve their teaching practices, and they use video clips 
from their own classrooms to facilitate that discussion. I observed one OWG in which the 
instructors were sharing videos of themselves, and particular attention was paid to the types of 
questions that the instructors asked their fellow instructors. Specifically, this report addresses the 
following research question: What types of questions do mathematicians ask in an online 
working group for inquiry oriented differential equations and how do these questions relate to 
their perception of support from the online working group? 

Methodology 

This report focuses on three of the participants currently in the IODE OWG. All three come 
from small liberal arts colleges/universities across the country and are all teaching IODE for the 
first time. One form of data came from interviews with the three participants (audio-recorded and 
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self-transcribed). Additionally, I observed and took live field notes of one OWG where the 
instructors were sharing videos of their teaching of the systems of differential equations unit. To 
analyze the interview data, I began with an initial set of codes (i.e., content, pedagogical, 
logistical, and advice questions) that would be useful in answering the research question. Then I 
open coded transcripts to discover emergent themes. Lastly, I compared the field notes from the 
OWG observation to the interview transcripts to confirm instructors’ claims of their dominant 
question type in the OWG. 

Preliminary Findings and Conclusions 

Results from the analysis highlighted several components of support afforded by the OWG. 
That support is directly correlated to the types of questions that instructors asked in the OWG. 
Because all three instructors are from small colleges/universities, being part of a collaboration 
with fellow instructors is unique for these participants. They can collaborate about innovate 
approaches to their teaching without being tied down by departmental regulations. Participant A 
remarked about the importance of honest feedback from her fellow instructors, 

I think that the fellow instructors tend to give honest feedback. And so since I am in such 
a small department here, it is really helpful to have honest feedback from people who are 
not involved in any departmental politics. 

Furthermore, the instructors typically are not afforded opportunities to reflect on their teaching 
practice in their work environment simply because there are no support structures that exist 
within these participants’ departments specifically focused on allowing them to reflect on their 
teaching practice. Participant B noted, 

And so where I think I can get the most benefit out of this of this kind of experience is 
when I can reflect with others on how that went so that I can see where I need to be 
anticipating or what I need to be thinking about more in that chaotic moment when I am 
processing the whole class. 

Similarly, Participant C stated how he receives, “an on the spot, real time, type of feedback” 
from the OWG. Further, Participant B mentioned he does not observe other teachers teach in 
their classroom and has no one observe him in his classroom. This, however, does happen in the 
OWG when they all watch videos of their fellow instructors teaching in the lesson study. 

Every instructor noted how the OWG allows them to ask questions to their fellow instructors 
about their teaching practice, past or future. Thus, questions that emerge in the OWG are used by 
the instructors to address the concerns that they have about teaching practice, which are not 
addressed by colleagues at their own colleges/universities. However, at the root of all instructors’ 
questions type choices are notions of structures that are missing from their practice, yet are 
inherent components of the OWG. Ultimately in answer to the research question, 

The OWG allows instructors to reflect on their teaching practice because they can ask for 
advice and feedback from the fellow instructors in a safe and collaborative environment 
to improve their implementation of the IODE material and their holistic teaching 
practice, which does not happen in their normal work atmospheres. 
These results are from an early investigation of support structures for mathematicians hoping 

to reform their teaching practice. They show promise for additional and exciting research on 
support structures for mathematician’s instructional reform. The implications from this work add 
knowledge to the field of undergraduate mathematics education and instructor professional 
development and highlight the power of OWGs in mathematicians’ instructional reform.   

19th Annual Conference on Research in Undergraduate Mathematics Education 769

19th Annual Conference on Research in Undergraduate Mathematics Education 769



References 

Keene, K. A., Lee, J. T., & Lee, H. S. (2011). Linking instructor moves to classroom discourse 
and student learning in differential equations classrooms. In Proceedings of the 14th 
Annual Conference on Research in Undergraduate Mathematics Education (pp. 111–
115). 

Kwon, O. N., Rasmussen, C. L., & Allen, K. (2005). Students’ retention of mathematical 
knowledge and skills in differential equations. School Science and Mathematics, 105(5), 
227–240. http://doi.org/10.1111/j.1949-8594.2005.tb18163.x 

Lewis, C. C., Perry, R. R., & Hurd, J. (2009). Improving mathematics instruction through lesson 
study: A theoretical model and North American case. Journal of Mathematics Teacher 
Education, 12(4), 285–304. http://doi.org/10.1007/s10857-009-9102-7 

Rasmussen, C. L. (2003). Inquiry-oriented differential equations instructional materials. 
Unpublished materials. 

Rasmussen, C. L., & Kwon, O. N. (2007). An inquiry-oriented approach to undergraduate 
mathematics. Journal of Mathematical Behavior, 26(3), 189–194. 
http://doi.org/10.1016/j.jmathb.2007.10.001 

Rasmussen, C. L., Kwon, O. N., Allen, K., Marrongelle, K., & Burtch, M. (2006). Capitalizing 
on advances in mathematics and K-12 mathematics education in undergraduate 
mathematics: An inquiry-oriented approach to differential equations. Asia Pacific 
Education Review, 7(1), 85–93. http://doi.org/10.1007/BF03036787 

Rasmussen, C. L., & Marrongelle, K. (2006). Pedagogical content tools: Integrating student 
reasoning and mathematics in instruction. Journal for Research in Mathematics 
Education, 37(5), 388–420. Retrieved from 
http://web.stevens.edu/golem/llevine/CIESE/student_reason_math_instruction.pdf 

Rasmussen, C. L., Stephan, M., & Allen, K. (2004). Classroom mathematical practices and 
gesturing. Journal of Mathematical Behavior, 23, 301–323. 
http://doi.org/10.1016/j.jmathb.2004.06.003 

Speer, N. M., Smith, J. P., & Horvath, A. (2010). Collegiate mathematics teaching: An 
unexamined practice. Journal of Mathematical Behavior, 29, 99–114. 
http://doi.org/10.1016/j.jmathb.2010.02.001 

Speer, N. M., & Wagner, J. F. (2009). Knowledge needed by a teacher to provide analytic 
scaffolding during undergraduate mathematics classroom discussions. Journal for 
Research in Mathematics Education, 40(5), 530–562. http://doi.org/10.2307/40539355 

Stephan, M., & Rasmussen, C. L. (2002). Classroom mathematical practices in differential 
equations. Journal of Mathematical Behavior, 21(4), 459–490. 
http://doi.org/10.1016/S0732-3123(02)00145-1 

Wagner, J. F., Speer, N. M., & Rossa, B. (2007). Beyond mathematical content knowledge: A 
mathematician’s knowledge needed for teaching an inquiry-oriented differential 
equations course. Journal of Mathematical Behavior, 26(3), 247–266. 
http://doi.org/10.1016/j.jmathb.2007.09.002 

 

19th Annual Conference on Research in Undergraduate Mathematics Education 770

19th Annual Conference on Research in Undergraduate Mathematics Education 770



!

Students’ conceptualizations and representations of how two quantities change together 
 

Kristin M. Frank 
Arizona State University 

 
In this article I discuss the nature of two university precalculus students’ meanings for functions 
and graphs. I focus on the ways in which these meanings influence how these students reasoned 
about and represented how two quantities change together. My analysis revealed that a student 
who views a graph as a static shape and does not see a graph as a representation of how two 
quantities change together will not be successful in constructing meaningful graphs, even in 
instances when she is able to reason about two quantities changing together. Students made 
progress in seeing graphs as emergent representations of how two quantities change together 
when they conceptualized the point (x,y) as a multiplicative object that represented the 
relationship between an x and y value. 
 
Key words:  Function; Covariational Reasoning; Graphing 

 
There is a growing body of research that documents the importance of covariational 

reasoning, imagining quantities’ values varying together, when conceptualizing rates (Johnson, 
2015; Thompson, 1994a; Thompson & Thompson, 1992), the behavior of exponential and 
trigonometric functions (Castillo-Garsow, 2010; Moore, 2010; Thompson, 1994c), and graphs 
(Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Moore & Thompson, 2015).  After high school, 
reasoning about variation is essential to understand calculus (Thompson, 1994b; Zandieh, 2000), 
differential equations (Rasmussen, 2001), and continuous functions (Roh & Lee, 2011).  While 
the research community understands the importance of covariational reasoning, researchers do 
not yet understand how students come to reason covariationally.  

Carlson et al. (2002) developed a framework to classify student’s covariational thinking but 
they did not describe how students might develop these ways of thinking. Whitmire (2014) 
studied how undergraduate students solve a task whose solution necessitated covariational 
reasoning. He found that static shape thinking, reasoning about a graph based on one’s 
perceptions of the shape of the graph (Moore & Thompson, 2015), stood as a distraction from 
covariational thinking. In contrast, he found that simultaneously attending to two quantities was 
associated with instances of covariational reasoning. In this report I extend Whitmire’s findings 
by elaborating the ways static shape thinking inhibits reasoning covariationally and I provide 
evidence that simultaneously attending to two quantities’ values is propitious for engaging in 
covariational reasoning and representing how two quantities’ values change together.  

 
Images of Variation 

 
To engage in covariational reasoning, one must construct an image of how two quantities’ 

values change together. As Saldanha and Thompson (1998) described, this requires the student 
construct a multiplicative object and conceptualize the two quantities’ values at once. Then the 
student “tracks either quantity with the immediate, explicit, and persistent realization that, at 
every moment the other quantity also has a value” (Saldanha & Thompson, 1998, p. 2). For 
example, in the context of graphing, the student must construct the point (x, y) as a multiplicative 
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object that simultaneously represents both the value of x and y. Then the student can track (or 
imagine tracking) the value of x with the awareness that as x varies, y varies as well. 

Castillo-Garsow (2010) described two ways for students to imagine tracking the value of x: 
(1) the student imagines the tracking already happened and conceptualizes a completed change in 
the value of x – a chunky image of variation or (2) the student imagines change in progress and 
conceptualizes sweeping over a continuum of x-values – a smooth image of variation. Lakoff and 
Núñez (2000) argued that conceptualizing sweeping over a continuum involves fictive motion – 
using a motion verb when the subject is not actually moving. For example, in the phrase “the 
value of x goes from 1 to 4” the value of x is not moving but we talk as if it is. Fictive motion 
enables one to go between static and dynamic conceptualizations of the value of x. 

Tracking a quantity’s value is a nontrivial activity for students. This necessitates that the 
student conceptualize a quantity, the measure of that quantity, and that measure varying in a 
situation. If the student does not construct this image the student is said to have no image of 
variation.  

 
Methodology 

 
I conducted one-on-one task-based interviews with three university precalculus students, 

Sara, Carly, and Vince. The students were selected from three different sections of precalculus to 
account for differences in instruction. The interview consisted of two phases. The first phase was 
a clinical interview (Clement, 2000; Hunting, 1997). I engaged the students in tasks I anticipated 
would support me in understanding their meanings of functions, tabular representations, and 
graphical representations. The second phase of the interview was a task-based-teaching interview 
(Castillo-Garsow, 2010; Moore, 2010). My primary teaching goal was to support students in 
conceptualizing a graph as an emergent representation of how two quantities change together. In 
this part of the interview I used dynamic animations to support students in conceptualizing 
change in progress. I anticipated this would support students in imagining sweeping over a 
continuum of values thus constructing an image of smooth variation. 

 
Results 

 
After I completed the interview process I engaged in grounded coding (Strauss & Corbin, 

1998). After each interview I engaged in open coding and gathered evidence of how students 
conceptualized functions, graphs, and variation. After reviewing videos and transcripts of each 
interview I found that while all three students were able to describe how two quantities changed 
together, not all students were able to represent their conceptualization of how two quantities 
changed together. Since Sara and Carly exhibited similar ways of thinking, I will focus on 
contrasting Sara and Vince’s ways of thinking. 

  
The Story of Sara  

Over the course of two interviews, Sara consistently used shape thinking and memorized 
procedures to make sense of problem situations. For example, at the beginning of my interview 
with Sara I asked her to explain what it means for something to be a function. She responded by 
describing a procedure to compute the change in the value of y and divide it by the change in the 
value of x. She did not discuss the meaning for these calculations nor did she explain the 
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meaning of the result of dividing.1 Her responses throughout the interview suggest that she was 
unable to view graphs or other function representations as a means of representing how two 
varying quantities change in tandem. Data to support this claim follows in the next section.  
 
Sara associated graphs with shapes she had previously seen in math class 

I presented Sara with a graph that appeared to show two vertical lines, one at x = 1 and the 
other at x = -1 (Figure 1a). I asked her to determine whether the graph represented a function. 
She gestured that it was like an upside down ‘u’ shape and explained, “only you can’t see the 
top”. She concluded that the graph represented a function since the graph was like one she had 
seen in class. She matched the shape with one she had seen before and justified her response 
based on her perception of the graph’s shape. This suggests that for Sara, graphs represent shapes 
as opposed representations of how quantities’ values vary together. 

  
Figure 1a: Sara was asked to determine 
whether this relationship is a function. 

Figure!1b:  Graph displayed to Sara after 
she anticipated the behavior around at x = 1. 

I asked Sara to anticipate what we would see if we zoomed in on the graph around the point 
(1, 0). She described that the line would come down perpendicular to the horizontal axis but just 
stop and not go below the horizontal axis. Then I highlighted a region on the graph around x = 1 
and zoomed in on this region (Figure 1b). I asked Sara if she believed what she saw and she said,  

“No. (Laughs) I mean I haven't seen it before and I just feel like a graph would look 
weird if it is like going down and then curving also. If like. Especially if there is a top to 
graph, which I don't know if there is or not now because I am second-guessing myself. 
But. (4 seconds of silence) Or, there is and there are asymptotes there. There wouldn't be 
a top. So that could work if there was like two asymptotes.” 

She proceeded to sketch of her new understanding of the graph (Figure 2)  

 
Figure 2. Sara's graph after she conceptualized graph as a shape with asymptotes. 

 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 It is noteworthy that Sara had recently learned a method for determining the average rate of 
change of a function on an interval of a function’s domain.  
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Sara approached this task by trying to think of a graph she had seen before that matched her 
conception of the situation. When her prediction did not match the graph I displayed, she used 
the new information displayed in the graph to develop a new possibility for the shape of the 
graph – a graph with asymptotes. Instead of conceptualizing what the zoomed in graph told her 
about how x and y varied together, Sara concluded that the graph would look weird “going down 
and curving”. This provides further evidence that Sara engaged in static shape thinking when 
making sense of graphical representations. 
 
Implications of Sara’s tendency to engage in static shape thinking 

The last task in the interview was based on an item from a diagnostic instrument for 
professional development (Thompson, 2011). I presented Sara with an animation where the value 
of Quantity A was represented with a red bar along the horizontal axis and the value of Quantity 
B was represented with a blue bar along the vertical axis. As the animation played the lengths of 
the red and blue bars changed together to describe how the two quantities change together. I 
presented Sara with three versions of this task.  

While I intended this to be a novel task, Sara had done a similar task in her precalculus class.  
Sara said she was bad at these types of problems but her ability complete the first version of this 
task with ease suggests that Sara learned a strategy to complete these problems. Her way of 
thinking broke down in the second version of the task which represented the behavior of  
y = sin(x) : -2π < x < 2π. As Sara watched the animation, she appropriately described, “As x was 
increasing at the beginning y was decreasing. But as x comes closer to 0 y also approaches 0 and 
they both increase for a little bit and as y keeps increasing or as x keeps increasing y starts to 
decrease.”  This suggests that Sara was imagining change in progress. Although Sara was able to 
describe the how the quantities’ changed together, she struggled to represent this graphically. In 
the following excerpt Sara explained her approach to constructing a graph from the animation.  

 
Sara: In my head I like know like as that one is increasing you have to like. I try and like 
think of the shape of the line or the point or whatever to get to the line. Or yeah.  
Interviewer: What do you mean you think of the shape to get to the line? 
Sara: So like for this like I have to see how like. Since that [value of x] is like increasing 
(gestures left to right) and that [value of y] is decreasing (gestures up and down) like what I 
am thinking in my head. Like I am like trying to figure out which way it needs to go.  
Interviewer: Which way what needs to go? The graph?  
Sara: Yeah. So. I don't know. That is why it takes me so long when I am just staring at the 
graphs.  
 
Sara appeared to abandon her thinking about changing quantities when constructing a graph. 

Instead of conceptualizing the graph as a trace of how the value of x and y change together, she 
broke the graph up into chunks based on whether the value of y increased or decreased. Then she 
determined a shape that depicted the appropriate behavior of y as x increased. For example, if the 
value of y increased as the value of x increased then she knew the graph had to go up and to the 
right. While Sara was able to appropriately describe how the values of x and y changed together, 
her tendency to engage in static shape thinking prevented her from leveraging her reasoning 
about how the two quantities were changing together to construct a meaningful graph.  
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The Story of Vince 
At the beginning of my interview with Vince I asked him to construct a graph from a table of 

values. He explained that since the table was a function the graph would be a smooth line and he 
could sketch an approximation but would need the function, “the y equals something”, to 
determine the exact graph. He elaborated that he needed the formula so he could plug in all of 
the x values, determine the associated y values, and plot all of the resulting (x, y) pairs. This 
understanding of graphs enabled Vince to draw smooth curves, “a bunch of dots put together that 
now looks like a line to me.” This suggests that Vince conceptualized graphs as collections of 
points where a point simultaneously represented an x and y value.  

While there are limitations to this understanding of functions and graphs, Vince was able to 
complete all tasks in the interview with this way of thinking. For example, since Vince 
conceptualized graphs as a collection of points, whenever he attended to two points he also 
addressed the many points in-between. Specifically, when sketching a graph from a table of 
values Vince acknowledged that “anything could happen between the given points”. Thus, even 
though Vince often attended to individual points Vince was likely imagining the quantity’s value 
varying.  This image of variation seemed to enable Vince to conceptualize sweeping over a 
continuum of x values with the awareness that he can construct and (x, y) pair at every value of x.  
This allowed Vince to imagine that “anything could happen” between two values of x. 
 
Leveraging one’s image of a correspondence point to construct meaningful graphs 

Vince’s point-wise meaning for functions and graphs broke down at the end of his interview. 
The last task Vince completed was the same task that Sara completed (described above). I 
presented Vince with and animation where the value of Quantity A was represented with a red 
bar along the horizontal axis and the value of Quantity B was represented with a blue bar along 
the vertical axis. As the animation played the lengths of the red and blue bars changed together to 
describe how the two quantities change together (Thompson, 2011). I presented Vince with three 
versions of this task and each time asked him to sketch a graph of how the two quantities 
changed together. The following exchange occurred at the beginning of this task. (The animation 
he was watching during this exchange represented the behavior of y = 0.2x3: -12 < x < 12.)  

 
Interviewer: So a little bit different. I have a red line that represents that value of x and 
the blue line represents the value of y. These two values change together. (Animation 
plays). Well the question is how do they change together?  What if I wanted a graph that 
showed how these two quantities change together?  
Vince: So are you asking for like. Like um. The intersection of the two?  
Interviewer: So x is changing and y is changing. Suppose you have a friend in Australia 
and you can’t send them videos. And for some reason you need to tell your friend how x 
and y are changing – you need to tell him what is going on in this video. So what are you 
going to do?  Anything you could convey in snail mail. 
Vince: Um. I would probably do. I don’t know. (Gestures two vertical lines). How they 
are changing? You are no just looking for? I mean I would probably. Hm. If I want him to 
see the graph. What I am imagining what is happening is there are points. Like you 
intersect the two and there would be a line – a series of dots. (Gestures smooth curves) 
Interviewer: What would that line look like?  
Vince: (Gestures curved shape and then draws an appropriate graph).  
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After three minutes of puzzling about the task, Vince was able to successfully represent the 

behavior in the animation in the plane. He described a point that he imagined as the 
“intersection” of the red and the blue line segments and he described keeping track of this 
intersection as the animation played (Figure 3). Although Vince described this approach at the 
very beginning of the excerpt, it took more than three minutes of reasoning for him to believe 
that this would represent how the values of x and y changed together. 

 

  
Figure 3: Researcher's representation of the imagery Vince described while constructing a graph 

to represent the behavior of two continuously varying quantities.  

After Vince constructed his graph, I asked him to explain his approach. He began by 
describing the changes he was conceptualizing: 

“The red is changing at a pretty consistent speed. The blue when it is a lot further down 
moves a lot quicker then it goes slower and then it starts moving quicker again. So like 
as. So that is why I thought of this (points to graph in Quadrant 4) because we move up 
here, you get less bang for your buck. As x increases by one the increase of y becomes 
less and less.”   

Vince operationalized his image of the red line changing at a consistent speed by 
conceptualizing equal changes in the value of x.  This gave him a means to think about how the 
blue line was changing: for a consistent change in x the corresponding change in the value of y 
was getting smaller (in magnitude). He was able to use this imagery to confirm his graph 
appropriately represented the behavior in the animation.  

Throughout Vince’s interview he exhibited two different tendencies. The first was to 
describe a continuum of values by attending to all the points in-between two given points and 
constructing graphs by tracking a correspondence point. His other tendency was to focus on 
points, numerical values, and calculated changes in the value of a quantity. One possible 
explanation for these different ways of thinking is to juxtapose Vince’s daily experiences with 
his mathematical experiences. In his day-to-day life, Vince engages with and represents 
continuous motion. However, in his mathematical experiences he focuses on numerical values, 
points, and calculated changes in the value of x and y. As a result of his daily experiences he 
developed an ability to use fictive motion to construct dynamic conceptualizations of otherwise 
static objects. He engaged his understanding of fictive motion when he first completed this final 
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task. However, he had little to no experience coordinating fictive motion with mathematics. 
Thus, he used his understandings from classroom experiences to justify the graph he created.  

Vince was able to successfully complete all the tasks in the interview, including representing 
the relationship between two continuously varying quantities. He was successful because he 
consistently imagined a quantity’s value varying over some continuum and he conceptualized a 
point as a multiplicative object that simultaneously represented an x value and associated y value.  
 

Conclusion 
 
Vince consistently described graphs as a collection of points really close together. Although 

Vince experienced some cognitive conflict when trying to graphically represent two 
continuously changing quantities, he was ultimately successful because (1) he imagined a 
continuum of x-values, and (2) he had conceptualized a point on the graph as a multiplicative 
object that simultaneously represented an x value and associated y value. 

Sara, on the other hand, constructed meanings for function and graphical representations 
based on memorized procedures and shapes. While Sarah’s conception of a graph as a shape led 
to many seemingly inconsistent answers throughout the interview, static shape thinking did not 
prevent Sara from conceptualizing a quantity’s value varying continuously and describing how 
two quantities changed together. Static shape thinking did impact Sara’s ability to construct a 
graph as an emergent representation of how two covarying quantities change together. This 
suggests that conceptualizing a graph as an emergent trace of two quantities’ values requires 
more than imagining smooth variation and conceptualizing how two quantities change together.  

This finding is consistent with Moore and Thompson’s (2015) explanation of emergent shape 
thinking. They explain, “Emergent shape thinking involves understanding a graph 
simultaneously as what is made (trace) and how it is made (covariation)” (p. 4).  This suggests 
that conceiving covariation is only one aspect of understanding a graph as an emergent 
representation of how two quantities change together. Vince’s ability to conceptualize a graph as 
an emergent representation suggests that the other aspect of emergent shape thinking entails 
constructing multiplicative objects.  First the student must construct the point (x,y) as a 
multiplicative object that unites the value of x and the value of y.  Then the student must 
construct the graph as a multiplicative object that unites a way of representing the spatial 
movement of the multiplicative object with a conception of of covarying values of two 
quantities.    

This study suggests that there are different ways to engage in covariational reasoning.  The 
multiplicative object the student constructs determines the nature of his covariational reasoning. 
For example, one must construct the point (x,y) as a multiplicative object in order to 
conceptualize a graph as an emergent trace of how two quantities change together. However, 
Sara’s interview provides evidence that this construction is not necessary in order to describe 
how two quantities change together. Future studies should explore how to support students in 
conceptualizing both the point (x, y) and the graph as multiplicative objects. Students have 
developed robust coping mechanisms that enable them to understand and complete novel tasks 
using their existing ways of thinking.  Thus, educators will need to use unconventional 
representations, such as leveraging fictive motion, to support students in developing more robust 
ways of engaging in covariational reasoning and new meanings for graphical representations. 
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Results from a national survey of abstract algebra instructors: Math ed is solving problems 
they don't have 

Tim Fukawa-Connelly Estrella Johnson Rachel Keller 
Temple University  Virginia Tech  Virginia Tech 

 
There is significant interest from policy boards and funding agencies to change students’ 
experiences in undergraduate mathematics classes. Abstract algebra specifically has been the 
subject of reform initiatives, including new curricula and pedagogies, since at least the 1960s; 
yet there is little evidence about whether these change initiatives have proven successful. 
Pursuant to answering this question, we conducted a survey of abstract algebra instructors to 
generally investigate typical practices, and more specifically, their knowledge, goals, and 
orientations towards teaching and learning. On average, moderate levels of satisfaction were 
reported with regard to the course itself or student outcomes; moreover, little interest in, or 
knowledge of, reform practices or curricula were identified. We found that 77% of respondents 
spend the majority of class time lecturing – not surprising when considering 82% reported the 
belief that lecture is the most effective way to teach.   
 
Keywords: abstract algebra, instruction, reform, lecture,  
 

Teaching matters. It is the single most important factor in terms of what students might be 
able to learn from a class and what they can’t learn from a class. Teaching matters because it 
affects how students understand their roles in the class, what it means to learn and understand the 
material, and the ways that students come to understand the content, and almost certainly what 
kind and how much students put into mastering the material. Students know this. In a time when 
retention of STEM majors could not be more critical for our nation, fewer than 40% of students 
entering college in pursuit of a STEM degree complete that degree (PCAST, p. i) citing 
ineffective teaching methods and uninspiring atmospheres in introductory-level STEM courses 
as the primary reason for attrition (PCAST, p. 5).   

Mathematics, like other STEM majors, is not immune to the retention issue: even as the 
number of entering freshman declaring mathematics as a major in increasing, the number 
completing the major is constant (Kirkland, 2013); however, unlike other STEM majors, 
mathematics must be acutely aware of the effects of poor teaching in introductory-level courses 
because these courses are required for a myriad of disciplines and often act as a gateway to 
STEM careers. Mathematics courses, without the siren song of labs and experiments beckoning, 
historically have resorted to the use of lecture-style presentation in disproportionate numbers 
relative to other STEM majors despite mounting evidence contradicting its effectiveness.   

Background and Literature 
 

Lecture-based pedagogy has been labeled problematic for undergraduate learning, 
persistence, and success; instead, researchers recommend pedagogical reforms that are more 
reflective of how people learn and better reflect the nature of doing mathematics (Kyle, 1997; 
National Academy of Science, 2007; National Research Council, 1996; National Science 
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Foundation, 1992, 1996). Critics who do not wish to see the lecture vilified will argue that it is 
the students who are to blame, for they do not understand the pedagogical contract, they can’t 
comprehend the intellectual difficulty of the work, and they have the inability to even pay 
attention to the correct things in a lecture (Burgan, 2006; Wu, 1999). Although these are valid 
concerns, the research community is fairly resolute in the position that diversifying teaching 
methods enhances critical thinking skills, long-term retention of information, and subsidiarily, 
retention of STEM majors (PCAST, p.9 – multiple resources cited). 

There is mounting evidence to believe that mathematicians are not only aware of reform 
practices and goals, but that they do, or at least would consider, using them. There have been 
numerous articles published in the journals of the AMS (American Mathematical Society) about 
reforming teaching (c.f., Leron & Dubinsky, 1995; Halmos, Moise, & Piranian, 1975; Jones, 
1977). Thanks to outreach efforts at the Joint Mathematics Meetings by proponents of the Moore 
Method (Copping, Mahavier, May, & Parker, 2009), there is reason to believe that its basic 
precepts are well-known. Calculus reform specifically has been very extensive with reform 
activities being supported by commercial publishers, discussed in the American Mathematical 
Monthly (c.f., Kaput, 1997; Ostebee & Zorn, 1997), and examined in session at the Joint 
Mathematics meetings. What is certainly true is that the National Science Foundation has spent a 
large amount of money, and mathematicians and mathematics education researchers have spent a 
large amount of time, designing new curricula. On a smaller scale, many instructors have 
developed their own materials, some via participation in Project NExT, the Academy of Inquiry-
Based Learning, or Moore-Method conferences.  

In terms of mathematicians, national professional organizations (e.g. the MAA), and 
mathematics education researchers, it is quite possible that no other upper-division course has 
gotten anywhere near a comparable amount of attention in terms of reform initiatives as 
undergraduate abstract algebra (e.g., Dubinsky & Leron, 1994; BLINDED; Hibbard & Maycock, 
2002). Almost exclusively, these initiatives have concentrated their efforts into changing the 
undergraduate abstract algebra experience; namely, with more doing of mathematics during 
class. Yet, we believe that despite this single-mindedness, these efforts have had little to no 
effect on most students’ experience of the abstract algebra course. This suggests that the field 
might have misplaced beliefs about what change is possible, or more importantly, that we are 
missing or misunderstanding something fundamental about the class, instructors, or instructors’ 
beliefs about the class, students, and learning.  

Many theories have been posited about why new curricular practices have not been adopted.  
Coverage concerns seem to be paramount. There is evidence that faculty feel a significant 
tension between the breadth of required topics and the ability to focus on teaching and learning 
through problems, subsequently driving instructors to resort to more expeditious lecture 
approaches (e.g., Roth-McDuffie & Graeber, 2003, p.335). Other commonly cited barriers 
included: the demands of the position not allowing for innovation, lack of support from 
colleagues or supervisors, and a lack of common vision for reform (Roth-McDuffie & Graeber, 
2003; Henderson & Dancy, 2007). While these studies do offer some reasons why 
mathematicians might not change their instructional practices, the results have limited 
applicability because the participants were neither mathematicians (Henderson & Dancy, 2007), 
nor instructors (Speer, 2008), or were not teaching abstract algebra (Roth-McDuffie & Graeber, 
2003). 
 
Theoretical Framework 
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The fact is that there is essentially no research that helps researchers and policy makers 
understand why some mathematicians adopt reform practices in their teaching and some do not 
(Speer et al., 2010). Maybe the goal of the funders and policy boards is inappropriate; 
alternatively, maybe the goal is good but there are no meaningful avenues for change. There has 
been little research attempting to explore these issues from the perspective of the instructors who 
are the ones being asked to change practice; consequently, we believe there is a considerable 
need for more investigation into university mathematicians’ beliefs, knowledge, and goals about 
the teaching of abstract algebra. The present report is based upon a survey of abstract algebra 
instructors to examine typical practices in general, and more specifically, orientations towards 
teaching and learning. We investigate the following research questions: (1) What kinds of 
pedagogical practices do abstract algebra professors report using in their classrooms and why?  
(2) What affordances and constraints on their use of non-lecture practices do they perceive? 

We designed our inquiry and analyzed our results through the lens of Schoenfeld’s with 
Schoenfeld’s (1999) framework of knowledge (resources), goals, and orientations. This 
framework, identified is useful for analyzing long-term decision making, supports the theory that 
mathematics instructors’ “thinking, judgments, and decision-making as they prepare for and 
teach their class sessions” are important and shape their instruction (Speer, et al., 2010, p. 101). 
 
Methods and Data Analysis 

To create an instrument designed to measure the knowledge, goals, and teaching/learning 
orientations of mathematicians, we adapted questions from both Henderson and Dancy’s 
physics-education survey (Henderson & Dancy, 2009) and Characteristics of Successful 
Programs in College Calculus survey (see surveys at www.maa.org/cspcc).  In addition to basic 
demographic information, the survey questions asked the professors to rate the importance of 
various sources of information and to list factors that influenced their teaching decisions. In an 
attempt to elicit their beliefs about teaching and learning, we asked them to describe and 
characterize their classroom practices, including the motivation behind those choices. Finally, we 
asked questions to test claims from the literature about why undergraduate mathematics 
instructors were resistant to changing their pedagogical practices. 

Requests for participation in our online survey were sent to departmental administrators at 
approximately 200 institutions, targeting instructors who teach undergraduate abstract algebra.  
We had 131 completed surveys (initial response rate of ~30%).  In general, the respondents (92% 
tenure-stream faculty) had significant experience, both with teaching in general and abstract 
algebra specifically, and were most likely to be teaching an undergraduate groups-first course 
designed for a mixed audience. (See Figure 1.)   
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Figure 1. Information about Survey Respondents 

 
To analyze the data, we first calculated basic descriptive statistics appropriate for each item.   

After compiling the demographic information, we focused our attention on instructor satisfaction 
in order to determine if any impetus for change existed. To address the first research question, 
we examined the self-reported teaching practices of the respondents and compared that to both 
level of satisfaction and extent of agreement with the Likert-scale belief statements designed to 
measure teaching/learning orientations. In our discussion, we highlight areas where the 
respondents appear to hold beliefs that should lead to certain pedagogical actions but who do not 
report engaging in those actions. To address the second research question, we categorized 
instructor reports on constraints and affordances to implementation of non-lecture reform 
practices, and we compared these with those cited in the literature. In each case, we have 
attempted to align these with Schoenfeld’s (1999) framework of knowledge (resources), goals, 
and orientations. 
 

Results 
 

Satisfaction 
When measuring satisfaction, several dimensions were considered. For this report, we choose 

to discuss two in particular: textbook and student learning outcomes. Of all the factors 
contributing to abstract algebra professor’s overall levels of satisfaction, the aspect with the 
greatest percentage (87.6%) of satisfied or very satisfied respondents was the textbook.  
Instructor comments indicated that the satisfactory rating stemmed from the breadth, depth, and 
sequencing of content. It is important to note however, that even amongst the satisfied, 
complaints about pricing and frequency of new editions was rampant.   

When reporting on satisfaction with student learning outcomes, approximately half of the 
classified responses (a number gave responses that we could not reliably categorize) reported 
being satisfied (44), with the remainder being evenly split between very satisfied (23) and 
dissatisfied (22). The responses were organized by domain and level of satisfaction, allowing us 
to look for common themes. Figure 2 shows a matrix illustrating typical comments.  
 
 Very Satisfied Moderately Satisfied Dissatisfied 
 

Student 
Engagement 

 
§ My students work hard. 
§ My students ask a lot of questions. 
§ My students put time in outside of 

class 
§ My students are excited to see how 

this course fits with past/future 
coursework 

§ The students who want to learn 
put in the time and do well 

§ My students generally work hard 
enough to get through the course 
but I wish they were more 
motivated to learn 

§ My students demonstrate 
infrequent or inconsistent 
participation in class 

§ My students don’t appreciate the 
material 

§ My students don’t do work 
outside of class 

§ My students are not interested in 
math 

§ My students view the course as 
irrelevant to their careers 

§ My students don’t participate in 
class 

 
Student 

Preparation 
 

§ My students are very well-prepared 
§ My students have a working 

understanding of prerequisite 
material and understand how to 
construct proofs 

§ My students’ preparation is sufficient to 
be successful in my class 

§ My students’ preparation varies 
by background and major 

§ Most of my students have weak 
proof backgrounds but develop 
this over the course 

§ Most of my students have 
insufficient prior knowledge 
relative to what I would like, 
but with the right work ethic 
can be successful in my class 

§ My students are unprepared to 
take this course 

§ My students lack proof skills 
§ My students have poor general 

math skills 
§ My students’ insufficient 

preparation and ability hinders 
their ability to be successful in my 
class 
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Student 

Performance 
 

§ My students get good grades on 
exams 

§ My students produce high quality 
projects 

§ My students submit carefully 
considered homework assignments 

§ Very few of my students fail the 
course 

§ My students get decent grades 
on exams, but not as good as I 
would like 

§ My students produce mediocre 
projects 

§ My students submit homework 
that is often inadequate, 
incomplete, or rely on help to 
finish it satisfactorily 

§ I often have as many D/F/W 
grades as I do A/B/C 

§ My students do poorly on 
exams, without a curve, the 
majority would not pass 

§ My students produce poor 
projects or are incapable of 
completing them altogether 

§ My students don’t/can’t do 
homework or need extensive 
help to do so 

§ A large portion of my students fail 
or withdraw 

 
Student 

Understanding 
 

§ My students are capable of 
coauthoring journal articles with 
faculty 

§ My students leave my class prepared 
for future advanced coursework and 
often get accepted to reputable grad 
school programs 

§ My students demonstrate algebraic 
reasoning and mathematical maturity 

§ My students leave my class 
adequately prepared for future 
coursework, but not necessarily 
grad school ready 

§ My students don’t grasp all the 
subtleties, but come away with a 
level of understanding suitable 
for their backgrounds, abilities, 
and future plans 

§ My students have a working 
understanding of fundamental 
concepts and can usually make 
definitions, sort conjectures, and 
build useful examples 

 
§ My students master only a small 

fraction of the topics covered 
§ My students don’t come away with 

a real understanding of the material 
§ My students leave without 

really getting the point 
§ My students are generally 

unprepared for future 
coursework 

 
Curriculum 

Issues 
§ My curriculum covers lots of 

presently relevant examples from 
applications in diverse fields 
(physics, chemistry, math, etc) 

§ My curriculum requires that students 
work on finding proofs for themselves 
and this approach has been successful 
in generating student growth. 

§ Having the students work in small 
groups instead of traditional lectures 
has proven successful 

§ My curriculum gives the students the 
right taste of modern math and supplies 
them with the right language to be 
successful 

§ My curriculum has struck a successful 
balance between abstraction and 
computational topics to keep all 
students engaged 

§ My curriculum is ok but could 
benefit from extended 
motivation for topics and guided 
self-discovery 

§ My curriculum is ok for math 
majors but does not adequately 
serve the pre-service teacher 
population 

§ I am satisfied that they get a good 
introduction to group theory but 
would like to go deeper into the 
subject and have the students 
formulate and explore conjectures 
on their own 

§ I consider my course ‘algebra 
appreciation’ rather than a 
careful, complete introduction 
for those who should master the 
material 

 
§ My curriculum is out of date 
§ My curriculum is divorced from the 

true motivations and applications of 
algebra 

§ My curriculum materials are 
lacking and I often have to 
supplement with 
worksheets/handouts 

§ I spend too much time teaching 
how to write proofs and not 
enough time on algebra topics 

Figure 2. Satisfaction Matrix 
 
In summary, instructors who were moderately satisfied indicated (unsurprisingly) that 

students learned most of the important content and worked reasonably hard. The courses might 
be in need of a little reorganization or supplemental materials, but major pedagogical overhauls 
were not considered warranted or desired. The comments of the instructors who were dissatisfied 
were complaints about the unsatisfactory work ethic, motivation, and ability of the students.  
Instructors who reported high levels of satisfaction were the most likely to comment on the 
format and curriculum of their courses, with approximately half of them indicating belief that 
their course was different than most traditional abstract algebra courses due to the use of some 
form of inquiry-based learning (increased use of examples, student research, Modified Moore 
Method, etc.).  

While the groups did vary widely in typical responses, it was interesting to note that there 
were two common themes that emerged across all levels of satisfaction. The first observation 
was a general frustration with students’ lack of prerequisite proof skills and poor proof-writing 
ability. The other common opinion was that it was both difficult and inappropriate to design and 
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30 

16 

16 

16 

10 

Lack of Time 

Lack of Materials 

Lack of Resources 

Other 

Lack of Dept. Support 

I have not attempted some other type of 
pedagogy because... 

32 

26 

17 

15 

13 

4 

4 

I need to cover a certain amount of 
content. 

I think it would go poorly. 

It's not appropriate for my students. 

Other 

My classes are too big for it to be 
viable. 

I don't have departmental support. 

It's not appropriate at my institution. 

I will never switch from lecture because... 

teach a course for different constituencies (most often cited was the comingling of Math and 
Math Education majors). Due to different backgrounds, abilities, and occupational goals, the 
consensus was that neither population was being adequately served by teaching them 
simultaneously. However, even with this mixed sense of satisfaction with student learning 
outcome, we were surprised to find that, for the instructors completing the survey, the passing 
rates were quite high with the average grade break down being: A 33.37%, B 33.85%, C 20.55%, 
and D/F/W 12.18%.    

 
Teaching methods 

Lecture was the most common pedagogical practice with 77% of respondents claiming that 
they currently lecture to teach abstract algebra, 15% of respondents currently teach in some other 
way, and 8% used to do something different in the past but now lecture. Of the 23% who either 
now, or in the past, used non-lecture pedagogy and curricular materials, most (15 respondents) 
created it themselves without formal support (typically drawing on a mixture of texts and 
problem-sets). There were only two respondents who cited use of a particular established 
curriculum (Teaching Abstract Algebra for Understanding, Larsen, 2013; Learning Abstract 
Algebra with ISETL, Dubinsky & Leron, 1994). The others used their own experiences with 
Moore Method classes, collaboration with other Moore Method instructors, or participation in 
the Academy of Inquiry-Based Learning as a guide to develop their materials and shape their 
practice. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 3. Perceived constraints on the use of non-lecture practices 
 
Of the 85% who are currently teaching with lecture, 56% of them say that they would 

consider teaching with non-lecture practices (the remaining 44% say they would never do so).  
The reasons instructors provided for not yet attempting other pedagogy and the concerns 
mentioned explaining why they would never change their habits can be seen in Figure 3. In short, 
the two main themes in the comments related to the effort and support needed to revise and teach 
such a class and concerns about covering the appropriate amount of material. Of the 32 
instructors who stated coverage as a reason to not adopt a non-lecture format, 23 of them 
answered “no” when asked “Do you feel pressure from your department to cover a fixed set of 
material in your abstract algebra course?” It appears therefore, that concerns about coverage may 
be more tied to an internalized goal or orientation, as opposed to an external pressure.  
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One of the most interesting findings was the apparent contradiction that emerged when 
comparing the responses to the following prompts. 82% of respondents agreed with the 
statement: Lecture is the best way to teach.; however, 56% agreed (and 26% more slightly 
agreed) with the statement: I think students learn better when they do mathematical work (in 
addition to taking notes and attending to the lecture) in class. This result was promising for the 
prospect of non-lecture class activities; yet when asked what students do in class besides take 
notes (given a list of options), the only things that instructors claimed that students did in class, 
even at a rate of once per month, was doing calculations, working with examples, or working 
with applications. Moreover, 63% reported that students never spent time working on 
mathematics problems in class. It appears that what instructors think is best for student learning 
(students doing mathematical work in class) is not happening with any frequency; thus, we argue 
that there exists a mismatch between beliefs about student learning and actual teaching practice. 
 

Findings and Implications for Future Research 
 

There are three primary findings that we highlight. First, that lecture is the predominant mode 
of instruction, and that even those who have tried other pedagogies appear to switch back to 
lecturing at very high rates. Moreover, given the significant amount of time, money, and energy 
spent developing, testing, promoting, and training mathematicians to use new curricula and 
pedagogies, there is almost no uptake. Those using non-traditional materials are far more likely 
to have developed their own materials than to have adopted NSF-supported curricula.   

The second primary finding relates to the factors that influence pedagogical decisions. In 
decreasing order of significance, the participants reported that their experiences as a teacher and 
student were far and away the most significant (more than 90% agreement) influence; followed 
by talking to colleagues about how to teach specific content, and looking at other texts (70-90% 
agreement that it is a significant influence). Little importance was assigned to the normal means 
of learning about new teaching ideas; e.g., Project NExT, MathFest, MAA mini-courses or other 
workshops, or reading publications about teaching such as the MAA Notices series or PRIMUS 
(ranging from the single digits to about 15% indicating that it was significant). If mathematicians 
essentially give no weight to the traditional means of dissemination of new pedagogical ideas 
and techniques (and evidence of their effectiveness), reformers have little means of promoting 
change other than individual conversation. This alone suggests why reforming undergraduate 
abstract algebra instruction is difficult, especially with the currents modes of dissemination. 

Finally, while faculty claim they have the ability to change their courses, the reported 
satisfaction levels indicate they do not have the desire to do so; furthermore, the majority of 
dissatisfaction stems from the students and not the course materials. Given the strong content 
focus and high belief in the efficacy of (and preference for) lecture, it appears that as a collective, 
the abstract algebra teaching faculty have little interest in adopting new pedagogical approaches 
at this time. Thus, we propose two concurrent research directions: first, we need to better explore 
the reasons that mathematicians appear to strongly believe in their current practice, the types of 
evidence that they hold as dispositive, and what means of dissemination of new approaches 
achieve meaningful penetration. Second, we argue that we need to further explore the types of 
changes to the practice of lecture that mathematicians would adopt. In other words, how can the 
RUME researchers meet the perceived needs of the abstract algebra community while taking into 
account what is understood as practical and feasible in the eyes of the faculty? 
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An Insight from a Developmental Mathematics Workshop 
 

Eddie Fuller, Marcela Mera Trujillo, Xiangming Wu, Marjorie Darrah and Jessica Deshler  
West Virginia University 

 
Abstract: In this report, we present data from 404 students in a developmental mathematics 
course at a large research university and try to better understand academic and non-academic 
factors that predict their success. This work is the first step in a larger project to understand 
when science, technology, engineering, and mathematics (STEM) intending students who begin 
in developmental mathematics courses are successful and continue to be successful in higher-
level mathematics courses. To gain some preliminary insight, we analyze SAT and ACT 
mathematics scores for STEM and non-STEM majors who succeeded in our developmental 
mathematics course and also look at personality traits and anxiety levels in these students. 
Specifically, we sought to answer the following questions for STEM intending students: (i) what 
SAT and ACT mathematics scores correlate with success in developmental mathematics? and (ii) 
what other non-academic factors predict success in developmental mathematics?  
 
Key words:  Developmental Mathematics, STEM majors, Success. 
 

Introduction and Theoretical Background 
 

Many first-year college students are underprepared in the mathematics needed for their chosen 
majors and are in need of remedial education courses (Chambers, Ferlazzo, Ho, Pearson, & 
Radford, 2012). In addition, more than one third of all science, technology, engineering and 
mathematics (STEM) intending students in the U.S. enroll in mathematics remediation (Radford, 
Pearson, Ho, Chambers, Ferlazzo, 2012). In this study, we begin to analyze data collected from 
and about students planning to pursue a STEM degree who enter our university unprepared for 
college level mathematics. Our ultimate goal is to predict and model academic success patterns 
in order to intervene and support student success and promote opportunities for underprepared 
STEM students.  

The psychology of learners in developmental mathematics classrooms is complex (Eden, Heine 
& Jacobs, 2013; Hembree, 1990). This research seeks to identify student characteristics, as 
indicated by demographic profiles, information collected through personality inventories (John, 
Naumann & Soto, 2008) and anxiety surveys (Alexander & Martray, 1989), that lead to success 
and persistence in STEM majors. 
 

Methodology 
 

The course that is the setting for this project is a mastery-based course requiring students to 
complete online modules at their own pace with specific levels of competency required before 
students can progress to the next chapter. Students are considered to have completed the course if 
they earn a 80% or better in each of seven in class exams and 70% on the final exam. Data were 
collected from 404 (almost 50% of total enrollment) developmental mathematics students who 
agreed to be part of this study. Surveys were administered to collect personality trait 
characteristics and to measure levels of exam anxiety (EA), course anxiety (CA), and numerical 
task anxiety (NA) at the beginning of the term and student progress was recorded at several 
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points during the semester. The preliminary success data has been correlated to the personality 
traits and anxiety measures.  
 

Data 
 

Student performance data at various weeks during the semester are shown in Table 1 and SAT 
and ACT mathematics average scores for STEM and non-STEM intending populations who 
completed or did not complete are presented in Table 2.  
 
Table 1 
Student progress during weeks five, six, eleven, twelve and seventeen 

Week Number of Study Participants Completing Each of 7 Exams 
Exam 1 Exam 2 Exam 3 Exam 4 Exam 5 Exam 6 Exam 7 Final  

5 250 89 57 24 7 1 1 0 
6 288 140 89 36 12 12 2 0 
11 343 316 292 149 59 59 21 10 
12 346 330 325 265 160 160 68 23 
17 358 334 326 284 245 245 158 62 

 
Table 2 
ACT & SAT comparison between STEM and Non-STEM intending students 

 Developmental Course Average SAT Math Average ACT Math 

Non STEM (n = 320) Completed 471.48 18.94 
Not Completed 455.14 17.94 

STEM (n =84) Completed 484.02 19.97 
Not Completed 466.9 18.95 

 
Results 

 
ACT mathematics score correlates significantly with stalling – defined as having passed only 

one exam by a given week - for almost all weeks (       to       ), but its low variance 
makes it difficult to use as a predictor. Two personality traits, extraversion and neuroticism, 
show signs during some weeks of having strong impact on student performance (week 6, 
       and week 11,      , respectively) but these traits are not consistent across all 
weeks. All three anxiety measures taken at the beginning of the semester were deemed to be 
significant indicators for a student stalling by week twelve (       for EA,        for CA, 
       for NA), with exam anxiety statistically significantly correlated to not completing the 
first exam by week eleven. 

 
Conclusion 

 
These developmental mathematics students will be tracked through subsequent mathematics 

courses and once more complete information about student performance is collected the data will 
be combined to determine factors that may affect performance and persistence. The ultimate goal 
is to develop a profile for a student that will be successful in mathematics courses and be able to 
persist in a STEM major. This will also allow identification of students who will struggle so that 
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interventions can be developed and applied early in a student’s academic career. The more we 
can understand who the students are and what makes them succeed or fail the closer we will be 
to devising programs and courses that will assist all students in achieving their desired goals.  
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Integrating oral presentations in mathematics content courses for pre-service teachers 
 

Sayonita Ghosh Hajra Abeer Hasan 
University of Utah Humboldt State University 

 
In this paper we report on a study of assessment-based oral presentation tasks in a mathematics 
content course for pre-service teachers at a public university in the western United States. We used 
statistical inference to test for the significance of the observed improvement in pre-service 
teachers’ attitudes towards using oral presentation tasks in their mathematical learning and 
towards teacher preparation. Our results suggest that use of oral presentation improves pre-
service teachers’ attitudes and beliefs towards mathematics learning. Moreover, responses to the 
post-presentation questionnaire provide insights on the benefits of using oral presentation tasks 
in mathematics courses for pre-service teachers. 
 
Key words: Attitudes, Beliefs, Oral presentation, Pre-service teachers 
 

Introduction 
Since the last decade, there has been an increased desire for developing students’ 

mathematical verbal skills and vocabulary (CCSSI, 2010; NCTM, 1989 & 2000). As a result, 
now the mathematics courses for pre-service teachers focus on strengthening pre-service 
teachers’ mathematical content knowledge by improving verbal and writing skills. These verbal 
and writing skills are believed to foster conceptual understanding (Berry and Houston, 1995) and 
increase students’ confidence (Butler and Stevens, 1997). 

We noticed most of our pre-service teachers use incorrect terminologies and struggle in 
explaining concepts in a logical sequence. This made us consider how to help pre-service 
teachers in developing these skills as a large portion of their work involves oral mathematical 
communications. As the proverb says “No one learns as much about a subject as one who is 
forced to teach it” (Drucker, n.d.), oral presentations could be a valuable learning and teaching 
tool. This could help pre-service teachers learn to use correct mathematical vocabularies and to 
explain concepts. Fan & Yeo (2007) defined oral presentation as a classroom practice where 
students share ideas verbally and see and understand their own doubts. They noted that oral 
presentation gives students an opportunity to express their understanding in their own words. 

Since pre-service teachers will be responsible for developing children’s mathematical 
vocabulary and oral mathematical communication skills in the future, it is important to first 
develop their own understanding and disposition.  Various studies have shown connection 
between mathematical disposition and mathematical learning (Maas & Schloeglmann, 2009; 
McLeod & Adams, 1989, Philipp, 2007). Disposition includes one’s attitudes, beliefs and 
aptness to act in positive ways (NCTM, 1989). Attitude is a mental concept representing 
favorable or unfavorable feelings for objects, persons or other identifiable entities and a belief is 
a known or perceived information about an object (Koballa, 1998). For example, statements 
involving likes and dislikes reflect one’s feelings toward an object and a statement such as, 
“Math is hard” represents one’s beliefs. Fishbein & Ajzen (1975) noted that a person having a 
favorable attitude toward an object is more likely to perform or act with respect to the object. 
That is if pre-service teachers have favorable feelings and beliefs about oral presentations, they 
are more likely to use them in their own learning and teaching. Hence, it is worthwhile to 
investigate pre-service teachers’ beliefs and attitudes toward oral presentations. 
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In this study, we investigate what are pre-service teachers’ general beliefs and attitudes 
toward the use of oral presentation tasks in their mathematical learning and toward teacher 
preparation. We ask if oral presentation changes pre-service teachers’ beliefs in their own ability 
to teach mathematics successfully to young children and in their own dispositions towards 
mathematics. In addition, we study pre-service teachers’ self-reflection on the use of oral 
presentations on their own learning. 

Theoretical Framework  
Our theoretical framework is based on the theory of constructivism, social constructivism 

and multiple intelligence. From the point of view of constructivism, an individual develops 
meanings by organizing and reorganizing his own experiences and by constructing schemes (“a 
scheme is what can be repeated and generalized in an action” (Piaget & Garcia, 1991, p. 159)) 
(von Glasersfeld, 1995). We also consider individuals’ meanings are constructed through social 
interaction (Steffe & Olive, 2010, Brooks & Brooks, 1993). In addition, from the point of view 
of multiple intelligence theory, each individual has a unique learning style. Hence, there must be 
different forms of learning opportunities (Fan & Yeo, 2007). In this study, we provide 
opportunities to pre-service teachers to use communication skills as one of the means to 
construct meanings besides writing assignments. Pre-service teachers were put into situations 
where they had to take responsibility for their own learning and continuously critique their own 
thought processes.  

Methodology 
Study participants and course description 

This study took place in a geometry course for elementary pre-service teachers at one of the 
public universities in the western United States. The study participants were twenty four 
elementary pre-service teachers in the undergraduate program. One of the researchers was the 
instructor for this geometry course. The geometry course is the second course in the sequence of 
two-semester mathematics course for pre-service teachers preparing to teach children in pre-
Kindergarten through grade six. This sequence of mathematics courses, which follows the 
CCSSI (2010) offered to strengthen pre-service teachers’ oral and written explanations of 
mathematical concepts. The textbook for this course is Beckmann’s text (2013), which focuses 
on the reasoning behind mathematical ideas pre-service teachers will teach in the future.  
Study design 

The course was taught using an inquiry-based approach (Bruner, 1961) allowing pre-service 
teachers to explore the mathematical concepts in a hands-on way. Throughout the course, pre-
service teachers were encouraged to present their work in front of the class regularly. 
Additionally, thirty-five minutes were assigned per class to accommodate two pre-service 
teachers for the oral presentations. The instructor implemented two assessment-based oral 
presentation tasks: pre-structured oral presentation and impromptu presentation (Fan & Yeo, 
2007).  

Fan & Yeo (2007) described pre-structured oral presentations as tasks that are prepared in 
advance and impromptu presentations as tasks carried out without rehearsals. Below, we describe 
the two tasks in the context of our study.  
Task 1: Pre-structured oral presentation: Each pre-service teacher presented once in the semester 
about any geometrical concept (K-6) relevant to the course for 10-15 minutes. This activity 
counted 5% towards the total grade. Pre-service teachers were asked to choose a geometrical 
concept from the textbook, either covered in class or a new topic and their presentation dates. 
They were responsible for reading the topic on their own, planning a draft of their presentation 
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and informing the instructor about their topic two weeks prior to their chosen date for 
presentation. The instructor read their drafts and provided feedback before their oral 
presentation. Pre-service teachers also met with the instructor before their presentation to resolve 
doubts. 
Task 2: Impromptu oral presentation: a) The same pre-service teacher had to answer instant 
questions related to the presentation from the audience (including the instructor) after the pre-
structured oral presentation. This counted 3% towards the total grade.  
b) Each pre-service teacher had to summarize a day’s lesson twice throughout the semester. This 
counted 2% towards the total grade. 
Data collection 

We collected data in the form of pre-and post-tests (Appendix A), post-presentation 
questionnaire (Appendix B), and pre- and post-surveys (modified survey questionnaire from Fan 
& Yeo (2007) (Appendix C)). The survey consisted of nineteen questions on pre-service 
teachers’ general beliefs and attitudes toward the use of oral presentation tasks, their beliefs in 
their own ability to teach mathematics successfully to young children and in their own 
dispositions towards mathematics. The pre-test/survey was conducted on the first day of the 
course, post-test/survey was conducted on the last day of the course. The post-presentation 
questionnaire was collected from pre-service teacher immediately after their oral presentation. 

Results 
Quantitative analysis 

Below we discuss the pre- and post-surveys. Figures 1 and 2 show stacked column charts for 
the responses before and after the oral presentation tasks. Four pre-service teachers were not 
present on the first day and one pre-service teacher was absent on the last day of the course. 
Hence, n= 20 and 23 for pre- and post-surveys. Questions 4, 6, 8, 9, and 13-16 (see Appendix C) 
are worded such that a response with “agree” or “strongly agree” reflect negative feelings 
towards oral presentations. We observe a decrease in the green shaded area in the post-survey. In 
the remaining questions, we notice an increase in the green shaded area that represents the 
percent of the class who agree with the given statement. This shows an overall improvement in 
pre-service teachers’ perception of using oral presentations in learning geometry.  

 

 
Figure 1: Stacked column chart for the survey responses before the oral presentation tasks. 
 

To analyze the data from the two surveys, we first invert the responses from questions that 
highlight negative attitudes by treating a response of Strongly Agree as Strongly Disagree and so 
on. The responses are coded on a scale of 1-5 where 1=SD and 5=SA. 
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Figure 2: Stacked column chart for the survey responses after the oral presentation tasks. 
 
Our study is threefold, we aim to investigate changes in attitudes of pre-service teachers 

toward oral presentations, in beliefs in their mathematics teaching ability and their disposition 
toward mathematics. Hence, we divide the survey into three categories. Questions 1-7 and 9-12 
represent pre-service teachers’ general attitudes and beliefs toward oral presentation. Questions 
11, 12, 14 and 17 represent pre-service teachers’ beliefs in their own ability to teach mathematics 
successfully. Questions 1, 5, 7, 8, 13, 15, 16, 18 and 19 represent pre-service teachers’ 
disposition toward mathematics. We create the following score functions: 

Oral presentation score = (Sum of responses to questions 1-7 and 9-12)/55*100 
Teaching ability score = (Sum of responses to questions 11, 12, 14 and 17)/20*100 
Disposition toward math score= (Sum of questions 1, 5, 7, 8, 13, 15, 16, 18 and19)/45*1001 

We consider the responses of each pre-service teacher as paired data. Pre-service teachers who 
did not fill both the pre-and post-survey are not included in the paired t-tests but are counted in 
the summary of the responses.  The paired differences in the three scores pass a normality test, 
thus we apply a paired t-test to see if the observed sample differences are significant. The 
improvement in the three scores is deemed significant at the 0.05 level of significance.  Table 1 
summarizes the results of our statistical inference: 
 
Table 1 
Summary of the statistical tests on the three score function. The data is considered normally 
distributed because the p-value of Anderson-Darling’s test exceeds 0.05. The observed sample 
difference is significant because the p-value of the paired t-test is less than 0.05.  

Score functions P-value for Anderson-
Darling’s normality test 

Mean sample of 
differences (After-Before) 

P-value for the 
paired t-test 

Oral presentation 
score 

0.06682 6.84% 
 

0.0062 

Teaching ability 
score 

0.5124 4.41% 
 

0.04131 

Disposition towards 
math score 

0.07238 4.05% 
 

0.02888 
 

                                                 
1 55, 20 and 45 are the maximum possible scores for each score and can be obtained by multiplying the number of 
questions by 5 which is the score of a Strongly Agree response.  
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Figure 3: Box-plots for the survey responses before and after the oral presentation tasks. 
 
Figure 3 displays side-by-side boxplots for each of the three scores we introduced. The box in 
each figure represents the middle 50% of the data. The solid line in each box represents the 
median (the 50th percentile) and the whiskers extend to show the minimum and the maximum. 
Outliers are displayed as dots in each panel.  The graphs show improvement in the three scores 
after the oral presentation tasks.  

Next, we analyze pre-service teachers’ pre- and post-test scores. Each question is worth 10 
points and is graded on a 2-5-10 scale. 2 points are awarded for identifying a correct answer with 
no explanation, 5 points for identifying a correct answer with explanation missing some logic 
and 10 points for a correct answer with correct explanation. The grades are recorded on a 30 
point scale then converted to a percentage. Each pre-service teacher shows an improvement in 
their comprehension of the basic concepts that are tested. Our sample size of 21 shows an 
average improvement by 38.7% in the scores of the post-test compared to the pre-test. The data 
pass a normality test (Anderson-Darling test with a p-value of 0.0688), and the paired t-test 
results in a p-value of  8.39 ∗ 10−8 indicating a statistically significant improvement in the post-
test scores.  However, we are not claiming this improvement is only due to the implementation of 
oral presentation tasks. 
  
Qualitative analysis 

In addition to quantitative analysis, we analyze the responses of the post-presentation 
questionnaire using a qualitative research method called the constant comparative method 
(Boeije, 2002). Here, we use an axial coding method (Strauss & Corbin, 1998). We compare and 
contrast the responses of the pre-service teachers on the questions in the post-presentation 
questionnaire. We identify the similarities and differences on each of the responses.  
Out of 24, twenty three pre-service teachers report that they challenged themselves more to 
develop a deeper understanding of the topic for oral presentation. They report that the concepts 
they did not understand before or missed during exams, were cleared as they studied more for the 
oral presentation. However, one of the pre-service teachers mentioned, “maybe” she challenged 
herself more to get a deeper understanding of the topic, Graphs and Graphical representations, 
for oral presentation. She reports, “When I had to find graphs that could be confusing to students, 
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I had to look at them from the perspective of the student.” This suggests that even though this 
pre-service teacher was not sure whether she challenged herself more or not, she expended some 
efforts to explore graphs and to understand which graphs might be confusing for students. This is 
an important skill for pre-service teachers to develop understanding of the concepts that students 
might have difficulties with and how to address those issues. Hence, oral presentation might help 
pre-service teachers in recognizing the misconceptions of children through exploration of the 
topic. 

Others mentioned, they explored many avenues, books, internet and videos to understand the 
concept better before explaining it to others. They ensured the concept made sense to them 
completely before presenting it to others. One pre-service teacher wrote, “I researched a lot and 
read the chapter like 10 times. I looked up YouTube videos on how teachers could teach this 
lesson.” Another pre-service teacher reported, “I tried to really understand volume in case any 
questions were brought up. You have to have a full understanding of math before you teach it.” 
This suggests oral presentation motivates pre-service teachers to study thoroughly the text books, 
to spend more time in studying and researching, and to pay more attention to the topic by 
teaching themselves before presenting it to the class. 

These oral presentation tasks helped pre-service teachers reduce their own doubts on the 
concepts they had. For instance, one pre-service teacher wrote, “I did not completely understand 
the moving and additivity principles before, now I feel like I do.” Another reported, “I selected a 
topic that I did not completely understand during lecture. I had to re-read the section in the 
chapter and I looked up videos online to further my reading.” Pre-service teachers revealed that 
oral presentation had helped them to understand the concepts better by giving them the 
opportunity to investigate more about the concepts on their own. For example, one pre-service 
teacher whose topic was Platonic solids reported, “I read the information given in the chapter and 
I also did some research online. I was curious about the role Plato played and the Grecian history 
behind the platonic solids.”  

Conclusions 
Our quantitative analysis provides evidence that implementing oral presentation tasks in the 

geometry classroom resulted in a significant improvement in preservice teachers’ attitudes 
towards the oral presentations. It improved their confidence in their ability to teach mathematics 
and improved their disposition towards mathematics in general. Our qualitative analysis shows 
why our pre-service teachers feel oral presentation tasks are beneficial for their learning. For 
example, oral presentation tasks serve two purposes- developing mathematical meanings and 
assessing one’s own understanding. Oral presentation tasks encourage pre-service teachers to 
take responsibility for their own learning and give them autonomy to take initiatives to make 
connections between ideas and a particular concept through self-arguing and validating their 
reasoning. In addition, oral presentation tasks give opportunities to pre-service teachers to 
present their ideas and to reflect on others’ ideas. This facilitates the “meaning making process” 
(Brooks & Brooks, 1993).   
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Appendix  
A. Pre-/ Post-test Questionnaire:  
1) Imagine floating in outer space above the North Pole. Looking down on the earth, which way 
is the earth rotating, clockwise or counterclockwise? Explain your answer.  
2) What do you understand by area of a shape? Explain.  
3) What is area of a circle? Explain why it makes sense.  
 
B. Post-presentation questionnaire:  
1) Did you challenge yourself more to get a deeper understanding of the topic for oral 
presentation?  
2) Was the process (preparation for oral presentation and the oral presentation) beneficial for 
your learning? If yes, why? If not, why?  
3) Were you able to demonstrate your oral presentation skills in front of the class? 
4)�Are you confident with your use of mathematical vocabulary while explaining math orally and 
in writing? 
 
C. Pre-/ Post-Survey questions:  
Q1. Oral presentations improve my understanding of mathematical concepts.  
Q2. Oral presentation skill is important in mathematics learning.  
Q3. Oral presentation skill is important in mathematics teaching.  
Q4. Oral presentation makes me feel inadequate.  
Q5. Listening to other classmates’ presentation helps me understand other’s perspectives.  
Q6. Oral presentation is a waste of time.  
Q7. I am not afraid of mathematics presentation in front of the class.  
Q8. I don’t know how to get started when I am doing mathematics.  
Q9. I feel lost when I am doing mathematics oral presentation.  
Q10. I like to do mathematics oral presentation.  
Q11. I would like to have more mathematics oral presentations for my mathematics lesson.  
Q12. I like to implement mathematics oral presentation while teaching math.  
Q13. I have trouble understanding ideas that are based on mathematics. 
Q14. If I taught in in a team or with a teaching partner, I would like to have another teacher 
teaching the mathematics.  
Q15. I get frustrated when I do mathematics.  
Q16. I do not do well on tests that require mathematical reasoning.  
Q17. I feel confident in my ability to teach mathematics.  
Q18. I feel confident in my mathematics ability.  
Q19. I see mathematics as practical and useful.  
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Pre-service teachers’ meanings of area 
                   Sayonita Ghosh Hajra                Betsy McNeal                 David Bowers 
                     University of Utah            Ohio State University       Ohio State University 
  
An exploratory study was conducted of pre-service teachers’ understanding of area at a public 
university in the western United States. Forty-three pre-service teachers took part in the study. 
Their definitions of area and their responses to area-units tasks were recorded throughout the 
semester. We found a wide gap between pre-service teachers’ meaning of area and their use of 
area-units. Initially, pre-service teachers had weak definitions of area. Over the semester, these 
definitions were refined, but misconceptions about area and area-units were illuminated in 
activities involving non-standard units and areas of irregular regions. We conclude that, despite 
detailed models of children’s understanding of area, much work is needed to understand the 
learning trajectories of pre-service teachers, particularly when misconceptions exist. 
 
Keywords: Area, Geometry, Pre-service teachers, Units 
 

It has been demonstrated time and time again that many current and future elementary 
teachers have substantive weaknesses in their geometric content knowledge (e.g., Browning, 
Edson, Kimani, & Aslan-Tutak, 2014). It is notable that very few of the peer-reviewed studies on 
pre-service teachers’ (PTs’) geometric knowledge listed here deal specifically with area. Of the 
112 studies published on elementary PTs’ content knowledge reviewed for the special edition of 
the Mathematics Enthusiast in which Browning et al’s article appeared, only 4 deal with the 
status of PT knowledge of area (Enochs and Gabel, 1984; Baturo and Nason, 1996; Reinke, 
1997, and Menon, 1998). The findings of all four of these articles are similar, each indicating 
that the PTs under study demonstrated “incorrect, incomplete, and unconnected” knowledge that 
was very “rule driven” (Browning et al, 2014, p. 344). Perhaps as a byproduct of this issue, 
Enochs and Gabel (1984) found that a large percentage of PTs were unable to distinguish volume 
from surface area, a sentiment echoed by Baturo and Nason (1996) as well as Reinke (1997) 
which both found that PTs tended to conflate methods of finding perimeter with methods of 
finding area.   

We were teaching a geometry course for elementary teachers when we observed that our PTs 
did not show a consistent understanding of area1. As in the literature cited above, our students 
confused the attribute of area with its measurement when they defined area as “length times 
width”, as well as confusing area with perimeter and volume. At our two universities, PTs had 
completed a course in arithmetic before enrolling in the geometry course. This arithmetic course 
heavily emphasizes the meaning of the multiplication operation so our PTs often gave well-
developed explanations for why we multiply to find the number of squares in an array. Our 
instruction, therefore, aimed to emphasize the meaning of area and to separate this from the 
process of measuring area and from the formula for the area of a rectangle. We did this by taking 
a more general approach using non-standard units and looking at the area of irregular shapes. In 
this context, we observed that most misconceptions that our PTs had about area showed up when 
they engaged in tasks involving non-standard units and conversion of units, tasks that did not 
involve computations of area using formulae. In class and in this paper, we take the following 
definitions. Area is the amount of two-dimensional space taken up by a 2D shape. An area-unit 

                                                        
1 All three taught the same course with the same textbook and supplementary materials.  
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is any two-dimensional object used to measure a 2D shape. Finally, we describe measurement as 
a comparison of the area-unit with the 2D shape that is accomplished by covering the shape with 
an iteration of the area-units. We began to look for ways to trace the progressions of individual 
understanding of area over the course of the semester.   

In this initial study, our goal was to examine changes in PTs’ understandings of area over the 
one semester geometry course. More precisely, we asked the following questions: As seen in 
their written work, what area definitions did PTs bring to this course and how did those 
definitions change over the semester? What ideas about standard and non-standard area units did 
PTs demonstrate in their written work?    

Theoretical Framework 
The theoretical background for this study is drawn from the constructivist theory. From this 

point of view, one generates ideas by fitting new situations into existing ideas. If the situation 
does not fit, or if it cannot be explained, one modifies one’s existing framework or generates new 
ideas (von Glasersfeld, 1995). From a social constructivist perspective (e.g., Cobb, Wood, 
Yackel, & McNeal, 1992), PTs’ understandings of classroom conversations and actions are 
interpreted against a background of prior beliefs about the culture of school mathematics – about 
the norms and expectations for mathematical behavior and thinking in school – as well as against 
their prior understandings of mathematical ideas. In order to help them work through 
misconceptions, our instruction put PTs in situations where these prior understandings would be 
challenged. For example, we asked PTs to find the area of irregular shapes using non-standard 
units and we constantly required explanations for any answer given.  We did this in part because 
asking about area of rectangular regions yielded responses that could appear correct, when a 
second look actually showed misconceptions. Our pedagogy is thus very similar to that described 
in Simon & Blume (1994), though our course used a textbook as an external resource. 

Methodology 
After many conversations together, one of the authors decided to collect data from her 

classes at a public university. Study participants consisted of 44 PTs from two sections of the 
mathematics course. One PT was absent for most of the tasks, hence we did not use that data. 
The geometry course is the second course in a two-semester mathematics course sequence for 
elementary PTs. All participants completed the first course prior to this study. The mathematics 
textbook for this course is Beckmann (2013), which aligns with the standards of the Common 
Core State Standards Initiative (2010). The class set-up and the textbook both used an inquiry-
based approach (Bruner, 1961) towards learning, where students are encouraged to explore 
content on their own and discuss with their peers.  

The study was conducted throughout the semester and area problems were collected from 
PTs’ in-class writing assignments, quizzes, tests, and from the final exam. The in-class writing 
assignments (Figure 1) contained questions related to area and area-units and they were repeated 
multiple times throughout the semester. Each time the answers were discussed in class after PTs 
got their writing assignment back.   

Our choice of tasks here represents a first pass at making a deeper examination of our PTs’ 
area concepts. We intend to take a more precise look at their understandings of area in a future 
study by adding clinical interviews (Clement, 2000) including conversations about their written 
work. 

19th Annual Conference on Research in Undergraduate Mathematics Education 801

19th Annual Conference on Research in Undergraduate Mathematics Education 801



Figure 1. Tasks used in the study. 
Area Definition Task: 
Discuss area of a shape. Give an example. 
Units Task 1: 

 

                            
Units Task 2: 
What do you understand by 12 m2? 

 
Data Analysis 

Area Definition Task: We analyzed the area definitions following an open and axial coding 
method (Strauss & Corbin, 1998). Each of the three authors read the PTs’ written definitions of 
area and created a rubric to assign a score to each PT. Then we discussed our rubrics and created 
a common rubric (Table 1) for assigning scores to each PT’s area definition.  

Units Tasks: We analyzed Units Task 1 (non-standard units) and Units Task 2 (What do you 
understand by 12𝑚2?) by recording each PT’s answers. We created a spreadsheet of the PTs’ 
responses to each task so that we could trace an individual PT’s progress across the tasks and 
simultaneously compare responses of all PTs to the same task at the same point in time. 
Responses to both units tasks were recorded as “correct” and “incorrect”. 

Results and Discussion 
After comparing PTs’ definitions of area, their use of non-standard units, and their responses 

to the question What do you understand by 12𝑚2?, we concluded that their understandings of 
area differed across these three contexts. Focusing first on responses to the Area Definition Task, 
we found about 86% of the 43 PTs started with a low understanding of area as measured by 
scores less than or equal to 3. By our rubric, this suggests that a majority of the study participants 
did not have a comprehensive understanding of area in the beginning of the semester because 
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their definitions included only “measures space” or “the amount of space that an object takes 
up”, but did not specify two-dimensional space and made no reference to use of units. 
 
Table 1 
Rubric for assigning scores to PTs’ Area Definitions 

Score Description Corresponding Examples 
5 Used covering OR fitting concept, 

explicitly mentioned measuring a 2D shape 
AND clearly described a unit of area. 

“The area of the shape is the 2 dimensional 
measurement of the amount of space it takes 
up.” 

 
4 Used covering OR fitting concept and 

indicated measuring a 2D shape (either 
expressed in words or pictures) OR a unit 
of measurement has been used specifying it 
as a length or area unit. 

“Area of a shape is how much space it takes up 
in specified units in a 2-dimensional plane.” 

 
3 Used covering OR fitting concept OR 

mentioned measuring a shape/ space or 
outside of a shape (2D is not explicit 
through words or pictures) OR used length 
times width as an example beside their 
definition. 

“If you were to put something inside it. The 
area is how much you could fit in.” 

2 Discussed area with length times width as a 
requisite part of the definition (not just as 
an example).  No indication of measuring 
2D space. 

“Length times width, because you want to find 
the area you have to multiply all of the sides 
together.” 

1 Used volume formulae OR 3D figures as 
parts of definition OR unclear vocabulary 
OR did not write anything. 

“The area of the shape are the dimensions 
inside of the shape or the volume of the shape.” 

 
Those scoring 2 described area only as “length times width” and those scoring 1 wrote 

irrelevant or unclear statements with no reference to space at all. Throughout the semester, the 
same questions were asked and discussed multiple times. On the final exam, a similar question 
asked for a definition of area compared to perimeter or volume. About 81% of the 43 PTs scored 
at the level of 4 or 5 on this question. This suggests that PTs’ area definitions improved over 
time. 

Results of Units Task 1 that required PTs to describe the area of a shape using standard and 
non-standard units showed that only 5 PTs initially identified correct units. Most PTs initially 
designated all non-square units as “units squared” or as “square units” (see examples in Table 2).   
Even after three repetitions of this task, each followed by discussions of the answers, only 22 
PTs (about half of the total number of PTs) identified correct non-standard units. Analysis of the 
Area Definition Task suggested improvement in PTs’ understanding of area, but Units Task 1 
suggested half of the class still had misconceptions about area. Combining our analyses of Units 
Tasks 1 and 2, we found that PTs at different levels of area definition answered the two tasks 
differently (see Table 3). Although 21 PTs reached a level 5-area definition, only 5 of them 
correctly responded to both units tasks at the end of the semester. 
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Table 2 
PTs’ initial responses to Units Task 1 

Units in Units 
Task 1 

PTs referring to the corresponding units 

1.  Square unit Units2, Units squared, Unit squares, 1 by 1 squares, Squares, 
Square units, squares2, No units, Units, Unit squares2, 1 by 1 unit squares, 1-
unit by 1-unit squares 

2. Right 
Triangle unit 

Units2, Units2(of the triangles), Units squared, Right triangles, Right triangle 
units2, Units2 triangles, Square units, Triangle units, Units, Right triangles2, 
Unit squares, No units 

3. Two square 
unit 

 Units2, Units squared, Two square units, Units, Square units, Units of two 
squares, No units 

4. L-shape unit  Units2, Units, Square units, Units of two squares, No units, L-shape units 
 

This data suggests that, although the idea of “area as covering/ fitting” is mathematically 
linked to the units used to measure area, these concepts were conceptually distinct for many of 
our PTs. None of the PTs giving a level 3 definition of area were able to give a correct response 
to the non-standard units task (Units Task 1), but 3 out of 5 were able to correctly answer the 
question, “What do you understand by 12m2?” There were 11 students across all levels of 
definition who could give good or even excellent definitions of area and explanations of the 
meaning of 12m2, but could not apply these ideas correctly in situations involving non-standard 
area-units.  It seems likely that these students had memorized these two ideas, but did not really 
understand the meaning of area when measured with a non-standard unit. 
 
Table 3 
Summary of results of area definition and the two units tasks at the end of the course 
 

Area 
Definition 
Levels 

Both Units 
Tasks Correct 

Correct Units 
Task 1 + 
Incorrect Units 
Task 2 

Incorrect Units 
Task 1+ 
Correct Units 
Task 2 

Both Units 
Tasks Incorrect 

Total 

Level  5 5 6 6 4 21 
Level  4 3 5 2 4 14 
Level  3 0 0 3 2 5 
Below 3 0 0 0 3 3 
*Note: The numerical values above denote the number of PTs in each category. 

 
We can see that these ideas are distinct by isolating individual PT’s work by level of area 

definition.  Table 4 shows examples of four individuals’ work across the three different tasks in 
their final attempt.  Each row shows a different PT’s work.  For simplicity, we show only 
examples at definition level 5. 

Conclusions and Implications 
Our data clearly shows the ability to write a clear and complete definition of area, including 

reference to the units used to measure it, does not imply full understanding of area. Although 
area and area-units are tied together mathematically, these ideas were split in the minds of many 
of our PTs. This is consistent with a long-standing body of literature illustrating the 
psychological phenomenon of context-dependent understanding (e.g., Carraher, Carraher, & 
Schliemann, 1985). The only students who had both units tasks correct were those who had 
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attained a level 4 or 5 definition by the end of the semester. In contrast, even after multiple 
repetitions, 5 of the 8 PTs (see Table 3) who ended the course still writing definitions at level 3 
or below were still not able to correctly complete either of the units tasks. This suggests a well-
articulated area definition is a necessary, but not sufficient, indicator of PTs’ understanding of 
area. 
 
Table 4 
Four PTs’ work on area and units tasks. 

PTs Area Definition Task Units Task 1 Units Task 2 
PT 1 Level 5 

The area of a shape is how many two 
dimensional units fit inside a flat shape. 
For example 

 

Correct Response 
11 triangular units 

 

Correct Response 
That an area or space is 
filled up with 12 1m x 
1m units    
              

 
 

PT 2 Level 5 
The space a plane shape takes up on a 
plane. The area, the space the shape 
takes up, can be defined as the units that 
makes up the shape. In this case, the 
shape is made up of 2 square units. 

 

Correct Response 
 

 

Incorrect Response 

 

PT 3 Level 5  
The area of a shape is a two dimensional 
measurement of space such as how 
many 1 cm by 1 cm squares can fit in a 
shape. 
 

Incorrect Response 
 

 

Correct Response 
12 1meter by 1 meter 
squares. 
 

PT 4 Level 5 
Area of a shape is the amount of space 
the shape takes up. It is two 
dimensional.  

            

Incorrect Response 

 

Incorrect Response 
It is 12 square meters. 
So there are 12 square 
meters in the shape. It 
is NOT meters squared. 

 
Just as we need caution when assuming that a correct definition implies understanding of 

area, we need to consider whether incorrect labeling of area-units (e.g., “12 triangle units2”) 
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necessarily implies deficient understanding of the units themselves. For example, PTs’ 
experiences of units in science classes (where units are cancelled as if they were variables) might 
have helped to change their interpretation of “square units” from a correct understanding of this 
to the incorrect “squared units” or “units squared”. The student errors we found suggest that PTs 
are multiplying words (inches times inches), like variables, without regard to the units or the 
meaning of multiplication. 

This study shows there is a need for development of progressions of PTs’ understanding on 
geometric topics. Our results overlap with much of the work done with children by Battista 
(Battista, 2012; Battista et al., 1998). Using teaching experiments (Steffe, 1983), this research 
breaks the concepts of area and volume into “levels of sophistication” through which children 
must pass on their way to full understanding of area and volume. Battista (2012) classified 
reasoning about area into 8 broad levels, with the first four levels all explicitly about units. This 
suggests that a very deep understanding of units is required in order to attain a comprehensive 
understanding of area. At the lowest level described, the child “uses numbers in ways 
unconnected to appropriate area-unit iteration” (p. 112). At the next lowest level, the child 
“incorrectly iterates area-units” (p. 112). In contrast, our data from PTs show two different levels 
that indicated no understanding of the relationship between area and the area-units. Looking only 
at our PTs’ definitions, they had two ways to be incorrect: 1) At our Level 1, PTs gave 
definitions having nothing to do with area or its measurement (e.g., they defined volume 
instead), and 2) At our Level 2, PTs gave incorrect definitions that relied on the formula for the 
area of a rectangle, a definition possibly derived from memorized school learning. Our PTs’ 
responses were consistent with observations described by Simon and Blume (1994) who wrote 
that many of their PTs had a  

rote procedure for finding area given two linear measures (expressed in common units of 
length). According to this scheme, one multiplies the two numbers and expresses the 
product in “square units”, so that the second word in the area referent is the same as the 
referent for the linear measures. It is likely that for some of these [PTs], square units do 
not conjure up an image of a square. (p. 485).   

Looking at the other developmental levels found by Battista (2012), our PTs seem to be 
consistently at his sixth level – they “understand and use procedures and formulas for 
determining areas of rectangles” – but many have not reached the next level where they 
“generalize their understanding of area measurement to non-squares and to area-unit 
conversions” (p. 113). Where there is often overlap between the levels of understanding that we 
see in our PTs with the literature on children’s developing understandings, many PTs have 
succeeded in school for years despite having misconceptions about area and area-units. This 
causes a PT’s learning path to deviate from a child’s.  

It is clear that we must study the learning paths of PTs directly, not simply compare their 
understandings to the development of children. We suggest several improvements for future 
studies. Tasks should be designed specifically to focus on PTs’ understanding of area-units, and 
written work should be paired with interviews asking them to explain their thinking. Study 
should focus on those PTs who have completed an arithmetic course for teachers to examine how 
they relate area formula for rectangles and two-dimensional area-units and the role played by 
multiplication. With enriched understanding of how our PTs learn geometric concepts, teacher 
educators will be better prepared to work with them to unravel misconceptions and strengthen 
and rebuild PTs’ mathematics for teaching. 
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How well prepared are preservice elementary teachers to teach early algebra? 
 

Funda Gonulates, Leslie Nabors Oláh, Heejoo Suh, Xueying Ji, Heather Howell 
 

As algebra has gained more attention in the K-12 curriculum, mathematics educators and 
policy makers have studied ways to support early algebraic thinking (e.g., Carraher, Martinez & 
Schliemann, 2008; McCallum, 2011).  However, algebra in the early grades is sometimes 
misunderstood and is misrepresented as merely bringing algebra content down to the early 
grades (Kaput, 2008, p. 6). Instead of adding new content to an already packed curriculum, 
experts have suggested that elementary school teachers can support their students’ algebraic 
thinking by being more selective and attentive to mathematical content as it is related to algebra 
during routine classroom discussions (e.g., noting that when you add two numbers, the order of 
numbers does not change the answer). Teachers can also support this thinking by considering 
ways to highlight algebraic connections and recognize patterns for generalization (Wu, 2001). 
This approach contrasts with a more traditional focus on computation and symbolic manipulation 
which Smith and Thompson (2008) consider a “fundamentally flawed” introduction of algebra, 
noting that “developing students' abilities to conceptualize and reason about situations in 
quantitative terms is no less important than developing their abilities to compute” (p.128). 
Therefore, even beginning elementary school teachers need to be knowledgeable about relevant 
algebraic content and what pedagogical choices will support their students in developing early 
algebraic thinking.  

Although researchers theorize that early development of algebraic thinking is important 
for students’ later understanding of algebra, the research base is not yet sufficient to identify 
what teachers know about their students’ understanding of basic algebraic concepts (Asquith, 
Stephens, Knuth, & Alibali, 2007). This study builds knowledge by documenting the responses 
of a sample of preservice elementary teachers to a set of early algebra items designed to measure 
their mathematical knowledge for teaching (Ball & Bass, 2002). This will help us understand 
what knowledge such undergraduates have of the content needed to teach early algebra. We will 
use these findings to discuss whether and how teacher education programs across the nation are 
preparing undergraduates to teach early algebraic thinking.  For this purpose we asked the 
following research questions: 

x How do undergraduate preservice teachers interpret and respond to common 
patterns of student thinking in early algebra topics?  

x What are the strengths and weaknesses among undergraduate preservice teachers 
in preparing appropriate materials to support students’ early algebra 
development? 

Conceptual Framework 
We adopted the conceptualization of teacher knowledge as introduced by Shulman 

(1986) as pedagogical content knowledge, and later Ball, Thames, and Phelps (2008) elaborated 
on and operationalized as Mathematical Knowledge for Teaching (MKT).  In this particular 
study we have attended to Knowledge of Content and Students (KCS) and Knowledge of 
Content and Teaching (KCT) from the Ball et al. framework. KCS refers to teachers’ knowledge 
of their students with respect to mathematics (e.g., common misconceptions or students’ level of 
understanding). In KCT the content knowledge is related to teachers’ knowledge of teaching 
(e.g., choosing a mathematically valid representation to use in introducing a concept).  
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This study aims to investigate undergraduate preservice teachers’ knowledge in the 
domain of early algebra. In building an understanding of early algebra many researchers mention 
the importance of “Equivalence Statements” and how students are challenged to see the equal 
sign as indicating equivalence. Rather, students tend to understand the equal sign as indicating an 
action to carry out (e.g., Nathan & Koellner, 2007). In addition, the transition to algebra is 
related to gradual “symbolization of computations” (Kaput, 2008). The literature refers to the 
importance of having students attend to and be able to “use structure in solving problems” 
(Kaput, 2008). This kind of work can enhance students’ algebraic thinking skills. In addition, to 
develop functional thinking students need to be able to attend to and make sense of variables 
involved in a problem and try to explain relationship between variables in a problem situation, 
often referred to as “relational thinking”(Carraher, Martinez & Schliemann, 2008). 
 

Methods 
We conducted 90-minute clinical interviews with 15 preservice teachers (PST) in their 

fourth year of a five-year long teacher preparation program. At the time of the interview 
participants were enrolled in the Teaching Methods in Mathematics undergraduate course, and 
three of the 15 were math majors. 

These interview sessions collected the PST’s responses to a series of 17 assessment1 
items designed to measure their content knowledge for teaching early algebra, with follow up 
questions probing their content-based reasoning. We also collected self-reported information 
about their preparation in this content area. Our initial coding of items was designed to separate 
those that focused on student thinking from those that focused on preparation for instruction. The 
algebra focus of these items included equivalence statements, symbolization of computations, 
using mathematical structure in solving problems, and relational thinking.  The distribution of 
items in terms of algebra focus is given in Table 1. Algebra focus categories were not mutually 
exclusive; therefore categorization of the items reflected primary content focus of the items. 

 
Table 1 
Distribution of Interview Items According to Early Algebra Content  
Primary Content 
Focus 

Definition Number of 
Items 

Equivalence 
Statements 

Items included meaning of the equal sign and equivalency 
statements, understanding of equivalency, and properties of 
equivalence relations (reflexive, symmetric, transitive).  

6 

Symbolization of 
computations 

Items included the use of variables in solving problems, 
moving from one representation to another, representing 
verbal information in symbols, and illustrating a story 
problem by using a graphical representation. 

3 

Using Structure 
in Solving 
Problem 

Items included using the mathematical structure of the 
problem in finding a solution. These items also focused on 
ways students can make use of properties of operations and 
identifying flaws in student use of operations (e.g., 
incorrectly commuting over subtraction). 

7 

Relational 
Thinking 

Items assessed the ability to move from recursive thinking to 
general, or to characterize the relationship among variables. 

1 

                                                            
1 These assessment items were developed by researchers at Educational Testing Service.  
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As demonstrated in Table 1, the majority of the items’ main focus was either equivalence 
statements or using structure in solving problems. An Equivalence Statement item can assess 
PST’s evaluation of student work or can require the PST to consider examples to support their 
students’ view of equal sign as a balance. An example of an Equivalence Statement item (where 
the PST needs to understand that equivalence is not highlighted by the examples provide) is 
given in Figure 1. 

 
 

Figure 1. Example of a released Early Algebra item. 
 
With respect to assessing PST’s use of Structure, an item might ask a test-taker to consider 
responses to simplifying the expression 7 – 3 +2. A common misconception would lead a student 
to evaluate the expression as 2 by adding 3 and 2 before subtracting (Hewitt, 2012).We would 
code an item asking the test-taker to interpret this kind of work as using structure in solving 
problems and having a pedagogical focus on student thinking.  
 
Data Analysis 
Interviews were recorded and were transcribed to allow for data analysis in NVivo. A team of 
researchers used a grounded theory approach with open and axial coding techniques (Glaser & 
Strauss, 1967) followed by constant comparative analysis (Miles & Huberman, 1994).  These 
methods allowed us to arrive at a set of themes describing PST interpretation of common 
patterns of student thinking, strengths and weaknesses in PST use of algebraic concepts, and 
refinement of those themes by going back to existing literature and to the data.   
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Coding Framework 
The coding framework was developed in multiple steps. First an initial framework with broader 
themes was developed and later refined by reviewing the data more closely and by revisiting our 
research questions. An initial round of item-level coding documented whether items required 
consideration of the equal sign, presented or asked for a student misconception, and/or presented 
student thinking. In addition, we worked together as a group to code three items and revised the 
coding framework before starting the pair-coding process. Analysis was conducted at the item 
level because items differed in the content they targeted.  A sample of our coding framework that 
distinguishes PST understanding of the equal sign is provided in Figure 2.  
 

Figure 2. Example of the coding framework. 
 
Coding for these two views of equal sign, for example, will help us to characterize PSTs’ 
common view of the equal sign and how they use these views in interpreting students’ work or 
addressing student misconceptions related to the use of the equal sign. For example, a response 
like the following: 

... maybe they don’t understand the equal sign means that both sides of the equation are 
going to be the same value so this side of the equation is going to equal be the same value 
as this side of the equation.  

was coded as M_EQ_Balance because this PST clearly noted a balance view of the equal sign.  
 
 

Preliminary Results  
The presentation focuses on findings that we believe have direct interest for RUME 

participants: (1) the study participants were least likely to answer correctly on items targeting the 
meaning and use of operational properties, (2) they struggled in evaluating the appropriate use of 
the equal sign when presented with different uses in student work; and (3) they reported that they 
had had few opportunities to learn about early algebra as mathematical content and as a topic to 
teach.  

When solving the assessment items by “thinking aloud,” some participants shared their 
embarrassment at not knowing the definition of the commutative property or the associative 
property. In other assessment items, for example, they showed that they knew that the order of 
numbers does not matter when adding numbers. In other words, the participants had the 
mathematical knowledge of the properties but lacked the knowledge on their names. Some 
participants also did not recognize that the use of multiple equal signs was problematic. In terms 

Area/
Focus 

Detail Code (Node) Definition 

Mathematical Focus 

Equal 
Sign 

Equal 
sign as a 
balance 

M_EQ_Balance This code is used for evidence that the PST 
understands or uses the equal sign as a balance or 
considers that both sides of the equation need to be 
equivalent.  

Equal 
sign as an 
action 

M_EQ_Action This code is used for evidence that the PST 
understands or uses the equal sign as an indication of 
an action or computation. (i.e., the equal sign is 
considered as a signal to produce an answer). 
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of opportunities to learn about early algebra, a number of participants reported that they did not 
have many chances to discuss early algebra as content to learn and content to teach in the 
previous four years. Although it is possible that they studied early algebra topics in their 
mathematics content courses and in their mathematics teaching method courses, the participants’ 
lack of recall in this area suggests the need for more emphasis on early algebra. 

Evidence of Impact 
While this study was conducted at one institution and, therefore, is not intended to be 

representative of all programs, the number and types of mathematics and mathematics methods 
courses these undergraduate PSTs take are similar among teacher preparation programs 
nationwide. Our results are likely typical of the types of challenges other undergraduate PSTs 
would be expected to have. We will detail these challenges in the presentation, such as an 
appropriate use of the equal sign and a flexible and appropriate use of properties. In addition, we 
will talk about how it is important for teachers who are teaching undergraduate PSTs to provide a 
broader view of algebra and help their students to move from a “fundamentally flawed” view of 
algebra with a focus on computations (Smith & Thompson, 2008). 

Research provided evidence that students can learn so-called difficult algebraic concepts 
and overcome their misconceptions with appropriate pedagogical choices (Hewitt, 2012). 
Therefore it is important to know what PSTs are in need of the most in preparing to teach early 
algebra. Such information matters because it can inform the development of teacher-education 
curricula and support materials. Participants in this presentation will get a summarized list of 
findings and an opportunity to discuss implications for designing courses for undergraduates who 
will become teachers. 

Organization of the Session 
In this session we will present the findings of the study and use excerpts from the 

interviews to allow teachers of undergraduate preservice teachers to characterize the 
mathematical knowledge and reasoning revealed in the interviews. In addition, we will have 
participants discuss what kind of curriculum and course work is needed so that undergraduates 
who will become teachers will be well prepared to teach this content area. We will present the 
following questions for consideration:  

 
1. If these findings were indicative of a broader need for increased undergraduate 

instruction in algebra, where should responsibility for this instruction sit within the 
undergraduate program? 

2. What opportunities are currently given to undergraduate students to use algebraic 
reasoning in authentic problem solving contexts? 

 
 

References 
Asquith, P., Stephens, A. C., Knuth, E.J., &, Alibali, M.W. (2007). Middle school mathematics 

teachers’ knowledge of students’ understanding of core algebraic concepts: equal sign 
and variable. Mathematical Thinking and Learning, 9(3), 249-272. 

Ball, D. L., & Bass, H. (2002, May). Toward a practice-based theory of mathematical knowledge 
for teaching. In Proceedings of the 2002 annual meeting of the Canadian Mathematics 
Education Study Group (pp. 3-14). 

Ball, D.L., Thames, M.H., & Phelps, G. (2008). Content knowledge for teaching: what makes it 
special? Journal of Teacher Education, 59(5), 389-407. 

19th Annual Conference on Research in Undergraduate Mathematics Education 812

19th Annual Conference on Research in Undergraduate Mathematics Education 812



6 
 

Carraher, D.W., Martinez, M.V., & Schliemann, A.D. (2008). Early algebra and mathematical 
generalization. International Journal on Mathematics Education, 40, 3-22. 

Glaser, B. G., & Strauss, A., L. (1967). Discovery of grounded theory: Strategies for qualitative 
research. Chicago: Aldine. 

Hewitt, D. (2012). Young students’ learning formal algebraic notation and solving linear 
equations: are commonly experienced difficulties avoidable? Educational Studies in 
Mathematics, 81(2), 139-159. 

Kaput, J.J. (2008). The nature of early algebra. What is algebra and what is algebraic reasoning? 
In J.J. Kaput, D. W. Carraher & M. L. Blanton (Eds.), Algebra in the Early Grades (pp. 
5-19). New York: Lawrence Erlbaum Associates/National Council of Teachers of 
Mathematics. 

McCallum, B. (2011, May 29).  Progressions for the common core state standards in 
mathematics. K, counting, and cardinality: operations and algebraic thinking [Blog post]. 
Retrieved from http://commoncoretools.me/2011/05/29/complete-draft-progression-for-
cc-and-oa/ 

Miles, M. B., & Huberman, M. A. (1994). Qualitative analysis: An expanded sourcebook (2nd 
ed.). Thousand oaks, CA: Sage. 

Nathan, M. J., & Koellner, K. (2007). A framework for understanding and cultivating the 
transition from arithmetic to algebraic reasoning. Mathematical Thinking and 
Learning, 9(3), 179-192. 

Shulman, L. (1986). Those who understand: Knowledge growth in teaching, Educational 
Researcher, 15(2), 4–14.  

Smith, J., & Thompson, P.W. (2008). Quantitaive reasoning and the development of algebraic 
reasoning. In J.J. Kaput, D. W. Carraher & M. L. Blanton (Eds.), Algebra in the Early 
Grades (pp. 95-132). New York: Lawrence Erlbaum Associates/National Council of 
Teachers of Mathematics. 

Wu, H. (2001). How to prepare students for algebra. American Educator, 25(2), 10-17. 

19th Annual Conference on Research in Undergraduate Mathematics Education 813

19th Annual Conference on Research in Undergraduate Mathematics Education 813



	

	

Unraveling, synthesizing and reweaving: Approaches to constructing general statements. 
Duane Graysay 

Penn State University 
 

Abstract 
Learning progressions for the development of the ability to look for and make use of 

mathematical structure would benefit from understanding how students in mathematics-focused 
majors might construct such structures in the form of general statements. The author recruited ten 
university students to interviews focused on tasks that asked for the reconstruction of a general 
statement to accommodate a broader domain. Through comparative analysis of responses, four 
major categories of approaches to such tasks were identified. This preliminary report describes in 
brief those four categories. 
Keywords: Undergraduate mathematics, mathematical practices, structure, generality, general 
statements. 

Rationale 
One goal of mathematics education at all levels is to promote the development of 

proficiency in mathematical thinking. In recent years, the Common Core Standards (Council of 
Chief State School Officers [CCSSO] & National Governors Association Center for Best 
Practices [NGA], 2010) have become a well-known framework for describing the mathematical 
practices that students should develop during their K-12 education.  

The Standards for Mathematical Practices are meant to “describe varieties of expertise 
that mathematics educators at all levels should seek to develop in their students” (p. 6). Included 
among these Standards is the practice to “look for and make use of structure” (p. 8). Mason, 
Stephens, and Watson (2009) define mathematical structure as “the identification of general 
properties which are instantiated in particular situations as relationships between elements” of 
some kind of collection. For the purpose of this preliminary report, a statement that describes 
such a structure will be referred to as a general statement. The construction of general statements 
is an essential component of mathematical activity, without which the knowledge of individuals 
and of the discipline cannot grow (cf. Mason, Drury, & Bills, 2007). 

According to NGA and CCSSO (2010), the Standards were constructed on “research-
based learning progressions detailing what is known today about how students’ mathematical 
knowledge, skill, and understanding develop over time” (p. 4). A learning progression for the 
ability to create general statements should include research-based descriptions of the various 
ways that individuals might construct general statements as their formal education in 
mathematics increases. Research efforts have led to insights into the ways that elementary, 
middle, and secondary students construct general statements through patterning and generalizing 
(e.g., Becker & Rivera, 2004, 2005, 2006, 2007; Ellis, 2007; English & Warren, 1995; Fuii & 
Stephens, 2001; Garcia-Cruz & Martinón, 1997; Jurow, 2004; Lannin, 2005; Lannin, Barker, & 
Townsend, 2006), yet much less is known about the approaches that students, engaged in formal 
postsecondary study of mathematics, use to construct general statements 

This preliminary report focuses on findings from data collected as part of a research study 
designed to investigate the following question:  

What are the characteristics of approaches that postsecondary students in math-focused 
majors use when constructing general statements? 

Theoretical Framework 
Examples and generality 
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Watson and Mason (2005) suggest that example construction is an important aspect of 
mathematical activity. Among other possible uses, examples may serve as “placeholders used 
instead of general definitions and theorems” (p. 3) or as “representatives of classes used as raw 
materials for inductive mathematical reasoning” (p. 3). The generality that one encodes in the 
examples that are produced may have an influence on the process of developing a general claim. 
For example, as Mason and Pimm (1984) noted, the numeral 6 can be used to represent a specific 
value, or as a representative example of an even number, or even as a generic representation of 
any element of the even numbers. The claims that one makes about a specific inscription may or 
may not be general claims about a class of objects, depending on the generality that the 
inscription is meant to represent.  

In addition to the generality that one encodes in an example (or attributes to an example), 
the symbols used to represent an example can influence the process of developing a general 
claim about a collection. Lannin, Barker, & Townsend (2006) hypothesized that individuals are 
more likely to develop numerical patterns involving recursive relationships when elements of a 
collection are represented in such a way that one can perceive one figure as an intact subfigure of 
another, such as in the arrays shown in Figure 1, and that learners are more likely to work toward 
patterns that relate ordinal position and numerical values when presented with figures that are not 
so easily perceived as embedded one-within-another (see Figure 2). 

 
Figure 1. Recursively oriented patterns (Lannin et al., 2006, p. 22) 

 
Figure 2. The Border Problem (Lannin et al., 2006, p. 18) 
Relationships 

A general statement is, in its presentation, nothing more than a claim that one is making 
about elements in a collection. Behind a general statement, however, are the structures and 
relationships that one understands and that undergird the statement itself. The relationships to 
which one attends when examining examples and building relationships can influence and even 
characterize the resulting general statement. Stacey’s (1989) illustration of students’ approaches 
to linear generalizing tasks indicated that some learners identify relationships between examples 
and use those relationships to transform one example into another. For example, a student who is 
given the images shown in Figure 1 and asked to predict the number of rectangles and squares in 
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each set for N=4 might identify an additive relationship and predict that the number of rectangles 
will be one more than for N=3 and that the number of squares will be four more, thereby 
transforming the total of 3 rectangles and 9 squares for N=3 into totals of 4 rectangles and 13 
squares for N=4. Alternatively, some respondents will focus on relationships between the index 
value and the number of elements, noting that, for example, the number of rectangles is 2 for 
N=2 and 3 for N=3 and hypothesizing that the number of rectangles will always equal the index 
value. In the case of patterning activities such as those used by Stacey (1989) and Lannin and 
colleagues (2006), the type of relationship that the participant finds salient can impact the 
development of either a recursive relationship or a functional relationship. 

Methods 
Ten students from a large mid-Atlantic university were recruited as participants. All were 

pursuing degrees in math-focused majors: Six were pursuing degrees in secondary mathematics 
education, and four were pursuing degrees in mathematics. Each participant was enrolled in 
mathematics coursework intended for students in their fourth year of study, and each had 
completed at least one mathematics course at that level prior to participating. Participation 
consisted of three task-based interviews, each lasting approximately one hour and consisting of 
one or more tasks designed to engage the participant in the construction of a general statement. 
Recordings were used to capture participants’ statements and to provide a video record of the 
participants’ written work and nonverbal gestural communication. Each interview was 
transcribed and each transcript was parsed into responses that began at the introduction of a task 
prompt and ended at the introduction of a subsequent task prompt or at the end of the recording.  

This preliminary report is based on participants’ responses to tasks that provided a 
general statement (we will refer to this as the anchor statement) and that asked the participant to 
reconstruct the claims made in the anchor statement as claims that would be true for a superset 
containing the original domain (we will refer to the superset as the target domain and to the 
requested set of claims as the target claim). Specifically, participants responded to one or more 
of the following task prompts: 

Reconstructing products (RP). Consider the following statement: Any four consecutive 
whole numbers is divisible by 12. Can you rewrite the statement so that it is true for products of 
three or four consecutive whole numbers? 

Reconstructing Unit Ball (RB). Every point (x ,0) on the interior of the interval [-1 , 1] 
has the property that |x| < 1. Can you rewrite the statement so that it is true for all points on the 
unit circle and its interior? 

Reconstructing Sums (RS). Consider the statement that the sum of the first n counting 
numbers is n(n + 1)/2. Can you find a way to rewrite this statement so that it is true for any 
sequence of n consecutive integers? 

Consistent with the theoretical framing presented here, participants’ responses to these 
tasks were analyzed and categorized by comparing the ways that the participants exemplified the 
anchor domain and target domain, to the presence of evidence that illuminated the generality 
encoded in the examples that participants created, to the relationships (if any) that the 
participants analyzed while responding, and to the relationships that participants constructed 
while responding. 

Findings 
The comparative analysis of responses yielded five qualitatively distinct approaches to 

the tasks presented in the methods section of this preliminary report. Rough descriptions of each 
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approach are presented in Table 1, and illustrative examples will be shared here, as space 
permits. 
Characterizing Approach: Don, RP 

In his response to the RP task, Don (a pseudonym) wrote examples of products of three 
consecutive whole numbers as shown in Figure 3. He noted that each 3-tuple contained an even 
number and a 3, and hypothesized that products of 3 consecutive whole numbers might always 
be divisible by 6. He then tested this for 4*5*6, 5*6*7, 6*7*8, and 7*8*9. This part of Don’s 
response consists of characterizing the collection of examples without reference to the anchor 
statement. 

 
Figure 3. Don's examples of products of 3 consecutive whole numbers. 
Oblique Approach with Specific Examples: Chris, RP 

Chris created a set of specific examples similar to those used by Don (see Figure 4). 
However, instead of developing a claim inductively from examples, Chris searches for those 3-
tuples that satisfy the anchor claim – in other words, those whose products are divisible by 12. 

 
Figure 4. Chris' examples of 3-tuples in the RP task. 
Unraveling and synthesizing: Jolene, RP 

Jolene approached the RP task by analyzing the anchor claim. She determined that a 4-
tuple would always have two even factors using a generic representation shown in Figure 5, and 
used the placeholder representation shown in Figure 6 to conclude that a 4-tuple would always 
include one number that was divisible by 3. She then used these understandings to synthesize the 
claim that a 3-tuple would always include one number divisible by 2 and one divisible by 3 and 
would, therefore, have a product that is divisible by 6. 

	
Figure 5. Jolene's general representation of 4-tuple. 

	

Figure 6. Jolene's placeholder representation. 

Unraveling and adapting: Edward, RS 

Edward conceptualized an arbitrary sequence of positive consecutive integers as the difference 
between two sequences of counting numbers: 

Let's say we started just at 5 and . . . . I wanted to know the sum of the numbers from 5 to 
10. I would do the first ten counting numbers and then I would take away the first four 
counting numbers. 
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Edward then used this relationship between the target domain and the anchor domain as a 
conceptual lens through which to adapt the anchor claim, writing a target claim that the sum of a 
sequence of integers from k to n would be computed through the expression in Figure 7. 

 

Figure 7. Edward’s formula for the sum from k to n. 

Table 1  
Approaches to Reconstruction Tasks 

  Approaches 

R
ep

re
se

nt
at

io
n 

of
 D

om
ai

n 

 Structural Oblique Empirical 

Collection of 
Specific 
Examples  

Unravel 
relationships 
between the 
anchor domain 
and anchor 
claim, then 
synthesize 
relationships 
from the target 
domain to a 
target claim. 

Unravel 
relationships 
between the 
anchor domain 
and the target 
domain, then 
adapt the 
anchor claim. 

Find examples 
that satisfy the 
anchor claim. 

Reason 
inductively. 

Generic 
example  

  

General 
representation  

  

The essential differences among these approaches lies in the generality with which the 
elements of the domain are represented and in the relationship that grounds the response. 
Structural approaches seem to be amenable to the greatest variation in ways of representing the 
anchor and target domains, and are more well-suited to general representations than are 
approaches in which the target claim is populated without calling on an analysis of relationships 
among the anchor statement and target domain. 

Implications 
As one advances in mathematics education, strategies for developing general statements 

do not necessarily become more sophisticated. However, some individuals develop the ability to 
analyze and utilize mathematical structure with respect to general representations to produce new 
general statements. Questions for those who attend this session will be: 

1. Are there particular tasks that might provoke more structural approaches? 
2. What teaching strategies might help students learn to use more structural approaches? 
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Abstract: Inquiry-based learning is one of the pedagogies that has emerged in mathematics as 

an alternative to traditional lecturing in the last two decades.  There is a growing body of 

research and scholarship on inquiry-based learning in STEM courses, as well as a growing 

community of practitioners of IBL in mathematics. However, despite the growth of IBL research 

and practice in mathematics, wide uptake of IBL remains hamstrung in part by the lack of a 

sophisticated discussion of its definition.  Using a diffusion and framing analytical framework, 

this qualitative research paper offers a first step toward addressing this problem by describing 

how a group of IBL practitioners define IBL and how they adopt IBL to fit their specific teaching

needs. We argue that early diffusion of IBL, for the group we studied, was constrained by the 

initial framing of the pedagogy and ongoing conflict over the proper definition and application 

of it in the classroom.  Over time, however, the conflict proved to be beneficial to the community 

and a general consensus is developing among practitioners of IBL focusing on two core beliefs: 

1) that it is only IBL if the student takes ownership of course material on a regular basis, and, 

increasingly, 2) that students collaborate as a class or in small groups to produce the 

mathematics.
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Introduction

Calls to evaluate and reform undergraduate teaching in higher education have been 

commonplace since the 1980s (Boyer, 1980; Brint, 2011; NGA, 1986), and in the discipline of 

mathematics these efforts have been particularly urgent (MAA, 1988; NSF, 1993; NRC, 1991; 

Tucker & Leitzel, 1995) because of the central role of mathematics in both general education and

preparation for careers in technical and scientific fields.  However, the literature suggests that 

reforms often result in minimal, lasting change. Research focusing on higher education writ large

suggests that reforms are ineffective because of the challenges faculty experience in balancing 

their teaching and research roles (Cuban, 1999), because an emerging consumer-centric culture 

surrounding higher education has prevented reforms from influencing student achievement 

(Brint, 2011), and because faculty themselves have little reason to change given disciplinary 

cultures (Abbott, 2002) and institutional incentive structures. For reform in STEM fields 

specifically, research points toward poor implementation or the lack of quality collaboration and 

communication between curriculum researchers and instructors as additional reasons for sluggish

adoption of innovations (Henderson & Dancy, 2008; Henderson, Finkelstein, & Beach, 2010).

Inquiry-based learning is one of the pedagogies that has emerged in mathematics as an 

alternative to traditional lecturing in the last two decades.  There is a growing body of research 

and scholarship on inquiry-based learning in STEM courses, as well as a growing community of 

practitioners of IBL in mathematics.  In the late 1990s, the Educational Advancement Foundation

founded the Legacy of R. L. Moore annual conference, which began as an effort to spread the 

specific teaching method of the late topologist R. L. Moore but has become a focal point for a 

group of young instructors who identify themselves as IBL practitioners.  In 2009, the Academy 

for Inquiry-based Learning was developed to foster further growth of the community through its 

blog, list serves, and workshops (www.inquirybasedlearning.org).  However, despite the growth 

of IBL research and practice in mathematics, wide uptake of IBL remains hamstrung in part by 

the lack of a sophisticated discussion of its definition.  This paper offers a first step toward 

addressing this problem by describing how a group of IBL practitioners define IBL and how they

adopt IBL to fit their specific teaching needs.

Analytical Framework

This paper defines IBL as an educational innovation and thus our analytical framework 

utilizes perspectives and concepts from the literature on the diffusion of innovation.  One of the 

central features in diffusion theory is the extent to which individuals can positively identify with 

an innovation.  In this study, positive identification emphasizes the presence of shared 

understandings of IBL within the IBL community and this is important for both the diffusion of 

the innovation to potential members and the ongoing use of the innovation by existing members. 

Rogers (2003) argues that an innovation is more likely to successfully diffuse if it meets 

several criteria: it has relative advantage over alternative courses of action, it is consistent with 

the values, experiences and needs of potential adopters (what Rogers refers to as “compatibility”,

see also Givan, Roberts, & Soule, 2010 on “theorization”), it is not too complicated for the 

average potential adopter to understand and implement, it is something that can be adopted to 

specific circumstances, and it is relatively easy for potential adopters to observe in action.  The 

criteria of compatibility with individual values, experiences, and needs and the perception of the 

fit of the innovation to individual circumstance are particularly relevant to our concern about 

identification with the change process.  For all of these criteria, the perceptions of potential 

adopters about the innovation are crucial, and these can be particularly influential when potential

adopters form opinions and make decisions that influence whether they will even consider trying 

an innovation.  
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Individuals, then, will be more likely to adopt an innovation if 1) they already identify 

with the innovation in some capacity, 2) they identify with the definition of the problem that is 

addressed by the innovation, and 3) they feel they will benefit from adopting the innovation 

because the proposed changes fit their needs and circumstances.  This focuses our analysis on 

how different individuals define IBL in mathematics, how they identify the problem addressed 

by IBL, and their perceptions of how they perceive it to fit (or not) their specific needs.

Central to the ability of individuals to connect to innovations is the issue of discursive 

framing, or what Strange and Soule (1998) call “interpretive work.” Discursive framing refers to 

the ways that various discourses are used by different groups to frame an innovation's purposes, 

values, and actions.   In many cases, individuals who seek to diffuse innovations must negotiate 

their own multiple understandings and identities related to an innovation itself and the 

understandings of it projected by other innovators (see also Givan, Roberts, & Soule, 2010).  

This cultural work, establishing the boundaries of key concepts and what it means to be a 

member of the group of innovators, is a dynamic, ongoing process.  Taken together, this 

analytical framework focuses our attention on how the faculty in our study define IBL, how they 

interpret and enact it in practice, and how they perceive their perspective to fit into their broader 

understanding of the IBL community. 

Methods

Data for this paper were gathered primarily through semi-structured interviews that took 

place over the telephone or occasionally in person.  We strove for a conversational style in the 

interviews rather than a simple question and answer approach (Burgess, 1984; Seidman, 2006). 

For the purpose of our project, we defined the IBL community as the group of practitioners who 

attend and are connected to the annual Legacy of R. L. Moore conference.  We used knowledge 

of the community gained from past-research and evaluation projects to identify a preliminary list 

of the core members based on current and past involvement in putting together IBL workshops or

participating in the organization of the annual conference.  Additional names were added to the 

list through the use of snowball sampling as data gathering unfolded (Merriam, 1998; Mason, 

2002).  Potential interviewees were sent a solicitation email providing them with background 

information about the study and how their interview would contribute to it.  The majority of 

interviews were 60-90 minutes in length, were digitally-recorded and transcribed verbatim.  

These interviews covered a variety of topics related to instructors' knowledge of the history of 

the IBL community, how they defined and applied IBL in their own courses, their perspectives 

on the values and shared behaviors of the IBL community, and their hopes for the future of IBL. 

This paper is based on 25 such interviews with mathematics instructors at institutions across the 

United States.  

 These interviews were transcribed and coded using the data analysis software Nvivo 10.  

The coding process was informed by Miles and Huberman (1994), particularly the strategies of 

pattern coding, clustering, identifying intervening variables, and making conceptual coherence.  

The first stage of coding utilized concepts from the diffusion literature.  Initial codes were 

developed based on how speakers defined IBL (what it is and is not), and how they have 

reinvented or adapted it to fit their various teaching needs. Secondary coding schemes were 

developed through analysis and exploration of the patterns in the relationships between different 

clusters of the primary coding data.

Additionally, we made use of an open-ended survey item from a past study of this 

community that asked respondents to define IBL.  As this survey sampled a broader group, the 

survey responses provided a necessary and insightful complementary data set that allowed us to 
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compare and contrast the definitions of IBL for the core leadership group of the community and 

by members who are more peripheral.

Results

 All of the early adopters we interviewed remembered the last years of the 1990s as a 

period when they all realized they needed a new generation to join the IBL community.  The 

early adopters are all instructors who were taught by and learned IBL directly from R. L. Moore 

or one of his academic descendants. Beginning in 2003, these early adopters developed three 

different programs to reach out to potential members and educate them about IBL: 1) they began 

a series of annual workshops inviting new people to attend to learn about IBL and network with 

experienced IBL users, 2) they started four IBL centers in mathematics departments in 

universities across the United States that taught courses to future mathematicians using IBL and 

exposed graduate students and post-doctoral fellows to the teaching method, and 3) they 

connected with the Mathematics Association of America's Project NexT program, which focuses 

on the professional development of early career faculty in mathematics.  Collectively, these three

programs successfully exposed a new generation of instructors to IBL by 2010.  

However, this exposure did not automatically translate into widespread diffusion of IBL 

because of two primary framing-identity problems. First, the pedagogy was intimately connected

with the memory of the late R. L. Moore, which linked it to a personality and social perspective 

that many potential new users find troubling. Moore was a controversial figure because of his 

racist and sexist perspectives (Parker, 2005, pp. 287-290). Nearly all instructors interviewed 

acknowledged this fact but there were generational differences in how they negotiated its 

meaning. Older generations rationalized his social views by emphasizing the culture of the South

that surrounded him or by attempting to focus only on his teaching method and ignoring the 

problematic aspects of his image. This enabled the older generation to maintain a positive 

identification with IBL. However, younger members of the community were not able to maintain

such a positive identification with IBL so easily. Many of these younger instructors discussed the

limiting role those social views have on getting some of their colleagues to attend community 

events.  For example, one younger community member spoke about Moore's connection to IBL 

preventing many potential new members who already had teaching philosophies in line with the 

group from attending community events like the annual conference.

[P]art of Moore’s legacy is racist, and...there are people who would be on board with 

[our] ideas and wouldn’t have any trouble being part of the community at the conference, 

but because his name is still associated with it, sort of on principle, wouldn’t consider it.

In attempting to spread IBL to a new generation of instructors, most early adopters failed to 

recognize the importance of Moore's racism and sexism to the population they were targeting. 

Secondly, the original labeling of IBL as the “Moore Method” and later the “Modified 

Moore Method” was not ideal, as this framing using a name that is not broadly known in the 

discipline of mathematics prevented potential adopters from understanding or identifying with 

the teaching method. In fact, the majority of those interviewed who joined the community after 

its founding had never heard of the “Moore method” until they heard about the annual 

conference or encountered someone who was already in the community and realized they were 

teaching in a similar way. Together, these naming and framing issues made the processes of 

persuading new users to implement IBL and become active in the community challenging.  

Many of the young faculty who joined the community as a result of the workshops, the 

IBL centers, or Project NExT expressed feeling out of place the first time they attended the 

annual conference.  One instructor even referred to the culture of the group in the early years as a

“cult of personality” surrounding Moore.
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There’s something about the structure and the history of the group that, for one reason or 

another has not resonated with everyone, I think.  Certainly, it was the case at my first 

Legacy meeting.  It was sort of a cult [of] personality meeting.  Everybody talked about 

R.L. Moore and what a great influence he had had on each of them personally, and what a

transformative experience they’d had and how they felt empowered by him.

Another community member from the same generation agreed and offered a stark criticism of the

group's culture when he first started.

It was extraordinarily off-putting the way that the older members of the community

would talk about their bloodline, their genealogy, their purity, if you will; with whom

they studied and which descendant of whom they took courses from.

While the older generation of this community clearly championed the value of their experiences

with Moore, or his descendants, and the type of IBL he taught, the ways in which they spoke

about their experiences ostracized potential new members.  Rather than stop going to the

conference altogether or ceasing to use IBL, some of these younger generation members formed

their own subgroup that is more welcoming and less Moore-centric in their thinking about IBL.

One instructor offered a brief history of these group dynamics.

One of the first few...conferences I went to, it felt like there was a divide.  There was this 

group of people that was really devoutly following Moore and what Moore did and that 

what he did was very important and it should be preserved.  Then there was another 

group of people who were trying to introduce new ideas, and this was, I feel like this 

group of people that were open to new ideas, seemed like the minority the first time I 

crashed the conference.  Then, as the years went on, it started becoming the vocal 

majority, they were the ones organizing.

As the younger generation increased in number and had more influence in community events,

their ability to challenge the dominant framing of IBL as connected to Moore increased as well.

In contrast to the early group of instructors who identified with Moore-centric definitions of IBL,

the growing sub-group of instructors increasingly embraced broader adaptations of the pedagogy.

Once enough new users identified with IBL and adopted it in their own practice, conflict 

increased between competing visions of how IBL should be labeled and defined. Several 

instructors, old and new, remembered arguments during paper sessions at the annual conference 

about the “proper” definition of IBL over the years.  For example, one of the central pieces of 

conflict has been over whether collaboration among students should be considered part of IBL 

teaching methods. Older adopters stand by Moore's insistence that it is ultimately more 

empowering if students arrive at answers on their own while newer members argue that 

collaboration is more comfortable for students and ultimately more effective in today's 

increasingly diverse classrooms. Furthermore, the community has recently been publicly 

challenged to move away from an association with Moore altogether in favor of a strategy 

intended to recruit the faculty that were historically turned away by the problematic connection 

between Moore and IBL. The complete impact of this discursive move remains to be seen, but it 

is clear that it has energized the younger majority of the community. However, this relative, and 

perhaps even temporary victory for this group, took years to develop and was the result of 

conflict as original members and new members attempted to work through their initial 

differences in definition and understanding.  

Today, though many in the IBL community embrace a much broader framing of the 

pedagogy, many practitioners are concerned that it is becoming too broad.  Over time, as more 

instructors use IBL methods in their mathematics courses, the group has increasingly realized 

that it needs to be adapted to fit new circumstances, new groups of students, and new courses.  

As a result, many early adopters and change agents are concerned about how they police the 
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boundaries of the pedagogy.  For example, the annual conference has recently accepted papers on

flipped-classrooms and not all members of the community agree that this is appropriate.  

Nonetheless, the persistence of instructors with a broader definition of IBL have therefore 

seemingly won the day by providing the discursive framing necessary for newer faculty to 

identify with the movement and the pedagogy.  The emerging dominant frame is one that avoids 

ideological connection with Moore and his problematic legacy and instead highlights two core 

beliefs: 1) that it is only IBL if the student takes ownership of the material on a regular basis, 

and, increasingly, 2) that students collaborate as a class or in small groups to produce the 

mathematics. Thus far these core values have been enough to successfully recruit new members 

in the last few years while also preventing IBL from being too watered down in the eyes of the 

community.

Conclusions and Significance of the Research 

Results of this study raise important implications for understanding reform efforts in

higher education. Arguments for why reforms of teaching are slow to take hold—or die off 

altogether—focus on well-known contextual issues: that faculty focus on research more than 

teaching, that changing teaching requires more time than faculty have, or that instructors struggle

to adequately implement new curriculum or pedagogy. This study reminds researchers, as well as

practitioners, that it is also important how reform efforts are framed by those advocating for them

and how potential adopters perceive new curriculum or pedagogy matters. While finding 

teaching methods that engage students or promote learning is important, researchers and 

practitioners must frame their innovative reforms in ways that connect with instructors' 

preexisting identity,  values, perceived needs for their students.
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Developing an open-ended linear algebra assessment:  
Initial findings from clinical interviews 

Muhammed Haider, Khalid Bouhjar, Kelly Findley, Ruby Quea, Christine Andrews-Larson 
Florida State University 

 
The primary goal of this study was to design and validate a conceptual assessment in an 
undergraduate linear algebra course. We work toward this goal by conducting semi-structured 
clinical interviews with 8 undergraduate students who were currently enrolled or had previously 
taken linear algebra. We try to identify the variety of ways students reasoned about the items 
with the intent of identifying ways in which the assessment measured or failed to measure 
students’ understanding of the intended topics. Students were interviewed while they completed 
the assessment and interview data was analyzed by using an analytical tool of concept image 
and concept definition of Tall and Vinner (1981). We identified two themes in students’ 
reasoning: the first theme involves students reasoning about span in terms of linear 
combinations of vectors, and the second one involves students struggling to resolve the number 
of vectors given with the number of entries in each vector. 
 
Key words: assessment, linear algebra, inquiry-oriented, student thinking 
 

Students from a variety of science, technology, engineering, and mathematics (STEM) 
disciplines are required to take linear algebra as part of their undergraduate mathematics 
coursework. Students typically struggle with the theoretical nature of linear algebra as it is often 
their first time grappling with abstract mathematical concepts (Wawro, Sweeney, & Rabin 2011). 
Students’ mathematical background up to this point is often primarily computational in nature; 
this often creates a barrier for students to overcome when they reach linear algebra (Carlson 
1993).  

Linear algebra is a pivotal course that includes mathematical underpinning of different 
STEM fields, but it is rife with challenges for students. According to Wawro (2011), “The 
content of linear algebra, however, can be highly abstract and formal, in stark contrast to 
students’ previous computationally-oriented coursework. This shift in the nature of the 
mathematical content being taught can be rather difficult for students to handle smoothly.” The 
abstract concepts of linear algebra are often taught in such a way that students do not find any 
connections between new linear algebra topics and their previous knowledge of computational 
mathematics (Carlson 1993). Researchers have worked to address this issue by developing 
inquiry-oriented instructional materials that help instructors and students bridge students’ 
informal and intuitive ideas with more formal and conventional understandings (Wawro et al., 
2013)  This work aims to move toward documenting the effectiveness of these materials in 
supporting students’ conceptual understanding of central topics in an introductory undergraduate 
linear algebra course. 

In this study we have designed an assessment that aligns with four focal topics typically 
covered in an introductory linear algebra course: (1) linear independence and span, (2) linear 
systems, (3) linear transformations, and (4) eigenvalues and eigenvectors.  We aimed to identify 
two questions for each of these four topics in order to develop an 8-item written assessment that 
could be completed by students in less than one hour. Based on findings from similar studies, we 
anticipate that we might see greater conceptual learning gains for students who learned in 
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inquiry-oriented classrooms along with similar procedural learning gains (Rasmussen & Kwon, 
2007). Research questions for this proposal are:   

� What is the nature of student thinking elicited by the items on our assessment 
draft?   

� To what extent do the items accurately measure student thinking? 
 

Literature & Theoretical Framing 
Difficulty in teaching and learning of linear algebra during students’ first year of 

undergraduate study is well documented (Hillel, 2000; Sierpinski, 2000; Stewart & Thomas, 
2009). Students often struggle with fundamental concepts like span, linear dependence, linear 
independence, and basis (Stewart and Thomas, 2009). Additionally, the need to learn and 
coordinate modes of the description and representation of abstract concepts of linear algebra can 
function as a source of difficulty for students (Hillel, 2000). 

A theoretical construct that has been useful in many areas of mathematics education for 
making sense of students’ struggles as they work to make sense of a new idea is the notion of 
concept image and concept definition (Tall & Vinner, 1981). The key distinction here is that the 
ways in which students reason with and about a mathematical construct is often different from 
(and often at odds with) the definition of that construct which is accepted by the broader 
mathematical community.   

Researchers have been using the constructs of concept image and concept definition to 
analyze and understand students’ thinking and understanding of concepts for more than three 
decades (Wawro et al. 2011). Britton and Henderson (2009) made use of concept image and 
concept definition to analyze the conceptual difficulties of students in linear algebra, especially 
about vector space and subspace. We draw on Tall and Vinner’s (1981) notion of concept image 
and concept definition as an analytic tool for interpreting students’ responses to assessment 
items.   
 According to Tall and Vinner (1981) concept image is the “total cognitive structure that 
is associated with the concepts, which include all the mental pictures and associated properties 
and process” (Tall & Vinner, 1981 p.152). For a given concept, every individual creates an 
image or structure in their mind that helps the individual understand and remember that concept. 
This concept image may or may not be similar to other individuals’ images, and these images 
can be quite different from the formal definition of the concept. Moreover, Wawro et al. (2011) 
contend that concept image is not a static entity; it instead changes over the time and with new 
knowledge. Tall and Vinner (1981) use the term ‘formal concept definition’ to refer to the 
definition that is largely accepted by the mathematical community; they argue that this can be 
different from an individual’s ‘personal concept definition,’ which may change over the time and 
with new knowledge as is the case with one’s concept image.  For our analysis, we look for 
alignment between a student’s elicited concept image and the formal concept definition as 
evidence of understanding.  

 
Data Sources 

In this study, we conducted hour-long semi-structured clinical interviews (Bernard, 1988) 
with 8 university undergraduate students: 6 males and 2 females. One of the participants was 
taking linear algebra at the time of the interview, and the other participants had taken linear 
algebra within the last two years. The participants’ majors covered fields that included 
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mathematics, education and economics. Participants had taken an average of four math classes 
after linear algebra. 

Every participant was asked to work through eleven assessment questions using a think-aloud 
interview protocol, in which the interviewer asked the student to read each item aloud and think 
aloud as he or she came to an answer.  The interviewer then asked follow-up questions as needed 
to understand the student’s reasoning in arriving at their answer. Each interview lasted for 
approximately one hour and was audio and video recorded. In this preliminary report, we 
consider participants’ responses to the first interview question, shown below in Figure 1. 

  
Figure 1: Assessment item focused on span 

 
We developed the assessment items used in this study by consulting past assessments 

prepared by 5 different mathematics faculty members at different universities, some of whom 
had been involved in the development of the IOLA materials, and others of whom had not. After 
identifying a set of questions related to each of our four focal topics, three mathematics faculty 
members from three different institutes were consulted to identify which items these experts felt 
focused on key ideas and had the potential to assess students’ conceptual understanding of these 
ideas. We modified our assessment according to experts’ initial feedback, and the assessment 
items to be used in interviews were selected after receiving a second round of feedback from 
these experts. We piloted the assessment with two students and made minor adjustments based 
on these students’ responses. This modified assessment was used for the remaining interviews.  

 
Methods of Analysis 

 In order to identify the kinds of student thinking elicited by our assessment items and the 
extent to which these accurately assessed student understanding, we conducted our analysis in 
four phases: (I) characterizing individual students’ concept images, (II) identifying themes across 
students, (III) documenting students’ written responses, and (IV) relating written responses to 
concept images elicited.  Phases I and II will allow us to identify the kinds of student thinking 
elicited by our assessment items.  Phases III and IV will offer insight to the extent to which the 
items accurately assessed students understanding.  Specifically, we look to see whether the 
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assessment item accurately documents alignment between student’s concept image and the 
formal concept definition.  The phases of analysis are described in greater detail below.  
 
Phase I: Characterizing individual students’ concept images.  We developed a short 
description of each student’s concept image of span by first watching the video and transcribing 
each student’s interview response to question 1.  We then developed a list of themes that 
characterized how he/she thought about span and collected quotes that exemplified 
characteristics of the student’s thinking. 
Phase II: Identifying themes across students in how students reason.  In this phase, we 
grouped students according to the nature of their concept images. This helped us document 
themes in how students reason about the items. These groupings of students’ concept images 
were organized in a table to make it easier to identify trends in thinking.  
Phase III: Documenting written responses.  In this phase, we identify what students stated 
their final answer would be (and other answers they offered if they changed their mind) as well 
as the justification they offered for their answer(s).  This was identified by drawing on students’ 
written work as well as using audio/video data as needed in cases when the response was given 
orally but not written on the student pages. 
Phase IV: Aligning concept images with item responses. Students’ responses to each item on 
the assessment were aligned with their corresponding concept image. Each response was color 
coded to indicate whether a correct response corresponded to correct or incorrect reasoning and 
whether an incorrect response corresponded to correct or incorrect reasoning.  This will be used 
to assess the extent to which the item accurately measured what we intended.  
 

Findings 
After interviewing students and transcribing their interviews we analyzed the first 

assessment item to document students’ concept image of span.  In this preliminary report, we 
summarize themes we noted in students’ concept images on this item and speculate on what this 
tells us about what our item is measuring, as well as what it needs to measure.  In our 
presentation, we will provide a synopsis of all four phases of analysis for this item as well as 
other items on this assessment. 

  We identified two themes in students’ reasoning as evidenced by their responses: the 
first theme involves students reasoning about span in terms of linear combinations of vectors, 
and the second theme involves students struggling to resolve the number of vectors given with 
the number of entries in each vector.  (In addition, there was one student who didn’t remember 
what span was, so he answered all parts of the question as if it was just referring to the set of 
vectors V rather than the span of that set of vectors; using this reasoning the student gave correct 
answers for 1b and 1c.)   

Three of the students reasoned about all parts of the span assessment item in terms of the 
set of all possible linear combinations of the set of vectors given.  Unsurprisingly, these three are 
the students whose concept image was consistently well-aligned with the formal concept 
definition.  Interestingly, all three of these students offered rich geometric interpretations as part 
of their elicited concept image.  This suggests to us that geometric intuition might be an 
important aspect of the concept image needed for students to successfully reason through this 
item (and potentially other items) regarding span, even though the formal concept definition of 
span does not necessarily entail a geometric interpretation.  For example, one student Lewis 
explained his reasoning to question 1a: “A span is a linear combination or it would be any kind 
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of linear combination of these two [pointing towards  ]… because they are linearly independent, 
so any span of these two vectors will be linear combination of the two vectors so reproduce a 
plane.”   

Four students struggled to resolve the number of vectors given with the number of entries 
in each vector, but they resolved this issue in a variety of ways. For instance, one student noted 
the vectors were in three dimensions and concluded (incorrectly) that the span must be 3-
dimensional, meaning that no vector in R3 can be outside of the span. Another student, Beth, 
struggled with the same issue, but resolved it correctly by reasoning that “each vector has three 
entries in its column … that means that it is in the third dimension, I think there is only two 
vectors though, I think I need a third vector in order for this to actually span the third dimension 
and so since there are two it will span just the second dimension and the second dimension will 
be a plane so then it might actually just be a plane.”  One student resolved the issue by putting 
the vectors of the matrix V into a matrix, row reducing the matrix, and counting the number of 
pivot columns.  Since there were two of something, he felt the span should be either two points 
or two lines, but he wasn’t sure which because he didn’t have a geometric interpretation.  The 
final student concluded that the span of V would be two planes because each vector represents a 
plane.  Interestingly, these students tended to give a linear combination of the vectors of V on 
part b of the question when asked for an example of a vector that was in the span (though some 
had interesting limitations on how those combinations should be formed, e.g. thinking the 
coefficients had to be integers).  This suggests to us that a significant source of difficulty for 
students developing a rich concept image of span lies in coming to think simultaneously about 
all possible linear combinations of a set of vectors.  

 
Implications/Future Work 
 Our findings suggest two things about the design of an assessment item focused on 
documenting students’ understanding of span.  First, is that we need to find a way to assess 
students’ strategies for resolving differences between the number of vectors and the number of 
entries in each vector.  Second, we likely want to include separate prompts that offer insight into 
students understanding of linear combinations and their understanding of span as the set of all 
possible linear combinations.  We have endeavored to assess the latter using a geometric 
approach.  Extending our analytic strategy, we intend for our analysis of other items to similarly 
inform aspects of student understanding that need to be measured by our assessment. 
 
Questions for Audience 

● When we conduct quantitative analysis, how do we account for the relatedness of 
subparts of questions (e.g. 1a, 1b, 1c)?  We view this as a strength of the assessment, but 
are unsure of how to account for it methodologically. 

● What is the contribution of this work?  Is it methodological (is the method of refining 
assessment items new/novel/worth writing about)? 

● How can we think about assessing the quality of the assessment as a whole rather than 
item by item?  
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A qualitative study of the ways students and faculty in the biological sciences think about 
and use the definite integral 

 
William Hall 

North Carolina State University 
 

In this poster, I share my methods and pilot interview results concerning a qualitative study of 
the ways undergraduate students and faculty from the biological sciences think about and use the 
definite integral. In this research, I utilize task-based interviews including five applied calculus 
tasks in order to explore how students and faculty think about area, accumulation, and the 
definite integral. Early results from pilot interviews helped me revise the interview protocols and 
indicate that student reasoning may be affected by experience and context. In presenting this 
poster, I hope to gain feedback from the community on my research methodology and potential 
analytical strategies. 
 
Key words: calculus, biology, definite integral 
 

The teaching and learning of calculus is currently a topic of great interest. The MAA recently 
supported a large-scale survey of calculus programs that has generated a great deal of literature 
surrounding calculus instruction at the undergraduate level (Bressoud, Mesa, & Rasmussen, 
2015). Furthermore, there have been calls by researchers for investigations of how calculus is 
utilized by non-mathematics majors. Rasmussen, Marrongelle, & Borba (2014) call for “research 
that closely examines the ways in which calculus ideas are leveraged in the client disciplines, 
how these ideas are conceptualized and represented in the client disciplines, and what these 
insights might mean for calculus instruction” (p. 513). One of the most prominent client 
disciplines of calculus are the biological sciences. In their survey of over 10,000 undergraduate 
calculus students, Bressoud, Carlson, Mesa, & Rasmussen (2013) found that 30% of all Calculus 
I students intended on pursuing careers in the biological and life sciences (p. 691).  

Mathematics is important for the biological sciences. In 2003, the National Research Council 
(NRC) published a report titled BIO2010, suggesting university biology programs develop 
stronger connections between the life sciences and the mathematical, physical, and computer 
sciences (NRC, 2003). As a result of that report, a number of undergraduate biology departments 
across the country incorporated changes in how the quantitative sciences are utilized; some 
revised the calculus sequence to focus more on mathematical techniques while others created a 
brand new degree program focusing on quantitative biology (e.g., Usher et al., 2010). 

The definite integral is an important topic in introductory calculus that has been a focus of 
researchers since the 1980s (e.g., Jones, 2013; Orton, 1983; Sealey, 2014; Thompson & 
Silverman, 2008) and plays an important role in both mathematics and biology. Definite integrals 
are used when modeling population growth and cardiac output, as well as in chromatography 
(Horn, 1987). When asked what biology students need from calculus, biologists typically cite 
numerical approximation methods (e.g., the trapezoidal rule for approximating area under a 
curve) and a focus on modeling as opposed to the ability to manipulate complicated algebraic 
techniques (Horn, 1987; NRC, 2003). Additionally, researchers have shown that biology students 
tend to have lower self-efficacy when it comes to their mathematical ability when compared to 
physics and engineering students (Brent, 2004; Chiel, McManus, & Shaw, 2010). While calculus 
plays a vital role in the preparation of biology students and biological science programs have 
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attended more to quantitative skills, there has not been a great deal of research on how students 
understand and use their calculus knowledge specifically in biological settings.  

This research project serves as such an examination as I explore how undergraduate students 
and faculty members from the biological sciences think about and use the definite integral. My 
research questions in this study are: (1) What are the ways beginning and advanced 
undergraduate students majoring in the biological sciences think about and use the definite 
integral? (2) What are the ways professional biologists think about and use the definite integral? 
and (3) What are the similarities and differences in how beginning undergraduate students, 
advanced undergraduate students, and faculty members in the biological sciences think about and 
use the definite integral? 
 

Methods 
 

In order to investigate how students and faculty think about and use definite integrals, we 
need rich descriptions of the ways in which they attend to and use the definite integral while 
solving problems and working in their field. Therefore, I am using task-based interviews in 
which I ask participants to talk about their knowledge of definite integrals and calculus, as well 
as solve applied calculus problems as the data source for my study. I am interviewing 10 
beginning and 10 advanced undergraduate students majoring in the biological sciences, and 5 
faculty members from the biology department at a large southeastern public university. The 
calculus tasks span graphical, analytical, and tabular representations and are set in primarily 
biological contexts. Two of the tasks parallel each other in structure and form, using the same 
graph but with different axes labels. One task is biologically-based and the other utilizes a car’s 
position and velocity. Interviews with the faculty members focus on how the participant uses 
calculus and the definite integral and how important they feel mathematics in general, and 
calculus in particular, is to their work and to their students. 

 
Conceptual framework and data analysis 

Researchers have previously investigated the ways in which students reason about applied 
integration problems (Jones, 2015; Sealey, 2014). My data analysis procedures begin by 
analyzing the students’ responses for the overarching conceptualization of the definite integral 
they are attending to using the three primary conceptualizations illustrated by Jones (2015) and 
then drill down into how they are using those conceptualizations to solve the problem using 
aspects of Sealey’s (2014) Riemann Integral Framework as applicable. While these frameworks 
serve as a foundation to my data analysis, I will employ a pseudo open-coding scheme in order to 
identify additional themes that may be unique to individuals from the biological sciences.   
 

Pilot Study 
 

 This past semester, two undergraduate students volunteered to participate in informal 
interviews in order to help me revise my interview protocol and I was able to both edit my items, 
as well as determine that the items were sufficient for collecting appropriate data. For example, I 
found that each student reasoned differently on the parallel tasks; one student called on an area 
under the curve conception in the biologically-based task but not the velocity task. I hope to 
continue exploring the ways undergraduate students and faculty reason about the definite integral 
with a full run of interviews in January 2016.  
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This preliminary paper reports on early work for a differential equations concept inventory, 
which is being developed for an NSF-funded project to support mathematics instructors as 
they implement inquiry-oriented curricula. The goal is to assess student learning of 
differential equations. Preliminary results show that the iterative method of developing and 
field testing items, conducting student interviews, and modification may prove successful to 
complete a valid concept inventory.  The field testing and piloting of questions concerning 
Euler’s method show that students do respond as the research suggests but that Euler’s 
method can be recreated by students and the correct response can be “figured out.” 
 
Key words: Differential Equations, Concept Inventory, Assessment, Euler’s Method 
 

One of the most challenging components of education research is measurement. How do 
you measure student understanding? How can you tell if your measurements are accurate? In 
the so-called “hard” sciences, measurement involves a physical instrument, rulers for lengths, 
scales for weights, etc. Alternatively, education researchers spend a great deal of time and 
effort both defining and describing their constructs as well as outlining how they can measure 
those constructs. Along those lines, we are developing an assessment to enable us to measure 
student understanding of the big ideas in differential equations (DE), as part of a larger study 
to assess how students taking an inquiry-oriented differential equations course understand the 
basic concepts of DE compared with students who have taken a traditional DE course. With 
this report, we discuss this process with a focus on one particular concept: Euler’s method to 
solve a differential equation. Our research question is: How can a written assessment 
effectively measure students’ conceptual understanding in differential equations, particularly 
the numerical technique called Euler’s method?  

 
Literature Review 

Assessment 
Researchers and instructors have developed a vast array of different types of assessment 

to aid in measuring learning. Concept inventories are research tools designed to measure 
learning with special attention paid to their validity and reliability in gauging how students 
think about the underlying concepts of a subject. There have been a number of concept 
inventories created in many different academic subjects. Two of the physics assessments, the 
Mechanics Diagnostic Test (Halloun & Hestenes, 1985) and the Force Concept Inventory 
(Hestenes, Wells, & Swackhammer, 1992) have been influential in the development of 
mathematics concept inventories. Common themes include the use of student interviews in 
the validation process and the iterative nature of writing and revising both the taxonomy and 
assessment items. Following from the two physics concept inventories, two foundational 
mathematical concept inventories are described below, the Precalculus Concept Assessment 
(Carlson, Oehrtman, & Engelke, 2010) and the Calculus Concept Inventory (Epstein, 2007). 
In our review of these assessments, we identified four primary steps in developing a concept 
inventory: (1) deciding what concepts to cover, i.e. the taxonomy of the assessment, (2) 
writing the assessment items, (3) validating the assessment items, and (4) validating the 
assessment as a whole. 
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Calculus Concept Inventory 
The Calculus Concept Inventory (CCI) was designed and validated based on the Force 

Concept Inventory: the major concepts to be assessed were outlined, the items were written 
by a team with knowledge of the content, then items were reviewed using clinical interviews 
or what Epstein calls “cognitive laboratories” (2007, p. 167). Finally, a cyclic process of 
revision and analysis took place. In their first pilot of about 250 students, Epstein noted that 
scores were near the random guess level, which led to significant modifications of the items, 
specifically making them much easier. The CCI continues to be in use, but there has not been 
a great deal of studies published about the results. 
Precalculus Concept Assessment Inventory 

Carlson et al. (2010) provide great depth on the creation of the Precalculus Concept 
Assessment (PCA). First, the researchers developed a 34 item, open-ended assessment for the 
purposes of investigating students understanding of function. The results of the 
administration of this assessment came to form a Function Framework, which would serve as 
an initial draft of the PCA Taxonomy. The same process as the other concept inventories 
continued and the developers are validating the PCA currently. 
Selected research on student understanding of differential equations  
Analytical Solution Strategies 

Researchers have found that students overwhelmingly elect analytical solution strategies 
when prompted to solve differential equations (Arslan, 2010; Camacho-Machin, Perdomo-
Diaz, & Santos-Trigo, 2012a; Habre, 2003; Rasmussen, 2001). However, while students are 
relatively successful in finding solutions using various analytical solution techniques, they 
struggle to identify the appropriate strategy for various problem types (Camacho-Machin et 
al., 2012a) and that ability in solving DEs analytically does not necessarily imply deeper 
conceptual understanding (Arslan, 2010).  
Graphical Solution Strategies and Representations 

Students tend to devalue graphical representations of both the DE and their solutions 
instead relying heavily on analytical techniques and algebraic representations (Habre, 2003; 
Rasmussen, 2001; Trigueros, 2001). Specifically, researchers have shown that students have 
trouble both understanding graphical representations as well as constructing them (Camacho-
Machin et al., 2012a; Camacho-Machin, Perdomo-Diaz, & Santos-Trigo, 2012b; Rasmussen, 
2001). Fortunately, a few studies have provided evidence that students can use graphical 
representations productively, usually after being prompted (Habre, 2003), and that certain 
instructional strategies have been shown to help students retain more knowledge concerning 
graphical representations (Habre, 2003; Kwon, Rasmussen, & Keene, 2005).  
Numerical Solution Strategies 

Very little educational research exists on student understanding of Euler’s method. 
Rasmussen (2001) characterizes students’ conceptions of approximate solutions in three 
ways: (1) “A numerical approximation inscribes the exact solution,” (2) “A numerical 
approximation ‘tracks’ the exact solution by using the slope of the exact solution at each step 
in the approximation,” and (3) “A numerical approximation ‘tracks’ the exact solution via 
nearby solutions” (p. 76). Furthermore, Rasmussen describes how students’ ideas about other 
approximation methods in mathematics (e.g., Riemann sums and the definite integral) may 
play a role in how students think about numerical approximations in DEs. These potential 
mental images of the relationship between approximate and exact solutions informed the 
selection of multiple-choice items in our concept inventory (see Selected Findings).   

 
Theoretical Framework 

Some research and writing to develop a version of a concept inventory for differential 
equations exists. This earlier work uses the Relational Understanding of Procedures 

19th Annual Conference on Research in Undergraduate Mathematics Education 838

19th Annual Conference on Research in Undergraduate Mathematics Education 838



Framework to address how knowledge in DE may be constructed (Keene, Glass, & Kim, 
2011). The primary categories in this framework are: anticipate the outcome, identify the 
correct procedure, correctly use the procedure, understand the “whys” of the procedure, 
verify the solution graphically and symbolically, and make connections across the 
representations involved. An assessment was developed by mathematics educators and 
piloted in 2008. The assessment was comprised of 30 questions that all related to two analytic 
solution techniques and one numerical solution technique (Euler’s method). Field testing was 
conducted and revisions were made. Our current work is framed by and directly utilizes this 
earlier research and framework.   
 

Methods 
In our review of the pre-existing concept inventories, we identified four primary steps in 

developing a concept inventory, (1) deciding what concepts to cover, i.e. the taxonomy of the 
assessment, (2) writing the assessment items, (3) validating the assessment items, and (4) 
validating the assessment as a whole. Therefore, in order to create the differential equations 
concept inventory (DECI), we first had to decide on what topics and concepts should be 
covered by the assessment and then write or compile the items we felt best assessed students’ 
knowledge. To create the list of topics and concepts, also referred to as the taxonomy for the 
assessment, we completed a syllabus analysis of various DE courses, spoke with experts, and 
pulled from our own expertise informed by our experience as well as our work with the 
existing literature on differential equations assessments and student thinking.  
Syllabus analysis 

We investigated a sampling of ten DE courses from across the United States, including a 
wide range of universities. We selected a mix of public and private universities (six and four 
respectively), various sizes (smallest: approximately 3,200 undergraduates, largest: 
approximately 46,000), and a range of different primary textbooks (six different textbooks 
from the ten chosen courses). From these syllabi, we created a list of topics covered by each 
course and then aligned them to generate a list of any topic or concept that were listed 
frequently. Even though not complete, this did provide a useful reference in deciding what 
specific topics to include on the assessment and was a useful store of information when 
drafting the taxonomy of the assessment. 
Taxonomy 

We constructed the taxonomy for the DECI by beginning with the relational 
understanding framework and then referencing results from a syllabi analysis, discussions 
with experts on DEs, the cognitive research on DEs, the list of topics from the inquiry-
oriented differential equations course, and the research teams’ experience. We started by 
using the overarching themes discussed by DE experts as well as the topics covered on the 
relational understanding framework from Keene, Glass, & Kim (2011). From here, we looked 
at the major topics with considerable overlap from the syllabus analysis (including the 
inquiry-oriented differential equations course) to ensure we were hitting a number of the 
important topics from standard DE courses. This taxonomy underwent significant revision as 
we gathered evidence of student thinking on the various items through the task-based 
interviews. Space does not permit us to publish the taxonomy here. 
Field testing data collection 

In Spring 2015, we piloted a selection of possible items in two DE classrooms. Two 
differential equations teachers (referred to herein as classes A and B) who were participating 
in an online workgroup for an NSF-funded project to investigate instructional change agreed 
to use some of the potential assessment items in their introductory DE class. Class A was an 
introductory DE course of 15 students using inquiry-oriented materials at a small public 
liberal arts college in the eastern United States and they responded to the items on the final 
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exam. Class B consisted of 20 students at a private university in the southern United States 
and responded to the items in an out of class assignment. This course focused on more 
traditional procedures and proof. 

In Summer 2015, we conducted task-based interviews with five students in a summer 
section of DEs at a large research university in the southeastern United States. During the 
interviews, students were asked to work on assessment items in front of the researcher and to 
think aloud about their process. The interviewer asked probing questions while trying to 
minimize the introduction of any new mathematical concepts or vocabulary. Questions were 
selected for the interview protocol based on the preliminary findings of the field test 
described earlier and included both multiple choice and open-ended items.  Interviews were 
audio and video recorded, and all written work was collected and scanned as PDFs for 
preservation and analysis. 
Data analysis 
Written Assessment 

During the spring administration of the DECI, there were both open-ended and multiple 
choice formatted items. In this report we are only discussing multiple-choice items and so we 
will focus our discussion of analysis methods to those items. For the multiple-choice items, 
analysis consisted primarily of investigating the appropriateness of the answer choices and 
the difficulty of each item. The data were entered into a spreadsheet where each participant’s 
answer choices were included for each question. Two separate analyses were carried out on 
these items, the first concerning how many students answered the question correctly and the 
second concerning how many students chose each of the provided distractors. In terms of 
difficulty, we looked to determine if any of the questions were either too challenging or too 
easy.  
    After the initial analysis for difficulty, analysis followed on the students who answered 
questions incorrectly. Primarily, the goal of such analysis was to ensure that the distractors 
were working effectively and that each was being chosen at least some of the time. In 
previous work, assessment authors have marked any distractors that were not chosen at least 
5% of the time for potential revision (Carlson et al., 2010) and so this rule was our initial 
guide for throwing out distractors. 
Task-Based Interviews 
    In the near future, we will be conducting an analysis of the task-based interviews in order 
to continue validating the assessment items. Identifying the ways in which students thought 
about the items will provide us with evidence that the items are actually measuring the 
concepts we assume they are measuring. On multiple-choice items, our primary goal will be 
to investigate what knowledge students attend to as they complete the items. To do this, we 
will employ an open-coding strategy on the video data in an attempt to outline the big ideas 
from DEs that students are attending to as they work through the problems.    

 
Selected Findings: Euler’s Method Question 

For this preliminary report, we focus on one particular question that was administered to 
both pilot groups and used in the task-based interview (Figure 1). 

 
Figure 1. Euler’s question. 
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The correct answer to this question is B. In using Euler’s method, one uses the value of 
the derivative (rate of change) at one point to create a line segment for a defined constant 
change in the independent variable (in this case t). You then reevaluate the derivative (rate of 
change) and create a new line segment. 

The results from the two classes and the interviews were particularly interesting and 
informative (see Figure 2). For the inquiry oriented class (n=14), the majority of the students 
answered correctly. We posit this is because this may have been explicitly discussed in the 
course, as the materials focus on the understanding of Euler’s method. The traditional class 
(n=14) answered primarily C. This aligns with Rasmussen’s (2001) findings on 
approximations, specifically that when doing the approximations, students want the lines to 
“track” the actual solution.  

 
Figure 2. Results of choices for the two classes. 

 
When the researcher asked this question of the five interview students, we found out more 
interesting information. The students in the interview had not ever seen Euler’s method 
before so initially they did not know how to answer. However, two of the students were able 
to use information presented in the problem context with their knowledge of other 
approximation methods (e.g., Taylor series approximations of functions) to reason their way 
through to the correct answer, just as Rasmussen (2001) discussed. Afterwards, they were 
still not confident they were correct but had, in that moment, recreated Euler’s method for 
approximating solutions to DEs. 

Conclusion 
The analysis and field testing of this assessment will continue during the next two years, 

but we have found that this method of developing a concept inventory seems to be useful. We 
know that the distractors on this question and others need to be revisited to make sure they 
are effective. We intend to continue with this same work, even though it is very time 
consuming. Thus far, we have found interest in the DECI to be high and we would like to 
include the RUME community in the continuation of this work.  To this end, we will ask the 
following questions in the presentation: 
1. What alternate conceptions do you see when teaching your students techniques to solve 

differential equations? 
2. What do you consider the most important conceptions students need to develop in 

differential equations? 
3. Do you know of alternatives to concept inventories to help assess student learning? 
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Example construction in the transition-to-proof classrom
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Abstract. Accurately constructing examples and counterexamples is an important
component of learning how to write proofs. This study investigates how one instructor of
a transition-to-proof course taught students to construct examples, and how her students
reacted to the instruction.
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Introduction
Learning to write proofs is a complicated process, and students develop a variety of

beliefs about how to construct a proof (Harel & Sowder, 2007). Using examples is one
possible strategy in the proof writing process. Examples can be used for several purposes
when developing and proving conjectures (Alcock & Inglis, 2008; Alcock & Weber, 2010;
Lockwood, Ellis, & Knuth, 2013).

The term example can have many di�erent meanings in mathematics (Watson & Ma-
son, 2002). Within this study, the term example is limited to a mathematical object which
satisfies specific characteristics and illustrates a definition, concept or statement (Moore,
1994). This definition excludes sample proofs, e.g., demonstrations of the direct proof tech-
nique or proving by induction. Alcock and Weber (2010) claim that this definition of example
is “probably the most common intended meaning of the term when it is used by mathemati-
cians and mathematics educators in the context of proof-oriented mathematics” (p. 2).

Research questions. In this study, the following questions are addressed: 1. In
what ways do students construct examples e�ectively and ine�ectively on tasks in their
transition-to-proof course? 2. How did the instructor teach example construction? 3. What
connections are found between the students’ construction of examples and the instruction
given?

Literature and Theory
Considerable literature is available on the proving abilities of students and mathe-

maticians, and the use examples on such tasks. However, in the interest of space, much
of this literature has been omitted. The review below focuses on the literature concerning
the construction of examples, and the role of example in teaching advanced mathematics
courses.

Example construction. Antonini (2006) sought to answer how examples are con-
structed by conducting clinical interviews with seven mathematicians. From these interviews
three distinct techniques emerged: trial and error, transformation, and analysis. Trial and
error is characterized by constructing objects, and then testing whether the object has the
desired characteristics. Transformation is characterized by taking a known object which has
some of the necessary characteristics, and then performing adjustments until the object has
all the required characteristics. Analysis is characterized by deducing additional properties
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the object has to have. Eventually, this list of properties reaches a point that either a known
example is evoked or an algorithm for constructing an example is determined.

Antonini (2006) observed that mathematicians often follow a process of starting with
trial and error and then using transformation only when trial and error fails. The analysis
technique was only used when after failing to construct an example with both the trial and
error and transformation techniques. Antonini (2006) notes that the analysis technique is
appropriate when there is a possibility that no example with the given properties exists,
because the derivation of properties could lead to a proof by contradiction.

Behavior on one task can impact the conceptual knowledge gained from other topics.
A particular instance of this occurred in a study by Iannone, Inglis, Mejia-Ramos, Simpson,
and Weber (2011), where students were asked to generate examples of a particular type
of function. The research team found that most students generated examples with a trial
and error technique. Other students used a transformation technique where they modified
known examples, or an analytic technique where the student deduced additional properties
of an example. Iannone et al. (2011) theorized that the trial and error strategy resulted in
weaker conceptual gains than the other strategies.

However, when it comes to the source of the examples used by students, Iannone et
al. (2011) found that there was no significant di�erences between the proof productions of
students who generated their own examples and those who were provided examples. This
result is contrary to other literature that supports example generation as an important
pedagogical tool (Dahlberg & Housman, 1997; Moore, 1994; Watson & Mason, 2002, 2005;
Weber, Porter, & Housman, 2008). In fact, Iannone et al. (2011) found that the proof
productions of the example reading group was slightly higher than the proof productions of
the example generating group, although the di�erence was not significant.

The teaching and learning of mathematics. One of the primary goals of mathe-
matics education is to develop and implement interventions that change mathematics teach-
ing (Fukawa-Connelly, 2012a). At the undergraduate level, Speer, Smith, and Horvath (2010)
criticized that “very little empirical research has yet described and analyzed the practices of
teachers of mathematics” (p. 99), even though poor undergraduate mathematics teaching is
often cited as a reason students change majors away from science, technology, engineering,
and mathematics fields (Seymour & Hewitt, 1997). In fact, Mejia-Ramos and Inglis (2009)
conducted a literature of 102 mathematics education research papers concerning undergradu-
ate students’ experience reading, writing and understanding proofs, yet none of these papers
described the instruction the students received. Although some studies have investigated
instruction in proof writing since the publication of these critiques (e.g. Fukawa-Connelly,
2012a, 2012b; Mills, 2014), there is still a need for additional studies in this area.

Instruction can influence the choices that students make and their preferences when
solving problems, including proofs. Students need strategic knowledge in order to select
appropriate strategies (Weber, 2001). It is known that heuristics are di�cult to teach, but
that students typically do not learn them unless an attempt was made to teach them (Lester,
1994). However, some instructors do try to design the courses they teach in order to explicitly
teach students strategic knowledge (Weber, 2004, 2005).

Theoretical framework. This study is framed in the emergent framework developed
by Cobb and Yackel (1996). This framework links the social perspectives of classroom social
norms, sociomathematical norms and classroom mathematical practices to the psychological
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Table 1
The characteristics of the sampled students.
Name Year Major GPA Course Attempt
Amy Sr. Mathematics for Secondary Teaching 2.50-2.99 3rd
Carl Soph. Mathematics for Secondary Teaching 2.50-2.99 1st
Raul Jr. Applied Mathematics and Biochemistry 3.50-4.00 1st
Mike Sr. Mathematics and Spanish 3.00-3.49 2nd

perspectives of beliefs about an individual’s role in mathematical activity, mathematical be-
liefs and values, and mathematical conceptions and activity. This study was concerned with
the links between the actions of the students, and the activity of the classroom community.

In addition, this study utilized grounded theory, a methodological technique developed
by Glaser and Strauss (1967). Within this method, a researcher collects and organizes data
by constantly organizing the data into categories or themes (Charmaz, 2006; Creswell, 2013;
Glaser & Strauss, 1967; Merriam, 2009).

Method
The case for this study is a section of a transition-to-proof course at a large university.

The participants in this study are the instructor, Dr. S, and the 27 students enrolled in her
course during the semester of the study.

Due to the constraints on time and resources, four students were selected for more
detailed data collection during the fourth week of the semester using maximal variation
sampling (Creswell, 2013). By varying the students’ levels of academic success (indicated by
a self-reported grade point average), mathematical preparation (indicated by self-reported
grades in mathematics coursework), and specialization (pure, applied, secondary teaching,
mathematics minor), the findings have increased transferability (Merriam, 2009). The char-
acteristics of the four students included in the sample are presented in Table 1. These
students were purposefully selected because they frequently spoke during class, both by
asking the professor questions and presenting their own work on the blackboards.

Data collection. Several sources of data were used to triangulate the results (Patton,
2002; Merriam, 2009). Interviews were conducted with the four selected students, in order to
observe each student’s process on proof-related tasks while working independently. These in-
terviews occurred three times during the semester: around the seventh week of the semester,
the twelfth week of the semester, and the last week of the semester.

Each interview with a student had three components: a semi-structured portion ad-
dressing proof strategies and goals for the course, a task-based portion where students at-
tempted several proof-related tasks, and a reflection on the tasks. The semi-structured
portion asked the students to talk about their impressions of the course, namely what they
had learned and what they thought they should be learning. The tasks for the interviews
were selected from the textbook, or other studies on undergraduate proof writing (Alcock
& Weber, 2010; Dahlberg & Housman, 1997; Iannone et al., 2011). The mathematical con-
tent of the questions varied over the three interviews, matching the recent content from the
course. After a student completed all tasks, then the students were asked to reflect on their
work. Sometimes the final reflection was omitted due to poor time management.

The classroom was observed daily to observe the examples used by the instructor during
lectures and student presentations. The observations are supplemented by three interviews
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with the instructor. These interviews focused on the choices made during class and how
those choices influenced the desired instructional goals.

Results
Construction of examples. Knowing how to accurately construct examples is of

crucial importance for using examples e�ectively. Two levels of analysis were done: 1) the
accuracy of the example, and 2) the construction technique used.

Table 2
This table summarizes the construction abilities of the students.

Construction Amy Carl Raul Mike Total
Accurate Construction 30 16 18 4 68
Inaccurate or Incomplete 6 3 3 2 14
Authoritarian Source 3 2 2 0 7
Trial and Error 17 15 11 4 47
Transformation 16 2 8 2 28

Three categories were used to describe the construction technique: trial and error,
transformation and authoritarian. An authoritarian example is retrieved from a source,
instead of being constructed by the prover. The terms trial and error and transformation
were consistent with the definitions of Antonini (2006). Neither the students nor the professor
discussed the analysis technique, so this category was not used.

The construction of examples was a di�cult task for many of the students. During the
first interview, Raul and Mike both made errors in constructing examples because they did
not know which conditions a construction needed to satisfy to be classified as an example or
a counterexample. In fact, they both identified constructions as counterexamples that did
not satisfy the hypotheses of the statement.

The students generally constructed examples that were accurate, but their examples
were frequently not useful. For instance, Mike was seeking a potential counterexample on a
divisibility problem and chose a = 1 as the value for the divisor, stating that he chose this
value because “1 divides everything.” Mike did not realize that this choice for a meant that
every possible example would be true. Although other students constructed examples that
were not useful for their purpose, this was the only instance in which a student stated a fact
that would directly indicate the lack of usefulness.

The students transitioned to more advanced construction techniques late in the
semester. During the first interview, Mike was the only students to utilize the transformation
construction technique, and he only did so once. By the final interview, the students were
using the transformation technique more frequently than trial and error. This interpretation
of the result may be conflated with the choices the students make due to the mathematical
content. Specifically, the first interview consisted entirely of number theory tasks which
the students may have limited previous experience, whereas the final interview concerned
real-valued functions and the students should have significant experience with these from
their calculus courses. Although the students likely used the transformation technique due
to increased experience, they also knew more examples of real-valued functions to draw upon
as the starting point for the transformation process.
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In particular, when asked to construct an example of a fine function on question 3 of
interview 3, the first example constructed by each student was a transformation of y = sin x.
These students recognized that the pattern of the zeros in y = sin x could be adjusted to
satisfy the conditions of a fine function. It is unlikely that the students could have constructed
an example of a fine function via trial and error because of how di�cult it would be to verify.
However, it is equally di�cult to imagine a students utilizing a transformation technique on
a|(bc) implied a|b or a|c, especially for an initial example of the statement. Most students will
not have a su�cient background in the formal language of divisibility to have such examples
in their personal example space.

The instruction. Dr. S modeled example construction very rarely during the lec-
ture. Although she presented many examples throughout the semester, she seldom talked
about how these examples were constructed. Dr. S did model how to determine which prop-
erties an example or counterexample of a statement needs to satisfy, and how to go about
verifying that a construction satisfies those properties. Dr. S knew that trial and error is the
first technique used in example construction, and that the most important aspect of that is
knowing which properties need to be verified. Dr. S assigned student presentations that she
intended to be opportunities for the students to learn how to construct examples. She knew
that the students would often fail before they succeeded at example construction, and that
the best way to help the students improve would be to review their constructions attempts
during their presentations.

There were two episodes from the lecture where Dr. S emphasized example construc-
tion, and the care that must take place when constructing examples. The first instance
occurred shortly after defining functions. Dr. S emphasized the importance of a function
being well-defined, particularly when the domain is a partition. To do this, Dr. S presented
three potential functions:

f : Z3 � Z6 f ([x]3) = [3x + 2]6
g : Z4 � Z2 g ([x]4) = [3x]2
h : Q� Z h

�
a
b

�
= a + b

The first example was generated using numbers suggested by the students, the last two
were purposely chosen by Dr. S. Dr. S showed that f and h are not well-defined by
producing counterexamples that show that two di�erent representatives of the equivalence
classes produce di�erent outputs. For g, Dr. S provided the students with a proof that it was
well-defined. Ultimately this episode was demonstrating what it means to be well-defined,
but Dr. S knew that this would help the students when constructing their own functions
especially in their Modern Algebra course.

Dr. S seldom lectured explicitly about constructing examples and counterexamples,
because Dr. S had the expectation that the students would attempt and present many
example construction questions on the board, and that these presentations would provide
the opportunity to discuss example construction techniques.

Another reason that Dr. S did not lectured about example construction frequently is
because she expected the students to utilize trial and error by randomly trying constructions
and to test whether these are examples or not. Although this is not a sophisticated strategy
for example construction, Dr. S believed that students at the earliest stages of proof writing
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“are not always ready yet” for other strategies. Dr. S wished that the students would move
towards the transformation construction strategy by asking themselves questions such as “is
the statement similar to one [I] know?” and then using that response to construct their
example. During the final interview, Dr. S reiterated this by saying “I would like to move
them toward more directed examples where they are intentionally trying to go certain places
but I doubt that most of them are ready for that. Right now I’m happy if they try random
examples to see what’s going on, as long as they don’t stop there.” Perseverance was a
frequent theme when discussing proof and example constructions in the lecture.

When the students presented example construction tasks that we incorrect, Dr. S
would usually ask the student who presented (or sometimes the whole class) to help her
revise the construction. In one instance, Carl presented a relation on A = 1, 2, 3 that
should have the properties of symmetry, transitivity and not reflexivity. Carl presented the
relation {(1, 2)(2, 1)(1, 3)(2, 3)(3, 2)(3, 1)}, but this example is not transitive. Dr. S argued
that if (1, 2) and (2, 1) are in the relation, then transitivity requires that (1, 1) and (2, 2)
must also be included. As such, Dr. S changed the relation to {(1, 2), (2, 1), (1, 1), (2, 2)},
which is symmetric and transitive, but not reflexive because it is missing (3, 3). Through
this discussion, Dr. S walked the students through using the transformation technique for
example construction, since she transformed an existing example to satisfy the given criteria.

Comparing the instruction and the students. The students used the trial and
error construction technique for all of the examples constructed during the first interview,
with one exception. However, as the semester progressed the students used the transforma-
tion technique with increasing frequency. Dr. S predicted this behavior of the students. The
analysis technique was not demonstrated by the instructor or used by the students; however,
during the member checking interview, Dr. S argued that the analysis technique was too
advanced to be useful to the students at their current level of understanding. In the first
interview, Dr. S said

It depends on the problem, but to some extent, trial and error is the very first
step. You just try stu�. I’ve seen this even with advanced REU students, where
there is a good strategy. They’re not always ready yet. I’m okay with them
randomly trying at first. Now, I want them to move toward more careful con-
struction. As they go through this, they should be looking for things that are
similar and using that to give them a hint.

Dr. S recognized that as beginning students, they would not have the mathematical ex-
perience to use the more advanced transformation and analysis techniques, but she hoped
they would grow to that point. During the same interview, Dr. S elaborated that although
she expects the students to have some familiarity with using examples from their calculus
classes, “they just never had to construct [examples] themselves before.” As such, some of
the di�culties the students had with example construction were expected.

Dr. S did not vocalize an expectation of the accuracy problems exhibited by some
the students during the initial interviews. Both Raul and Mike had created examples that
violated the statement hypotheses. Raul did not seem to realize that failing the hypotheses
was a problem. During the member checking interview, Dr. S said students often make these
types of construction errors at this point in their development. She furthered this by ex-
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plaining that many students present counterexamples that are not actually counterexamples,
especially on the first test of the course.

Dr. S usually did not talk about the construction technique when she presented ex-
amples to the class. She designed the course so that most of the example construction tasks
were assigned as student presentations, and that she would talk about example construction
as she reviewed and corrected the examples in the presentations. Unfortunately, the students
did not present many problems and they tended to present problems asking for proofs rather
than the problems asking for examples. Consequently, Dr. S did not have the opportunity
to talk about construction techniques with the expected frequency.

Overall, Dr. S had the experience to know the capabilities of the students with respect
to example construction. She recognized that trial and error would be the primary technique
at the beginning of the semester, and that many of the students would not be able to
move beyond that technique in this course. However, towards the end of the semester, she
introduced the transformation construction technique for the benefit of the students who
were ready for more advanced techniques. The students in the sample were able to apply
the transformation technique in some circumstances, and likely will be able to utilize it more
frequently in their subsequent courses.

Discussion
By the end of the semester, all of the students were selecting examples with more

thought, and used the transformation construction technique with increased frequency. It
is unclear exactly what caused this growth. Possible explanations include the students’
individual development throughout the semester, the influence from the instruction, and the
new content.

Previous research on undergraduate example construction showed that the students
used trial and error techniques approximately 80% of the time (Iannone et al., 2011). This
percentage is considerably higher than than the 57% trial and error observed in this study. It
is unclear what accounts for this discrepancy, although the most likely causes are the sample
and the task selection. Both studies also had small samples, this one had four participants
and Iannone et al. (2011) had nine, so the individual characteristics of the participants
strongly a�ected the percentages.

Implications for teaching transition-to-proof courses. One implication is that
students should be explicitly taught strategies for constructing and verifying examples. One
of the hardest parts of trial and error is picking the construction to test. However, by
explaining how the examples in the course are constructed, it may be possible to guide the
students beyond blinding picking parameters to test.

In this study, most of the students became convinced that a prove or disprove statement
was true after constructing only one or two examples. However, when mathematicians
obtain conviction from empirical evidence it is often from multiple examples or for unusual
properties (Weber, 2013; Weber, Inglis, & Mejia-Ramos, 2014). Although it is unreasonable
to assume that numerous examples should be constructed before trying to prove a statement,
we need to teach students to consider the quality of the examples they construct, and to
view the examples as a collection. For example, a statement that is true for a prime number,
a perfect square, and another composite number is far more believable than a statement
evaluated only with a prime number. But students need to be taught to consider examples
collectively rather than individually.
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Future research. Additional research concerns the instruction on example construc-
tion. How does instruction impact a provers ability to e�ectively use and construct examples?
It is unclear whether or not such instruction will actually help the students learn how to
construct examples e�ectively. Some studies suggest that instruction in problem solving
frameworks alone does not help students become better problem solvers (Garofalo & Lester,
1985; Schoenfeld, 1980), so it is possible a similar phenomenon will occur here. This can
only be established through additional testing and study.

Finally, it is unclear whether e�ective example construction will positively impact proof
writing. Iannone et al. (2011) found that generating examples provided no benefits to the
students as compared to receiving a list of examples. One interpretation of this is that it
does not matter where the examples come from, what matters is how the examples are used
and what conclusions are drawn from the examples. As such, it is possible that knowledge
in using examples e�ectively can improve a persons ability to successfully write proofs, but
additional study is needed on this topic.
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Probabilistic Thinking: An initial look at students’ meanings for probability 
 

Neil J. Hatfield 
Arizona State University 

Probability is the central component that allows Statistics to provide a useful tool for many 
fields. Thus, the meanings that students develop for probability have the potential for lasting 
impacts. Using Thompson’s (20015) theory of meanings, this report shares the results of 
examining 114 undergraduate students’ conveyed meanings for probability after they 
received instruction.  

Key words: probability, statistics, meanings, introductory statistics course  

Probability is the engine that makes inferential Statistics run. This first statement is one 
that hardly any practitioner of Statistics will disagree with. Statisticians and Statistics 
Educators freely acknowledge that the central ideas of probability allow us to move beyond 
merely describing a data set to using the data set as evidence for supporting/refuting claims. 
This is even one area in which Frequentists, Bayesians, and Subjectivists all agree. However, 
how practitioners think is often vastly different from how students think before, during, and 
after instruction. In a recent discussion with a university instructor about introductory 
statistics courses, I was surprised to hear this individual say “I skip by probability because my 
students don’t really need it and we need the time to talk about doing hypothesis tests.”  This 
statement caught me off-guard for two reasons: 1) this instructor had a Ph. D. in Statistics, 
and 2) the instructor continued to talk about how she wanted her students to develop “rich 
and productive meanings for hypothesis tests and p-values”. While I believe that students can 
and will develop meanings for hypothesis tests in the absence of a way of thinking about 
probability, I challenge the claim that students can develop “rich and productive” meanings.  

Cobb and Moore (1997) took the position that “first courses in statistics should contain 
essentially no formal probability theory” (p. 820). I agree with the spirit of their position. 
While this may seem like I am in the camp of the aforementioned instructor, there is a critical 
distinction. Cobb and Moore’s position is not that first courses should avoid discussing 
probability, but rather emphasis on formal rules, such as the rules for  P A∪ B( ) , are of little 
consequence in these courses. Rather, they suggest that “informal probability” is sufficient, 
especially if the course focuses on the idea of sampling distributions. Thus, rather than 
skipping over probability entirely, an introductory course should skip over calculational rules 
of probability and focus on helping students construct ways of thinking about probability. I 
agree with Liu and Thompson (2002) that trying to debate the question of “What is 
probability?” is a fruitless endeavor in a first course. Rather, in a first course on statistics and 
probability, our focus should be on what we (us and our students) mean by the term 
“probability”.  

Introductory statistics texts that cover probability focus almost entirely on how to 
calculate rather than how to think about. The introductory text Statistics for the Life Sciences, 
4th edition (Samuels, 2012) devotes 15 pages to probability. However, there are only two 
sentences related to how to think about probability. Out of the 29 exercises provided for the 
students to use for homework, 26 ask for students to calculate a value of the probability of 
some event, 3 ask students to make a claim about whether or not two events are independent, 
and 0 questions ask students to interpret/make use of a way of thinking about probability. 
Likewise, Introduction to the Practice of Statistics, 7th edition (Moore, McCabe, & Craig, 
2012) devotes 18 pages to probability and randomness. Of these pages, only 3 sentences (all 
variations of each other) focus on how to think about probability. There are only two 
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questions of the 45 that focus on something other than a calculation of probabilities or 
judgment of independence; one asks whether or not a probability value is applicable to a 
larger set of colleges, and the other asks students to explain what a probability value means. 
In both of these cases, students’ major takeaway is that probability is a calculation.  

The above issues created a backdrop for an informal, observational study that aimed to 
serve as a first step in looking at how undergraduate students think about probability after 
enrollment in an introductory course on Statistics. In the spring of 2014, students in the four 
sections of an introductory statistics course designed for life science majors at a large, public, 
Southwestern university responded to two questions related to their thinking about 
probability. A senior lecturer taught two sections of the course, and two graduate students 
(one Ph. D. Statistics and one Ph. D. Mathematics/Statistics Education) each taught one 
section. While the aforementioned Statistics for the Life Sciences served as the official text 
for the course, only three sections followed this text. The fourth section (taught by the Ph. D. 
Math/Stat Ed. graduate student) moved away from the text. This section followed an 
experimental design curriculum intended to support students developing ways of thinking 
about statistics beyond procedures and placed a heavy emphasis on meanings. In addition to 
the students answering the questions, the three instructors also answered the questions.  
 

Methodology and Theoretical Background 

I conducted this observational study at a large, public university located in the 
Southwestern region of the United States in the spring of 2014. Given that this study only 
serves as a first step to a more formal study, the selection of course and school was 
convenient to the researcher. The instructors of the selected introductory statistics course for 
life science majors asked their enrolled students to respond to three questions after the 
students had already received instruction on probability. Two questions related directly to the 
general purpose of this study: how the students think about probability.  
Question 1: How do you think about probability?  That is, how would you explain 

probability to another person? 
Question 2: Consider the following statement: 

The probability of observing a value of 4 when looking at the product of two dice is 3/36. 
How should someone think about (interpret) 3/36 given the above statement? 

Given the qualitative nature of the written responses to these questions, I made use of a 
coding methodology consistent with that of Strauss and Corbin (1990). I initially used open 
coding for the responses and then I made use of an axial coding system. I used the axial codes 
in my analysis.  

In coding, I focused on the meaning conveyed by the students’ responses. Meaning refers 
to the space of implications (including actions, images, and other meanings) that results from 
an individual assimilating some experience and thereby forming some understanding of that 
experience (Thompson, 2015). Using a student’s responses, we may postulate the meaning 
that he/she has for probability. Just as responses may be viewed as more/less productive, so 
can meanings. I view productive meanings as those meanings that provide coherence to ideas 
that students have and those meanings which afford students a frame that supports the 
students in future learning (Thompson, 2015). Productive meanings are clear, widely 
applicable (within reason), and rely on explicated assumptions. To help demonstrate this, let 
us look at an example using Question 2. Suppose that we have two students, George and 
Sally. George’s meaning for probability deals with notions of long-run relative frequency 
while Sally’s meaning is a blend of circular and Classical (see Results for details on these 
meanings). George’s meaning orients him to view 3/36 as a measure of the relative frequency 
of seeing a value of 4 when carrying out the dice experiment an indefinite, large number of 
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times. George’s thinking supports him in making statements such as “That 3/36th of the time, 
we will observe a product of four” or perhaps “About 8% of the time, we’ll observe a product 
of four”. George’s meaning is flexible enough so that if his teacher adds information that the 
two die have an unequal number of sides, or the dice are not fair, he won’t feel a need to alter 
his initial response. For George, his initial interpretation works in light of this new 
information.  

On the other hand, Sally’s meaning supports her in thinking about 3/36 as a statement that 
there are 3 ways to get a product of 4 when rolling two dice out of 36 total ways of getting 
products. Implicit to Sally’s thinking is that the two dice are standard, six-sided dice. This 
fact enables Sally to make sense of the 36. If the teacher were to reveal that one die was four-
side while the other was a twenty-side die, Sally would struggle to make sense of the 36. 
Likewise, should the teacher state the two dice are unfair, but not state how they are unfair; 
Sally’s meaning for probability does not necessarily enable her to give an interpretation in 
light of unfair dice. Additionally, the use of equivalent fractions could create issues for 
Sally’s way of thinking. We know that 3/36 reduces to 1/12. However, the interpretation 
could change significantly for Sally; “there is only 1 way to get a 4 and 12 possible 
outcomes”. The underlying process is no longer the same; a Classical meaning appears to 
allow individuals to ignore/forget the process all together. Additionally, 3/36 could be re-
written as 4/48, 7/84, or even 30/360. The same issue with reducing still applies. George’s 
meaning, particularly if he moves from the fraction to a percentage, will have no issue with 
using an equivalent fraction.  

The productivity of George’s and Sally’s meanings for probability has broader 
implications. Consider the statement “The probability of selecting a random US man, 20+ 
years old, who is under six foot tall is 2/3.” in place of the dice statement. George’s meaning 
still supports him reasoning about the relative frequency of observing US men in the age 
group whose height is under 6ft. However, Sally either has to reason that there are 2 heights 
under six foot out of 3 total possible heights that US men can be or she needs to have a 
completely separate meaning for probability in continuous contexts. Having separate 
meanings for probability in different contexts does not lend itself to the student building a 
coherent way of thinking about probability. 

 
Results 

I characterized students’ responses to Question 1 in five broad categories. The first 
category of responses deals with thinking about probability as being about the long-run 
relative frequency of some event (L.R.R.F.). For these students, they seem to think about 
probability as something that emerges after imagining carrying out some process a large 
number of times. While these students may speak about the probability of some event, from 
discussions they do not appear to think that the event is the next outcome of the process. 
Rather, they always reference needing to imagine the process carried out many, many times.  

The second category is “Frequency” and contains all of the cases where the students 
appeared to focus on the frequency (or relative frequency) of some event occurring, but their 
responses do not clearly indicate that the student imagines the frequency stemming from 
repeating a process an indefinite number of times. 

The third category covers those students’ responses that dealt with prediction. The 
responses that fall into this category are reminiscent of the outcome-approach of probabilistic 
thinking (Konold, 1989). Often these students only spoke about the very next time you carry 
out some process.  

The fourth category of responses I called “Circular”. Typical responses that fall into this 
category are “Probability is the chance that something happens”, or “the likelihood of some 
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event”. The descriptor of “circular” is highly indicative of how these students seem to think. 
During discussions, students who spoke of probability as being “chance” or the “likelihood” 
of some event, would often answer the follow up question of “What is chance/likelihood?” 
with the statements along the lines of “well, chance is, umm, just probability.”  The way 
students thought about probability appeared to be a near unending cycle of labels with little 
meaning behind those labels. The seemingly only way these student broke out of this cycle 
was when they had to deal with a concrete situation, a specific value for them to speak about, 
and, occasionally, restrictions on what words they could use (i.e. not use the words “chance”, 
“likelihood”, “probability”). The fifth category, “Other”, covers those responses not captured 
by the other categories. 

The following bar chart (Figure 1) shows the frequency of responses that fall into these 
categories. Overwhelmingly, 89 students (78.1%) gave a response that seems indicative of 
circular thinking. Nineteen students (16%) appear to think about probability in terms of 
frequency/relative frequency. Of these students, 15 think about probability as the long-run 
relative frequency of some process. 

 
Figure 1. Students' responses for Question 1. 

How do students appear to interpret a specific value of probability? 
I used five codes to characterize students’ responses for interpreting the probabilistic 

value 3/36. The first category consists of those students who seemed to think of 3/36 as one 
number rather than two numbers separated by a bar. These students spoke about 3/36 as 
representing the percent of the time you would see a product of 4 if you carried out the 
process of rolling two dice an indefinite number of times (“many, many times”).  

The second category, “Classical”, covers those responses where students appeared to 
view the fraction 3/36 as two numbers. The upper number represented the number of ways to 
get the outcome of interest while the second number represented the total number of different 
outcomes. This way of thinking is exactly like that used in “classical” probability. In this 
school of thought, the sample space consists of a finite number of unique outcomes, which 
we assume as having the exact same probability of happening. In addition to the equi-
probability assumption, the students also must make the assumption about details of the 
stochastic process. Namely, that there are 36 distinct outcomes. 

Similar to the “Classical” category, another group of responses reflected thinking about 
the probability value 3/36 as telling us that either we already had observed 36 rolls of two 
dice and saw exactly 3 products of 4 or if we were to roll the dice 36 times, we would then 
see exactly 3 products of 4 (“fixed number of rolls”). These students also appear to view the 
fraction as two numbers. In both cases, students appear to think that the probability value tells 
us exactly how many outcomes of interest we saw for a set number of trials.  

The forth category, “Chance”, are those students whose response to the question was to 
essentially say that 3/36 was the chance getting a product of 4. The fifth category, serves as 
the catch-all for responses that did not fall into any of the other categories. This includes 
students who repeated the given statement (4 students), either simplified or wanted 
simplification of 3/36 (2 students), or expressed the need for dice (2 students) among the 
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responses. I did not include the three students did not respond to this question in the final 
count. 

As shown in the following bar chart (Figure 2), a majority of students interpreted the 
probability value as being about a fixed number of rolls of the dice and a fixed number of 4’s 
(40.5%). Only 17.1% (19) of the students thought about 3/36 as representing the percent of 
the time we would see a product of 4. Fifteen students appeared to use a “classical” way of 
thinking, while 19 just substituted “chance” for “probability”.  

  
Figure 2. Students' responses for Question 2. 

How does apparent student thinking about probability in general relate to how they 
interpreted a specific value of probability? 

A natural question that follows from the previous two questions, is how do the students’ 
responses to each question relate to one another? Table 1 shows the two-way contingency 
table for students’ responses to both questions. The vast majority of individuals who appeared 
to think about probability as the long-run relative frequency of some event interpreted the 
given probability value as the percent of the time we would see some event happen in the 
long run. The majority of students who interpreted 3/36 as being two number separated by a 
bar (either Classical or Fixed Number) or as a “measure of chance”, gave a circular meaning 
for probability. The wide range of interpretations given by students with a circular meaning is 
not surprising. Given that the students’ meaning for probability appears related to a word-
exchange, the students would need to draw upon some other meanings to help make sense of 
the value 3/36. All but one student who explained 3/36 as the “chance” of getting a product of 
4, gave responses that indicated a circular meaning to Question 1.  
Table 1. Students' responses to Question 1 by their responses to Question 2. 

 
Percent of 
the Time Classical 

Fixed Number 
of Rolls Chance Other total 

L.R.R.F. 12 1 0 1 0 14 
Frequency 1 0 1 0 2 4 
Prediction 2 1 0 0 0 3 
Circular 4 12 42 18 10 87 
Other 0 0 1 0 2 3 

total 19 14 44 19 18 111 

Is there a difference between how students appear to think about probability in general 
when accounting for the instructor? 

To explore this question, Table 2 provides a good visualization of how students appeared 
to have thought about probability in regards to Question 1. A striking aspect to notice is that 
all of the students who appeared to think about probability as a long-run relative frequency all 
have Instructor A. Additionally, the vast majority of students for both Instructor B and 
Instructor C gave responses that appear indicative of a circular meaning for probability in 
general.  
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Table 2. Students' Responses to Question 1 by Students' Instructor 

 L.R.R.F. Frequency Prediction Circular Other total 
Instructor A 15 2 2 8 0 27 
Instructor B 0 2 1 58 1 62 
Instructor C 0 0 0 23 2 25 

total 15 4 3 84 8 114 
 

To further explore this difference, I conducted a Kruskal-Wallis test with . The 
test statistic has a value of 58.0382. Thus under a  distribution, the approximate 
probability of observing the differences we did or ones more extreme is . A post-
hoc analysis using the Steel-Dwass method shows that Instructor A’s students’ responses are 
significantly different from the responses of Instructor B’s students ( ) and 
significantly different from Instructor C’s students ( . However, the responses 
from Instructor B’s and Instructor C’s are not significantly different from each other 
  ( p ≈ 0.1752) . 

Is there a difference between how students interpret a specific value of probability when 
accounting for the instructor? 

Much like the prior question, a two-way contingency table provides insight into 
answering the question about the difference in how students interpret a given probability 
value in relation to the students’ instructor. Notice in Table 3 that the vast majority of 
students who interpreted 3/36 as a percent of time have Instructor A and two-thirds of 
Instructor A’s students gave this type of interpretation. None of Instructor C’s students and 
only 1 of Instructor B’s students gave a response that fell into this category. Given that the 
majority of Instructor B’s and Instructor C’s students appeared to have a meaning for 
probability that was circular (see Table 2), the spread of their students’ interpretations is not 
surprising.  
Table 3. Students' Responses to Question 2 by Students' Instructor 

 Percent of 
the Time Classical 

Fixed Number 
of Rolls Chance Other total 

Instructor A 18 3 3 1 1 26 
Instructor B 1 10 27 12 11 61 
Instructor C 0 2 15 6 1 24 

total 19 15 45 19 13 111 
 

I conducted a second Kruskal-Wallis test (with ) to test the difference between 
the students’ responses in relation to instructor. The test statistic has a value of 32.2145. 
Under a  distribution, the approximate probability that we observe the differences we did 
or one greater is . Post-hoc analysis using the Steel-Dwass method indicates that 
Instructor A’s students’ responses are significantly different from those of Instructor B’s 
students ( ) and Instructor C’s students ( ). The responses of Instructor 
B’s students are not significantly different from Instructor C’s students (  p ≈ 0.9801). 

Discussion 

The vast majority (78.1%) of students describe thinking about probability in circular 
ways, with roughly 13% (of 114) describing probability as being about the long-run relative 
frequency of some event (given a stochastic process). Similarly, a majority of students 
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(40.5%) interpreted the given probability value, 3/36, as being about a fixed number of rolls 
(of dice) and observing exactly 3 outcomes that were the event of interest. Even after students 
had received instruction on probability, there was still variation in the responses that students 
gave.  This being said, there appeared to be clear distinctions between the majority response 
for each instructor’s students.  In the case of Instructor A, the majority response for 
probability (both in general and for interpreting) students gave is consistent with thinking 
about probability as the long-run relative frequency of an outcome of some repeatable 
process.  For Instructor B’s and Instructor C’s students, the dominant responses for 
probability seemed to focus on a circular word-exchange and a fixed number of trials.  The 
coded responses for the three instructors appear in Table 4.  Like with the students, the 
teachers’ responses offer insight into the meaning for probability that each teacher has.  
While further investigation into each teacher’s actual meanings for probability is necessary, 
their responses appear to match up with the prevailing responses of their students.  This 
seems logical, given that a teacher’s mathematical meanings serve as one of the key 
components of how that teacher teaches (Thompson, 2013).   
Table 4. Instructor's Responses to Question 1 and Question 2. 

 Response to Question 1 
(probability in general) 

Response to Question 2 
(interpret 3/36) 

Instructor A L.R.R.F. Percent of the Time 
Instructor B Circular Classical 
Instructor C Circular Classical 

 

A limitation to this study is that responses to two questions do not necessarily provide 
enough information to confidently describe an individual’s meanings for a mathematical 
topic. While some informal discussions with students have taken place, interviews with more 
students will help to support the claims about the possible meanings students might operate 
with when they give particular responses. Additionally, given that this was an observational 
study, we cannot definitively say that Instructor A is the cause for stark differences between 
the three sets of students’ responses. However, given that Instructor A made the decision to 
follow a curriculum centered on assisting students in developing productive ways of thinking, 
there is evidence of a strong causal relationship. Further research could substantiate this 
claim.  

This study serves as but a first step in examining how undergraduate students think about 
probability after receiving instruction. While only drawing upon data from two questions, the 
inclusion of similar questions can help to refine items that serve as a means to measure a 
progress variable for probability. Progress variables represent “(a) the developmental 
structures underlying a metric for measuring student achievement and growth, (b) a criterion-
reference context for diagnosing student needs, and (c) a common basis for interpretation of 
student responses to assessment tasks” (Kennedy & Wilson, 2007, pp. 3–4). Establishing a 
progress variable for probability along with items that measure such a variable has the 
potential to change how we teach probability at all levels. Additionally, a progress variable 
for probability is of use for other areas of statistics education research including students’ 
notions of p-values, hypothesis testing, and distributions of random variables.  

The present study into how a set of undergraduates thought about probability has shown 
that there are some stark differences between different sections of the same course. Sadly, the 
dominant meanings that these students appear to use for probability are circular and 
calculationally oriented. One section of the course, which used a “reformed” curriculum, does 
have a number of students who appear to have a highly productive meaning for probability. 
Further work needs to be done in order to help more students develop a rich and deep 
meaning for probability that is coherent and does work for the students in statistics. 
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What Would the Research Look Like? Knowledge for Teaching Mathematics Capstone 
Courses for Future Secondary Teachers 

Shandy Hauk Eric Hsu Natasha Speer 
WestEd San Francisco State University University of Maine 

Abstract. Mathematics Capstone Course Resources is a 14-month proof-of-concept 
development project. Collaborators across three sites aim to: (1) develop and pilot two multi-
media activities for advanced pre-service secondary mathematics teacher learning, (2) create 
guidance for college mathematics faculty for effective use of the materials with target audiences, 
and (3) gather information from instructors and students to inform future work to develop 
additional modules and to guide subsequent research on the implementation of the materials. The 
goal of this poster presentation is to provide information about capstone module development 
and brainstorm research design suggestions with the long term aim of developing a grant 
proposal to research the knowledge college mathematics faculty use to effectively teach 
mathematics to future teachers.  

Research Questions 
The preparation of the highest quality teachers of mathematics is a national imperative. There is 
a notable need for future math teacher “capstone” course materials, including guidance for math 
faculty, that deliberately and explicitly connect undergraduate mathematics content to the 
knowledge needed for teaching secondary mathematics. The poster includes details about the 
development processes and content of two capstone pilot modules. Our goal is that RUME 
attendees will discuss a preliminary research study design and outline the tools and analysis 
processes that will help us address the questions: 
(1) How does incorporating the modules into instruction shape instructor mathematical 

knowledge for teaching future teachers (MKTFT; and how might we define MKTFT)? 
(2) What are the relationships among varying conditions of implementation (differing degrees of 

fidelity of implementation) and the extent to which students are achieving the desired results? 

Background & Conceptual Framework 
Several NSF-funded efforts have been made in the past to create courses in mathematics 
departments that are secondary teacher candidate capstone courses. These courses appear to 
belong to three categories: connecting big ideas, connecting big ideas with deep content 
understanding, and connecting big ideas, deep content, and an applied understanding (where the 
application is to teaching). Some departments have a capstone course that emphasizes upper-
division mathematical content with some connections to the topics found in secondary school 
curricula. Other departments’ capstone courses also provide opportunities for pre-service 
teachers to enrich their knowledge of content and place more of an emphasis on developing 
mathematical knowledge for teaching, often in the form of knowledge of how students may think 
(productively and unproductively) about particular mathematical ideas. The range of needs such 
courses may fulfill for programs make it challenging for instructors to find and/or create an 
adequate supply of appropriate materials (Banilower, et al., 2013).   

Results 
We are aiming for a design that will allow reporting on results about the development of math 
knowledge for teaching future teachers. This includes articulating specifics for that type of 
knowledge/knowing. By definition, pedagogical content knowledge (PCK) is the collection of 
knowledge teachers and other instructional personnel need about the challenges learners 
encounter, strategies for helping students, ways to listen to identify not only learners’ thoughts 
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but also thinking processes, and skills for regulating teaching practices (Shulman, 1986). 
Teachers at all levels acquire PCK in many ways: grading, examining their own learning, 
observing and interacting with students, observing and interacting with colleagues, and reflecting 
on and discussing practice. Since Shulman’s seminal statement on the blends of pedagogical and 
content knowledge needed for teaching, a rich collection of theories and models of it has grown 
in mathematics education (Depaepe, Verschaffel, & Kelchtermans, 2013).  

The framing of knowledge for teaching 
mathematics has centered on the question: 
What mathematical reasoning, insight, 
understanding, and skills are entailed for a 
person to teach mathematics effectively? 
We want to add to the end of that 
question: …to teach mathematics 
effectively to future teachers? Work on 
math knowledge for teaching in secondary 
and post-secondary settings  (Hauk, 
Toney, Jackson, Nair, & Tsay, 2014; 
Speer, King, & Howell, 2015) builds on 
Ball’s model of three types of subject 
matter knowledge (SMK) and three types of pedagogical content knowledge as categories in the 
domain of mathematical knowledge for teaching (MKT; Figure 1). Recent work on secondary 
and post-secondary models of MKT note that aspects of mathematical semantics, definitions, and 
discourse may be very important (Hauk et al., 2014).  

Implications for Practice 
We seek advice from RUME poster session attendees to identify and categorize the potential 
implications for practice (and future research). We also hope to gather ideas for communication 
of implications to college instructors, department chairs, and other stakeholders. 
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Figure 1. Dimensions of mathematical knowledge for 
teaching (MKT; Hill et al., 2008) 
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Exploring the Factors that Support Learning with Digitally-Delivered Activities and 
Testing in Community College Algebra 

Shandy Hauk Bryan Matlen 
WestEd WestEd 

Abstract. A variety of computerized interactive learning platforms exist. Most include 
instructional supports in the form of problem sets. Feedback to users ranges from 
“Correct!” to offers of hints and partially to fully worked examples. Behind-the-scenes 
design of such systems varies as well – from static dictionaries of problems to 
“intelligent” and responsive programming that adapts assignments to users’ demonstrated 
skills, timing, and an array of other learning theory-informed data collection within the 
computerized environment. This poster presents background on digital learning contexts 
and invites lively conversation with attendees on the research design of a study aimed at 
assessing the factors that influence teaching and learning with such systems in 
community college elementary algebra classes.  

Research Questions. Funded by the U.S. Department of Education, we are conducting a 
large-scale mixed methods study in over 40 community colleges to address: 
RQ1: What student, instructor, or community college factors are associated with more 

effective learning from the implemented digital learning platform? 
RQ2: What challenges to use-as-intended (by developers) are faculty encountering and 

how are they responding to the challenges as they implement the learning tool? 
Background and Conceptual Framing. First, there are distinctions among cognitive, 
dynamic, and static learning environments (see table).  
Summary Table Static Dynamic 
A particular model 
of learning is 
explicit in design 
and implementation 
(structure and 
processes) 

No 
 

Text and tasks with 
instructional adaptation 
external to the materials  

Adaptive tutoring systems 
(Khan Academy, ALEKS, 
ActiveMath) 

Yes Textbook design and use 
driven by fidelity to an 
explicit theory of learning 

“Intelligent” tutoring systems 
(Cognitive Tutor) 

Learning environments can vary along at least two dimensions: (1) the extent to which 
they adaptively respond to student behavior and (2) the extent to which they are based on 
a careful cognitive model. Static learning environments are those that are non-adaptive 
and devoid of a cognitive model – they deliver content in a fixed order and contain 
scaffolds/feedback that are identical for all users and have a design based on intuition, 
convenience, or aesthetic appeal. An example of this type of environment might be online 
problem sets from a textbook that give immediate feedback to students (e.g., “Correct” or 
“Incorrect”). Dynamic learning environments keep track of student behavior (e.g., error 
rates or time-on-problem) and use this information in a programmed decision tree that 
selects problem sets and/or feedback based on students’ estimated mastery of specific 
skills. An example of a dynamic environment might be a system such as ALEKS or the 
“mastery challenge” approach now used at the online Khan Academy. For example, at 
khanacadmy.org a behind-the-scenes data analyzer captures student performance on a 
“mastery challenge” set of items. If a student gets all six items correct, the next level set 
of items in a programmed target learning trajectory is offered. Depending on the number 
and type of items the particular user answers incorrectly (on the path to six items in a row 
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done correctly), the analyzer program identifies target content and assembles the next 
“mastery challenge” set of items. In addition to such responsive assignment generation, 
programming in a cognitive learning environment is informed by a theoretical model that 
asserts the cognitive processing necessary for acquiring skills (Anderson et al. 1995; 
Koedinger & Corbett, 2006). For example, instead of specifying only that graphing is an 
important skill necessary for mastery of elementary algebra, a cognitively-based 
environment will also specify the student thinking and skills needed to comprehend 
graphing (e.g., connecting spatial and verbal information), and provide feedback and 
scaffolds that support these cognitive processes (e.g., visuo-spatial feedback and graphics 
that are integrated with text). In cognitive environments, scaffolds themselves can also be 
adaptive (e.g., more scaffolding through examples can be provided early in learning and 
scaffolding can be faded as a student acquires expertise; Ritter et al. 2007). Systems can 
also provide summaries of student progress, which better enable teachers to support 
struggling students. Some studies have shown preliminary support of their promise in 
post-secondary mathematics (Koedinger & Sueker, 1996). 
Method. The study is a multi-site cluster randomized trial. Half of instructors at each 
community college site are assigned to use an adaptive web-based system in their 
instruction, the other half teach as they usually would. The primary outcome measure for 
students’ performance is an assessment from the Mathematics Diagnostic Testing 
Program (MDTP), which is a valid and reliable assessment of students’ algebra 
knowledge (Gerachis & Manaster, 1995). In the stratified sampling approach we first did 
a cluster analysis on all community college sites eligible to participate in the study based 
on college-level characteristics that may be related to student learning (e.g., average age 
of students at the college, the proportion of adjunct faculty). This analysis led to five 
clusters of colleges. Our recruitment efforts then aim to include a proportionate number 
of colleges within each group. The primary value of this approach is that is allows more 
appropriate generalization of study findings to the target population (Tipton, 2014). 
 Quantitative Analysis. The primary aim of the quantitative analysis is to address 
RQ1, how and for whom the tools are effective. To this end, we employ Hierarchical 
Linear Modeling (HLM). Models include interaction terms between instructors’ treatment 
assignment and covariates at different levels (e.g., students history of course-taking, self-
concept of ability), to explore the moderating impact of tool use on student learning. 
 Qualitative Analysis.  To address RQ2, a great deal of textual, observational, and 
interview data are being gathered. These data allow careful analysis of the intended and 
actual use of the learning environment and the classroom contexts in which it is enacted – 
an examination of implementation structures and processes. Indices of specific and 
generic fidelity derived from this work also play a role in HLM generation and 
interpretation. 

Results.  Fall 2015 is the first full semester of data gathering for the project. It is our 
“practice” semester in that researchers are refining instruments and participant 
communication processes while instructors are trying out the web-based learning tool 
with their classes for the first time. The “efficacy study” semester in Spring 2016. By the 
time of the conference we will have early results from the practice semester. We are 
eager to share these and to gather feedback from RUME attendees on (1) design and how 
to best explain it to stakeholder audiences and (2) strengthening connections between the 
cognitive science research community and the RUME community. 
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Classroom Observation, Instructor Interview, and Instructor Self-Report as Tools in 
Determining Fidelity of Implementation for an Intervention 

Shandy Hauk Katie Salguero Joyce Kaser 
WestEd WestEd WestEd 

Abstract. A web-based activity and testing system (WATS) has features such as adaptive 
problem sets, videos, and data-driven tools for instructors to use to monitor and scaffold student 
learning. Central to WATS adoption and use are questions about the implementation process: 
What constitutes “good” implementation and how far from “good” is good enough? Here we 
report on a study about implementation that is part of a state-wide randomized controlled trial 
examining student learning in community college algebra when a particular WATS suite of tools 
is used. Discussion questions for conference participants dig into the challenges and 
opportunities in researching fidelity of implementation in the community college context, 
particularly the role of instructional practice as a contextual component of the research.   

Research Questions 
(1) What is the nature of alignment between how the program is implemented and how the 
developer/publisher envisioned it (i.e., what is the fidelity of implementation)? 
(2) What are the relationships among varying conditions of implementation (differing degrees of 
fidelity of implementation) and the extent to which students are achieving the desired results? 

Background & Conceptual Framework 
The theoretical basis for our approach lies in program theory, “the construction of a plausible and 
sensible model of how a program is supposed to work” (Bickman, 1987, p. 5). Having such a 
model in place allows researchers to conjecture and test causal connections between inputs and 
outputs, rather than relying on intuition or untested assumptions. As in many curricula projects, 
developers of the program in our study did attend to learning theory in determining the content in 
the web-based system, but the same was not true for implementation processes and structures. 
The pragmatic details of large scale classroom use were under-specified. Developers articulated 
their assumptions about what students learned as they completed activities, but the roles of 
specific components, including the instructor role in the mediation of learning, were not clearly 
defined. As Munter and colleagues (2014) have pointed out, there is no agreement on how to 
assess fidelity of implementation but there is a growing consensus on a component-based 
approach to measuring its structure and processes (Century & Cassata, 2014).   
 Fidelity of implementation is the degree to which an intervention or program is delivered 
as intended (Dusenbury, Brannigan, Faleo, & Hansen, 2003). This requires a careful articulation 
of what “as intended” means! Fidelity is rooted in the question: In what ways does the program-
in-operation have to match the program-as-designed to be successful? For example, if a program 
calls for 15 hours of contact time, and only 10 are achieved, in what ways can the anticipated 
result still be reached? Do implementers understand the trade-offs in the daily decisions they 
must make “in the wild” and the short and long-term consequences on student learning as a result 
of compromises in fidelity? Century and Cassata’s (2014) summary of the research offers five 
core components to consider in fidelity of implementation: Diagnostic, Procedural, Educative, 
Pedagogical, and Student Engagement. The poster will illustrate each (also see Table, next page).   

Method 
The project’s research team has developed a rubric for fidelity of implementation, identifying 
measurable attributes for each component (for example, see the table, next page, for some detail 
on the “educative” component). 
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Educative: These components state the developers’ expectations for what the user needs to know 
relative to the intervention. 
 High Level of Fidelity Moderate Fidelity Low Level of Fidelity 
Users’ 
proficiency in 
math content  

Instructor is proficient to 
highly proficient in the 
subject matter.  

Instructor has some gaps 
in proficiency in the 
subject matter.  

Instructor does not have 
basic knowledge and/or 
skills in the subject area.  

Users’ 
proficiency in 
TPCK  

Instructor regularly 
integrates content, 
pedagogical, and 
technological knowledge 
in classroom instruction. 
Communicates with 
students through WATS. 

Instructor struggles to 
integrate CK, PK, and TK 
in instruction. 
Occasionally sends 
digital messages to 
students using WATS 
tools.  

Instructor CK, PK, and/or 
TK sparse or applied in a 
haphazard manner in 
classroom instruction. 
Rarely uses WATS tools 
to communicate with 
students.  

Users’ 
knowledge of 
requirements 
of the 
intervention 

Instructor understands 
philosophy of WATS 
resources (practice 
items, "mastery 
mechanics," analytics, 
and coaching tools),  

Instructor understanding 
of the philosophy of 
WATS tool has some 
gaps. NOTE: Disagreeing 
is okay, this is about 
instructor knowledge of it. 

Instructor does not  
understand philosophy of 
WATS resources. NOTE: 
Disagreeing is okay, this 
is about instructor 
knowledge of it. 

Users’ 
knowledge of 
requirements 
of the 
intervention 

Instructor understands  
the purpose, procedures, 
and/or the desired 
outcomes of the project 
(i.e., "mastery") 

Instructor understanding 
of project has some gaps 
(e.g., may know purpose, 
but not all procedures, or 
desired outcomes).  

Instructor does not 
understand the purpose, 
procedures, and/or 
desired outcomes. 
Problems are typical.  

Results 
Our focus for the poster are the preliminary rubric results of data collected through observation, 
interview, and teacher self-report in weekly surveys (also known as “teaching logs”). From these, 
we may need to refine research tools (e.g., observation protocol, interview prompts, log items) as 
measures of fidelity. The purpose of a fidelity of implementation rubric is twofold: (1) to 
determine the degree of alignment between how the program is implemented and how the 
developer/publisher envisioned it and (2) identify conditions under which students are achieving 
the desired results. That is, what works, for whom, under what conditions? It provides the 
opportunity to discover where productive adaptations may be made by instructors, adaptations 
that boost student achievement beyond that associated with an implementation faithful to the 
developers’ view. The factors included in this poster are meant as a starting point for 
conversation. They are not an assertion of a final collection of factors to be considered. The 
poster shares the theory behind the protocol and seeks to gather ideas from RUME attendees on 
revisions, additions, and deletions that might be productive as we move forward into the full 
study (2015 is a “practice” year for the study).  

Implications for Practice 
By definition, high fidelity implementation of an instructional tool is use that results in greater 
learning gains than non-use. Instructors and students are better equipped to implement with high 
fidelity when they have answers to questions like: What are the characteristics of good 
implementation? Among preferred actions in implementation, which are the highest priority? 
What are the trade-offs and consequences of making particular decisions about use of the tool? 
We seek advice form RUME-goers on effective ways to communicate implications to college 
instructors, department chairs, as well as stakeholders in the larger public arena. 
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Helping instructors to adopt research-supported techniques: Lessons from IBL workshops 

Charles Hayward and Sandra Laursen 
Ethnography & Evaluation Research, University of Colorado Boulder 

Abstract 

Inquiry-based learning (IBL) is a research-supported form of active learning in 
mathematics. While studies continually show benefits of active learning, it is difficult to 
get faculty to adopt these methods. We present results from a set of intensive, one-week 
workshops designed to teach university mathematics instructors to use IBL. We use 
survey and interview data to explore why these workshops successfully got many 
participants (at least 58%) to adopt IBL. Results are framed through a three-stage theory 
of instructor change developed by Paulsen and Feldman (1995). We focus specifically on 
the first stage, ‘unfreezing.’ In this stage, instructors gain the motivation to change, so 
these findings may provide the most useful lessons for helping more instructors to adopt 
research-supported instructional strategies. One of the key factors for the high adoption 
of IBL was portraying it broadly and inclusively in a variety of contexts, rather than as a 
highly prescriptive method. 

Keywords: Inquiry Based Learning, Pedagogy, Professional Development 

Background 

Numerous studies have found benefits for the use of active learning methods in science, 
technology, engineering and mathematics (STEM) fields (Freeman et al., 2014). Freeman et al. 
(2014) stated that the benefits are so strong that, “If the experiments analyzed here had been 
conducted as randomized controlled trials of medical interventions, they may have been stopped 
for benefit—meaning that enrolling patients in the control condition might be discontinued 
because the treatment being tested was clearly more beneficial” (p. 4). While the evidence in 
support of the use of active learning strategies is strong, getting large numbers of faculty to adopt 
new methods is difficult (Fairweather, 2008; Henderson & Dancy, 2007; 2008; 2011). 
Professional development workshops are one strategy for helping instructors to adopt research-
supported teaching methods. Workshops are the preferred method of National Science 
Foundation (NSF) program directors, particularly when they are multi-day, immersive 
workshops and include follow-up interaction between participants and organizers (Khatri, 
Henderson, Cole, & Froyd, 2013). There is some evidence to support this belief. In one study 
with engineering faculty, among six different types of professional development, the most 
strongly correlated form of professional development with instructors’ use of student-centered 
pedagogies was workshop attendance (Lattuca, Bergom, & Knight, 2014). 

In this report, we present findings from weeklong, intensive workshops designed to help 
mathematics faculty implement Inquiry-Based Learning (IBL) in their classes. IBL is a form of 
active, student-centered instruction in mathematics that helps students develop critical thinking 
through exploring loosely-structured problems and by constructing and evaluating mathematical 
arguments (Prince & Felder, 2007; Savin-Baden & Major, 2004). IBL has its roots in the 
teaching methods of mathematician R.L. Moore (1882-1974) (Mahavier, 1999), but the term IBL 
is used more broadly to include various practices which share the spirit of student inquiry 
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through the core features of (1) deep engagement with rich mathematics and (2) collaboration 
with peers (Yoshinobu & Jones, 2013). 

Like most studies of post-secondary professional development workshops, we involve only 
volunteer participants (Bobrowsky, Marx, & Fishman, 2001). However, learning from the 
experiences of motivated, volunteer participants may provide valuable lessons that can then be 
leveraged to meet the challenge of expanding the use of research-supported teaching methods 
among other instructors who are initially less familiar with or less motivated to use those 
methods. Therefore, we explore the questions: 

(1) What lessons can we take from these faculty development workshops 
about ways to increase the use of research-supported, active learning techniques? 

(2) How might we use those lessons to motivate non-volunteers to adopt these 
techniques? 

Conceptual Framework 

Surveys and interview scripts were designed to evaluate the workshops, to learn about 
participants beliefs about teaching, and participants’ use of inquiry-based learning strategies. 
Rather than impose a conceptual framework from the start, we let one emerge from the analysis. 
To interpret findings, we used a three-stage model of instructor change developed by Paulsen 
and Feldman (1995), based on Lewin’s (1947) theory of change in human systems. These 
authors described three stages of (1) unfreezing, (2) changing, and (3) refreezing. During 
unfreezing instructors gain motivation to change through experiencing incongruence between 
their goals and the outcomes of their teaching practices. Key to this stage is “psychological 
safety” through “envisioning ways to change that will produce results that reestablish his or her 
positive self-image without feeling any loss of integrity or identity” (Paulsen & Feldman, 1995, 
p. 12). In the next stage, changing, instructors learn, apply, and reflect on new teaching strategies 
to help align their behaviors with desired outcomes. While teaching strategies may be fluid and 
changing during this stage, in the final stage, refreezing, either these new strategies are 
confirmed through positive feedback and solidified, or the instructor returns to his or her original 
strategies. While all three stages are important, our main focus in this paper is on how these 
workshops supported instructors through the unfreezing stage, since gaining motivation may be 
particularly challenging with non-volunteer participants. Elsewhere, we have discussed features 
of these workshops that supported participants through the changing and refreezing stages 
(Hayward, Kogan, & Laursen, 2015, accepted). 

We also draw on Rogers’ Diffusion of Innovations (2003) to help explain results. Rogers’s 
widely used model views adoption of innovations as a social process in which innovations spread 
among social networks. Various factors affect how innovations spread and the speed at which 
new users adopt them. We use some of these factors to help explain findings related to the 
adoption of IBL practices following these workshops. 

Methods 

Data were collected from three workshops held between 2010 and 2012. Each of the 
workshops was four or five days long and featured a mixture of various activities designed to 
help instructors learn about IBL and prepare for implementing IBL in their own classrooms. 
These included activities such as presentations from IBL ‘experts,’ panel discussions with IBL 
practitioners, and video observations of IBL classes. The first and third workshops were more 
hands-on and provided guided work time in the afternoons. During these times, participants were 
able to plan for their own IBL-based courses with help from the experienced staff members. The 
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second workshop was more conference-style with formal presentations, and did not feature this 
guided work time. While the workshops were all part of a larger project, they were organized and 
run independently and therefore varied on the activities they used. All three workshops 
exemplified characteristics of effective research-based professional development that have been 
identified in previous literature on K-12 teacher development (Cormas & Barufaldi, 2011; Garet, 
Porter, Desimone, Birman, & Yoon, 2001). These included such features as active participation, 
engaging participants in discussions of their students’ learning, and promoting participant self-
reflection. 

As evaluators of these workshops, we collected surveys pre-workshop, post-workshop, and 
one academic year later. Of the 139 participants at the workshops, we received 124 pre-
workshop surveys (89%), 125 post-workshop surveys (90%), and 96 follow-up surveys (69%). 
Using anonymous identifiers, we were able to match individuals’ surveys across the three time 
points. We successfully matched 100 (80%) post-surveys to pre-surveys and 69 (72%) follow-up 
surveys to pre-surveys. The high response rates indicate that the responses can be generalized to 
the workshop population, and are not strongly biased by subgroups such as adopters versus non-
adopters. 

The surveys included quantitative items and open-ended questions aimed at both evaluating 
workshop delivery and understanding the impact the workshops had on the participants’ teaching 
methods. Items were developed to monitor participants’ self-reported knowledge, skills, and 
beliefs about inquiry-based learning, as well as their motivation to use inquiry methods and their 
perceptions of the overall quality of the workshop. For example, on all three surveys, participants 
assessed their current knowledge of IBL on a scale of 1 to 4 (1=None, 2=A little, 3=Some, and 
4=A lot).  

To measure impact of the workshops on their subsequent teaching, we asked participants to 
report both directly and indirectly whether or not they had implemented IBL. We measured 
implementation directly through a multiple-choice question on the follow-up survey asking 
participants if they had implemented no IBL methods, some IBL methods, one full-IBL course, 
or more than one full-IBL course. We measured IBL implementation indirectly through 
comparing changes in participants’ reported frequencies of use of eleven specific teaching 
practices that were probed on both pre-workshop and follow-up surveys. Available research 
indicates that self-report is most accurate when it is retrospective over a clearly defined time 
frame, when it is confidential, and when it is behavioral rather than evaluative (Desimone, 2009). 
Therefore, we designed these indirect measures of teaching practice to ask participants to 
anonymously report their frequency of use of eleven behaviors in a course that they had taught 
recently. The eleven behaviors included some that are consistent with inquiry-based learning as 
presented at the workshops, other behaviors that are characteristic of other forms of active 
learning but not necessarily IBL, and some that are characteristic of lecture-based instruction. 

Open-ended questions addressed the perceived costs and benefits of using inquiry strategies 
and participants’ impressions and learning from the workshop, which helped to provide more 
detail and deeper understanding of the factors that affected their use of IBL practices. 
Additionally, participants reported personal and professional demographic information such as 
career stage, institution type, gender, race, and ethnicity, so that we could test for possible 
differences in results among groups. 

Survey data were analyzed using SPSS v. 21 (IBM Corp., 2012). Descriptive statistics were 
calculated for all variables, and inferential statistics were calculated as appropriate. Open-ended 
responses were entered into Microsoft Excel (Microsoft, 2011) and coded for common themes.  
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In addition, we conducted sixteen interviews. During these interviews, we asked questions to 
gain a deeper understanding of participants’ development as instructors, their views on teaching 
and learning, and more detail about their classroom activities and the factors that affected 
whether or not they implemented IBL. Interviews were semi-structured so that participants could 
reveal their own perspectives instead of fitting their responses into categories introduced by 
researchers. As a result, we did not ask questions in the same order or with the same wording in 
every interview. Some topics arose spontaneously and thus were not represented in every 
interview. We used these interviews to help explain findings from the surveys. 

Interviews were audio recorded, transcribed verbatim, and entered into NVivo v. 9 (QSR 
International Pty Ltd., 2010). We carefully read through all of the transcripts and identified 
recurring topics. Then, we identified segments of the transcripts that related to these topics and 
assigned them a code to identify that topic. If an individual passage covered multiple topics, we 
assigned multiple codes. Topics were coded each time they were discussed, so a code was 
sometimes used multiple times over the course of an interview. Groups of codes that shared 
similar themes were organized into domains (Spradley, 1980). 

 

Results 

Overall, the workshops were successful in helping participants to adopt IBL techniques. On a 
direct question on the follow-up surveys, 58% of all participants reported using IBL in their own 
classrooms, with 28% using “some IBL methods”, 14% teaching “one full IBL course,” and 15% 
teaching “more than one full IBL course.” Only 8% did not report using any IBL methods, and 
the remaining 34% did not respond (to either the entire survey or just this question). To assess 
implementation of IBL indirectly, we compared respondents’ reported teaching practices prior to 
the workshop with those reported on the one-year follow-up. We have presented at RUME 
before about the issues related to measurement and why we believe we can draw conclusions 
from these two types of self-reported data (Hayward & Laursen, 2014). 

Significant changes in teaching practices were consistent with the use of the ‘core’ practices 
of inquiry-based learning: decreases in the reported frequencies of use of instructor lecturing and 
instructor solving problems or examples on the board; increases in the reported frequencies of 
use of student-led whole class discussions, small group discussions, and students presenting 
problems or proofs at the board. ‘Preference IBL’ practices, which instructors implement to 
varying degrees, showed non-significant changes. These included practices such as students 
working in small groups and instructor-led discussions. IBL instructors vary on whether or not 
they use group work and how active they are in leading discussions. Other forms of active 
learning that are not characteristic of IBL remained stable over time. These included students 
using computers or writing individually in class. Full results are presented in Figure 1 below. 

These results corroborate participants’ self-reported level of IBL implementation (none, 
some, full-IBL). The patterns related to core, preference, and non-IBL practices are also 
important in the context of Paulsen & Feldman’s unfreezing stage. Key to unfreezing is the idea 
of ‘psychological safety,’ or being able to envision ways to change that fit with the individual’s 
identity as a teacher. At the workshops, IBL was presented as a broad range of related practices 
that share common features, rather than prescriptive techniques or curricula. Having options for 
‘preference IBL’ practices helped provide psychological safety as it allowed participants to 
implement a type of IBL that fit with their own teaching style. The unfreezing stage is especially 
relevant for spreading research-supported practices beyond volunteers, who are willing and able 
to commit to an intensive workshop. 
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In the interviews, ten of the sixteen participants commented on the presentation of IBL as a 

range of related practices. They explained how this broad presentation of IBL provided 
psychological safety. For example, one participant was struck by “how enthusiastic everyone [at 
the workshop] was about teaching and helping other people learn what IBL is about and how to 
integrate it into your classroom,” but “tuned out” one presenter that he found “aggressive” in 
communicating that “this is the only way to go, and that if you don’t do this, then it somehow 
diminishes your classroom” (Male participant, cohort 2). Another participant explained that 
seeing IBL as a spectrum of related practices “was kind of a big moment for me because it made 
it seem less scary. …Feeling like I can pick and choose aspects of it, and find something on the 
spectrum that I feel comfortable with, was empowering” (Female participant, cohort 2). 

This concept of a “spectrum” of IBL was particularly powerful for some participants who 
were familiar with other instructors who employ the teaching model of R.L. Moore 
“dogmatically.” For example, one participant explained that, 

 the Moore method is on one extreme and I think when I was deciding whether or not to 
use IBL in my classes before the conference, I had always viewed it as all or none. I 
hadn’t realized that some of the projects and stuff that I’d been doing in my classes were 
IBL in nature and that that’s okay, that you don’t have to do an entire class inquiry-
based, or that you don’t have to be as rigid as the Moore method prescribes (Female 
participant, cohort 2). 
Other participants also mentioned this idea of not doing ‘full IBL’ courses, but instead 

starting with smaller steps and then building over time. One participant explained that this 
was because “you saw people doing full inquiry classes, and it seems very intimidating, very 

Figure 1 Frequencies of pre-workshop and one-year follow-up teaching practices, matched survey responses 
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time consuming. …You don’t have to go to a full inquiry class … as the different semesters 
go on, I’m planning on turning more and more into inquiry” (Female participant, cohort 1).   

In addition to portraying IBL as a broad, inclusive set of practices, the workshops also 
showed IBL being used in a variety of settings. For example, workshops featured sessions about 
how to tailor IBL to different groups of students (such as first-year students and pre-service 
teachers) and in different types of courses (such as calculus and proof-based). These differences 
shaped how interview participants structured their IBL courses. Interviewees described a number 
of situational factors that led them to vary the IBL strategies they used, depending on the level of 
the class (first-year, sophomore, etc.), the size of the class, or the audience (mathematics majors, 
pre-service teachers, etc.). All sixteen interviewees commented on these situational factors a total 
of 101 separate times throughout the interviews, meaning that they often considered multiple 
factors in designing their courses. 

As one interview participant explained, seeing a diversity of IBL practices portrayed at the 
workshop, as well as a diversity of practitioners and situations, was important because it was 
“frustrating” when one presenter “had so many resources at their disposal that the rest of us 
didn’t have. …how many graders and TAs they have and how they keep the class size small. 
These were things that just don’t apply to most universities” (Female participant, cohort 2). 

Other participants made positive comments about the diversity of opinions and viewpoints, 
such as one who identified the best aspect of the workshop as offering, 

A good diversity of ideas and approaches, which I feel that I can adapt to my own 
teaching. As an inexperienced IBL user, I was very interested in learning from experts, 
but I was also interested in meeting people in my situation, who I can identify with, and 
hearing how they have worked through the same problems that I have (Male participant, 
cohort 1). 

Another participant felt that the workshop “gave me more ways and more tools to 
introduce IBL into [lower level and pre-service courses]” (Male participant, cohort 2). As 
a result, he was able to incorporate IBL methods into classes he previously thought could 
not be taught with IBL. 

Application/Implications to Future Research or Teaching Practice 

These findings suggest that the workshop leaders’ choice to portray IBL as a broad, inclusive 
set of practices, rather than as a prescriptive, rigid method, may have been essential for helping 
new instructors during the unfreezing stage, as it helped them to envision a way to change their 
teaching that was consistent with their own self-image and thus felt safe. This also gave 
participants the freedom to use a “hybrid” style where they incorporated some IBL strategies into 
a more traditional class. This may have served as a more feasible and less daunting entry into 
IBL, but may then lead to “full IBL” as instructors experience success and observe positive 
student outcomes. 

Using broader, more inclusive portrayals may also help increase the adoption of other 
research-supported strategies. Particularly, it may help instructors to start small and increase the 
use of these innovations over time. There is already evidence for this outside of mathematics. 
Biology education researchers call this process “phased inquiry” and suggest that it is “an 
important step toward expanding adoption of inquiry practices in college science courses” 
(Yarnall & Fusco, 2014, p. 56). “Phased inquiry” may be useful for overcoming time constraints, 
which physics instructors cite as one of the biggest barriers to implementing research-based 
instructional practices (Dancy & Henderson, 2010). Communicating broad definitions may help 
instructors to learn and phase in new strategies piece-by-piece over time, which may in turn 
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make time seem like less of a barrier to implementation. In Rogers’s (2003) model, trialability is 
positively related to the rate of adoption of innovations. However, further longitudinal research is 
needed to explore how teaching practices change after instructors take these initial steps to 
incorporate “hybrid” methods. 

From their studies of physics education reform, Henderson and Dancy (2008) recommend 
providing instructors with easily modifiable curricular materials, so that individual instructors 
may use their expertise to adapt the materials to their own local environments. While their 
recommendation applies to reforms focused on curricular materials, our findings suggest that this 
feature of easy portability may also be important for sharing primarily pedagogical strategies 
such as IBL. Showing diverse examples of IBL helped participants to customize IBL for their 
individual context and may have made implementation more likely. Rogers (2003) calls this 
process re-invention and states that it may reduce mistakes, help to fit innovations to local 
contexts, and help to make those innovations more responsive to changing conditions. 

The workshop leaders’ choice to present IBL as a variety of related approaches may have 
been inviting for participants, but may cause others to doubt whether the fidelity of IBL was 
maintained. Studies in both physics (Dancy & Henderson, 2010) and biology (Yarnall & Fusco, 
2014) have reported that instructors often adapt and modify research-based instructional 
strategies, usually in ways that align more with traditional methods and reduce the amount of 
student inquiry. Instructors often change materials to match their own individual style and 
preferences, because they do not expect materials created elsewhere to work without 
modification (Henderson & Dancy, 2008). 

However, there are various ways to measure fidelity of implementation, which can be 
categorized into ‘fidelity of structure’ (i.e. adherence and duration of use) and ‘fidelity of 
process’ (i.e. quality of delivery, and program differentiation, or whether the “critical features 
that distinguish the program from the comparison condition are present”) (O’Donnell, 2008, p. 
34). For pedagogical innovations like IBL, fidelity to process may be more important whereas 
curricular reform may focus more on fidelity to structure. IBL, specifically, may be somewhat 
robust to variation in structure, as student outcomes are improved over traditional courses despite 
notable variations in how IBL is implemented (Laursen et al., 2014). It may be the case that 
portraying IBL as a spectrum of related practices helped participants by outlining ways in which 
they could modify the methods to fit their context while still maintaining the fidelity of the core 
features of IBL, including high levels of student inquiry. If research-supported active learning 
strategies are defined in a way that allows for and helps to outline appropriate modifications, this 
may be important to maintaining the fidelity of their core features (fidelity of process) and 
promote the same positive outcomes supported by the research. 

Evidence from our study of this example of professional development of IBL that 
communicates broad, inclusive definitions seemed to help transform teaching practices in three 
ways: it (1) lowered the initial resistance and increased psychological safety by allowing for 
comfortable, personalized approaches to IBL teaching, (2) allowed for increasing adoption over 
time through “phased inquiry,” and (3) helped to maintain fidelity to IBL’s core features through 
outlining modifications that preserved the core principles of the approach. Our findings suggest 
that research-supported innovations that are inclusive and allow for context-appropriate 
modifications are likely to support broader adoption and greater user success than those that are 
restrictive and inflexible.  
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A Collaborative E�ort for Improving Calculus Through Better
Assessment Practices

Justin Heavilin Kyle Hodson Brynja Kohler

December 18, 2015

Abstract

Like many institutions across the country, Utah State University’s Department of Mathematics and
Statistics has embarked on an e�ort to improve the calculus sequence with the following objectives: (1)
improve our students’ comprehension and application of key topics, (2) retain/recruit more students into
STEM majors, and (3) provide more consistency across sections. After initial planning and preparation
in the 2014-15 academic year, new practices were ready for implementation. In the fall of 2015, teams of
instructors worked from common guided course notes, and met weekly to discuss instruction and develop
common assessments. This poster displays the methodology of test design and item analysis we employed
in the Calculus 2 course. While our team is only at the beginning stages of this work, the methods for
creating reliable and relevant measures of student learning hold promise for achieving the goals of our
reform.

1 Introduction

For many university students calculus courses serve as the gate-keeper that either attracts or repels them

from pursuing STEM majors and professions, and is consequently a priority area for reform [1]. Here we

share the background and motivations of our current work at Utah State University:

• The College of Engineering presented our department with data showing wildly inconsistent DWF

rates in various sections of calculus by instructor.

• A Calculus Committee was formed and after a series of organizational meetings, we set about organizing

the presentation, content, and evaluation in all courses and sections of Calculus.

• To provide cohesion between the sections of Calculus, we produced a set of guided lecture notes. These

published notes act as a sca�old upon which instructors can build their lectures, as well as a learning

tool for students during class sessions.

• To add consistency across all sections we scheduled common midterms and final exams. Exam questions

are proposed and vetted by all instructors, and grading of exams was accomplished by assigning one

problem to each faculty member thus ensuring consistent assessment of each test item.

• During weekly meetings instructors address questions about content and scope of material, propose

exam questions, and share instructional techniques. These meetings also identified much-needed cor-

rections to be included in the next iteration.

• In Calculus 1 and Calculus 2, we began the semester with a skills pre-test to help ascertain the level

of preparedness of the students with varying backgrounds.

In this poster, we share our methods and findings as they pertain to the skills pre-test we o�ered at

the beginning of the semester in Calculus 2. We also conducted item analysis after a midterm later in the

semester and found improvement of test validity. Collaborative work throughout the semester was likely a

quality professional development experience for all of the instructors involved.

1
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Figure 1: Cangelosi’s hierarchy of test validity, dependent on relevance and reliability of test items.[3]

2 Methods

If we wish to maximize student achievement we then must pay greater attention to the improvement of

classroom assessment. Instructors need training in creating better assessment tools. [2] To this end we

established the following practices and methods.

• A common exam schedule was determined for all sections of Calculus 2, allowing for one exam to be

administered to all six sections of the course.

• We agreed upon specific learning objectives to be tested. Instructors listed topics, but we also discussed

the level of learning we were after and used Cangelosi’s cognition scheme to guide our work. [3]

• Once we laid out a test blueprint of topics and their relative emphasis, committee members took

ownership of test items for each topic. This entailed creating the test item, writing a scoring rubric,

and then grading the item on all exams across all sections. This e�ort made scoring quick and consistent.

• Exam scores across all sections were collated for analysis (via boxplots, ANOVAs, and Tukey’s HSD).

• Scoring of individual items as well as total scores permitted test item analysis. In addition to quan-

tifying item di�culty and discrimination, we also calculuted Ho�man’s E�ciency Coe�cient for each

item. Finally we compute the exam’s Kuder–Richardson Formula 20 (KR-20) coe�cient as a measure

of internal reliability [3]. These provide guidelines for reliability of test questions, feeding back to

future test design. Our poster will include the formulae and interpretations to illustrate this process

for others.

We have not only seen our test reliability increase over the semester, but our level of collaboration overall

has served as professional developing experience for both the graduate students and faculty. For example,

as the semester progressed, faculty began observing one another’s classes in an e�ort to better understand

how material was presented by peers, and teachers shared supplemental materials to enhance lectures with

computer animations and interactive learning activities.

3 Recommendations for the Next Cycle

As the world and calculus evolves, e�ective instruction will always require changes. This work is an iterative

process, and should never be considered complete.

Extending beyond the traditional e�orts to make common exams, we have made considerable strides in

applying item analysis toward informing our exam design. While attention has been paid to instructional

objectives and materials treatment of quantitative thinking skills, classroom assessments often fail to match

these aspirations. Some students use tests to understand the teachers’ expectations and prioritize topics.

Thus poor quality assessments that fail to consider higher-order thinking skills will inhibit the development

of those skills. [5] The item analysis provides a powerful tool for quantifying the validity of these assessments.

Our work has has beneficial side e�ects such as motivating the empowering practice of observing each other’s

classes.

2
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Framework for Mathematical Understanding for Secondary Teaching: 
A Mathematical Activity perspective 

 
 M. Kathleen Heid                                          Patricia S. Wilson 

Pennsylvania State University                   University of Georgia 
 
Abstract: A framework for mathematical understanding for secondary teaching was 
developed from analysis of the mathematics in classroom events. The Mathematical 
Activity perspective describes the mathematical actions that characterize the nature of 
the mathematical understanding that secondary teachers could productively use. 
 

Mathematics teaching at the collegiate level focuses on enabling students to 
develop solid understanding of mathematics.  Although collegiate mathematics students 
often describe mathematics as learning specific topics and strategies and applying this 
knowledge to their work, their instructors may have additional but less explicit goals 
such as valuing the structure of mathematics, being able to create a deductive 
argument, or exploring and comparing systems of mathematics. These latter goals are 
especially important for prospective teachers of secondary mathematics, and college 
mathematics instructors are attending in new ways to the mathematical preparation of 
those who will teach mathematics.  

 
Over the past three decades, mathematics education researchers and theorists 

have increased their focus on the mathematical knowledge of teachers that helps 
teachers reach their goals of promoting a more robust understanding of mathematics in 
their students. During that time, researchers have refined the focus from Shulman’s 
(1986) construct of pedagogical content knowledge to constructs such as mathematical 
knowledge for teaching (MKT) (Ball, 2003; Ball & Bass, 2003; Ball & Sleep, 2007a; Ball 
& Sleep, 2007b; Ball, Thames, & Phelps, 2008) and knowledge of algebra for teaching 
(KAT) (Ferrini-Mundy, Floden, McCrory, Burrill, & Sandow, 2005; McCrory, Floden, 
Ferrini-Mundy, Reckase, & Senk, 2012). Work on MKT is, perhaps, the best known of 
the research programs focused on teachers’ mathematical knowledge. MKT originated 
with a reflection on the mathematical knowledge involved in the mathematical work of 
teaching at the elementary level. MKT partitions the territory of mathematical thinking 
into categories such as specialized content knowledge, common mathematical 
knowledge, and mathematics at the horizon. While the MKT categories can partition 
mathematical knowledge at the secondary level as well as at the elementary level, 
those categories do not characterize the nature of mathematical thinking that seems to 
distinguish mathematics at the secondary school level.  

 
In their work in secondary mathematics, students expand their mathematical 

knowledge to include new ideas such as irrational numbers, complex numbers, static 
and rotating objects, sample spaces, and a variety of ways to represent these ideas.  
But the differences between mathematics at the elementary and secondary levels are 
not solely extensions of the topics involved, but also a change in the nature of 
mathematical thinking involved. Whereas both elementary and secondary mathematics 
honor deductive reasoning, secondary mathematics places a much stronger emphasis 
on deductive thinking within a closed mathematical system. It is in the context of 
secondary mathematics that curricula focus on reasoning on the basis of a well-defined 
system of given properties and relationships. For example, the work of secondary 
students in the study of geometry is more likely to occur at the third or fourth van Hiele 
level (making deductive connections and constructing proofs) rather than the first or 
second levels (focused on visualizing or recognizing properties of geometric objects) 
that are more prominent at the elementary level. At the elementary level, students 
develop ways to represent mathematical relationships. As students progress through 
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school mathematics, their repertoires of ways to represent mathematical relationships 
expands so that, as they engage in secondary mathematics, they can be expected to 
link representations of the same mathematical entities and to reason about a 
mathematical entity in one representation making conclusions about that entity in 
another representation.   

 
Secondary teachers need to be able to reason flexibly enough to recognize and 

act on opportunities for their students to build capacities for reasoning in a closed 
system and for capitalizing appropriately on a range of representations.  They need 
mathematical understanding that enables them to perform such activities as creating 
examples, nonexamples, and counterexamples of entities encountered in secondary 
mathematics, to identify special cases of broad categories of mathematical objects, and 
to explain when a general statement can or cannot be extended to a larger or different 
domain or set of mathematical objects.  Secondary teachers need to make connections 
between mathematical systems.  In order to facilitate learning secondary mathematics, 
the work or context of teaching requires a depth of specific mathematical understanding 
that incorporates the more subtle but important goals of mathematics teaching. 
Mathematics teachers must not only understand mathematics but they must enable 
others to understand mathematics in the fullest sense. They need to pose interesting 
questions and tasks that bring the structure of mathematical systems alive. They need 
to understand the mathematical thinking of students in order to correct or challenge their 
thinking.  They need to be able to reflect on the curriculum and organization of 
mathematical ideas. The context of learning mathematics requires specific 
mathematical understanding beyond pedagogical knowledge.  

 
The six faculty involved (G. Blume, J. Kilpatrick, J. Wilson, and R. M. Zbiek, in 

addition to the authors) wanted to build a framework that would account for the 
proficiencies, actions, and work of secondary mathematics teachers. We committed to 
developing a framework that accounted for the mathematical opportunities secondary 
teachers actually encounter, and so we began in the classroom.  As we began to study 
the mathematical opportunities unfolding in the classroom, we recognized many of the 
ideas expressed by others who have attended to secondary mathematics (e.g., Adler & 
Davis, 2006; Cuoco, 2001; Cuoco, Goldenberg, & Mark, 1996; Even, 1990; McEwen & 
Bull, 1991; Peressini, Borko, Romagnano, Knuth, & Willis-Yorker, 2004; Tattoo et al., 
2008). While the framework incorporates previous ideas, it attends directly to the 
secondary mathematics built on data from mathematics classes. 

 
Our source of data was a set of what we came to call Situations. A Situation is a 

mathematical description, based on an actual event that occurred in the practice of 
teaching, of the mathematics that teachers could productively use in the work of 
teaching mathematics. Teams of mathematics education faculty at Penn State and at 
University of Georgia worked with dozens of doctoral students in mathematics 
education to develop more than 50 Situations. Although any one Situation is too large to 
report in this paper, we provide a brief outline of one of the Situations (from Heid & 
Wilson, in press) here. Each Situation includes a Prompt (a description of a 
mathematical opportunity–an event that one of the authors observed happening in the 
course of teachers planning or implementing a secondary mathematics lesson) and 
several Mathematical Foci (development of mathematics that a teacher could 
productively use in the context of that mathematical opportunity). A short statement 
about the nature of the mathematical understanding being targeted precedes each 
Mathematical Focus. Other parts of each Situation are Commentaries (a description of 
how the Mathematical Foci for the Situation fit together) and PostCommentaries. One of 
the Situations is outlined in Figure 1.   
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CHAPTER 22. INVERSE TRIGONOMETRIC FUNCTIONS  
 
Prompt 
Three prospective teachers planned a unit of trigonometry as part of their work in a 
methods course on the teaching and learning of secondary mathematics. They 
developed a plan in which high school students would first encounter what the 
prospective teachers called the three basic trig functions: sine, cosine, and tangent. The 
prospective teachers indicated in their plan that students next would work with “the 
inverse functions,” which they identified as secant, cosecant, and cotangent. 
Commentary 
The Foci draw on the general concept of inverse and its multiple uses in school 
mathematics. Key ideas related to the inverse are the operation involved, the set of 
elements on which the operation is defined, and the identity element given this 
operation and set of elements. The crux of the issue raised by the Prompt lies in the use 
of the term inverse with both functions and operations. 
Mathematical Focus 1 
An inverse requires three entities: a set, a binary operation on that set, and an identity 
element given that operation and set of elements. 

Secondary mathematics involves work with many different contexts for inverses. 
For example, opposites are additive inverses defined for real numbers and with additive 
identity of 0, and reciprocals are multiplicative inverses defined for nonzero real 
numbers and with multiplicative identity of 1. [Discussion follows about the nature of 
inverses, the role of an identity in inverses, and the importance of domain and range in 
consideration of inverses.] 

… 
Mathematical Focus 2 
Although the inverse under multiplication is not the same as the inverse under function 
composition, the same notation, the superscript -1, is used for both. 

[Discussion follows about notation used in different inverse relationships, and the 
specific use of that notation in consideration of trigonometric functions.] 

… 
Mathematical Focus 3 
When functions are graphed in an xy-coordinate system with y as a function of x, these 
graphs are reflections ) in the line y = x of their inverses’ graphs (under composition). 

The graph of a function reflected in the line y = x is the graph of its inverse, 
although without restricting to principal values, the inverse may not be a function. 
Justifying this claim requires establishing that the reflection of an arbitrary point (a, b) in 
the line y = x is the point (b, a). [A geometric proof follows, using a coordinate plane 
representation of the reflection of a point (a,b) over the line y = x.]  

… 
 
Figure 1. Outline describing a Situation appearing in (Zbiek et al., in press).  

 
The Situations we (the cross-university teams) developed suggested a range of 

mathematical abilities, actions, and settings that could underlie potentially productive 
mathematical thinking on the part of the teacher. It was on the basis of these abilities, 
actions, and settings that we embarked on the challenging task of developing our 
Framework for Mathematical Understanding for Secondary Teaching. As we examined 
the Situations we had created, we recognized that we needed several different 
perspectives to explain the mathematics we had identified. Akin to Plato’s allegory of 
the cave, the framework on which we settled consisted of three perspectives, each of 
which cast a different shadow representing a student’s mathematical understanding 
(See Figure 2).  

19th Annual Conference on Research in Undergraduate Mathematics Education 883

19th Annual Conference on Research in Undergraduate Mathematics Education 883



 
From one perspective, Mathematical Proficiency, we could use the strands of 

proficiency to describe the nature of the mathematical understanding, but this 
perspective did not account for the mathematical actions that secondary teachers could 
productively take. The second perspective addressed this as Mathematical Activity. 
However, neither the first nor second perspective accounted for the settings in which 
teachers needed to call on their mathematical knowledge. The third perspective, 
Mathematical Context of Teaching, addressed the mathematical context in which 
teachers could productively call upon their mathematical knowledge.  

 

 
Figure 2. Three perspectives of the Framework for Mathematical Understanding for 
Secondary Teaching (Heid & Wilson, in press). 
 

The first perspective, Mathematical Proficiency, is likely to be familiar as a way to 
think about students’ mathematical capability. The third perspective, Mathematical 
Context, provides a description of the mathematical understanding that is particularly 
relevant to teaching. This perspective was more implicit than explicit in our data, but we 
realized that the Mathematical Context of teaching indicates why it is critical to 
recognize and attend to the importance of Mathematical Activity.  In this paper, we 
confine our discussion to the development of the second perspective, Mathematical 
Activity.  
 
Mathematical Activity 

We used the final set of Mathematical Foci as data from which to generate our 
Framework for Mathematical Understanding for Secondary Teaching. First we identified 
mathematical actions implicit or explicit in each of the Foci. We then categorized those 
actions, including categories such as creating mathematical entities and interpreting 
mathematical representations and orchestrating movement among them.  

For example, one set of mathematical actions that we grouped into a single 
category included the following actions:  

•! Creating a counterexample for a given structure, constraint, or property 
•! Creating an example or non-example for a given structure, constraint, or property 
•! Creating equivalent equations to reveal information 
•! Creating problems to foreground a concept 
•! Creating a file (a computer application) whose creation requires mathematics 

beyond what the file is used to teach 
•! Constructing an object given a set of mathematical constraints 
•! Generating specific examples from an abstract idea 
•! Creating a representation for a mathematical object with known structure, 

constraints, or properties  
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Having grouped these actions into a single category, we developed a description of a 
mathematical action that encompassed these actions. In this case our description was 
“Creating a mathematical entity or setting from known (to the one creating) structure, 
constraints, or properties.” An example of a specific mathematical action that might fit 
this category is the task of constructing a quadrilateral with specific characteristics. 
Other mathematical actions were developed in a similar fashion. A few of the final set of 
mathematical actions at this juncture, along with specific examples drawn from the 
Situations, are shown in Figure 3. 

 

Category 
 

 

Example 

Create: Creating a mathematical entity or 
setting from known (to the one creating) 
structure, constraints, or properties 

Sketch quadrilateral ABCD with 
 and  such that 

ABCD is not a parallelogram. 

Recognize: Recognizing mathematical 
properties, constraints, or structure in a given 
mathematical entity or setting, or across 
instances of a mathematical entity 

Recognizing that strategic choices for pairwise 
groupings of numbers are critical to one way 
of developing the general formula for summing 
the first n natural numbers 

Choose: Considering and selecting from 
among known (to the one choosing) 
mathematical entities or settings based on 
known (to the one choosing) mathematical 
criteria 

The mathematical meaning of a/b (with b≠0)) 
arises in different mathematical settings, 
including: slope of a line, direct proportion, 
Cartesian product, factor pairs, and area of 
rectangles. One might choose slope of a line 
as a setting to illustrate the need for b≠0. 

Use representations: For given 
representations, interpret them in the context 
of the signified, orchestrate movements 
between them, and craft analogies to describe 
the representations, objects, and relationships 

Using tabular and graphical representations to 
estimate the value of 22.5 

Assess (interpret and adapt) the mathematics 
of the situation: Interpret and/or change 
certain mathematical conditions/ constraints 
relevant to a mathematical activity 

Assess and use a modulus definition of 
absolute value in evaluating  

Extend: Extend the domain, argument, or 
class or objects for which a mathematical 
statement is/remains valid. 

Extending: the absolute value function from 
the real to the complex domain; "triangle" from 
Euclidean to spherical geometry 

Connect: By recognizing structural similarity, 
make connections between: representations of 
the same mathematical object; different 
methods for solving a problem; mathematical 
objects of different classes; objects in different 
systems; or properties of an object in a 
different system. 

Identifying structural similarities of the 
Euclidean algorithm and the long division 
algorithm 

 
Figure 3. A few of the set of mathematical actions that comprised the Mathematical 
Activity perspective of the Framework for Mathematical Understanding for Secondary 
Teaching, along with specific examples drawn from the Situations. 

� 

m∠D = m∠A = 90

� 

AB DC

� 

f (x) = x −10
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Reason: Reason about a mathematical entity 
in more than one way, including, but not 
limited to: from mathematical definitions, from 
given conditionals, from and toward 
abstractions, by continuity, by analogy, and by 
using structurally equivalent statements. 

Reasoning about the sum of the first n natural 
numbers by appealing to cases, by making 
strategic choices for pair-wise grouping of 
numbers, and by appealing to arithmetic 
sequences and properties of such sequences. 

 
Figure 3, continued. 
 

Finally, we organized the set of mathematical actions to account for the actions arising in 
the Situations as well as reasonable mathematical actions that were not captured in the 
categories that were derived from the Situations. The final set of categories is displayed in 
Figure 4.  
 
 
I. Mathematical noticing: Recognize and choose from among known mathematical entities or 
settings based on known mathematical criteria such as:  

A. Structure of mathematical systems 
B. Symbolic form 
C. Form of an argument  
D. Connections within and outside mathematics  

II. Mathematical reasoning: Reason about a mathematical entity in one or more than one way, 
including, but not limited to: from mathematical definitions, from given conditionals, from and toward 
abstractions, by continuity, by analogy, and by using structurally equivalent statements. 

A. Justifying/proving 
B. Reasoning when conjecturing and generalizing 
C.        Constraining and extending  

III. Mathematical creating. Create (Creating a mathematical entity or setting from known (to the 
one creating) structure, constraints, or properties)   
        A.       Representing 
        B.       Defining 
        C.       Modifying/transforming/manipulating       
IV. Integrating strands of mathematical activity. Coordinate (Coordinate mathematical 
knowledge, student mathematical thinking, school curricula, and knowledge development); Reflect 
(self-reflect) (Reflect on mathematical aspects of one’s practice or on one’s own doing math); and 
Apply (Employ algorithms, definitions, and technology in mathematical settings and/or real world 
quantitative settings when applicable.) 
 
 
Figure 4. Mathematical Activity Perspective of the Framework for Mathematical 
Understanding for Secondary Teaching (Heid & Wilson, in press).  
    

The final categories differed from existing frameworks in their mathematical 
nature. The mathematical actions we described derived from the mathematical 
decisions that teachers confront. Their work in mathematics classrooms would benefit 
from their ability to notice similar mathematical structures. Being comfortable enough 
with mathematical entities, properties, and structures to create and modify new 
representations would allow them the freedom to pursue their students thinking. They 
could productively use a flexible and robust repertoire of techniques for justifying their 
mathematical work.  
 

The framework is intended to be a work in progress. It can serve as a research 
tool to study the mathematical understanding of secondary teachers. Researchers might 
investigate, for example, what collegiate mathematics courses contribute to the 
development of the capabilities suggested in each of the perspectives.  They might also 
investigate how the aspects of secondary mathematics teachers’ own mathematical 
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understandings as described in the Framework influence the mathematics to which they 
expose their students. 
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In recent years, much attention in the teacher education literature has been given to ways in 
which inservice teachers develop facility with the construct known as mathematical knowledge 
for teaching (MKT).  Much less is known about the ability of preservice teachers to construct 
MKT.  To address this, the current preliminary report adds to the research base by investigating 
two primary questions: (1) Can teachers build MKT in their content courses?, and (2) Can 
teachers engage in meaningful mathematical discourse as a result of their content courses? The 
report examines the effects of a semester long course on number and operations designed to 
allow preservice elementary teachers opportunities to build different aspects of MKT.  Very 
preliminary analysis shows that many students lack this knowledge upon entering the course, but 
most are able to begin to build a degree of facility in it by course completion. 
 
Key Words: Mathematical Knowledge for Teaching, Mathematical Discourse, Reasoning, 
Justification 
 

Background and Research Questions 
A central tenet of teacher education research has long been identifying the types of knowledge 
that teachers need to know in order to teach mathematics.  Such attempts date back to Shulman’s 
(1986) original proposal of a new type of knowledge that he called pedagogical content 
knowledge (PCK), defined as “the particular form of content knowledge that embodies the 
aspects most germane to its teachability” (p. 9).  Since then, research teams such as Ball and 
company (2008) and Hauk and her colleagues (2014) have worked to conceptualize PCK.  Ball 
and company have developed typologies for the much broader realm of mathematical  
knowledge for teaching (MKT), shown in figure 1, for which PCK is a subconstruct.  Note that 
the left half of the oval consists of subject matter knowledge (SMK) which they claim requires 
no knowledge of students, which distinguishes it from the right half which is PCK.  It is worth 
noting that the Ball model is specifically designed for the K-8 setting; this is important because 
as Speer et al (2014) note, generalizability comes into question when trying to apply the model 
outside the K-8 context. 
 Within the Hill, Ball, and Schilling (2008) model, common content knowledge (CCK) is 
defined as “knowledge that is used in the work of teaching in ways in common with how it 
is used in many other professions or occupations that also use mathematics”(p.6). 
In contrast, specialized content knowledge (SCK) is specialized in the sense that it is specific 
to the task of teaching.  SCK includes various ways to represent mathematical ideas, provide 
mathematical explanations for rules and procedures, and examine and understand innovative 
solution strategies(Hill et al, 2008, p.377).  As an example, consider fraction division.  Most 
middle school graduates can readily use the invert!and!multiply algorithm to divide fractions. 
Thus, this piece of knowledge is CCK.  Yet, few can explain to a novice learner why the 
algorithm exists in school mathematics nor why it is justified, thereby making this particular 
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piece of knowledge SCK.  Within the realm of PCK are knowledge of content and students 
(KCS) and knowledge of content and teaching (KCT).  KCS is  

 

 
 Figure 1.  Domain Map for MKT (Hill et al, 2008) 
 
“content knowledge intertwined with knowledge about how students think about, learn, or know 
this particular content” (p. 375), while they define KCT as a knowledge of teaching moves.  So, 
using our division of fractions example again, a teacher who is aware that students often invert 
the first fraction instead of the second fraction is demonstrating KCS, and might use fraction 
diagrams as a way of scaffolding student understanding of division of fractions by using her 
KCT. 

Implicit in the use of KCS and KCT is an awareness of the words, grammar, syntax, and 
forms of standard mathematical language in use – what Gee (1996) would call the “little d” 
discourse of mathematics. Also at work in the teaching of mathematics are nuances about what is 
valued in mathematical discourse in a mathematics class (as opposed to mathematics in a physics 
or biology class), the socio-mathematical norms for questions and answering, and myriad other 
interactions that make a mathematics lesson recognizable in an instant (e.g., by someone 
listening in or looking through the window of a classroom for just a few seconds). This kind of 
situated “little d” discourse is what Gee called “big D” Discourse. Hauk and colleagues (2014) 
have brought these ideas into a further unpacking of the components of PCK. The extended 
model, shown in Figure 2, adds a fourth dimension to PCK called Knowledge of Discourse (KD).  
Hauk et alia argue that effective teaching of mathematics includes facilitating student learning of 
mathematical discourse (along with other discourses). Such Discourse is enacted in the 
classroom when students and teacher engage in mathematically appropriate, accurate, and 
effective communication situated in the context of reasoning and justification of mathematical 
ideas.  Clearly, a rich and textured Knowledge of Discourse is required for teachers to use and 
promote the valued mathematical skill of justification: engaging in reasoning about and 
explaining how one knows something is true (Cioe et al., 2015). 

To measure PCK and MKT more generally, both research teams developed multiple 
choice assessments designed for administration to inservice teachers receiving professional 
development for Ball’s team and completing a master’s degree for mathematics teachers in the 
case of Hauk’s team.  It should be noted that in the case of Hauk’s team, the focus was on the 
PCK development of teachers at 7-12 level unlike Ball’s team.  While items in the instrument 
developed by Hauk’s team measured in large extent the syntactic structure of KD and did 
attempt to measure the teachers’ ability to engage in proof validation, neither their instrument 
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nor the items developed by Ball’s team measure the larger components of discourse required to 
engage in reasoning and justification: i.e. neither team tried to specifically measure mathematical 
discourse more generally.  Hence, the current project is designed to address two key missing  

 

 
 

Figure 2.  Tetrahedron Model of PCK (Hauk et al., 2014) 
 

ideas in the existing literature: (1) Can preservice elementary teachers (PSETs) develop facility 
in MKT as a result of their learning in the content courses for PSETs?, and (2) Can PSETs learn 
to engage in meaningful mathematical discourse as a result of their experiences in these courses? 
 

Research Methods 
 

Beginning in the summer of 2011, an instrument was developed to begin measuring different 
aspects of MKT of preservice elementary teachers, with particular emphasis on items which 
require some combination of SCK, KCS, and KD.  The items requiring a combination of SCK 
and KD to answer generally require the teachers to engage in mathematical discourse to justify 
certain mathematical facts or procedures.  Two examples of items from the most recent 
administration of the instrument are given below: 
 
7.  John asks you in math class one day why 4! = 1 .  Give John an explanation that he can 
understand for why this is true. 
 
8. Nancy, a student in your 5th grade math class, asks you day why she cannot divide 5 by 0. 
That is, why she cannot do 5 ÷ 0. Give Nancy an explanation that she can understand for why 
she cannot do this. 
 
 

19th Annual Conference on Research in Undergraduate Mathematics Education 891

19th Annual Conference on Research in Undergraduate Mathematics Education 891



PSETs enrolled in a course on number and operations at a large public state university in the 
northeastern US were given the instrument upon entering the course as well as upon exiting in a 
standard pre-post format.  During the course, PSETs are expected to engage in mathematical 
discourse through reasoning and justification consistently as a socio-mathematical norm in class 
and group discussions, online homework exercises, and on exams. The instrument contains 13 
items, and the current report focuses on data collected from 4 sections of the course in the Fall 
2014 and Spring 2015 semesters, with N=78 teachers.  In addition to administering the 
instrument, five teachers were interviewed in the spring semester concerning their answers to 3 
of the items to discern their ability to communicate effectively orally in addition to written 
formats.  Participants were also presented with novel tasks for them during the interviews that 
gauged their abilities to engage in reasoning and justification more generally through validation.  
For instance, one of the items in the instrument asks for a justification of the invert-and-multiply 
algorithm.  During the interviews, the teachers discussed their own justifications for the 
algorithm and then were presented with justifications that had not been discussed during the 
course and were asked to discuss the appropriateness of the justification for an elementary 
classroom. 
 

Preliminary Data Analysis and Results 
 

Data analysis is ongoing and will continue through the end of the Fall 2015 semester.  Pre and 
post responses to the free response items in the MKT instrument are to be scored by researchers 
with emphasis on interrater reliability based upon predetermined criteria involving mathematical 
accuracy of the responses, the effectiveness of the responses in reaching the intended audience of 
elementary students, and the appropriateness of the responses based upon the grade level of 
student whom the teacher is communicating with.  The five interviews are to be transcribed and 
coded based upon similar criteria.  However, in addition, the interviews will also be analyzed to 
look for evidence of surface validity in instrument items in constructing various components of 
MKT.                                                                                                                                                                               
     Early analysis shows that a significant proportion of teachers did build some facility in 
different aspects of MKT, although some teachers were more successful than others.  To 
highlight some these successes or lack thereof, a few sample corresponding pre-post response 
pairs are given below: 
 
Pre Responses 
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Corresponding Post Responses: 

 
 

 
 

As is readily seen, there are dramatic shifts in ability to engage in mathematical discourse in 
these two PSETs.  Upon entering the course, the first teacher gave a very common 
mathematically inaccurate response among PSETs which makes effectiveness and 
appropriateness moot, while the second teacher was unable to justify the given statement.  Upon 
leaving the course, both teachers effectively engaged in mathematical discourse that is 
commonly found in elementary curricula.  These outcomes are not unique of course, but are 
shared throughout the data.  However, there is another interesting aspect of the project design 
feature that the current report does not deal with: the attitudes and beliefs of the PSETs.  The 
data shows a clear shift for some teachers in how they think about mathematics: many 
participants entered the course with responses that included some mention of a type of rule as a 
justification for a given statement, whereas their post responses seldom if ever talk about rules in 
mathematics.  Beliefs and attitudes about mathematics and teaching it also surfaced in the 
interviews as some participants talked about why they felt it was important for teachers to know 
certain things based upon those beliefs.  Again, this is not a focus of the current report, but it is 
indeed an avenue of exploration for future study. 
 

Questions for the Audience 
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(1) What kinds of things would you like to see as teacher educators/researchers in the 
responses to the items?  Why? 

(2) Are there other ways of measuring the ability to engage in justification which in and of 
itself requires measuring the ability to engage in mathematical discourse?  What are they?  
What are the advantages and disadvantages to each method? 

(3) What are some of the most important topics in the elementary curriculum that you as 
teacher educators/researchers believe that no PSET should exit their content courses 
without being able to have a somewhat stable mathematical discourse in those topics? 
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The case of an undergraduate mathematics cohort of African American males striving for 
mathematical excellence 

 
Christopher C. Jett, Ph.D. 

University of West Georgia 
 
Historically Black Colleges and Universities (HBCUs) provide a different milieu as it pertains to 
supporting students academically in all disciplines, and this study champions an HBCU effort 
within the context of undergraduate mathematics. Specifically, it highlights the case of a cohort 
of 16 African American male mathematics majors at an all-male HBCU. The overarching 
research question sought to delve deeper into these participants’ educational experiences to 
ascertain factors that influenced their mathematical persistence. Using qualitative research 
methods grounded in critical race theory, preliminary data show that these African American 
male mathematics majors were affirmed racially and mathematically in their undergraduate 
mathematics space.  
 
Keywords: Undergraduate mathematics education, African American males, Equity 
 
Introduction 

This preliminary research report analyzes the mathematics experiences of a cohort of 16 
African American male mathematics majors at an all-male Historically Black College/University 
(HBCU) in the southeastern region in the United States. More specifically, this research work 
seeks to ascertain intrinsic and extrinsic factors that led to their persistence in undergraduate 
mathematics. This study adds to the body of scholarship on the schooling experiences of African 
American male students (see, e.g., Berry, 2008; Duncan, 2002; Jett, Stinson, & Williams, 2015; 
Noguera, 2008). With respect to African American male students’ college experiences, some 
studies focus on how African American men experience and grapple with racism in college 
settings (see, e.g., Bonner & Bailey, 2006; Cuyjet, 2006; Davis, 1994; Harper, 2015; Seymour & 
Hewitt, 1997). Research specifically on African American men’s college mathematics 
experiences highlights the fact that many of them often experience difficulties with mathematics 
(see, e.g., Stage & Kloosterman, 1995).  

Despite some of these reported findings regarding African American students in 
mathematics, there are, however, African American students who achieve in undergraduate 
mathematics. Thus, it is important to gain insights from studying African American male 
students who are persisting in college mathematics. African American male students’ stories of 
mathematical persistence are largely absent from the research literature. This research project is 
designed to fill this void in the research literature and shift the discourse concerning the 
mathematics experiences of African American male mathematics collegians.  
 
Review of the Literature  

There have been fruitful efforts designed to improve the mathematics achievement 
outcomes of African American students. One effort that has been successful in promoting high 
levels of undergraduate mathematics performance among African American (and other 
underrepresented) students is the Mathematics Workshop Program (MWP) at the University of 
California, Berkeley (Fullilove & Treisman, 1990; Treisman, 1992). The MWP is cited as being 
successful for the following reasons: the workshops create environments that promote 
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mathematics academic excellence among peers; the students spend more time on learning 
activities and learning tasks as opposed to just solving mathematics problems; and the students 
who participate in MWP are believed to continue in college longer than those students who do 
not participate in the workshop because they obtain social and study skills that can be used 
throughout their college matriculation.   

A research team at the University of Maryland Baltimore County studied high-achieving 
African American men (Hrabowski, Maton, & Greif, 1998). At this institution, researchers 
became concerned about the status of African American male students in college science, 
mathematics, and engineering (SME; SME is synonymous with STEM) majors and decided to 
learn more about this group by studying the habits of the highest-achieving students who were 
enrolled in the Meyerhoff Program. Although the program now serves students from all racial 
and ethnic backgrounds who desire to pursue a doctorate in the sciences or engineering, the first 
year consisted of African American male students only. Hrabowski et al. (1998) hoped to 
identify attitudes, behaviors, habits, perspectives, and strategies of the highest-achieving African 
American male students in the program. According to Hrabowski et al. (1998), the following 
factors are critical for success in college among African Americans in mathematics and science: 
an adequate high school academic preparation, analytical skills, strong study skills, time 
management skills, advising, academic as well as social integration, and motivation and support.  

McGee’s (2005) work studied 14 high-achieving African American mathematics and 
engineering majors in their junior and senior years of college. She found that these students 
exhibited positive racial identities and continued in the African American spiritual tradition. She 
also found that parents were important factors in the students’ success. Furthermore, she found 
that most students embraced a “succeeding against the odds” ideological paradigm. In sum, 
Hrabowski et al.’s (1998) findings support other findings of mathematical persistence and 
success factors among African American students. Early exposure to and access to rigorous and 
culturally specific mathematics provides the crux for which later mathematics success is attained. 
Moreover, the MWP (Fullilove & Treisman, 1990) and the work of McGee (2005) buttress the 
claim that efforts must be made to transform the undergraduate mathematics education discourse.  

All in all, this study builds on scholarship from scholars who believe in the gifted 
mathematical abilities of African American students (see, e.g. Cooper, 2004; Ellington & 
Frederick, 2010; Jett, 2010; Leonard & Martin, 2013; Noble, 2011; Stinson, 2006; Thompson & 
Lewis, 2005; Walker, 2014). This work extends my own scholarly efforts concerning the 
importance of HBCUs as it relates to producing African American male mathematics majors 
(Jett, 2013). Moreover, this study reveals how complexities about the constructs of race and/or 
gender may influence the undergraduate mathematics education of African American male 
students. This study, too, complements and expands existing research efforts in the field.   
 
Theoretical Framework 

Critical Race Theory (CRT) was employed as the theoretical framework for this research 
project. Historically, African Americans in the United States have experienced this hierarchical 
race system that places Europeans at the top and people of color at the bottom since slavery 
(Bell, 1992; DuBois, 1903/2003). Racism is an institutionalized force that has been used both 
historically and currently to dismiss and oppress people of African descent and other people of 
color. Solórzano and Yosso (2002) argue that “substantive discussions of racism are missing 
from critical discourse in education” (p. 37). As it stands, issues of race and racism have been 
underexplored in mathematics education research (Martin, 2009). In an attempt to utilize CRT in 
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undergraduate mathematics education research, CRT was used to analyze the experiences of a 
cohort of 16 African American male mathematics majors.  

There are five foundational tenets of CRT, and these tenets are the hallmarks driving this 
theoretical perspective. These philosophical underpinnings include the following: 

1) CRT asserts that “racism is normal, not aberrant, in American society” (Delgado & 
Stefancic, 2000, p. xvi). 

2) CRT adheres to interest convergence, which advances that the dominant culture 
advances racial justice and other race based initiatives when it serves their interest 
(Delgado & Stefancic, 2001). 

3) CRT asserts that race is orchestrated as a social construction (Ladson-Billings, 2013). 
4) CRT explores the intersectionality of various constructs such as race, sex, class, gender, 

and sexual orientation to explore how these intersections make for broader 
understandings of these constructs (Delgado & Stefancic, 2001).  

5) CRT utilizes voice to serve as a counter-narrative to the dominant discourse 
surrounding racial groups (Dixson & Rousseau, 2005). 

These tenets of CRT were be used to frame the interview questions and to analyze the data.  
 
Research Question 
The overarching research question for this study was as follows: 
How do African American male mathematics majors describe their educational experiences? 
 
Methodology  

The qualitative research data collection methods included the following: 1) a pre-survey, 
2) a semi-structured interview, and 3) a member checking prompt (Bogdan & Biklen, 2007).  

1) The pre-survey was given to the participants prior to the first interview. This pre-
survey solicited information from the participants pertaining to their demographics, family 
dynamics, and education. The information obtained from the pre-survey was used to inform the 
first interview as well as to substantiate the data for coding and analysis. 2) The interview 
allowed the participants’ voices to be heard using their own words. The utilization of “voice” as 
well as narratives aligns with qualitative research methods and CRT. Additionally, the semi-
structured interview caused the participants to reflect upon and (re)construct their mathematics 
experiences in their own words. Each interview lasted anywhere between one and two hours 
chronicling their mathematics schooling experiences as African American male students. 3) The 
member checking aspect allowed the participants to verify whether I reported their words, 
findings, and interpretations accurately.  
 
Preliminary Findings  

Data have been collected and coded for this research project, and the data are in the early 
stages of analysis (Saldaña, 2013). However, preliminary data indicate that these 16 African 
American male mathematics majors were affirmed at their HBCU. Preliminary findings from the 
study also indicate these 16 African American men had a sense of mathematical brotherhood in 
college, benefited from an affirming Mathematics Laboratory at the college, solidified 
mathematics passions during their early childhood experiences, and largely expressed that their 
high school preparation did not fully prepare them for collegiate mathematics, which is in stark 
contrast to the research literature.  
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Discussion Questions  
The following discussion questions will allow participants in this session to engage in dialogue, 
offer feedback for strengthening the work, and recommend suggestions for future areas of 
scholarly exploration: 
• Please share any stories of your experiences working with African American male mathematics 
majors.  
• What are your thoughts and feedback concerning the aforementioned study of this cohort of 16 
African American male mathematics majors at this HBCU? 
• What are the implications of this work for mathematics instructors as it pertains to making the 
undergraduate mathematics space a more inclusive one at different institution types?    
• What are the implications of this work as it pertains to future research regarding African 
American male undergraduate mathematics students’ experiences?    
 
Goals 

A goal of this session is to highlight the robust and longstanding history of mathematical 
excellence at this all-male HBCU. This particular institution has a legacy of producing many 
African American male mathematics majors. Another goal is to disseminate more stories of 
mathematical persistence to influence and filter more African American male students into the 
mathematics pipeline who have a desire to explore mathematical pursuits. Finally, a goal is to 
generate more conversations concerning the participation and underrepresentation of African 
American male students in undergraduate mathematics.   
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Using the effect sizes of subtasks to compare instructional methods:  A network model 
 

Garry Johns, Christopher Nakamura, and Curtis Grosse 
Saginaw Valley State University 

 
Abstract 

 
Networks have become increasingly important in studying air pollution, energy use, genetics and 
psychology. These directed graphs also have features that may be useful in modeling student 
learning by answering questions such as the following: How can we determine if one teaching 
approach has better outcomes than a second method?  In this paper we present a framework for 
dividing an approach into subtasks, assigning a numerical value (such as an effect size) to each 
subtask and then combining these values to determine an overall effectiveness rating for the 
original approach. This process allows researchers to investigate potential causes for student 
achievement rather than simple correlations, and can compare the effectiveness of a method for 
various types of students or instructors.    
 
Key words: effect size, teaching methods, subtasks, network 
 

Introduction and context 
 

As university faculty face the challenge of teaching a new generation of students, some have 
adopted alternative assessments or a variety of teaching methods to enhance the learning 
experience (Cohen, 1977, Hastings, 2006, Hattie, 2009).  In general, this transition away from 
lecturing has been slow as indicated by a recent survey of 700 calculus instructors in which a 
majority still believes that students learn best from clear and well-prepared lectures (Bressoud, 
2011).  In a related survey of over 700 faculty members who teach introductory physics, an 
impressive 72% had used at least one research-based instructional strategy; however, nearly one-
third of this 72% no longer use any of the strategies (Henderson et al., 2012).  Why do so many 
instructors think and react this way?  Three major reasons are the following:  (1) some may not 
be aware of the existing research supporting new approaches, (2) many are skeptical about the 
effectiveness of newer methods (often based on their own observations), and (3) if a faculty 
member is willing to try a different approach, which choice among the alternatives should she 
choose to produce the greatest impact? 

The focus of this paper is to address reason (3) from above on how to select the best 
approaches.  Issue (1), increasing faculty awareness of current research, is already being 
addressed by several professional organizations.  The National Council of Teachers of 
Mathematics (NCTM) has recently published a survey of over fifty studies related to seven 
principles behind motivational strategies (Middleton & Jansen, 2011) and its 73rd yearbook, 
Motivation and Disposition: Pathways to Learning Mathematics.  The Mathematical Association 
of America (MAA) sponsors the SIGMAA on RUME and strands on teaching and learning 
theory at its national meetings each January and August.  Similarly, the American Mathematical 
Association of Two-Year Colleges (AMATYC) highlights research-based topics in several 
sessions at its annual meeting.  As for issue (2), if faculty members have a way of choosing more 
effective methods, then their skepticism may be diminished due to better classroom results and 
replaced by a lasting commitment to incorporating classroom change. 
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Educator Spencer Kagan (Kagan & Kagan, 1998, p. xxii) claims that “the greatest sustained 
change results from the smallest changes in instruction;” however, a challenge related to 
selecting methods is that one general “method” may be accomplished in several ways – each 
with varying levels of success.  For example, suppose two instructors wish to motivate students 
more.  Instructor A chooses to focus on the relevance of mathematics since there seems to be 
general agreement that mathematics, particularly for low-achieving adolescent students, must be 
made more relevant in order to increase student performance (Haylock, 1999).  However, 
Haylock cautions that not all applications are equally motivating to students.  For instance, when 
the teacher states that certain material will be used in the next chapter or in the next course, 
students do not value the content as much as if they see the topic addressing a perceived need.  
However, even though many students see the task of finding the cost to carpet a 12 foot by 18 
foot room when carpet costs $6.75 per square yard as a real problem, it is seen as someone else’s 
problem and not the students’.  Thus, it is not as motivating as if the students see an immediate, 
personal need for the content.  

Similarly, Instructor B desires to motivate students; however, she chooses social interaction 
rather than relevance. At many institutions one of the major areas addressed in student 
evaluations of faculty has been “Student-Instructor Interaction.”  Contact between students and 
faculty, as well as student-student interactions such as reciprocity and cooperation among 
students are two of the seven research-based principles in undergraduate education advocated by 
Chickering and Gamson (1987).  She considers the following passages from (Middleton & 
Jansen, 2011): 
 

Mathematics classrooms’ social dimension can support students’ learning 
of mathematics, particularly when teachers purposefully structure opportunities 
for social needs to converge with academic needs.  All students’ needs for 
relatedness – among them avoiding disapproval, achieving social affiliations, 
demonstrating competence, acquiring social concern, and building shared 
meaning – can become channeled into opportunities to engage in mathematics.  
Teachers’ efforts to support students’ mathematics learning – how they choose 
mathematical tasks, treat students’ errors, evaluate students, reduce 
competition, raise status, and build positive relationships with students – can 
help students meet their needs for relatedness as well.2 

Integrating all of these practices into your instructional repertoire at once is 
not realistic . . . cycling them gradually into your teaching can help scaffold 
student learning.3 

 
Observe in these two excerpts that many classroom changes are endorsed; however, are all of 

the revisions listed in the first passage important to the progress of adult learners, and if so, 
which changes should be prioritized (rather than merely cycled through) to achieve the greatest 
impact quickly? 

A current approach for comparing teaching methods is to compute Cohen’s effect size, d.  
This statistic was popularized in the 1960’s by Cohen (Cohen, 1977) and has been used 
extensively to evaluate the effectiveness of many educational approaches on student 
achievement.  This number is computed by finding the difference between two means and then 
dividing this difference by the paired standard deviation (if the data is matched) or by the pooled 
standard deviation (if the sets of data are independent).  Two common scenarios where the effect 

19th Annual Conference on Research in Undergraduate Mathematics Education 902

19th Annual Conference on Research in Undergraduate Mathematics Education 902



size arises in educational studies are the following where the difference of means in the 
numerator is either (i) the average score on a pre-test subtracted from the average score on a 
post-test, or (ii) the mean score from a test for a control group subtracted from the mean score of 
a treatment group. 

The effect size is easy to compute – even in meta-analyses of several studies with varying 
populations and sample sizes, and it is considered reliable. For instance, John Hattie has 
compiled the value of d from large meta-analyses for almost 150 educational interventions 
including the following (Hattie, 2009): 
 
1) Staying in college residence halls        d = 0.05  
2) Cooperative learning           d = 0.41  
3) Teacher-student relationships         d = 0.72 
4) Providing formative evaluation of programs to teachers  d = 0.90 
 

These results can be interpreted as follows: there seems to be little – if any – change in 
achievement scores for students simply staying in college residence halls, while students who 
participate in cooperative learning experiences with other students see a greater improvement in 
achievement scores.  However, developing relationships between the teacher and students, or 
providing feedback to instructors, appear to be associated with even more growth in student 
achievement. 

Hattie’s work focuses mainly on the effect sizes between various approaches or tasks and the 
final outcome of student scores – without considering which intermediate tasks or student 
responses may be potentially high-impact revisions. 

 
A network model 

 
The theoretical model described in this paper to address the questions of selection and 

priority divides a particular instructional method into a sequence of “subtasks.”  For the rest of 
this paper we will think of a method as a path with the following six steps: 
 
1) instructor 
2) motivational principle 
3) approach 
4) task 
5) student response 
6) outcome 
 

For instance, if an instructor tries to motivate students using the principle of social 
interaction, then one path that might produce higher student scores would include the student-
student interaction approach (rather than the student-instructor interaction approach, for 
example), followed by a classroom task of having pairs of students solve problems where the two 
students take turns explaining how to solve a problem to each other.  This task results in the 
student’s response (or attitude) such as valuing the mathematics or feeling more confident, and 
ultimately leads to an outcome such as student achievement as measured by test scores.  This 
progression is shown by the path in Figure 1. 
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Instructor → Social interaction → Student-student interaction→ Explain in pairs → Value math 
→ Test score 

 
Figure 1.  A “subtask” path linking the instructor and the student 

 
In reality, a single motivational principle can be addressed with various approaches, one 

approach can be accomplished with several tasks, some tasks may invoke multiple responses (or 
two tasks may produce the same response), and several responses may result in the same 
outcome.  Thus, a network models a more complete picture of the interactions between various 
subtasks.  In Figure 2 a network is shown which includes several (but not all) subtask paths from 
the instructor to the measure of student achievement – the phrases will be referred to as nodes 
and the arrows called arcs.  The paths begin with the instructor choosing one motivational 
principle from three (social interaction, technology, and immediate feedback).  Moving in the 
direction of the existing arcs, the teacher next chooses an approach in the second column that 
aligns with the motivational principle, followed by one of several possible tasks in the third 
column that support that approach.  Each task correlates with at least one student response in the 
fourth column which ultimately correlates with the desired outcome (student achievement).  As 
already mentioned, the network shown is not complete, since there may be other motivational 
principles, approaches, tasks and responses not shown (as illustrated by the node labeled “In-
class Technology” and the arc emanating from it).  

 

 
Figure 2.  A network model linking the instructor and the student 

 
Networks have become increasingly important in studying fields such as air pollution, energy 

use, genetics, psychology, economics, ecosystems, voting behavior, and traffic flow (Roberts, 
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1976). These directed graphs also have features that may be useful in modeling student learning.  
As is, the network in Figure 2 shows potential links between tasks and responses or between 
responses and outcomes.  However, how can we determine if Task A results in a larger response 
than Task B, or similarly, when does one response lead to a better outcome than a second 
response?  For instance, in Figure 2, if an instructor wants to provide relatively immediate 
feedback to her students, she could incorporate daily quizzes, online homework or a flipped 
classroom format.  The quizzes and online homework result in just one student response each 
(improvement of skills and persistence, respectively) while the flipped classroom leads to both 
lower anxiety and increased content communication between the students.  One might think that 
addressing two responses is better than focusing on just one in improving student achievement, 
but (Dweck, 2008) and (Reason, 2009) claim that persistence is seen as a necessary pre-requisite 
response to the outcome of student success and in (Perkins-Gough, 2013), Angela Lee 
Duckworth is said to argue that persistence – or “grit” – is a better indicator of success than 
talent or intelligence.  Thus, tasks that develop the single response of persistence may be more 
productive than tasks that result in multiple responses. 

 
Arc weights  

By assigning a numerical value (or weight) to each arc, the intent is that possible 
comparisons could be made between various principles, approaches, tasks, or responses by 
combining the numbers in some way to determine an overall effectiveness.  One value that has 
been used in similar problems in the area of path analysis is the Pearson correlation coefficient, r 
(Simpkins et al., 2006). Thus, the weights in our network could be based on the correlation 
determined by known statistical studies.  For instance, if a strong positive association existed 
between the task of “having students explain problems to each other in pairs” and the response 
where “students value mathematics,” then the correlation coefficient, r, would be close to 1.  
Unfortunately, the correlation coefficient has some limitations.  First it indicates only correlation 
– not causation.  Second, r measures only linear correlation.  Third, there is no natural way to 
combine the correlation coefficients for the arcs on a path to determine a cumulative correlation 
for the entire path. 

A second value that could act as the weight of an arc is the effect size, d, discussed earlier 
with Hattie’s work.  This parameter seems more viable because statistical studies can be done to 
find d for each of the arcs in the network, some overall values of d are already known (for 
example, d = 0.43 for the motivational principle of immediate feedback (Hattie, 2009)), and 
formulas can be developed for combining the d-values along a path to determine an overall effect 
size. 

One last note about the arc weights relates to the values assigned to the arcs between the 
teacher and the motivational principles in the first step in the network.  That is, how does one 
measure why an instructor chooses one principle over another?  A possible method would be to 
use an attitudinal survey to rank the instructor’s value of, comfort with, and training in that 
principle.  It is natural to believe that if one instructor values the use of technology more than a 
second instructor, then the achievement for the students of the first instructor will probably be 
greater than that of the second instructor if both use technology in their classes; however, a 
second question worth studying is the following:  If an instructor does not value (or is 
uncomfortable with) a motivational principle, could the student achievement of her students still 
be higher than if she focused on another principle she valued more? 
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Conclusion 
 

In an effort to select more effective instructional methods, Hattie and others have used effect 
sizes to relate educational interventions with student achievement.  This process may be able to 
be refined by dividing a teaching approach into subtasks and creating a network model of the 
interactions between these subtasks.  By studying the effect of each subtask and assigning a 
corresponding value to each arc of the network, we may be able to determine if certain classroom 
tasks should be implemented, or if specific student responses should be targeted to attain more 
growth in student achievement.  This theoretical model provides a framework for designing 
statistical studies that determine the arc weights and the opportunity for using methods from 
graph theory to combine these weights into cumulative values that may help in evaluating 
questions in mathematical instruction at the college level.             
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Prototype images of the definite integral 
 

Steven R. Jones 
Brigham Young University 

Research on student understanding of definite integrals has revealed an apparent preference 
among students for graphical representations of the definite integral. Since graphical 
representations can potentially be both beneficial and problematic, it is important to 
understand the kinds of graphical images students use in thinking about definite integrals. 
This report uses the construct of “prototype” to investigate how a large sample of students 
depicted definite integrals through the graphical representation. A clear “prototype” group 
of images appeared in the data, as well as related “almost prototype” image groups. 

Key words: calculus, definite integral, graphical representation, prototype 

Mathematical representations are an essential part of doing mathematics and have been 
studied extensively by mathematics education researchers (e.g., Cuoco & Curcio, 2001).  In 
particular, much attention in the mathematics education literature has been given to the 
graphical representation (e.g., Romberg, Fennema, & Carpenter, 1993). While some have 
advocated for increased visualization in the teaching and learning of mathematics 
(Cunningham, 1991; Eisenberg & Dreyfus, 1991), others have also warned about an 
overreliance on the graphical representation, which may lead to “uncontrollable imagery” 
(Aspinwall, Shaw, & Presmeg, 1997). Since graphical images can potentially be either 
beneficial or problematic, I believe it is crucial to understand how students make use of such 
representations for mathematical concepts. 

This paper is intended to examine the graphical representation in the context of the 
calculus concept of the definite integral. Recently, several researchers have begun analyzing 
how students understand and conceptualize the definite integral (e.g., Jones, 2013; 
Kouropatov & Dreyfus, 2013; Sealey, 2014). From this research has emerged the conclusion 
that students tend to rely heavily on the graphical “area under a curve” interpretation of the 
definite integral over other potential interpretations (Jones, 2015). While there is certainly 
nothing wrong with graphical interpretation of the definite integral, it is important that 
calculus educators have an understanding of the types of graphical images that prevail in 
student thinking, and that we examine possibly inadvertent predilections instructors may have 
in presenting graphical images of definite integrals. In particular, this paper is meant to 
address the questions: (a) What graphical images do students and instructors tend to use to 
depict definite integrals? (b) Are there certain features that are common to these graphical 
images? Answers to these questions may help us begin to understand how certain prevalent 
images might help or hinder student thinking regarding definite integrals. 

 
Prototype images and social construction 

 
This paper uses the notion of “prototypes” (Rosch, 1973), which is built on the idea that 

certain categories seem to have a hierarchical nature to their membership. For example, in the 
category “bird,” people often think of robins as better examples of “bird” than chickens, 
which are themselves better examples than penguins, even though the people understand that 
all three meet the standard scientific definition for “bird” (Lakoff, 1973). Rosch later clarified 
that there is not necessarily a cognitive object that is the prototype (Rosch, 1978), but that 
“prototype” represents a sort of judgment of “best fit” for possible members of a category. 
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Prototypes are a useful lens for this study, since its purpose is to identify commonly-used 
graphical depictions of the definite integral among many possible depictions. That is, one 
could think of a range of images that could portray the concept of “definite integral,” and I 
am interested in documenting certain types of graphical images that students seem to use as 
“best depicters” or “default depicters” for the concept of the definite integral. Inherent in this 
is the notion that students would not necessarily believe that other images are not included in 
the idea of “definite integral,” but that certain images may represent it more naturally. 

While prototypes have been studied for individuals, it is clear that there is an across-
individual theme to the research as well. That is, prototypes seem to extend to larger groups 
of people beyond individuals. In certain cases, such as prototypes for focal colors (Kay & 
McDaniel, 1978), there is a biological justification (the photo-receptors in the human eye), 
but for others, such as prototypes of birds, there does not seem to be a biological basis. In 
these cases, I claim that prototypes are social constructions (Ernest, 1994) in that within a 
community of people a certain sense of an “ideal” may emerge for a given category of 
objects, which becomes the dominant shared ideal for that particular category. Again, this is 
not to say that the ideal actually exists, but rather that judgments on prototypicality become 
uniform and homogenized among the community. 

The socially constructed aspect of prototype is central to this paper. As such, this 
investigation is not focused on individual students per se, but rather on socially shared 
prototypical graphical representations of the definite integral. What individual students think 
about definite integrals is, of course, important to this study, since individuals of students, 
instructors, and others make up the school mathematics community. Yet my analysis is 
centered more on similarities that range across students regarding graphical representations 
of definite integrals that are perpetuated through the community. 

 
Origins of the data 

This paper is an outgrowth of a series of studies regarding definite integrals (Jones, 2013, 
2015, under review; Jones & Dorko, 2015). It is important to note that none of the studies 
was originally intended to produce this particular report as an outcome, and each was rather 
centered on trying to explore how students understand and make sense of definite integrals, 
or how instructors teach integration. Through the process of conducting these other studies, 
however, a clear and unmistakable trend began to take shape in the data. In this way, this 
paper admittedly represents an a posteriori investigation into how students from this series of 
studies graphically represented the definite integral. 

The set of data initially used for this paper consists of interview sessions with 23 students 
and surveys administered to 205 students at two higher education institutions with a wide 
range of backgrounds and classrooms experiences. However, 67 of the surveyed students did 
not provide a graphical image in their responses (despite many stating “area under the curve” 
in words), and these 67 students were consequently removed from the data set since the study 
was only focused on the types of graphical images produced by the students. This left 23 
interviewed and 138 surveyed students. The data set also included videotaped classroom 
observations from seven different instructors at these same two institutions. Since the 
interviews and surveys were not all done with the same purpose in mind, and therefore do not 
consist of exactly the same set of prompts and questions, I focused only on the parts of the 
overall data set that were generated from open-ended prompts in which students were asked 
to explain what definite integrals meant, how they understood definite integrals, or how they 
would describe definite integrals to others. Placing such constraints on the data is an attempt 
to capture in this paper how students naturally depicted definite integrals through the 
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graphical representation. The following list provides examples of the types of prompts from 
the interviews and surveys that were used in the analysis for the present paper. 

 
x Consider the expression ( )

b

a
f x dx³ . What does it mean? What does it represent? 

x Let’s say you had a friend in your calculus class who had been sick for the last 
week or so and missed everything your class learned about integrals. How would 
you explain integrals to them? What would you say an integral means? 

x Explain in detail what ( )
b

a
f x dx³  means.  If you think of more than one way to 

describe it, please describe it in multiple ways.  Please use words, or draw 
pictures, or write formulas, or anything else you want to explain what it means. 

 
Analysis of the student and instructor data 

The first step in analyzing the data for this study was to simply recognize many 
similarities between graphical representations of the definite integral used among the 161 
students, as I analyzed the data for other purposes. Once these similarities were recognized 
(details are provided in the results section), the images were organized according to 
similarity. That is, images that were very similar to each other were grouped together. This 
organization resulted in a “web” of image clusters, since, for example, one group might differ 
from another in one characteristic, but then also differ from a third group through a separate 
characteristic. Once this organizational web had been created, the frequency of the different 
groups was tabulated, which led to the uncovering of one particular image group as clearly 
the most common. This image group was also positioned in something approximating the 
“center” of the web. Accordingly, I labelled this group the “prototype” group and identified 
what I considered to be seven key characteristics shared by the images in the group. These 
characteristics were then compared to the images in surrounding “similar” groups. Since 
there were so many other groups of images that were so close in nature to the prototype 
group, I decided to create a secondary label, “almost prototype.” I defined an “almost 
prototype” as an image group that contained all but one of the seven characteristics. 

Once the interview and survey data had been analyzed, I turned my attention to the 
videotaped classroom observations I had from seven instructors at two higher education 
institutions. All of these instructors had had their first two hour-long introductory lesson on 
integration observed, with some having had additional observations as well. With the 
“prototype” characteristics and “almost prototype” characteristics defined through the student 
data, I watched the lesson videos to identify any images that the instructors created in the 
classroom that matched either definition. 

 
Results: Student data 

In this section, I first display images from the student data to show examples that were 
included in the “prototype” group (see Figure 1). I then use these example images to highlight 
the seven characteristics I identified regarding the prototype image. Note that, as discussed 
previously, I wish to avoid the false conclusion that there exists one, single “prototype 
image,” in the same way that Rosch (1978) clarified that “prototype” does not mean that an 
actual cognitive object exists that is the prototype. This can be seen in Figure 1, since the 
images are certainly not identical to each other. However, the shared features of the graphical 
images produced by a significant portion of the students indicates that there is clearly some 
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hands to indicate vertical lines at these two points. These results suggest that students may be 
inducted into the usage of these kinds of “best representational fit” images from their calculus 
instructors. While the underlying idea of teachers inducting their students into a shared 
practice is obviously neither new nor revelatory, this portion of the data does reveal, though, 
that it is more than students who share a sense of “prototypicality” of graphical 
representations of definite integrals. It seems to be shared by instructors as well. As such, it 
appears deeply embedded in the calculus education culture. 

 
Discussion 

As discussed in the beginning of this paper, graphical representations play an important 
role in mathematics education, and it is consequently important to understand how graphical 
images are used by students. In this study I have presented a set of seven characteristics that 
define a measure of “prototypicality” for graphical representations of the definite integral that 
seems pervasive in calculus education. Given that this paper, together with past studies 
(Jones, 2015), suggest this type of image may be a “default” image for students (and 
instructors), and since graphical images can potentially override other forms of representation 
(Aspinwall et al., 1997), it is important to understand the ways in which this particular type of 
image may benefit or hinder student thinking in relation to definite integrals. The results of 
this study provide some initial insight into possible benefits and hindrances. 

On the positive side, this type of graphical image is simple, free of visual clutter, and 
contains a function that both increases and decreases and whose slope continuously changes. 
These characteristics may provide individuals with a quick image in which to check the 
plausibility of certain integral properties or to imagine the quantities involved in a real-world-
based integral. Yet, on the negative side, it seems problematic that neither the “inputs” nor 
“outputs” (i.e. x and f(x) ) attain negative values, which may have important ramifications for 
both integral properties and real-world quantities. Also, the fact that the graph has no 
dramatic rises or drops and is always continuous and smooth may oversimplify the nature of 
definite integrals if this kind of image is too dominant in a student’s thinking. 

In stating these possible benefits and hindrances, I wish to be clear that I am not taking 
the position that this default image is bad. However, I am advocating that we, as calculus 
educators, should take a careful look at the types of graphical images we use in connection 
with the definite integral in order to develop a more robust catalogue of images that could 
serve more flexibly in a wider range of situations. Having a single graphical image that is so 
prominently culturally embedded may be problematic for thinking about definite integrals. 
By contrast, if this image were included as just one in a set of easily-accessible graphical 
images, students may possibly develop a more robust understanding of definite integrals. 
Since no alternative images came up with nearly as much frequency in this study, it may be 
that many students might not have such a catalogue of useful images, and may be overlying 
on this one particular type of image. If this is the case, we, as calculus instructors, might wish 
to emphasize a greater variety of graphical images in connection with integrals. 
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Ways of understanding and ways of thinking in using the derivative concept in applied 
(non-kinematic) contexts 

 
Steven R. Jones 

Brigham Young University 

Much research on students’ understanding of derivatives in applied contexts has been done 
in kinematics-based contexts (i.e. position, velocity, acceleration). However, given the wide 
range of applied derivatives in other fields of study that are not based on kinematics, this 
study focuses on how students interpret and reason about applied derivatives in non-
kinematics contexts. Three main ways of understanding or ways of thinking are described in 
this paper, including (1) invoking time, (2) overgeneralization of implicit differentiation, and 
(3) confusion between derivative expression and original formula. 

Key words: calculus, derivative, applications, ways of understanding and thinking 

The calculus concept of the derivative is important both within mathematics and in other 
disciplines like physics, engineering, economics, biology, and statistics. As such, researchers 
have been interested in how students use the derivative in a range of contexts (e.g., Bucy, 
Thompson, & Mountcastle, 2007; Christensen & Thompson, 2012; Zandieh, 2000). However, 
much of the mathematics education research dealing with applications of the derivative has 
been centered on the kinematics applications of position, velocity, and acceleration (e.g., 
Berry & Nyman, 2003; Marrongelle, 2004; Petersen, Enoch, & Noll, 2014; Schwalbach & 
Dosemagen, 2000). While velocity and acceleration are certainly common and useful 
applications of the derivative, there are myriad other uses of this concept in fields of study 
outside of mathematics. Given this deficit in exploring student understanding of the 
derivative in a wider variety of applications, I focus this paper on how students interpreted 
and reasoned about the derivative concept in applied, non-kinematics contexts. Specifically, I 
relate certain ways of understanding and ways of thinking exhibited by students that seemed 
particular to working with applied, non-kinematics derivatives. 

 
Ways of Understanding, Ways of Thinking 

For this paper, I draw on the constructs of ways of understanding and ways of thinking 
(Harel, 2008; Harel & Sowder, 2005) to explore certain aspects of how students might think 
and reason about derivatives in applied, non-kinematics contexts. First, Harel and Sowder 
(2005) use the term “mental act” to denote any internal mental action, such as interpreting, 
inferring, explaining, or searching. One single cognitive product of a mental act (or acts) in 
one given situation is termed a way of understanding. For example, if a student sees “dy/dx” 
and thinks “that’s the slope,” then the student has produced a single way of understanding 
dy/dx through the mental act interpret derivative symbol. If, in observing a student, a 
particular characteristic is found to be repeatedly associated with a given mental act, then 
Harel and Sowder term that a way of thinking. In the example, if the same student indicates in 
many situations or problem contexts that a derivative is a “slope,” then that student is 
considered to have a way of thinking associated with interpreting the derivative. 

The constructs of ways of understanding and ways of thinking are used in this paper to 
explore idiosyncrasies and difficulties evidenced by students in thinking about derivatives in 
applied, non-kinematics contexts. Some of the idiosyncrasies, which are discussed as possible 
ways of thinking, seemed specific to the applied context of the derivatives. Some of the 
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difficulties appeared to be particular ways of understanding produced by the students as they 
performed mental acts related to reasoning about derivatives in applied contexts. 

 
Interview and Survey Data 

The data used for this paper consists of hour-long, task-based interviews with six first-
semester calculus students, and surveys conducted with 38 first-semester calculus students. 
The six interviewed students were recruited at the end of the same first-semester calculus 
class, which was taught in a fairly “traditional” manner by a mathematics department faculty 
member at a large university in the United States. Here I use “traditional” simply to indicate 
that nothing seemed unusual in the presentation of the material in this course. In this paper, 
the interviewed students are given the pseudonyms: Jack, Lily, Noah, Zoe, Oliver, and Toby. 

The 38 surveyed students came from two different calculus classes at the same university 
(25 students in one class, 13 in the other), with these two classes being different from the one 
in which the interviewed students were recruited. Thus, students were recruited from a total 
of three different classes with three different instructors at the same university. The classes 
were all taught in what could be described as a fairly typical manner. 

The six interviewed students were given a range of contexts in which they were asked to 
discuss the derivative concept. The interview consisted of five prompts (see below), though 
for the purposes of this paper I focus only on the three “applied” prompts, which asked the 
students to calculate and discuss derivatives in applied, non-kinematics contexts. Note that all 
“fractional” expressions, like “df/dx,” are formatted this way for the purposes of the paper, 

but were given to the students as “ df
dx

.” 

1. Let f(x) = x4. Calculate df/dx and explain what it means. 
2. Given the formula z = rt + st2 + rs/t, calculate dz/dt and explain how you did it. 
3. Suppose we have a cylinder with radius r and height h [an image of an unlabeled 

cylinder is provided]. The volume formula for a cylinder is V = πr2h. (a) Calculate 
dV/dr. What does this answer tell you? (b) Calculate dV/dh. What does this answer 
tell you? 

4. The force of gravity (F) is dependent on how far an object is from the Earth’s center 
(r), given by the formula F = GmM/r2. (M and m are the mass of the earth and the 
object and G is the “gravitational constant.”) (a) Calculate dF/dr. What does that tell 
you? (b) Calculate dF/dm. What does this answer tell you? 

5. What would these following derivatives tell you? Should they each be positive or 
negative? (a) dS/dp, if p = price of a book, and S = number of books sold; (b) dV/dr, if 
V = volume, and r = radius of a sphere; (c) dM/dt, if M = memory, and t = time. 

 
Many follow-up questions were used during the interviews based on the students’ 

responses, such as “Why does your answer tell you that?,” “What does it mean that the 
answer has a negative sign?,” or “For every increase in __, will I get the same change in __?” 

The interviews were fully completed before the administration of the surveys. This was 
done intentionally to allow a preliminary analysis of the interview data to occur prior to the 
survey creation. In this way, I identified individual students’ potential ways of understanding 
and ways of thinking from the interview data and then tailored the survey questions to see if 
some of those same ways of understanding/thinking might be replicated by a larger sample of 
students. In order to create a brief survey protocol, the surveys only contained two applied, 
non-kinematics questions, which corresponded to the third and fourth interview prompts: 
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1. The volume of a cylinder with radius r and height h is given by V = πr2h. (a) 
Calculate dV/dr and then state the meaning of dV/dr. (b) Suppose that r increases. 
Describe as much as you can what your answer to part (a) tells you about the 
cylinder’s volume. How does your answer tell you that? 

2. The force of gravity between an object and the Earth is given by F = GmM/r2 (r is the 
object’s distance from Earth’s center, M and m are the masses of the earth and the 
object, and G is a constant). (a) Calculate dF/dr and then state the meaning of dF/dr. 
(b) Suppose that r increases. Describe as much as you can what your answer to part 
(a) tells you about the force of gravity. How does your answer tell you that? 

 
Data Analysis 

Since much work has already been done in examining how students understand the 
fundamental ideas contained in the derivative concept (e.g., Habre & Abboud, 2006; Orton, 
1983; Zandieh, 2000), this paper is not meant to repeat the results of these prior studies. 
Consequently, I did not focus the analysis for this study on students’ overall understandings 
and meanings assigned to the generic derivative concept. Rather, I focused on exploring 
aspects of students’ thinking and reasoning that seemed pedagogically important regarding 
working with applied, non-kinematics derivatives. 

The preliminary analysis of the interview data, mentioned in the previous section, 
consisted of using open coding (Strauss & Corbin, 1998) to identify plausible ways of 
understanding/thinking specific to applied, non-kinematics derivatives exhibited by the 
individual students. This led to the creation of three main categories, which are described in 
the results section: (1) invoking time, (2) overgeneralization of implicit differentiation, and 
(3) confusion between the derivative expression and the original formula. Once this 
preliminary analysis had been conducted, the survey protocol was created and administered 
to identify whether these categories would be observed in a larger sample. 

Following the survey administration, a more systematic coding of the data occurred by 
going through the interviews and surveys to code for all instances of the three categories. 
Throughout the process, I remained open to the possibility of new categories emerging. 
While no “top-level” categories were introduced at this stage, a distinct subset of the third 
category took shape that centered on confusion around applied derivative expressions that 
were constant. The data was re-coded a final time looking for instances of this subcategory. 
Unfortunately, this subcategory was explicitly identified after the survey administration, 
meaning no question had been included on the survey to target it in the larger survey sample. 

 
Results 

In this section, the three categories listed in the previous section are discussed through the 
lens of ways of understanding and ways of thinking. That is, there appeared to be certain 
idiosyncratic tendencies from many of the students, which provided evidence of ways of 
thinking related to applied derivatives. In addition, a common difficulty became evident in 
terms of how students interpreted applied derivatives. While perhaps not a way of thinking, it 
appears to be a common way of understanding. 

 
Invoking time 

To preface this subsection, I wish to draw attention to the fact that none of the “applied” 
interview prompts (with the exception of 5c) and none of the survey prompts explicitly 
required time as a factor in the derivative. For example, the derivative dV/dr does not require 
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r nor V to change quickly or slowly in time, nor even at a steady rate with respect to time. It 
is therefore interesting that four of the interviewed students and 14 of the surveyed students 
interjected time explicitly into the contexts as they calculated and explained the applied 
derivatives, as demonstrated by these examples: 

 
Lily: [Explaining dV/dr] Like say [r] is changing at a rate of one meter per second, that’s 

really fast, but if it’s getting bigger constantly, this is going to, the volume itself… if 
it’s one meter per second… it changes smaller at first, but then bigger. 

 
Noah: [Explaining dV/dh] If we’re increasing the height by one every time, assuming that 

it happens in one-second or, like, the next time interval, the next time, then that would 
just be the same relationship. So, it would increase at the same, at a constant rate. 

 
Survey: [Explaining dF/dr] It’s talking about the force in relation to distance. It’s related 

to time and mass. 
 
Survey: [Explaining dV/dr] Volume is changing in relation to r in time. 
 
Thus, for many students the mental act “describe” or “explain” applied derivatives 

produced a way of understanding that explicitly attended to time. I hasten to add that 
involving time is not incorrect, since changes in real-world quantities can essentially only be 
envisioned over time. Furthermore, for many of the students, it seemed that interjecting time 
was a useful way to explain the meaning of these derivatives. For example, in Lily’s excerpt, 
she used the context of a radius increasing at a steady rate in time to help explain that the 
volume would always grow, but by a smaller rate at first and then by a larger rate later. 

While these could be characterized as ways of understanding, since they are stand-alone 
explanations, some interviewed students had a strong tendency to insert time into most of the 
problem contexts, as exemplified by Zoe: 

 
Zoe: [Explaining dV/dr] If it was normal, let’s say it’s normal, it would be dV/dt, which 

would mean we would have meters cubed divided by time, in seconds. [Attempts to 
use analogous reasoning to interpret dV/dr, but unsuccessfully.] 

 
Zoe: [Explaining dS/dp] As the price gets cheaper, the number of books sold would 

decrease. That doesn’t, well, it depends [trails off]. But I suppose over time, if it’s a 
cheaper price for a longer amount of time, it would increase [S]. 

 
Interviewer: [Regarding prompt 5b] Why would the values of [V] be getting bigger? 
Zoe: I don’t know [pause]. Alright, [dV/dr] means change in volume over change in 

radius, so [long pause]. The rate at which—there’s no time involved!… So, as we’re 
changing the radius, imagine the radius is time, because as you’re affecting the radius, 
you can’t do it without time, because you can’t do things outside of time… If we 
negate the middle-man and negate the change in radius, then we’d just have the 
change in volume as the time changes. 

 
Zoe’s repeated inclusion of time shows that these were more than ways of understanding, 

but together demonstrate a strong way of thinking. Whereas some students, like Lily, could 
use time effectively to imagine a non-time-based derivative as needed, Zoe’s way of thinking 
seemed to hinder her reasoning at times, becoming more of a crutch than an aid. She often 
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desired to alter the nature of the derivative from one that is time-less to one that is based on 
time. In the last excerpt, she even cut the radius from the context altogether in order to bring 
the derivative in line with her strong time-dependent thinking. 

 
Overgeneralization of implicit differentiation 

The second category I discuss in this paper is less conceptual in nature and represents 
more of an overgeneralization of a specific class of derivative problems. In typical first-
semester calculus courses students study applications of the derivative including optimization 
problems and related rates. Related rates deal with implicitly defining variables in terms of 
another “latent” variable, requiring implicit differentiation to solve the problems. For 
example, in V = 4/3πr3, the volume and radius could be thought of as functions of temperature 
(say, if the sphere is metallic), leading to V(T) = 4/3π[r(T)]3. Then derivatives such as dV/dT 
or dr/dT could be calculated through implicit differentiation. In this study, four of the 
interviewed students and 27 of the surveyed students assumed some of the variables in the 
formulas to be implicitly defined in terms of either the variable of differentiation or some 
other variable. For example, many students seemed to think that a derivative such as dV/dr 
required all or some variables to become implicitly defined in r—sometimes even the 
variable r itself! Time was also often invoked as a latent variable, making this category 
connected, in part, to the previous category. The following are examples from the students’ 
work (note that not all calculations would represent correctly calculated derivatives): 

 
x 2 dh

drdV dr rS  
x 2 dr

drdV dr rhS   
x 2 dr

dtdV dr rhS   
x 22 dh

dtdV dr rh rS S �   

x 2 2dh dr
dt dtdV dt r rhS S �   

x dm dM
dr drdF dr G M Gm �   

x 2 4[ (2 )] /dm dM
dr drdF dr r G GmM r r �   

x 2 4[ ( ) ( )2 ] /dM dm dr
dt dt dtdF dr r Gm MG GmM r r � �   

 
I once again note that implicitly defining some variables in terms of others is not 

necessarily incorrect, though many of the ways in which students did so in this study could be 
considered incorrect. For example, in V = πr2h, unless an extra condition is placed on the 
relationship between the radius and the height, height is not a function of the radius at all. 

Most of the students who forced some variables to be implicitly defined in terms of others 
did so for more than one problem. For example, most surveyed students who did this did so 
on both problems. As such, I consider this category to represent a way of thinking for many 
students. While more procedural in nature, it is important for educators to be aware of this 
tendency, given that over two-thirds of the students in this study forced implicit 
differentiation onto the non-implicitly-based applied derivatives. 

 
Confusion between the derivative expression and the original formula 

Perhaps the most important category to discuss in this paper is the confusion many of the 
students exhibited at times between the derivative formula and the original formula. Five of 
the interviewed students and 16 of the surveyed students gave evidence of this type of 
confusion, which is nearly half of all the students in this study. When interpreting and making 
sense of the derivative formula they calculated, many students began to explain the derivative 
formula as though it provided a value for the original quantity of interest. The following 
excerpts are examples of this type of confusion. 
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Oliver: [After correctly calculating dF/dm = GM/r2] It’s the change in force as we change 
the mass of the object. And what this is telling us is, because there is no mass [little 
m] in the equation that the force isn’t subject to the mass of the object. 

Interviewer: OK, so would that mean that I could make the object more massive or less 
massive and that has no effect on force? 

Oliver: Right. 
 
Lily: [Explaining whether dS/dp would be positive or negative] I guess that would be 

positive, because there’s no such thing as selling a negative number of books. 
Lily: [Discussing what it would mean if dS/dp = 0] Zero would mean that no books are 

being sold at that specific price. 
 
Zoe: [Explaining dV/dh = πr2] This would imply that there is no change! 
… 
Interviewer: Whether you feel like it makes intuitive sense or not, what do you feel like 

that [points to the derivative formula] should be telling you? 
Zoe: That no matter how h changes, V remains the same. That’s doesn’t make sense! 
 
Survey: [Explaining dV/dr = 2πrh] The rate at which the volume of the cylinder is 

increasing is 2x the rate at which the radius is increasing (π and h are constants). 
Answer tells me that, because the derivative of the function is 2r (π and h being 
constants). Thus I know that the rate at which the volume is increasing is double the 
rate the radius is increasing. 

 
In these examples, it is clear that the students had essentially read the derivative 

expression as directly providing the value of the original quantity whose derivative was being 
calculated. In other words, the students explanations would make sense if the following 
substitutions were made: 

 
x dF/dm = GM/r2  →  F = GM/r2 
x dS/dp  →  S  

x dV/dh = πr2  →  V = πr2 
x dV/dr = 2πrh  →  V = 2πrh 

 
Essentially, these students seemed to have a particular way of understanding equations, in 

these moments, in which an equation takes on the meaning [quantity] = [expression]. That is, 
regardless of what is on the left of the equation, whether F or dF/dr, it seems to mean 
“quantity” instead of other possibilities, like “rate of change.” I wish to point out that many of 
the students were not consistent in doing this, but that they only occasionally made this error. 
As such, I am careful not to call it a way of thinking, which would assume a greater regularity 
than was visible in the data. Rather, for most students, I see it as a way of understanding, 
since it was the result of a particular mental act at one point in time. Even so, this conceptual 
mistake happened so often with both the interviewed and the surveyed students that this way 
of understanding seems to be an issue educators should be aware of. 

 
Confusion with applied derivatives that are constant 

In discussing the confusion between the derivative expression and the original expression, 
I note that the most frequent context for this confusion during the interviews was when the 
applied derivative yielded an expression that was constant. (Note that since I did not provide 
a constant derivative on the survey, I cannot comment about this issue for the surveyed 
students.) In expressions like dV/dh = πr2 and dF/dm = GM/r2, the variable of differentiation 
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is not present on the right side of the equation. These cases would indicate a constant rate of 
change, which many of the students overlooked, believing it to mean a constant quantity 
instead. This led to much frustration in the students as they struggled to identify why the 
variable, such as h or m, would not have an impact on the quantity V or F. Some students, 
like Oliver and Zoe, were never able to reconcile the discrepancy between what the derivative 
expression seemed to be saying and what they intuitively believed to be true. It is important 
to note that these same students, during the pure-mathematics prompts, showed no difficulty 
whatsoever in making sense of a constant derivative in pure mathematics contexts (the 
interviewer asked about this as a follow up to prompt 1). As such, it seems that there was 
something fundamental about the applied nature of the derivatives used in this study that 
prevented the students from accessing resources they certainly had about the meaning of 
constant derivatives in pure mathematics contexts. 

 
Discussion and Implications 

In this paper I have highlighted three pedagogically important ways of understanding or 
ways of thinking exhibited by many of the interviewed and surveyed students in the study. 
Invoking time seemed to be a useful way of understanding for some students, though 
problematic for others when it became an almost uncontrollable way of thinking. This 
suggests that it would be important for calculus instructors to have explicit discussions 
regarding time and how it comes into play with applied, non-kinematics derivatives. Since 
typical applications of the derivative, including velocity and acceleration, are time-based, it 
may be important to explore other, non-time-based derivatives during instruction as well. 

Overgeneralization of implicit differentiation was the most commonly observed of the 
three categories in this study. This suggests that many students, when learning certain types 
of applications, such as related rates, may overgeneralize the implicit differentiation 
procedure into a belief that non-kinematics-based applied derivatives require variables to be 
defined implicitly with respect to either the variable of differentiation or time. While in some 
cases this may be fine, in many cases it may be incorrect, or at the least very burdensome. 
Thus, calculus instructors may need to have meta-discussions on the types of applications 
studied in class, so that students do not mistakenly believe that those procedures must be used 
for all applied problems. 

Perhaps the most important conceptual difficulty students had was in confusing the 
derivative expression with the original expression. This seems similar to what Musgrave and 
Thompson (2014) call “function notation as idiom,” wherein the symbol on the left of the 
equation just represents a “name” for the equation, leading to potentially problematic 
expressions like “f(x) = n(n-1)/2” (p. 283). In other words, students might not pay careful 
attention to what exactly is on the left side of the equation, but may rather simply view it as a 
label, usually for a quantity’s value (as opposed to other possibilities, like a rate of change). 
The right side of the equation is “where the math happens” (Musgrave & Thompson, 2014, p. 
286), and the expression’s value tends to represent the magnitude of the quantity of interest. 

Overall, this study shows that there are additional conceptual and procedural layers to 
working with applied derivatives in non-kinematics contexts. As such, perhaps the extensive 
emphasis placed on kinematics examples in calculus (Berry & Nyman, 2003; Marrongelle, 
2004; Schwalbach & Dosemagen, 2000) may not be adequately developing the resources 
needed to work with and reason about non-kinematics derivatives. Since there is a significant 
range of applied derivatives in other fields of study that are not based on kinematics, or even 
on time, it may be important for calculus educators to bring in these types of examples more 
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regularly during calculus instruction. Doing so may help students develop the conceptual and 
procedural resources to effectively use and reason about these types of derivatives. 
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Reasoning about changes: a frame of reference approach 
 

Surani'Joshua'
Arizona'State'University'

  
In a RUME 18 Theoretical Report my co-authors and I presented our cognitive 

description of a conceptualized frame of reference, consisting of mental commitments to 
units, reference points, and directionality of comparison when thinking about measures. 
Here I present a pilot study on how a focus on conceptualizing a frame of reference 
impacts students’ ability to reason quantitatively about changes. The two-part empirical 
study consisted of clinical interviews with several students followed by teaching 
interviews with three students chosen because of their varying abilities to conceptualize a 
frame of reference. My initial evidence shows that the ability to conceptualize a frame of 
reference greatly benefits students as they attempt to reason with changes. 

 
Keywords: Frames of Reference, Quantitative Reasoning, Quantities Versus Changes, 

Reasoning About Changes 
 

 In a RUME 18 Theoretical Report (Joshua, Musgrave et al. 2015) my co-
authors and I presented our cognitive description of a conceptualized frame of reference, 
consisting of mental commitments to units, reference points, and directionality of 
comparison when thinking about measures.  At the same time, my experiences working 
with reform curricula for pre-calculus (Carlson, Oehrtman et al. 2013) and Calculus 1 
(Thompson, Byerley et al. 2013) led me to be surprised at how much students struggle 
with thinking about and reasoning about changes. In mathematics, rate of change is 
known to be a main idea in calculus (Carlson, Jacobs et al. 2002), and important to 
introduce as early as Algebra 1 with the idea of slope, but in order to reason about rate of 
change, a student must be able to conceptualize and reason about changes themselves.  

 
 I hypothesized that student struggles were due at least in part to the fact that they 
were taught that measures of changes in quantities had reference points and directionality 
yet did not conceptualize measures of quantities themselves with reference points and 
directionality. Therefore, they did not have parallel attributes with which to compare and 
contrast the ideas of quantities versus changes, and to distinguish the two in their minds. 
 

The pilot study I propose to share via a poster presentation is an empirical study 
that I conducted on the connections between a student’s ability to conceptualize a frame 
of reference, and his or her ability to reason about changes. There are several issues 
surrounding changes that I explored. Among them are: 

a) Changes in Quantity vs. Values of Quantity 
- How do students conceptualize a change in a quantity versus the value of a 

quantity? 
- Does a focus on frames of reference affect students’ ability to reason about 

changes in quantity and values of quantity, by drawing explicit attention to 
reference points? 

b) Changes in Changes 
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- How do students think about changes in changes, in tasks such as being asked 
to identify whether a function is increasing/decreasing at an 
increasing/decreasing rate? 

- Does a focus on frames of reference affect students’ ability to reason about 
changes in changes, by drawing explicit attention to a directionality of 
comparison? 

c) Changes in the Context of Velocity & Accelerations 
- How do students conceptualize velocity as it relates to both displacement and 

acceleration? 
- Does a focus on frames of reference affect the common misconception that 

“positive acceleration mean the object is speeding up?” 
- How could inconsistent use of a frame of reference (as described in the 

anecdote) affect student’s thinking and consistency, and/or cause future 
problems, if at all? 

The interview processes were carried out with students who have taken at least 
one algebra class and one physics class.  The first part of the study consisted of clinical 
interviews on eight tasks with seven students to gather data to help me form models of 
each student’s ability to conceptualize a frame of reference. I then picked three students 
that I found demonstrated varying abilities to conceptualize a frame of reference (roughly 
described as high, medium, and low) and conducted teaching interviews on eight new 
tasks with them. All interviews were videotaped and analyzed to form models of how the 
student thought about measures and measure comparisons before, during, and at the end 
of the teaching experiment, as well as hypotheses about how these ways of thinking about 
measures (within a frame of reference or not) affected the student’s ability to reason 
about changes. 

 Through this pilot study, I found strong initial evidence that a student’s ability to 
conceptualize a frame of reference and reason about measures within a frame of reference 
had a large positive effect on their ability to reason about changes. The students’ abilities 
to reason through tasks about changes in the teaching interviews frequently reflected the 
initial positions of ‘high’ ‘medium’ and ‘low’ that I had placed them simply on their 
abilities to reason about a frame of reference in the clinical interviews. More 
significantly, the language that the students used to explain their reasoning about tasks 
involving changes was often about aspects of a frame of reference (units, reference points 
and directionality of comparison) when the students were successful, and almost never 
about aspects of a frame of reference when the students gave up or were unsuccessful. 
Finally, there were many fascinating details in my teaching interviews about how 
students might begin to conceptualize a frame of reference and apply such an ability to 
dealing with changes, that have provided starting places for my next expanded project on 
how a focus on conceptualizing a frame of reference impacts students’ ability to reason 
quantitatively about changes.  I believe that not only will the results of my pilot study be 
of interest to the RUME community, but that discussions with and advice from 
colleagues during and after my poster presentation would be greatly beneficial to me as I 
continue to design the next stage of this project. 
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TEACHING AND LEARNING LINEAR ALGEBRA IN TERMS OF  
COMMUNITY OF PRACTICE 
 

Deniz Kardes Birinci Karen Bogard Givvin James W. Stigler 
UCLA UCLA UCLA 

 
Abstract 

 
Communities of practice (CoP) are defined as groups of people who share a concern, a set of 
problems, or a passion about a topic, and who interact in an ongoing basis to deepen their 
knowledge and expertise. The purpose of this study is to examine the process of teaching and 
learning linear algebra within this theoretical framework. In this research, we used an 
ethnographic case study design to study three linear algebra instructors and their students at a 
large public university. The instructors have different educational and cultural backgrounds. 
Data included observations, a Linear Algebra Questionnaire, and semi-structured interviews. 
We observed significant differences in teaching methods between the instructors.     
 
Keywords: Linear Algebra, Community of Practice, Ethnographic Case Study. 
 
Communities of practice are based on social learning theory and situated learning theory. 
CoP are defined as groups of people who share a concern, a set of problems, or a passion 
about a topic, and who interact in an ongoing basis to deepen their knowledge and expertise 
(Wenger, McDermott and Snyder, 2002). A CoP includes three crucial components: the 
domain, the community and the practice (Wenger-Trayner and Wenger-Trayner, 2015). 
Education is one of the most important applications of the CoP framework. According to 
Wenger (1998), education is a mutual developmental process between communities and 
individuals. In this study, the process of teaching linear algebra will be examined within this 
framework. 
Many studies have documented the challenges of teaching and learning linear algebra, which 
is a main subfield of mathematics (Dorier and Sierpinska, 2001; Hillel and Sierpinska, 1993). 
To this point, the CoP framework has not been applied to studying the teaching and learning 
of linear algebra. 
The research questions addressed by this study are 

1. How do instructors’ cultural and educational experiences affect their teaching? 
2. How do institutional policies and culture affect instructors’ teaching? 
3. How do the students experience the teaching? 
4. How do instructors’ cultural and educational experiences affect the students’ 

experiences and learning? 

Methodology 
This ongoing study uses an ethnographic case study design. The participants consist of three 
linear algebra instructors, who have different educational and cultural backgrounds, and their 
students. Data consists of observations, a questionnaire and semi-structured interviews with 
both teachers and students. Each teacher was observed for ten weeks by the lead researcher. 
Responses to a Linear Algebra Questionnaire were collected from students at the end of the 
course. The questionnaire included questions about students’ experiences in the course, and 
also asked them to solve several linear algebra problems from the Magic Carpet Ride Problem 
Sequence (Wawro et al., 2012). Data were analyzed and interpreted using standard tools of 
content analysis. 
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Preliminary Findings 
Institutional Policies and Culture 
The same general course outline, the same syllabus and the same textbook were used by all 
three instructors of MATH 33A (Linear Algebra and Applications). 
 
Instructors’ backgrounds 
All of the instructors have different cultural and educational backgrounds. 
 
Table 1. Instructors’ Educations 
 College PhD Post-Doc Visiting Scholar 
Lara Netherlands U.K. U.S.A - 
Andres Spain Canada U.S.A. - 

George U.S.A. U.S.A. Canada Germany, France, 
Japan, India 

 
Teaching Methods 
Categories were generated inductively from the classroom observation data. Results from some 
of the categories are presented in Table 2. 
 
Table 2. Classrooms Observations 
 Lara Andres George 
Teaching Methods Teacher-centered approach 

Order of topics Different from the 
course syllabus 

Similar to the course 
syllabus 

Similar to the course 
syllabus 

Resources used Lecture notes, online 
resources, textbook Textbook Textbook 

Interacting in class Medium Level Low Level High Level 
Interacting out of class Piazza - - 

C
la

ss
ro

om
 A

ct
iv

iti
es

 

Reminding - Recall Last time-Today 

Proofs Informal Proof  
on Examples Formal Proof Formal Proof 

Giving Example 

Linear Algebra 
Questions +  
Daily life example 
(rarely) 
 

Linear Algebra 
Questions 
 

Linear Algebra 
Questions 
+ Daily life example 
(often) 
 

Big Picture The relations between 
the concepts - The processes of 

problem solutions 
Using multiple 
representations 

The representations of matrix, algebraic, graphic (often R2, rarely 
R3) 

Assessment Exams, Homeworks Exams, 
Homeworks 

Exams, Homeworks, 
Quizzes 

 
In this ongoing study, it has been observed that there are significant differences in teaching 
methods between the instructors. More results will be added after data analysis is completed.  
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A new perspective to help analyze argumentation in an inquiry oriented classroom 
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North Carolina State University 

 

Derek Williams  
North Carolina State University 

 
Celethia McNeil 

North Carolina State University 
 

Using argumentation to help understand how learning in a classroom occurs is a compelling 
and complex task.  We show how education researchers can use an argumentation knowledge 
construction framework (Weinberger & Fischer, 2006) from research in online instruction to 
make sense of the learning in an inquiry oriented differential equations classroom. The long 
term goal is see if there are relationships among classroom participation and student 
outcomes.  The research reported here is the first step: analyzing the discourse in terms of 
epistemic, social, and argumentative dimensions.  The results show that the epistemic 
dimension can be better understood by identifying how students verbalize understanding 
about a problem, the conceptual space around the problem, the connections between the two 
and the connections to prior research.  In the social dimension, we can identify if students are 
building on their learning partners’ ideas, or using their own ideas, and or both.  

Key words: inquiry, argumentation, knowledge, differential equations discourse 

Discourse, argumentation, and how to codify and analyze them in collegiate mathematics 
is in ongoing study in Research on Undergraduate Mathematics Education.  Much of the 
research has been about discourse in the classroom (for example: Lee et al., 2009; Mesa, 
2010; Stephan & Rasmussen, 2002), teacher questioning, and other pedagogical moves in the 
classroom (Nicol, 1998; Moyer & Milewicz, 2002). This work has moved the field forward 
and provided ways for mathematics instructors to reflect on their teaching and classrooms in 
productive ways.  However, much of this work has been more at the level of identifying the 
kinds of language that students and teachers use. There is still a need for research about the 
complex relationships between how students participate in a classroom and achievement.  
This is important for the growing call for improvement of undergraduate STEM Education 
(see [Termos, 2011] for one call).   

In this report, we offer results about classroom argumentation from a different point of 
view.  The results are part of an ongoing research project where we are hoping to relate 
classroom argumentation to student achievement in an active learning environment.  The call 
for more work on connecting classrooms and student outcomes has come from several areas, 
and some are already reporting on it (Cazden & Beck, 2003; Singh, Granville, & Dika, 2002). 
Additional work has been more generally focused on “active learning” STEM classrooms 
(e.g., Freeman et al., 2014) and shows that there is building evidence that students that are 
more active in classrooms perform better on tests.  For example, a recent meta-analysis about 
active learning in undergraduate STEM classes found that students in active learning 
classrooms earned higher grades (Haak, HilleRisLambers, Pitre, & Freeman, 2011).    

Our larger research question is: How does students’ class participation relate to student 
achievement?  First, we are trying to more carefully define discourse and argumentation, 
particularly by evaluating the actual content of the verbal exchanges among students and 
teachers. The research question that we answer is: How can we use a framework on 
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argumentative knowledge construction to characterize students’ contributions to an inquiry-
oriented (IO) undergraduate mathematics class?   

 

Argumentation Knowledge Construction Framework 
 
We have adopted a framework used to analyze online scripts (when students use 

discussion boards, etc. in an asynchronous setting).  In their 2006 paper, Weinberger and 
Fischer offer the following theory about constructing knowledge by argumentation: 

Argumentative knowledge construction (AKC) is based on the assumption that 
learners engage in discourse activities and that the frequency of these discourse 
activities is related to knowledge acquisition. Learners construct arguments in 
interaction with their learning partners in order to acquire knowledge about 
argumentation as well as knowledge of the content under consideration (Andriessen, 
Baker, & Suthers, 2003). This definition of argumentative knowledge construction 
includes that discourse activities on multiple process dimensions may facilitate 
knowledge acquisition. Analyzing and facilitating argumentative knowledge 
construction on multiple process dimensions may extend and refine our understanding 
of what kind of student discourse contributes to individual knowledge acquisition 
(van Boxtel & Roelofs, 2001). (p. 73, italics added) 
This conception of knowledge acquisition and how it is part of discourse activities 

resonates with the notion that learning is a social activity (Wenger & Lave, 1991) and that 
classrooms are where learning may take place (Yackel & Cobb, 1996). It shows a different 
perspective, in that it discusses knowledge acquisition, something that is very difficult to 
identify and measure. 

The original framework consists of four dimensions: participation, social mode, 
epistemic, and argument.  The participation dimension is two-fold; quantity of participation 
describes whether learners participate at all, while heterogeneity of participation describes 
whether they participate equally.  For the social modes of co-construction, highly related to 
knowledge acquisition, characterizes to what extent learners make reference to contributions 
of other learners in class. The epistemic dimension goes beyond the participation dimension 
which confirms quantity; it examines the content of learners’ contributions by considering 
how learners work on the task at hand.  Lastly, the argument dimension holds the notion that 
learners encounter difficult problems, and must balance arguments and counterarguments to 
ultimately find solutions to problems.  For the purpose of this analysis, we excluded the first 
dimension as we felt that we can include that as we inspect the coding of the other three; 
participation will be evident and the number of talk turns was the most important aspect of 
our work.    

A few additional modifications arose during analysis (See Table 1). The term ‘learning 
partner’ is used to describe anyone in the classroom participating in the development of the 
mathematics, including the instructor. 
 
Table 1 
 
AKC Framework, adapted from Weinberger and Fischer (2006) 
Dimension Categories of Discourse by 

Learning Partners 
Brief Description  

Social Mode 
       

Externalization (EXT) 
 

Articulating thoughts to the group 
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Elicitation (ELI) 
 
 
Quick consensus building (QCB) 
 
 
Integration-oriented consensus 
building (IOCB) 
 
Conflict-oriented consensus 
building (COCB) 

Questioning the learning partner or provoking a reaction from the learning 
partner 
 
Accepting the contributions of the learning partners in 
order to move on with the task 
 
Taking over, integrating and applying the perspectives of the learning 
partner 
 
Disagreeing, modifying or replacing the perspectives of the learning 
partners 

Argumentation Argument (ARG) 
 
 
Counterargument (COU) 
 
 
Integration (reply [RPY])  
 
Non-argumentative moves (NAR) 

Statement put forward in favor of a specific proposition 
 
An argument opposing a preceding argument, favoring an opposite 
proposition 
 
Statement that aims to balance and to advance a preceding argument and 
counterargument 
 
Questions, coordinating moves, and meta-statements on 
Argumentation 

Epistemic 
 

Construction of problem space 
(CPS) 
 
Construction of conceptual space 
(CCS) 
 
Construction of adequate relations 
between conceptual and problem 
space (CAR+) 
  
Construction of inadequate relations 
between conceptual and problem 
space (CAR-) 
 
Construction of  adequate relations 
between prior knowledge and 
problem space (CRP+) 
 
Construction of inadequate relations 
between prior knowledge and 
problem space (CRP-) 
 
Non-epistemic activities (NEA) 

Learners relate case information to case information within the problem 
space with the aim to foster understanding of the problem  
 
Learners relate theoretical concepts with each other and explain theoretical 
principles to foster understanding of a theory 
 
Applying the relevant theoretical concepts adequately to solve a problem. 
Learners relate theoretical concepts to case information. 
 
 
Applying theoretical concepts inadequately to the case problem. Learners 
may select the wrong concepts or may not apply the concepts according to 
the principles of the given theory 
 
Applying concepts adequately that stem from prior knowledge rather than 
the new theoretical concepts that are to be learned 
 
 
Applying concepts inadequately that stem from prior knowledge rather than 
the new theoretical concepts that are to be learned 
 
 
Digressing off-topic 

 
Methods 

  
Setting and Participants 

This study took place during an IO differential equations course for teachers working to 
earn a master’s degree in Mathematics Education.  The course was held in the summer at a 
large southeastern university. Twenty-one students participated in the course, which was 
taught by a professor experienced in teaching inquiry mathematics courses. The student 
population was comprised of students seeking a master’s degree in Mathematics and 
Mathematics Education and doctoral students in Mathematics Education. Some of the 
students had previously taken undergraduate differential equations; however, such 
coursework was not a prerequisite for the course and the majority of the students indicated 
that they were starting with minimal or no knowledge of differential equations.  

The course met three times a week for two and a half hours in a classroom designed for 
group work. The classroom had tables where the students sat in assigned groups which were 
changed at least once a week.  The class was taught using the tenets of (IO) instruction 
(Rasmussen & Kwon, 2007).  This meant that students worked on research-based tasks to 
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reinvent the mathematics of the course.  The students inquired into the mathematics, working 
in cycles of small group and whole group discussion spaces.  The mathematics involved 
using differential equations to model real world situations, and understanding the analytical, 
qualitative, and numerical methods to solve.  The students took a pretest and posttest to 
assess conceptual understanding of the material.  Additionally, there were weekly conceptual 
and procedural homework assignments and two exams.  
 
Data Collection 

Each class session was video recorded by a researcher with two cameras, one in the back 
and another on the side near the front of the room. For this report, we chose one hour of 
whole-class discussion from four class sessions that occurred before the midterm exam, three 
in the early part of the course and one the day before the midterm.  In order to capture a 
representative glimpse of the contributions made by the learning partners, we randomly 
selected one of the 15-minute time moments in the class to use as our beginning time. From 
that time period, the next full hour of whole-class discussion was transcribed for coding. The 
transcriptions were divided into talk turns; we define talk turns as a single utterance made by 
any of the learning partners.  The instructor’s talk was not transcribed verbatim, but all other 
talk was.  
 
Data Analysis 

Two members of the research team coded each talk turn using the transcripts of whole-
class discussions by using the descriptors from the framework. With the exception of the 
professor under the epistemic dimension (as the instructor was assumed to not be 
constructing new mathematical conceptions), each learning partner’s talk turns were coded 
for epistemic, social, and argument dimensions according to the framework identified above.  
If the two researchers’ codes were not in agreement, the third researcher gave the talk turn its 
final code, breaking the tie or providing a new code. In order to establish reasonable 
agreement between the two coders a trial coding was conducted for one of the class sessions. 
Originally, the two coders had poor agreement (see Table 2 for July 5, Argumentative). As a 
result, the three researchers spent 10 hours discussing coding discrepancies, clarifying 
language that was not used the same in another research field and modifying when it did not 
seem to be appropriate for whole class in-person discussions.   

 
Table 2 
 
Inter-rater reliability by class date and dimension 
Day Epistemic Social Argumentative 
July 2 80.58% 77.70% 68.35% 
July 3 76.22% 78.32% 60.14% 
July 5 73.65% 67.70% 48.60% 
July 16 81.63% 89.12% 80.95% 

 
As shown above, the interrater reliability increased dramatically after the hours of discussion.  
The days were coded in the following order: July 5, July 3, July 2, July 16.  After the coding, 
all the ties were broken and analysis began.   

 
Results 

  
We present the results of our coding, relationships among the codes that can be identified 

statistically, and a discussion of our experience with the framework and its utility for 
codifying argumentation in a classroom setting. Table 3 depicts the compilation of all codes 
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given to all talk turns from students only. The 8 in the top section of the table indicates that 8 
student talk turns were coded with the chain, CPS-ELI-NAR, indicating that students were 
asking authentic questions about the problem space 8 times during the 4 hours of whole-class 
discussion. Notable values include the 26 talk turns coded with CAR+ and IOC in the 
epistemic and social dimensions. These codes indicate that students made adequate 
connections between the problem and concept spaces while building from previous students’ 
thoughts. These talk turns made up roughly 46% of the turns coded CAR+. Another notable 
value is the 102 talk turns coded as blank in all three dimensions. These talk turns make up 
nearly a quarter of student contributions, and illustrate the times in which students displayed 
Quick Consensus Building. Comments such as, “Right,” or, “I agree,” were exemplars of 
quick consensus building. 
 
Table 3 
Number of each code sequence for student contributions 

 
CPS CCS CAR- CAR+ CRP- CRP+ NEA (blank) Grand Total 

ELI 
         

ARG 2 1 1 
    

1 5 

COU 1 1 
  

1 2 
  

5 

NAR 8 5 1 1 1 
  

18 34 

RPY 2 4 
 

1 
   

2 9 

(blank) 
       

1 1 

ELI Total 13 11 2 2 2 2 
 

22 54 

IOC 
         

ARG 4 3 
 

3 
 

2 
  

12 

COU 5 
  

3 1 
   

9 

NAR 
       

1 1 

RPY 14 7 1 20 
 

2 
 

3 47 

IOC Total 23 10 1 26 1 4 
 

4 69 

COC 
         

ARG 
       

1 1 

COU 7 6 1 4 
   

1 19 

NAR 
       

1 1 

RPY 5 2 1 
  

1 
 

1 10 

COC Total 12 8 2 4 
 

1 
 

4 31 

(blank) 
         

ARG 34 10 2 9 
 

1 
 

2 58 

COU 11 6 2 4 
 

1 
 

1 25 

NAR 6 
   

1 
 

1 9 17 

RPY 33 13 2 12 
 

4 
 

12 76 

(blank) 7 
     

6 78 91 

(blank) Total 91 29 6 25 1 6 7 102 267 

Grand Total 139 58 11 57 4 13 7 132 421 
 

To further display student contributions to discourse, we provide Figures 1 and 2. These 
figures display the number of talk turns by each student (pseudonyms) that were assigned 
each code from the Epistemic and Social dimensions (respectively). In Figure 1, it can be 
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seen that many of the contributions by students were focused on constructing the problem 
space. However, for students with more than 20 talk turns, a bulk of their contributions made 
adequate connections from concepts to problems. Excitedly, inaccurate connections from 
prior knowledge or between concept and problem spaces were student contributions that 
occurred least often. 

 

 
Figure 1. Epistemic codes by students. 

 

 
Figure 2. Social codes by students. 

 
Together, Figure 2 and Table 3 respectively illustrate the frequency and source of the 

blanks from the social dimension. From a social standpoint, we noticed that the more vocal 
students had an abundance of IOC and COC. In contrast, the less vocal students had most of 
the blanks for these categories with the social dimension. All students but one (Racquel) had 
blanks for their talk turn codes, which may indicate quick consensus building, a code we 
decided to not consider in analysis.  Students were either constructing the problem space, 
quick consensus building, or externalizing a thought – without providing much to the 
argument. The framework for argumentative knowledge construction used here was 
originally used on scripts from asynchronous online discussions.  However, we found the 
framework very useful as the dimensions of epistemic, argument, and social were highly 
evident in active and more traditional classrooms (Weinberger & Fischer, 2006). Following 
are some issues we found. 
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First, the coding is exceptionally time consuming. After transcription, for the 6 hours we 
coded, the two coders spent approximately 42 hours coding and another 10 hours breaking 
the ties. We also spent 12 hours meeting to refine, modify, and agree on descriptions of the 
codes.  We believe the results are accurate and useful, but considering just the coding, not the 
preparation work, this means that each hour of class took about 16 hours to complete the 
coding only, a significant time commitment.   

Secondly, we had to make modifications to the knowledge framework in some key (good) 
ways. We were able to watch the class videos and see nuances that were not present during 
the original framework development.  There were many places where graphs and tables were 
being discussed, and it was sometimes hard to interpret the words, but we felt that the videos 
were an important resource for this.  We also had samples of student work to help analyze 
their knowledge construction on the research-based tasks implemented in the course. 

Third, we found that thinking in terms of problem space, conceptual space, and prior 
knowledge was a very helpful way to determine how students were developing their ideas in 
terms of the epistemic dimension.  We have seen other work in this area (Sfard, 1998), but 
this seems particularly effective with understanding the actual construction of knowledge. 
Connected to this, thinking about the way students either express their own thinking and/or 
build on others in a social dimension helped us see how this actually occurs in an (IO) 
environment.  The argument dimension was the least useful at this point; it appeared to be the 
most difficult to code and find agreement. Ultimately, we saw few connections.  Future work 
might involve only considering the epistemic and social dimension. 

 
Conclusion 

 
In summary, this framework is a new valuable tool that can help us understand knowledge 
acquisition of students in all mathematics classrooms, not just at the undergraduate level.  
The educational community outside of mathematics education can provide new and effective 
ways to do research.  The framework allows us to identify when students are building on each 
other’s knowledge and bring in their own ideas.  It also helps show when students are 
thinking about a given problem, the conceptual space behind it, and previous knowledge used 
to solve the problem.  Although time consuming, we propose this as an effective tool to 
analyze knowledge development in an active learning classroom.  The next step is to take this 
information and see how it connects to student outcomes in terms of homework, projects, 
tests, etc.  By thinking about how our students participate in a more focused way, we can 
provide instructors with ways to think about implementing and improving inquiry and other 
active learning situations.  
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How should you participate? Let me count the ways 
 

Rachel Elizabeth Keller Karen Zwanch  Steven DeShong 
                            Virginia Tech          Virginia Tech           Virginia Tech 
  
Retention of students in STEM majors is an issue of national stability because government 
projections indicate our nation to need one million additional STEM majors by 2022 
(PCAST, 2012); thusly, the current trends in attrition are alarming.  Students leave STEM for 
various reasons, but poor experiences in Calculus I seem to be a significant contributing 
factor for many switchers, especially female students.  Using data situated within a larger 
study (Characteristics of Successful Programs in College Calculus), the present report looks 
specifically at student participation and its influence on Calculus I success.  Results indicate 
that while participation is significantly correlated with success, this effect is not uniformly 
distributed across types of participation or gender groups.  Interestingly, overall success 
rates were equal, but gender differences were noted in frequency of participatory behaviors 
and distribution of grades; specifically, males (who reported more A grades) preferred in-
class participation and females preferred out-of-class participatory activities.  

Key words: Calculus, Student Success, Participation, Gender 

Calculus serves as an introductory course for college freshmen everywhere, but especially 
for those intending to enter into science, technology, engineering, and mathematics (STEM) 
majors; therefore, of critical importance is student success in Calculus I – without which 
continuation in a STEM major is impossible. The retention of students in STEM majors has 
been identified by the President’s Council of Advisors on Science and Technology (PCAST) 
as a key contributor to the ability of the United States to remain a leader in the STEM fields 
(2012); PCAST specifically advises that over the next decade, in order to retain our 
dominance, the nation will require an additional one million STEM majors beyond those 
currently projected. With calculus acting as a gatekeeper to a student’s ability to successfully 
complete an undergraduate STEM degree, post-secondary educators and students alike must 
develop a better understanding of what factors may contribute to success in calculus. This 
work aims to serve that goal by exploring the relationship between student participation and 
success in Calculus I. In this report, we investigate the following research questions: (1) Does 
there exist a positive correlation between student engagement in participatory behaviors and 
student success in Calculus I? (2) If so, can particular behaviors be identified as critically 
influential and is this association consistent for both genders? 
 

Theoretical Framework and Literature 

Research (e.g., Rasmussen & Ellis, 2013; Seymour & Hewitt, 1997) indicates that many 
students are in fact leaving STEM majors as a result of poor experiences in calculus, and that 
instructional factors within the calculus classroom contribute to this departure.  The 
historically predominant reliance upon lecture as the conduit of calculus material appears to 
be a contributing factor in students’ discontent with their experiences in STEM majors.  
Instructors of calculus need to carefully reconsider their pedagogical decisions if they wish to 
combat the disengagement that leads to attrition; however, it is important to note that each 
student’s achievement is ultimately the result of her own actions within the course; i.e. 
participation, and thus students must share in the responsibility for their success.  While we 
concur with previous research (e.g., Rasmussen & Ellis, 2013; Johnson, Ellis, & Rasmussen,  
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in press) that indicates student retention and success is influenced by instructor actions, we 
choose to neglect that variable for the purposes of this study and opt instead to focus our 
analysis on students’ investments in their learning 

We believe that a student’s interactions – with the material, with the instructor, with her 
classmates – are of critical importance in determining success and therefore we frame our 
research within the theory of social constructivism. Social constructivism emphasizes “the 
claim that higher mental functions in the individual have their origins in social life” (Wertsch, 
1990). Thus, in order for students to learn and achieve academically, they must engage 
socially with others. This engagement can occur in many forms. Engagement with the 
instructor, for example, occurs when the student contributes to class discussion, corresponds 
with the instructor regarding course content, or completes assignments designed by the 
instructor. 

The theory of social constructivism is well represented in the educational literature.  
An example of such research in support of social constructivism is Tinto’s (1997) work, 
which indicates that “the more students invest in learning activities, that is, the higher their 
level of effort, the more students learn” (p. 600). The implication is that in order to be 
academically successful, students must first engage in the learning process. This finding is 
neither unique nor modern; put bluntly, participation increases student learning (e.g., 
Johnson, Johnson, & Smith, 1991; 1998; Lyman, 1981).  

Student participation manifests itself in a variety of ways, both inside the classroom and 
outside of it, but there has been research (Lucas 2009, Rasmussen & Ellis, 2013) indicating 
that homework completion and participation in classroom discussion are of critical 
importance.  In addition to considering different types of participation, it is important to 
consider that participation patterns do not indiscriminately influence student success across 
demographic groupings.  Tinto (1997) determined that students from various minority groups 
necessarily seek inclusion in the learning community as their main goal prior to seeking 
academic success. This is consistent with cognitive evaluation theory, which indicates people 
must feel competent, related, and autonomous prior to engaging academically (Deci & Ryan, 
2000). Tinto’s contribution to this theory is that different individuals require different levels 
of satisfaction of competence, relatedness, and autonomy.  Tinto does not further elaborate on 
which minority groups are more likely to seek out relatedness prior to competence, or any 
other combination of factors, but his findings are important in understanding that not all 
students will participate in, gain interest from, or learn from the same activities in an equal 
manner.  

One particular minority group of interest in the STEM community is women. Karp and 
Yoels (1975) identified differences in the participation of male and female students in the 
college classroom, and moreover, that these differences are influenced by the instructor’s 
gender. Specifically, female students participate more in classes led by female instructors 
(42.4% of interactions compared to 24.6% in male led classes). Conversely, male students are 
responsible for 75.4% of interactions in classes led by males as compared to 57.8% of 
interactions under female instructors. These differences must be seen as a function of both the 
student’s choice to participate and the instructor’s choice to prompt participation. Karp and 
Yoels’ (1975) findings are mirrored in more recent literature. Sadker and Sadker (1995; 
Sadker, Sadker, & Zittleman, 2009) have similarly determined that both the quantity and 
quality of teacher-student interactions with male and female students are different. Teachers 
tend to ask more questions of male students, allow more wait time for male students, and ask 
more follow-up questions. Female students, on the other hand, are asked lower level 
questions and provided less constructive feedback and encouragement than male students in 
the mathematics classroom (Sadker & Sadker, 1995). The persistence of these gender 
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differences in the participation and inclusion of female students over time in the mathematics 
classroom are troubling – if the circumstances are such that female students are not provided 
an equal opportunity to participate in classroom discussion, then their learning is being 
affected before they can even make the choice whether or not to participate.  

Perhaps not coincidentally, gender differences are also being noted in STEM retention in 
addition to participation. PCAST (2012) specifically notes that the retention and success of 
women in STEM majors is critical, as they represent a majority of college students but a 
minority of STEM graduates. Despite this need for female STEM graduates, significantly 
more women switch out of STEM majors (20%) than do males (11%) (Rasmussen & Ellis, 
2013).  
 
Data Sources and Methods of Analysis 

The present study is situated within the larger research project entitled Characteristics of 
Successful Programs in College Calculus (CSPCC) that was designed to gain a nationwide 
overview of the college calculus programs as well as to identify more successful programs 
based on a combination of factors including: grades, affective variables (e.g., interest, 
enjoyment, and confidence), and intention to continue on to Calculus II.  The CSPCC 
project1 used a stratified random sample of colleges and universities in the U.S. based on the 
highest degree granted at each university (Associate’s, Bachelor’s, Master’s, or Ph.D.).  The 
first phase was comprised of a total of six surveys—three for the students (one at the 
beginning of Calculus I, one at the end of Calculus I, and one a year later to the students that 
gave their email addresses), two for the instructors (one at the beginning of Calculus I and 
one at the end of Calculus I), and one survey given to the Calculus course coordinator. For 
the purposes of this study, we limited our dataset to those student respondents who had 
completed the end of semester survey. 

In order to answer our research questions, it was necessary to operationally define both 
success and participation.  Previous research had suggested the use of the rates of persisters 
and switchers as a proxy for success; however, we feel that measure is more appropriate as an 
indication of the success of a university’s academic courses and STEM programs overall and 
not the best measure of individual student success.  We chose instead to define success in 
terms of reported/expected2 course grade (A-F).  As educators, we acknowledge that success 
cannot and should not be measured only in terms of final grades; however, we were both 
limited by our use of a pre-existing data set and also constrained by our desire not to 
duplicate research already performed in this area.  We recorded the reported/expected letter 
grade for each student and also coded each student as ‘successful’ (A, B, C) or ‘not 
successful’ (D, F).  

For consideration in the initial regression analysis, we selected eight items from the 
Student End survey that we felt captured what we considered to be instances of participatory 
behavior: talking in class, preparing for class, reinforcing content, seeking help. These 
questions (see Figure 1) reflect activities for which the ability to participate was provided, 
placing the choice to participate in the hands of the student. From the perspective of social 
constructivism, participation is the vehicle of student learning; thus, these items were selected 
to demonstrate the student’s perception of her engagement.  

                                                 
1 For further details, see the MAA Notes volume Insights and Recommendations from the MAA 
National Study of College Calculus (Bressoud, Mesa, & Rasmussen, 2015) or visit the website at 
www.maa.org/cspcc). 
2 On the post-survey students were asked: What grade do you expect (or did you receive) in this course? We are 
unable to determine if this question was asked before or after students received their final grades.  
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From the eight questions, we collapsed this into seven independent variables: 
ContributedtoDiscussion, AskedQuestions, ReadText, OfficeHours, UsedTutor (composite 
variable computed by summing frequency of tutor and online tutoring), CompletedHW, and 
MetToStudy.  Depending on the analysis being conducted, the dependent variable was 
measured either by Grade (recoded from 0.0 to 4.0 to reflect the usual grading scale) or by 
Success (coded 1 for A, B, C grades and 0 for D, F grades). A combination of ordinary least-
squares and binary logistic regression models were run in order to address the first research 
question; i.e. to determine the ability of our selected participatory behaviors to predict 
academic success.  Subsequent analyses involved comparing the behavior of specific groups 
(successful versus unsuccessful, males versus females) on those behaviors deemed 
statistically significant.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Items Selected from the CSPCC Student-End Survey 
 

Results and Discussion 
Primary Analysis 

The logistic regression model based upon the students’ self-reported levels of 
participation, despite having a pseudo R-square value (Nagelkerke = .146) lower than what 
would have been preferred, had predictive accuracy of 95.59% in projecting success. Using a 
forward stepwise Wald procedure, the resulting model identified four of the seven initial 
independent variables as being significant: ContributedtoDiscussion (β = .482; p < .001), 
CompletedHW (β = .448; p < .001), UsedTutor (β = -.290; p < .001), and ReadText (β = -
.168; p = .002).  Interpreting this in terms of odds ratios, all other factors being equal, for a 
one-unit increase in frequency of homework completion (or contributions to discussion), a 
student would be 1.565 (or 1.619 respectively) times more likely to be categorized as 
successful by the model.   

Interesting to note is that not all of these variables were positively associated with success 
as one might have assumed.  Both UsedTutor and ReadText were negatively correlated with 
success; i.e. increasing the frequency of these behaviors decreases a student’s odds of being 
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labeled successful.  This must be interpreted with caution because it would be tempting to 
think that reading the text or working with a tutor decreases one’s odds of being successful; 
however, this is almost certainly not the case.  All the model is telling us is that of those 
students who were unsuccessful, they were reading the text and using tutors at higher 
frequencies than those who were successful.  Further analysis would be needed to identify the 
other factors at play that contributed to these variables having a negative correlation with 
success.  Conceivably, the students who are successful do not read the text because they feel 
it unnecessary as they already have a firm grasp of the material.  With regard to the use of a 
tutor, perhaps it is the timing of the help-seeking behavior that is confounding the situation.  
It is possible that failing students are waiting until they have already established themselves 
as unsuccessful before seeking tutoring help. This is perhaps less a reflection of the tutor’s 
effectiveness and more a proxy for traits of unsuccessful students. 

According to social constructivism, learning occurs through engagement in social 
activity; therefore, since all of the previously identified participatory behaviors are social 
activities, we would expect that they all positively influence success. That being said, because 
mathematics is constructed individually and understood uniquely, all participants in the social 
activity affect the quality of the mathematics being constructed. In this report, the two most 
significant and positively correlated variables contributing to student success are 
representations of high quality interactions with the course instructor. As Tinto (1997) 
indicated, high quality engagement is paramount to student learning. Therefore, we 
hypothesize that ContributedtoDiscussion and CompletedHW are both the most significant 
and positively correlated with success because they represent high quality, structured social 
engagement with the instructor who designs and assesses their learning. Class discussions are 
likely the result of the instructor’s lesson plans, and homework directs the students toward the 
instructor’s learning goals. As students participate in planned discussions led by the instructor 
and complete homework assignments designed to help the students review or learn new 
material, the student is actively engaging with the instructor and constructing mathematics in 
a manner which is consistent with that which will be assessed.  

Previously in this article, we discussed two variables which were not found to positively 
correlate with success in Calculus I: ReadText and UsedTutor.  Through the lens of social 
constructivism, we offer an additional theory as to why these are negatively associated with 
success in the current model.  While each of these variables does represent a social 
interaction on the student’s part, it is one in which the instructor is absent.  Therefore, we 
hypothesize that the quality of these interactions is not likely to be as high as those student-
teacher interactions previously described. When a student reads a textbook or engages with a 
tutor, they are interacting with an expert; however, the mathematics being constructed is not 
necessarily in alignment with that intended by the instructor.  

The three variables remaining – AskedQuestions, OfficeHours, and MetToStudy – were 
either insignificantly correlated (logistic model) or negatively correlated (OLS model) with 
success in Calculus I.  This is interesting because these certainly represent social interactions, 
and moreover, two of the three involve both the students and the instructor, so by our 
previous explanation it seems as though they should correlate to student success.  The 
distinction is that asking questions and attending office hours are unplanned, unstructured 
interactions and therefore are likely lack the careful consideration and depth of a high quality 
social interaction. We hypothesize that the quality of these interactions is not as high as the 
pre-planned classroom discussions and carefully constructed homework assignments.  
Furthermore, the survey questions as written do not capture the level of sophistication and 
purpose of the questions being asked.  If the nature of the questions is that of high-level 
cognitive demand (i.e. beyond-the-scope) and helps to advance the mathematical agenda, 
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then we argue that this should be positively correlated with successful students; however, if 
the questions being asked are low-level clarification questions (e.g. What does that symbol 
mean?  Why are we using that formula? etc.) or worse yet, logistical questions (e.g. Will this 
be on the exam?  Do we have to memorize that?  Does my calculator have a button for that?), 
then it seems plausible that these are being asked by students more likely to be unsuccessful 
and therefore would rightly be negatively correlated.  

In the case of students meeting to study with other students, the quality of the social 
engagement is even more questionable, as the group of students working together may or 
may not have mastered the mathematics which they intend to learn. These variables certainly 
represent social activities. The learning which takes place during these participatory 
activities, however, is not necessarily high quality, as it was not designed by the same person 
who will assess the students’ learning. 
 
Secondary Analysis 

In addition to determining a correlation between participation and success in Calculus I, 
we also sought to determine whether the distributions across categories of these positively 
correlated participatory behaviors were similar when comparing successful versus 
unsuccessful students and when comparing males to females (see Figure 2). Unsurprisingly, 
results from independent-samples Kruskal-Wallis tests reveal that the distribution across 
categories of CompletedHW was not the same for successful and unsuccessful students 
(H(1)= 79.278, p < .001) and the distribution across categories of ContributedtoDiscussion 
was not the same for successful and unsuccessful students (H(1) = 30.941, p < .001) either.  
Successful students, on average, contribute to discussion more frequently (2.65 as compared 
to 2.16) and complete homework more frequently (4.70 as compared to 3.73) than 
unsuccessful students.  

Looking at gender differences, results from independent-samples Kruskal-Wallis tests 
reveal that the distribution across categories of CompletedHW was not the same for males and 
females (H(1) = 58.6, p < .001) and the distribution across categories of 
ContributedtoDiscussion was not the same for males and females (H(1) = 42.94, p < .001) 
either.  Male students, on average, contribute to discussion more frequently (2.74 as 
compared to 2.48) and complete homework less frequently (4.51 as compared to 4.90) than 
do female students.   
 

 
 
 
 
 
 
  
 
 
 
 
 
 

 
 

Figure 2.  Patterns of Participatory Behavior by Gender and Success Category 
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These results are consistent with previous research. Researchers (Karp & Yoels, 1975; Sadker 
& Sadker, 1995) have previously determined that male students are more likely to be called 
on during class and to have higher quality in-class interactions with their instructors. This 
finding also coincides with the determination that different groups of students benefit from 
and engage in social activities in varying capacities as they are ready to do so (Tinto, 1997); it 
moreover extends Tinto’s results in specifying the participation of males and females to be 
significantly different.   
 
Implications and Future Directions 

The results of this report demonstrate that successful students’ participatory behavior is 
both qualitatively and quantitatively different than unsuccessful students.  Coupled with the 
fact that the same can be said about the differences between male and female students, does 
that not raise the logical follow-up question: Do males and females succeed at different rates? 
An independent-samples t-test establishes no significant difference (t(3094.252) = 1.583, p = 
.114) between the percentage of successful students by gender; however, an independent- 
samples Kruskal-Wallis test does provide evidence (H(1) = 5.773, p = .016) that distribution 
across reported/expected grades is not the same for males and females.  In other words, males 
and females are equally likely to have passed or failed the course, but for those who passed, 
the males are disproportionately likely to have reported earning (or expected to earn), an A (z 
= 2.46, p = .014). 

It is important to note that while students are likely to accurately predict success or failure 
in a course, it is unlikely that they are equally adept at predicting final grades.  Since the data 
in this study was based on reported grades that may or may not have actually matched the 
final grade received, the interpretation of the distributional analysis and subsequent 
conclusions must be interpreted with caution.  Future research warrants attempting to 
replicate these findings in the cases for which final grades can be verified.   

When choosing survey items for consideration in this research, the decision was based on 
participatory behaviors that we felt the student had the ability to self-select; however, based 
on the research of Sadker and Sadker (1995; Sadker, Sadker, & Zittleman, 2009), it seems 
that female students are not given equal opportunity to ask questions or contribute to class 
discussions and thus these participatory behaviors cease to be ones of personal choice.  We 
conjecture that each student requires a certain minimal level of attention for social 
constructivism and since females don’t receive attention, approval, or reinforcement during 
class time at levels comparable to their male counterparts, they seek to make up for it on their 
own time.  This would explain the fact that female students complete homework and enlist 
the use of a tutor more frequently than male students.  While this out-of-class participation 
leads to/contributes to success rates for females equivalent to those of males, it does not 
appear to translate into comparable levels of high performance (i.e. A grades), suggesting that 
in-class participation is somehow superior to out-of-class participation in terms of measuring 
success by academic achievement.  This hypothesis, along with the implications for STEM 
attrition, warrants further research. Although both an A-student and a C-student might be 
equally likely to continue from Calculus I to Calculus II, can the same be said about the 
ability to complete a STEM degree or even persist in the major beyond Calculus II?  It is our 
opinion that students who earn borderline grades in Calculus I are disproportionately likely to 
ultimately depart from their current major and possibly the STEM field altogether.  This 
argument might explain why females represent approximately 57.5% of all college students, 
but only 29.7% of STEM graduates – a dangerous imbalance that carries societal and 
economic implications.   
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Preliminary genetic decomposition for implicit differentiation and its 
connections to multivariable calculus

Sarah Kerrigan
Virginia Tech University

Derivatives are an important concept in undergraduate mathematics and across the STEM fields. 
There have been many studies on student understanding of derivatives, from graphing 
derivatives to applying them in different scientific areas. However, there is little research on how 
students construct an understanding of multivariable calculus from their understanding of single 
variable calculus. This poster uses APOS theory to hypothesize the mental reflections and 
constructions students need to make in order to solve and interpret an implicit differentiation 
problem and examine the connections to multivariable calculus. Implicit differentiation is often 
the first time students are introduced to the notion of a function defined by two dependent 
variables, a concept vital in multivariable calculus. Investigating how students initially reconcile 
this new idea of two variable functions can provide knowledge of how students think about 
multivariable calculus.

Key Words: Implicit differentiation, student understanding, genetic decomposition, 
multivariable, APOS theory

Introduction and Relation to Literature
  Student understanding of single variable calculus has been well researched (e.g. Bardini, 
Pierce, & Stacey, 2004; Habre & Abboud, 2006; Lauten, Graham, & Ferrini-Mundy, 1994; 
Simonsen, 1995; Tall, 1985; Thompson & Silverman, 2008; White & Mitchelmore, 1996; 
Williams, 1991). Comparatively, there are relatively few investigations of student understanding 
of multivariable calculus (e.g. Dorko & Weber, 2014; Fisher, 2008; Kerrigan, 2015; Martínez-
Planell & Gaisman, 2012; McGee & Moore-Russo, 2014). In particular, while there is an 
abundance of research on the topic of single variable differentiation (García, Llinares, & 
Sánchez-Matamoros, 2011; Habre & Abboud, 2006; Haciomeroglu, Aspinwall, & Presmeg, 
2010; Orhun, 2012; Santos & Thomas, 2001), there is very little knowledge of student 
understanding of multivariable differentiation (Martínez-Planell, Gaisman & McGee, 2015; 
McGee & Moore-Russo, 2014; Tall, 1992). Similarly, many researchers have explicitly 
investigated the mental generalizations and reflections students need to construct the concept of 
differentiation (Asiala, Cottrill, Dubinsky, & Schwingendorf, 1997; Clark et al., 1997; García et 
al., 2011). However, there has been little work done on what reflections and mental constructions 
students need to make in order to understand implicit differentiation. This poster is theoretical in 
nature and focuses, through APOS theory, on the connections between the mental reflections and 
constructions need for implicit differentiation and those needed for multivariable calculus.

APOS Theory
 APOS theory emerged from Piaget’s notion reflection abstration and is a theoretical 
framework for investigating mental construction of mathematical objects (Dubinsky & 
McDonald, 2001). There have been several addititions the the original action, process, object, 
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schema stages in the theory, including procept and procedural process. The term procept refers 
to a duality of having both a process and object understanding and procedural process refers to 
when a student can mentally run through an action and has interiorized it but may not yet have a 
deeper conceptual understanding of the process. In APOS theory, a genetic decomposition is a 
hypothetical model of mental constructions needed to learn a specific mathematical concept 
(Arnon, 2014). This poster will exhibit of a genetic decomposition for implicit differentiation and 
examine the connections between the mental actions/reflections students make in implicit 
differentiation which may be useful later in multivariable calculus. This linking broadens the 
current ways researchers have been looking at the connections between single- and multivariable 
calculus. 

Discussion
 There are several key reflections and connections that students must make in solving an 
implicit differentiation problem that similarities to those made in multivariable settings. Due to 
space limitations, I provide two examples; the poster will contain a complete genetic 
decomposition..
 The first reflection students must make in solving implicit differentiation problems is to 
identify an implicitly defined function. To identify that a function cannot be explicitly expressed 
in terms of a single variable requires students to reorganize their notion for function. Students 
often think of functions as a variable set equal to an expression, such as y=2x+7 (Thompson, 
2013). However, an implicitly defined function it is dependent on both variables as opposed to 
one. This is an essential concept in the multivariable setting because the functions are explicitly 
defined in terms of two variables. A student who has already seen implicit differentiation should 
have at least a process level of understanding of function dependent on two variables. Thus when 
introduced more formally to two variable functions in multivariable calculus, students already 
have a process to reflect on in order to build the concept of multivariable functions. 
 Another key construction students must make in implicit differentiation is taking the 
derivative of y with respect to x, rather than taking the derivative of x with respect to x. The 
methodology for finding the derivative with respect to a single variable when multiple are 
present is different between implicit differentiation and multivariable differentiation, however, 
constructing the concept of looking at the change in one dependent variable with respect to 
another dependent variable is common to both. For instance, to find the derivative with implicit 
differentiation, students must take the derivative of each variable with respect to a single 
variable. This requires several new mental constructions including an encapsulate the process of 
the chain rule to be able to apply as an object in implicit differentiation. However, finding a 
derivative of a multivariable function requires the student to reflection on what variable the 
derivative is being taken with respect to and to treat the other variables as fixed. This does not 
require the same mental structure as implicit differentiation but the main reflection of taking a 
derivative with respect to a single variable when more that one is present is vital to both 
concepts. 

 These are just two examples of mental constructions that students make first in implicit 
differentiation that are vital to those in multivariable calculus. Understanding how student think 
about implicit differentiation and the underlying mental actions needed to construct the concept, 
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can not only help implement better instructional methods but also lend insight into how students 
think about multivariable calculus. 
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An interconnected framework for characterizing symbol sense 
 

Margaret T. Kinzel 
Boise State University 

 
Algebraic notation can be a powerful mathematical tool, but not all seem to develop “symbol 
sense,” the ability to use that tool effectively across situations. Analysis of interview data with 
both novice and expert users of notation identified three interconnected viewpoints: looking at, 
with, and through the notation. The framework has implications for instruction and potential 
development of symbol sense.	
 
Key Words: symbol sense, algebraic notation 
 

Algebraic notation can be a powerful mathematical tool, yet not all students seem to develop 
“symbol sense.” The ever-changing state of technology contributes to the motivation for 
mathematics educators to define symbol sense and design instruction to encourage its 
development. In particular, the Common Core State Standards for Mathematics (2010) calls for 
students to be able to both decontextualize—work with abstract symbols while allowing the 
referents to shift to the background—and contextualize—to reconnect with those referents as 
needed in order to appropriately interpret the relationships within the situation.  

 
Background and Methods 

Mathematical symbols, and algebraic notation in particular, can be the focus of one’s 
attention, or the means through which one’s attention on quantitative relationships is mediated. 
The ability to make and attend to such shifts can be considered symbol sense, or a coherent 
approach to algebraic notation that supports and extends mathematical reasoning. Symbol sense 
thus goes beyond efficient manipulation of symbols to being able to select, construct, 
manipulate, and interpret notational forms in service of mathematical work (Author). While the 
importance of developing such symbol sense is widely accepted, the process by which this 
happens is not yet well understood. Arcavi (2005) identifies three open issues related to the 
development of symbol sense. First, we do not have a full characterization of symbol sense, in 
terms of having a comprehensive set of categories to inform research and instruction. The second 
issue may be cast as nature versus nurture: can symbol sense be taught and learned, or are there 
“symbol experts” that have an inherent sense of symbols? The final issue addresses the interplay 
between technical practice and symbolic reasoning; that is, how does technical fluency interact 
with the development of symbol sense? These three issues are not trivial and will not be 
answered easily. Recent studies (cf. Banarjee & Subramaniam, 2012; Hewitt, 2012; Bokhove & 
Drijvers, 2012) have explored options for designing algebra instruction; reasoning about 
structural aspects of the notation is a common theme and resonates with the idea of developing 
symbol sense. 

Views from previous work (Kinzel, 2000) were combined with Arcavi’s characteristics of 
symbol sense (1994, 2005) in the design of the current study. An interconnected framework 
emerged that coordinates three viewpoints: looking at, with, or through the notation. Looking at 
the notation can involve noticing particular aspects and considering appropriate actions; more 
fluent users are able to consider a wider range of possible actions. An ability to look with the 
notation connects with Arcavi’s notion of “friendliness” with symbols, that the individual 
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recognizes the power of a symbolic representation and that symbols are readily available as a 
means of representation. Coordination of looking at and with the notation may involve conscious 
choices; for example, having chosen one representation, the individual is capable of considering 
the implications—either for representation or for manipulation—and perhaps changing or 
altering the initial choice. Arcavi also includes the ability to “read through” the symbols to assess 
affordances of manipulations, or to check for meanings within the implementation of procedures. 
Interview data supported the characterization of a third view, looking through the notation to 
explore underlying relationships. Effective work with symbolic forms on a single task can 
involve conscious coordination of these viewpoints. 

Task-based interviews were conducted with 11 students enrolled in a proof-based 
mathematics course and with 9 practicing mathematicians. Data were analyzed in terms of the 
introduction of symbols, construction of expressions and/or equations, manipulation of symbolic 
forms, and interpretation of intermediate or final results, as well as any shifts in focus of 
attention or use of notation (e.g., choosing to change the nature of a representation). Explicit 
articulations related to interpretation or use of notation were noted and categorized. Narratives 
were created for each interview, capturing the individual’s use of and articulations about the 
notation. The analysis of these narratives lead to the proposed framework, which characterizes 
three viewpoints (looking at, with, and through the notation) and interactions between them.  

 
Sample Task Selection and Analysis 

Tasks were carefully selected for the interviews, in order to be accessible to a range of 
participants but to also provide enough complexity so that a participant’s approach to notation 
becomes apparent and an explicit focus of the interview. The Age Ratio task was used for all 
participants; a brief analysis of the task provides an illustration of overall task selection: The 
ratio of John’s age to Mary’s age is now r. If 1<r<2, express in terms of r the ratio of John’s age 
to Mary’s age when John was as old as Mary is now. 

This task presents a concise yet complex set of information. The relationship between the 
ages now and at a point in the past are defined, but in an abstract manner rather than through 
specific numeric values. The relevance of the given restriction on the value of r is not necessarily 
immediately apparent. A successful response to the task involves constructing expressions for 
the ages then in terms of the ages now so that the new ratio can be expressed in terms of the 
current ratio. This requires noticing (1) that the point in the past is when John’s age was equal to 
Mary’s current age and (2) that the number of years between now and then is equal to the 
difference in their current ages. Once an appropriate expression for the ratio is constructed, the 
choice of manipulations to express this in terms of r is not necessarily immediately apparent. 
Thus, the participant may need to choose between options, and their thinking about such choices 
can be explored. The resulting expression for the ratio of ages then !

!!!  can be interpreted in 
terms of the relationship between the two ratios; the relevance of the restriction on r may also 
now be apparent. A potential difficulty with this task is the assumption that the ratio between 
ages will remain constant; such an assumption makes expressing the ratio of ages then 
nonsensical.  

 
A mathematician’s work 

The following data excerpt illustrates the framework through the work 
of a fluent symbol user on the Age Ratio Task (see Figure 1). M6, a 
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practicing mathematician, read the task statement and wrote !! = ! as he read. He interpreted the 
interval 1<r<2 to mean that John is older than Mary and rewrote this as 2M<J<M. Without much 
articulation, he then determined that the difference in their ages is a relevant quantity and can be 
represented as J-M. The ratio of ages “then” is expressed as !!(!!!)!!(!!!) and simplified to !

!!!!; as 
he simplified, he was pleased that (1) the denominator will be positive within the given 
restriction on J and M and (2) John’s age then (the numerator) simplified to Mary’s age now (M). 
At this point, he evaluated his work in relation to the goal of expressing this ratio in terms of r: “I 
need to manipulate that to be in terms of r, or solve for one of them in terms of the other.” He 
chose to divide through by M and obtained !

!!!. He was pleased with this result “especially as it 
agrees nicely” with the given interval for r. “Barring typos,” he is confident that he has an 
appropriate solution to the task. 

 
Applying the framework 

In terms of the viewpoints, M6 introduced the symbols J and M to look with and record given 
information. In interpreting the interval in terms of the ages, he demonstrates the ability to look 
through the notation to see a relationship. Determining that the desired ratio can be expressed by 
subtracting the difference in ages (J-M) from each age allows him to once again look with 
notation. Part of this looking with includes noting alignment with the context. His statement 
about needing to manipulate this ratio indicates a shift to looking at the notation and making 
choices related to the goal. Noting that his final expression “agrees nicely” with the interval 
indicates a tendency to continue to look with the notation and check meaning within the task 
context. It would be possible to consider the relationship between this ratio and the given ratio 
(r), which would be an instance of looking through the notation. M6 did not do this, but it was 
not explicitly required by the task.  

In contrast, a less fluent user may be distracted from one viewpoint by another. For example, 
one student participant (S1) was asked to solve this system of equations for x and y: xy=100 and 
(x-5)(y-1)=100. Within his work, he produced the linear relationship: x-5y=5. This was 
unexpected (he had anticipated being able to solve for either x or y directly) and prompted him to 
find the x- and y-intercepts for this line. When asked if he had solved the system, he expressed 
surprise that these intercepts are not solutions to the original equations. In this case, the 
participant’s fluency with a known procedure seemed to interfere with his ability to interpret the 
notation within the context, although he did attempt to look through the notation. The intercepts 
are not solutions to the system, but he did believe that the solutions will lie somewhere on this 
line. However, he incorrectly connected this to the first equation, stating “I keep coming back to 
[xy=100]. Somewhere along that line, the solution’s going to be 100. But I don’t know how to 
find it.” When asked how he knows this, he states: “Because I was able to come up with an 
equation [referring to x-5y=5]. There you go.” This comment indicates that his observations 
from looking at the notation take precedence over any attempts at looking through. Such 
instances seem related to Arcavi’s third issue, the interaction between technical fluency and 
appropriate interpretation; the triggered known procedure was applied in spite of not having a 
clear connection to the context.  

Implications 

Constructing narratives of individuals’ work served to refine the viewpoints within the 
framework. Including both novice (undergraduate students) and expert (mathematician) 
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participants expanded the range of actions described by the framework. Linking	the	views	
through	the	framework	emphasizes	seeing	notation	as	a	tool	to	support	mathematical	
reasoning.	This	may	sit	in	contrast	to	instructional	approaches	in	which	manipulations	are	
the	primary	focus	of	attention.	Time	spent	developing	fluency	with	specific	procedures	can	
strengthen	one’s	ability	to	recognize	and	evaluate	the	potential	of	particular	forms.	Without	
the	complementary	views	of	looking	with	and	through	the	notation,	however,	these	
manipulations	can	be	empty	processes.	The	framework	can	inform	instructional	design,	in	
that	the	views	can	be	incorporated	into	task	selection.	As	with	the	interviews	in	this	study,	
tasks	can	be	evaluated	in	terms	of	their	potential	to	provide	opportunity	for	or	even	
require	explicit	attention	to	shifts	between	and	coordination	of	views,	thus	potentially	
contributing	to	the	development	of	symbol	sense.	
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Classroom Culture, Technology, & Modeling: A Case Study of Students’ Engagement 
with Statistical Ideas 

 
Dana Kirin Jennifer Noll Erin Glover 

Portland State University Portland State University Oregon State University 
 

Advances in technologies have changed the way statisticians do their work, as well as how 
people receive and process information. The case study presented here follows two groups of 
two students who participated in a reform-oriented curriculum that utilized technology to 
engage students with modeling and simulation activities to develop their statistical literacy, 
thinking, and reasoning. Our analysis applies a social theory of learning and a framework 
for student engagement as a means for studying students’ development of statistical 
reasoning. In addition, we investigate the impact of a curriculum focused on modeling and 
simulation on the development of students’ statistical reasoning skills.  

Key words: Statistics, Engagement, Statistical Reasoning, Technology, TinkerPlotsTM 

Introduction 

Today there appears to be a consensus among the statistics education community that 
approaches to teaching introductory statistics should utilize technology and place emphasis 
on data and the core concepts of inference rather than on the dissemination of statistical 
theory (ASA, 2005; Cobb, 1992; 2007, Garfield, delMas, & Zeiffler, 2012). Statistics 
educators argue that many of the components of our introductory statistics courses (e.g., 
using a z-score to calculate a 95% confidence interval; computing a standard deviation) are 
relics dating back to the 1900’s historical roots of statistics and need to be reconceived in 
light of our data-driven, technologically based world (Cobb, 2007; Gould, 2010; Nolan & 
Lang, 2010). In the hope of aligning curriculum more with the practice of statistics, educators 
are developing new curriculum (e.g. Garfield et al., 2012, Lock et al., 2013; Tintle et al., 
2011) that utilize technology and engage students with modeling and simulation activities to 
develop students’ statistical literacy, thinking, and reasoning. We argue that a better 
understanding of the ways in which technology and curriculum work together to impact 
students’ development of key statistical ideas is an important next step in statistics education 
research. 

Theoretical Perspective 

The authors take the perspective that learning is a result of participation in a classroom 
community (see for example, Bowers, Cobb & MacClain, 1999; Gresalfi, 2013). Our theory 
of learning leads us to the view that the curriculum materials, the classroom culture, and the 
technology all work together to compel students to engage at a critical level. Specifically we 
focus on a framework of affordances for students to engage with statistical ideas (see Greeno 
& Gresalfi, 2008; Gresalfi, 2013). Gresalfi defines affordances as “the set of actions that are 
made possible by a particular object”; effectivities as “an individual’s ability to realize those 
affordances”; and, “the extent to which an affordance is realized depends on the dynamic 
intention that emerges among elements of the system” (p. 17). She suggests that this 
framework (affordances, effectivities, and intention) provides a way to document learning 
(where learning is seen as tied to context and situation). Gresalfi and Barab (2011) use four 
types of engagement in their work: procedural, conceptual, consequential, and critical. They 
define procedural engagement as “using procedures accurately” and conceptual engagement 
as “understanding why an equation works the way it does” (p. 302). Consequential 
engagement “involves recognizing the usefulness and impact of disciplinary content” and 
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critical engagement “involves questioning the appropriateness of using particular disciplinary 
procedures for attaining desired ends” (p. 302). They argue that the goal of curricular design 
and implementation of curricula is to foster consequential and critical engagement so that 
students use procedures and concepts as tools for investigating problems in meaningful ways. 

The research presented here investigates students’ reasoning as they engage in modeling 
and simulation activities while using the Change Agents for Teaching and Learning Statistics 
(CATALST; see Garfield et al., 2012) curriculum, coupled with TinkerPlotsTM technology 
(Konold & Miller, 2015). In particular, in this report our intention is to study if and how the 
classroom culture impacts students’ reasoning as small groups are presented with a statistical 
problem, asked to reason about the context to make conjectures, and then model and simulate 
the research question using TinkerPlotsTM technology. Our overarching research questions 
are: 1) How do students who receive the CATALST curriculum and use TinkerPlotsTM 
software develop and reason about the viability of their conjectures while engaging in the 
modeling process? and 2) What aspects of the classroom culture impact students’ reasoning 
about the viability of their initial conjectures? 

Methods 

Data was collected in an introductory statistics course at a large urban university in the 
Northwest region of the United States. Students enrolled in this course as a prerequisite for 
the traditional introductory sequence (descriptive statistics, probability, inferential statistics) 
or to satisfy the required math elective needed to graduate. A total of 21 students enrolled in 
the course and all students consented to be participants in the study. Data collection consisted 
of all student work on in-class activities, video, audio, and screen capture recordings (with a 
subset of students from the class), and student assessment items.  

The third author implemented the CATALST curriculum (Garfield et al., 2012) and 
TinkerPlotsTM technology during the 10-week course. The philosophical stances underlying 
the development of the CATALST curriculum harmonize with Gresalfi’s (2013) affordances 
for engagement framework. Like Gresalfi’s framework, modeling activities are 
fundamentally designed to provide strong affordances for students to critically engage with 
statistical ideas by providing opportunities for modeling, generalizing, and reflecting. To 
illustrate the alignment of the course materials with Gresalfi’s framework we present excerpts 
from both the video data collected as two groups of students (containing 2 students in each 
group) reason through the Cereal Box Activity as well as the group work turned in upon 
completion of the activity. 

In the Cereal Box Activity students are asked to model and investigate the number of 
boxes of Munchy Crunch cereal a person would expect to buy in order to collect all six 
possible prizes, assuming that the manufacturer placed one of the six possible prizes in each 
box at random during manufacturing. Once the students are presented with the problem, 
students are then asked to work in groups and make conjectures about the number of boxes of 
Munchy Crunch cereal they think would need to be purchased (on average) in order to collect 
all six prizes. Students were then asked to create a model (both a conceptual model and in 
TinkerplotsTM) and generate data that would help them answer the statistical research 
question. Other then this initial information, students were not given any additional 
directions. The context and open-ended nature of the activity afforded students opportunities 
for engaging both consequentially and critically with statistical ideas.  

Initial Results 
Initial analysis of the transcripts of the video data from the two groups identified four 

primary instances during the activity where students reasoned about their conjectures: 1) 
when groups formulated their initial conjectures; 2) when the instructor asked them to discuss 
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and explain their original conjectures; 3) after examining the results of a single trial; and 4) 
after constructing (a plot of) their empirical sampling distribution. To gain a better 
understanding of how students reasoned when making and evaluating their conjectures and to 
illustrate the alignment of the course materials with the engagement framework, we present 
excerpts from two groups’ written and recorded video data. The remainder of the results 
section will be organized according to the instances presented above.   

Formulating Initial Conjectures 
During their initial conjectures, Group 1 and Group 2 reasoned that a person would need 

to buy 36 boxes of Munchy Crunch cereal in order to collect all six prizes. An excerpt from 
Group 1 is presented below to illustrate how they generated and reasoned about their initial 
conjecture. 

Student A: MmHm. 
Student B:  Not, I think - well obviously you have to buy more than six... 
Student A:  Yeah. 
Student B:  To get all six of them. So at least six. 
Student A:  Maybe it'd be like, since there are six prizes and you'd probably have to 
get six boxes at least for each prize to rule out one of them. No.   
Student B:  So thirty-six boxes. 
Student A:  So like thirty-six. Yeah. That's a lot of cereal. Let's say thirty. 
Student B:  Thirty? 
Student A:  Yeah. Or...we can come back to it. 
Student B:  Okay. 
Student A:  Let's just say thirty-six question mark.   
Student B:  Okay. 

In the above transcript, we see that the students engaged with one another to begin to 
reason through and formulate a initial conjecture of 36 boxes, however it is clear that both 
students are unsure of the initial conjecture and are struggling to articulate their reasoning 
behind it. We would characterize this response to the task as procedural engagement.  

Reasoning About Conjectures While Interacting with the Instructor 
After making initial conjectures, both groups had the opportunity to discuss them with the 

instructor. We believe that interaction with the instructor assisted students in articulating their 
reasoning behind the original conjecture and even resulted in Group 1 evaluating the validity 
of their conjecture. When the instructor first joins the students she inquires about their initial 
conjecture (36 boxes). When prompted to explain their reasoning behind the conjecture 
Student A offers the following reasoning, “Well I think it's because you have six possible 
prizes and let's say you have a one out of six chance of getting each prize. So kind of 
multiplying it on itself makes sense because if you get six boxes of cereal you have the 
chance of getting at least one different one then the rest of them”. Student A’s response 
demonstrates conceptual engagement as she is offering justification to support their original 
conjecture. 

While the students in Group 1 are able to explain that one of the sixes (in their 
multiplication of six and six to obtain 36 boxes) comes from the number of possible prizes 
they admit that they are confused as to why they chose to multiply the number of possible 
prizes by another six. As the instructor and the students continue to discuss the multiplication 
by six, the students realize that rather than considering how many boxes of Munchy Crunch 
cereal a single person would need to buy to collect all six prizes they were considering how 
many boxes total six different people would need to buy for each of them to collect one prize 
that was unique from the other five people. In response to this realization, Student B states, 
“But this is only one person though, right? It's not six people…So it shouldn’t have been the 
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six”. The discussion between the instructor and Group 1 and the assertion from Student B that 
the multiplication by six was wrong prompted student to reevaluate their initial conjecture. 
This provides evidence that the interaction between the instructor and group members 
assisted students in increasing their level of engagement (from conceptual to critical), as the 
students are now questioning the appropriateness of the reasoning behind their original 
conjecture (and therefore the appropriateness of their original conjecture all together).  

Reasoning About Initial Conjectures After Examining the Results of a Single Trial 
Group 1 showed further evidence of reasoning about their initial conjecture after running 

and examining the results of a single trial using their sampler in TinkerPlotsTM. Their single 
trial produced all six prizes in 11 cereal boxes. Given the results of the single trial, the 
students revisited their initial conjecture.  

Student B:  I would say twelve. Between six and twelve.   
Student A:  Yeah 
Student B:  Because... 
Student A:  I mean you need at least six, right? 
Student B:  Yeah. 
Student A:  And then, I feel like if you got more... 
Student B:  Cause the chances of you getting it on the first try are not... 
Student A:  I don't know. Yeah. The chances of getting like all six different prizes of 

your first six boxes doesn't make sense.  But… 
Student B:  But two. I feel like if you get two and two and two and two.  And then the 

last one. 
Student A:  Is like a fifty fifty chance. 
Student B:  Yeah.   
… 
Student B:  So twelve is a more reasonable number. 

The students reason together about the results in a way that leads them to conclude that a 
more reasonable conjecture would be “between six to twelve” boxes (an interval) because 
“you need at least six” and “twelve is a more reasonable number” than 36 based on the results 
they obtained and the reasoning that there is a 50/50 chance of getting a unique prize for each 
subsequent draw. While this reasoning in not entirely sound the students seemed to believe 
that the results of the single trial supported their conjecture. Therefore, we assert these 
students are demonstrating critical engagement because they recognize the need to re-
evaluate their initial conjecture in light of the new information obtained and they question the 
appropriateness of using a single number (rather than an interval) to capture their conjecture.  
Reasoning About Conjectures After Constructing an Empirical Sampling Distribution 

After creating an empirical sampling distribution of the number of boxes of Munchy 
Crunch cereal needed to obtain all six prizes, both groups of students showed evidence of 
evaluating the validity of their conjectures. In the below excerpt from Group 2, we see 
Student C discussing with the instructor the likelihood of his group’s original conjecture. 

Instructor:  What was your conjecture? 
Student C:  Um. Thirty six. 
Instructor:  Would your conjecture be shocking to you? 
Student C:  Yes, it would actually. 

In light of the new information gleaned by constructing and examining the empirical 
sampling distribution (See Figure 1), Student C recognized that the group’s original 
conjecture would be unusual. While he does not provide explicit reasoning in the above 
excerpt, further evidence of his reasoning can be seen in their written work. Student C said, 
“Based on the results of my simulation, I would give a point of estimate of 15. I arrived at 
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this number by using the average function in tinkerplots. This gave me an average of 14.61, 
which I then rounded up to 15.”   

 

 
Figure 1. Student C’s empirical sampling distribution 

In the excerpt presented above and in Student C’s written work we see evidence of 
Student C engaging with the technology, task, and his instructor to determine their original 
conjecture was unusual and a better estimate would be 15 boxes of cereal, which he based on 
the mean of the empirical sampling distribution. While selecting the mean may not be most 
desirable point estimate (since the sampling distribution is right-skewed) we believe that 
Student C’s work demonstrates consequential engagement. Had Student C reasoned about the 
appropriateness of using the mean (versus another statistical measure) to determine the point 
estimate then he would have demonstrated critical engagement. 

Conclusion 

The question posed in the Cereal Box Activity is not a simple one. To arrive at the 
theoretical answer (14.7 boxes) students would need to have knowledge of formal statistical 
concepts such as expected value as well as knowledge of the geometric distribution. Although 
this problem is very complex, the curriculum, the technology, and the classroom culture 
afforded students the opportunity to generate conjectures about the number of boxes one 
would need to buy as well as opportunities to evaluate their conjectures and their reasoning. 
Our analysis provides insights into how the classroom culture impacted these students’ 
reasoning while participating in modeling and simulating the Cereal Box Activity using 
TinkerPlotsTM. In particular, analysis of both groups’ transcripts provided evidence that while 
each group was able to initially decide that 36 boxes seemed like a reasonable estimate, 
neither group was able to fully explain their reasoning behind the selection initially. This 
result is not entirely surprising given the difficult nature of the task. However, interactions 
between the group members and instructor, and using technology to explore single-trial 
results and empirical sampling distributions afforded students the opportunity to reconsider 
their initial conjectures and engage at a higher level with the statistical concepts. While our 
analysis is still in the preliminary phases we believe that the above work suggests that the 
curricular approach focused on modeling, the technology, and the classroom culture appeared 
to work together in a way that supported these students’ engagement with statistical ideas at a 
consequential and critical level. We assert that this deeper level of engagement resulted in 
gains in students’ statistical reasoning skills. 

Questions for the Audience 
1) Was the engagement framework useful in analyzing the impact of the classroom culture 

on the development of students’ statistical reasoning skills? 
2) Do you foresee any limitations in utilizing this framework as we continue to investigate 

our research questions? 
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3) Are there other frameworks that may be more useful in teasing apart the impact of the 
classroom culture on the development of students’ statistical reasoning skills? 
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Online calculus homework: The student experience 

Andrew Krause 
Michigan State University 

The MAA advertises that the online homework system WeBWorK is used successfully at over 700 
colleges and universities, and the institution selected for my study has implemented WeBWorK 
universally across all calculus courses.  I used a mixed method approach to examine how 
students experience online calculus homework in order to provide insights as to how online 
homework might be improved.  In particular, I examined the behaviors, perceptions, and 
resources associated with online homework. A survey was administered to all students in the 
mainstream calculus course that provides quantitative information about general trends and 
informs further questioning.  For example, more than half of students reported that they never 
study calculus with classmates nor in office hours.  In tandem with the large survey, I also 
closely studied the online homework experience of 4 students through screen recordings and 
interviews.   

 
Key words: Online Homework, Calculus, Study Habits, Student Perceptions, Resources 

 
In the following report, I will describe the importance of understanding how students 

perceive and experience online calculus homework, based on the fact that calculus is a gateway 
course for students seeking careers in STEM fields.  Then, I will make an argument for the 
importance of understanding how online homework interacts with students’ experiences and 
perceptions, noting that the literature is sparse in this regard.  Finally, I will describe my 
investigation of students’ experience doing online calculus homework.  My research describes 
students’ perceptions about online homework and how it interacts with their learning, portrays 
students’ study habits, and identifies resources that are commonly utilized by students while 
working on online homework.  

My motivation for studying this topic arises from witnessing struggles that highly motivated 
students have in succeeding in their calculus classes.  Both as an instructor and as a tutor, I have 
watched as highly motivated students have spent hours trying to learn calculus by completing 
their online homework, only to be rewarded with failure on uniform midterm and final exams.  It 
is likely that a large component of learning calculus is tied to doing homework, as is the case for 
other content areas (Cooper, Robinson, & Patall, 2006), so understanding the mechanisms that 
relate learning and homework is crucial to understanding how students learn calculus.  The 
literature is fairly sparse in this regard, however, and this study is an effort towards filling some 
of the gaps.  In particular, this study included a qualitative component that attempted to capture 
data about the student experience, as opposed to student outcomes, because inquiries focused on 
student outcomes constitute the majority of the research in this area.  My purpose is to contribute 
to an understanding about how doing online calculus homework and learning calculus are 
connected in order to equip instructors and those who support instructors with knowledge that 
can be used to improve teaching practices. 

Background of the Problem 

An enduring challenge of educators across the Unites States is addressing the problem of 
persistence of students working toward a degree in the science, technology, engineering, and 
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mathematics (STEM) fields. The educational system has struggled to produce graduates in 
STEM fields, in part, because students who enter postsecondary education intending to pursue an 
education and career in the STEM fields commonly move away from those career paths during 
their undergraduate education.  It is estimated that between 40 and 60 percent of students who 
enter postsecondary education with the intention of pursuing a degree in a STEM field will 
switch their study to a non-STEM field (Bressoud et al., 2014).   

It is often assumed that students drop out of degree-granting programs in STEM fields 
because they are either unable to afford the expense of higher education or because they are 
unable to succeed academically in the programs that feed STEM fields.  To the contrary, poor 
instruction in mathematics and science courses, especially calculus, is often cited as a primary 
reason for students’ discontinued STEM course taking (Seymour, 2006).  Although poor 
instruction is related to poor academic performance, students who are academically successful 
still sometimes leave STEM fields because of negative reactions to the instruction and 
pedagogical styles that they experience in mathematics and science courses.  In fact, it has been 
determined that students—particularly students who have done well in Calculus I—enter 
Calculus I with the intention of taking Calculus II, but finish their first-semester calculus class 
with a change of heart.  In a study (Ellis, Kelton, & Rasmussen, 2014) that was part of the 
MAA’s Characteristics of Successful Programs in College Calculus (i. e. Bressoud, 2011, 2013), 
it was reported 15% of students who started the term with the intention of taking Calculus II 
changed their mind by the end of the term.  While it is a possibility that the taking of Calculus I 
correlates with other course-taking patterns that may play a role in this this behavior, the effect 
of Calculus I on students’ intentions should be more fully understood as we work to solve the 
issue of student persistence. 

Calculus as a Gatekeeper 
Of the 69% of students enrolled in Calculus I that expect to continue and take Calculus II, 

58% of students are required to do so based on their intended major (Bressoud, 2011).  At the 
university selected for the study, both Calculus I and Calculus II are required to have been 
completed prior to admission into the College of Engineering.  The only other courses that are 
also required are a first-semester chemistry course, a first-semester physics course, and a first-
semester engineering course.  Even among the courses from the other three disciplines, Calculus 
I is an especially important course because it is a both a requirement in itself and is a prerequisite 
for both Calculus II and the required physics class. 

Online Homework 
The literature reviewed for this research suggests that the implementation of online 

homework is unlikely to damage student outcomes (exam scores and course grades), but there is 
not strong evidence that online homework substantially improves student outcomes (Bonham, 
Beichner, & Deardorff, 2001; Cheng, Thacker, Cardenas, & Crouch, 2004; Cole & Todd, 2003; 
Hirsch & Weibel, 2003; Richards-Babb, Drelick, Henry, & Robertson-Honecher, 2011).  These 
findings provide some justification for the implementation of online homework, because online 
homework appears to “cause no harm” in terms of exam scores and course grades, while still 
offering substantial affordances in other areas, such as freeing up department resources for other 
support programs, providing immediate feedback and grading, allowing for individualized 
homework sets, and promoting the acceptability of mistake-making (Bonham et al., 2001; 
Burger, 2012; Carpenter & Camp, 2008; Demirci, 2007; Epstein, Epstein, & Brosvic, 2001; 
Kortemeyer, 2014; Richards-Babb et al., 2011; Zerr, 2007). While it is still important to 
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investigate the effects of online homework in terms of exam scores and grades to further justify 
its use, the continued propagation of online homework makes it necessary to explore forms of 
knowledge other than statistical comparisons of student outcomes on traditional measures such 
as grades and exams.  It is important that teaching practices align with the use of online 
homework and are informed by knowledge about how students experience online homework.  
For example, my survey data suggests that students are more likely to work alone than in 
collaborative settings, which may influence how instructors choose to structure class time, 
perhaps choosing to facilitate more in-class collaboration. 

Methods 

My research combined a quantitative survey with qualitative observational inquiry to 
determine general trends in student perceptions, behaviors, and resource uses in tandem with 
providing a portrayal of the individual student experience with online homework. 

Research Questions 
1. How do students experience online calculus homework? 

a. What are student perceptions about how online calculus homework supports learning? 
b. What are student behaviors associated with online calculus homework? 
c. What resources do students employ while completing online calculus homework?  

Sample 
The survey was administered to all students the mainstream calculus course at a large public 

university and was completed with a 23% response rate.  Further analysis will be completed to 
determine the representativeness of the sample. 

Participants for the observational study were solicited from two sections that were deemed 
typical, based on their being taught by a graduate teaching assistants who had at least one year of 
teaching experience and had previously participated in a teaching mentoring program. Four 
participants were selected from a pool of 9 volunteers, with attention given to selecting 
participants that represented several different stories.  All of the participants were freshman with 
varying backgrounds in terms of experience with AP Calculus, with other calculus classes at the 
institution, and as repeat students for the mainstream calculus course.  Each of the four 
observational research participants also completed the survey that was administered to the rest of 
the student population. 

The Survey 
The survey was designed to gather data about students’ demographic information (multiple 

choice), mathematical backgrounds (multiple choice), perceptions about how online homework 
supports learning (Likert-type questions), study habits (time estimates), and resource use 
(frequency estimates). 

To analyze the survey data, I have examined the basic distributions of the responses in order 
to identify general trends in student responses.  I have also attempted to uncover relationships 
between the variables by searching for correlations among survey items.  For example, I 
compared perception of online homework as a useful learning tool to perceptions of the clarity of 
online homework questions as shown in Figure 1. 

Observational Study 
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For the observational component of my study, I gathered two main forms of data: (a) video 
recordings of student homework sessions and (b) transcribed, audio-recorded interviews.  As a 
secondary data source, I may draw on notes from informal conversations with the participants, 
most of which occurred while meeting with students to gather the video files they produced. 

The video recordings of homework sessions include two data streams.  Screen-recording 
software (Screencast-O-Matic) was installed on the participants’ computers to capture the details 
of their computer work.  The screen-recordings provide details about the exact input that students 
provide the online homework system, and also captured students online activity outside of the 
online homework system, such as browsing the internet for support and using online calculators 
like WolframAlpha.  A webcam was used to simultaneously to capture students’ real-world 
activity, but did not capture the same level of detail that was captured by the screen recordings.  
From the webcam recordings it is possible to identify when students are working with paper-and-
pencil during their online homework session, but it is not possible to determine exactly what 
students are writing from the recordings.   

I have thus far developed a coding scheme to analyze basic student behavior elements of the 
screen-recordings, such as the amount of time spent navigating the online homework interface, 
working on paper-and-pencil, submitting answers, and working with various learning resources.  
Deeper layers of analysis can be conducted to identify student strategies following an incorrect 
submission or student resource usage trends throughout homework sessions, for example.  I will 
seek input from the audience in this regard. 

Preliminary Results 

Both the survey data and the observational data have proven to be informative through my 
preliminary analyses.  The survey data suggest that students find online homework useful, but 
believe that written homework, in addition to online homework would help support their 
learning.  Students indicated that several traditional resources (the textbook, the department 
tutoring center, office hours, and study groups) are largely under-utilized while some newer 
resources (YouTube, instructional websites, and online calculators) are heavily utilized.  The 
observation and interview data suggests that while students find online homework useful, there 
are changes in the way that the online homework is administered that may better support student 
learning, including considering how newer resources may be integrated within the experience. 

Survey Results 
I found that student responses had responses that were skewed either towards agree/strongly 

agree or disagree/strongly disagree for questions about the usefulness of online homework, the 
prospect of adding written homework, the clarity of online homework questions, overall study 
habits, and resource use.  The survey items related to student perceptions of online homework 
(Table 1) suggest that while students find online homework useful in learning calculus, they may 
also think that assigning written homework would help them learn calculus more effectively.  
The results also suggest that the clarity of homework questions may be an issue.  The survey 
items related to study habits (Table 2) suggest that students work primarily alone, and few 
students substantially utilize classmates, private tutors, the department tutoring center, or office 
hours.  The survey items related to resource use (Table 3) suggest that traditional resources are 
under-utilized, while some newer resources are heavily utilized.  I plan to disaggregate the data 
to examine response trends and relationships between response items.  For example, Figure 1 
shows that there appears to be a relationship between the perceived usefulness of online 
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homework and the perceived clarity of online homework questions. After a cursory analysis, the 
data appears to be less clear for other response items. 
Statement Agree Disagree 
WebWork is a useful tool for learning calculus. 53.2% 29.8% 
Assigning written homework, in addition to WebWork, 
would help you learn calculus more effectively. 51.3% 25.9% 

It is easy to determine what WebWork questions are asking. 31.8% 51.9% 
Table 1: Responses to Selected Survey Items Related to Perceptions 

Study Activity 0 minutes 0-60 minutes >60 minutes 
Alone 3.9% 22.7% 73.3% 

With classmates 52.6% 25.3% 21.4% 
Tutoring Center 42.2% 27.2% 30.5% 

Office Hours 75.3% 22.1% 2.5% 
Table 2: Time Spent Studying in Various Ways (per week) 

Resource Never Rarely Sometimes Often Always 
Textbook 45.5% 24% 20.1% 8.4% 1.9% 
Tutoring Center 47.4% 18.2% 13% 13.6% 7.8% 
Office hours 63.6% 22.7% 8.4% 3.9% 1.3% 
YouTube Videos 28.6% 17.5% 29.2% 17.5% 7.1% 
Online Calculators 14.3% 9.7% 27.3% 28.6% 20.1% 

Table 3:Reported Resource Use While Completing Online Homework 

 

Figure 1:Multi-variate analysis of survey items 

Questions for the Audience 

1. What are suggestions for making sense of my video and interview data? 
2. What other statistical techniques might reveal interesting relationships in the survey data? 
3. How can this research be expanded into a more robust research program? 
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Student resources pertaining to function and rate of change in differential equations  
 

George Kuster 
Virginia Tech 

While the importance of student understanding of function and rate of change are themes 
across the research literature in differential equations, few studies have explicitly focused on 
how student understanding of these two topics grow and interface with each other while 
students learn differential equations. Extending the perspective of Knowledge in Pieces 
(diSessa, 1993) to student learning in differential equations, this research explores the 
resources relating to function and rate of change that students use to solve differential 
equations tasks. The findings reported herein are part of a larger study in which multiple 
students enrolled in differential equations were interviewed periodically throughout the 
semester. The results culminate with two sets of resources a student used relating to function 
and rate of change and implications for how these concepts may come together to afford an 
understanding of differential equations. 

Key words: Differential Equations, Function, Rate of change, Resources 

Differential equations form the foundation of many topics in mathematics, science, and 
engineering, such as biological modeling, thermodynamics, electromagnetism and fluid 
dynamics. Due to its central role, students in these majors are often required to successfully 
complete a differential equations course before enrolling in more advanced topics. The 
subjects within differential equations, however, present challenges to students by invoking 
their understanding of familiar concepts and then building on them in unique and 
conceptually demanding ways. For instance, Rasmussen (2001) noted that understanding 
certain aspects of differential equations requires a “fundamental leap” (p. 67) in one’s 
thinking. Considering the importance of differential equations and the recent calls for 
increasing the number of students majoring in STEM fields (Engage to Excel Report, 
PCAST, 2012), research focusing on student understanding of differential equations is 
necessary and valuable. 

The concepts of function and rate of change are necessary and important for 
understanding differential equations (Donovan, 2007; Habre, 2000; Keene, 2007; Rasmussen 
& Blumenfeld, 2007; Rasmussen & King, 2000). These concepts also transcend the subject, 
present in topics such as existence and uniqueness theorems (Raychaudhuri, 2007), phase 
planes (Keene, 2007), slope fields, and fundamental sets of solutions (Stephan & Rasmussen, 
2002). In this way, function and rate of change are important for understanding what a 
differential equation is, and have a large impact on student understanding of many 
mathematical ideas embedded within a differential equations course. Though the importance 
of these concepts is a theme throughout the research literature, few studies explicitly focus on 
the role of function and rate of change with regard to student understanding in differential 
equations. In their review of mathematics education literature, Rasmussen and Wawro (2014) 
call for research that examines how the ideas of function and rate of change grow and change 
across a differential equations course. The goal of the research presented in this paper is to 
characterize how students utilize their notions of function and rate of change in differential 
equations, how these notions interact with each other, and how these ideas might support 
students in developing an understanding of differential equations. 

Literature Review 

The importance of the concept of function is evident in a large portion of the research 
literature on student learning in differential equations. For instance, Rasmussen (2001) noted 
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students have difficulty conceptualizing solutions as functions in ways that have been 
documented concerning functions in general. Namely he found that students have difficulties 
interpreting solutions as functions with graphical representations, interpreting equilibrium 
solutions as functions, and interpreting the quantities represented by solutions. In her 
discussion of students’ use of time as a parameter, Keene (2007) found that students often 
reason about solutions in ways that are commensurate with how they reason about functions. 
Concerning the development a framework for student understanding of the existence and 
uniqueness theorems, Raychaudhuri (2007) discussed that students’ notions of continuity, 
function, and integration play a significant role in how they interpret and apply the theorems. 
For example, often times the students believed the coefficients needed to be continuous 
functions in order for a differential equation to have continuous solutions. A significant 
challenge for students is developing an understanding of the terms within the differential 
equation as both variables and functions. Difficult as it may be, however, it has been shown 
to be immensely important for students’ understanding of differential equations (Donovan, 
2007; Stephan & Rasmussen, 2002; Whitehead & Rasmussen, 2003), and research has 
suggested that constructing such an understanding requires putting together images from both 
concepts to create new ways of reasoning (Whitehead & Rasmussen, 2003).  

Student understanding of rate of change has been shown to be connected to the ways in 
which students reason about various representations of differential equations. For instance, 
Whitehead and Rasmussen (2003) discuss student use of rate to build images of population, 
prediction, and function. They noted that students often used rate as a quantity that 
determined the behavior of a function. With regard to student reasoning with slopes, Stephan 
and Rasmussen (2002) documented student reasoning with regard to how slopes change over 
time, slopes of autonomous differential equations being horizontally invariant, and the 
existence of infinitely many slopes in a slope field. Additionally, it has been suggested that 
students can reason with rate in ways that promote the construction of new mathematical 
objects such as straight line solutions (Rasmussen & Blumenfeld, 2007).  

 Theoretical Perspective 

Considering the goals of the research, the interconnected nature of rate of change and 
function in differential equations, and the way they are utilized to build new mathematical 
understandings as discussed in the literature, a theoretical perspective that is sensitive to the 
nature of these concepts is required. The analysis presented here makes use of the 
epistemological perspective, Knowledge in Pieces (diSessa, 1993; Smith, diSessa & Roschlle, 
1993). Within this perspective, knowledge is characterized as a dynamic system of elements 
and their connections, which is shaped by the learner’s interactions with their environment. 
These elements of knowledge are context specific, in that certain knowledge is associated (to 
varying degrees) with being useful in certain situations. As such, from the Knowledge in 
Pieces (KiP) perspective, knowledge elements are either productive or unproductive for 
accomplishing a certain task within a certain situation. This means the knowledge elements 
themselves are not evaluated as correct or incorrect (Smith, diSessa & Roschlle, 1993); the 
evaluation of correctness is only relevant to the application of the elements from an 
observer’s point of view. From a KiP standpoint, learning is characterized as the 
reorganization, contextualization, and systematization of knowledge elements (diSessa & 
Sherin, 1998; Wagner, 2006). Studies in which KiP is utilized are often designed for the 
identification of these elements and the mechanisms that afford their systematization 
(Adiredja, 2014; Kapon, Ron, Hershkowitz, & Dreyfus, 2015). I contribute to this body of 
literature by identifying knowledge resources students utilize while completing tasks in 
differential equations. 
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There are a multitude of “pieces” used to model a learner’s system of knowledge within 
the KiP perspective. To complete the analysis, I make use of only a few of the various 
elements existing in the KiP perspective, namely, knowledge elements, knowledge resources, 
and concept projections. Knowledge elements refer to any one of the various structures 
within the larger system of knowledge and, as such, vary in size. While generally consistent 
in nature, the characterizations of knowledge resources found within the literature have been 
somewhat varied. Broadly speaking, knowledge resources are sets of one or more small-scale 
pieces and can take on many forms. In general, however, and consistent with the definition 
posed by Adiredja (2014) and Hammer (2000), here I take knowledge resources to be ideas 
consisting of small sets of small-scale knowledge elements with a specific use in a particular 
context. Given the large number of resources students may utilize in service to a single 
concept, and the context specificity of those resources, the term concept projection (diSessa, 
2004; diSessa & Wagner, 2005; Wagner, 2010) is useful when discussing students’ 
understanding of a certain concept. Wagner (2010) defines a concept projection as “a set of 
particular knowledge resources that enables the knower to attend to and interpret the 
available information necessary to ‘perceive’ or ‘implement’ a concept within a given 
situation” (p. 450). In general, concept projections provide a way of illuminating the specific 
ideas about certain concepts that students use when encountering certain tasks. For the 
purposes of the research presented in this paper, concept projections serve as a way to build 
on previous findings by identifying how students utilize and build on their ideas about 
function and rate of change while completing differential equations tasks.  

Methods 

The research presented here is part of a larger study with the following research 
questions: What resources concerning function and rate of change do students utilize to 
complete various differential equations tasks; how do these resources change as the students 
progress through a differential equations course; and how do students’ resources concerning 
rate of change and function influence one another during the development of their 
understanding of differential equations? A total of 8 students participated in five one-on-one, 
task-based, semi-structured interviews (Clement, 2000), each spaced two to three weeks 
apart. The primary goal of each interview was to engage the participants in tasks centered on 
topics relevant to differential equations so as to elicit the students’ knowledge resources 
concerning function, rate of change, and differential equations. This paper focuses on a single 
student’s (Dominick) response to one of the tasks (see Figure 1) posed during the second 
interview and as such briefly addresses the first research question.  Dominick was chosen 
because his responses explicate the interconnected nature of function and rate of change 
when reasoning about differential equations tasks. The task discussed here was adapted from 
the inquiry-oriented differential equations curriculum (Rasmussen & Kwon, 2007).   The 
interviews were audio and video recorded and then transcribed. Student generated work was 
collected as a secondary data source.  

Using the transcription, recordings, and student work, resources related to function and 
rate of change were identified. Recall that resources are small pieces of knowledge that 
served a productive role in the student’s problem solving activity. In general, evidence of the 
productivity of a piece of knowledge is that the student indeed used that knowledge to attain a 
(not necessarily correct) solution. The first step in identifying a knowledge resource is 
determining the meaning behind various parts of the student’s arguments (Adiredja, 2014). 
To accomplish this I inquired into each of the actions and statements the student made while 
completing the task. More specifically, I tried to determine why these actions and statements 
were important to the student, and what it was from these actions and statements that he 
utilized to complete the task. For instance, Dominick noted that the −2!" term “describes the 
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interaction between the two [species] and has a negative effect on the initial state of one of 
them [species !].” At first glance this statement may seem rather straightforward; however, 
the various phrases, such as “negative effect,” have complex meanings for Dominick. While 
inquiring into the meaning of the various parts of the argument, I was also analyzing the 
attributes Dominick was attending to and ideas Dominick coordinated with them. The above 
statement includes ideas about the sign of the rate of change, how changes in ! affect !"!" , two 
species with a finite food source, and functions.  By trying to uncover what Dominick did, the 
meaning behind his statements and actions, the ideas he employed to draw his conclusions, 
and why these ideas were important, the resources he utilized could be identified. The last 
step is to determine which resources Dominick associated with rate of change and function. 
This entire process is briefly elaborated on in the analysis section that follows. 

 
In this task, we look at systems of rate of change equations designed to inform us about the 
future populations for two species that are either competitive (that is, both species are harmed 
by interaction), or cooperative (that is, both species benefit from interaction, for example bees 
and flowers). Which system of rate of change equations describes competing species and 
which system describes cooperative species? Explain your reasoning.  

A 
!"
!" = −5! + 2!" 

!"
!" = −4! + 3!" 

B 
!"
!" = 3! − 2!" 

!"
!" = ! − 4!" 

Figure 1: Competing/Cooperative Species Task  

Analysis 

This was the second time Dominick encountered the task (the first being during his first 
interview), and he quickly determined System B described competing species and System A 
described cooperative species. The analysis starts with inquiring into the meaning behind 
Dominick’s statements and actions. Dominick began to explain how he made the 
determinations by stating the −2!" term “describes the interaction between the two [species] 
and has a negative effect on the initial state of one of them [species x].” Specifically he noted 
that without the interaction, the rate of change of species ! by itself would be positive, “but 
with the competing reaction it takes away from species !.” When asked what it was that 
indicated a change in the initial state, he replied “so this here [points to −2!"], the 
interaction, is basically the constraint that there is a finite food source and if one species gets 
so much, then the other species can’t.” He then said that !"!"  is “the rate of change of the 
population of species x” and that it describes how the population changes, while the right 
hand side of the equation tells you why the population is changing. When prompted to 
elaborate on what he meant, he stated “well, so there is a finite food source and there are only 
two species pulling from that food source…Species ! gets more food than species !, species 
! will, population will decrease. So, it [the population of species !] will have a negative rate 
of change.” For Dominick this meant the population of species ! is increasing (because it is 
getting more food) which in turn causes species ! to decrease, as indicated by the negative 
rate of change. This was determined after considering one of his final responses to a question 
about the relationship between !"!"  and !"!"  in the systems of differential equations. Dominick 
replied “…if there is a relationship between ! and y, then the change in one is definitely 
going to affect the change in the other, so if the population of ! gets exponentially bigger… 
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that means that ! is getting more food… which would cause ! to get even smaller and ! to 
get even bigger.” Here, for Dominick, “getting more food” means an increase in population.  

Identifying the resources Dominick used requires determining what attributes he attended 
to and how he made use of them. Much of Dominick’s argument revolved around the −2!" 
term.  From this we can see that he attended to the −2!" term, interpreting it as “the 
interaction” between species ! and species !. Additionally he attended to !"!" , referring to it as 
“the rate of change of the population of species !.” He concluded that −2!" has a negative 
effect on the population of species ! by coordinating “the change in the initial state” (a 
decrease in !) with ideas relating negative rate of change to decreases in population. In other 
words, Dominick considered how “the interaction” affected the value of the rate of change of 
! and how this in turn affected the value of !. Concluding that the interaction caused the 
population of species ! to decrease, these ideas came together to signify two competing 
species with a finite food source. It seems that for Dominick the population of species ! is 
decreasing because of the existence of a finite food source from which species ! is getting a 
higher proportion of food. This is the “why it’s changing” he made reference to concerning 
the right hand side of the equation. With these attributes identified, the focus of the 
discussion shifts toward identifying the resources utilized in the construction of his argument.   

To identify the small-scale knowledge elements he coordinated with these attributes to 
construct his argument, consider his responses to a follow up question that explicitly inquired 
into how he thought about !, !, !"!" !and !"!" . Dominick noted, “Each one of these variables 
[!!and !] could be functions of time, so how much, like the current population at that time. 
So how these [! and !] change affects the total rate of change.” Dominick was then asked to 
elaborate on what he meant by ! and ! being functions and variables. He replied “they are 
functions so they have a graph, but if you plug in a certain, you plug in their independent 
variable that is going to give you a number, which you would then plug in for the variable.” 
Describing this procedure, he went on to say “ if you plug in !! into each ! and !, you get !! 
and !! and you plug that into this differential equation, you are gonna get the rate of change 
of ! at time !!.” Dominick was then asked what he meant by rate of change, which he 
explained as the “slope of the line tangent to the curve at the point !!, !!” and that it describes 
how the function is behaving: a positive slope means the function is increasing, a negative 
slope means the function is decreasing and a zero slope means the function “is transitioning.”  

His descriptions of !, !, !"!"  and !"!"  are connected to the attributes he attended to, as well 
as various parts of his argument and their meanings. For instance, the combination of ideas 
indicating that ! and ! are variables whose values can be substituted into the differential 
equation to find the rate of change at certain population values, provide insight into how he 
was able to determine how increases in ! affect !. Namely, based on his description of ! and 
! as variables, he was coordinating the effect of larger and larger ! values on !"!" . 
Additionally, Dominick utilized these ideas as he reasoned about the “competing interaction,” 
the “changes in the initial state,” and when making conclusions about the finite food source. 
For example, when he noted that the competing interaction takes away from species x, he 
considered how different values of ! impact the value of !"!" . Here he was treating y as a 

variable.  In other words, he was treating !"!"  as if it was dependent on !. Both of these are 
small-scale ideas Dominick utilized to complete the task, in other words, resources. 

Results 

Dominick utilized many resources associated with function and rate of change as he 
completed the task. These resources were used in coordination with certain attributes from 
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the task, which served as affordances for him. In other words, the attributes of the task that 
Dominick perceived and attended to both influenced and were influenced by the knowledge 
resources Dominick had available to him at that particular time. Some of these attributes were 
terms within the task such as “interaction,” terms within the differential equation such as 
−2!", and the problem situation (two competing or cooperating species). Additionally he 
was attending to and interpreting these attributes in ways that promoted the coordination of 
multiple resources related to function and rate of change with these various attributes. By 
analyzing his argument I was able to construct his concept projections for these constructs 
(see Figure 2 and Figure 3, respectively). It should be noted that there might be additional 
resources Dominick utilized while performing the task which are not captured within the 
concept projections.  Therefore they should not be thought of as a representation of the 
totality of Dominick’s thinking during the task. 

 

 
Figure 2: Dominick’s concept projection of function 

 
Figure 3: Dominick’s concept projection of rate of change 

All of these resources where utilized to enable Dominick to determine which system of 
equations represented a competing relationship. Namely, these are ideas Dominick saw as 
useful and productive for completing the task and provided different affordances for him at 
different times. For instance, the idea that ! and ! are variables allowed Dominick to 
consider multiple values for ! and what happens when ! “gets more food.” However, 
attending to ! and ! as functions allowed him to reason about !"!"  and !"!" . In short, depending 
on how he was attending to ! and ! at the different times he used resources that allowed him 
to treat ! and ! as static quantities in some cases and dynamic quantities in others. This is 
evident for example in his statements about ! increasing or “getting more food,” and ! 
representing the population value at a certain time. These resources, among others, allowed 
Dominick to treat !"!"  as a quantity that depended on the values of ! and !, to treat ! and ! as 

quantities that depended on ! (and hence make sense of !"!"), to coordinate changes in ! with 

changes in !"!" , and to utilize the sign of !"!"  to determine the behavior of !. 
The concept projections found in Figure 2 and Figure 3, directly address the first research 

goal. To address the interaction between the resources related to function and rate of change, 
consider the resources in Figure 4. Each of these resources could be categorized as both 
resources relating to function or resources relating to rate of change. Additionally, each of 
these resources seem reasonably related to Dominick’s understanding of differential 
equations. Take for example the resource, “after evaluating !(!) and !(!) at some value !!, 

• The terms ! and ! are variables that could be functions of time. 
• ! and ! represent the current populations of species!!!and ! respectively, at some time, t. 
• As time changes, so does the population/function value. 
• Functions have graphs. 
• Plug in an independent variable (in this case !) and that gives a number (in this case population). 

 

• !"
!" !is a change, the rate of change of the population of species!!.!

• The!value!of!!"!" !is!dependent!on!the!value!of!y.!
• Population decreases when the rate of change is negative. 
• Rate of change is the slope of the line tangent to the curve at a point on the curve. 
• Rate of change tells you how the function behaves. (+) implies increasing (-) implies decreasing. 
• The function/variable!!!affects the rate of change of!!.!
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you get !! and !!, this then gets plugged into the DE in place of ! and ! respectively.” This 
is indicative of an understanding that ! and ! in the differential equation are both functions 
and variables, an idea researchers have noted as being key to understanding differential 
equations (Donovan, 2007; Stephan & Rasmussen, 2002). In other words, Dominick was able 
to simultaneously coordinate resources relating to function and resources relating to rate of 
change in ways that afforded him the ability to interpret and implement ideas associated with 
differential equations to complete the task.  

 

 Figure 4: Resources relating function and rate of change 

Conclusions and Implications 

The results generated from the analysis of Dominick’s reasoning during the task indicate 
that he utilized many ideas about function and rate of change. Particularly, it is important to 
note that he was not solely using knowledge strictly pertaining to what a function or rate of 
change is, he also utilized much knowledge about these concepts as a tool for recognizing and 
implementing them. For example, the ability to recognize ! and ! as functions and variables 
and attend this as a useful piece of information afforded him a productive line of reasoning 
about “the interaction term.” This highlights the importance of knowledge for implementing 
and utilizing certain concepts with regard to student thinking, and points to the value of 
including this type of knowledge in the analyses of student learning.  

More importantly, the results enlighten why understanding ! and !!as both variables and 
functions, and recognizing the differential equation as a function are so important.  
Dominick’s ability to attend to the dependence of !"!"  on ! and to coordinate this with the 
resources related to ! being both a variable and a function provided him with powerful ways 
of reasoning about the systems of equations. Specifically he was able to coordinate changes 
in the value of ! and ! with respective changes in the value of !"!"  and !"!" .  This formed the 
basis on which he was able to draw his conclusions. 

  In light of the importance the research literature places on function and rate of change 
for understanding differential equations, looking at resources that overlap both concept 
projections may provide insight into how students construct an understanding of differential 
equations.  The results suggest that supporting the development of students’ understanding of 
differential equations also requires supporting their abilities to attend to relevant attributes 
and implement mathematical ideas from which differential equations are built.  
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Teaching Inquiry-oriented Mathematics: Establishing Supports (TIMES) is an NSF-funded 
project designed to study how we can support undergraduate instructors as they implement 
changes in their instruction. One factor in the disconnect between the development and 
dissemination of student-centered curricula are the challenges that instructors face as they work 
to implement these curricular innovations. For instance, researchers investigating 
mathematicians’ efforts to teach in student-centered ways have identified a number of challenges 
including: developing an understanding of student thinking, planning for and leading whole 
class discussions, and building on students’ solution strategies and contributions. This research 
suggests a critical component needed to take curricular innovations to scale: supports for 
instructional change. In this poster we address our current research efforts to support 
undergraduate teachers’ instructional change. 

Keywords: Instructional support, Inquiry-oriented, instructional change 
Purpose 

The main goal of this NSF funded project, Teaching Inquiry-oriented Mathematics: 
Establishing Supports (TIMES), is to study how to support undergraduate instructors as they 
implement changes in their instruction. Additional goals of this project are to: 1) understand how 
best to support undergraduate mathematics instructors in effectively implementing inquiry-
oriented instruction, 2) understand the relationships and interactions between instructional 
supports, instructors, and instructional practices, 3) characterize and measure inquiry-oriented 
instruction, and 4) assess student learning in inquiry-oriented instructional settings. 

Inquiry-Oriented Instruction 
We adopt Rasmussen and Kwon’s (2007) characterization of inquiry, which applies to the 

activity of both the students and the instructor. Here, students learn new mathematics by: 
engaging in cognitively demanding tasks prompting exploration of important mathematical 
ideas, engaging in mathematical discussions, developing and testing conjectures, and justifying 
their thinking. Instructor inquiry seeks to reveal students’ intuitive and informal ways of 
reasoning, especially those that can serve as building blocks for more formal ways of reasoning. 
Instructors inquire into students’ emerging ideas to facilitate and support the growth of students’ 
self-generated mathematical ideas. The instructor’s role is to guide and direct the mathematical 
activity of the students by using their reasoning to support the development of new conceptions. 
The instructor’s role is to guide and direct the mathematical activity of the students as they work 
on tasks by listening to students and using their reasoning to support the development of new 
conceptions. With an inquiry-oriented instructional approach, instructors: elicit student thinking, 
build on student thinking, develop a shared understanding, and connect student ideas to standard 
language and notation. 
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The Three Curricula 
TIMES is centered on three sets of research-based, inquiry-oriented curricular materials 

being scaled-up for post-calculus undergraduate mathematics courses: linear algebra (e.g. 
Wawro, Rasmussen, Zandieh, and Larson, 2013), differential equations (Rasmussen, Kwon, 
Marrongelle, Allen, & Burtch, 2006), and abstract algebra (Larsen, Johnson, Weber, 2013). The 
instructional design heuristic of Realistic Mathematics Education formed the foundation on 
which these curricula were developed and, as such, each aims to foster student reinvention of 
important mathematical concepts (Freudenthal, 1973). To support this reinvention, the curricular 
materials contain task sequences developed to utilize and build on student reasoning. Such task 
sequences form the basis of inquiry-oriented instruction. 

Instructional support 
We currently have a three-pronged instructional support model consisting of curricular 

support materials, summer workshops, and online instructor work groups. Each of the curricular 
documents include a set of support materials created by the researchers responsible for 
developing the respective curricular innovations. These include: student materials (e.g., task 
sequences, handouts) and instructor support materials (e.g., learning goals and rationales for the 
tasks, examples of student work, implementation notes). The summer workshops span 2-3 days 
and have two main goals, 1) building familiarity with the materials, and 2) developing an 
understanding of the intent of the curricula, and inquiry-oriented instruction. Lastly, during the 
semester the participants meet in small groups for one hour a week to discuss selected lessons 
from the curricular materials. For each of the focal lessons, the groups discuss the mathematics 
embedded in the lesson and plan for implementation. The goal is to help instructors develop their 
ability to interpret and respond to student thinking in ways that support student learning.  

Data 
There are currently 18 instructors participating in this project in various universities across 

the united states. In order to address the research goals, data is being collected from a multitude 
of sources including: an instructor background survey, video recordings of the summer 
workshops, post summer workshop surveys, one-on-one interviews with instructors participating 
in the online working groups, video recordings of the online working group meetings, clips of 
instruction from the online working groups, video recordings of the participants’ instruction, and 
student content assessments. 

Research Progress 
Currently TIMES is refining the instructor support materials utilizing data collected from the 

first group of participants, and leveraging findings from prior work - that indicates early 
implementers tend to be successful at eliciting but not building on student thinking, whereas 
whole class discussions facilitated by repeat implementers are statistically more likely to entail 
both eliciting and building on student thinking. Preliminary analysis suggests that the instructors 
felt the weekly online working group meetings had the highest impact on their successful 
implementation of the curricula, but that they desired more experiences discussing examples of 
how to utilize student thinking in their instruction. Additionally, a preliminary version of the 
inquiry-oriented instructional measure has been created and will be piloted on the data collected 
as part of reliability and validity testing. The next steps include continuing the investigation of 
how to support teachers’ instructional change, analyzing the student assessment data (from both 
inquiry-oriented and more traditional non-IO classrooms), further refining the inquiry-oriented 
measure and assessing student learning in IO settings. 
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Inquiry-oriented instruction: A conceptualization of the instructional the 
components and practices 
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In this paper we provide a characterization of inquiry-oriented instruction. We begin with a 
description of the roles of the tasks, the students, and the teacher in advancing the 
mathematical agenda. We then shift our focus to four main instructional components that are 
central to carrying out these roles: Generating student ways of reasoning, Building on 
student contributions, Developing a shared understanding, and Connecting to standard 
mathematical language and notation. Each of these four components is further delineated 
into a total of eight practices. These practices are defined and exemplified by drawing on the 
K-16 research literature. As a result, this conceptualization of inquiry-oriented instruction 
makes connections across research communities and provides a characterization that is not 
limited to undergraduate, secondary, or elementary mathematics education. The ultimate 
goal for this work is to serve as a theoretical foundation for a measure of inquiry-oriented 
instruction.   

Key words: Inquiry-oriented, instructional practices, K-16  

Rasmussen and Kwon (2007) refer to an inquiry-oriented approach to instruction as one 
in which “important mathematical ideas and methods emerged from students’ problem-
solving activities and discussions about their mathematical thinking” (p. 190). Importantly, 
they state that the students are not the only ones that engage in inquiry. Instead, in inquiry-
oriented instruction students inquire into the mathematics and the instructor inquires into 
student mathematical thinking and reasoning. In this type of instruction the tasks, the students 
and the teacher work to support the classroom participants in advancing the mathematical 
agenda. The carefully designed tasks engage students in meaningful mathematical activity 
that generates student thinking which is then leveraged by the instructor to support the 
development of more sophisticated mathematics.  

In the following section we provide a description of inquiry-oriented instruction by 
explicating the role of the tasks, the students, and the teacher. We then shift our focus to the 
components of inquiry-oriented instruction that support the tasks, the students, and the 
teacher in carrying out their roles. These components will be discussed in relation to relevant 
K-16 literature, allowing us to draw connections between the RUME and K-12 research 
communities.  

Roles in Inquiry-Oriented Instruction 
 

In inquiry-oriented instruction, the students, task sequence, and the teacher each have an 
important and interactive role for advancing the mathematical agenda. Here we discuss each 
of these roles.  
 
Role of the Tasks  

Meaningfully designed instructional tasks, regardless the form of instruction, provide a 
medium through which student mathematical ideas and reasoning can be generated. In 
inquiry-oriented instruction, tasks are specifically designed to evoke informal student 
strategies and ways of reasoning that can then be leveraged (in subsequent tasks or whole 
class discussion) to support the development of more formal mathematics (Gravemeijer, 
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1999; Larsen, 2013; Speer & Wagner, 2009; Rasmussen & Marrongelle, 2006). Instructional 
activities provide students with an opportunity to re-invent important mathematical ideas by 
supporting the students in mathematizing both the problem context and their own 
mathematical activity.  
 
Role of the Student  

In an inquiry-oriented classroom students, “learn new mathematics through inquiry by 
engaging in mathematical discussions, posing and following up on conjectures, explaining 
and justifying their thinking, and solving novel problems” (Rasmussen and Kwon, p. 190). 
These activities promote the emergence of many important student generated ideas and 
solution methods which one can think of as providing the mathematical “fodder” available to 
the teacher for the progression of the mathematical agenda (Speer and Wagner, 2009; Stein 
et. al., 2008). This fodder is generated through engaging with the mathematical activities that 
comprise the instructional sequence and by participating in argumentation and justification as 
students explain their own ways of reasoning and make sense of the reasoning of others. 
Importantly, by engaging in inquiry and supplying the mathematical fodder for the 
mathematical agenda, the students assume responsibility for the classroom’s mathematics. 
Indeed, an important goal of inquiry-oriented instruction is for the “learners to come to regard 
the knowledge they acquire as their own private knowledge, knowledge for which they 
themselves are responsible” (Gravemeijer & Doorman, 1999, p. 116).   
 
Role of the Teacher  

Inquiry serves as an important aspect of the teacher’s role. Inquiry-oriented teachers 
regularly inquire into their students’ mathematical thinking and reasoning (Rasmussen & 
Kwon, 2007). Inquiring into student thinking helps the instructor promote the students’ 
development of a more sophisticated mathematical understanding. In this way, the teacher is 
a co-participant in the development of the mathematics, in terms of both the mathematics of 
the moment, and the long and short-term mathematical trajectory intended by the curricula 
materials (Yackel, Stephan, Rasmussen & Underwood, 2003). Much of the focus on the role 
of the teacher has emphasized whole class discussions (e.g., Stein et al., 2008, Speer & 
Wagner, 2009). During these whole class discussions the teacher’s aim is to bridge the gap 
between where the students are and the mathematical goals of the lesson. Specifically, the 
instructor leverages student ideas to move the students to a more sophisticated mathematical 
understanding. As noted by Stein et al. (2008) “the role of the teacher during whole-class 
discussions is to develop and then build on the personal and collective sense-making of 
students rather than to simply sanction particular approaches as being correct or demonstrate 
procedures for solving predictable tasks” (p. 315). Given this explication of the roles in 
inquiry-oriented instruction, we now turn our attention to specific components of instruction 
that allow these roles to be fulfilled.  
 

Four Instructional Components of Inquiry-Oriented Instruction 

Informed by our experiences with inquiry-oriented instruction, a starter-list of 
components was initially outlined. This list was then refined and explicated through a review 
of the K-16 research literature. This resulted in the following four components: Generating 
student ways of reasoning, Building on student contributions, Developing a shared 
understanding, and Connecting to standard mathematical language and notation. It should be 
noted that the four components are somewhat artificially separated for the purposes of 
explication. In actuality, these components are quite intertwined and work together 
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throughout the lesson to support student development of more sophisticated mathematics. To 
better characterize inquiry-oriented instruction, we delineate each of the components into sets 
of practices. These practices are grounded in relevant research literature and each set works 
together to support its respective component. The practices exist at a smaller grain size and 
provide a high level of detail in terms of how each of the components supports the 
progression of the mathematical agenda. Some of the practices transcend individual 
components as they may serve different purposes at different times depending on nature of 
the component.   
 
Generating Student Ways of Reasoning  

In order to utilize student ideas and thinking to move forward the mathematical agenda, 
the teacher must first have student generated ideas and thinking to work with. Research 
indicates that eliciting meaningful student contributions requires the teacher to support the 
production of such contributions (Stein et. al., 2008; Hufferd-Ackles, Fuson & Sherin, 2004). 
One characteristic of instructors that promote meaningful student contributions is asking 
questions which drive student investigation of mathematics, support students in explaining 
their solution strategies, and help the instructor understand students’ thinking (Munter, 2014). 
Questions of this nature require that the students engage in problem solving activity that 
affords the instructor with opportunities to inquire into student thinking and reasoning.  

In inquiry-oriented instruction, purposefully designed tasks are utilized to engage the 
students in such authentic mathematical activity and lead the students to discover key 
mathematical ideas (Larsen, 2013; Rasmussen & Marrongelle, 2006; Rasmussen & Kwon, 
2007; Speer & Wagner, 2009). The tasks provide a context in which the students engage in 
mathematical activity, which in turn provides opportunities for the instructor to inquire into 
student thinking and reasoning. This reasoning can then be used to promote a more 
sophisticated mathematical understanding. The interaction between the teacher, student and 
tasks affects the quality of the contributions that can be elicited (Jackson et al., 2013).  
Jackson et al. (2013) note that the cognitive demand of a task can be lowered depending on 
how the students are expected to engage with the task or if solution methods are posed before 
the students begin the task. Their research suggests that, when the cognitive demand of high 
quality tasks is maintained and when the students are supported in describing the contextual 
and mathematical features of the task, students are provided with higher quality opportunities 
to learn. 

With this characterization of the practice of Generating Student Ways of Reasoning, we 
have identified three critical components in the literature:  

1) Students are engaged in meaningful tasks and mathematical activity that support the 
development of important mathematical ideas. This practice is characterized by 
student engagement with cognitively demanding tasks, that support students in 
mathematical activity and are designed to promote ways of thinking about the 
mathematics that can be leveraged to advance the students’ mathematical 
understanding (Jackson et. al, 2013; Hiebert, 1997; Speer & Wagner, 2009).  

2) Teachers actively inquire into student thinking. This practice means that instructors 
purposely and intently inquire into student thinking for the purposes of determining if 
and how student generated ideas can be utilized to promote a more sophisticated 
understanding of the mathematics. The questions asked by teachers not only direct 
student investigations and provide the teacher with insight into student thinking, they 
also help students refine and reflect on their own thought process (Borko, 2004; 
Hiebert & Wearne, 1993; Rasmussen & Kwon, 2007). In this way, by inquiring into 
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student thinking, teachers are able to support students in generating more 
sophisticated ways of reasoning.  

3) Teachers elicit student thinking and contributions. Teacher prompt students to explain 
their reasoning and justify their solution strategies, with the focus on the reasoning the 
students utilized during the task as opposed to solely focusing on the procedures used. 
Research on instructional quality indicates that the type of contributions teachers elicit 
is directly related to the students’ opportunities to learn. Thus it is important that 
teachers elicit thinking and reasoning that “uncover the mathematical thinking behind 
the answers” (Hufferd-Ackels, Fuson & Sherin, 2004, p.92).  

 
Building on Student Contributions  

Researchers have noted that the practice of building on student thinking is quite complex 
and difficult to implement (e.g., Ball & Cohen, 1999; Sherin, 2002). Leatham, Peterson, 
Stockero, and Van Zoest (2015) characterize building on student contributions as engaging 
the class in student-generated contributions in ways that result in developing students’ more 
sophisticated understanding of important mathematical ideas and relationships. To facilitate 
such building, teachers must elicit and inquire into student contributions to determine which 
ideas (correct or incorrect) are important and relevant to the development of the mathematics, 
which ideas can be leveraged to move the understanding of the class toward the goals of the 
lesson, and then engage the students in each other’s contributions in ways that forward the 
mathematical agenda (Johnson & Larsen, 2012; Leatham et al., 2015; Speer & Wagner, 
2009). Building on student thinking in this way requires that the classroom participants create 
the “mathematical path as they go,” (Yackel et, al, 2003, pg. 117), because student 
contributions form the trajectory along which the mathematics develops (Johnson, 2013).  In 
this way, teachers need to be sensitive to the ideas students contribute and use them to inform 
the lesson. 

Orchestrating class discussions that build to certain educational goals while allowing the 
students to retain ownership of the mathematics requires that the instructor “slide between 
being noninterventionist and assuming greater responsibility” (Rasmussen & Marrongelle, 
2006, p. 399). In other words, while the students’ own ideas form the basis for the 
mathematics being developed, it is the instructor's responsibility to guide the development of 
the mathematics toward the mathematical agenda. Inquiry also plays an important part in how 
teachers carry out this role during the practice of building. By inquiring into student thinking 
with an eye towards important mathematical ideas, teachers must determine where to position 
themselves on the continuum between noninterventionist and interventionist. In either case, 
“‘You are still the teacher. The students might not see your teaching. But you are still in 
control.’ However, the nature and degree of control is different in this setting. Instead of 
controlling the exact content that gets stated in a lecture, the teacher’s responsibility is to 
monitor, select, and sequence student ideas.” (Johnson et al., 2013, p. 13).   

With this characterization the practice of Building on Student Contributions, we have 
identified five critical components in the literature:  

1) Teachers elicit student thinking and contributions. Leatham et al. (2015) note that 
student contributions can provide opportunities for the class to make sense of each 
other’s thinking as well as opportunities for the teacher to build on student thinking. 
Hufferd-Ackles, Fuson, and Sherin (2004) echo this idea, stating that the “questioning 
of students allows their responses to enter the classroom's discourse space to be 
assessed and built on by others” (p. 92).  
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2) Teachers actively inquire into student thinking. Teacher inquiry serves many 
functions and roles throughout a lesson (see Hufferd-Ackles, Fuson, & Sherin, 2004; 
Johnson, 2013; Rasmussen & Kwon, 2007). With regard to building on student 
contributions, teacher inquiry allows teachers to form models of student thinking and 
understanding, reconsider important mathematical ideas in light of those models, and 
formulate questions and tasks which enable the students to build on those ideas 
(Rasmussen & Kwon, 2007).  

3) Teachers are responsive to student thinking and use student contributions to inform 
the lesson. Rasmussen and Marrongelle (2006) state that, “an important part of 
mathematics teaching is responding to student activity, listening to student activity, 
notating student activity, learning from student activity, and so on” (p. 414). By doing 
so, the teacher can generate instructional space where “the nature of student 
mathematical thinking might compel one to take a particular path because of the 
opportunity it provides at that moment to build on that thinking to further student 
mathematical understanding” (Leathan et al., 2015, p. 118).   

4) Teachers guide and manage the development of the mathematical agenda. Teacher 
need to actively guide and manage the mathematical agenda and can do so by: 
identifying and sequencing student solutions to “ensure that the discussion advances 
his or her instructional agenda” (Jackson et al., 2013, p. 648); utilizing Pedagogical 
Content Tools “to connect to student thinking while moving the mathematical agenda 
forward” (Rasmussen & Marrongelle, 2006, p. 389); or by refocusing the class 
towards the use of certain student generated ideas, marking important student 
contributions, and assigning tasks meant to clarify and build on students’ 
ideas/questions. In these ways, teachers can guide and manage the development of the 
lesson while building on student contributions, developing mathematical ideas in 
directions commensurate with the mathematical agenda, and maintaining the student 
ownership of the mathematics.   

5) Students engage in one another's thinking. Stein and colleagues (2008) provide 
several examples of how teachers can support students in making mathematical 
connections between differing student contributions and important mathematical 
ideas. Some of these examples include asking students to reflect on the contributions 
of other students, assisting students in drawing connections between the mathematics 
present in solution strategies and the various representations that may be utilized, and 
facilitate mathematical discussions about different student approaches for solving a 
particular problem. Doing so can prompt students to reflect on other students’ ideas 
while evaluating and revising their own (Brendehur & Frykholm, 2000; Engle & 
Conant, 2002).  

 
Developing a Shared Understanding  

As discussed by Stein et al. (2008), “a key challenge that mathematics teachers face in 
enacting current reforms is to orchestrate whole-class discussions that use students’ responses 
to instructional tasks in ways that advance the mathematical learning of the whole class” (p. 
312, emphasis added). Within the inquiry-oriented instruction literature base, many articles 
make use of and highlight the importance of developing a shared understanding (e.g. Stephan 
& Rasmussen, 2002; Rasmussen, Kwon & Marrongelle, 2008; Rasmussen, Zandieh & 
Wawro, 2009). For instance, Stephan and Rasmussen (2002) discuss ways in which important 
mathematical ideas and ways of reasoning, emerging from ideas originating with individual 
students or small groups of students, become taken-as-shared within a classroom. 
Elaborating on how this occurs, Tabach, Hershkowitz, Rasmussen and Dreyfus (2014) 
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discuss the reflexive relationship between ideas formulated by individuals or small groups 
and the normative ways of reasoning evident in whole class discussion. Their research 
suggests that the development of shared understandings supports student construction of 
mathematics by allowing ideas to be formulated by individuals or small groups and become 
normative ways of reasoning during whole class discussions. Further, McClain and Cobb 
(1998) note that supporting the development of taken-as-shared understandings help students 
with less sophisticated understandings participate in and benefit from whole-class 
discussions. 

The important distinction between Building on Student Contributions and Developing a 
Shared Understanding, is characterized by who is making sense of the evolving mathematical 
agenda: the teacher and a select group of students who have provided the bulk of the 
contributions, or the classroom community as they develop and co-construct a taken-as-
shared understanding. As described by Fredericks (in Johnson et. al., 2013):  

 
There is this risk that you can pose the problem and then you can have five groups share 
how they did it and then you can go to the next problem [without any additional 
discussion of the groups’ ideas]. And you can assume that the students will make the 
connections, and some of them will and some of them won’t. I think to really be effective 
you have to push yourself further than that. That you have to think about what those 
connections are and you have to make sure that they explicitly come out. Otherwise you 
don’t know who got it and who didn’t. You are right back to where you were when you 
taught the old way. (p. 13-14) 

With this characterization the practice of Developing a Shared Understanding, we have 
identified three critical components in the literature. It should be noted that, while these three 
practices are also important for building on student thinking, their use and purpose is slightly 
different for developing a shared understanding.    

1) Teachers are responsive to student thinking and use student contributions to inform 
the lesson. When teachers are responsive to student contributions they can create new 
instructional space (Johnson and Larsen, 2012). In regards to this component, the 
instructional space is created for the purpose of developing a shared understanding 
within the classroom community.  

2) Students are engaged in one another's thinking. By engaging with one another’s 
thinking, students are able to deepen their thinking, generate new ideas, and make 
mathematical connections. As discussed by Jackson et al. (2013), “the teacher plays a 
crucial role in mediating the communication between students to help them 
understand each other’s explanations” (p. 648).  

3) Teachers guide and manage the development of the mathematical agenda. Here the 
focus in on guiding and managing the development of the mathematical agenda for 
the whole class. This involves monitoring and assessing what is taken-as-shared.   

 
Connecting to Standard Mathematical Language and Notation  

One of the major tenants of inquiry-oriented instruction is the idea that formal 
mathematics emerges from students’ informal understandings (Gravemeijer, 1999). This is 
contrasted with more traditional forms of instructions where formal definitions or standards 
algorithms serve as the starting place for students’ mathematical work. However, this does 
not mean that mathematically standard language and notation have no place in inquiry-
oriented instruction. As Stein at el. (2008) discuss, there is an “increasingly recognized 
dilemma associated with inquiry- and discovery-based approaches to teaching: the challenge 
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of aligning students’ developing ideas and methods with the disciplinary ideas that they 
ultimately are accountable for knowing” (p. 319). One way for a teacher to approach this 
challenge is to act as a broker “between the entire classroom community and the boarder 
mathematical community by the insertion of formal convention and terminology” 
(Rasmussen, Zandieh, Wawro, 2009, p. 201). 

With this characterization the practice of Connecting to Standard Mathematical  
Language and Notation, we have identified two critical components in the literature. 

1) Teachers introduce a minimal amount of language and notation prior to students’ 
engagement with a task. Formal notation is introduced after the students have 
generated an understanding of what is being notated and a need for it has been 
established. “In contrast to more traditional teaching in which formal or conventional 
terminology is often the starting place for students’ mathematical work, this teacher 
[one implementing an inquiry-oriented curriculum] chose to introduce the formal 
mathematical language only after the underlying idea had essentially been reinvented 
by the students” (Rasmussen, Zandieh, Wawro, 2009, p. 203)  

2) Teachers support formalizing of student ideas/contributions. In inquiry-oriented 
instruction, as the students reinvent the mathematics, their reinventions build to be 
commensurate with formal mathematical ideas.  The instructor must be able to 
promote the students' ability to connect the their mathematical ideas to more formal 
mathematics. “The teacher plays a crucial role … in supporting students to link 
student-generated solution methods to disciplinary methods and important 
mathematical ideas” (Jackson et al., 2013, p. 648).  

 
Implications 

 
Within the undergraduate mathematics community, the last decade has seen a sharp rise 

in inquiry-oriented, research based, instructional innovations. Inquiry-oriented instruction is 
being used in mathematics classes from calculus through abstract algebra. The limited 
research that does exist on mathematicians teaching practices has shown that these inquiry-
oriented curricular materials present a number of challenges for implementation. Such 
challenges include: developing an understanding of student thinking, planning for and leading 
whole class discussions, and building on students’ solution strategies and contributions 
(Johnson & Larsen, 2012; Rasmussen & Marrongelle, 2006; Speer & Wagner, 2009; Wagner, 
Speer, & Rossa, 2007). Given these challenges with the implementation of inquiry-oriented 
instructional materials, the need for a measure of instructional quality becomes an important 
way to understand differences in these classrooms.  

Before such an instrument can be developed, “inquiry-oriented instruction” first needs to 
be operationalized in a way that can be observed, measured, and analyzed. The work here 
contributes to this in two ways: it represents a conceptualization of inquiry-oriented teaching, 
including the identification of the components and the specification of small-grain practices 
that support those components, and it can be used to as a theoretical foundation for a measure 
of inquiry-oriented instruction. Importantly this conceptualization draws on a wide spectrum 
of literature from the K-16 research base, allowing us to make connections across research 
communities and provide a characterization that is not limited to undergraduate, secondary, 
or elementary mathematics education.   
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 In this study, researchers design and implement an inquiry-based multivariable calculus 
course as well as derive the characteristic of instructional interventions for enhancing 
students’ argumentation in proof construction activities. Over the course of 14 weeks, 18 
freshmen mathematics education majors participated in this study. Multiple sources of data 
were collected, students’ reasoning in the classroom discussions were analyzed within the 
Toulmin’s argumentation structure, and the instructional interventions were gradually 
revised according to the iterative cyclic process of the design research. The students’ 
argumentation structures presented in the classroom gradually developed into more 
complicated forms as the study progressed, and the researchers conclude that the 
interventions were effective at improving students’ arguments. 

Key words: Design research, Multivariable calculus, Inquiry based learning, Argumentation, 
Flipped classroom 

One of challenges in undergraduate mathematics classrooms is the shift from traditional 
teacher-centered and textbook-dominated approaches to new instructional approaches that are 
student-centered and inquiry-based (Holton, 2001). However, there is a shortage of studies 
that go beyond basic topics of calculus into areas such as multivariable calculus and 
differential equations (Rasmussen, 2014). Also, there is a lack of instructional tasks 
developed for inquiry-based learning (IBL) and a lack of research dealing with classroom 
interactions and the instructor’s role in multivariable calculus teaching/learning. This study 
attempts to develop an inquiry-based multivariable calculus course and derive the 
characteristic of instructional interventions for enhancing students’ argumentation. 

In the fall semester of 2013, a multivariable calculus course for first year students 
majoring in mathematics education was organized as a flipped classroom at a university in 
Seoul, Korea. In the flipped classroom, instructors’ explanatory lectures can be replaced by 
online video clips in order to assign more time to student inquiry during the face-to-face in-
class sessions. The researchers applied the flipped classroom model to development of 
inquiry-based multivariable calculus course in order to provide students with opportunities 
for mathematical inquiry in the classroom as well as instructors’ lecture in the online 
courseware. 

In this paper, we focus on the design research methodology based on systematic 
qualitative analysis that the researchers applied to the development of the course in order to 
1) understand the characteristics of students’ argumentations in the proof construction 
activities in the inquiry-based multivariable calculus course, and 2) derive the characteristics 
of three sites of intervention for enhancing students’ arguments: instructional design, 
classroom interaction, and the instructor’s role. 
 

Theoretical Background 

Analysis on argumentation structure 
Toulmin (1958, 2003) describes argumentation structures using six components for 

discourse analysis: claim, data, warrant, backing, qualifier, and rebuttal. In the meantime, van 
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Eemeren and Grootendorst (1992) suggest four types of patterns for argumentation structures: 
single argumentation, multiple argumentation, coordinate compound argumentation and 
subordinated argumentation, and Kwon et al. (2013) use these patterns to analyze the 
argumentation structure of the mathematics classroom, but they combine coordinate 
compound and subordinated argumentation into compound argumentation. A single 
argumentation structure includes only one claim and warrant, and a multiple argumentation 
structure contains a claim supported by more than one warrant. The compound argumentation 
structure includes a variety of warrants for supporting a claim that induces a new claim. In 
this study, the researchers adopt the framework consisting of these three argumentation 
structures to analyze the complexity of students’ arguments. 

Argumentation in general is understood as a process in which one’s opinions are justified, 
or a discourse in which one convinces others of his/her opinion (Krummheuer, 2007; Wood, 
1999). Argumentation can become more complicated when the antagonist reveals an 
unconvincing part of the given arguments, and the protagonist brings forward more 
arguments to meet this criticism. Consequently, some arguments may have a single 
argumentation structure while others have a multiple or compound argumentation structure 
(van Eemeren et al., 2007). Therefore, a more complicated argumentation structure shows 
that the students participate in more diverse discursive activities such as suggesting 
arguments, providing counterarguments, giving additional arguments or refuting 
counterarguments than a less complicated argumentation structure. In this study, the 
researchers consider the change in students’ argumentation structures from single to 
compound as an evidence of the improvement of students’ argumentation and justification. 
 
Argumentation in mathematical inquiry 

Inquiry-Based Learning (IBL) has been implemented in mathematics education in the 
form of problem-solving, the theory of didactical situations, realistic mathematics education, 
modeling perspectives, anthropological theory of didactics, and dialogical and critical 
approaches (Artigue, & Blomhøj, 2013). Since justification or persuasion in argumentation is 
recognized as being similar to theoretical demonstration in mathematics or mathematical 
proof, argumentation is considered to be an important part of mathematical learning 
(Krummheuer, 2007; Staples et al., 2012). According to Richards (1991), inquiry in 
mathematics is characterized by learning to speak and act mathematically through engaging 
in mathematical discussions, suggesting reasons, and following the process of solving new 
and unfamiliar problems. In this sense, Goos (2004) consider learning from an IBL 
perspective as participation in communities of mathematical inquiry, and Rasmussen et al. 
(2008) argue that inquiry enables students to learn new mathematics through taking part in 
genuine argumentation.  

The complexity of an argumentation structure depends on the reactions between the 
arguments of the protagonist and the critical responses of the antagonists. The complexity of 
the argumentation structure grows as the discussion becomes more active (van Eemeren et 
al., 2007). Thus, argumentation structure analyses can serve as a quality criterion for 
mathematical inquiry through proof construction activities in IBL.  Considering that learning 
in IBL is to learn to act and think like a mathematician, students’ change of argumentation 
structure is a proper criterion for the students’ learning in IBL. For this purpose, the 
researchers adopt an empirical approach to study students’ arguments in the classroom, and 
use Toulmin’s argumentation structure (1958, 2003) and the classification of argumentation 
structures suggested by van Eemeren and Grrotendorst (1992) as the frameworks of analysis. 
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Design research 

Design research is appropriate when researchers develop innovative and complex 
teaching methods to implement unknown principles and guidelines, to quickly test an early 
model on site, and to refine such a model (Borgman et al., 2008; Kelly, 2009; Nieveen, & 
Folmer, 2009). Therefore, we adopted the designed research methodology to move them 
toward the goal of this study: to discover the characteristics of an instructional design that 
supports students’ argumentation through in-class session discussions.  

In design research, intervention involves the use of the curriculum, students’ learning and 
teaching strategies, educational materials, and learning environments to improve students’ 
ability to solve complex problems in a real educational context through repeated experiments. 
After researchers design and implement the interventions, they examine the educational 
products (e.g. student achievements) to determine whether they are able to answer their 
research questions. If the research questions are not answered with the current interventions, 
the researchers reflect on the educational products and improve the interventions (Plomp, 
2007). The researchers consider instructional tasks, classroom interactions, and instructor’s 
role as three elements of interventions and derive the features of these interventions from the 
literature reviews, which serve as a starting point to the iterative design process in this 
research. 

The study aims to derive characteristics of the interventions for the multivariable calculus 
IBL classroom that induce the development of argumentation structure. This aim is addressed 
in the following research questions: 1) how do students present their argumentation in proof 
construction activities in the inquiry-based multivariable calculus course? 2) what are the 
characteristics of an intervention that improves students’ argumentation? 
 

Methodology 

Research process 
At the preliminary stage, results from previous studies on teaching/learning of 

mathematical content related to the subject of multivariable calculus, analysis of existing 
textbooks, and collegiate math education were analyzed in light of the current educational 
setting. At the design stage, tasks were developed based on each session’s objective and 
content, and the researchers planned interventions for the in-class sessions based on 
anticipated characteristics on interventions. At the implementation stage, the researchers, 
consisting of one instructor and three research assistants, played the role of field participants 
for these in-class sessions. At the reflection stage, the researchers met to debrief on the 
implementation of the approach and the observation immediately after each in-class session. 
This approach enabled the gradual improvement of the interventions, and the cyclical process 
of the design research contributed to the final proposal of the characteristics of instructional 
interventions for inquiry-based multivariable calculus. 

 
Settings 

Over a total period of 14 weeks, the students observed two or three online video lectures 
(20–30 minutes each) and participated in one face-to-face in-class session (75 min) every 
week. The class was composed of 18 freshmen majoring in mathematics education majors 
who had taken the course “Calculus I” as a prerequisite, and a total of five small groups of 
three or four students each were set up for learner-centered discussions during the in-class 
sessions. Depending on the task at hand, laptops or tablet computers were provided for the 
students to use for discussion or problem-solving purposes. 

19th Annual Conference on Research in Undergraduate Mathematics Education 990

19th Annual Conference on Research in Undergraduate Mathematics Education 990



 
Data collection and analysis 

All in-class sessions were video-recorded and the reflection journals written by students 
after the session were collected. Additionally, a focus group interview with selected students 
was conducted at the end of the semester in order to complete the triangulation on the 
analysis. In this paper, the researchers analyze three in-class sessions that focus on 
mathematical proof construction activities in order to present a detailed account of students’ 
argumentation structures. Two coders transcribed all the utterances of the students and the 
instructor, and coded the elements of students’ discussions according to the components of 
Toulmin’s argumentation structure. Afterwards, they cross-checked the argumentation 
structures of these components and reviewed the work sheets and the reflection journals in 
order to validate the results of the analysis. In order to validate the assumptions of the above 
questions, the researchers compared the Hypothetical Argumentation Structure (HAS) with 
the actual implemented argumentation structure and derived the characteristics of 
interventions by refining them in each cycle.  
 

Result 

The students’ argumentation structures presented in the in-class sessions gradually 
developed into more complicated forms as the study progressed, and the researchers conclude 
that the interventions were effective at improving students’ arguments. 
 
Phase 1 

The aim of the week’s in-class session was to provide students with the opportunity to 
observe whether the symmetry of partial derivatives holds for two functions f and g and to 
examine several aspects of the functions, such as graphs, limits, and continuity, in order to 
inquire about the conditions that would satisfy the property. In the in-class session, however, 
the students could not reach the final step, in which they were to suggest their own 
conjectures about the symmetry of partial derivatives. In some steps, students had difficulties 
constructing their arguments as the researchers had intended, and the instructor had to 
directly convey certain mathematical knowledge to students that they were expected to be 
able to derive themselves. Finally, students could not performe well in the last two steps of 
the task, and the argumentation structure was also different from what the researchers had 
expected (Figure 1). 
 

 
Figure 1: Student's argumentation structure in Phase 1 

 
In the Figure 1, a solid line is used to represent stages of argumentation that students 

performed well and a dotted line is used to link parts of the students’ argumentation that did 
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not occur in the in-class session; shaded regions indicate parts that the researchers did not 
anticipate in the design stage or had to change spontaneously during the in-class sessions. 
 
Phase 2 

At the end of the in-class session in phase 1, the instructor had explicitly presented 
Young’s theorem and the above lemma and asked students to suggest how it could be proved 
and to complete the proof of Young’s theorem in their reflection journals using the MVT. 
Student S2 proposed an argument using the MVT twice, and the researchers decided to begin 
the discussion of how to prove Young’s theorem in the fourth in-class session by sharing her 
idea with her peers. The researchers anticipated that during the session, students would point 
out some of the problems with S2’s proof. 

Students proposed three different ways, including S2’s proof mentioned above. All 
proposals were based on the same idea, namely exhibiting the difference in terms of the 
function D(x,y) and to determine when the concept of limit should be used in the proof. 
During the whole-class discussion, a multiple argumentation structure focusing on showing 
the validity of each proof and on comparison between them was observed (Figure 2). 
 

 
Figure 2: Student's argumentation structure in Phase 2 

 
In this session, the more complicated task of proving Young’s theorem was proposed, and 

a task sequence was implemented beginning with an incomplete solution. It seems that this 
approach — posing a relatively difficult question by incorporating a suggested idea — was 
more effective than simply providing students with the idea on its own without a specific 
starting point. By explicitly revealing the controversial point in the proof, the tasks enabled 
students to suggest multiple warrants for one claim in each small-group discussion, causing 
the whole-class discussion to result in a multiple argumentation. 
 
Phase 3 

In vector calculus, conservative vector fields can be defined in different ways, and most 
textbooks introduce the definition with several equivalent statements. The task asked students 
to prove that a potential function exists if the value of line integration is independent of the 
curve when the starting point and the terminal points are fixed. Researchers design the 
sequence of the task to construct a new function and examine the function to ensure that it 
satisfies the definition of potential functions. Although the instructor showed part of the proof 
to students in the online session to reduce their burden with this unfamiliar and complex task 
and to improve their concentration, she didn’t provide students with individual steps to the 
proof. In other words, students need to find strategies to develop proofs by themselves. 

19th Annual Conference on Research in Undergraduate Mathematics Education 992

19th Annual Conference on Research in Undergraduate Mathematics Education 992



In this session, the students’ proof construction activity was implemented as expected in 
the HAS, but the instructor had to provide students with scaffolds to help them reach certain 
sub-claims. Therefore, the students’ argumentation structure appeared in the form of the 
compound argumentation, but showed a slight difference in the shaded regions of the HAS. 
The shaded regions indicate the instructor’s active engagement in the discussion (Figure 3). 
 

 
Figure 3: Student's argumentation structure in Phase 3 

 
The main goal of the task in this session was to find and specify new ideas to accurately 

advance and complete the proof. While the task was described relatively clearly, it was 
difficult for students as it demanded several complex sub-claims and warrants, and promoted 
more elaborated arguments. Also, it led to active small-group discussions and required the 
instructor’s engagements and discussions between small-groups. Therefore, the task 
contributed to the appropriate environment for IBL so that the students can construct the 
desired compound argumentation. 
 

Conclusion 

The students’ argumentation structures presented in the sessions gradually developed into 
more complicated forms as the study progressed. That is, the structures transformed from 
single argumentation to multiple argumentation and compound argumentation structures as 
the interventions changed. The revised interventions employed in Phase 3 can exemplify the 
characteristics of interventions that are effective at changing argumentation structures. 

Instructional tasks consist of sub-claim-based questions that can be used to provide 
students with room for inquiry to solve each question and to motivate them to take ownership 
of the entire proof construction process. Each question should be set at an appropriate level of 
difficulty in order to promote students’ mathematical inquiry with discussion, and it should 
also provide the necessary prior knowledge, skills, and crucial idea required to help them find 
a valid orientation to their inquiry. Incomplete, but improvable solutions suggested by 
students can induce active student participation. 

Classroom interaction should have a flexible structure consisting of within-small-group 
discussions, between-small-group discussions, and whole-class discussions. Students are 
encouraged to participate in whole-class discussions after sharing opinions with each other in 
small groups and reaching a similar degree of understanding. 

The instructor should encourage students to argue for their ideas even when they could 
not definitively convince their peers of the validity of those ideas. The instructor should 
consistently monitor the discussions and take appropriate actions to indirectly guide students 
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in the right direction in constructing their argumentations. In the environment with flexible 
interaction structures and open-ended questions, the instructor should re-organize classroom 
interactions and the tasks according to the students’ progress observed in the discussions. 

The iterative application and improvement of the interventions acquired in this study 
provided students with a structure in which they could participate more actively in whole-
class discussions, while the instructor, who directed them to productively construct 
knowledge, played the role of facilitator of discourse. In addition, given a lack of explanatory 
lectures, the students were able to solve inquiry-based tasks in small groups and draw 
conclusions regarding the solutions in whole-class discussions during in-class sessions. 
Overall, the students participated responsibly and productively in knowledge construction 
and learning, as confirmed by the gradual development of their argumentation into more 
complex structures. 
 

Discussion 

In this study, the researchers focus on the design products and the design principles in the 
inquiry based multivariable calculus course, which are derived from the systematic 
qualitative analysis on students’ reasoning in argumentation. The complexity of the students’ 
argumentation structure serves as the quality criterion for optimizing the interventions in the 
IBL multivariable calculus course. The systematic qualitative analysis based on the well-
established theoretical framework contributes to the methodology of this research, which 
assures the effectiveness of the design products from the empirical data.  

The design research methodology thus made a clear contribution to the development of a 
multivariable calculus course based on the flipped classroom model and the pursuit of IBL. 
Using a cyclic process of design research, researchers design, implement, and reflect on the 
curriculum and instruction in order to validate their assumptions about three instructional 
interventions based on evidence from practice. This implies that design research can be 
beneficial to the many instructors who have troubles designing effective instructions without 
sacrificing the quality of education due to a lack of well-established design principles or 
practical guidelines. 
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A case study of a mathematic teacher educator’s use of technology 
 

 Kevin LaForest 
University of Georgia 

 

The use of technology in mathematics classrooms remains an important focus in mathematics 
education due to the proliferation of technology in society and a lag in the implementation of 
technology in classrooms. In this paper, I present data from clinical interviews with a 
mathematics teacher educator (MTE) and observations from that MTE’s class in order to 
discuss his use of technology. Specifically, I describe three themes that emerged from the 
MTE’s technology use and how they relate to his epistemological stance. These themes are: 
(a) his developing a classroom environment around the use of technology, (b) technology 
providing a precise and dynamic environment, and (c) his using technology to help engender 
students’ mental imagery. Finally, I discuss how the ideas emerging from this paper can be 
helpful for the mathematics education community.   

Key words: Technology, Mathematics Teacher Educators, Epistemology  

“The use of technology to study mathematics has changed the very nature of the 
mathematics we are studying … [T]eaching and learning methods will need to be regularly 
reconceptualized to take advantage of the power of modern technology to improve 
mathematics education” (Leung, 2013, p. 523). In other words, technology provides us a way 
to transform the content we teach and the ways of thinking students construct. Instructional 
methods must be updated to include the tools we have available to us in ways that help 
students construct meaningful and sophisticated mathematics. In this paper, I expand upon 
Leung’s notion: teaching and learning methods need to be regularly reconceptualized to take 
advantage of powerful technological tools. Specifically, I describe one mathematics teacher 
educator’s (MTE) conceptualization and use of technology in a pre- and in-service education 
course focused on middle and high school mathematics content. I first provide relevant 
background information to this study and describe the methods used to collect and analyze 
data. I then provide background on the epistemological stance of the MTE and describe some 
of the main themes emerging from the MTE’s use of technology. Finally, I close the proposal 
by discussing some productive takeaways from investigating the MTE.   
 

Background 

Over the past two decades, the proliferation of technology has been expansive and the use 
of technology in the classroom has been increasing as well (Kaput, 1992; Zbiek et al., 2007). 
This societal change raises several questions about how emerging technology can be 
implemented to support student learning. Pea (1985) argued that technology should be used 
as more than just an amplifier (i.e., making things faster and/or easier); technology should be 
used as a tool for reorganizing thinking. He posited, “I take as axiomatic that intelligence is 
not a quality of the mind alone, but a product of the relation between mental structures and 
the tools of the intellect provided by the culture” (p. 168). He also pointed out that much 
could be missed if we confine ourselves to defining technology as just a cognitive amplifier. 
Echoed by Leung’s quote above, Pea argued that not only does the use of technology allow 
us to do things “faster” and more efficiently, it also changes the way that we engage in tasks.  

Speaking to specific ways in which technology can influence the way we engage in tasks, 
Kaput (1992) differentiated extensively between traditional and dynamic computer media. 
Dynamic media offer a situation in which variation is easy to achieve. Geometer’s Sketchpad 
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[GSP] (Jackiw, 2006) provides an example of a software program where variation is easy to 
achieve. Using GSP, a user can create sketches and then drag/modify parts of the sketch 
around the screen to see a variety of possibilities. This is much more tedious in a pen-and-
paper drawing of the situation, as that medium requires the user to draw each instantiation. A 
program like GSP provides students opportunities to “see” such concepts as variation because 
instead of being constrained to static media and instantiations of variation, they can 
“experience” variation in experiential time. Repeated experiences with such activities can 
help students construct variation cognitively (Thompson, Byerley, & Hatfield, 2013).  

Several researchers have conducted studies on how technology can help engender student 
learning in various content areas (e.g., Tall, 1986; Sinclair & Robutti, 2013; Geiger et al., 
2012; Heid, Thomas, & Zbiek, 2013). However, there is still a need for studies that focus on 
how teachers implement technology and how their epistemological stance effects that 
implementation. Some researchers (e.g., Grossman, 1991; Margerum-Leys & Marx, 2002; 
Mishra & Koehler, 2006) have studied different variations of this issue. Specifically, Niess 
(2005) discussed the construct of technology pedagogical content knowledge (TPCK), in 
which teachers must develop an overarching conception of their subject matter with respect 
to technology and what it means to teach with technology. There is still much work to be 
done with respect understanding how teachers, including mathematics teacher educators, are 
using technology in their classrooms. This paper is an attempt to fill part of this void.  

 
Subject, Setting, and Methods 

The main participant in this study is a mathematics teacher educator (hereafter referred to 
as the MTE) employed as a professor in the mathematics education program of a large 
university in the southeastern U.S. The participant is an experienced member of the faculty at 
that university, working there for over 40 years. I chose the MTE strategically as someone 
who would provide me an opportunity to gain insights into his epistemology and how it 
shapes his teaching. I also wanted to choose an MTE who was teaching a class in which 
student learning and secondary mathematics content topics would be a main focus.  

The study took place around the MTE’s class, which met weekly for 2 hours and 45 
minutes. There were 15 people in this class and they consisted of both Master and Doctoral 
students who had a variety of teaching experience (from only student teaching to currently 
teaching). These students normally formed 4 groups and worked together on many of the 
tasks during the semester.  The majority of these tasks were completed on GSP. The class, 
which is labeled as a class on curriculum, focuses on student learning of many different 
mathematical content areas in middle and high school. The syllabus of the class includes the 
following topics: multiplication, counting/combinatorics, measurement and oriented 
quantities, rate of change, Pythagorean theorem and square roots, quadratics, parabolas. The 
observation period for this study consisted of the classes covering the latter four topics.  

The study included a pre-interview, lasting about 90 minutes, in which I probed the 
MTE’s views on teaching, the use of technology, and student learning. The crux of the data in 
the study originates from an eight-week observation (eight class sessions) of the MTE’s class. 
During each of those eight weeks, I: (a) interviewed the MTE before class, (b) observed the 
MTE during the class, and (c) interviewed the MTE after class. The interview before class, 
which lasted between 30 and 60 minutes, provided a lens into the MTE’s intentions for that 
class. The interview after class, also lasting between 30 and 60 minutes, allowed the MTE to 
provide his thoughts on events in the previous class. In some instances, I showed the MTE 
video clips from my observation to frame my questions. After the observation period 
completed, I conducted a 90-minute post-interview with the MTE during which I probed the 
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MTE’s use of technology throughout the semester as well as asked some questions on his 
epistemological stance. All interviews conducted were semi-structured (Roulston, 2010). 

I video- and audio-recorded all interviews and observations and digitized them after each 
event. Field notes were also taken during the observation sessions and screen-recording 
software was used to capture work done on the computer during those sessions. I analyzed 
the data following an open and axial coding approach (Corbin & Strauss, 2008). First, I 
watched the interview and observation videos for any utterances or actions by the MTE that 
stood out. Such utterances included specific mentions about how and why he would (or did) 
use technology, or instances in which he described his stance on knowing and learning. 
Actions targeted included the MTE’s implementation of technology and interactions with 
students when using the technology. Then, I identified any themes emerging from the data to 
provide insights into the MTE’s technology use. As I developed these themes, I repeated the 
analysis to revise or further clarify a theme if needed.  
 

Results 

I focus on three themes that emerged from the interviews and observations with the MTE. 
These themes are: MTE developing a classroom environment around the use of technology, 
technology providing a precise and dynamic environment, and MTE using technology to help 
engender students’ mental imagery. Although these themes are listed separately, they are 
connected and each tied to the MTE’s epistemological stance. Therefore, before providing an 
explanation of the themes, I describe aspects of the MTE’s theoretical perspective that 
provide cohesiveness to these themes. First, the MTE identifies as a radical constructivist. As 
a radical constructivist, he follows von Glasersfeld’s (1989) tenets that (a) “knowledge is not 
passively received, but actively built up by the cognizing subject” (p. 164) and (b) “The 
function of cognition is adaptive and serves in the organization of the experiential world, not 
the discovery of ontological reality” (p. 164). Taking this perspective means the MTE 
believes students cannot be passive receivers of mathematics as he understands it. Instead, 
they must construct a personally viable mathematics that is idiosyncratic and fundamentally 
unknowable to another. This stance will be evident throughout the description of the themes.  

The MTE expressed his epistemological stance many times during the study. One 
example arose during a class post-interview. I showed him a clip from the class observation 
in which he said, “you can’t take anything for granted. When you’re teaching math you can’t 
take your mathematics for granted.” He clarified this statement in the interview (Excerpt 1).  
Excerpt 1. The MTE’s describes not taking your mathematics for granted as a teacher  
MTE: What I mean by that is, so many teachers take their math- the way their thinking 

mathematically as that what should be learned … They take as a given what they 
believe is valued in their culture and sometimes that’s- you know- what people 
say is valued in society. Their representation of that, that’s what’s taken for 
granted and I’m saying you can’t do that, you shouldn’t do that because the 
students have their own culture. Students have their own ways of thinking and you 
don’t know what those ways of thinking are until you start working with them …  
Being a teacher, the primary challenge of being a teacher is to learn students’ 
mathematics. To learn how they think and take those into consideration.  

The MTE’s words provide insights into the importance he places on (a) working closely with 
students and (b) helping teachers understand the significance of building models of students’ 
mathematics. Although later in the interaction he explained that building models of students’ 
mathematics is something that is very difficult to accomplish, he maintained that all teachers 
must try to accomplish this goal in order to productively support students’ learning. Paying 
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attention to how students learn shapes his teaching and consequently the way in which he 
implements technology. Dialogue in the post-course interview provides an example of his 
attention to student learning when planning to use GSP (see Excerpt 2).  
Excerpt 2. Using GSP to help students learn.   
MTE: Forcing yourself to work in GSP, although it’s extremely detailed, I think brings 

out … the ways that you think and you almost- you have to start being more 
explicit in how you put things together mathematically in GSP. That’s one of the 
basic reasons I want to use that. That’s one of the basic reasons. Another basic 
reason is, is that when you think about the construction of a mathematical reality 
… This notion of a mathematical reality with the way you implement your 
thinking in GSP- that- I think it changes how you think mathematically and it 
changes your ways of thinking about the nature of mathematics.  

His belief that GSP can be used to change how students think mathematically and how they 
perceive mathematics was pervasive throughout the observations of his teaching and the 
interviews. I discuss some examples in the description of the three themes below.  
 
MTE Developing a classroom environment around the use of technology  

An important part of the MTE’s teaching when using technology was the emergence of a 
welcoming and mathematically productive environment shared by him and the students. To 
solidify this point during one of the interviews, the MTE said, “I want the students to develop 
a sense of ownership over the class so it’s not [The MTE’s] class, it’s our class.” Through 
this co-ownership of the class, the MTE hoped students would be actively engaged in tasks 
and discussing the mathematics with other students and the instructor. In this way, he hoped 
students would not only engage in their own mathematics, but they would also have to think 
outside of their own mathematics, considering those around them and the instructor as well.  

Throughout the course of the observation period, students were grouped together and 
asked to work on tasks requiring the use of GSP. In class, the MTE stated, “I believe in my 
students working independently side-by-side. Does that make sense? So it’s interdependent.” 
I asked him to clarify what he meant by having his students working interdependently in a 
post-class interview. His explanation is found in Excerpt 3.  
Excerpt 3. The MTE explains working interdependently.    
MTE: Working together in groups of 2 or 3 provides them with uh, ways of- one student 

has an insight they explain it to the other students, the other students interpret and 
they may be able to assimilate what the other student is doing but yet by those 
assimilations be able to modify what- how they’re operating and understand how 
they’re operating but it also could provide this person that’s there making the 
explanation- it gives them a way to uh, learn to communicate with other people 
mathematically and start carrying on mathematical conversations.  

Such conversations were the norm, not the exception during my observation of the class. To 
understand why he feels such communication is important, we can go back to his 
epistemological stance. In the process of assimilating what another person has done, a student 
needs to consider another’s mathematics and how it might relate to one’s own mathematics.  

Another aspect of the MTE developing a classroom was the idea of having students 
present and discuss their work. There were very few instances in which the MTE lectured to 
the class for an extended period of time. Instead, he let the students take the lead in 
explaining the mathematics, allowing students to examine their (and other students’) thinking 
more explicitly. An interesting discussion resulted from this strategy. After the MTE 
mimicked a student’s directions on a construction, one student discovered an error in the 
construction and said, “So the way it’s written there shouldn’t it be x and y instead of x-prime 
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and y-prime?” The MTE replied to the student by saying, “well I’m just doing what you told 
me. I’m your robot.” This exchange provides evidence that he intended the students to take 
ownership of the class, both in its discourse and in its mathematical focus. He mimicked the 
actions suggested by the students and allowed them to discover the error on their own.  

As the MTE continued to call on students to show their work, I asked him to explain how 
he decided which students to call on. One reason for his decision can be found in Excerpt 4.  
Excerpt 4. The MTE explains his decisions on call students to the front.    
MTE: One of my goals for the course is that they become explicitly aware of how they 

think … I want them to become more explicit with the way they are thinking and 
start explaining how they are thinking. But it’s also important that I put people up 
there who have solutions so- so the people- so the class- oh my classmate’s 
solving this problem. And that’s really important that I understand that the 
classmate’s solving the problem that makes it more possible for me and I’ll work 
harder. It’s a matter of energizing the students and setting goals so they become 
goal directed in their mathematical activity.  

Like in the other examples in this section, the MTE described the importance of considering 
others’ mathematics when working on a task. In the same interaction, the MTE discussed 
other ways he decided who would present solutions. One notable way was selecting someone 
who has not taught but will teach in the future in order to get them comfortable (in his words 
“building a social confidence”) with communicating mathematics in front of a class.  
 
Technology providing a dynamic and precise environment 

Over the duration of the observation period, it became apparent that the MTE used GSP 
for both its dynamic and its precise nature. By dynamic, I mean that one can create a sketch, 
click on a point, and drag it around in ways determined by how the sketch was constructed. 
Similarly, aspects of the sketch can be animated. This allows students to see the changes in 
experiential time rather than requiring students to redraw every possible shape, as is the case 
in pen-and-paper constructions. Precise refers to the ability to, for example, create a circle 
and know that the shape created is representative of a circle (and not subject to the error of 
human hands). Although it is true the limitations of computers (e.g., the screen is made up of 
pixels) do create some error, such error is visually minimal. One cannot easily, by hand, draw 
a line with length of the square root of a non-square number. But, GSP allows students to do 
provide a near exact representation through a construction in which the students are hands-on.   

Specifically, the MTE exploited the dynamism of GSP by developing constructions with 
the intention of helping students develop proving skills. One example occurred when the 
class was tasked with showing something is true for all cases. For instance, the class was 
asked to justify that the inscribed shape in figure 1 is a square. The students were then asked 
to drag the points of the inscribed square along the sides of the outer square. Is the shape still 
a square? Will it always be a square? The MTE explained the affordances technology 
provided in proof building, “In GSP, you can move this thing. Now you know that you can 
see all cases … it seemed to be visually palatable that it was true for all cases.” Although he 
says later that a GSP construction does not represent a complete proof, it can help students 
generalize. A teacher only showing the base case and the inductive step would be taking his 
own mathematics for granted and perhaps ignoring the mathematics of students who have not 
yet constructed a scheme for generalization.  

 
Figure 1. Square inscribed within another square 
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For similar reasons, the MTE felt the preciseness of the software was important in 
teaching his class. Specifically he felt that precision was pivotal in the unit covering square 
roots. I asked him to expand on the reasons GSP was important for that unit and how it 
compared to previous units. His response can be found in Excerpt 5.  
Excerpt 5. The importance of preciseness     
MTE: It’s more essential to do these constructions because GSP offers you the power of 

being extremely precise. OK, and it does in the context of the other problem sets 
as well. … I can’t do this easily without GSP. I really can’t. Using GSP is much 
more essential here with the precision it offers you and the opportunities it offers 
you. So how can you construct a segment whose length is precisely the square 
root of two long, unless you go to GSP? You can’t do it. I can’t do it! 

The preciseness was important for the MTE in other areas of the course as well. For example, 
the students were tasked to prove two lines were perpendicular (they were constructed as 
perpendicular in GSP). To do so, they needed to find the slope of both lines. The MTE said, 
“That was a difficult problem so GSP was a beautiful medium- I could have written it on the 
whiteboard but it wouldn’t have been quite so dramatic because it wouldn’t have been as 
precise. GSP provides you something that’s precise.”  Through this precision, the MTE hoped 
that the students would be forced to become more explicit in their thinking and the use of 
GSP would perhaps change the very nature of the way they think of perpendicular lines.  
 
MTE using technology to help engender students’ mental imagery 

The third theme emerging from the data, which relates to the dynamic affordances of 
technology, is the MTE’s use of technology to help students develop mental imagery. This 
was an idea that permeated through the observation period. The MTE hoped to have students 
construct an imagery of the situation through use of the technology. This does not mean just 
remembering pictures. Instead the MTE wants the student to be able to reconstruct the image 
of the situation, including its dynamic nature, in his mind. In doing so, the MTE hopes this 
re-presentation adds constructive building blocks to the students’ mathematical reality so the 
student can operate mathematically on similar situations in the future.  

A specific example where helping students create and operate on imagery was an explicit 
goal occurred during the unit on rate of change. The unit relied heavily on reasoning about 
quantities and proportions (many tasks involved conversions between monetary units). The 
MTE discusses engendering students’ mental imagery for rate in Excerpt 6.  
Excerpt 6. Rates and imagery 
MTE: One of the aspects of the rate scheme is the dynamic imagery. That you can 

regenerate the operations. So when this when-uh- this point moves [referring to a 
point on a sketch]. Well if you think about that as a motion, okay. Which we do. 
Well if we think about it conceptually if I can regenerate these two, the pounds 
and the dollars in relationship, then I- we’re talking about mental operations. So 
what the motion becomes if I can regenerate the motion and produce the motion 
mentally, those are conceptual operations and no longer just a physical motion. 
And so that transformation is something I can’t do for the students but that’s what 
I’m trying to engender is this dynamic imagery. 

The MTE’s statement fits with the epistemological stance that students cannot passively 
receive knowledge. The teacher must be cognizant of students’ mathematics in order to 
provide tasks and experiences that engender mathematical reasoning. 

There are several other examples of attempts by the MTE to engender dynamic imagery 
that occur during the class periods (quadratic functions using area model, oriented quantities, 
etc.). One of the more dramatic examples in the class was the construction of the parabola. 

19th Annual Conference on Research in Undergraduate Mathematics Education 1001

19th Annual Conference on Research in Undergraduate Mathematics Education 1001



The MTE showed them an animation in GSP that, when put in motion, created the envelope 
of a parabola. This animation not only provided a stimulating image but also showed the step-
by-step construction. The class sounded a collective “oh!” during the first run of this 
animation. Although the “oh!” is nice, the MTE’s goal was for the students to operate on this 
imagery and productively re-present in a situation without the technology. In the post-course 
interview, the MTE expounded upon the importance of mental imagery (see Excerpt 7).  
Excerpt 7. The importance of mental imagery.    
MTE: By using GSP, you can develop this concept of mental imagery. So, in which I 

really think is important, you know, in all aspects of mathematics. This is 
something quantitative reasoning really has going for it because imagery is really- 
is really foundational. But it’s just not imagery. It’s how you operate on your 
imagery okay. And so you gotta spend a lot of time developing the imagery and 
how you operate on imagery.  

Later in the interaction, the MTE relates this development of a mental imagery to his 
epistemological idea that a student creates his own mathematical reality. The construction of 
various imagery and the operations on that imagery help construct the students’ reality.  
 

Discussion 

At the beginning of this paper, I quoted Leung (2013) and agreed with the idea that using 
technology can transform the very content that is being taught. I contend that the MTE 
discussed in this paper provides an example case of where his conceptualization of and the 
students’ engagement with the technology transformed the content being taught and also the 
way in which it was taught including the environment of the classroom. The MTE made 
several considerations in his decision to use technology. Like Kaput (1992) described, 
technology can be used in dynamic ways. The MTE used the dynamic nature of GSP to help 
students generalize situations with infinite cases. Similarly, in conjunction with Pea (1985), 
the MTE attempted to use technology as a cognitive reorganizer by using it to help engender 
students’ mental imagery. The MTE intended for students to construct imagery in their minds 
and then operate on it in a way they can re-present later in a situation absent the technology.  

Another important takeaway from this study is the importance of a teacher’s 
epistemological stance on the way in which he or she implements technology. If the teacher 
does not hold that student knowledge is actively built, that person is unlikely to see the 
importance in using technology as a way to engender dynamic imagery (for example). Nor 
are they likely to consider student interactions essential for student learning, as they may not 
have considered the importance of others’ mathematics. Although this may seem like a fairly 
obvious contention, I believe that one must consider a teacher’s stance before making any 
pedagogical recommendations. The writers of standards and recommended practices may tell 
teachers that using technology is important but if the teachers have not considered how 
students learn at any depth, then it would be hard to expect them to implement the practices 
in the way the writers intend. Thus, attention to how students learn should be of utmost 
importance in teacher preparation classes (as it was in this MTE’s classroom).  

Finally, the study has implications on the community of MTEs, a group of people that has 
been studied minimally compared to other populations in the mathematics education field. 
MTEs are responsible for preparing PSTs and thus determining how to provide them with 
experiences that focus on ways of thinking important to the teaching and learning of 
mathematics is a pressing area of need. An MTE’s use of technology is a model for the PSTs 
he teaches. This paper provides examples of the different considerations MTEs must make 
when using technology.  
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Lacking confidence and resources despite having value: A potential explanation for 
learning goals and instructional tasks used in undergraduate mathematics courses for 

prospective secondary teachers 
 

Yvonne Lai 
University of Nebraska-Lincoln 

In this paper, I report on an interview-based study of 9 mathematicians to investigate the 
process of choosing tasks for undergraduate mathematics courses for prospective secondary 
teachers. Participants were asked to prioritize complementary learning goals and tasks for 
an undergraduate mathematics course for prospective secondary teachers and to rate their 
confidence in their ability to teach with those tasks and goals. While the mathematicians 
largely valued task types and goals that mathematics education researchers have proposed to 
be beneficial for such courses, the mathematicians also largely expressed lack of confidence 
in their ability to teach with these task types and goals. Expectancy-value theory, in 
combination with these findings, is proposed as one account of why, despite consensus about 
broad aims of mathematical preparation for secondary teaching, these aims may be 
inconsistent with learning opportunities afforded by actual tasks and goals used. 

Key words: secondary teacher education, mathematicians’ instructional dispositions 

Each year, many prospective secondary teachers are enrolled in undergraduate programs 
intended to prepare them to apply mathematical knowledge to their future teaching practice. 
The field has called for improving these programs, including teachers’ mathematical 
preparation. In many programs, mathematicians teach the mathematics courses for these 
programs. However, there are few studies of how mathematicians teach (Speer, Smith, & 
Horvath, 2010), including how mathematicians make instructional decisions. 

Scholars in teacher education have argued that mathematical knowledge for teaching 
develops through reasoning mathematically in ways that interact with pedagogical 
considerations, and that such reasoning should play a prominent role in teachers’ preparation 
and continual development (e.g., Ball, 2000; Gallimore & Stigler, 2003; Mason & Davis, 
2013; Shulman, 1986). Prospective teachers, as those who have not yet accrued experience 
teaching their own class, are unlikely to be able to contextualize mathematical knowledge 
into how it would apply to teaching. Thus from prospective teachers’ viewpoint, even 
ostensibly useful knowledge may seem irrelevant to future practice and they therefore may 
not be invested in learning—a viewpoint that has been shown in multiple studies of 
prospective secondary teachers (e.g., Goulding, Rodd, & Hatch, 2003) Tasks that are 
“practice-based” (Ball & Bass, 2003)—those that engage the doer in mathematical reasoning 
situated in a pedagogical context provided—can potentially bridge this disconnect. By 
engaging in such tasks, pre-service teachers could apply mathematics in ways that are 
authentic to the demands of teaching (Stylianides & Stylianides, 2014; Ball, 2000). 
Moreover, practicing teachers’ achievement on assessments using these tasks correlates 
positively with their student outcomes and teaching quality (Baumert et al., 2010; Hill, 
Rowan, & Ball, 2005; Hill et al., 2008; Rockoff, Jacob, Kane, & Staiger, 2011). Practice-
based tasks, then, could play a potentially powerful role in the mathematical preparation of 
teachers by giving prospective teachers a window into teaching that engages them in 
mathematics with which they may otherwise not engage. 
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As the first part of the full paper will elaborate, such tasks do appear to be common to 
specialized courses1 for elementary but not secondary level teaching. Given prospective 
secondary teachers’ perception of their mathematics coursework as irrelevant, the reported 
study investigated: Which task types used in specialized courses for secondary teaching are 
prioritized by mathematicians who may teach them, why, and for what purposes?  

The goal of the study is to identify reasons why practice-based tasks may have had a 
slower adoption in specialized courses for secondary level teaching as compared to 
elementary. This small scale study was designed to elicit potential reasons by conducting 
think-aloud interviews with mathematicians (n = 9), in which the mathematicians were asked 
to prioritize tasks and goals for use in a specialized course for secondary level teaching. The 
results of the study are four hypotheses that to be examined in a future, larger scale study: 
1. Mathematicians generally value practice-based tasks but lack confidence in using 

practice-based tasks for specialized courses for secondary level teaching. 
2. Mathematicians are generally more confident about teaching tasks from a secondary from 

an advanced perspective than practice-based tasks, even if they may value it less than 
practice-based tasks. 

3. The confidence of a mathematician for using practice-based tasks is mediated by 
perceived access to resources where practice-based tasks are paired with pedagogical 
guidance about questions or prompts to use with prospective teachers. 

4. Mathematicians frame programmatic goals in terms of assessment and lesson-level or 
task-level goals in terms of instruction. 
These hypotheses suggest a potential reason why practice-based tasks are not commonly 

integrated into specialized courses at the secondary level, and this reason runs contrary to the 
idea that mathematicians, due to their training in the discipline of mathematicians, may 
simply value discipline-based more than practice-based problems. Instead, practice-based 
tasks may not be common because mathematicians may not feel that they can adequately 
teach or design such tasks, even though they would like to be able to. Additionally, the 
hypotheses are significant in that investigating them may explain why, despite the appearance 
of consensus about the programmatic aims of mathematics teacher education as evidenced by 
policy documents co-written by leaders of mathematics and mathematics education (CBMS, 
2001; CBMS, 2012), the aims may not be coherent with the learning opportunities afforded 
by tasks and goals used in practice. If broad aims, tasks, and lesson-level goals are not 
consistent, it will be hard to improve mathematical preparation for secondary teaching in any 
substantive way. I take up this issue in the conclusion.  

Rationale for Interview Design and Relation to Literature 

I took the perspective that instructors use tasks to accomplish particular goals. Because 
specialized course goals are likely to be based on ideas about mathematics and teaching, and 
goal attainment in general is influenced by a number of cognitive and affective factors, the 
study design drew from literature in mathematics teacher education and cognitive science.  

The role of practice-based tasks in mathematics teacher education 
Practice-based tasks. I use the phrase “practice-based” in reference to Ball and Bass’s 

(2003) description of mathematical knowledge for teaching as a “practice-based” theory. 
Practice-based mathematics tasks, of which examples include those used in the Learning 

                                                
1 In this paper, I use the term specialized courses to refer to courses designed primarily for prospective teachers, 
which are intended to address mathematics broadly useful for teaching a grade band within K-12 mathematics. 
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Mathematics for Teaching (LMT, 2008) and COACTIV (Baumert et al., 2010) instruments, 
are those for which successful performance on the tasks require mathematical reasoning 
based on inferences about the pedagogical context (Hill, Schilling, & Ball, 2004; Lai, 
Jacobson, & Thames, 2013). Pedagogical context refers to elements of teaching and learning 
provided by the task, including the purpose of an embedded teacher or information about 
students. Task (d) in Table 1 (d) is an example of a practice-based task. 

Tasks potentially used in specialized courses for secondary teaching include tasks 
addressing secondary mathematics from an advanced standpoint, secondary mathematics 
with connections to tertiary mathematics, practice-based contexts, and common content 
knowledge. These are the four task types used in the interviews. The first three represent 
goals for specialized courses for secondary teaching as described in the guiding document 
The Mathematical Education of Teachers II (CBMS, 2012). The last type, common content 
knowledge (Ball, Thames, & Phelps, 2008), represents proficiency (NRC, 2001) at secondary 
level content. Examples of each task type used in the study are provided in Table 1. 

Table 1. Task types and examples 
(a) Secondary mathematics from  

an advanced standpoint 
 
 

 
 

(b) Secondary mathematics with  
connections to tertiary mathematics2 

 
(c)Practice-based3 

 

(d) Common content knowledge 
 

 

Common content knowledge was included because it is necessary for teaching, and also 
to represent the viewpoint that teachers only need to be able to do the mathematics their 

                                                
2 Adapted from an instrument developed by the Educational Testing Service © 2013, with permission 
3 Source: Thames (2006), p. 6. 

Suppose x �= 0. Prove that x0
= 1.

You may use the additive law of
exponents (ab+c

= abac for all a � R,
b, c � 0, and b, c � Z) and the
definition that a1

= a for all a � R

During a lesson on exponentiation, Ms. Waller’s

students came across the expression
�
(�4)

1
2

�2
.

Two students obtained different answers when
they tried to evaluate this expression.

Anna: I got �4. I started with (�4)

1
2

=�
�4. And

�
�4 = 2i. So (2i)2

=

4i2 = �4, and so
�
(�4)

1
2

�2
= �4.

Brenda: My answer was 4. I did�
(�4)

1
2

�2
= (�4)

1
2 ·2

= (�4)

2· 1
2

=

�
(�4)

2� 1
2

= 16
1
2

=

�
16 = 4.

Explain the apparent contradiction between
Anna’s and Brenda’s answers in terms of a multi-
valued exponential function.

Ms. Madison wants to pick one example from
the previous day’s homework on simplifying rad-
icals to review at the beginning of today’s class.
Which of the following radicals is best for setting
up a discussion about different solution paths for
simplifying radical expressions?

1.
�

54

2.
�

72

3.
�

120

4.
�

124

5. Each of them would work equally well.

Explain your reasoning.

Find three different pairs of functions g
and h such that

g � h = (x + 3)

2.
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students need to learn to do. Although this viewpoint is not often expressed in the teacher 
education literature, it nonetheless implicitly or explicitly presents itself in our culture. I see 
this viewpoint as underlying the design of studies on teacher effectiveness using teachers’ 
SAT or ACT as a proxy for knowledge (e.g., Rockoff, Jacob, Kane, & Staiger, 2011).  

Note that Task (b) in Table 1 might be thought of as practice-based, but it is classified 
first as a connections to tertiary task because of its reference to complex analysis which is not 
a secondary topic. Moreover, the level of inference about pedagogical context needed for the 
task is arguably less than that of the example practice-based task. 

Practice-based tasks in prospective teachers’ development of mathematical knowledge 
for teaching. Practice-based tasks may play an especially critical role in teacher preparation. 
Multiple researchers have commented on the potential of practicing secondary teachers to 
learn and apply mathematics from mathematics courses and tasks that do not provide 
pedagogical context, and to see these mathematical experiences as relevant to their teaching 
(e.g., Watson, 2008; Thompson, Carlson, & Silverman, 2008; Kleickmann et al., 2013). Yet 
prospective secondary teachers’ documented perception of the irrelevance of their 
undergraduate mathematical experiences (Goulding, Rodd, & Hatch, 2003; Ticknor, 2012; 
Wasserman, Villaneuva, Mejia-Ramos, & Weber, 2015) suggests that even if the tasks they 
worked on drew on relevant mathematics, a different approach or at least supplement to 
teaching and learning is needed in order for the tasks to influence thinking during and outside 
of class (Doyle, 1988). Practice-based tasks, by situating mathematics in teaching, could play 
such a role (Stylianides & Stylianides, 2014; Ball, 2000). I am not arguing that all tasks in 
specialized courses should be practice-based but rather than some tasks should be, and that 
the tasks should be tightly connected to the mathematical theory developed, whether the 
theory is from an advanced standpoint, or with connections to tertiary mathematics, or an 
alternative that somehow connects to secondary mathematics teaching. 

The availability of practice-based tasks integrated into the mathematical goals of a 
specialized course is greater at the elementary and middle levels than secondary level. As 
elaborated in the full paper, evidence for this assertion includes an analysis of the content and 
tasks of textbooks commonly used in and policy documents guiding the curriculum for 
specialized courses (e.g., Bassarear, 2011; Beckmann, 2003; Bremigan, Bremigan, & Lorch, 
2011; CBMS 2012; Parker & Baldridge, 2004; Sultan & Artzt, 2011; Usiskin, Peressini, 
Marchisotto, & Stanley, 2003). Tasks provided were identified as practice-based or not, and 
the key mathematical knowledge needed for the tasks were compared to the knowledge from 
theorems or explicitly stated mathematical goals of the section of the chapter they were 
contained in. Textbooks and policy documents for specialized courses for elementary and 
middle grades teaching incorporate practice-based tasks. On the other hand, for specialized 
courses for secondary teaching, the most commonly used textbooks do so less centrally. 
When these textbooks do incorporate practice-based tasks, the tasks do not tightly connect to 
a mathematical theory being developed, and so can be treated as asides rather than a central 
part of the course.  

Cognitive and affective factors influencing goal attainment 
Broadly speaking, many studies have shown that a person’s success in attaining a goal is 

strongly shaped by how much the person values the goal intrinsically, the person’s 
confidence that they could attain the goal, and the quality of the person’s ability to conceive 
of implementation intentions (statements of the form “If X happens, then I will do goal-
attaining behavior Y”). (See Eccles and Wigfield (2002)’s review of research on the effects 
of motivational beliefs and values on goal attainment, and Gollwitzer and Sheeran (2006)’s 
review on the effect of implementation intention on goal attainment).  
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To represent “confidence”, I used the notion of expectancy, that is, a person’s belief about 
how well they will do at a task (Atkinson, 1964), as used in Eccles and colleagues’ 
extensively validated expectancy-value theory that relative value and perceived probability of 
success influence achievement-related choices (e.g., Eccles, 1983; Eccles, Wigfield, Harold, 
& Blumenfeld, 1993). The phrasing of this study’s interview questions on expectancy and 
value were adapted from those described in Eccles, Wigfield, Harold, and Blumenfeld 
(1993). To represent capacity for implementation intention, the interview design included 
asking mathematicians to articulate anticipating prospective teacher thinking on a task and 
how the mathematicians would respond in order to move the teachers toward a particular 
learning goal. While a separate study is planned for examining these implementation 
intentions, statements regarding expectancy and value expressed during this interview portion 
were used in the analysis for the present study. 

Data, Interview Design, and Method 

Mathematicians who self-reported as “having taught a course designed primarily for 
prospective secondary teachers or would be interested in teaching such a course were the 
opportunity made available” were recruited for the study via a national network of US 
mathematicians interested in mathematics education. Interviews of 9 mathematicians were 
conducted, each approximately 90 minutes in length. The mathematicians were located in 6 
different states, had between 0-12 years of teaching specialized courses for secondary 
teaching, and 0-10 years of teaching specialized courses for elementary teaching. All 
mathematicians had previously taught or were teaching prospective or practicing teachers. 

Each interview included these five parts: (a) Task Goal Sort (b) Goal Sort (c) Task Sort 
(e) Overarching Goal Sort (e) Wish List. In Task Goal Sort, mathematicians were asked to 
prioritize learning goals for prospective teachers in the context of using a particular task, and 
to describe what specifically they would anticipate prospective teachers thinking, how they 
would know, and how they would respond so as to move the class toward the intended goal. 
In Goal Sort, mathematicians were then asked to prioritize the goals for “how important are 
these goals for mathematical preparation for secondary teaching”, independent of the task. 
Table 2 describes these goals and task. In Task Sort, mathematicians were presented with a 
set of 6 tasks and asked to prioritize them for “how well each task represents what secondary 
teachers should learn in their mathematical preparation”. Table 1 provides a sample of 4 of 
the tasks used. The task types represented the set presented to each mathematician were: 
practice-based (Table 1c), tertiary connections situated in a pedagogical context (Table 1b), 
secondary from advanced standpoint (Table 1a), a variant whose mathematics matched the 
advanced standpoint task but situated in a pedagogical context, another secondary from 
advanced standpoint task addressing different mathematics and also situated in a pedagogical 
context, and common content knowledge (Table 1d). The Overarching Goal Sort used the 
same prompt as the Goal Sort with generic goals that paralleled those in the Goal Sort, also 
shown in Table 2. In Wish List, mathematicians were asked to describe the resources they felt 
they would need to “get better at teaching courses designed 
primarily for prospective teachers. 

In Goal Sort, Task Sort, and Overarching Goal Sort, 
mathematicians expressed their prioritizations by “sorting” the 
cards containing the goals and tasks horizontally, where more to 
the left/right meant lower/higher priority. Figure 1 shows a 
picture of this interface. They were then asked to sort the cards 
vertically by expectancy, where lower/higher meant “less/more confident that, if asked, that 

Fig 1. Card sort interface 
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you could create or learn to create opportunities for teachers to do well at [these kinds of 
tasks/this goal].” Cards could overlap. Mathematicians trained on the interface by placing the 
cards “do math while drinking coffee” and “make mathematical puns” horizontally and 
vertically where more to the left/right meant “enjoy less/more” and lower/higher meant 
“less/more confident that, if asked, you could create or learn to create opportunities for fellow 
mathematicians to [do math while drinking coffee/make mathematical puns]”. Most 
mathematicians placed the coffee card at the very top, and the puns card on the very bottom. 
This activity was to ensure that study participants understood the notion of expectancy and 
that leftmost/rightmost and upmost/downmost represented extremes.  

For each card for each participant, cards were assigned horizontal and vertical coordinates 
with values between 1 and 5 based on the approximate location of the center of the card as 
placed by the participant. Horizontal coordinates represented value and vertical represented 
expectancy. Interview transcripts were chunked into statements of beliefs, reasons, goals, and 
resources. The collection of statements were analyzed for themes (Glaser & Strauss, 1967). 
Patterns noted in card placements were triangulated with interview statements. 

Table 2. Task and goals sorted by participants 
Task Goal Sort/Goal Sort Overarching Goal Sort 

Understanding the relationship between the 
definition of an equation, the definition of graph, and 
the definition of relation. 

Connecting ideas from higher mathematics to 
secondary mathematics 
 

Seeing how “circles” can look very different 
depending on the metric used. 

Experiencing secondary mathematics as a rigorous, 
challenging, coherent body of mathematics. 

Analyzing incorrect solutions for foundational ideas 
that may be misunderstood. 

Analyzing mathematical teaching situations 
 

Mastery in graphing relations of two variables, 
especially involving absolute values. 

Ensuring that teachers themselves would be able to do 
the problems that they are responsible for teaching K-
12 students how to do. 

Description of Task used in Task Goal Sort 4 
Which of the following best shows the graph of |x| + |y| = 6? (a) [picture of a circle] (b) [diamond] (c) [shaded 

triangle in quadrant I] (d) [square] (e)[shape similar to a four pointed hypocycloid] 

Results 

I summarize the logic of how the results generated the hypotheses described in the 
beginning of this proposal, with more elaboration in the full paper.  

Hypotheses 1 and 2: Mathematicians generally value practice-based tasks and goals but 
lack confidence in using practice-based task sand goals for specialized courses for secondary 
level teaching. Mathematicians are generally more confident about teaching tasks from 
tertiary connections and advanced viewpoint than practice-based tasks, even if they may 
value them less than practice-based tasks. These hypotheses are supported by the general 
trend that practice-based goals and tasks were generally placed more right than down (below 
the 45o line), representing higher value and lower expectancy than other types of tasks; and 
advanced standpoint and tertiary connections tasks were generally more left than up (above 
the 45o line). Table 3 shows scatterplots of card sort placements.  

Hypothesis 3. The confidence of a mathematician for using practice-based tasks is 
mediated by perceived access to resources where practice-based tasks are paired with 
pedagogical guidance about questions or prompts to use with prospective teachers. This 
hypothesis emerged from themes in statements about resources made by mathematicians, and 

                                                
4 Source: Begle (1972), p. 42 
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the statements about expectancy made by the mathematicians who expressed relatively higher 
expectancy about practice-based tasks. 

Hypothesis 4. Mathematicians frame programmatic goals in terms of assessment and 
lesson-level or task-level goals in terms of instruction. This hypothesis was generated by 
comparing values ascribed to parallel goals in Goal Sort and Overarching Goal Sort. When 
looking over the interview chunks for reasons and beliefs concerning the placement of 
overarching goals, participants who placed types in Overarching Goal Sort differently than in 
the Goal Sort, tended to, in the Overarching Goal Sort, bring up the theme of assessment. 
That is, they appeared to frame programmatic goals in terms of certifying knowledge and 
more specific goals in terms of instruction; not one participant who placed them differently 
brought up the difference explicitly suggesting that the differing frames of assessment and 
instruction may not have been adopted deliberately. 

Limitations of the study. As the findings of this study are based on a small scale study 
with limited examples from each type, the findings at most suggest hypotheses that bear 
examination in larger scale studies. Alternative explanations may account for the findings. 
For instance that participants happened to prefer or not prefer the particular examples of 
specific goals and tasks, but had other examples or variants of the goals and tasks been used, 
then the results may have been different. However, there are ways in which the findings are 
consistent with other literature. For example, if Hypothesis 2 is true, expectancy-value theory 
would predict that many specialized courses would be characterized by tertiary connections 
and an advanced standpoint, corroborating Murray and Star (2013). 

Table 3. Scatterplots of card sort placements 

    
Overarching Goal Sort 
Value vs. Expectancy 

Goal Sort Value vs. 
Expectancy 

Task Sort Value vs. 
Expectancy 

Values in Goal Sort vs. 
Overarching Goal Sort  

Key: Green = Practice Based, Yellow = Tertiary Connections, Pink = Advanced Standpoint, Purple = Common 
Content Knowledge. Larger circles represent more participants placing the card in that approximate location. 

Implications  

The main aim of specialized courses is to prepare teachers to learn and apply 
mathematical knowledge to their future teaching. The CBMS (2012) policy document takes 
this position, signifying broad agreement in this aim. Practice-based tasks could play an 
important role in carrying this aim to fruition, but are not being used. The findings of this 
study suggest the uncommonness of practice-based tasks in specialized courses for secondary 
teaching is not explained by the idea that mathematicians do not value practice-based tasks. 
In fact, almost all participants remarked unprompted on the value of “tasks like the ones on 
the colored cards” that had practice-based elements, and almost all participants mentioned a 
wish for a repository of such tasks. The lack of practice-based tasks may be better explained 
by mathematicians’ lack of confidence in using, accessing, and designing practice-based 
tasks. However, it is an open question as to what such a resource would look like and how it 
would be indexed.  
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Another implication of this work has to do with how discussion of goals actually drives 
programmatic and instructional decisions. If there is a difference in how parallel goals are 
prioritized when thinking about them on the program level and on the course level, then 
actions taken are likely to be incoherent. Increased awareness may be needed for the frames 
used in discussion and be clear when we are discussing overall certification or moment-to-
moment instructional decisions.  
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The graphical representation of an optimizing function 
 

Renee LaRue Nicole Engelke Infante 
West Virginia University West Virginia University 

 
Optimization problems in first semester calculus present many challenges for students. In 
particular, students are required to draw on previously learned content and integrate it with new 
calculus concepts and techniques. While this can be done correctly without considering the 
graphical representation of such an optimizing function, we argue that consistently considering 
the graphical representation provides the students with tools for better understanding and 
developing their optimization problem-solving process. We examine seven students’ concept 
images of the optimizing function, specifically focusing on the graphical representation, and 
consider how this influences their problem-solving activities. 
 
Key words: Calculus, Optimization, Function, Graphs 
 

Word problems are notoriously challenging for students - not a surprise to anyone who has 
ever been a student or an instructor of mathematics. Slightly obscuring the mathematics involved 
by describing a situation using everyday “nonmathematical” language adds an extra level of 
difficulty. In first semester calculus, students have many opportunities to solve word problems. 
Here we examine optimization problems, which require students to read a short description of a 
scenario in which a quantity needs to be maximized or minimized. This quantity may be an area, 
a volume, a cost, a distance, an amount of material, or a production output. To solve the problem, 
the student must construct a function for this quantity (we call this the optimizing function) and 
then use calculus techniques to find the absolute maximum or absolute minimum of the function 
in the appropriate domain. White and Mitchelmore (1996) found that students are much more 
likely to be able to find a desired maximum or minimum when the function is given explicitly in 
the problem than they are when the problem is stated in the form of a word problem and the 
students must first construct the appropriate function. For this reason, we are interested in 
studying how students construct the optimizing function and how this influences their 
understanding of the rest of the problem. 

Our research is guided by the following two research questions: 1) What facets of learners’ 
concept images influence their construction of the optimizing function when solving calculus 
optimization problems? and 2) How can this shed light on teaching interventions that could 
support conceptual development of optimization? 

LaRue and Engelke Infante (2015) identified six key mathematical concepts that play a role 
in students’ understanding of optimization – specifically their construction of the optimizing 
function. These six mathematical concepts are: variables, function notation, function 
composition, properties of rectangles and the relationships between them, the role of the 
optimizing function, and the graphical representation of the optimizing function. Here, we 
examine in greater depth the students’ concept images of the optimizing function, focusing on 
those aspects related to the ability to transition between the graphical and algebraic 
representations of the optimizing function throughout the problem-solving process. We observed 
that students’ inclination to consider the graphical representation of the optimizing function was 
directly related to their ability to explain the reasoning for their work and to solve challenging 
optimization problems. 
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Literature Review 

 
Graphical interpretations of functions can convey information about the functions in a single 

image. The graph of a function can benefit students because it allows them to consider the 
overall behavior of the function, rather than focusing on individual elements. Students, however, 
are often reluctant to consider the graphical representation of a function, and when they do, they 
frequently have trouble interpreting the information correctly (Eisenberg, 1992). Sfard (1992) 
noted, “Graphs provide another way of thinking about functions, but there is almost no 
connection between a graph and the underlying formula” (p. 75). Knuth (2000) reported, “three 
fourths of the students chose an algebraic approach as their primary solution method, even in 
situations in which a graphical approach seemed easier and more efficient than the algebraic 
approach” (p. 504). Even (1998) found that students have trouble solving problems that require 
them to move seamlessly between different representations of functions. 

Arcavi (2008) noted that analytic techniques are frequently “devoid of meaning” for students 
and suggests having students examine the graph of a function prior to using analytic techniques 
to determine information about the function (p. 9). He suggested using a dynamic graphing tool 
that allows the students to watch the function being drawn and to see the relevant information 
about the function at various points on the function. He argued, “a dynamical graphical model 
highlights aspects of the situation that were not as salient had we investigated it alone or even by 
modeling it symbolically” and gave the example of using dynamic graphs to examine the 
relationship between the perimeter of a rectangle and the length of one its sides and the 
relationship between the perimeter of a rectangle and the length of its diagonals (p. 5). 
 

Theoretical Perspective 
 

Tall and Vinner (1981) define a learner’s concept image as ‘all the cognitive structure in the 
individual’s mind that is associated with the given concept’ (p. 1). Because the concept image 
exists in the mind of the student, and we know that students do not always have correct 
understandings of mathematical concepts, this cognitive structure may be incomplete, incorrect, 
or logically inconsistent. When a need arises, the parts of the concept image that are directly 
related to the need are called upon, but the rest of the concept image remains dormant, ready to 
be accessed if needed, but not until then. This means students may have conflicting information 
in their concept images without realizing it, and unless the two logically inconsistent parts of the 
concept image are evoked simultaneously, the student may never realize something is wrong.  

Carlson and Bloom’s (2005) problem-solving framework allows us to describe students’ 
activity as they solve optimization problems. The framework is divided into four main phases: 
orienting, planning, executing, and checking. In the orienting phase, the student deciphers the 
problem and assembles the tools he or she thinks may be required. In the planning phase, the 
student uses conceptual knowledge to determine an appropriate course of action, which is then 
implemented during the executing phase. Finally, during the checking phase, the problem solver 
goes back to the original problem to see if the answer makes sense. 

During the orienting phase, students will likely focus on algebraic aspects of the problem as 
they assemble useful formulas and equations. In the planning phase, we would expect students to 
work to construct an appropriate optimizing function. It is during this phase that we would like to 
see them consider the graphical representation of the function as a tool for quickly recognizing 
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the algebraic techniques they need to employ to solve the problem. Considering the graphical 
representation should help them determine that the key next steps are to differentiate, find critical 
points, and use either concavity or the increasing and decreasing nature of the graph to verify 
that they have solved the problem. Much of the executing phase is computational in nature and 
will focus on the algebraic representation of the function.  Finally, during the checking phase, the 
graphical representation of the optimizing function affords students the opportunity to verify that 
their answer makes sense. 
 

Methods 
 

Data was collected through a series of semi-structured interviews with first semester calculus 
students at a large state university in the United States. Interviews were conducted during the 
summer and fall semesters of 2014. Four students (Franz, Sam, Tracy and Lars) were 
interviewed during the summer of 2014 and three students (Ashod, Brandi, and Cy) were 
interviewed during the fall of 2014. In both cases, the students were interviewed after their exam 
covering optimization and just before their final exam for the class. The students were selected 
on a volunteer basis and self-reported average to strong mathematical backgrounds. All 
interviews were video recorded and transcribed for analysis. We used open and axial coding to 
isolate and further analyze portions of the interviews associated with the graphical interpretation 
of the optimizing function. 

The students were asked to solve the following optimization problem, which is standard in 
most first semester calculus classes: A rectangular garden of area 200 ft2 is to be fenced off 
against rabbits. Find the dimensions that will require the least amount of fencing if a barn 
already protects one side of the garden. We refer to this problem as the garden problem. After 
solving this problem, the students were asked questions about the connection between the area 
and the perimeter of rectangles and then were asked to solve an additional optimization problem 
involving the volume and surface area of a 3D object. The students interviewed in the summer of 
2014 were asked to examine a graph of the optimizing function associated with the second 
optimization problem, while the students in the fall of 2014 were asked to examine a graph of the 
optimizing function associated with the garden problem and with the second problem. In both 
cases, the graphs consisted of two unlabeled axes and a rough sketch of the function. The 
students were asked to mark and label important information on the graphs. 

 
Results 

 
The seven students interviewed had varying levels of success when asked to transition from 

the algebraic expressions of the optimization problem to the graphical representation. We have 
grouped them based on the strength of their graphical connections, and we discuss these below. 
 
No Graphical Connections: Franz and Ashod 

Franz and Ashod did not have well-developed concept images of the optimizing function. 
Ashod constructed his optimizing function with the motivation of finding something to 
differentiate and set the derivative equal to zero because, “when it equals zero, that’s when you 
know you have the least amount.” His only rationale for deciding how to construct such a 
function, however, was, “whatever they give you, use the other equation.” When he was given a 
graph of the function he had constructed and was asked to explain how the answer to the 
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problem related to the graph, he said they were not related, and he was unable to correctly mark 
the place where his answer belonged on the graph (see Figure 1). He knew he had been using the 
derivative to solve for the answer, and since “the graph of the derivative looks completely 
different from the graph of the original equation,” he did not think his answer related to the 
original graph at all. He was able to explain that the first derivative always tells you whether the 
graph is “positive or negative or increases or decreases,” but even though this was part of his 
concept image for the first derivative of a function, he did not relate this information back to the 
graph of the optimizing function. Thus, Ashod’s concept image for the optimizing function was 
developed just enough to allow him to be able to solve the problem and get an answer, but not 
enough for him to be able to move from the algebraic interpretation to the graphical 
interpretation. 

Franz was unable to make any connections to the graphical representation of a function when 
solving the garden problem. Initially, he tried to set the optimizing function equal to zero and 
solve for x, but when he got a negative answer, he realized that wouldn’t work. His next attempt 
was correct (setting the derivative equal to zero), but when he was asked why he was doing that, 
he said, “it’s a standard thing that we do,” and, “I have no idea. I just know that is the 
minimum.” The interviewer repeatedly encouraged him to make connections to the graph, but 
with no success. When he was asked to label the graph of the optimizing function, he decided 
where to put his answer based on where he thought that number would generally be located on a 
number line (see Figure 1), completely disregarding the shape of the graph. His responses 
indicate that his concept image for the optimizing function contained little more than some basic 
facts about what to do with it, without any links to the graphical representation of the function or 
the context of the problem. 

 

 
Figure 1. Franz, Brandi, and Ashod mark the location on the graph where they believe the 
critical number belongs on the axis. Note that all three students placed the mark somewhere other 
than below the obvious maximum or minimum. 
 
Limited Graphical Connections: Cy and Lars 

Cy and Lars were able to use the language of graphs to discuss the algebraic work they had 
done, but they had trouble making some connections initially. Cy knew there was a connection 
between the graph of the optimizing function and the algebraic expressions he was working with. 
Early in his explanation, he stated that the first derivate indicates where “the slope equals zero” 
and the second derivative indicates the concavity, signifying whether there is a maximum or 
minimum. However, Cy had a lot of difficulty interpreting the graph when it was first presented 
to him. Like Ashod, he was confused because he had used the derivative to solve for his answer, 
and was thus did not understand how his answer could have something to do with the graph of 
the original function. 
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Cy recognized that making the transition from the algebraic representation to the graphical 
representation made sense and was surprised that he was having trouble. He said, “I don’t know 
why this is so hard. This seems like something very easy.” Later in the interview, he said, “It’s 
weird to like make the jump from numbers into a graph sometimes. In some situations, the 
numbers are really just a stand in for the work I’m doing in my head with graphs, but in this 
situation, it’s more, the numbers are all I really ever thought about with this.” This is especially 
interesting, because he used the language of graphs when he was explaining his work, but was 
still unable to translate that to an actual graph. Eventually, with some prompting from the 
interviewer, he was able to make sense of the graph and connect it to the problem.  

Lars brought up graphs without being prompted. He had trouble constructing his optimizing 
function, but explained that all of the information could be put on a graph. Unfortunately, even 
though he knew that there was a graphical component to the optimization problem, he did not 
know what function corresponded to the graph. He could not label the axes correctly or give any 
sensible information about what information could be obtained from the graph. At one point he 
thought the two axes corresponded to the two sides of the rectangular garden, and at another 
point he thought the two axes corresponded to one side of the garden and the area of the garden. 
Eventually, after a lot of intervention from the interviewer, Lars was able to construct an 
appropriate optimizing function and correctly relate it to the graphical representation. So even 
though he began with the recognition that he could use a graph to figure out how to solve the 
problem, he did not know what the graph should represent. Once he realized that the graph 
should represent the amount of material needed for the fence, he was able to complete the 
problem. 

 
Strong Graphical Connections: Tracy, Sam and Brandi 

Tracy began the problem by trying to recall how she had done similar problems, but quickly 
became confused and unsure how to proceed. She knew that she was trying to find the minimum 
of a function and that she could find that by taking the derivative, saying, “the derivative would 
just be the rate of change of the graph, so the best I can figure out of that is finding the critical 
values in the derivative would help you find the minimums because you look at areas of increase 
and decreases.” When she was asked why she wanted to set the derivative equal to zero, she said, 
“When the derivative is zero? Doesn’t it just have a horizontal tangent line which means it has to 
have that shape, the parabola shape?” 

Unfortunately, even though she knew this, she did not know what function she should be 
differentiating. After a lot of intervention from the interviewer, she was able to recognize that for 
the garden problem, she was trying to construct a function representing the amount of material 
used to construct the fence. Once she figured that out, she was able to solve the rest of the 
problem easily, because she had such a strong understanding of the connections to the graphical 
representation of the optimizing function. 

Sam very quickly set up and solved the garden problem with little difficulty. He explained, 
“we take the derivative of that function in order to find the points, uh, where slope equals zero in 
order to tell us where it stops increasing, decreasing, and that’ll tell us where the minimum or 
maximum values are.” However, as the interview progressed, he realized that he did not 
understand how the optimizing function, and particularly the graph of the optimizing function, 
related to the problem. He said, “Like how this fence has a minimum value that relates on a 
graph that’s a function of a different function.” He recognized that his initial equation 
represented the amount of fence of the garden, but once he eliminated one of the variables and 

19th Annual Conference on Research in Undergraduate Mathematics Education 1018

19th Annual Conference on Research in Undergraduate Mathematics Education 1018



constructed a single-variable function, he could not relate this “new” function to the amount of 
fencing. Thus, he knew graphical properties about functions in general, but he did not understand 
how the graph was related to his original algebraic expression. 

When Brandi was asked to explain her work, one of her first responses was, “Cause like the 
amount of feet that could be used, if you think about it on the graph.” She immediately made the 
connection to the graphical representation of the optimizing function, indicating that it is a well-
developed part of her concept image. She was able to talk about this clearly and comfortably 
about the relationship between the graphical representation and the algebraic representation as 
she explained her thought processes, yet when she was presented with the actual graph, she had 
trouble marking the correct place for her answer, . She placed it where she thought  
would fall on the axis (see Figure 1), not directly below what was clearly the minimum of the 
function. On a theoretical level, she appeared to understand the connection, but when she had to 
apply what she knew to an actual graph, she still had some difficulty. 

Tracy, Sam, and Brandi had more developed understandings of the connections than the 
other students, and they moved more flexibly between the algebraic and graphical 
representations. All three, however, still had some difficulties with the two representations. 
 

Discussion 
 

The students in this study were not naturally inclined to consider the graphical representation 
of the optimizing function when solving optimization problems. When they did consider the 
graphical representation, most did so incorrectly or with an incomplete understanding of how it 
was related to the algebraic representation and the work associated with it. 

In the planning phase of Carlson and Bloom’s (2005) problem-solving framework, the 
student determines an appropriate course of action for solving the problem. Ideally, for the 
garden problem, students would consider that they need to construct a function representing the 
amount of fencing required for an area of 200ft2. They would then consider the graphical 
representation of this function and recognize that since they need to find the minimum, they 
should expect their function to be concave up at the value they find. 

During this phase, some students recalled similar problems and simply attempted to duplicate 
a familiar solution path. Franz, Ashod, Lars, and Tracy all began this way. When this didn’t 
work for Lars and Tracy, they were (with some encouragement) able to fall back on their 
knowledge about the graphical representation of the optimizing function to figure out how to 
move forward. Franz and Ashod were able to solve the first problem without intervention, but 
both had trouble solving the second more difficult optimization problem. They did not have any 
understanding of the graphical representation of the function to fall back on and were unable to 
determine how to move forward. Tracy did have this understanding, but she had so much trouble 
with the 3-D aspect of the second problem that she was unable to solve the problem without a lot 
of help. However, once she reached an answer, she was able to clearly explain what her answer 
meant in the context of the problem, suggesting that if she had a stronger concept image of 
surface area and volume, she would have been able to solve the problem on her own. Lars was 
able to solve the second optimization problem with ease, because once he had reasoned through 
the connection to the graphical representation once, he was able to draw upon this to make sense 
of the next problem. 

The other three students, Brandi, Cy, and Sam, had some difficulties, but all began the first 
problem with well-developed concept images for the optimizing function that included at least 
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some understanding of the graphical representation of the function. They began solving the 
problem by referencing this graphical connection and were able to give explanations other than 
“I don’t know,” or “because this is how my teacher did it” when they were asked why they were 
beginning the problem that way. Additionally, when they attempted to solve the more difficult 
second optimization problem, they were all successful. For these students, a well-developed 
concept image for the optimizing function, including at least some understanding of the 
connection to the graphical representation, led to more success in solving and understanding 
optimization problems. 

Thus, we see that the graphical representation of the optimizing function has an important 
role to play in helping students develop their understanding of optimization in general. Because 
existing literature and our current research tell us that most students generally are not likely to 
move fluidly between the algebraic and graphical representations, we must work to find ways to 
encourage students to make these connections. 

 
Conclusion 

 
We found that even when students were able to accurately describe the connection between 

the algebraic and graphical representation of the optimizing function, they often had more 
difficulty when they were asked to put this information to use when dealing with an actual sketch 
of the graph. We suggest asking the following questions when teaching and/or assessing students 
on optimization problems. 

 
1. Identify your optimizing function. What does it represent? How do you know it is a 

function?  
2. What is the realistic domain of your optimizing function? What is the realistic range? 
3. Draw a rough sketch of your optimizing function. Label the axes appropriately. 
4. Consider an ordered pair (a,b) on the function. In the context of the problem, what does a 

represent? What does b represent? In the context of the problem, what is the relationship 
between a and b? 

5. Mark the point in the domain of the function that corresponds to the answer you hope to 
find (or have already found) using algebraic techniques. 
 

These questions are designed to encourage the students to think about and make the 
connections between the different representations of the optimizing function and to help them 
further develop their concept image of the optimizing function. Making these connections will 
help the students set up and solve these problems, particularly during the planning and checking 
phases of the problem-solving process. 

In our study, the graphical representation of the optimizing function was only a portion of the 
interview protocol, but it has emerged as a significant theme in our research. We believe that 
there is room for a more targeted, small-scale research project focused on examining the role that 
the graphical representation of the optimizing function plays in students’ work with optimization 
problems. The above questions could be a good starting point for such a project. 
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Organizational features that influence departments’ uptake of student-centered 
instruction:  Case studies from inquiry-based learning in college mathematics 

 
Sandra Laursen 

University of Colorado Boulder 
 
Active learning approaches to teaching mathematics and science are known to increase student 
learning and persistence in STEM disciplines, but do not yet reach most undergraduates.  To 
broadly engage college instructors in using these research-supported methods will require not 
only professional development and support for individuals, but the engagement of departments 
and institutions as organizations. This study examines four departments that implemented 
inquiry-based learning (IBL) in college mathematics, focusing on the question, “What explicit 
strategies and implicit departmental contexts help or hinder the uptake of IBL?”  Based on 
interview data and documents, the four departmental case studies reveal strategies used to 
support IBL instructors and engage colleagues not actively involved.  Comparative analysis 
highlights how contextual features supported (or not) the spread and sustainability of these 
teaching reforms.  We use Bolman and Deal’s (1991) framework to analyze the structural, 
political, human resource and symbolic elements of these organizational strategies and contexts.   
 
Keywords: 
Inquiry-based Learning, Departments, Case Studies, Reform, Teaching Assistants (TA) 
 

Research evidence supports the use of student-centered teaching approaches to improve 
student educational outcomes in science, technology, engineering and mathematics (STEM) 
disciplines (Freeman et al., 2014; Singer, Nielsen & Schweingruber, 2012; Ruiz-Primo et al., 
2011).  The bottleneck in achieving these improvements on a national scale is not a lack of well-
developed classroom approaches from which to choose, but rather slow faculty uptake of these 
proven teaching methods (Fairweather, 2008). This paper focuses on the important but under-
studied organizational context for uptake, by examining the implementation of inquiry-based 
learning (IBL) at four research university mathematics departments.  We address the question, 

What organizational factors, including both explicit action strategies and inherent 
contexts, influence the spread and sustainability of inquiry-based learning in 
mathematics departments at US research institutions? 
 

Conceptual Framework 
On the whole, prior studies of the uptake of student-centered teaching approaches have 

focused on individual STEM instructors, examining their knowledge and skills around 
instruction, and the internal and external barriers to pedagogical change that they face (e.g. 
Henderson & Dancy, 2007; Walczyk, Ramsey & Zha, 2007).  Early disciplinary socialization 
inculcates a values hierarchy that privileges research over teaching and portrays teaching as an 
art or innate talent rather than a craft that can be studied, learned and mastered.  Structural issues 
such as classroom seating arrangements complicate the logistics of methods such as small group 
work, and instructors fear real or perceived resistance from their students, colleagues, or chairs. 
In general, this focus treats teacher decision-making as individualized within a static setting.   

However, STEM instructors are also embedded in dynamic social systems that influence 
their thinking in positive and negative ways (Austin, 2011).  Thus it is also important to 
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understand instructors’ working contexts in higher education.  Contextual influences at the 
institutional level include features such as overall teaching loads, the relative weight of teaching 
duties relative to research and service in faculty job descriptions, and the role and measurement 
of teaching outcomes within faculty reward systems.  These may vary widely, for example, 
between a research-oriented institution and a liberal arts college.   

These institutional influences are commonly manifested at the department level, where 
curricular structures are set and teaching assignments are made.  Here colleagues communicate 
formal traditions and informal norms about teaching, shaped by their understanding of their 
student clientele and in turn reinforced by students’ expectations.  For example, the type of 
teaching seen as appropriate in “service” courses may be different from that in “majors” courses.  
Collegial agreements—stated or tacit—may inform expectations about the nature and amount of 
work that can be assigned, availability and use of office hours, and specific topics that must be 
covered as preparation for the next course in a sequence.  Department chairs and committees 
control access to resources and rewards, and oversee graduate students’ preparation as teachers. 

Finally, disciplinary contexts shape instructors’ understanding of the aims of education in 
their field, their notions of intellectual development and rigor, and their professional identities as 
researchers and educators (e.g., Brownell & Tanner, 2012).  In mathematics, phrases such as 
“mathematical maturity” encode and signal the value of generalized skills in analyzing problems 
and developing solution approaches, creativity, flexibility, and recognition of mathematical 
concepts in varied contexts.  Epistemological beliefs about the nature of knowledge and “truth” 
shape instructors’ interest in and ability to make sense of education research findings about 
teaching and learning that rely on different disciplinary standards for what counts as knowledge.   

In addition to considering the level at which these organizational influences are felt, we apply 
Bolman and Deal’s (1991) multi-frame model to analyze their nature. In this model, four main 
perspectives serve as viewpoints for examining organizational issues:  structural, human 
resource, political, and symbolic perspectives.  Each of these perspectives functions as a frame or 
“lens” that can “bring the world into focus” (p. 11) in order to understand organizational issues—
in this case, processes of change to support faculty use of research-based instruction.  
• The structural frame emphasizes policy and procedure as tools for shaping instructor 

practice. This lens recognizes the importance of formal rules, policies, management 
hierarchies, and relationships within organizations.  

• The human resource frame emphasizes the importance of the demographics, experiences, 
needs, and feelings of the people involved in an organization.  Here the key human resource 
is the instructors who carry out the department’s teaching mission, including both those who 
engage with the IBL Center’s teaching reforms and those who do not. 

• The political frame attends to issues of resource allocation and the sources and seats of 
power, whether tied to formal institutional roles or as informal thought leaders of high status.  

• Finally the symbolic frame focuses attention on issues of meaning and culture within an 
organization, including rituals, stories, and celebrated individuals, and the process through 
which sense-making takes place within the organization (Eckel, Green, & Hill, 2001).  

•  
Study Methods 

Context of the Study 
This report draws upon a large, mixed-methods study examining inquiry-based learning 

(IBL) in four mathematics departments where privately funded “IBL Centers” had been 
established to promote the use of IBL in teaching.  These highly ranked research departments 
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were assumed to have high visibility and influence in their discipline.  All four were “very high” 
research schools by Carnegie classification and had full-time, four-year, selective undergraduate 
programs with low transfer rates.  Each Center was led by an eminent mathematician with some 
track record of involvement in K-12 or undergraduate education. 

The full study encompassed a wide range of issues, including student outcomes of IBL 
instruction and IBL teaching and learning processes, but in this report we focus on instructors’ 
experiences in implementing IBL.  Our analysis treats each department as a case, but also 
identifies common issues across the four cases that help to highlight challenges and opportunities 
for establishing and sustaining student-centered approaches to teaching in college mathematics. 
 
Study Samples and Analysis Methods 

This report draws primarily on qualitative analysis of 42 semi-structured interviews with 43 
IBL instructors (one focus group had two teaching assistants from the same course). We use the 
general term ‘instructors’ to refer to all interviewees; when it is important to distinguish specific 
classroom roles, we specify “faculty” (anyone in the lead instructor role, regardless of 
appointment type) or “TA” (graduate student in a course assistant role). 

The interview sample was drawn from institutionally provided lists of active or previous 
instructors of IBL courses for the period 2006-2009.  We invited all instructors we could reach 
and scheduled in-person interviews during campus site visits in 2009, or telephone interviews if 
needed.  The overall response rate was 77%, varying from 50% to 88% by campus. Nearly all 
interviewees were white; about 15% were born outside the US.  Most taught “math-track” 
courses for math or STEM majors; seven taught IBL courses for pre-service teachers.  

The faculty interview subset included 23 interviewees (3 women, 20 men) who held faculty 
appointments, including tenured, pre-tenure and non-tenure-track instructors in both long-term 
lectureships and short-term postdoctoral or visiting positions.  Of these, 13 had prior IBL 
teaching experience of one year to decades, and 10 were new to IBL.   

The TA interview subset included 20 teaching assistants (9 women, 11 men).  Most were 
second- to seventh-year graduate students; at the time of the interview a few had graduated and 
moved on to postdoctoral or tenure-track faculty positions.  Their IBL teaching experience 
ranged from one term to several years. 

The interviews covered a range of topics and questions about IBL instruction, student 
outcomes, and the relationship of IBL teaching to the interviewee’s career path.  All protocols 
were approved by the Institutional Review Board, and interviewees provided informed consent.  

Formal content analysis methods were used to analyze the interviews (Babbie, 2001; Berg, 
1989). Digitally recorded interviews were transcribed verbatim and coded using NVivo 8.0 (QSR 
International, 2009).  The coded passages reflect a set of analytical themes that together describe 
the nature and range of issues in participants’ collective report.  Counting the frequencies with 
which different themes appear helped to characterize the relative weighting of these issues. 

In all, about 2400 text passages were coded into five broad themes, each with 8-14 sub-
themes, divided roughly as follows (counted as a percentage of all coded passages): 

• observations of cognitive, affective and other outcomes of IBL for students – 16%  
• students’ learning processes that instructors observed or hypothesized – 16% 
• instructors’ reflections on the processes of teaching – 40% 
• personal and professional outcomes of IBL teaching for instructors –  16%  
• instructors’ personal, departmental, disciplinary and institutional contexts – 10% 
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The present analysis focuses on these latter, context-focused codes, with some use of 
respondents’ comments on teaching and learning processes and their own professional outcomes.  
Documents about the IBL Centers (e.g., annual reports to their funder) were used to elucidate or 
confirm some of the contextual features identified from interviews. 

In addition, data from classroom observation (over 300 hours) in 42 course sections, as well 
as data from student surveys (1105 respondents) and interviews (68 respondents), provide 
context on campus-level patterns and variations in how IBL was conceived and executed in the 
classroom.  These data primarily address the learning outcomes and learning processes observed 
in class and reported by students; insights from these data enrich this report but are not its focus.   
 
Study Sites:  Commonalities and Variation in IBL Instruction  

As context for this analysis, we describe common features of IBL instruction and identify 
some sources of variation among them.  We have described IBL instructional practices as 
applied in the IBL Centers elsewhere (Laursen, 2013; Laursen et al., 2014); the practices we 
observed at the Centers are consistent with those reported by practitioners in the broader IBL 
community (e.g., Yoshinobu & Jones, 2013; Coppin, Mahavier, May & Parker, 2009).  Key 
features of these IBL classes were identified from classroom observation, course documents, and 
instructors’ and students reports in surveys and interviews:   

• Students solve challenging problems alone or in groups; they share their solutions, then 
analyze, critique and refine their solutions. 

• Class time is used for these student-centered activities.  Students often lead the activities 
(e.g. by presenting their work) and these activities change several times a class period. 

• The course is driven by an instructor-built sequence of problems or proofs, rather than by 
a textbook; the pace of the course is set by students’ progress through this sequence. 

• Course goals tend to emphasize mathematical thinking skills and communication 
practices; “coverage” of specific content is less central in the syllabus. 

• The instructor’s role shifts notably from “sage on the stage” to “guide on the side” (King, 
1993), playing stage manager, monitor and summarizer of key mathematical benchmarks, 
and cheerleader for students. 

The details of practice varied somewhat from course to course (Laursen, 2013) but these 
features were consistently noted.  Class time was predominantly used for student-centered work, 
which accounted for over 60% of class time observed. 

While instructional practice was relatively consistent, other features of the IBL courses 
varied widely among Centers.  Each IBL Center selected the courses where it would apply IBL 
methods.  These ranged from first-year honors courses to upper-level courses for mathematics 
majors and students in fields such as physics, engineering or economics.  Two Centers developed 
IBL courses for pre-service elementary and/or secondary teachers.  These selections were guided 
both by theoretical considerations, such as courses thought well suited to IBL approaches or 
student audiences thought to benefit, but also by practical considerations, such as where class 
sizes were already amenable to IBL techniques.  

As a result, the overall range of courses and student audiences in the study was large.  This 
reflects real-world conditions of instructional reform in higher education, where individual 
faculty have high autonomy in how to teach their courses and where curricular sequences and 
student characteristics may vary widely among departments.  Indeed, this high variability within 
and among departments is one reason for the slower pace and different path of educational 
reforms in higher education as compared to K-12 education. 
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Study Findings 
Our data reveal both explicit action strategies and implicit contextual features that shaped 

departments’ implementation of IBL.  Explicit strategies were more easily noted by interviewees, 
as each Center developed ways to support IBL instructors and engage colleagues, including: 

• Processes to engage faculty in IBL instruction:  recruiting new participants, preparing and 
supporting them for IBL teaching 

• Processes to engage the support of colleagues not involved in IBL teaching, especially 
those whose approval was politically important 

• Engagement of graduate TAs in IBL instruction: recruitment, professional development, 
and context within the department’s TA teaching preparation program (if any). 

Contextual features were less often recognized by interviewees themselves and instead were 
embedded in interviewees’ statements as taken for granted.  Some of these were well-established 
aspects of the institution, such as its size and reputation.  Other features of the IBL program were 
sometimes the result of explicit and strategic decisions made when the Center was established, 
but had come to be seen as pre-existing features of the Center’s IBL program that shaped how 
things were done.  These contextual features included: 

• Nature of the institution and department:  size, prestige, public or private status 
• Characteristics of the IBL Center’s leader:  status and seniority in mathematics and 

education, leadership style, relationships to other STEM reform efforts 
• Characteristics of faculty connected to the Center’s work:  seniority, status, nature and 

extent of involvement or resistance 
• Nature of the IBL undergraduate program:  targeted undergraduate audiences, selection 

processes for entry to IBL courses, predominant styles of IBL teaching 
• Other components of the IBL program, if any: pre-service and in-service K12 teacher 

education, mathematics enrichment for K12 students, linkages to other STEM programs. 
We argue that both the explicit strategies and contextual features help to account for the 

spread and sustainability of IBL as a teaching reform in undergraduate mathematics in these 
departments.  In general, IBL teaching practices spread with adequate local fidelity within these 
departments, despite local variation in style.  We use the contrasting cases to illustrate how 
different strategies and cultures helped or hindered the spread and sustainability of IBL.   

Understandably, many of the explicit strategies fall primarily under Bolman and Deal’s 
(1991) human resource frame, especially efforts to interest colleagues in IBL and to develop 
their skills as IBL teachers.  These included collegial and informal mentoring (more rarely, 
structured mentoring); participation in formal workshops (helpful albeit not widespread); and 
extra-departmental support from a national meeting on IBL in mathematics and the broader 
network of practitioners who participated in this meeting and related events.  Some human 
resource strategies sought to build an active IBL community, for example through lunches and 
talks that focused on IBL and other teaching topics, to which all interested persons were invited. 
TAs’ professional growth as teachers was greatest when they too participated in this community 
and when they were generally treated as full instructional partners, for example by meeting 
regularly with lead instructors to share observations about students and troubleshoot daily 
problems in the class.  TAs also discussed and shared practices within their own peer group, 
leading to rapid uptake of certain TA-initiated innovations in grading and student motivation. 

Strategies that helped to recruit and engage non-involved instructors sought to develop 
awareness and positive impressions of IBL among those in formal and informal leadership roles.  
Primarily political strategies included inviting colleagues to observe an IBL course or to evaluate 
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a graduate TA’s teaching in such a course.  One department made a point to share emerging 
research findings on student outcomes of IBL with key committee chairs, deans and provosts.  
One leader’s style of “managing by walking around” was also a political strategy that fostered 
high buy-in and program coherence and alerted him to impending challenges.  Structural 
strategies used existing policies and procedures to enhance visibility and acceptance of IBL, such 
as asking the standing undergraduate curriculum committee to review IBL courses, or engaging 
the department’s educational thought leaders to serve as a steering committee for the Center. One 
department took advantage of the symbolic frame by successfully nominating an IBL leader for a 
major institutional teaching award, and by publicizing its IBL work in the department’s annual 
newsletter sent to supporters and alumni.  Human resource strategies that centered on building 
community also doubled as a means to engage non-involved instructors when departmental 
leaders participated or simply were informed of colleagues’ participation in these events.  

The culture and structure of TA preparation varied widely across the four departments, which 
in turn shaped opportunities for TAs to join the IBL effort.  Departments differed philosophically 
as to whether opportunities to TA for IBL courses should be concentrated among a few to hone 
their IBL teaching skills, or be offered broadly to give more TAs exposure to IBL.  In one case 
the chance to TA an IBL course was offered to all TAs moving through that department’s formal, 
multi-part TA preparation process; elsewhere TAs were informally recruited by IBL faculty 
leaders.  In both scenarios, TAs were carefully screened for aptitude and interest.   

In practice, what commonly resulted from IBL participation by TAs and other early-career 
instructors (including postdocs) was a strong commitment to student-centered teaching, based on 
having seen it work for undergraduate students—sometimes despite their initial skepticism.  
Indeed, most said they would teach this way again. TAs in particular viewed IBL as a broadly 
applicable pedagogy, describing their enhanced skills as a nuanced “toolkit” that enabled them to 
apply IBL to varied student audiences.  Interestingly, they often articulated a broader view of 
where IBL could be used than that expressed by their senior faculty colleagues.  Overall, these 
IBL teaching experiences proved to be a powerful form of experiential professional development 
for early-career instructors.  As they moved on to teaching roles at other institutions, they took 
along re-shaped teaching philosophies and expertise; many have remained active and taken on 
leadership roles in the larger IBL mathematics community.   

Departmental cultures strongly shaped the predominant local style of IBL, as our classroom 
observation data make clear (Laursen et al., 2014; Laursen, Hassi & Hough, 2015). Courses at 
two Centers often featured formal, in-class group work, while courses at the other two 
emphasized student presentations at the board. These patterns occurred and persisted in part 
because of how instructors learned about IBL: what colleagues said about IBL, what they saw in 
colleagues’ classrooms, and how they adopted or adapted prior versions of the same course as 
they prepared to teach an IBL course new to them. Because few had independent exposure to 
active learning approaches (e.g, via formal professional development, reading, or peers outside 
the Center), such informal transmission of IBL norms led to substantial homogeneity of IBL 
approaches in use within any one campus.  However, variation among the Centers played a 
significant role in broadening understandings among the larger IBL community of “what is IBL” 
(Author, 2015).   

Local culture also shaped views of what courses and students were seen as good fits for IBL. 
In considering which students would benefit from IBL, IBL was variously seen as 

• a special experience to recruit talented (honors) students into mathematics 
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• a good way to help students make the transition from lower-division, computational 
courses to upper-division, proof-based courses 

• a crucial experience for non-math majors (especially pre-service elementary and middle 
school teachers), to learn to think like mathematicians and to value IBL teaching. 

These views reflect disciplinary beliefs about “who can do IBL,” shaped in turn by prevailing 
views of “what is IBL.”  Some departments held multiple views and tested these various 
hypotheses in their choice of where to implement IBL.  The choice to work with pre-service 
teachers was in part driven by a need to assert the department’s primacy over mathematical 
preparation of teachers, but had a side benefit of requiring good cooperation with the School of 
Education, which in turn made them advocates for the IBL program. 

As to mathematical content, there was little consensus as to what course content was best 
suited for IBL treatment; indeed, nearly every assertion about how a particular topic (e.g., linear 
algebra) “could not be taught” with IBL was countervailed in our data by a contrasting assertion 
of why that course worked very well in IBL form.  Such lack of consensus in the evidence 
suggests that these beliefs, while informed by and often couched in disciplinary terms, were in 
fact department-based.  It is thus noteworthy that TAs in particular could articulate broader uses 
of IBL, even in courses where IBL was not formally practiced in their department. 

 
Implications for Practice 

Over time, these departments have seen IBL spread and succeed within the department and 
beyond, as early-career trainees took their newfound IBL skills to new venues. But long-term 
sustainability of the IBL reforms in the home departments is less certain.  A distinguished leader 
and a few senior faculty champion IBL courses, but overall senior faculty participation is low, 
and the programs rest on transient or low-status instructors such as postdocs and non-tenure-
track instructors.  There is some evidence of risk to programs’ ongoing health when a senior 
leader steps down, and there has been little visible effort to absorb the costs of the IBL program.  

We do not yet know whether and how these departments will sustain their IBL programs if 
funding is withdrawn.  But in our judgment, the departments with the best prospects for 
sustaining their IBL programs are those which have consciously attended to the political and 
symbolic landscapes—by keeping key leaders in the loop, by making strong alliances with 
external constituencies for general education or teacher preparation, and by publicizing and 
promoting their work to a variety of stakeholders within and outside the department.  These 
strategies help to broaden ownership of IBL so that the effort does not depend on a single leader.   

Explicit strategies for human resource development have helped to strengthen student 
outcomes at the Centers and to enhance the spread of IBL beyond these Centers, but have had 
less effect on the sustainability of IBL within the department.  Staffing the IBL courses with 
temporary instructors who develop skill and enthusiasm but then move on to other positions is a 
double-edged sword:  it enhances the Centers’ role as national leaders in IBL but fails to bolster 
their own long-term sustainability.  Finally, long reliance on external funds—and the 
concomitant need to preserve the argument that these funds are essential to continued activity—
seems to have limited departments’ attention to structural aspects of sustainability.  We note 
little sense of urgency to find other ways to cover the costs of team-teaching, maintaining small 
class sizes, or deploying extra TAs in IBL courses, and indeed there may be some risk to doing 
so.  We acknowledge, however, that our data set is most limited on this point. 

Overall, we propose that the set of action strategies must be well-rounded to enhance the 
growth, success and sustainability of an education reform within a department.  Human resource 
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strategies are necessary but not sufficient; program sustainability requires explicit attention as 
well to political, symbolic and structural elements of the organization.  These strategies must also 
be designed to fit the department’s unique context.  Higher education is rife with stories of once-
promising reforms that failed to take hold; analyzing these organizational features may be 
important in understanding why.  
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Colloquial mathematics in mathematics lectures 
 

Kristen Lew1, Victoria Krupnik1, Joe Olsen1, Tim Fukawa-Connelly2, and Keith Weber1 
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In this poster, we focus on mathematics professors’ use of colloquial mathematics where they 
express mathematical ideas using informal English. We analyzed 80-minute lectures in 
advanced mathematics from 11 different mathematics professors. We identified each instance 
where mathematicians expressed a mathematical idea using informal language. In the poster, 
we use this as a basis to present categories of the metaphorical images that professors use to 
help students comprehend the mathematics that they are teaching. 

Key words: Advanced mathematics; Language; Lectures 

It is widely accepted that mathematics majors learn less from their mathematics lectures than 
we would like (e.g., Alcock et al., 2015; Leron & Dubinsky, 1995; Thurston, 1994). To 
account for this, our research team conducted a case study in which we compared the 
different meanings that a mathematics professor and his students attributed to the same 
lecture in real analysis (Lew, Fukawa-Connelly, Mejia-Ramos, & Weber, in press). We 
proposed the following account, among others, for why students had difficulty 
comprehending the lecture. The professor used what we called colloquial mathematics where 
he phrased technical mathematical ideas using informal English such that students’ intuitions 
about informal English might help them understand the technical ideas. For instance, the 
professor framed the process of constructing a real analysis proof as asking how one can 
make a term small knowing that other quantities are small. His students, however, did not 
know what he meant by small and consequently did not understand the high-level summary 
of the proof that the professor attempted to convey. In our current project, we attempt to 
further investigate how colloquial mathematics is used in advanced mathematics courses. 
 

Methods 
 

At the beginning of the semester in three institutions, we sent an e-mail to every 
mathematics professor teaching a proof-oriented advanced undergraduate mathematics 
course, asking him or her to participate in our study. Eleven mathematics participants agreed 
to participate. For each participant, a member of our research team attended a randomly 
chosen lecture. We used a LiveScribe pen to audio-record the lecture and record what the 
professor wrote on the blackboard in real time. The 11 lectures were the corpus of data for 
our study. 

We transcribed each of the lectures. Next, two members of our research team read each 
transcript, flagging every instance in which the professor used colloquial mathematics. More 
specifically, we coded a portion of transcript as being an instance of colloquial mathematics 
if one of the two following conditions held: (i) the professor represented a technical 
mathematical idea using ordinary English that was not equivalent to a formal description of 
that idea. An example of this is referring to an ideal that “sucks elements in from both sides”, 
by which the professor meant that left and right multiplication by a ring element and ideal 
will be contained in the ideal. (ii) the professor discussed a meta-mathematical idea without a 
formal mathematical correlate, such as a particular structure as being “nice”, “well-behaved”, 
“interesting”, or “boring”. Analysis is ongoing, but we are currently sorting each instance of 
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colloquial mathematics into categories using an open coding scheme in the style of Strauss 
and Corbin (1990). 

Significance 

Professors try to make mathematical concepts and mathematical practices accessible to 
undergraduates by using colloquial mathematics. Our prior research suggested that such 
natural and well-intentioned actions may not have their desired effect as students may be 
unable to interpret the professor’s intentions when they hear this colloquial mathematics 
(Lew et al., in press). We view identifying commonalities between and categories of 
colloquial mathematics as a first step to a larger research agenda. We will use the categories 
generated in this study to see: (i) if there is a shared understanding amongst mathematicians 
as to what terms in colloquial mathematics means; (ii) how mathematics majors understand 
terms in colloquial mathematics and the ways in which such understandings align or do not 
align with mathematicians’ understanding; and (iii) how mathematicians think students will 
understand colloquial mathematics and the accuracy of mathematicians’ predictions. 
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 ‘It’s not an English class’: Is correct grammar an important part of mathematical 
proof writing at the undergraduate level? 

 
          Kristen Lew   Juan Pablo Mejía-Ramos 

Rutgers University  Rutgers University 

We studied the genre of mathematical proof writing at the undergraduate level by asking 
mathematicians and undergraduate students to read seven partial proofs based on student-
generated work and to identify and discuss uses of mathematical language that were out of 
the ordinary with respect to what they considered standard mathematical proof writing. 
Preliminary results indicate the use of correct grammar is necessary in proof writing, but not 
always addressed in transition-to-proof courses.   
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Introduction 

Mathematicians and mathematics educators have found undergraduate mathematics 
students to have difficulties when constructing (Weber, 2001), reading (Conradie & Frith, 
2000), and validating (Selden & Selden, 2003) mathematical proofs. One suggested reason 
for these difficulties is the students’ unfamiliarity with the language of mathematical proof 
writing (Moore 1994). However, mathematical language at the level of advanced 
undergraduate proof writing is a scarcely studied topic. As a result, little is known of how 
mathematicians and students understand and use this technical language.  
Related Literature 

Halliday’s (1978) introduction of the notion of register (and mathematical register in 
particular) was groundbreaking in the study of mathematical language: 

A set of meanings that is appropriate to a particular function of language, together 
with the words and structures which express these meanings. We can refer to a 
‘mathematics register’, in the sense of the meanings that belong to the language of 
mathematics […], and that a language must express if it is being used for 
mathematical purposes. (p.195) 

Thus, the mathematical register contains not only technical vocabulary and symbols, but also 
phrases and the associated syntax structures. Various mathematics educators have considered 
how the mathematical register plays a role in mathematics learning and classrooms. For 
instance, Pimm (1987) discussed how students develop the mathematical register and 
Schleppegrell (2007) noted students’ difficulties with differentiating between the 
mathematically precise and colloquial uses of words like ‘if’, ‘when’, and ‘then’.  

However, much of the existing work on mathematical language focuses on K-12 
mathematics and little empirical research exists on how professional mathematicians view or 
use the language of mathematics. Konior’s (1993) analysis of over 700 mathematical proofs 
revealed a common style of construction of mathematical proofs that signals the organization 
of the proof’s arguments. Burton and Morgan (2000) identified the roles that the author’s 
identity and focus played in mathematical writing in research papers. Meanwhile, a number 
of manuals (AMS, 1962; Halmos, 1970; Gillman, 1987; Krantz, 1997; Higham, 1998; 
Houston, 2009; Alcock, 2013; Vivaldi, 2014) have been written describing how 
mathematicians and students should effectively use mathematical language. As these texts are 
based on the authors’ experiences rather than empirical research, the texts were used to guide 
the materials used for the study.  
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Theoretical Perspective 
This study builds upon Scarcella’s (2003) conceptual framework of academic English, 

which was designed to study the learning of academic English. Scarcella (2003) defined 
academic English as a “register of English used in professional books and characterized by 
the specific linguistic features associated with academic disciplines” (p. 9). Scarcella argued 
that academic disciplines have their own sub-registers of academic English and, as such, the 
mathematical register can be seen as a sub-register of academic English. Thus we consider 
the mathematical sub-register in this study with a focus on undergraduate proof writing.  

This study is also informed by Herbst and Chazan’s (2003) body of work on practical 
rationality. Intending to study norms by evoking repairing reactions from their participants, 
Herbst and Chazan adapted the ethnomethodological concept of breaching experiments 
(Mehan & Wood, 1975). The hypothesis of the design is that when a participant of a practice 
is presented with a situation in which a norm of such practice is breached, he or she will 
attempt to repair the breach highlighting not only what the norm is, but also the role that the 
norm has in the practice (Herbst, 2010). Adapting this methodology, this study investigates 
how mathematicians view and describe conventional uses of the language of mathematical 
proof writing at the undergraduate level and how students understand these conventions.  
Research Questions 

In this study, we am to investigate the following questions: 1) How do mathematicians 
view and describe common unconventional uses of mathematical language in undergraduate 
mathematical proof writing? 2) How do these unconventional uses affect how 
mathematicians evaluate student-constructed proofs? 3) How do students understand the 
conventions of mathematical proof writing at the undergraduate level? 

Methods 

We investigate the linguistic dimension of undergraduate proof writing by presenting 
participants with student-generated proofs and asking the participants to identify and describe 
uses of mathematical language that are out of the ordinary with respect to undergraduate 
proof writing. By identifying non-standard uses of mathematical language, the participants 
discussed their understanding of the conventions of proof writing in this context.  

The study was conducted at a large research university in the United States. Eight 
mathematicians and sixteen undergraduate students were interviewed (eight of the 
undergraduates were mathematics majors who had completed the proof-based courses 
required for graduation and eight were undergraduates enrolled in an introduction to proof 
course.) The mathematicians had 1-38 years of experience teaching undergraduate proof 
mathematics courses, with 1-15 years of experience teaching introduction to proof courses.  
Materials 

The materials for this study include seven partial proofs that are based on student-
generated work. Each of the proofs was truncated to help participants focus on the use of 
mathematical language and not the attempted proof’s logical validity. One of the partial 
proofs used in the study is provided below in Figure 1a.  The partial proofs were chosen from 
student exams given in introduction to proof classes at the same university of the study. For 
each one of these partial proofs, a copy was created and marked for each of the instances of 
what we believed to be breaches of conventional uses of the language of mathematical proof 
writing at the undergraduate level, one example is shown in Figure 1b.  
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Figure 1a. Example of the partial proof.        Figure 1b. Example of marked partial proof. 
Procedures 

The interview procedures for mathematicians and for undergraduate students were nearly 
identical. The semi-structured interviews were videotaped and lasted one to two hours. 
Participants were presented with the student-constructed partial proofs one at a time. They 
were asked to mark the partial proofs for anything that was out of the ordinary with respect to 
the use of the language in undergraduate mathematical proof writing. The interviews made 
two passes through the materials. In the first pass, participants were asked to explain why 
they had made each mark. Then for each mark, the participant was asked if the breach at hand 
was a logical issue, if it affected the validity of the proof, if it was an issue of mathematical 
writing, if it was definitely unconventional or a matter of personal preference, if it lowered 
the quality of the proof significantly, and if they (or in the students’ case, if they thought a 
mathematician) would have deducted points based on this issue when grading the proof in an 
introductory proof course. These prompts were designed to elicit the participants’ views on 
what they thought were conventional uses of mathematical language in proof writing. In 
particular, the prompts addressed the severity of each breach and enabled a differentiation 
between issues of logic and issues of mathematical writing in the analysis of the data.   

In the second pass, for each of the predicted instances of unconventional use of 
mathematical language that had not been identified by the participant in the first pass of the 
data, participants were asked if they would agree that this was an issue of mathematical 
language. Specifically, mathematicians were asked whether or not they would agree with a 
colleague of theirs who had suggested these were unconventional uses of mathematical 
language and the undergraduate students were asked if they would agree with a classmate of 
theirs who believed a mathematician would think these were unconventional uses of 
mathematical language. If they agreed, they would be prompted to discuss the breach as in 
the first pass.  
Analysis 

Interview videos were transcribed and materials generated in the interviews were scanned 
for analysis. The interview protocol created clear episodes of discussion, each concerning a 
single breach of mathematical language. Thus the data is organized by these episodes and 
was then analyzed using open ended thematic analysis in the style of Braun and Clarke 
(2006). That is, we first familiarized ourselves with the data by marking for ideas and 
transcribing videos, generated initial codes by organizing the data into meaningful groups, 
searched for themes by focusing analysis at a broad level, and reviewed the themes to verify 
that the themes reflect he data set as a whole.  

Results 

One theme that has emerged from the data is that mathematicians believe that 
mathematical language is a subset of the English language whereas some students believe the 
two are independent. This theme was brought forth by the mathematicians’ attention to the 
need for correct grammar and complete sentences as well as some of the undergraduate 
students’ responses indicating the rules of English do not apply in mathematical settings. In 
particular, this theme emerged from three categories of responses from participants 
discussing what they considered was non-standard mathematical language use, which are 
described below using interview data three different proofs: Proof A, Proof B, and Proof C.   
Mixing mathematical notation and English prose 

As shown in Figure 2, the first line of Proof A reads, “None of the sets are ∅.” We 
expected that participants would indicate this sentence as an unconventional use of language 
because the mathematical symbol for the empty set, ∅, was used in a sentence that was 
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otherwise written in English words. This was generally the case, however, two 
mathematicians explained further that the issue of using the symbol ∅, was an issue of 
grammar. For example, M8 indicated in Pass 1 through the proof that there is a problem with 
the part of speech of the symbol “because empty is an adjective and the empty set is a noun”.  
So M8’s comment highlights that when read, the statement says, “none of the sets are empty 
set” rather than the possible intended meaning, “none of the sets are empty”. M5 gave a 
similar explanation for why the use of the symbol ∅ was inappropriate in this statement. Both 
M5 and M8 said that they would make a note to the student suggesting that they avoid this 
use of language in the future.  

One undergraduate participant S2 made a statement arguing that words and symbols can 
be used interchangeably since “the symbol for the empty set is just as rigid as saying empty”. 
From this quote, it appears that S2 is (at least implicitly) aware of the difference between the 
noun and the adjective forms, however, disregards the issue. With the exception of S2, no 
other student mentioned the grammatical issue of using the mathematical symbol.   

        
Figure 2. Proof A.      Figure 3. Proof B.   

Punctuation and capitalization 
 In Proof B (as shown in Figure 3), there is a lack of punctuation and capitalized letters 

to indicate the ending and beginning of sentences. Mathematician M7 pointed this out during 
Pass 1 through the proof, saying: “the expression and the punctuation are not good” and “we 
can’t allow writing like that”. In Pass 2, the remaining mathematicians agreed that lacking 
punctuation and capitalization is definitely unconventional of mathematical proof writing. 
However, mathematicians M3, M4, and M5 each also agreed that they would not address this 
issue in their introduction to proof classes. For example, M4 explained: 

I look for understanding of the construction of the mathematical arguments. So I’m 
not sure you can require that deep understanding at the same time pushing them to be 
correct with punctuation and so on. […] And I consider that my task is to teach them 
reasoning, rather than to use punctuation.   

Although all eight mathematicians in the study did agree that proofs should be presented in 
complete sentences, including appropriate punctuation and capitalization of letters, not all 
believed they should discuss this in class. Only M7 indicated that he would deduct points 
from his students’ work for missing punctuation and lacking capitalized letters. Meanwhile, 
M4, M6, and M8 indicated that they would mark the punctuation and capitalized letters when 
grading, without deducting points, to illustrate to their students that one should use complete 
sentences in proofs.  

None of the 15 undergraduate participants discussed the lack of punctuation or 
capitalization in Pass 1 through the proof. In fact, during Pass 2, 12 of the 15 undergraduate 
participants disagreed with the suggestion that this is an issue of mathematical proof writing. 
When asked why not, S2 explained “well, in my experience in my classes, some of my proofs 
were not full sentences with punctuation and capitalization and there was never really an 
issue about it.” This suggests that students may not learn the conventions of mathematical 
writing by simply observing mathematicians write proofs in class and that students are not 
made aware of issues with their proof writing until points are deducted. 
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Others were even surprised that issues of English would be important in a math class, for 
example, S4 exclaimed “Oh my god, this is a mathematics major, not a linguistic major right? 
I think it’s fine!” and S8 noted this is not an issue because “it’s not an English class.” This is 
not to say, however, that none of the undergraduates believed that mathematical language is a 
subset of academic English; three undergraduate participants did believe that capitalization 
and punctuation belonged in mathematical proof writing; for instance, S3 explained, “a proof 
is like a math essay of sorts and it should still be like grammatically correct”.  

The above suggests that the mathematicians in this study agreed that full sentences should 
be used when writing proofs. On the other hand, some of the responses from mathematicians 
and students indicated their beliefs that proper English does not play a role in proof writing at 
the introduction to proof level. With only one mathematician deducting points for lacking 
capitalization and punctuation, it is unsurprising that students do not see the necessity of 
proper grammar in proof writing.   
Non-statement 

Proof C (shown in Figure 1a) included the following phrase that was ungrammatical and 
meaningless: “Suppose ! ∘ ! !! s.t. !, ! ∈ (! ∘ !)!!”. As an imperative phrase with a 
transitive verb, English grammar dictates the need for both a direct object and an object 
complement to be a complete sentence. That is, the sentence must suppose the direct object in 
relation to another object or a property about the direct object. While the mathematicians did 
not give this exact grammatical explanation, they did note the incompleteness of the sentence. 

In Pass 1, seven of eight mathematicians discussed that the proof’s first line is not a 
complete sentence and has no meaning. M8 explained, “the way that I would parse this 
sentence is, suppose (! ∘ !)!!. That’s in itself a part and again it has no verb. Suppose 
(! ∘ !)!!?” M5 similarly noted “Students sometimes say ‘let a set’ which doesn’t mean 
anything. This is just a nonsense thing to say, suppose this set.” Thus, the statement does not 
suppose a property of the relation, is not a complete sentence, and conveys no meaning. 
Moreover, seven of eight mathematicians indicated they would deduct points for a 
nonsensical and incomplete statement. The eighth indicated they would make a note to the 
student to show the student that the statement was incomplete, but would not deduct points. 

Meanwhile some undergraduate participants saw an issue with the statement and 
attempted to rectify it by completing the sentence, but were unable to articulate what was 
wrong in the first place. For instance, N3 explained, “I would say ‘Suppose ! ∘ ! !! is a 
relation such that !, ! ’ is in this relation”. On the contrary, some of the undergraduates 
found no problem with the incomplete sentence; for example, N4 saw no difference between 
saying ‘Suppose ! ∘ ! !!’ and ‘Suppose there is a relation ! ∘ ! !!’. This suggests that 
some students do not view mathematical language as a sub-register of academic English and 
do not see the importance of using compete sentences in mathematical proof writing. 

Discussion 

As this qualitative study considers only a small sample of mathematicians and 
undergraduate students, the findings are simply suggestive of how mathematicians and 
undergraduates view the need for proper grammar in undergraduate proof writing. Based on 
the above, we see for the most part that mathematicians in the study believed that grammar 
and the parts of speech of mathematical words should be attended to when writing 
mathematical proofs. This need for complete sentences and attention to grammar is supported 
by the mathematical writing guides written by mathematicians (Gilman, 1987; Krantz, 1997; 
Higham, 1998; Houston, 2009; Vivaldi, 2014), who indicate that correct grammar and 
complete sentences should be used in proof writing. Meanwhile, the results suggest that 
mathematicians may not be attending to these issues in introductory proof courses. 
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Questions for the audience 
• How might one instruct mathematical grammar to undergraduate mathematics students?  
• How can we motivate students to use correct grammar in proof writing if they believe it is 

unnecessary?  
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A critical look at undergraduate mathematics classrooms:  Detailing mathematics 
success as a gendered and racialized experience for Latin@ college engineering students   

 
Luis A. Leyva 

Rutgers University 

Latin@s demonstrated an increase of nearly 75% in engineering degree completion over the 
last 15 years (National Science Foundation, 2015).  However, Latin@s remain largely 
underrepresented across STEM disciplines with scholars calling for analyses of their 
undergraduate education experiences to improve retention (Cole & Espinoza, 2008; Crisp, 
Nora, & Taggart, 2009).  With calculus as a gatekeeper into advanced STEM courses, 
undergraduate mathematics must be examined as a social experience for underrepresented 
populations including Latin@s.  This report presents findings from a phenomenological study 
on mathematics success as a gendered and racialized experience among five undergraduate 
Latin@ engineering students at a large, predominantly white institution.  In light of recent 
calls for equity considerations in undergraduate mathematics education (Adiredja, 
Alexander, & Andrews-Larson, 2015; Rasmussen & Wawro, under review), this report 
focuses on the Latin@ students’ classroom experiences with implications for broadening 
Latin@s’ and other underrepresented groups’ access to high-quality, supportive learning in 
undergraduate mathematics.  

Key words: Gender, Intersectionality, Latin@s, Race, Teaching   

Introduction and Related Literature 

Mathematics has been well documented as a gendered and racialized space for 
marginalized populations including women (Boaler, 2002; Mendick, 2006), African 
Americans (McGee & Martin, 2011; Stinson, 2008), and Latin@s1 (Oppland-Cordell, 2014; 
Téllez, Moschkovich, & Civil, 2011).  Issues of gender and race, however, have largely been 
studied separately in extant mathematics education research with minimal insight on how 
their intersections lead to varying forms of mathematics experience.  For example, while such 
intersections have informed sampling of participants such as African American males across 
studies using a critical race theory lens, race was the primary focus of their analyses with 
considerations of how gender shaped participants’ racialized mathematics experiences left 
implicit (Leyva, accepted).   

Scholars, therefore, are calling for intersectional analyses that highlight variation of 
mathematics experience among historically marginalized groups at different intersections of 
their identities (Esmonde, Brodie, Dookie, & Takeuchi, 2009; Martin, 2009; Oppland-
Cordell, 2014).  Latin@s, in particular, have “seldom been asked for their perspectives on 
their classroom mathematics experiences” (Varley Gutiérrez, Willey, & Khisty, 2011, p. 27) 
to shed light on how they negotiate their multiple identities with their mathematics success.   

In undergraduate mathematics education, Rasmussen & Wawro (under review) argued 
that considerations of such equity issues are the “next steps” in understanding how 
mathematics instruction can be more responsive to the cultural and linguistic diversity in 
undergraduate classrooms.  Last year’s Research in Undergraduate Mathematics Education 
                                                
1	Drawing on Gutiérrez (2013), the term Latin@ decenters the patriarchal nature of the 
Spanish language that traditionally groups Latin American women and men into a single 
descriptor (Latino) denoting only men.  The @ symbol allows for gender inclusivity among 
Latin Americans compared to the either-or form (Latina/o) implying a gender binary.	
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(RUME) conference proceedings echoed the calls for intersectional considerations of 
mathematics experiences and identities.  Namely, Adiredja, Alexander, and Andrews-
Larson’s (2015) theoretical report offered a conceptualization of equity for undergraduate 
mathematics education challenging researchers to pursue data analyses and reporting of 
findings with a critical awareness of the “intersectionality of identity.” 
 

Study Overview and Research Question 

In response to this need of equity scholarship to inform more critical approaches in 
undergraduate mathematics education, this preliminary research report presents findings from 
a phenomenological study that used intersectionality from critical race theory (Solórzano & 
Yosso, 2002) and Latin@ critical race theory, or LatCrit, (Bernal, 2002) to characterize 
mathematics success among five undergraduate Latin@ engineering students at a large, 
predominantly white four-year institution.  The study used a three-tiered analytical 
framework from prior work (Leyva, under review) to detail the institutional, interpersonal, 
and ideological dimensions of the Latin@ students’ mathematics success. 

For this report, these three dimensions are considered in relation to instruction and student 
learning in the undergraduate mathematics classroom context.  This analysis particularly 
focuses on the extent to which these classroom situations were gendered and racialized 
experiences as well as how this shaped the Latin@ students’ academic pursuits at the 
university.  More explicitly, this report addresses the question, “In what ways did 
undergraduate mathematics classroom experiences afford or limit opportunities for 
mathematics success as Latin@ engineering students at the university?”   
 

Theoretical Perspectives 

Critical race theory (CRT) in education is a perspective that “foreground[s] and 
account[s] for the role of race and racism” (Solórzano & Yosso, 2002, p. 25) in efforts to 
disrupt racism and other intersecting systems of societal oppression (e.g., sexism, classism) in 
schools and classrooms.  One of the CRT tenets in educational research is recognizing what 
Kimberle Crenshaw (1991) coined as intersectionality referring to the mutual constitution of 
oppression at intersections of race, class, gender, and other identities (Solórzano, 1998).  As a 
“close cousin” to CRT, LatCrit examines intersectionality among Latin@s in relation to 
issues such as culture, immigration, and language that often go unaddressed under CRT 
(Bernal, 2002).    

Phenomenology informed the study’s methodology of collecting and critically examining 
multiple “texts of life” (Creswell, 2013) to detail the phenomenon of mathematics success 
among the five Latin@ engineering students at a large, predominantly white institution.  
Under the CRT perspective, these “texts of life” inform the analytical construction of Latin@ 
participants’ counter-stories (Solórzano & Yosso, 2002), or personal narratives challenging 
racial discourses of mathematics ability among people of color including Latin@s.  The 
study’s coupling of CRT with LatCrit guided the analysis of intersectionality across Latin@ 
participants’ counter-stories and classroom experiences in undergraduate mathematics. 

 
Data Sources and Research Methodology 

Study Participants 
This study took place at a large state university in the northeastern United States during 

the 2014-2015 academic year.  Less than 15% of the 2011-2012 graduating class was 
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Latin@.  These Latin@ graduates earned only 10% of the university’s conferred degrees in 
STEM areas. 

The Latin@ participants were purposefully recruited based on criteria informed by 
scholarship on “successful” underrepresented students in STEM (Cole & Espinoza, 2008; 
McGee & Martin, 2011; Stinson, 2008).  Five Latin@ students (2 women: Diana and Zoila; 3 
men:  Benito, Cristian, and Daniel) were recruited from the university chapter of the Society 
of Hispanic Professional Engineers (SHPE), a national organization aimed at empowering the 
Hispanic community in realizing its potential in engineering through STEM outreach and 
professional networking. 
 
Data Collection 

Four types of data were used:  (i) mathematics autobiographies, (ii) field observations, 
(iii) semi-structured interviews, and (iv) a focus group.  Informed by critical race 
methodology (Solórzano & Yosso, 2002), the autobiographies, interviews, and focus group 
were used for the analytical construction of Latin@ participants’ counter-stories as students 
in undergraduate mathematics classrooms.  Field observations in their mathematics 
classrooms as well as the engineering and mathematics departments provided situated 
insights to complement participants’ reflections of their experiences.  Insights from the 
study’s interviews and focus group will be the focus of the analysis presented in this report. 

Throughout the academic year, participants completed four 60-minute, semi-structured 
individual interviews.  All interviews were audiotaped and transcribed verbatim.  The 
interviews were opportunities for participants to share and explore what being Latin@ and 
mathematically successful meant to them across different contexts (e.g., classroom, home, 
SHPE meetings).  Interview questions were structured in an open-ended manner allowing 
participants to describe varying levels of consciousness of their different identities across 
these contexts including the mathematics classroom (Bowleg, 2008).   

In addition, participants completed a focus group structured around three stimulus 
narratives based on observations in their lectures and recitation/workshop sessions.  These 
narratives related to ideas of students taking up classroom space, stereotypes of mathematics 
ability, and faculty-student relationships.  Participants were probed on the extent to which 
they observed such dynamics in mathematics classrooms and whether or not they saw 
themselves in similar situations.  The focus group was audiotaped and transcribed verbatim. 
 
Data Analysis 

Phenomenology guided data analysis by focusing on patterns across participants’ 
mathematics experiences to detail the phenomenon of mathematics success among these 
undergraduate Latin@ students (Creswell, 2013). Open codes were used to identify the 
institutional, interpersonal, and ideological influences on mathematics success while axial 
codes examined the intersectionality across participants’ mathematics experiences (Bowleg, 
2008; Creswell, 2013). While some axial codes were specific to individual identities (e.g., 
race, gender), other axial codes corresponded to different intersections of these identities such 
as gender-race (Bowleg, 2008).  Implicit instances of intersectionality were made explicit by 
constructing analytical narratives for each participant (Angelillo, Rogoff, & Chavajay, 2007). 

Validity was reinforced through triangulation of collected data, memoing, and member 
checking.  I brought awareness of my positionality to pursue data analysis with strong 
subjectivity and build nuanced understandings of the Latin@ engineering students’ 
mathematics success.  In addition, I developed positive rapport and mutual trust with 
participants supported by our mutual identifications as Latin@ STEM majors.	
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Findings 

The following section presents findings from the analysis of interview and focus group 
data organized by institutional, interpersonal, and ideological influences on the undergraduate 
Latin@ engineering students’ mathematics success.  In alignment with the constructive goals 
of RUME’s preliminary research report presentations, discussion about this subset of the 
study’s data analysis will guide my next research step in triangulating participants’ classroom 
reflections with their observed behaviors in mathematics lectures and recitations/workshops.  
This will allow for consideration of confirming and disconfirming evidence across data 
sources to characterize the Latin@ engineering students’ strategies in successfully navigating 
the gendered and racialized spaces of their undergraduate mathematics classrooms. 

At the institutional level, participants described how instruction in their mathematics 
lectures limited their participation in terms of asking questions, volunteering answers, and 
correcting the instructor.  Cristian described how although he “captures little concepts” 
during lectures, he “do[es] not learn in class” and instead does much of his mathematics 
learning at home when reviewing his notes.  Diana also reflected on how lectures’ fast 
instructional pace caused her to have to write notes without “taking them in or processing 
them.”  This resulted in what participants described as quiet mathematics lectures with only a 
few other students participating – namely, whites and Asian Americans.  While Daniel 
characterized these more active class participants as the “same people who go above and 
beyond,” Cristian asserted that they were the “nerdy kids” from high school who “want to 
know everything and get the highest grade” which typically did not include Latin@s. 

Interpersonally, participants viewed strong relationships with their mathematics teachers 
as motivation to not let them down and be successful in their classes.  They, however, 
described minimally connecting this way with their undergraduate mathematics instructors.  
Benito posited that in order to establish strong teacher-student relationships, professors and 
graduate teaching assistants (not just students) have to “make an effort to build that 
relationship” which he did not readily observe at the university.  As an example of this 
limited teacher approachability, he commented on how the chemical engineering department 
attempted to “humanize” its faculty members by mandating them to make small self-
introductions including personal interests on the first day of their courses.   

Both Cristian and Daniel commented on how having shared racial and gender 
identifications with their instructors would positively impact their participation and 
performance in undergraduate mathematics.  Cristian, for instance, saw himself being more 
comfortable and “willing to correct the professor… [if] he is a male professor” considering 
the underrepresentation of women faculty in mathematics.  Daniel looked back on how his 
former Latin@ college calculus professor’s use of the Spanish language and sharing of 
childhood stories in Honduras separated him from other university mathematics faculty who 
“felt like robots.”  It was this professor connection that Daniel raised as an explanation for his 
“metamorphosis” as a college mathematics student characterized by sitting toward the front 
in lecture, attending office hours, and ultimately passing first-semester calculus after failing it 
the first time and being placed on academic probation. 

From an ideological standpoint, participants raised the discourse of a racial hierarchy of 
mathematics ability (Martin, 2009) with whites and Asian Americans being better at 
mathematics than African Americans and Latin@s.  This discourse allowed them to make 
meaning of undergraduate mathematics classrooms’ “competitive” feel and minimal 
opportunities for peer connection.  Diana reflected on how most of her mathematics 
professors curved course grades so one’s performance is contingent on how the entire class 
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performed.  As a result, students were aware of those “at the top” scoring near-perfect exam 
scores who Diana described as commonly being Asian American classmates “mak[ing] 
themselves known” by publicizing their high grades.  Diana’s racialized views of who was 
successful in undergraduate mathematics brought her to feel as though her classroom 
participation as a Latin@ was subject to closer scrutiny particularly from white and Asian 
American peers who were possibly thinking, “Why are you talking?”  Cristian asserted that 
such peer judgments coupled with limited opportunities to connect with other students one-
on-one in large lectures often resulted in “closed off” opportunities to study with classmates 
who he saw as more mathematically capable than him.    
 

Implications for Teaching Practice 

Although findings from this study are not generalizable to all Latin@ student populations 
and higher education institutions, they raise key implications to advance undergraduate 
mathematics teaching informed by critical awareness of mathematics as a variably gendered 
and racialized experience for Latin@s and other underrepresented groups.  Questions for 
audience discussion during the RUME presentation are raised throughout this section. 

First, the Latin@ participants’ reflections on their mathematics lectures resonate with 
Rasmussen and Wawro’s (under review) argument for equity considerations in structuring 
undergraduate mathematics instruction.  I argue that such pedagogical mindfulness, however, 
should not be limited only to post-calculus courses considering how the Latin@ students 
expressed limited opportunities to meaningfully engage with instruction in calculus.  
Furthermore, it is well documented that entry-level mathematics courses like calculus serve 
as a gatekeeper for underrepresented groups’ access to advanced STEM coursework (Chen, 
2013).  What literature would be useful to further explore values of classroom instruction and 
student learning across P-16 mathematics?  How can university faculty better support 
Latin@s and other marginalized students whose pre-college mathematics learning approaches 
may differ from those used to inform undergraduate instruction?    

Secondly, participants’ discussions of feeling disconnected from their university 
instructors capture the importance of teacher-student relationships in their mathematics 
success.  This aligns with scholarship that highlights how students of color’s academic 
success is characterized by high-quality instruction coupled with caring, supportive teacher 
relationships allowing for increased access to mathematics and STEM at large (Battey, 2013; 
Brown, 2002).  To what extent has culturally responsive pedagogy been examined in 
undergraduate mathematics education?  What approaches to undergraduate mathematics 
instruction establish relational spaces with underrepresented students such that their ability 
and cultural backgrounds are acknowledged and valued throughout the learning experience?   

Lastly, participants invoked gendered and racial discourses of mathematics ability to 
make meaning of their positioning along a hierarchy of success across undergraduate 
mathematics classrooms (Boaler & Greeno, 2000; Leyva, under review; Shah, under review).  
Zoila, for example, shared how she held ideas that “whites and Asian Americans are smarter” 
making her often feel intimidated by these peers.  Such discourses, however, often hindered 
the Latin@ students from connecting with classmates even though such networking played an 
important role in their pre-college mathematics success.  This challenges Treisman’s (1992) 
claim of students of color as inherently not able to form peer networks and thus raises the 
question of what practices in undergraduate mathematics teaching can disrupt existing forms 
of gendered and racialized status of who are seen as “doers of mathematics” in classrooms. 
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Students’ conceptions of factorials prior to and within combinatorial contexts 
 

Elise Lockwood Sarah Erickson 
Oregon State University 

 
Counting problems offer rich opportunities for students to engage in mathematical thinking, 

but they can be difficult for students to solve. In this paper, we present a study that examines 
student thinking about one concept within counting, factorials, which are a key aspect of many 
combinatorial ideas. In an effort to better understand students’ conceptions of factorials, we 
conducted interviews with 20 undergraduate students. We present a key distinction between 
computational versus combinatorial conceptions, and we explore three aspects of data that shed 
light on students’ conceptions (their initial characterizations, their definitions of 0!, and their 
responses to Likert-response questions). We present implications this may have for mathematics 
educators both within and separate from combinatorics, and we discuss possible directions for 
future research. 

 
Keywords: Combinatorics, Discrete mathematics, Factorials, Counting  

 
Introduction and Motivation 

Counting problems provide opportunities for interacting with problems that are easy to state 
and understand, but that require deep and non-algorithmic mathematical thinking. Brualdi says 
the following about counting problems: “The solutions of combinatorial problems often require 
ad hoc arguments sometimes coupled with use of general theory. One cannot always fall back 
onto application of formulas or known results” (2004, p. 3). In this paper, we explore one 
specific concept within counting that we feel plays an important role in combinatorial 
enumeration: factorials. The factorial of a natural number n is defined as the product of the first n 
natural numbers (for instance, Epp (2010) defines n factorial as follows: “For each positive 
integer n, the quantity n factorial denoted n!, is defined to be the product of all the integers from 
1 to n” (p. 181)). Factorials themselves are defined and exist in contexts outside of a 
combinatorial setting, and yet they play a significant role in the solving of counting problems – 
both due to the fact that they can be interpreted as having inherent combinatorial meaning and 
because they are a basic component of many fundamental counting formulas. Because of this, we 
are interested in learning more about what conceptions students have of factorials within and 
without the counting context, and we seek to better understand how students' pre-existing 
conceptions of factorials (even prior to reasoning about them in a combinatorial context) might 
interact with their combinatorial thinking about factorials. We seek to answer the following 
research question: How might we characterize students’ initial conceptions about factorials, and 
how do such conceptions interact with students’ solving of counting problems? 

 
Literature Review and Theoretical Perspectives 

Counting problems have been shown to be difficult for students at a variety of levels. This is 
seen both in low success rates (e.g., Eizenberg & Zaslavsky, 2004) and in qualitative evidence of 
student struggles (e.g., Batanero, Navarro-Pelayo, & Godino, 1997; Hadar & Hadass, 1981). 
Although difficulties persist, there has also been growing evidence of students’ success with 
counting problems. This has included identifying beneficial ways of thinking about counting 
problems (e.g., Lockwood, 2014; Halani, 2012; Maher, Powell, & Uptegrove, 2011), identifying 
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and testing the value of particular instructional interventions (Lockwood, Swinyard, & 
Caughman, 2015; Mamona-Downs & Downs, 2004), and developing models and schemes of 
students’ combinatorial thinking (Lockwood, 2013; Tillema, 2013). One possibility toward 
continued understanding of the state of students’ combinatorial reasoning is to look at a very 
specific yet fundamental concept related to counting.  

In this paper, we focus on the concept of factorials because it is itself a foundational 
combinatorial idea with a widely applied formula, and it is a key aspect of many other 
combinatorial concepts (and their formulas) that students encounter as they solve counting 
problems. Though we did not identify any research explicitly about students’ reasoning about 
factorials, there has been a tradition, beginning with Piaget and Inhelder (1975), of closely 
examining students’ mental processes involved in reasoning about particular concepts. We are 
also motived by a recent study (Lockwood, et al., 2015) in which students seemed to have 
preconceived notions of factorials that were affecting their reasoning about counting problems. 
We seek to better understand if other students hold similar preconceptions, and also to consider if 
and how certain conceptions come into play as students reason about factorials in counting 
contexts. We take conceptions to mean a students’ mathematical understanding about a particular 
idea. 

The study is framed within Lockwood’s (2013) model of students’ combinatorial thinking. 
This model proposes three components of students’ combinatorial thinking and elaborates the 
relationships between these components. Formulas/Expressions are mathematical expressions 
that yield a numerical value, while Counting Processes refer to the processes in which a counter 
engages (either mentally or physically) as they solve a counting problem. Finally, Sets of 
Outcomes consist of the collection of objects being counted – those sets of elements that are 
generated or enumerated by a counting process (p. 252 – 253). In this paper, we use the model as 
a way of framing students’ combinatorial reasoning about a particular combinatorial construct.  

 
Methods 

Participants. The participants in this study were 20 undergraduate students at a large 
university in the western United States. Fourteen of the students were taking a calculus course at 
the time of the interviews, and six were taking 300-level mathematics courses that came after 
discrete mathematics, including advanced calculus, topology, linear algebra, probability, and 
numerical analysis. We targeted these two groups of students because we wanted to include in 
our sample both some students who had taken discrete mathematics at the university level and 
some who had not. There were fourteen male students (ten in calculus, four in the advanced 
courses) and six female students (four in calculus, two in advanced courses). 

Data collection. The design of our study was to conduct individual, semi-structured, task-
based interviews (Clement, 2000; Goldin, 1997), and we used Livescribe pens to record the 
interviews, which allowed us to capture what students wrote and said in real time. We created a 
list of symbols commonly seen in college-level mathematics classes, and we asked the students 
to indicate which symbols they recognized. If the students recognized the factorial symbol, we 
proceeded to ask them a line of questioning to probe their understanding of factorial. We then 
asked them a handful of initial questions about factorials, including statements that required a 
response on a Likert scale. We concluded the interview by giving the students counting problems 
one at a time, asking them to verbally explain their reasoning and write down their thought 
processes as they went. If students did not recognize the factorial symbol, or recognized it and 
gave an incorrect interpretation of the symbol, we immediately gave them the counting 
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problems, returning to the reflective questions and Likert response statements if they showed any 
subsequent sign of having remembered what the factorial symbol meant. Because students’ 
responses and background varied considerably, and because the interviews were semi-structured, 
there is a variety among the specific tasks and counting problems each student completed.  

Data Analysis. After conducting and recording the interviews, we re-listened to the 
interviews and watched the files outputted by the Livescribe pens. We created content logs of the 
interviews, which provided a detailed, time-stamped description of what happened and included 
transcriptions of particularly noteworthy episodes. The research team discussed and coded the 
students’ responses to the initial questions, and the data revealed emergent dimensions of 
students’ conceptions of factorial, which we discussed in relationship to Lockwood’s (2013) 
model of combinatorial thinking. Next, we studied the Likert responses by first calculating the 
average and standard deviation of the responses for each question. We also discussed responses 
that were particularly surprising and attempted to determine and articulate why students might 
have responded in unexpected ways. Finally, each author individually coded student responses to 
the counting problems, looking for particular factors of interest for each problem. Any 
discrepancies in coding were addressed via discussion among the research team. 
 

Results 
In presenting the results, we focus on sharing empirical evidence of students’ initial 

conceptions of factorials, as seen in their responses to initial questions and to the Likert-response 
questions. Due to space we do not report on their work on the counting problems.  
Computational and Combinatorial Conceptions of Factorials  

A major finding about students’ reasoning about factorials is that there is a fundamental 
distinction between two conceptions of factorials: computational and combinatorial. We do not 
claim that is it mathematically a new insight. However, this distinction arose in our data in 
several ways, and we share it as a finding because it seemed to reflect an important difference in 
conceptions for our students. By a computational conception, we mean that students think of n 
factorial in terms of its numerical definition as the product of the first n positive whole numbers. 
A student with a computational conception might be able to use and manipulate factorials in 
expressions or equations, as strictly a numerical calculation. A combinatorial conception 
involves an understanding that factorials have some intrinsically combinatorial meaning – 
specifically as being related to the number of ways of arranging n distinct objects. Someone with 
a combinatorial conception may think of n! as the number of arrangements of n distinct objects, 
and they additionally may be able to conceive of a process by which the product n! can generate 
all of the arrangements of n things. With a combinatorial conception, there is a natural way to 
relate factorial to some combinatorial meaning and not only as a computable expression. We 
provide evidence of these two conceptions in students’ initial characterizations and in their 
definition of 0!. 

Students’ Initial Characterizations of Factorial. For each student who had recognized the 
factorial symbol, we asked them what they thought it meant and how they would explain it to 
someone else. Of the 20 students, 15 had seen the factorial symbol before and could provide a 
statement of it. Of those 15, 12 of the students gave a correct definition, with all of these students 
expressing factorial in terms of its computational definition. Eight of them defined n! as a 
decreasing product, such as Student 6 who replied, “You take whatever number n is and you 
multiply it by all whole numbers fewer than it, stopping at 1.” The remaining four students who 
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provided a correct definition described n! as an increasing product. For example, Student 17 said, 
“You’re multiplying all the integers together in order until the n.” 

In addition to providing correct computational definitions, there were two students (1 and 8) 
that additionally defined factorial combinatorially. Student 1 defined factorials as follows: “It’s 
called n factorial, and it gives us the number of possibilities we can arrange things in order. Like, 
if we have n distinct objects, and we’d like to put them in a certain order, we’ll have n factorial 
which is n times n-1 times dot dot dot times 1.” Similarly, Student 8 gave his initial 
computational definition by saying “I would just say it’s n times n – 1 times n – 2 all the way 
down to 1. I would, you know, explain it recursively.” When asked if he could think of more 
than one way to explain a factorial to someone else, he responded,  

Student 8: “Hmm. I guess if you’re talking about, like permutations of, yeah, if you’re 
talking about permutations of, like, 8 objects or something, you’d say, okay so for 
the first one I have 8 choices, then seven choices, then six choices, then five 
choices, and explain that and say ‘Oh, and this is really annoying to write it out, 
so we’ll call it the factorial function.’” 

The three students who incorrectly characterized factorial did so as involving addition instead 
of multiplication, which suggests perhaps that these students were familiar with the notion of 
factorial but did not have a solid understanding of it. As an example, Student 20 said, “Um, I 
think it was just, um, to notate the fact that, um, uh, it repeat, well, the symbol is, like, like, 5 
exclamation point is like 5+4+3+2+1, isn’t it? And I forget why we needed to use that.” 
Although only two students defined factorial combinatorially here, a number of students also 
brought up combinatorial interpretations of n! in other parts of the interviews, such as when they 
were asked to solve counting problems or when justifying why 0! is 1. This suggests that while 
most of the students had existing computational conceptions of factorial, some had a sense that 
factorials could apply in a combinatorial setting.  

Student definitions of 0!. We also saw evidence of computational versus combinatorial 
conceptions in students’ discussions of how 0! should be defined. We asked 12 students about 
how they understood 0!, and nine students responded (the other students did not have a guess). 
We note that the convention of having 0! defined as 1 is easily justified by the combinatorial 
characterization of factorial, because there is only one way to arrange no objects. The 
computational justification for why 0! = 1 is related to the convention of empty products (the 
product of no factors) equaling the multiplicative identity, which is 1.  

Although there exists a computational, non-combinatorial justification for why 0! might be 1 
(the empty product convention) the students who did not provide a combinatorial justification 
were not able to articulate this argument – indeed, many of the reasons the students provided are 
not correct or convincing. For example, Student 9 said 0! would be 0 and explained, “I’m not 
sure if this is the technical definition, but n factorial is all the numbers from n to 1, and so if n 
was zero, then it’d be like zero times nothing.” In fact, the students who did not reason 
combinatorially about 0! did not provide reasonable justifications about why 0! is 1. These 
results suggests that students’ computationally knew how 0! was defined but had not thought 
deeply about why that might conceptually make sense. The majority of students seemed strictly 
to have a computational conception of factorials, while a handful of students recognized that 
factorials may have some combinatorial meaning. Even fewer (just two students, 1 and 8) 
demonstrated a robust combinatorial conception of factorials. We are not saying that the calculus 
students should have been able to give a combinatorial justification (as they might not have been 
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exposed to a combinatorial context), but these findings suggest that students may have existing 
conceptions of factorials that they may bring to combinatorial situations.  
 
Responses to the Likert-response Questions 

We also get a sense of students’ conceptions of factorials by evaluating their Likert-response 
questions. We do not have space to share all of the responses to these questions, but we highlight 
a couple of points of discussion. First, the answers to some of the Likert-response questions 
suggested that many students do associate factorials with counting, if only vaguely, even if this 
was not demonstrated in their initial characterizations of factorials. To elaborate this point, we 
consider Statement #5 (Factorials could be used to solve a counting problem like, “How many 
possible outcomes are possible if you flip a coin ten times?”), which speaks to the combinatorial 
nature of factorial. We would expect the answer to this problem to be a 1 (strongly disagree) 
because factorials are not appropriate for solving this kind of counting problem (the answer 
should be 210, as the number of options does not decrease for each successive stage in the 
counting process). The average of all responses to this question was 2.77, and the standard 
deviation was 1.64. Looking more closely at the responses, 8 of the 13 students seemed to 
recognize that factorials were not appropriate for this counting problem. For example, Student 8 
responded with a 2 and said, “Factorials are useful when you have problems that involve, like, 
uh, situations where your choices, diminish? Like, where you do something, and then the next 
thing you do you have fewer possible outcomes, um, and that’s why they’re—yeah, that’s why 
that form is useful.” However, 5 of the 13 students agreed or strongly agreed with this statement. 
In discussing this problem, those who responded with 4’s or 5’s suggested that they associated 
factorials with any kind of counting problem. For example, Student 7 responded to the statement 
with a 5 and said, “I think this has to do with probability, and we would always use factorials in 
probability. So, uh, I think there is definitely a way to use factorials to solve that.” This suggests 
to us that for these students, factorials are vaguely associated with counting in their minds, but 
that its combinatorial meaning may not be precisely defined. 

Similarly, Statement #7 (n! is the number of ways to rearrange n objects, even if some of 
them are identical) provides further evidence of this phenomenon. We would expect the answer 
to this statement to be a 1 as well, but the average of the student answers was 2.54 with standard 
deviation 1.51. More closely examining the students’ answers, the majority of students 
understood a factorial to mean counting arrangements of distinct objects, but there were still four 
students who agreed or strongly agreed with this statement, again suggesting a vague association 
with factorials and counting.  

Given our previous section that highlights the fact that most students had computational and 
not combinatorial definitions of factorials, it is not surprising that most students likely did not 
have a robust understanding of how factorials fit in with solving counting problems. However, 
the student responses to #5 and #7 suggest to us that students are bringing with them pre-
conceived ideas about factorials as they relate to combinatorics that are perhaps not clearly or 
well defined. These findings suggest that instructors of discrete math and combinatorics should 
be aware of the kinds of pre-existing notions students might have about factorials. 

We also saw some evidence of students’ ability to see the multiplication in factorials as a 
counting process, which suggests perhaps a connection between computational and 
combinatorial conceptions of factorials. A final item to discuss is Statement #13 (2×4×3×1 is the 
same as 4!). Every student responded to this statement with a 5, except for Student 17 who gave 
it a 4 and Student 1 who gave it a 3. The students overwhelmingly justified their responses by 
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appealing to the commutativity of multiplication of real numbers. This underscores this idea that 
the multiplication in factorials is just the operation of multiplication, which is commutative. So, 
we want to emphasize that in some sense, the students are correct that, as a numerical result, the 
product 2×4×3×1 is the same as the product 4×3×2×1 – it must be, because the operation of 
multiplication of real numbers is commutative. However, we would argue that combinatorially, 
these two products are not “the same.” To see this, we must consider the counting processes and 
how those processes might be structuring the set of outcomes. In terms of Lockwood’s (2013) 
model, the expression 4×3×2×1 suggests a counting process with four stages, in which the first 
stage has 4 options, the second stage 3 options, the third stage 2 options, and the last stage 1 
option. The expression 2×4×3×1 suggests something else entirely – that in a four-stage process 
the first stage has 2 options, the second 4, the third 3, and the fourth 1. There are plenty of 
counting processes that reflect this idea (for instance, forming outfits from 2 shirts, 4 pants, 3 
hats, and a belt), but they are different than the processes that underlie 4!. In addition, while the 
multiplication 4×3×2×1 corresponds naturally to a particular organization of the arrangements of 
four distinct objects, it is less natural to find an organization of those arrangements 
corresponding to the multiplication 2×4×3×1. In this way, the orders of multiplication suggest 
different relationships between the Formulas/Expressions and Set of Outcomes components of 
the model. 

Student 1 is the only student to have addressed this issue, and not surprisingly he is the 
student who seemed to have the most robust understanding of factorial in the entire study. 
Student 1 said about Statement #13, “I know they have the same value, but I don’t think this one 
contains information that 4 factorial has.” When asked about the information that 4 factorial has, 
he said, “4 factorial tells us I’m counting something. But, just, 2×4×3×1also tells us we’re 
counting something, but, um, I don’t know.” To us, this suggested that 4 factorial had some 
different meaning for him in terms of counting objects than 2×4×3×1. When asked if the two had 
different meanings to him, he said, “Yeah, I feel differently. Like, if you have 2 options for the 
first place, then 4 options for second, then 3 and 1, you’ll have this number of possibilities. But, 
for 4 factorial, it means you’re doing a specific kind of counting, like, hmm, like ordering—yeah, 
ordering things. Not just counting the number of [possibilities]. I think there’s something more.” 
In saying this, he demonstrated a strong understanding of the multiplication principle, and in 
particular the way in which the order of multiplication corresponds to distinct, temporal stages in 
the counting process. 

In contrast, Student 17, who gave Statement #13 a 4, only justified his response by saying, 
“It’s the, it’s commutative, so, it—they mean the same thing.” When asked why he put a 4 and 
not a 5, he answered “Uh, kinda because it’s, like, different to put it that way. It’s not, it’s not 
what you would normally put as 4 factorial. I mean, I put a 4 because it’s not wrong.” This 
suggests that even Student 17 did not think the expressions were different because they have 
inherently different combinatorial meaning, merely that 2×4×3×1 is an unconventional but 
equivalent way of writing 4 factorial. The responses to Statement #13 provide for us an 
interesting insight about how students might view factorials, and it suggests that there is more to 
be investigated about how students understand the multiplication within factorials, especially as 
it relates to counting processes (and how those processes might generate and structure sets of 
outcomes). 

To summarize our results, the students’ initial conceptions revealed a couple of salient points 
of discussion. First, 15 of the students had seen factorials before, even though only 6 of them had 
taken coursework beyond discrete mathematics. Their initial definitions revealed that students 
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predominantly conceptualize factorials computationally, although, while only two initially gave a 
combinatorial definition of factorial, four additional students suggested that they understood that 
factorials were related to counting (even if imprecisely). The students’ responses to the Likert-
scale questions gave evidence that many of them thought that factorials were related to counting 
in general (even if imprecisely), and in addition, the Likert responses revealed the variety of 
ways in which students conceptualize aspects of factorials. Getting a better sense of students’ 
pre-existing conceptions of factorial (particularly the distinction between computational and 
combinatorial conceptions) is important as we consider what it might mean for students to have a 
robust understanding of factorial (and how we might help them adopt such an understanding). 
 

Conclusions, Implications, and Directions for Future Research 
We have evidence that students without combinatorial experience (or without a clear 

combinatorial conception of factorial) are coming into counting situations with some knowledge 
of factorial. It is important for researchers and teachers of combinatorics to have a sense of what 
kinds of preconceived ideas their students might have about factorials, and highlighting the 
combinatorial/computational distinction illuminates different conceptions that student may have 
as they are introduced to factorials in a discrete mathematics or probability class.  

Teachers who might introduce the computational definition of factorial (such as in a calculus 
class or an induction proof) should be aware of the fact that students might eventually need to 
understand factorials in a combinatorial context. Factorial should be framed not as some 
meaningless computational fact or rule, but rather as a flexible and efficient way of writing a 
product. Teachers who teach discrete mathematics should bear in mind that students might have 
been introduced previously and might have a purely computational understanding of factorial. It 
may also be beneficial to realize that students’ combinatorial understanding of factorial may be 
reflected in the three components of Lockwood’s (2013) model. The formula should relate to 
counting processes, which should also relate to the sets of outcomes, and computational facility 
should be explicitly tied to what that might afford combinatorially. Framing factorials in this way 
can help to develop in students robust and flexible understandings of factorial. Because factorials 
appears so frequently and are a key aspect of so many topics and formulas in counting problems, 
it is important for students to understand them well.  

There are a couple of potential directions for future research based on this study. Given that 
our findings are based on a relatively small number of students, it would be possible to 
investigate conceptions about factorials among a larger set of students. In so doing, we could 
investigate whether the distinction between computational and combinatorial conceptions of 
factorials exists more broadly for other students. In addition, the multiplication principle is a key 
underpinning idea in factorials, more work can and should be done to examine this fundamental 
idea and even the role it may play in students’ reasoning about factorials. 
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Students’ meanings of a (potentially) powerful tool for generalizing in combinatorics 
 

Elise Lockwood  Zackery Reed 
Oregon State University 

 
In this paper we provide two contrasting cases of student work on a series of combinatorial 

tasks that were designed to facilitate generalizing activity. These contrasting cases offer two 
different meanings (Thompson, 2013) that students had about what might externally appear to be 
the same tool – a general outcome structure that both students spontaneously developed. By 
examining the students’ meanings, we see what made the tool more powerful for one student than 
the other and what aspects of his combinatorial reasoning and his ability to generalize prior 
work were efficacious. We conclude with implications and directions for further research. 
 
Key Words: Combinatorics, Generalization, Counting problems, Mathematical meanings 

 
Introduction and Motivation 

Generalization is a fundamental mathematical activity with which students at all levels 
engage (Amit & Klass-Tsirulnikov, 2005; Lannin, 2005; Peirce, 1902), and yet there is still much 
to learn about ways to foster productive generalizing activity. In particular, most of the work on 
generalization has been with younger children, commonly in algebraic settings (Amit & Neria, 
2008; Becker & Rivera, 2006; Cooper & Warren, 2008; Ellis, 2007b; Mulligan & Mitchelmore, 
2009; Radford, 2006; Rivera, 2010; Steele, 2008). In the context of a larger study, we sought to 
better understand students’ generalization in the domain of combinatorics which involves the 
solving of counting problems and provides students with opportunities to engage with accessible 
yet challenging tasks (e.g., Kapur, 1970; Tucker, 2002). In this paper, we compare and contrast 
two students’ work on a series of combinatorial tasks, during which they each spontaneously 
introduced a potentially powerful tool for generalization in the combinatorial setting. Each of 
these students used this new tool, but they varied in the meaning they seemed to make of the 
tool. As a result, they differed in how effective they were able to be in using the tool generally 
and solving combinatorial tasks. We seek to answer the following research question: What 
meaning do students make of the same spontaneously generated tool (which we refer to as the 
11xx structure), and what do these meanings suggest about students’ generalization in 
combinatorial contexts? The results in this paper help to inform research on students’ meanings 
in the context of both their generalizing activity and their combinatorial thinking.    

Literature Review and Theoretical Perspective 
The act of generalizing is a key aspect of students’ mathematical development, and both 

mathematics education researchers (e.g., Amit & Klass-Tsirulnikov, 2005; Davydov, 1972/1990; 
Ellis, 2007b; Vygotsky, 1986) and policy makers emphasize its importance (the Common Core 
State Standards highlight generalization in both the content and the practice standards; Council 
of Chief state School Officers, 2010). We seek to extend the current work on generalization by 
focusing on undergraduate students in the context of combinatorics. The tasks we designed were 
designed with the overall aim of facilitating students’ generalizing activity, and for this purpose 
we follow Ellis (2007a) (who drew on Kaput, 1999) in defining generalization as “engaging in at 
least one of three activities: a) identifying commonality across cases, b) extending one’s 
reasoning beyond the range in which it originated, or c) deriving broader results about new 
relationships from particular cases” (p. 444). We chose the context of combinatorics in part to 
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examine generalization in a novel context, but we were also motivated to contribute to previous 
work on students’ combinatorial thinking. There is evidence that students struggle with solving 
counting problems correctly (e.g., Batanero, Navarro-Pelayo, & Godino, 1997; Hadar & Hadass, 
1981), and we hope to contribute to the existing literature by providing instances of meaningful 
combinatorial reasoning that might ultimately inform instruction.  

We draw on Thompson’s (2013) notions of meanings in this paper. He argues for the 
importance of developing meaning of the idea meaning (p. 57) and that a greater emphasis on 
mathematical meaning could contribute to a more coherent educational experience for students 
overall. Thompson surveys different meanings of “meaning,” and we adopt his alignment with a 
Piagetian view of meaning as assimilating a scheme (p. 60). Thompson notes that, “From a 
Piagetian viewpoint, to construct a meaning is to construct an understanding – a scheme, and to 
construct a scheme requires applying the same operation of thought repeatedly to understand 
situations being made meaningful by that scheme” (p. 61). Also, importantly, Thompson 
emphasizes meaning from the students’ perspective:  

“The meanings that matter at the moment of interacting with the students are the meaning 
that students have, for it is their current meanings that constitute the framework within they 
operate and it is their personal meanings that we hope students will transform” (p. 62).  

For this reason, in this paper we seek to understand and interpret students’ meanings in order to 
gain insight about what made their work particularly productive (or unproductive) in the 
contrasting cases. We use this notion of meanings in this paper because we have a situation in 
which two students introduce and use a tool that externally seems very similar, but their different 
meanings of that tool cause them to use it differently. We thus find it useful to discuss the variety 
of meanings students had about what appears to be a very similar mathematical phenomenon.  

Methods 
In this study we conducted a set of single, individual, hour-long interviews with ten calculus 

students as they worked through what we call the Passwords tasks, and in this paper we report on 
two contrasting cases of students’ work. We chose students who had not been taught 
combinatorics formally at the college level. The main goal of the tasks was to put students in a 
situation in which we could evaluate their generalizing activity as well as gain insight into their 
combinatorial reasoning. The progression of Passwords tasks is as follows: 

First, we had students solve the problem, How many 3-character passwords can be made 
using the letters A and B?, and we explicitly directed them to organize their work by completing 
tables according to the number of As in the password. We had them begin with 3-character 
passwords, and then also make tables for 4-character then 5-character passwords (Figure 1 shows 
Tyler’s table for the 4-character AB passwords). There were some opportunities to observe 
generalization in building up these cases, as students could observe relationships and similarities 
among the tables or could make combinatorial observations that held across cases.1 We wanted 
the students to build (typically through partial or complete listing) the tables to see how they 
would use them as we progressed to the next part of the tasks.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 The reader may note that the emerging tables involve binomial coefficients, or the ways of selecting positions for 
the A’s to go, as the remainder of the positions must consist of B’s (these entries also correspond to rows in Pascal’s 
triangle). We did not expect students to recognize binomial coefficients or even to conceive of these entries as 
involving choosing in any way, and indeed most students did not. Eventually, we could increase the number of 
numbers in the passwords, and ultimately move toward developing a formal statement of the binomial theorem 
(which we accomplished with one student, not discussed here). 

19th Annual Conference on Research in Undergraduate Mathematics Education 1056

19th Annual Conference on Research in Undergraduate Mathematics Education 1056



Then, we moved onto passwords involving the number 1, and the letters A and B. We had 
students make tables for 3-character and 4-character passwords, organized according to the 
number of 1s in the passwords (Figure 6 shows Tyler’s table for the 4-character 1AB passwords). 
Note that we can use the previous tables in the following way: we can think first of determining 
positions for the 1s (which the previous AB table provides), and then the problem is reduced to 
counting passwords involving only A’s and B’s. For example, in making a table for the number 
of 4-character passwords with 1, A, and B, for each respective row of the table (0, 1, 2, 3, or 4 
1’s), we can first think of counting the number of ways of placing the ones. There are 1, 4, 6, 4, 1 
respective ways of doing this, which is reflected in the previous 4-character AB table. Once this 
is established, note that for each row in the table, once the ones are placed it is just a matter of 
counting passwords of length 3 using only A’s and B’s, reducing the problem to a previous 
problem (specifically, there are 23 such passwords). The point is that it is possible, with some 
combinatorial insight and understanding of the outcomes’ structure, to leverage the previous 
work from the AB passwords in the more complicated 1AB passwords case. The interviews were 
videotaped and transcribed, and overall the videos and transcripts were analyzed so as to 
construct a narrative about the teaching experiment (Auerbach & Silverstein, 2003). We 
discussed the two contrasting cases with the entire research team and together formulated 
hypotheses about the students’ meaning in each case via repeated viewings of video and reading 
of enhanced transcripts.  

Results 
In presenting our results, we describe different students’ meanings of the same phenomenon. 

We highlight these results both to show an interesting phenomenon that emphasizes a potentially 
powerful tool toward meaningful combinatorial generalization and to suggest that students might 
need to ascribe certain meanings to such tools in order to leverage them in an impactful way.  

Example 1 – Tyler. We begin with Tyler, who demonstrated an ability to reason 
comfortably and easily with outcomes. His method of solving the tasks typically involved some 
organized listing. For example, in trying to determine the number of 4-character AB passwords 
with exactly two A’s, Tyler made the list in Figure 2 and gave the following explanation: 
Tyler: Um. Yeah I guess I started with the first one being A um, and then I did like 2 A’s 

consecutively and then B’s, and then moved the B over one, and then, um, moved the next 
B over one… And then, after that I just start with the B and kind of did the same thing.  

He ultimately correctly created the table for 3, 4 (Figure 1), and 5-character AB passwords.  

    
Figure 1      Figure 2 

Early in the interview, Tyler had established that there were a total of 2n n-length passwords 
using only A’s and B’s. He established this primarily through noticing a numerical correlation 
after giving the totals for 3, 4, and 5-length passwords, read from his empirical tables (noticing 
the 3-character AB passwords table had 1+3+3+1 = 8 total passwords). He went on to write the 
relationship “n length = 2n combos,” but we suspect that he did not meaningfully understand the 
multiplication principle as a combinatorial way of explaining the expression 2n.  

We then moved on to counting passwords that consist of characters 1, A, or B. Tyler felt that 
there was more to keep track of, but he persisted with listing outcomes and filling out the table as 
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he had in the previous situations. He managed to list the entire table for the 3-character 1AB 
passwords, and again he used systematic listing used to do so, and he seemed to maintain a 
combinatorial understanding of the entries in his tables. 

Next, we asked him with to fill out a table with the four-character 1AB passwords (organized 
according to number of 1s). He got started but paused and said, “I can’t really think of any 
pattern,” and he seemed to realize that this table would be more difficult to work out than the 
previous case. We directed him to perhaps start thinking about the rows for zero and one 1’s 
(starting from that end of the table). Tyler then did something unexpected – he introduced a way 
of describing a general outcome involving 1’s and x’s, as seen in the following exchange. 
Tyler:  Yeah. Ok so the 0 [row] was gonna be, what did I come up with here [refers back to the 

4-character AB table] 10, 15, 16 if uses, um. And then the 1, so what I was thinking, what 
I was saying earlier. How there is only a certain amount of spots for it, like it has to be, 
like I’m just gonna use x cause, um, has to be in one of these spots... [draws Figure 3] 

Int.:  Great. 
Tyler:  So there’s, now there’s just 3 x’s um, and I know that for…3 spots with 2 different letters 

there’s going to be 8 different ways to do it [points back to the previous 3-character AB 
table, see Figure 4]…Um so I guess 8…there’s 8 different of each of those just using this 
same table umm, there’s just 32 so I want to say there’s gonna be, um, 32 for just the 1. 

Int.:  Okay and you got, you’re thinking of that as kind of the 4 times 8?  
Tyler:  Yeah I, just adding them all up. 

    
Figure 3      Figure 4 

This was a key moment in Tyler’s work. He spontaneously introduced a very powerful tool 
for how to count desirable passwords in the form of a general structure consisting of x’s and 1’s. 
(For ease of communication, we hereafter refer to the tool as “the 11xx structure,” which is 
meant to suggest the introduction of the variable of x as a means of representing a more general 
outcome.) We contend that this was a general representation of an outcome (a password), 
perhaps a product of his rich facility with listing. He realized that in each case where there was a 
1 with three x’s, there would be 8 such possibilities (because there were 8 total 3-character AB 
passwords), and his total would be 32. He was thus able to recognize that he could use his 
previous case as a part of the more complicated new situation. We can further explore this 
moment of insight as he continued to use the 11xx structure in filling out the rest of the 40-
character 1AB table. Figure 5 shows his listing of x’s and 1’s in the four-character 1, A, B case, 
with exactly two 1’s. There are exactly 6 of them, and the following exchange demonstrates 
Tyler’s meaning of those six general outcomes as they relate back to his previous work. 
Specifically, note that he understands why 6 such outcomes would make sense, because he can 
understand that he is in a situation of arranging two distinct objects, which is what his previous 
work involving AB passwords also entailed. 
Tyler:  Yeah there you go. Is that all of them? Yeah so 6, ‘cause that would make sense... 
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Int.:  Does that 6 make sense?  
Tyler:  Does it? Uh, well that would that’s um, 2 variables like instead of doing 3 things there’s 

2 umm, with the 4 combo, so 2, was 6 over here [points back to the 6 in the correct entry 
of the 4 character AB password table], so that’s why I thought it made sense. 

   
Figure 5 – Tyler’s    Figure 6 

He continued to work in a similar fashion for the case of three 1’s, and he ultimately arrived 
at the correct table for 4-character 1AB passwords (Figure 6). Although we do not have space to 
outline his subsequent work, Tyler did go on to use the same tool in subsequent cases involving 
5-character 1AB passwords. He seemed to have a robust understanding of how he could use the 
tool to solve password problems involving more characters and more letters.  

We point out a couple of important features of Tyler’s work. First, it is noteworthy that Tyler 
spontaneously introduced a new, general structure that appropriately represented the situation 
and the outcomes he was trying to count. This is in and of itself impressive, and his work 
demonstrates an existence proof of the kind of thinking the Password tasks fostered in terms of 
combinatorial generalization. Second, Tyler was able to relate that new structure to his 
combinatorial activity to that point, and this relationship to prior work played a key role in him 
ultimately being able to solve more problems correctly. Importantly, he seemed to preserve the 
combinatorial meaning of the tasks and the situations as he related the 11xx structure with his 
previous work. In terms of Tyler’s meanings, we interpret that he understood the 11xx structure 
as a general structure of the outcomes he had been working with, allowing him to relate back to a 
previous combinatorial situation involving just two objects (specifically, A’s and B’s). Although 
he did not demonstrate a deep combinatorial, multiplicative meaning of 2n, he could recognize 
the 2n as being numerically equivalent to a previous case, which he could use effectively.  

Example 2 – Richie. We now contrast Tyler’s work with another student, Richie. Richie, 
too, spontaneously introduced the 11xx structure, but we highlight a key difference in that Richie 
was less successful in leveraging the new tool by relating it to previous circumstances. When 
making the tables for the AB passwords tasks, Richie correctly filled out the tables, often using 
some listing, but it seemed as though he was more attuned to the numerical patterns he observed 
than in finding a combinatorial explanation that made sense. For example, when making a table 
for the 5-characer AB passwords, we had the following exchange. Notice that his justification for 
why certain entries were in the table was based on the patterns he’d observed. This is not in and 
of itself problematic, but it shows perhaps that he was not establishing a robust combinatorial 
meaning but that his meaning was based on observed numerical regularity. 
Richie: So when you get to like the -- the second one, or it’s not even like the second one, it’s 

more like the one in the middle of 0 and 5 is going to be the most possibilities. And in 
previous problems it’s been like 2 more than the preceding one. 

Int.: Okay. Sure.   
Richie: And I’m just assuming that this is 5, because the previous pattern’s like increasing by 1.   
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When we moved on to the 1AB passwords case, Richie, like Tyler, spontaneously moved 
toward a new structure involving 1’s and x’s. Figure 7 shows his drawing of the six ways to 
arrange two 1’s and two x’s. 
Richie: I’m just trying to think of all the different configurations – that 1s can (inaudible) – so 

like they can be starting with X, or just like that. Or like this or like this. Or like this.  And 
then it could be 1 inside. 

Int.: Perfect.  
Richie: So, 1, 2, 3, 4, 5, 6.  There’s 6 different possibilities for that.  And then each of these can 

have 4 different configurations. 

   
Figure 7          Figure 8 

Richie then checked his work and reasoned that for each of those possibilities there would be 
four possibilities, running through BB, AA, AB, and BA. He concluded, “So 6 times 4 would be 
– it would be like 6 times all of these really [referring to the six configurations]…Yeah, okay.  
So I guess they would be 24.  So it would be 24 possibilities.” Richie then continued to work, 
and as he progressed to other rows in the table he made more diagrams involving 1’s and x’s. 

We then had him move to the 5-character 1, A, B password, and I asked him to start making 
the table. Here again he made a similar diagram with 1’s and x’s, but here his work departed 
from Tyler’s. Richie was able to think about there being a certain number of options for each 
case (each arrangement of the x’s), and he knew there were two options for each x (A and B), but 
he added instead of multiplied the number of options, yielding 8 rather than 16 possibilities.  
Richie: So for 5 it would be 32. Same thing. And then for 1 there would be – (writes Figure 8 

without the *8’s) and so those would each have – this could be A or B, so that would be 2 
for that, 2 for that, 2 for that, so these would each have 8 different possibilities [writes 
the *8’s in Figure 8].  So it would be 5 – 5 times – it would be 40 for 1. 

In asking Richie to explain this work, we gain insight into his meaning of the diagram. He 
made no explicit connection to the previous tables or situations as Tyler had.   
Richie: This, like I made I want to say like a diagram basically of a position so 1 can be.  And 

then I put Xs in for the – where the As and Bs could be, because those are variables that 
can be either A or B. And then I noticed that for every X it has 2 possibilities, either being 
A or B, and there’s 4 Xs…So then I just multiply that by 2 to get 8.  So each – for each 1 
position there’s 8 different possibilities for the password. And that’s how I got 40. 

Richie continued his work and listed out all 10 of the configurations of two ones in a 5-
character password. He demonstrated a consistent meaning by again adding the options – saying 
there were 6 passwords for each configuration, which is 2*3 rather than 23 = 8. 

At first blush it seems that perhaps Richie simply made a mistake, adding instead of 
multiplying the options, but we do not feel that he simply made a numerical error. Instead, the 
evidence seems to point to the fact that he did not make meaning of the new structure as being 
related to the previous case, at least not directly to the previous tables. Unlike Tyler, he did not 
recognize that the power of the 11xx structure is that it can be very clearly related to the previous 
situation. There are two potential points of connection to the prior AB tables (relating the 
placement of the 1’s to the rows of the AB tables, such as 1, 4, 6, 4, 1, and realizing the totals in 
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the previous tables represent the possible number of passwords of a given length), both of which 
Tyler recognized, and neither of which Richie recognized. 

This is not to say that Richie’s meanings were unreasonable or that they did not make sense 
to him – indeed they did. His introduction of the 11xx structure seemed to serve as a way of 
simplifying and organizing the problem so he could better break it down, but not in a way that 
facilitated rich connections to the previous problem. We asked him how and why he came up 
with the structure, and he suggested that he was motivated by efficiency: “I started to write here 
different configurations for where the 1s could be and where the Bs and As could be, and I 
noticed that basically the As and Bs were just switching places for wherever the amount of 1s 
were. So I started putting Xs there just so I wouldn’t have to write as much.” 

Conclusion and Implications 
By examining two students’ meanings of the same tool that they each spontaneously 

developed, we gain insight both into students’ generalizing activity and their combinatorial 
reasoning. Ultimately, we want to help students be more effective in creating productive 
generalizations, and we want to learn more about how students might effectively solve counting 
problems. We feel that Tyler’s work – not only his production of the 11xx structure but his 
ability to make meaning of it in light of prior activity – is a powerful example of a student-
generated general structure that led to inroads in challenging combinatorial tasks. Set in contrast 
to Richie’s work (which was also impressive in that he generated the 11xx structure, but was 
limited in its lack of combinatorial meaning and connection to the previous situations), we can 
examine what aspects of Tyler’s work and meanings were so efficacious. One aspect of his work 
that was powerful was that he remained grounded in his prior activity, and he had a rich 
combinatorial meaning of those prior situations. The AB tables Tyler made were combinatorially 
meaningful for him, in the sense that he reasoned about outcomes and did not lose sight of the 
combinatorial context. This is in line with previous work that emphasizes the importance of 
outcomes (e.g., Lockwood, 2013; 2014). We suspect that because Tyler had such a strong sense 
of outcomes (as seen through his listing activity in his creation of AB tables), the xx11 structure 
really did represent to him a more general form of an outcome. It resembled a password (still a 
sequence of characters on the page), and we posit that this enabled him to maintain his reasoning 
about the structure of his outcomes and thus a connection to the previous combinatorial situation.  

In terms of implications, our findings suggest that students can, on their own, produce 
potentially powerful tools involving general structures. However, this alone is not sufficient for 
productive generalizing or counting activity, and these contrasting cases show some of the other 
reasoning necessary to make full use of such tools. A pedagogical implication is that teachers 
may need to be vigilant in helping students maintain contact their with their prior activity. 
Specifically, in combinatorics this might mean that even as students notice patterns, teachers 
should help them to connect those patterns to the combinatorial context and not simply to 
numerical regularity. Combinatorially, another implication of the work is that this sequence of 
tasks does seem to be potentially useful in helping students to reason about the binomial theorem 
(or at least its initial stages). Tasks like these could be leveraged to introduce and teach 
combinatorial identities, which is a building block toward the learning of combinatorial proof. 

Our findings show an example of rich generalizing activity in a combinatorial context. These 
findings emerged in a single interview, but we hope to extend this work through teaching 
experiments in which students’ meanings can be developed and examined over time. Next 
research steps also include an investigation into more specific instructional interventions that 
might foster the kind of meanings that proved beneficial for students like Tyler. 
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Reinventing the multiplication principle 
 

Elise Lockwood  Branwen Schaub 
Oregon State University University of Portland 

 
Counting problems offer opportunities for rich mathematical thinking, yet students struggle 

to solve such problems correctly. In an effort to better understand students’ understanding of a 
fundamental aspect of combinatorial enumeration, we had two undergraduate students reinvent 
a statement of the multiplication principle during an eight-session teaching experiment. In this 
presentation, we report on the students’ progression from a nascent to a sophisticated statement 
of the multiplication principle, and we highlight two key mathematical issues that emerged for 
the students through this process. We additionally present potential implications and directions 
for further research. 
 
Key Words: Combinatorics, Reinvention, Counting problems, Teaching experiment 

 
Introduction and Motivation 

The multiplication principle (MP), called by some “The Fundamental Principle of 
Counting” (e.g., Richmond & Richmond, 2009), is a fundamental aspect of combinatorial 
enumeration. Broadly, it is the idea that for independent stages in a counting process, the number 
of options at each stage can be multiplied together to yield the total number of outcomes of the 
entire process. It is generally considered to be foundational to many of the counting formulas 
students learn and is also a much-needed source of justification for why these counting formulas 
work as they do. In spite of its importance, little has been studied about the MP in and of itself. 
In order to better understand student thinking about the MP, we had two undergraduate students 
reinvent a statement of the MP over the course of eight interviews. In this paper, we describe 
their overall reinvention process, discussing and presenting some of their statements. We also 
introduce and discuss two mathematical issues that are entailed in the MP and that arose for the 
students (the independence of stages in a counting process and the need to count distinct 
composite outcomes). We seek to address the following research goals: 1) Describe a pair of 
students’ trajectory as they reinvent a statement of the MP, and, in so doing, 2) Present the 
mathematical issues in the MP to which the students attended as they reinvented the statement. 

 
Literature Review and Theoretical Perspective 

Research about the MP in Combinatorics Education Literature  
Previous work has demonstrated the importance of the MP in counting, and the lack of a 

well-developed understanding of the MP appears to be a significant problem and hurdle for the 
students, particularly in terms of their ability to justify or explain formulas. We have found that 
students can easily assume that they completely understand the MP in counting because 
multiplication is a familiar operation for them. As a result, they use the operation frequently but 
without careful analysis, and they tend not to realize when simple applications of the operation 
are problematic. While some researchers have discussed multiplication within combinatorial 
contexts (Tillema, 2013), there have not yet been studies that explicitly target student 
understanding of the MP. 

Lockwood, Swinyard, and Caughman (2015) had students reinvent basic counting formulas, 
and the students in that study did not appear to have a solid understanding of the MP. They 
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worked with outcomes empirically but lacked the understanding of how those outcomes related 
to the underlying counting process involved with the MP. This work suggested the need for more 
research that targets students’ understanding of the MP as a fundamental counting process.  

In addition, Lockwood, Reed, and Caughman, (2015) recently conducted a textbook analysis 
that examined statements of the MP in university combinatorics and discrete mathematics 
textbooks. This revealed a wide variety of statements of the MP (Figures 1, 2, and 3 reveal three 
very different formulations).  
Product Rule: If something can happen in n1 ways, and no matter how the first thing happens, a 
second thing can happen in n2 ways, and no matter how the first two things happen, a third thing 
can happen in n1 ways, and …, then all the things together can happen in  ways. 

Figure 1 – Roberts & Tesman’s (2003) statement of the MP 
 

The Multiplication Principle: Suppose a procedure can be broken down into m successive 
(ordered) stages, with r1 different outcomes in the first stage, r2 different outcomes in the second 
stage, …, and rm different outcomes in the mth stage. If the number of outcomes at each stage is 
independent of the choices in the previous stages, and if the composite outcomes are all distinct, 
then the total procedure has  different composite outcomes. 

Figure 2 – Tucker’s (2002) statement of the MP 
 
Generalized Product Principle: Let be finite sets. Then the number of k-tuples (x1, 
x2,…, xk) satisfying   is . 

Figure 3 – Bona’s (2007) statement of the MP 
 

Part of the motivation for the current study, then, is to build upon the textbook analysis by 
actually studying how students think about mathematical issues that arose in the textbook 
statements of the MP. The findings from Lockwood, Reed, et al. (2015) framed and informed the 
mathematical issues we pursued with the students, and in the following section we briefly 
discuss these key mathematical issues in the MP. 
Key Mathematical Issues 

Here we describe two mathematical issues in the MP, both of which are seen in Tucker’s 
(2002) statement (Figure 2). In the Results section we will describe the students’ reasoning about 
these key ideas, and so we briefly introduce them here to facilitate subsequent discussion. First, 
there is the notion of independence of stages in the counting process, which captures the idea that 
a choice of options at a given stage does not affect the number of outcomes in any subsequent 
stage. This is a necessary condition in order to apply the MP, or else overcounting may occur. 
Second, the MP must yield distinct composite outcomes, which means that when applying the 
MP we want to ensure that there are no duplicate outcomes. This qualification, too, prevents 
instances of overcounting. In the Results section we highlight two counting problems that 
demonstrate the need for each of these mathematical issues in statements of the MP. 
Reinvention 

Gravemeijer, Cobb, Bowers, and Whitenack (2000) describe the heuristic of guided 
reinvention as “a process by which students formalize their informal understandings and 
intuitions” (p. 237). From this perspective, students can formalize ideas through generalization of 
their previous mathematical activity. We had students reinvent statements of the MP because we 
felt this would allow students to meaningfully understand and articulate a statement, giving us 

n1 ×n2 ×n3 ×...

r1 × r2 ×...× rm

X1,X2,...,Xk  
xi ∈ Xi X1 × X2 ×...× Xk
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insight into how students come to understand the MP.  This is in line with other researchers who 
have used principles of reinvention to gain insight into students’ reasoning about a particular 
concept or definition (e.g., Oehrtman, Swinyard, & Martin, 2014; Swinyard, 2011). 

 
Methods 

Data Collection 
We conducted a teaching experiment (as described by Steffe & Thompson, 2000) in which a 

pair of undergraduate students solved counting problems over eight hour-long sessions. The 
students were enrolled in vector calculus in a large university in the western United States, and 
they were chosen because they had not been explicitly taught about the MP in their university 
coursework (and thus would not simply try to recall it). The interviews took place outside of 
class time over a period of four weeks. Broadly, the students solved a series of counting 
problems, and they were asked periodically to write down and characterize when they were using 
multiplication as they solved these problems. They wrote down several iterations of statements 
of the MP. Throughout the study the interviewer selected tasks to highlight various aspects of the 
MP and regularly asked clarifying questions. 

For the sake of space we provide only a sampling of tasks from the teaching experiment. 
Broadly, the students engaged in three kinds of activities: solving counting problems that involve 
multiplication, articulating a statement of the MP, refining their statements of the MP, and 
evaluating given textbook statements of the MP. Although there was some overlap of activities 
in each session, Table 1 gives the overall structure of the teaching experiment by outlining the 
session number (and total number of tasks in each session), a sample task given in that session, 
and the predominant activity that occurred in each session.  

 
Session Sample Tasks for Each Session  Emphasis of 

Session 
1 
(6 tasks) 

You have 4 different Russian books, 5 different French books, 
and 6 different Spanish books on your desk. In how many ways 
can you take two of those books with you, if the two books are 
not in the same language? 

Solving 
counting 
problems that 
involve 
multiplication 2 

(5 tasks) 
How many ways are there to form a three-letter sequence using 
the letters a, b, c, d, e, f: (a) with repetition of letters allowed? 
(b) without repetition of any letter? (c) without repetition and 
containing the letter e? (d) with repetition and containing e? 

3 
(5 tasks) 

In a standard 52-card deck there are 4 suits (hearts, diamonds, 
spades, and clubs), with 13 cards per suit. There are 3 face cards 
in each suit (Jack, Queen, and King). How many ways are there 
to pick two different cards from a standard 52-card deck such 
that the first card is a face card and the second card is a heart? 

Articulating a 
statement of the 
MP 

4 
(2 tasks) 

How many ways are there to flip a coin, roll a die, and select a 
card from a standard deck? 

5 
(2 tasks) 

There are 7 professors and 5 grad students. In how many 
different ways could an advisor and a grad student be paired up? 

6 
(3 total 
tasks) 

How many 6-character license plates consisting of letters or 
numbers have no repeated character? 

Refining their 
statement of the 
MP 
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7 
(6 tasks) 

How many rearrangements of the letters in the word DYNAMIC 
start with a vowel? 

8 
(7 
statements) 

Please read the following statement [such as Tucker’s (2002) in 
Figure 1]. How is it similar to or different from your own 
statement?  

Evaluating 
given textbook 
statements  

Table 1 – Overall structure of the teaching experiment 
Data Analysis  

The interviews were videotaped and transcribed, and overall the videos and transcripts were 
analyzed so as to construct a narrative about the teaching experiment (Auerbach & Silverstein, 
2003). We used prior understanding of the MP that had emerged from the textbook analysis to 
guide our focus of particular mathematical issues. Key episodes involving mathematical issues 
were flagged and reviewed, and we scrutinized the students’ statements of the MP and their 
explanations for insights about their reasoning.  
 

Results 
We organize the results into two sections. First we provide an overview of their progress and 

offer several of the statements that they developed as they reinvented the MP. This should 
demonstrate their overall progress and provide a broad narrative of what transpired during the 
teaching experiment. Then, we present their handling of two key mathematical issues 
(independence and distinct composite outcomes), highlighting student thinking about important 
aspects of the MP.  
Overall Progression of Statements 

The students went through between 20-25 statements (depending on how one defines a 
statement, as some were verbally articulated, and some involved minor adjustments from 
previous statements). Here, due to space, we provide seven statements (exactly as the students 
had written them on the board), which emphasize development from a nascent to sophisticated 
statement of the MP. Statements 2a and 2b, 3a and 3b, and 4a and 4b each represent minor 
changes that reflect the students’ realization about a key mathematical issue.  
 

Session Statement 
 

2 
#1 – Use multiplication in counting problems when… there is a certain statement 
shown to exist and what follows has to be true as well.  

 
 

4 

#2a – For each possible pathway to an outcome there is an equal number of 
options leading to that path.  
#2b – For each possible pathway to an outcome there is an equal number of 
options leading to that path but without repeating the same pathway more than 
once.  

 
 

 
 
6 

 #3a – For every selection towards a specific outcome, if one selection does not 
affect any subsequent selection, then you multiply the number of all the options in 
each selection together to get the total number of possible outcomes.  
#3b – For every selection towards a specific outcome, if one selection, no matter 
the previous selections, is no difference in the number of options, then you 
multiply the number of all the options in each selection together to get the total 
number of possible outcomes.  
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6 

#4a – If for every selection towards a specific outcome there is no difference in 
the number of outcomes, regardless of previous selections, then you multiply the 
number of all the options in each selection together to get the total number of 
possible outcomes.  

 
 

7 

#4b – If for every selection towards a specific outcome, if there is no difference in 
the number of options, regardless of the previous selections, then you multiply the 
number of all the options in each selection together to get the total number of 
possible unique outcomes.  

Table 2 – The students’ progression toward a statement of the MP 
 

We began the interviews by simply having students solve counting problems that involved 
multiplication, the motivation being to give them some experience using multiplication so they 
might extrapolate some key principles of when to use multiplication in counting. By the end of 
Session 2 we gave them the following prompt: Can you take a stab at characterizing when you 
use multiplication when you're solving these problems?, and they produced Statement #1. In 
Sessions 3 through 7 we gave them more counting problems and asked them to refine their 
statements. As they developed more sophisticated language in talking about the statements, we 
targeted key mathematical ideas by giving counting problems that would elicit certain ideas. 

We note a couple of important observations about their progression in Table 2. First, we 
highlight the lack of sophistication in Statement #1 compared to Statement #4b (their final 
statement). Statement #1 is not well formed, and this suggests that the task of characterizing 
when to use multiplication is not a trivial one. By the end of the teaching experiment, however, 
they had developed a rigorous statement. We also point out the shift in language and emphasis 
from pathways and paths in Statements #2a and #2b to language of outcomes, selections, and 
options in Statements #3a, #3b, #4a, and #4b. This shift reflects an intentional pedagogical move 
that occurred after Session 5. In Session 4 the students had come up with Statements #2a and 
#2b. Session 5 saw no progress or refinement of their statement, and so we decided to redirect 
the students’ attention away from the pathway language and toward more general language. This 
led them to introduce language of options, selections, and language. 
Key Mathematical Issues  

We now offer data examples that exhibit how the students’ statements developed over time, 
and in particular how they adjusted their statements to address some key mathematical issues. 
These are meant to demonstrate the nature of the students’ interactions with each other and with 
the interviewer and also to show how students’ reasoning developed as they interacted with 
particular tasks. 

Independence. In Session 6, the students had come up with Statement #3a from Table 2. We 
draw attention to the phrase “if one selection does not affect any subsequent selection then you 
multiply…” This is a valuable insight in and of itself, because it ensures that one only multiplies 
when the stages of a counting process are independent of one another. However, as stated, 
Statement #3a is not quite accurate, because multiplication is still appropriate if the actual 
options change from stage to stage. Instead, it is the number of options that cannot change (as the 
following episode demonstrates).  

To draw the students’ attention toward this issue, we presented them with the following 
problem: How many 6-character license plates consisting of letters or numbers have no repeated 
character? They immediately recognized that they could use multiplication on this problem – 
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they knew the answer would be 36*35*34*33*32*31, and they had the following exchange as 
they tried to justify the answer. 
Pat: It's still multiplication, but it's not the same as multiplication that we were thinking of. So 

as we, it has to change things now doesn't it? 
Caleb:  That one definitely put a damper on our – [cut off] 
They then thought about the problem a bit more, and Pat had the following realization. 
Pat: I'm just concerned about the idea that we're saying, that the selection is affecting the next 

selection, because technically in this case, the selections…affect subsequent selections, 
but it still is multiplication… 

Pat saw that their wording would not allow for the multiplication in a problem like the 
License Plates problem, because their statement #3a was too restrictive about how subsequent 
selections might be affected. The two students then had the following exchange (the A and 9 
refer to choices for a license plate character): 
Caleb: Maybe you pick like A and then 9, and you can't do either one of those again.  
Pat:  Yeah but it's like A or 9 won't affect the number of next selections. ‘Cause no matter what 

it's gonna be 36, 35, 34, 33…See what I'm saying? So like how do we incorporate that? 
Because like, so as long as it – as long as the next, the subsequent selections still have the 
same number of selections, it's okay.  

The students then proceeded to write down language that might help address this issue, now 
emphasizing the number of options to which they had not previously attended, ultimately writing 
statement #3b. This exchange provides evidence of how the students reasoned about a subtle 
aspect of independence, and the License Plate task was carefully chosen to refine an already-
existing idea – that the number of options (not the options themselves) must be independent.  

Distinct composite outcomes. The progression from statements #4a to #4b reveal an 
evolution in the students’ thinking about distinct composite outcomes. This came about through 
the Three e’s problem: How many ways are there to form a three-letter sequence using the letters 
a, b, c, d, e, f with repetition and containing e?. In this problem, a common, tempting incorrect 
answer is to argue that there are 3 places in which to place an e, and then once that e is placed, 
since repetition is allowed there are 6 options for the next spot and then 6 for the remaining spot, 
yielding an answer of 3*6*6. Indeed, this is what the students first answered. However, in this 
answer an outcomes like eee gets counted more than once, because the process described above 
could generate eee both when e is placed in the first spot in the first stage (and then ee are in the 
last two spots in the second and third stages), and also when e is placed in the third spot in the 
first stage (and then ee are in the first two spots in the second and third stages). The students had 
written statement #4a, and then they revisited this problem. As they worked through the problem, 
they realized that someone could use their statement #4a to solve the Three E’s problem but 
would end up overcounting. Caleb talks about wanting to disallow this kind of overcounting in 
their statement of the MP, but he acknowledges the difficulty of how to articulate that. 
Caleb: Well you have to make it seem like you can't over count something without saying don't 

over count it. Because the reason is, we're not wanting to over count it.  
Int.:  Okay, okay. So what do you mean? Yeah, say more about that.  
Caleb: So our problem here is over counting, and you can't just like put in a clause of like don't  

over count. […] ‘Cause right now we sort of have the difference in the number of options 
but that doesn't, it's not necessarily specific to over counting. We were sort of thinking of 
less. 
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We encouraged them to think more about the problem, and they had the following exchange: 
Int.:  Okay, cool. I might just let you guys think about this for a couple minutes.  
Caleb:  We could say without any repeated outcomes.  
Int.:  Okay. Say more about that.  
Caleb:  So our problem here is where we're getting like a repeated outcome. If we say, um.  
Pat:  Oh hey, we already have specific outcome in there [in statement #4a].  
Caleb:  Yeah. 
Pat:  So how about we say specific unique outcome? 

They then added the word “unique” to their statement, resulting in their final statement, #4b. 
This addition of the word “unique” is their way of addressing the possibility of overcounting, and 
ensuring that the outcomes must be unique, is equivalent to Tucker’s (2002) clause of “distinct 
composite outcomes.” By specifying that they only want to count unique outcomes, their 
statement technically does not allow for this kind of overcounting to occur. Thus, again we see 
an instance in which the students refined their statement after considering a particular 
mathematical task. This sheds light on how their thinking developed about the MP and the 
mathematical aspects of the statement on which they focused.   
 

Conclusion and Implications 
By having students reinvent a statement of the MP, and by closely analyzing aspects of 

multiplication to which they attend, we gain insight both into how students reason about the MP, 
and also how productive reasoning about the MP might be developed. In particular, by engaging 
with particular tasks, the students we worked with were able to come to reason about key 
mathematical aspects of the MP (such as independence and unique outcomes) that they wanted to 
include in their statement of the MP. In addition to insights about how they come to understand 
particular mathematical ideas, we can draw a couple of key conclusions from their overall 
progression from to a final statement. First of all, we have an existence proof that it is possible 
for students to develop, on their own, a mathematically rigorous statement of the MP. It is not 
trivial to characterize many of the subtle mathematical details of the MP, and it is impressive that 
the students were able to do so. Second, we see that although they were able to accomplish this 
task, it was not a trivial activity to characterize when to use multiplication in solving counting 
problems. This is demonstrated most clearly in their first statement, which shows that even after 
they had successfully used multiplication in counting problems for two sessions, they still 
struggled with articulating a statement about it.  

Our findings suggest a couple of implications. First, as a fundamental aspect of counting, the 
MP is invaluable, yet potentially challenging, for students to understand well. Although it deals 
with a familiar operation, there are subtle mathematical features that it involves, which might 
take time and effort for students to learn. More work is needed to more carefully evaluate how 
best to teach the MP to students in a classroom setting, but our work suggests that it may be 
worthwhile to unpack some key mathematical issues with students. Instructors should appreciate 
the mathematical details in the MP and should help students think carefully about when 
multiplication properly applies in counting situations. In terms of research, we plan to continue 
to explore what might be entailed in a robust understanding of the MP, which includes interviews 
with more students and also with mathematicians. Based on our findings from this study, 
especially insights about understanding independence and distinct composite outcomes, we can 
look to design instructional interventions that might draw students’ attention toward such ideas. 
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Classifying combinations:  
Do students distinguish between different types of combination problems? 

Elise Lockwood 
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In this paper we report on a survey designed to test whether or not students differentiated 
between two different types of problems involving combinations – problems in which 
combinations are used to count unordered sets of distinct objects (a natural, common way to use 
combinations), and problems in which combinations are used to count ordered sequences of two 
(or more) indistinguishable objects (a less obvious application of combinations). We 
hypothesized that novice students may recognize combinations as appropriate for the first type 
but not for the second type, and our results support this hypothesis. We briefly discuss the 
mathematics, share the results, and offer implications and directions for future research.  

Key words: Combinatorics, Discrete mathematics, Counting 
 
Discrete mathematics, with its relevance to modern day applications, is an increasingly 

important part of students’ mathematical education, and prominent organizations have called for 
increased teaching of discrete mathematics topics in K-16 mathematics education (e.g., NCTM, 
2000). Combinatorics, and the solving of counting problems, is one component of discrete 
mathematics that fosters deep mathematical thinking but that is the source of much difficulty for 
students at a variety of levels (e.g., Batanero, Navarro-Pelayo, & Godino, 1997; Eizenberg & 
Zaslavsky, 2004). The fact that counting problems can be easy to state but difficult to solve 
indicates that there is a need for more research about students’ thinking about combinatorics.  

One fundamental building block for understanding and solving combinatorial problems are 
combinations (i.e., C(n,k), also called binomial coefficients due to their role in the binomial 
theorem). Combinations are prominent in much of the counting and combinatorial activity with 
which students engage, and yet little has been explicitly studied with regard to student reasoning 
about combinations. This study contributes to our understanding of students’ reasoning about 
combinations, and in particular to study beginning students’ inclination to differentiate between 
typical combinatorics problems. This study addresses the following research question: Do early 
undergraduate students recognize two different types of combination problems as involving 
binomial coefficients, and do they use binomial coefficients to solve both types of problems?  

Literature and Theoretical Perspective 
Combinations in Mathematics Education Literature. As we have noted, there is much 
documented evidence for the fact that students struggle with solving counting problems 
correctly. Some reasons for such difficulty are that counting problems are difficult to verify 
(Eizenberg & Zaslavsky, 2004) and that it can be difficult to effectively encode outcomes1 in 
terms of objects one knows how to count (e.g., Lockwood, Swinyard, & Caughman, 2015b). We 
seek to address potential difficulties by focusing on better understanding students’ application 
and use of combinations – which are fundamental in enumeration. Piaget & Inhelder (1957) 
studied students’ mental processes as they solved arrangement and selection problems, and they 

                                                
1 We take encoding outcomes to be the combinatorial activity of articulating the nature of what is being counted by 
associating each outcome with a basic mathematical entity (such as a set or sequence).  
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took a special interest in determining whether permutations, arrangements, or combinations 
would be most difficult for students. Dubois (1984), Fischbein and Gazit (1988), and Batanero, 
et al. (1997) have also investigated the effects of both implicit combinatorial models and 
particular combinatorial operations on students’ counting, again considering differences in 
reasoning about particular problem types such as permutations and combinations. We extend 
existing work that focuses on students’ mental processes of foundational combinatorial ideas, 
seeking specifically to explore the extent to which undergraduate students distinguish between 
two types of combination problems (which we develop in the following section). Our work also 
builds on a recent study by Lockwood, Swinyard, & Caughman (2015a) in which two 
undergraduate students reinvented basic counting formulas, including the formula for 
combinations. Based on the students’ work on combination problems, Lockwood, et al., (2015b) 
suggested the importance of being able to correctly encode outcomes combinatorially (by which 
they mean the act of articulating the nature of what is being counted by associating each outcome 
with a mathematical entity such as a set or a sequence).  
Mathematical Discussion. A combination is a set of distinct objects (as opposed to a 
permutation, which is an arrangement of distinct objects). Combinations can also be described as 
the solution to counting problems that count “distinguishable objects” (i.e., without repetition), 
where “order does not matter.” The total number of combinations of size k from a set of n 
distinct objects is denoted C(n,k) and is verbalized as “n choose k.” 2  As an example, 
combinations can be used if you want to select from eight (distinguishable) books three books to 
take on a trip with you (order does not matter) – the solution is C(8,3), or 56 possible 
combinations. By contrast, other combinatorial problems and solution methods, such as 
permutations, are organized in relation to some different possible constraints – see Table 1.  
Table 1: Selecting k objects from n distinct objects 
 Ordered Unordered 
Distinguishable 
Objects (without 

repetition) 

Permutations 
n!

(n − k)!
= n ⋅(n −1) ⋅(n − 2) ⋅...⋅(n − k +1)  

Combinations 
n
k

⎛
⎝⎜

⎞
⎠⎟
= n!
k!(n − k)!

 

Indistinguishable 
Objects (with 

repetition) 

Sequences 

 
nk = n ⋅n ⋅n ⋅...⋅n

k
! "# $#  

Multicombinations 
n
k

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
=

k + n −1
n −1

⎛
⎝⎜

⎞
⎠⎟

 

 

In this paper we refer to combination problems as problems that can be solved using 
binomial coefficients, in the sense that parts of their outcomes can be appropriately encoded as 
sets of distinct objects (i.e., Lockwood, et al., 2015b). Sometimes this encoding is fairly 
straightforward, as the outcomes are very apparently sets of distinct objects. For instance, in the 
Basketball problem (stated in Table 2), the athletes could be numbered 1 through 12 (because 
they are different people), and the outcomes are fairly naturally modeled as 7-element sets taken 
from the set of 12 distinct athletes. Any such set is in direct correspondence with a desired 
outcome; there are C(12,7) of these sets. We call such problems Type I. In other situations, a 
problem may still appropriately be solved using a combination, but recognizing how to encode 
the outcomes as sets of distinct objects is less clear. For example, consider the Coin Flips 
problem (stated in Table 2). Here, the problem also can be solved using combinations – that is, if 
the outcomes are encoded appropriately. The most natural way to model an outcome is as an 
ordered sequence of Hs and Ts; however, we can encode a desirable outcome as a set of distinct 
                                                
2 The derivation of the formula for C(n,k) as n!/(n – k)!k! is not pertinent to the study; Tucker (2002) provides a 
useful explanation. 
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positions in which the Hs are placed. Given the five possible positions (i.e., the set: {1, 2, 3, 4, 
5}), the outcome HHTHT would be encoded as the set {1, 2, 4}. This sufficiently establishes a 
bijection between outcomes and sets because every outcome has a unique placement for the Hs 
(the Ts must go in the remaining positions). In this way, the answer to the counting problem is 
simply the number of 3-element subsets from 5 distinct objects (i.e., positions 1-5), which is 
C(5,3). We call these Type II problems (See Table 2).  
Table 2: Characterizing two different “types” of fairly standard combination problems 
 Description Example problem Natural Model for Outcomes 

Type I An unordered selection of 
distinguishable objects 

Basketball Problem. There are 12 athletes 
who try out for the basketball team – 
which can take exactly 7 players. How 
many different basketball team rosters 
could there be? 

{(1,2,3,4,5,6,7), 
(1,3,5,7,9,11,12), …} 

Type II 
An ordered sequence of 
two (or more) 
indistinguishable objects 

Coin Flips Problem. Fred flipped a coin 5 
times, recording the result (Head or Tail) 
each time. In how many different ways 
could Fred get a sequence of 5 flips with 
exactly 3 Heads? 

{(HHTTH), (HTHHT), 
(TTHHH), …} 

 

In light of various ways of encoding outcomes that facilitates the use of combinations, we 
point out that it may seem that combinations are actually being used to solve two very different 
kinds of problems. The outcomes in the Basketball problem are clearly unordered sets of distinct 
objects, but the outcomes in the Coin Flips problem are actually ordered sequences (not 
unordered) of two kinds of indistinguishable (not distinct) objects (Hs and Ts). Combinations are 
applicable in both situations, but we argue that there could be a difference for students in 
identifying both problems as counting combinations. Indeed, using combinations to solve Type II 
problems involves an additional step of properly encoding the outcomes with a corresponding set 
of distinct objects, and we thus posit that Type I problems would be more natural for novice 
students, more clearly representative of combination problems than Type II problems.  

In spite of the widespread applicability of combinations, we posit that students may not 
recognize all fairly standard combination problems as involving combinations. This may be due 
in part to the fact that students tend not to reason carefully about outcomes (e.g., Lockwood, et 
al., 2015b), and because “distinguishable” and “unordered” are not always natural or clear 
descriptions of the situation or outcomes. We are thus motivated us to investigate whether or not 
students actually respond differently to the two different problem types.  

Methodology 
We designed two versions of a survey, and although the survey contained a number of 

elements, we focus in particular on features of the survey that serve to answer the research 
question stated above. Each survey consisted of 11 combinatorics problems, and each problem 
was designed with categories in mind that included problem type (I or II) and complexity 
(Simple, Multistep, or Dummy).3 Simple combination problems refer to those that can be solved 
using a single binomial coefficient, in the sense that their outcomes can be appropriately encoded 
as sets of distinct objects; multistep combination problems would require multiple binomial 
coefficients in the solution. The authors coded the problems independently before finalizing the 
coding for each problem. Each version of the survey contained the same number of problems of 

                                                
3 We also coded the tasks according to other criteria that we do not report on in this paper, such as: sense of 
choosing (Active or Passive), and whether an object or process is to be counted (Structural or Operational). 
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each type and complexity, as well as two “dummy” problems to discourage students from 
assuming that every problem could be solved with a combination. Each problem was selected for 
one version of the survey with a companion problem in mind for the other version in order to 
compare responses with respect to the various coding categories.  

We targeted Calculus students because they were believed to have been likely to have seen 
combinations at some point in their mathematical careers without having studied them in detail. 
In order to gain insight into students’ familiarity with combination problems, each survey 
included a section on demographic information to identify previous mathematics courses taken in 
high school or in college, current mathematics courses being taken, and whether students 
recognized different representations of combinations and permutations. We have yet to 
incorporate the demographic data in our analysis, but this is a further avenue we plan to pursue. 

In order to investigate the research question, we wanted to see whether or not students who 
would solve Type I problems using combinations would also solve Type II problems using 
combinations. That is, we wanted to see whether students would recognize a difference between 
Type I and Type II problems in terms of the applicability of combinations as a solution. In order 
to do this, we needed to focus on only those participants who had demonstrated some 
understanding of combinations, by using them in their solution to Type I problems. On each 
survey there were four simple Type I problems and three simple Type II problems. These seven 
problems were of particular interest. Two other problems, one multistep Type I and another 
multistep Type II, were also included, for which the answer was a product of combinations. We 
treated these two kinds of problems separately in the analysis.  

The prompts for the combination problems asked for the students to use notation that 
suggests their approaches rather than numerical values,4 but many students did not, on the whole, 
follow this prompt. Although there were 69 complete responses (we removed participants who 
did not finish the survey), 38 gave strictly numerical responses rather than expressions that 
indicated their solution method, which limited our ability to analyze their responses. Further, of 
the 31 remaining, only 12 correctly responded to at least half of the Type I problems using the 
appropriate combination notation. For the purpose of our preliminary report, we focus our 
analysis on these 12 participants, because, as noted, we sought to examine students who had used 
combinations to solve Type I problems. It is perhaps noteworthy that so few students followed 
the survey directions and also that so few correctly solve the Type I problems using 
combinations, but these are not points of discussion we are able to discuss in detail. 

Findings 
In this section we present two aspects of our data analysis that support a singular finding in 

regard to our research question. 
Simple Type I and Type II problems. Out of the 12 people who correctly answered at least 

half of the Type I problems using the appropriate combination notation, 6 of these participants 
demonstrated very different responses between Type I and Type II problems. This is a 
considerable proportion (50%) of participants that displayed a dichotomous way of responding to 
these two problem types. For example, one participant gave correct responses of C(20,4), 
9!/(7!2!), C(15,2), and C(250,6) for the Type I problems, and similarly correct but different 

                                                
4 Specifically, the prompt was: Read each problem and input your solution in the text box. Please write a solution 
to the problem that indicates your approach. If you're not sure, input your best guess. NOTE: Appropriate 
notation includes: 9+20, C(5,2), 5C2, 21*9*3, 5*5*5*5=5^4, 8!, 8!/5! = 8*7*6 = P(8,3), C(10,2)*3, Sum(i,i,1,10), 
12!/(5!*7!), etc. Only if you individually count all of the outcomes should you input a numerical answer, such as 35. 
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responses of 8!/(5!3!), 55!/(20!35!), and 40!/(17!23!) for the Type II problems. In other words, 
even though this participant identified 3 of the 4 Type I problems as easily solvable by a 
combination, s/he did not recognize any of the Type II problems as a combination. Another 
participant gave correct responses of C(20,4), C(9,2), C(15,2), and C(250,6) for the Type I 
problems, but incorrectly gave permutation responses of P(13,2), P(55,2), and 40P(2,1) to the 
Type II problems. Again, this participant’s responses indicate a difference between how s/he 
understood and solved these problems. Only two participants used combinations (correctly) to 
solve all of the Type I and Type II problems. Some other participants were mixed. In these cases, 
the Type I/II distinction does not seem to explain their responses as clearly and we hope further 
analysis of the data will lend additional insight into their responses. 

Multistep Type I and Type II problems. As further support of the potentially differential 
responses between the two hypothesized problem types, we look at two multistep problems. 
Such problems may themselves be different given that participants have to view combinations as 
part of a process for arriving at the solution instead of the solution itself (like in simple 
combination problems). Regardless, for the multistep Type I problem, 10 of the 12 participants 
used some sort of combination in their solution. Although about half still arrived at an incorrect 
solution (for example, adding two combinations), the majority of these participants viewed 
combinations as vital to their solution approach. In contrast, for the multistep Type II problem, 
only 1 of the 12 participants used a combination in their solution at all (this participant, however, 
still arrived at an incorrect solution). The only participants with correct solutions – there were 
five of them – were of the form: 17!/(3!4!2!8!). Thus, we see further evidence in these multi-step 
combination problems to suggest that students seem to differentiate between these two problem 
types – viewing Type I problems as suitably involving combinations in the solutions whereas 
Type II problems require some other solution approach.  

 Conclusions and Implications 
Despite the fact that all of these problems would be considered fairly standard combination 

problems, our findings suggest that the participants did not view the problems in this way. In 
particular, the 12 participants were mostly successful in using combinations to solve Type I 
problems, but often relied on other (at times incorrect) methods to solve Type II problems. These 
findings, while preliminary, suggest potential implications for the teaching and learning of 
combinations. They seem to indicate that students may not necessarily view the two problem 
types as the same, and perhaps with good reason: the descriptions of “unordered” and “distinct” 
do not seem to apply – at least in the most natural way to model the outcomes. Thus, students 
may need additional exposure to combinations and may benefit from explicit instruction about 
how Type II problems can be encoded in a way that is consistent with Type I problems. 
Generally, this point underscores a need for students to become more adept at combinatorial 
encoding (Lockwood, et al., 2015b). Encoding outcomes as sets is an inherent part of the field of 
combinatorics, but students may need particular help in making this connection explicit. 
Combinations are a powerful tool for enumeration problems, but without a robust understanding 
– including how and why Type II problems can be solved using them – students may possess a 
tool they do not really understand how to use. In addition, there are natural next steps and 
avenues for further research. We plan to investigate more questions and hypotheses with the data 
we have, such as analyzing effects of demographic data and investigating other relationships and 
potentially contributing factors in students’ responses. Our findings also indicate that further 
investigating students’ reasoning about encoding with combinations through in-depth interviews 
may give insight into the development of more robust understandings. 
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Beyond procedures:  Quantitative reasoning in  
upper-division Math Methods in Physics 

Michael E. Loverude, Department of Physics and Catalyst Center,  
California State University Fullerton, Fullerton, CA 92834. 

Abstract.  Many upper-division physics courses have as goals that students should ‘think like a physicist.’  
While this is not well-defined, most would agree that thinking like a physicist includes quantitative reasoning 
skills:  considering limiting cases, dimensional analysis, and using approximations.  However, there is often 
relatively little curricular support for these practices and many instructors do not assess them explicitly.  As 
part of a project to investigate student mathematical learning in upper-division physics, we have developed a 
number of written questions testing the extent to which students in an upper-division course in Mathematical 
Methods in Physics can employ these skills.  Although there are limitations to assessing these skills with written 
questions, they can provide insight to the extent to which students can apply a given skill when prompted.   

Key words: Physics, Mathematics, Upper-division, Quantitative reasoning 

Introduction 
 
This work is part of a collaboration to investigate student learning and application of 

mathematics in the context of upper-division physics courses. Our project seeks to study 
student conceptual understanding in upper-division physics courses, investigate models of 
transfer, and to develop instructional interventions to assist student learning. 

While physics education research (PER) has primarily focused on introductory-level 
courses, there are increasing efforts to expand into the upper division [1].  The core 
sophomore- and junior-level theory and laboratory courses taken by most physics majors 
have begun to receive the attention of researchers and curriculum developers, including 
electricity and magnetism [2], thermal physics [3], classical mechanics [4], quantum 
mechanics [5], and advanced laboratories [6].  One key course that remains under-researched 
(with a few exceptions [7]) is a course taught by most departments that is commonly known 
as “mathematical methods.” Unlike similarly-named courses for prospective mathematics 
teachers, this highly theoretical course focuses on the mathematical techniques that students 
will encounter in upper-division physics courses.  Such a course is typically intended to serve 
as a bridge between introductory level courses and the more challenging physics and 
mathematics students encounter in the core upper-level theory courses in the physics major 
(particularly electricity and magnetism, classical mechanics, and quantum mechanics).  

 Typically the learning goals for courses of this nature (called MM courses for this 
paper) focus on content goals, with a syllabus that covers a list of topics including differential 
and integral calculus, series, complex numbers, vectors and vector calculus, differential 
equations, and linear algebra.  As if this daunting list of topics were not sufficient, often the 
MM course also has stated or implicit goals that go beyond specific physics and mathematics 
context.  For example, students in these courses are expected to ‘think like a physicist’ when 
solving quantitative problems.  However, despite its seeming importance, this phrase is not 
always operationally defined.  Examples of skills that might be included in this term include 
connecting physical intuition with mathematics, checking units and performing dimensional 
analysis, considering limiting cases, and using approximations.  While instructors value these 
skills, and there has been some previous discussion of them [8], their value is often left 
implicit and they are not often explicitly taught or assessed.   

In this portion of the project, we have sought to investigate the development of 
mathematical understanding that goes beyond procedural skill and calculation, to probe the 
quantitative reasoning skills whose development is often left implicit.  A key goal of our 
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larger project is to develop a series of tasks that would be suitable for use by instructors in the 
MM course.  For this report, we describe preliminary efforts to develop written tasks that ask 
students to apply such skills and to document student responses to them.  For the purpose of 
this paper, we will refer to questions designed to assess several quantitative reasoning skills.  
The set of these skills is not intended to be complete, but we have identified several that 
appear to be relevant as starting points:  

• Using dimensional / unit analysis 
• Testing expressions with limiting cases 
• Using approximations, e.g., with Taylor series 
• Identifying errors in solutions 
• Predicting the effects of problem changes on the resulting solution 
During the current study we have examined several of these skills.  Examples of using 

approximations and of predicting the effects of changes to a problem on the resulting solution 
have been described previously [9, 10].  For this short paper we restrict the discussion to the 
second: limiting cases.  

 This work has taken place in the context of a MM course taught at a large public 
comprehensive university serving a diverse student population.  The course is required for 
physics majors and is a prerequisite for upper-division theory courses; for most students it is 
one of the first upper-division courses taken.  The course uses the text by Boas [11] and 
covers a fairly standard list of topics.  It meets for two 75-minute blocks per week.  The 
course has as prerequisites three semesters of calculus, and most students have completed at 
least two semesters of introductory physics.  The author has taught the course six times, with 
enrollments between 12 and 19.  Data shown is from written responses to the Evaluate the 
Expressions task shown below. 

Theoretical Perspective 
 This portion of our project is driven by practice; we are seeking to learn what is 

difficult for students and develop instructional interventions. The theoretical framework 
guiding our analysis for this portion is “identifying student difficulties” [12].   

 A growing body of work in PER has examined student use of mathematics in physics. 
In particular, several models have been proposed to describe student use of mathematics.  In 
each of these models, successfully executing the mathematical procedure in question is only 
one element of success.  Redish has proposed a framework to describe student usage of 
mathematics in science course [13], describing stages of modeling, processing, interpreting, 
and evaluating.  For the specific case of upper-division physics courses, Wilcox et al. have 
proposed the ACER framework ‘to guide and structure investigations of students’ difficulties 
with the sophisticated mathematical tools used in their physics classes.’ [14] In this 
framework, students must activate the appropriate mathematical tool in addition to 
constructing a model, executing the mathematics, and then reflecting on results.   

In traditional physics courses, instruction and assessment tend to focus disproportionately 
on what Redish describes as the processing phase, or what the ACER framework frames as 
executing mathematics. In a recent paper, Redish states that ‘our traditional way of thinking 
about using math in physics classes may not give enough emphasis to the critical elements of 
modeling, interpreting, and evaluating’ [12]. The tasks in this study reflect our attempt to 
investigate other aspects of mathematical thinking.  For example, to probe reflection or 
evaluation of results, students might be asked to evaluate expressions for correctness or 
identify errors in solution, rather than performing procedures to generate expressions.  

We have examined the RUME literature for corresponding studies but there appears to be 
relatively little focus on these sorts of skills, at least at this level of instruction.  The work by 
Sherin describing how physics students read mathematical expressions bears upon the task 
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described below [xx].  Thompson has examined ‘quantitative reasoning’ and its relationship 
to modeling of phenomena [1x5].  In addition, this project as a whole considers transfer 
broadly, as we examine how students apply their mathematical knowledge in the context of 
physics courses, and we have been guided in part by the work of collaborator Wagner [1x].   

It is important to note there are limitations of the current study, which artificially 
separates these tasks from a problem solution. Qualitative studies of students in the process of 
solving problems can help to give insights into when and how students activate such 
resources and at what phase of problem solving they are employed.  This project has a more 
modest goal, asking whether students can apply skills when their use is explicitly cued.  
Additional qualitative work, including interviews, is ongoing. 

Methodology 
 For the purpose of this paper, we will focus on a sample task that is illustrative of the 

quantitative reasoning skills that we are describing.  This task, which we refer to as the  
Evaluate the Expressions task, involves the evaluation of mathematical expressions for 
correctness. The problem is posed on the first day of the MM course on an ungraded quiz 
subsequently explored in a large group discussion while the tasks projected on a screen. 

 

 
 

 
FIGURE 1.  A written task in which students are asked to evaluate multiple expressions for 

possible correctness given a physical situation.  
 

 The task describes a simple physical system (known in physics as an ‘Atwood’s 
machine’) in which two massive blocks are connected by a string across a pulley (see Figure 
1).  Students are shown three expressions for the acceleration of one of the two blocks and 
asked to determine whether the expressions could be correct.  (All three expressions are 
incorrect.)  The Atwood’s machine is a common instructional task and widely used in physics 
courses as an example of the application of Newton’s laws.  Most students would have solved 
a similar problem in their introductory mechanics course, encountering the problem first in 
the case of a massless pulley, solving the problem by drawing free body diagrams for the two 
blocks and applying Newton’s second law with appropriate constraints to generate equations 
of motion.  Later, in the section of the course focusing on rotational dynamics, the effect of 
torques on the pulley mass are treated explicitly.   

The problem is different from many tasks that students have encountered to this point in 
that it asks for evaluation (per Redish) or reflection (per Wilcox) rather than a procedural 
computation.  Students are not asked to solve the problem, which has no numerical values. 
The expectation is that students will use quantitative reasoning to arrive at an answer, by 
checking limiting cases (e.g., considering extreme values of variables; a very large pulley 
mass means small acceleration) or by identifying cases in which the expression becomes 
unphysical (e.g., in the second expression, if M/2 = m1+m2 acceleration would be infinite).  

Consider the motion of two blocks connected to form an Atwood’s 
machine.  The masses of the two blocks are m1 and m2 and the mass of the 
pulley is M.  The following expressions are proposed for the acceleration of 
block 1.  For each, evaluate whether the expression could be correct an 
explain briefly: 
 

! = !!!!!
!!!!!

! ! = !!
!!!!!!! !
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!!!!!!! !

! 
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The problem has been administered in three sections of MM (N = 47) before any 
instruction.  Student written responses were examined and coded.  Answers were coded for 
answer and explanation.  Student responses are tentatively assigned to categories that arise 
iteratively according to the major themes identified in the data.  For the explanations, we use 
open coding (drawn from grounded theory), in which the entire data corpus is examined for 
common trends, and all data are reexamined and grouped into the defined categories.  

Results 
 Student responses were coded iteratively based on both the correctness of their 

assessment and the explanation used in support.  In the final version of the rubric, twelve 
distinct but not exclusive codes were used, with an ‘other/blank’ category used when students 
provided no intelligible explanation.  Of the twelve codes, only a few were commonly used.  
We provide brief examples of several of the most common codes and criteria in Table I. 

 While some of the codes that emerged were expected, many of them were not.  For 
example, a few students evaluated the correctness based on whether the resulting expression 
would have the correct algebraic sign, although no coordinate axis is specified. Of course the 
written explanation may not indicate fully the underlying reasoning that students are using.  
For example, a few students gave explanations in which they stated that the rotational inertia 
of the massive pulley mass would decrease the acceleration.  Others simply noted the 
presence or absence of the pulley mass in the expression.  We cannot be sure whether the 
students in two groups were using similar reasoning.   

 
TABLE 1. Sample codes for evaluate the expression task.  The codes were not exclusive, 

so a student response might include both mechanism and mass difference, for example. 
Code Description  

Solution Attempted to solve problem directly 
Variables Noted presence or absence of variables in expression 
Mechanism Described physical mechanism for motion (forces, energy) 

Mass difference Commented on presence or absence of term describing 
difference in masses ±(m2-m1) 

 
The data indicate that this task is challenging task for students.  Only one student offered 

a completely correct solution.  Ten others identified all three solutions as incorrect but with 
incomplete or incorrect explanations.  Many students gave no response.  About 10% of 
students were coded as ‘blank’ for the first expression, and 20% for the second.  Written 
explanations often indicated a lack of confidence in responses:  “This is not correct because 
the mass of the pulley needs to be incorporated (although to tell the truth I am not sure how).” 

The approaches used by students varied considerably, and while many did give 
explanations that call upon physical intuition or an attempt to parse the mathematical 
expression, others seemed to respond as though this task were a more typical end-of-chapter 
problem. About 10% of the students solved the problem directly, and a few others performed 
algebraic manipulations of the given expressions.  A few responses appeared as though they 
were to a multiple-choice question, with a circle or check mark next to one expression. One 
student wrote that the first response “Needs the pulley!” and circled the second response, 
writing  “This one!!!” A few students mentioned partially remembered results:  “my very 
rusty memory only recalls subtracting from the bottom.”  These responses suggest an 
epistemological stance that is quite different that the problem intends, and students may need 
to have the purpose of this activity framed very explicitly.   

Limiting cases:  Only a handful of students explained using quantitative reasoning from 
the categories described above to evaluate this expression.  As an example of a response that 
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we coded as using limiting cases, one student wrote, “No, if m2= 0 kg then this formula 
makes a = 0 m/s2 which is clearly not true.”  

Presence / absence of variables: A very common code reflected responses in which 
explanations referred to the presence or absence of variables: “This could be correct because 
all relevant variables are used.”  For the first expression, most students gave explanations that 
referred to the absence of the mass of the pulley.  A few (~5%) stated that the expression was 
incorrect because of the absence of the pulley mass M, but the more common response was to 
state (correctly) that the expression would be correct if the mass of the pulley is negligible.  

Physical mechanism: Several student responses described a physical mechanism for the 
motion.  A smaller group reflected an attempt to reconcile the mathematical form of the 
expression with this sense of physical mechanism.  The most obvious examples of this were 
students who referred explicitly to the presence or absence of a term with the difference in 
masses.  These responses included some in which the presence of this term was noted: 
“Correct [first expression]; m2 is countering m1 so m1 is accelerating at a portion of g.”  A 
few students gave explanations that reflected similar reasoning but with respect to other 
quantities: “this [second] expression raises the value of acceleration as the mass of the pulley 
increases leading me to believe this is incorrect.” 

Discussion 
This portion of the project is in initial stages, and further research is needed.  Interviews 

focusing on these skills are in progress, including the Evaluate the Expressions task.  We 
offer two tentative observations. 

First, many students entering the MM course do not successfully reason quantitatively 
even when explicitly prompted to do so.  The responses given by some students suggest that 
they do not recognize that the tasks shown require them to step away from solving the 
problem directly or remembering its answer in order to reason whether a solution might be 
correct.  Relatively few students spontaneously examined the expressions for special cases of 
the variables in the problem or related to a sense of physical mechanism.  Traditional 
instruction, focused almost entirely on procedures, does not necessarily lead students to 
develop other quantitative reasoning skills. 

Second, given that physicists value the quantitative skills described, that there is a need 
for tasks that can be used in instruction and assessment.  Redish and Kuo [12] have recently 
written that students “need to learn a component of physics expertise not present in math 
class—tying those formal mathematical tools to physical meaning….We as physics 
instructors must explicitly foster these components of expert physics practice to help students 
succeed in using math in physics.”  Yet the majority of problems in the course text are merely 
mathematical exercises that do not explicitly address these reasoning skills.  

Questions for audience 
Is there existing theoretical or empirical work in RUME that would complement or 

inform this study? 
PER-influenced physics instruction has led to increased emphasis on conceptual 

understanding and sense-making rather than procedural tasks and routine computations.  We 
clearly have a lot to learn from the RUME community regarding the ways that students think 
about mathematical sense-making; what have we overlooked due to our disciplinary filters?  

What are the implications for research and practice in mathematics education? 
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Student Experiences in a Problem-Centered Developmental Mathematics Class 
Community colleges serve an important role in providing access to college for students 

who may otherwise be unable to pursue post-secondary education. However, required pre-
college level (or developmental) coursework often serves as a barrier to the college-level classes. 
Approximately 60% of community college students take at least one developmental class 
(Attewell, Lavin, Domina, & Levey, 2006; Bailey, Jeong, & Cho, 2010), with only around 30% 
of those who take developmental math actually completing their required developmental math 
classes (Bailey, 2009). The reasons for student attrition from developmental classes are complex 
(Cohen & Brawer, 2008), but unlike many of the challenges community college students face, 
the college teachers control both the curriculum and instruction of developmental classes. Thus, 
creating developmental classes that promote student success and empowerment has become an 
important goal in developmental math education. 

A recent curriculum movement, often called Mathematical Literacy, uses group work and 
problem solving to 1) make the mathematical content more relevant, and 2) highlight the utility 
of mathematics. However, when classes like Mathematical Literacy were introduced in K-12 
classrooms, some students resisted (Lubienski, 2000) which could limit the impact of the new 
curriculum on student outcomes.  

Fields Community College (FCC; all names are pseudonyms) has offered Mathematical 
Literacy for about four years. For this study I investigate the Mathematical Literacy classroom of 
a course designer. The instructor’s familiarity with the curriculum offers a window into the best 
case scenario of the Mathematical Literacy movement. In this context, I focus on student 
experiences because of the belief that mathematics instruction should be empowering: an 
important, but often overlooked outcome at the college level. Towards this end, I ask:   

1) How do students in Mathematical Literacy experience the class, as taught by one of 
the course designers? 

2) How does the student experience for students who did not successfully complete the 
course differ from those who did? 

Population & Sample 
The main population under study consists of the students enrolled in Mathematical 

Literacy at FCC in the spring 2015 semester. FCC students were advised to take Mathematical 
Literacy if they needed developmental algebra but were not pursuing a degree in science or math. 
The class of one of Mathematical Literacy’s designers was observed. Eight of the sections’ 22 
students elected to be interviewed about their experiences in the class.  

Methods 
Data Sources 

Data in this study comes from the eight student interviews and audio recordings of these 
students in their groups during class. I observed and audio recorded 12 two-hour class periods 
over the course of the semester. Interviews with the eight students took place outside of class and 
lasted between 30 and 45 minutes. Individuals in the observed section took a pre- and post-
survey that included an attitudes towards math inventory and open ended questions.  
Methods of Analysis 

Survey data. Both the pre- and post-survey contained data from the four attitude scales. 
Scores on each scale were computed so that the lowest value (1) corresponded to “Strongly 
disagree” and the highest value (5) corresponded to “Strongly agree.” I report these scale scores 
without further analysis of the survey results.  
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Student interviews. The audio recordings of the interviews were transcribed and coded 
using the first phase of grounded theory (Corbin & Strauss, 2007; Strauss & Corbin, 1990), 
which uses several deliberate steps in developing codes rooted in the themes of the data. The 
themes ultimately used for this study revolve around doing group work, problem solving, 
experiences with the teacher, and emotions and feelings about mathematics. Given the research 
questions and the importance of the individual in those questions, it seemed important to explore 
individual’s experiences within each theme. As such, rather than performing a second round of 
grounded theory coding, for each interviewee I created a one- to two-page profile summarizing 
their data on the four identified themes. 

Preliminary Results 
Six of the eight interviewees completed the course and two did not. Table 1 presents the 

pre- and post-survey scores for each interviewee on each of the four measured mathematical 
attitudes. Of note, Ross and Emelia, the two students who did not complete the course, had lower 
than average confidence scores. Review of the audio of them in their group demonstrates that 
they were behind from the first week of class. On the other attitude sub-scales Emelia tended to 
be in the top half and Ross tended to be around the median of the group. Carrie decreased her 
scores all around, while Craig increased them.  

Table 1. Interviewee’s pre- and post-survey attitude scores by scale 
 Motivation  Enjoyment  Value  Confidence 
  Pre Post   Pre Post   Pre Post   Pre Post 
Dave 3.78 3.56  3.50 3.38  4.38 4.63  3.40 3.40 
Emeliaa 3.44 -  3.25 -  3.63 -  2.60 - 
Carrie 3.00 2.89  3.38 2.88  4.38 4.00  3.07 2.53 
Vince 2.89 3.00  2.88 3.75  4.50 4.50  3.00 3.87 
Rossa 2.78 -  3.00 -  3.75 -  1.60 - 
Craig 2.67 3.00  2.25 3.13  3.00 3.63  2.13 3.20 
Bea 2.56 2.00  2.63 2.75  3.13 4.25  1.80 1.60 
Carleyb 2.56 2.56   2.50 2.50   3.88 -   2.87 - 

Note: The reported scales represent the scaled score on the pre- and post-survey, where a score 
of 1 corresponds to “Strongly disagree” and a 5 corresponds to “Strongly agree.” 
a Student was not present for the post-survey. 
b Some of student’s sub-scales were not complete. 
 

The interview data highlight the fact that students’ group work experiences varied 
widely, but student temperament seemed to play a role in their feelings: Emelia and Dave 
preferred working alone, which partially informed their dislike of group work. Dave’s dislike 
was tempered when he thought his group mates were on the same level as him. Emelia, however, 
perhaps because she was dependent on her group to teacher her the content, found little about the 
group work enjoyable. Many of the students believed that individuals had some responsibility to 
ask for help if they were struggling, but only one, Carley, explicitly noted that individuals within 
the group had a responsibility to others in the group. Ultimately, how the individuals thought 
about their groups seemed to play the largest role in how students experienced the class. 

Significance 
 By answering these questions future iterations of this class can better structure the group 
work environment to facilitate learning for the students community colleges math classrooms 
most need most to help—those who struggle early in the class.   
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Supporting students in seeing sequence convergence in Taylor series convergence
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Virtual manipulatives designed to increase student understanding of the concepts of 
approximation by Taylor polynomials and convergence of Taylor series were used in calculus 
courses at multiple institutions. 225 students responded to tasks requiring graphing Taylor 
polynomials, graphing Taylor series, and describing relationships between different notions of 
convergence. We detail significant differences observed between students who used virtual 
manipulatives and those that did not. We propose that the use of these virtual manipulatives 
promotes an understanding of Taylor series supporting an understanding consistent with the 
formal definition of pointwise convergence.

Keywords: Taylor Series, Virtual Manipulatives, Calculus, Cooperative Learning, Approximation

As one of the more challenging concepts in calculus, Taylor series coordinates ideas of 
approximations of functions with the evaluation of limits of sequences and series. Previous 
studies of student understanding of Taylor series indicate that many students lack a developed, 
working model of this concept that is sufficient to afford meaningful progress on Taylor series 
tasks (Kung & Speer, 2010; Martin, 2013). Tasks typically proposed to students and the ways in 
which they engage in such tasks may not be adequate to promote the conceiving of and relating 
relevant quantities so as to coordinate notions of Taylor series convergence with sequence 
convergence. One approach for helping students coordinate these ideas is through the use of 
computer software. Specifically, we aim to understand if a Virtual Manipulative (VM) might aid 
students in their understanding of Taylor series convergence. In particular, we ask:

1. Do students in classrooms implementing VMs respond differently to prompts asking for 
the production of graphical representations of Taylor polynomials and Taylor series?

2. Can differences in conceptions be observed between students from VM and non-VM 
classes?

3. How do students in classrooms utilizing VMs respond to open-ended questions about 
convergence? What do they consider most relevant to the concept of convergence?

Background

For an analytic function f, a Taylor series is a power series of the form ∑
k=0

∞

ck ( x−a )k  

where ck=f
(k ) (a)/k !  for each k. Almost all studies of student understanding of Taylor series 

document student struggles to comprehend and interpret the complicated structure inherent in 
Taylor series (e.g. Champney & Kuo, 2012; Kidron & Zehava, 2002; Kung & Speer, 2010; 
Martin, 2013; Martin & Oehrtman, 2010). Martin (2013) noted that students rarely moved 
beyond algebraic reasoning to offer graphical interpretations of convergence, and often failed to 
coordinate their notions with sequence convergence by fixing values of x. When looking at 
Taylor series graphs, Oehrtman (2009) observed that students inaccurately concluded that a 
Taylor polynomial and the approximated function are identical over an interval after observing a 
polynomial “touching” the approximated function, overlooking nonzero differences (or error or 
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remainder) between polynomials and the function for particular values of x. In contrast, Martin 
and Oehrtman (2010) noted that students attending to structures involving “approximations,” 
“error,” “accuracy,” etc., where for each approximation there is an associated error and a bound 
on that error, can lend itself to students describing the existence of nonzero differences between 
approximations (Taylor polynomials) and the approximated function for particular values of x.

What is a suitable understanding of Taylor series convergence for the Calculus student?
Our focus has not been to bring calculus students to a formal definition of pointwise 

convergence using Taylor series, but to support students in algebraic and graphical reasoning 
consistent with the formal definitions of sequence convergence and the recognition of sequence 
convergence as embedded within pointwise convergence. For graphical explanations of Taylor 
series convergence, our students were expected to elaborate on notions of sequence convergence 
using vertical number lines (Figure 1) for different values of x while coordinating notions of 
“estimates,” “error,” “accuracy,” etc. which involve an unknown quantity and a known 
approximation. This paper investigates differences in responses to prompts between students 
engaging in such activity compared to students from calculus classes that tend to focus mainly on
completing convergence tests using algebraic approaches.

Figure 1: Screenshot of Taylor series VM

Virtual Manipulatives (VMs)
By a VM we mean an interactive computer representation of a mathematical concept. Moyer-

Packingham and Westenskow (2013) note that VMs have been useful to develop certain 
understandings but that education research on VMs is lacking beyond 6th grade. For notions 
related to sequence convergence, Cory and Garofalo (2011) observed that VMs can reinforce 
students’ understandings of the quantitative and logical relationships captured by dynamic 
imagery and that these relationships can be recalled months later. Yet, when it comes to Taylor 
series, Kidron and Zehavi (2002) found that students can fail to correctly interpret what they are 
seeing in the VM if working with the VM preceded interpretation of the algebraic representation 
coordinated with the graphical depiction. Taylor series VMs have been helpful in supporting 
students with noticing general graphical trends (Habre, 2009; Kidron & Zehavi, 2002), but these 
VMs have also unintentionally reinforced students seeing a Taylor polynomial and the 
approximated function as identical over an interval after viewing a Taylor polynomial literally 
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touching the approximated function in the VM. Even with these potential setbacks, we 
hypothesize that well designed graphical images (including VMs) coordinated with 
approximation tasks can help students come to an understanding of Taylor series convergence 
consistent with formal theory.

Methods

Students were recruited from calculus classes to participate in this study after receiving 
instruction concerning sequences, series, and Taylor series. Students were from two types of 
classes: calculus classes that focused on algebraic approaches to common Taylor series tasks 
(referred to as non-VM students), and classes that included VMs and incorporated approximation
tasks (Martin & Oehrtman, 2015; Oehrtman, 2008) using laboratory-style group exercises 
(referred to as VM students). Instructors utilized VMs to supplement classroom instruction and 
group activities. Students individually interacted with the VMs to complete homework tasks. To 
address notions of polynomials being the same as the approximated function on an interval, 

zoom features were included in most VMs.
Data from this study was taken from quizzes, classwork, exams, and questionnaires that 

students completed after the conclusion of relevant classroom activities concerning Taylor series.
In total, 139 non-VM students and 86 VM students from four institutions participated in this 

study. For this analysis we focused on student responses to three tasks:

Tasks

non-VM 
Students

VM 
Students

1) “Using the graph of sin(x) below, on the same axes sketch three different Taylor polynomials for sine” ✓ ✓

2) “Using the graph of sin(x) below, on the same axes sketch the Taylor series for sine” ✓ ✓

3)  Explain how sequence convergence is related to Taylor series convergence.

Two 

Question 
Version

3a) “Briefly explain how sequence convergence is related to series convergence. 

Be as precise as you can.”
3b) “Briefly explain how series convergence is related to Taylor series 

convergence. Be as precise as you can.”

✓

One 

Question 
Version

“List all of the ways in which Taylor series convergence is related to sequence 

convergence and series convergence. Make sure your explanations reference
i. formulas when appropriate and

ii. includes a graphical explanation that highlights sequences and/or 
series on your graph above. (That is, add to the graph above to appropriately 

highlight sequences and/or series convergence as it relates to Taylor series 
convergence.)”

✓

Figure 2: Tasks given to students

Responses were collected and coded (Strauss & Corbin, 1990) by a team of two 
undergraduate and two faculty researchers. One faculty researcher and the two undergraduates 
developed the coding protocol for the three tasks. The other faculty researcher coded a random 
sample of 20 students for each of the first two tasks, achieving over 80% reliability for each 
coding decision. Task 3 was coded independently by the second researcher.

Initial Results

Task 1
Task 1 was intentionally ambiguous so that students could choose to have different Taylor 

polynomials be centered at different points, have different degrees, or both. Responses were 
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coded for correctness twice: once using a strict rubric and once using a more relaxed rubric. The 
relaxed rubric was developed since students drew even degree Taylor polynomials, while the 
Taylor series expansion for sin(x) centered at x=0 does not have even degree terms. These 
answers were counted as correct under the relaxed rubric.

Using the strict rubric, 13% of the 86 VM students answered correctly, compared to 4% of 
the 139 non-VM students. Using the relaxed rubric, 28% of the VM students answered correctly 
while 6% of the non-VM students did. This suggests that students in the VM classrooms 
outperformed non-VM calculus students measured by either the strict rubric, X2(1, N = 225) = 
4.3164, p = 0.038, or the relaxed rubric, X2(1, N = 225) = 19.592, p < 0.001.

Taylor polynomials beyond 0th order must be tangent to the function being approximated. Of 
the VM students, 33 (38%) drew Taylor polynomials that were both tangent to the function being
approximated, while 11 (8%) of the non-VM students did. Of the VM students, 28 (33%) drew 
Taylor polynomials not only tangent to the function being approximated, but also to each other, 
while 9 (6%) of the non-VM students did. This indicates a larger proportion of VM students are 

drawing Taylor polynomials tangent to the function being approximated than non-VM students, 
X2(1, N = 225) = 31.331, p < 0.001.

Since students could answer the question using either Taylor polynomials of different degree 
or with a different center, we considered how students approached the problem. The number of 
students who answered correctly using different centers was quite small: 6 students, 5 in VM 
sections, 1 in non-VM sections. 62 students in VM sections (72%) answered the question by 
drawing polynomials of different degree, while 26 students in non-VM sections (19%) answered 
the question by drawing polynomials of different degree, indicating students in VM classrooms 
were more likely to solve the problem correctly using different degree Taylor polynomials than 
non-VM students, X2(1, N = 225) = 63.589, p < 0.001.

Task 2
The ideal answer for Task 2 would be to sketch over the graph of sine. Possible 

misconceptions can introducing error either throughout the entire graph or part of the graph, or 
considering the Taylor series to be a collection of polynomials, either finite or infinite. As before,
grading was done using a strict rubric and a relaxed rubric. Students were considered correct 
under the strict rubric if they traced over the graph. A correct answer under the relaxed rubric 
allowed for careless tracing.

Using the strict rubric, 41% of the 86 VM students answered correctly, while 11% of the 139 
non-VM students did. Using the relaxed rubric, 44% of the VM students answered correctly, 
while 16% of the non-VM students did. VM students therefore outperformed non-VM students 
using both the strict rubric, X2(1, N = 226) = 23.595, p < 0.001, and the relaxed rubric, X2(1, N = 
226) = 18.29, p < 0.001.

Another misconception of interest was drawing a collection of functions as a Taylor series. 
Students in the VM sections were more likely to report a collection of polynomials as a Taylor 
series than those in non-VM sections, whether including all students, X2(1, N = 226) = 12.34, p <
0.001, or removing students who left the problem blank, X2(1, N = 148) = 5.23, p = 0.02. 

Also of interest are the students who introduce intentional non-zero error in the graph of the 
Taylor series on either the entire domain (negative infinity to infinity) or on some part of the 
domain. There was no statistically significant difference between the proportion of VM and non-
VM students who drew graphs with error over the entire domain, X2(1, N = 226) = 1.877, p = 
0.17, including when students with blank responses were removed, X2(1, N = 148) = 0.35126, p 
= 0.553. Similarly, there was no difference between the groups when comparing students who 
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introduced error for only part of the domain, X2(1, N = 226) = 0, p = 1, and still no significant 
difference when blank answers were removed, X2(1, N = 148) = 2.1018, p = 0.147.

Task 3
The numbers of students describing key ideas related to Taylor series in task 3 are reported 

below.

Table 1: Number of students referencing concepts is task 3

Highlight 
particular x

Mention 
error/error bound 
for fixed x

Mention 
vertical number
line

Describe partial 
sums

Approximation
language

Two question 

version (N=60)

4

(7%)

0

(0%)

1

(2%)

3

(5%)

3

(5%)

One question 
version (N=15)

10
(67%)

0
(0%)

1
(7%)

3
(20%)

0
(0%)

Concept of 
error

Describe error as 
decreasing

Describe error 
bound

Describe sequence 
of terms

Describe 
interval of 
convergence

Two question 
version (N=60)

6
(10%)

2
(3%)

1
(2%)

6
(10%)

17
(28%)

One question 
version (N=15)

2
(13%)

2
(13%)

0
(0%)

1
(7%)

4
(27%)

Conclusion & Questions

Evidence suggests that these VMs encouraged students to have an understanding of Taylor 
series that may eventually support the formalization of a pointwise convergence definition. 
Students in classes using VMs were more likely to draw Taylor polynomials correctly, as well as 
to draw the Taylor polynomials tangent to the function being approximated. Students in VM 
classrooms, while more likely to correctly draw a Taylor series graph of sin(x), were also more 
likely to draw a collection of Taylor polynomials than students in non-VM classrooms. This may 
be an artifact of the VMs themselves, in which new Taylor polynomials are introduced while 
previous Taylor polynomials remain. Responses to the third task suggest that connecting many of
the key concepts of approximation, error, and error bound to issues of convergence may not be in
the fore of the VM students’ minds. Despite the relatively low numbers and losses in some 
categories, we saw gains in highlighting a particular x to be especially promising as it is one of 
the key concepts of pointwise convergence of Taylor series. Combined with results from Task 1, 
VM students had improved understanding of general shapes and trends of Taylor series 
convergence, but more support may be necessary to promote further unpacking of the relevant 
quantities and move closer to a notion of pointwise convergence.

Currently, interviews are being conducted with students who have completed classes 
featuring VMs to further describe what students are observing when viewing a Taylor series VM.

We invite discussion about the following questions:
1) Analyzing the ways in which students interact with VMs compared to static images. 
2) Is there some other way of bringing out the pointwise conception naturally?
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Student performance on proof comprehension tests in transition-to-proof courses 

Juan Pablo Mejía-Ramos             Keith Weber 
Rutgers – The State University of New Jersey 

As part of a project aimed at designing and validating three proof comprehension tests for 
theorems presented in a transition-to-proof course, we asked between 150 and 200 
undergraduate students in several sections of one of these courses to take long versions (20 
to 21 multiple-choice questions) of these tests. While analysis of these data is ongoing, we 
discuss preliminary findings about psychometric properties of these tests and student 
performance on these proof comprehension measures. 

Key words: Proof reading, Proof comprehension assessment, Transition to proof 

Most advanced mathematics courses are taught in a “definition-theorem-proof” format, 
where textbooks and lecturers present the definitions of new concepts and then prove 
theorems about those concepts (Weber, 2004; see also Dreyfus, 1991; Mills, 2011). 
Underlying this widely used pedagogical format is the assumption that mathematics majors 
can learn a great deal by studying the proofs that their professors present. Yet as 
mathematicians and mathematics educators observe, students’ understandings of the proofs 
that they read are rarely assessed in a meaningful way (e.g., Conradie & Frith, 2000; Cowen, 
1991). This is due, in great part, to the dearth of valid assessments that measure proof 
comprehension (cf., Cowen, 1991; Weber, 2012). 

In a recent project we are developing proof comprehension tests for three theorems that 
are commonly presented in undergraduate transition-to-proof courses. Our aim is to validate 
these multiple-choice tests and make them available for others to use in their own courses and 
research projects. 
 

Literature Review 

Prior to our work in the area, we are not aware of the existence of systematic ways of 
assessing students’ comprehensions of proof in undergraduate mathematics courses. 
However, there have been three important contributions in this area in the research literature. 
Conradie and Frith (2000) directly addressed the issue of proof comprehension tests in 
undergraduate mathematics. In addition to stressing their importance, these researchers 
provided comprehension tests for two different proofs. While their items were intriguing and 
called mathematics educators’ attention to an underrepresented area of research, we note that 
these tests seemed to be created in a somewhat ad hoc manner, and it was unclear how these 
items were generated or what specific skills or understanding each item was designed to 
assess. Yang and Lin (2008) developed a model of reading comprehension for geometry 
proofs (RCGP) that consisted of four levels of understanding: surface (i.e., understanding the 
meaning of terms and statements), recognizing the elements (i.e., knowing whether a 
statement was an axiom, assumption, definition, or deduction), chaining elements (i.e., seeing 
how new statements are deduced from previous ones), and encapsulation (i.e., viewing the 
proof as a whole to comprehend the higher level ideas in the proof). Yang and Lin developed 
specific assessment items to assess the first three levels of understanding of a given proof, but 
notably did not attempt to assess how well students encapsulated the proof. 

While some of the ideas in Yang and Lin’s model are pertinent to proofs at the 
undergraduate level, we argue that the model by itself is not sufficient to probe students’ 
understanding of a proof in an advanced mathematics class. For instance, Yang and Lin did 
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not attempt to assess if students achieved the highest level of understanding in their model, 
which consisted of viewing the proof as a whole to comprehend its higher-level ideas. While 
this type of understanding might not be a central concern for a high school geometry teacher, 
we contend that skills such as being able to summarize a proof or being able to flexibly apply 
the methods of a proof to prove a new theorem are crucial skills for students in advanced 
mathematics classes. Further, there are also logical nuances that are present in some 
undergraduate proofs that are not accounted for in Yang and Lin’s assessment model, such as 
how should proof by contradiction or proof by cases be understood. From Yang and Lin’s 
perspective, this is not important as such proofs are rare in high school geometry classes, but 
they are common in undergraduate mathematics classes. 

To address this limitation, Mejia-Ramos et al. (2012) built upon Yang and Lin’s model to 
develop an assessment model for proof comprehension that is more suitable to the context of 
undergraduate mathematics. The components of their assessment model can be separated into 
two groups. The first group concerns local understandings of the proof, meaning that these 
questions can be answered by focusing on a small number of statements within the proof. In 
general, these questions would be concerned with describing the logical structure or 
evaluating the validity of the proof, and are adaptations of the first three components of Yang 
and Lin’s (2008) model for geometry proofs. These local types of assessment items are: 

• Meaning of terms and statements: items of this type measure students’ 
understanding of key terms and statements in the proof.  

• Logical status of statements and proof framework: these questions assess students’ 
knowledge of the logical status of statements in the proof and the logical 
relationship between these statements and the statement being proven.  

• Justification of claims: these items address students’ comprehension of how each 
assertion in the proof follows from previous statements in the proof and other 
proven or assumed statements.  

The second group concerns holistic understandings of the proof. In contrast with local 
understandings, one would not be able to answer questions about holistic understandings of a 
proof by focusing on a small number of statements in a proof, but would have to be addressed 
by inferring the ideas or methods that motivated the proof in its entirety. The holistic 
understandings relate to the “encapsulation” level in Yang and Lin’s (2008) model, and 
include four types of assessment items that address students’ understanding of the proof as a 
whole:  

• Summarizing via high-level ideas: these items measure students’ grasp of the main 
idea of the proof and its overarching approach.  

• Identifying the modular structure: items of this type address students’ 
comprehension of the proof in terms of its main components/modules and the 
logical relationship between them.  

• Transferring the general ideas or methods to another context: these questions 
assess students’ ability to adapt the ideas and procedures of the proof to solve 
other proving tasks.  

• Illustrating with examples: items of this type measure students’ understanding of 
the proof in terms of its relationship to specific examples.  

Lecturers, textbook writers and researchers can use Mejia-Ramos et al.’s (2012) model to 
generate open-ended items that measure students proof comprehension along dimensions that 
are valued by both mathematicians and mathematics educators. However, this way of using 
the model has two shortcomings. First, these open-ended questions can be time consuming to 
generate and grade, which may limit their utility in teaching and research situations involving 
a large number of test takers. Second, the validity and reliability of these questions has yet to 
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be verified. The purpose of our current project is to address both shortcomings by designing 
and validating multiple-choice proof comprehension tests for three proofs from a transition-
to-proof course. 

Methods 

Materials 
We have developed comprehension tests for proofs of the following three theorems: 

• Theorem 1: The set of prime numbers is infinite. 
• Theorem 2: Every third Fibonacci number is even. That is, if we define the nth 

Fibonacci number (denoted by fn ) in the usual way, then f3k  is even for every 
k ∈ N . 

• Theorem 3: The open interval 0,1( )  is uncountable. 
Theorem 1 is a central theorem in transition-to-proof courses, being one of the first 

indirect proofs that students encounter. The proof is also often misunderstood by students, as 
there is frequently confusion as to whether the constant generated in this proof is a prime 
number (e.g., Hazzan & Zazkis, 2003). The proof of Theorem 2 is a typical example of the 
kind of proofs by induction presented in transition-to-proof courses. Proofs by induction are a 
central concept in these courses and is notoriously difficult for students (e.g., Dubinsky, 
1987, 1989; Harel, 2001). Theorem 3 is a more advanced theorem with a more sophisticated 
proof method that is usually covered in transition-to-proof courses. 

In order to generate the current version of the multiple-choice, proof comprehension tests, 
we followed the following procedure: 

1. For each one of the three proofs, we first generated open-ended questions of each 
type of assessment item in Mejia-Ramos et al.’s (2012) model. 

2. We then conducted task-based interviews with 12 mathematics majors who had 
recently completed a transition-to-proof course. These participants were asked to 
read the three proofs and answer the open-ended questions.  

3. We observed the correct answers that the participants provided as well as common 
incorrect answers. These data were used as a basis to generate a larger set of 
multiple-choice questions, with at least one question for every dimension of 
understanding in Mejia-Ramos et al.’s (2012) proof assessment model. 

4. We then sought feedback from mathematicians at our institution and an advisory 
board (which included a prominent mathematician and a leading researcher on 
proof comprehension a the undergraduate level) regarding the accuracy and 
appropriateness of our items. 

5. Finally, we piloted these multiple-choice items with 12 mathematics majors to 
make sure our items had appropriate wording and choices. 

To illustrate the type of items in our proof comprehension tests consider the proof used 
for Theorem 1:  

Suppose the set of primes is finite. Let p1, p2, p3,…, pk  be all those primes with 
p1 < p2 < p3 << pk . Let n be one more than the product of all of them. That is, 
n = p1 ⋅ p2 ⋅ p3pk +1 . Then n is a natural number greater than 1, so n has a prime 
divisor q. Since q is prime, q >1 . Since q is prime and p1, p2, p3,…, pk  are all the 
primes, q is one of the pi  in the list. Thus, q divides the product p1 ⋅ p2 ⋅ p3pk . Since 
q divides n, q divides the difference n− p1 ⋅ p2 ⋅ p3pk . But this difference is 1, so 
q =1 . From the contradiction q >1  and q =1 , we conclude that the assumption that 
the set of primes is finite is false. Therefore, the set of primes is infinite. 
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Item type Open-ended items Multiple-choice items 
Meaning of 
terms and 
statements 

1. Please give an example of a 
finite set and explain why it 
is finite. 

2. Please give an example of a 
set that is infinite and 
explain why it is infinite. 

Which of the following are examples of 
finite sets? Please select all that apply. 
a) The set with the following elements: 1, 

2, and 3. 
b) The set of real numbers between -2 an 2 
c) The set of all fractions 1r  where r is a 

natural number. 
d) The set of integers greater than 4.5 and 

smaller than 9999. 
Justification 
of claims 

1. Why is it valid to conclude 
that n is a natural number? 

2. Why does n have to have a 
prime divisor? 

3. Why exactly can one 
conclude that if q is prime, 
then q >1? 

In the proof, why is it valid to conclude 
that n is a natural number? Please select 
the best option. 
a) Because the product and sum of natural 

numbers is a natural number. 
b) Because n is greater than 0. 
c) Because 1, p1, p2,…, pk  are all integers. 
d) Because it is a given in the proof that n 

is a natural number. 
Summarizing 
via high-level 
ideas 

1. Summarize in your own 
words the main idea of this 
proof. 

2. What do you think are the 
key steps of the proof? 

3. Give a three-sentence 
description of how the 
proof established the 
theorem. 

Which of the following options best 
summarizes the main idea of this proof? 1 
a) The main idea of the proof is to show 

that if the set of primes were finite, one 
could find a formula for a new prime 
number that is not in that finite set, 
contradicting the assumption. 

b) The main idea of the proof is to assume 
that the set of prime numbers is finite 
and to construct a natural number that 
has a prime divisor equal to 1, which is 
impossible. 

Transferring 
the general 
ideas or 
methods to 
another 
context 

1. In the proof, we define 
n = p1 ⋅ p2pk +1 . Would 
the proof still work if we 
instead defined 
n = p1 ⋅ p2pk +31? Why? 

2. Define the set 
Sk = 2,3, 4,…,k{ }  for any 
k > 2 . Using the method of 
this proof, show that for 
any k > 2 , there exists a 
natural number greater than 
1 that is not divisible by 
any element in Sk . 

In the proof, we define n = p1 ⋅ p2pk +1
Would the proof still work if we instead 
defined n = p1 ⋅ p2pk +31? Please select 
the best option. 
a) Yes, because n will still be a prime 

number, so the contradiction will still 
hold. 

b) Yes, because 31 is a prime number, 
which means that q must still be 1. 

c) No, because this definition of n would 
not be necessarily prime. 

d) No, because in this case q could be 31, 
which does not lead to a contradiction. 

Table 1. Examples of items used in the proof comprehension tests for Theorem 1.  

                                                
1 This item has two other foils that did not fit in the table/proposal. 
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Table 1 contains examples of open-ended and multiple-choice versions of some of the 
different types of items used in the test for this proof. The multiple-choice tests generated for 
theorems 1 and 2 contained 20 items each, while the test for Theorem 3 contained 21 
questions. 
Participants and procedure 

The proof comprehension tests were distributed to students in several sections of an 
undergraduate transition-to-proof course in a large state university. Each of the five 
participating instructors allocated 40 minutes of class to distribute each test. On the day each 
test was distributed, students in the course received a packet that contained the theorem and 
its proof, instructions on the different types of items in the test, and all the multiple-choice 
questions (the order of the items in each section of the test was randomized). The test for 
Theorem 1 was distributed after instructors had introduced proofs by contradiction in class 
(approximately a third of the way into the term), the test for Theorem 2 was distributed once 
instructors had discussed the principle of mathematical induction (usually by the middle of 
the term), and the test for Theorem 3 was distributed by the end of term, after instructors had 
discussed the notion of the cardinality of sets. 

A total of 201 students took the proof comprehension test for Theorem 1, 192 students 
took the test for Theorem 2, and 152 students took the test for Theorem 3. 2 
 

Preliminary Results 

Analysis of this data set is on going. However, preliminary analyses suggest several 
interesting trends: 

1. There is a strong correlation between students’ performance on any two of the 
three proof comprehension tests, 

2. The tests, even before excluding poor or uninformative items, show a high internal 
consistency.  

Taken together, these results suggest that proof comprehension can be a meaningful 
single-dimensional construct. Ongoing analyses will explore the extent that this is the case. 
We will also discuss items that the large majority of students answered correctly and the 
items that most students answered incorrectly, which can provide some much needed baseline 
data on how well mathematics majors understand proof in a transition-to-proof course. 
 

Questions for the audience 

1. Do you have any suggestions for further analysis of the data? 
2. How would you recommend that we disseminate these tests to mathematicians? 
3. How might we improve the test design process for future iterations of these types 

of studies? 

                                                
2 The decreasing number of participating students was not only due to the regular reduction 
of class size as the term progresses. One of the participating instructors did not reach the 
topic of cardinality in class, which meant that we could not distribute the test for Theorem 3 
in the two sections led by this instructor. 
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  Results from the Group Concept Inventory: Exploring the Role of Binary 
Operation in Introductory Group Theory Task Performance 

 
    Kathleen Melhuish             Jodi Fasteen 

Teachers Development Group  Carroll College 
 
Binary operations are an essential, but often overlooked topic in advanced mathematics. 
We present results related to student understanding of operation from the Group Concept 
Inventory, a conceptually focused, group theory multiple-choice test. We pair results 
from over 400 student responses with 30 follow-up interviews to illustrate the role binary 
operation understanding played in tasks related to a multitude of group theory concepts. 
We conclude by hypothesizing potential directions for the creation of a holistic binary 
operation understanding framework. 
 
Key words: Binary Operation, Abstract Algebra, Student Conceptions 
 

Binary operations are at the heart of school mathematics from early arithmetic, to 
high school algebra, and their generalization: abstract algebra. The prominence and 
familiarity of operations can lead to the belief that they are a simple concept for 
university-level students. We validated this conjecture through surveying a panel of 
introductory abstract algebra instructors. All 13 felt that the difficulty of the binary 
operation concept was 5 or below on a 0 to 10 scale with an average value of 2.63. 

However, while students may have a strong understanding of binary operation in 
straight-forward contexts such as determining if a given relation is in fact a binary 
operation, a robust understanding is required to leverage binary operations in the contexts 
of building groups, differentiating between binary operations, appropriately checking 
properties, and dealing with unfamiliar structures. While the majority of students we 
surveyed could correctly determine that division is not a binary operation, understanding 
of binary operation seemed to contribute to incorrect responses on questions targeting 
understanding of group, subgroup, associative property, identities, and inverses.  

In this proposal, we present results from a large-scale implementation of the Group 
Concept Inventory (GCI). The inventory was designed to probe conceptual understanding 
around fundamental topics in introductory group theory. Over 400 students, representing 
a multitude of institution types across the United States, responded to each question. We 
pair these responses with interview data to hypothesize how binary operation 
understanding underlies conceptions around fundamental group theory topics.  

 
Literature Review 

 
All group theory relies on the concept of group: a set paired with a binary operation. 

A binary operation is a function that maps the cartesian product of a set of elements to 
that set of elements. For example, addition over the integers would be a binary operation 
as it inputs any two integers and returns one integer. In order to understand the 
generalized binary operation, not only would one need to make sense of operations and 
their properties, but also understand binary operation as a special case of function.  
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The majority of research on binary operations exists within the specialized case of 
arithmetic operations. Slavit (1998) discussed operation sense in a series of stages built 
around familiarity with standard arithmetic operations and their relationships to other 
operations, properties they may possess, and their understanding independent of concrete 
inputs. However, this framework is built in terms of operations that are not arbitrarily 
defined but rather represent a standard process, such as combining groups in the case of 
addition. In addition to operation sense, operations have been discussed in terms of their 
duality as both a process and object.  Gray and Tall (1994) deem the symbol associated 
with an operation a procept. An expression such as “3+2” represents both the process of 
adding 3 and 2, as well as the resulting sum. Similarly a function defined as f(x)=3x+4 is 
both a direction for how to compute an output for any input, and also an object- the 
function for all x-values. 

As a binary operation can be any relation that is a function between a cartesian 
product of a set and the set itself, the generalized notion incorporates many of the 
complexities studied in the contexts of function. Understanding functions is challenging 
across grade spans (Oehrtman, Carlson, & Thompson, 2008), with their role as both 
processes and objects in addition to numerous representations. Notably, understanding 
functions (or binary operations) involves seeing function as an action (mapping 
individual inputs to outputs), process (a general process for mapping inputs to outputs), 
and object (that can itself be operated on such as comparing if two binary operations are 
the same) (Breidenbach, Dubinsky, Hawks, & Nichols, 1992; Brown DeVries, Dubinsky, 
and Thomas, 1997). Students have frequently proceduralized functions such as evaluating 
f(x+a) as being equal to f(x) + a (Carlson, 1998). Rather than coordinating what the input 
and output are, the students are superficially altering the function. Students have also 
been shown to have limitations in terms of representations, desiring an explicit rule 
written symbolically rather than just a correspondence of ordered pairs (Breidenbach, et 
al., 1992; Vinner & Dreyfus, 1989). 

Two additional frameworks have been contributed in terms of undergraduate 
understanding of binary operation. Novotná, Stehlíková, and Hoch (2006) approached 
binary operation from a structure sense view dividing understanding of binary operations 
into four levels: Recognise a binary operation in familiar structures; Recognise a binary 
operation in non-familiar structures; See elements of the set as objects to be manipulated, 
and understand the closure property; and See similarities and differences of the forms of 
defining the operations (formula, table, other). Rather than considering stages of mental 
constructions in terms of process/object reification, structure sense captures abstracting 
from familiar objects to unfamiliar. Ehmke, Pesonen, and Haapasalo (2005) contributed 
an analysis in terms of procedural and conceptual understanding. They identified students 
as having procedure-based understanding of binary operation if they could match binary 
operations if presented in different representations. The next level is procedure-oriented 
where students could also create different representations when prompted. The highest 
level is conceptual where students could not only move between representations, but also 
determine if a given relation was a binary operation. 

A number of studies have shown that binary operations are not a trivial topic, 
illustrating struggles with varying undergraduate populations including linear algebra 
students (Ehmke, Pesonen, & Haapasalo, 2005), abstract algebra students (Brown, et al., 
1997; Dubinsky, Dautermann, Leron, & Zazkis, 1994; Hazzan, 1999), in-service and pre-
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service secondary teachers (Zaslavsky and Peled, 1996), and statistics students 
(Mevarech, 1983). Mevarech (1983) found introductory statistics students assumed that 
unfamiliar binary operations such as mean and variance had properties found in groups 
including the associative property. Zaslavsky and Peled found secondary in-service and 
pre-service teachers struggled to produce a binary operation that was associative, but not 
commutative. Binary operation related issues include defining a unary operation, and 
incorrectly considering repeated binary operations such as wrongly translating the 
associative property on the operation |a+b| as |a|+|b+c|=|a+b|+|c| rather than 
||a+b|+|c||=|a+|b+c|| or overgeneralizing such as considering the equality (a*b)+c=a*(b+c) 
to determine if (a*b)+c is a binary operation.  

Each of these studies explored some of the complexities associated with the binary 
operation concept. The group theory context is often the first time that students are asked 
to reason about binary operations that may be unfamiliar. Furthermore, until group 
theory, they have likely not reasoned about the binary operation as a general concept.  

 
Methods 

 
These results stem from a larger project developing a concept inventory targeting 

conceptual understanding in introductory group theory. A 17-item instrument was 
developed, field-tested and refined through several rounds of validation studies 
(AUTHOR).The results reported here come from the final round of field-testing across 
the United States. Students from 33 institutions took this survey after finishing an 
introductory group theory portion of an undergraduate abstract algebra course. The 
survey was administered online. Institutions participating were geographically diverse 
and representative of varying levels of selectivity including 14 institutions with 
acceptance rates greater than 75%, 10 institutions with acceptance rates between 50-75%, 
and 7 institutions with acceptance rates less than 50%.      

Throughout the field-testing, follow-up interviews were conducted to validate the 
interpretation of student responses. A total of thirty interviews were conducted including 
15 with students during an open-ended round, and 15 with students completing the 
closed-form multiple-choice version. The students were prompted to explain their answer 
selection and their understanding of the relevant underlying concept.   

 
Preliminary Results 

 
The following results include examples of three GCI questions where understanding 

of binary operation appeared to influence student performance. In the first question, 
students are asked to define a binary operation on a set to form a group. In the second 
question, students determine if a given subset is a subgroup. In the third question, 
students evaluate if an unfamiliar operation is associative. 

Students were asked to consider the set: {1,2,4}. This set was selected because it does 
not correlate nicely to any group students likely studied. Instead, to correctly address the 
prompt, students would need to recognize that a binary operation can be defined on any 
set with or without a symbolic rule. As can be found in Table 1, only 23% of students 
selected the correct response. Thirty-six percent of students responded with a familiar 
operation that would not meet group requirements, while the remaining students wanted 
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the set to have additional elements in order to define a closed binary operation. This latter 
group represents a potential limitation in ability to construct an abstract binary operation. 
In follow-up interviews, a number of students explained that they tested various known 
operations declaring the sentiment that, “there’s no operation I could think of” that would 
meet the requirements. In contrast, students selecting the correct response appeared to 
have a more sophisticated understanding of binary operation. In follow-up interviews, 
they explained that a binary operation can be made to meet group requirements by 
building an unfamiliar binary operation through leveraging alternate representations such 
as building a Cayley Table or defining the operation element-wise.  

 
Table 1    
 
Percentage of Students Selecting each Response for Defining a Group Question 

 
Response Percentage (n=468) 
Yes, because an operation can be defined on any three element set to form a group. 23% 
Yes, multiplication mod 6. 36% 
No, the set will not be closed under any operation. 18% 
No, the identity element 0 would be needed. 10% 
None of the above reasoning is valid 14% 

Table 2 includes student response selections for the question on subgroup. This 
question (or a variant of it) has been used in several prior studies to illustrate student 
conceptions around subgroup and Lagrange’s Theorem (Dubinsky, et al., 1994; Hazzan 
& Leron, 1996). Dubinsky et al. posited that students who identified Z3 as a subgroup of 
Z6 where not coordinating binary operation and set correctly - failing to see that the 
operation of a subgroup must be inherited from the supergroup. However, during many of 
the follow-up interviews conducted with students who selected the first and second 
option, the students articulated a notion that the subgroup’s operation was “inherited.” 
Several students explained that “it’s the same operation” in Z3 and Z6, seeming to rely on 
a generalized version of modular addition. These students did not seem unable to 
recognize the need for the same binary operation, but rather did not appropriately address 
what it means to have the different operations. Instead of evaluating if the products of 
elements were the same, they instead relied on the general rule which appears to be the 
same type of operation. 

 
Table 2    
 
Percentage of Students Selecting each Response for  Subgroup Question 

 
Response Percentage (n=429) 

 13% 

 36% 

 6% 
 44% 

In this third question, students had to address an operation that was not associative, 
averaging. In relation to binary operation, there are two notable responses found in Table 
3: the first where students did not feel the need to address a new operation because of its 

19th Annual Conference on Research in Undergraduate Mathematics Education 1101

19th Annual Conference on Research in Undergraduate Mathematics Education 1101



component parts being familiar associative operations, and the third option where 
parentheses are moved artificially. Students selecting the first choice may be superficially 
applying the idea of associativity being “inherited” in a new situation. Students selecting 
the third response fall into Zaslavsky and Peled (1996) overgeneralization category. We 
conjecture these students may have more fundamental issues with the binary operation 
procept. These students were not repeatedly operating on two elements to determine if (a 
◊ b) ◊ c=a ◊ (b ◊ c), but rather treating subcomponents of the binary operation as if they 
were three different inputs. This mimics function issues where students struggle to 
appropriately evaluate expressions such as f(x+a). A robust understanding of binary 
operation requires making sense of what constitutes the input and how repeated binary 
operations are calculated.  

 
Table 3    
 
Percentage of Students Selecting each Response for Associativity Question 

 

 
Response Percentage 

(n=432) 
 29% 

 22% 

 
17% 

 31% 

 
Discussion 

 
The three results above illustrate some of the additional complexities associated with 

binary operation as found in field-testing of the GCI. Binary operation conceptions can 
underlie performance in a number of essential group theory tasks. Furthermore, the 
student responses serve as a starting ground for expansion of previous work on student 
conceptions of binary operation. Ehmke, Pesonen, and Haapasalo’s (2005) conceptual 
levels might need to be expanded where creating an unfamiliar binary operation on a 
given set may represent an even higher level of conceptual understanding. Novotná and 
Hoch (2008) identified determining if two binary operations are the same or different as 
the top level of binary operation understanding. This ability seemed crucial to 
appropriately addressing the question related to subgroup. Finally, in the associativity 
question, students may be more than just overgeneralizing (Zaslavsky and Peled, 1996), 
but have fundamental issues correctly operating. As binary operation is a special case of 
function, these complexities mimic many of the issues found in understanding functions 
for various level students. Exploring the role of binary operation can help provide insight 
into why students may struggle with various aspects of these algebra courses. Additional 
analysis of these results can hopefully build a more holistic framework of binary 
operation understanding, 
 

Questions for the Audience 
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1. What might a comprehensive framework for student understanding of binary 
operation look like? 

2. How might student conceptions around binary operations influence their 
understanding in other advanced mathematics courses? 
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Using Adjacency Matrices to Analyze a Proposed Linear Algebra Assessment 
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An assessment of student learning of major topics in linear algebra is currently being created 
as part of a larger study on inquiry-oriented linear algebra. This includes both the 
assessment instrument and a way to understand the results. The assessment instrument is 
modeled off of the Colorado Upper-division Electrostatics (CUE) diagnostic (Wilcox & 
Pollock, 2013). There are two parts to each question: a multiple-choice part and an 
explanation part. In the explanation part, the student is given a list of possible explanations 
and is asked to select all that could justify their original choice. This type of assessment 
provides information on the connections made by students. However, analyzing the results is 
not straightforward. We propose the use of adjacency matrices, as developed by Selinski, 
Rasmussen, Wawro, & Zandieh (2014), to analyze the connections that students demonstrate.  

Key words: Linear Algebra, Assessment, Adjacency Matrices 

As part of a larger study on developing materials for inquiry-oriented approach to Linear 
Algebra we created an assessment instrument to measure student understandings of major 
topics in linear algebra, including span, linear independence/dependence, invertibility, 
solutions to systems of linear equations, and transformations. In an attempt to gain a deeper 
understanding of student thinking on these topics without the use of a free-response 
assessment, we modeled our assessment off of the Colorado Upper-division Electrostatics 
(CUE) diagnostic (Wilcox & Pollock, 2013). In this type of an assessment, students are asked 
a standard multiple choice-question and then they are prompted to select all of the “because” 
choices that could justify their choice. An example is given in Figure 1. 

 
Figure 1: Assessment format 

 
Interpreting the results of such questions, however, is complicated and prior work gives 

little insight into how to compile and make sense of the results. Moreover, in light of the fact 
that linear algebra is rich in connections, we were interested in measuring the nature of 
connections students made between topics in linear algebra. One possibility is to analyze 
student responses through the use of adjacency matrices. 
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Adjacency Matrices 

Recent studies in linear algebra have used adjacency matrices as a way to analyze the 
connections students make between topics (e.g., Selinski et al., 2014). The use of adjacency 
matrixes starts by creating a list of codes that are topics and sub-topics in linear algebra. 
These codes make up the sides of the matrix and whenever a student makes a connection 
between two topics or subtopics, the matrix is marked in the corresponding cell of the row 
and column. From there, a quantitative measure can be placed on the types of connections 
made between topics by the students as well as preserving a connection to the qualitative data 
that created the matrix. 

For the current study, we explored how adjacency matrices may be leveraged to analyze 
results from the assessment. The goal is to obtain a portrait of the connections students made 
between topics in linear algebra through the use of their assessment answers. However, 
before the assessment answers could be analyzed separate from the students, we needed to 
have knowledge of the ways in which the students were reading and understanding the 
assessment as well as how they were choosing their answers. Such information requires 
individual interviews. 

 
Assessment Interviews 

In the fall of 2014, 11 interviews were conducted using the current version of the linear 
algebra assessment at a large public university. Students were asked to explain their choices 
so as to gain an understanding of how they understood the problems and answers. The 
interviews were transcribed and coded independently by two researchers. The researchers 
discussed each code until consensus was reached. The codes were generated through a 
combination of open coding and a priori coding, with the a priori codes coming from 
previous studies done on student understanding in linear algebra (Selinski et al., 2014). The 
codes were used to create ordered pairs, much like what one may use to describe placement 
on a matrix, so as to create a basis for the adjacency matrix for each student. It is through 
these codes that an adjacency matrix was created. In the table below is an example of the 
coding done throughout the interviews. In this example, the student had just finished 
answering the multiple choice section of the problem shown in Figure 1 and had chosen the 
answer of linearly dependent. He is going through a couple of the explanation answers in the 
quotes below and chosing the ones he believes supports his answer choice. 
Student The set includes the vector [0, 0]. I think that’s why. (B1, B) 
 The set has 3 vectors in R2. I didn’t even think about that but that’s 

why, right? Yeah. Pretty sure. [H: okay] 
(B2, B) 

The third column gives an example of how the coding was done and is read as B1 implies B2 
and B2 implies B, where B1 stands for “the set includes the zero vector,” B2 stands for “the 
set has more vectors than dimensions,” and B stands for “set of vectors is linearly 
dependent.” Much of the coding was done based on what the student had said previously as 
well as what was specifically stated in the utterance. 

 
Conclusions 

 
Adjacency matrices have provided both a quantitative and qualitative way of looking at 

student understanding in linear algebra. Through the use of interviews, for example, prior 
work provided a detailed explanation of the depth and types of connections students made 
between topics in linear algebra. In the current study, there is an additional level of 
complexity as we are attempting to use the adjacency matrix to help analyze whether or not 
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the assessment shows the types of connections we expect. Our analysis suggests the 
following questions to discuss: If the adjacency matrix shows different or additional 
connections made by the students than what the assessment captures, how might the 
adjacency matrix inform future versions of the assessment? The number of explanations we 
can provide students is limited so how do we determine the optimal number that captures 
most of the possible explanations? What other possible frameworks could be useful in 
analyzing the assessment? 
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A Proposed Framework for Tracking Professional Development Through GTA’s 
 

Hayley Milbourne   Susan Nickerson 
San Diego State University  San Diego State University 

There are several different models of graduate teaching assistant programs in mathematics 
departments across the nation (Ellis, 2015). One particular public university has recently 
reformatted their calculus program toward a peer-mentor model and this is the first year of 
implementation. In the peer-mentor model, there is a lead TA who serves as a support for the 
other TAs in the program. Because of this, the professional development in which the TAs are 
engaged is formally directed by both faculty and a peer. We are interested in discussing a 
framework known as the Vygotsky Space as a methodology for tracking the appropriation 
and sharing of pedagogical practices among those responsible for calculus instruction.  

Key words: Vygotsky Space, professional development, Graduate teaching assistants 

Across the nation, mathematics departments have begun to change the way they structure 
the teaching and support in their calculus sequence. Several different models that utilize 
graduate student mathematics teaching assistants have been identified, including the peer-
mentor model, the apprenticeship model, and the coordinated-innovation model (Ellis, 2015). 
Of particular interest to us is the peer-mentor model in which, in addition to faculty support, 
there is a lead TA who observes and provides additional support to the other TAs. However, 
there has been little research into how the professional development in which the TAs are 
engaged is appropriated and shared among those responsible for instruction in the Calculus 
sequence. More specifically, how does the instructional practice of the TAs shift and what 
might provide support for those shifts, such as pressing for justification and providing 
multiple solutions to problems? What role does the lead TA play as both a learner and as one 
who provides support for the changes? This poster will report on a promising framework for 
understanding the ways in which the practices are appropriated and transformed by the 
graduate teaching assistants in a peer-mentor model. 
 

The Setting 

The 2015-16 academic year is the first year the peer-mentor model has been implemented 
at the large public southwestern university under investigation. In addition to a restructuring 
of the graduate student TA model, the breakout sections for the first two semesters of college 
calculus were restructured to include both an active learning problem-solving section, as well 
as a more traditional homework section. So as to support the TAs in leading more student-
centered learning sessions, the TAs engaged in professional development for nearly two full 
days before the semester began and two half days during the first semester. Additionally, the 
TAs met weekly with the coordinator of their calculus course to discuss the past week and the 
week to come. Finally, the lead TA observed the teaching of their fellow TAs three times 
throughout the semester and gave each one of them feedback. Figure 1 provides a diagram of 
the various meetings throughout the first semester. The blue represents the weekly meetings, 
the yellow represents the professional development, and the green circles represent the 
observations conducted by the lead TA. 

 
Figure 1: Diagram of Meetings 
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Thus there are formal opportunities for support in formal faculty-led professional 
development and informal opportunities in the debriefing meetings the lead TAs have with 
the other TAs after observing their classes and weekly meetings with the faculty coordinators. 
Through the various meetings, and through the classroom observations, there are 
opportunities for a researcher to observe the various ways in which the instructional practices 
are appropriated, transformed, and utilized by each of the TAs.  
 

Tracking the Professional Development 

We conjecture that the Vygotksy Space may be a useful framework for tracking the 
appropriation of the professional development (both formal and informal). The framework 
was meant to explain development in general (Harré, 1983) but it is also believed it could be 
used to investigate the ways in which the individual creates their own psychological world 
under particular “conversational forms and strategies from that discourse” (p. 245, Harré et 
al., as cited in McVee, Gavelek, & Dunsmore, 2007). In this framework, Harré (1983) 
identified two dimensions: the individual-social (collective) and the public-private. The 
superposition of these dimensions creates a two-dimensional space in which to describe the 
development of an individual over time as they move through the four quadrants. 

For instance, the movement from the first quadrant to the second is known as 
appropriation. In this, the person is taking up the concepts that have been introduced and used 
in the public-social setting of the first quadrant. From there, the person moves towards the 
third quadrant, which is known as transformation. In this, the individual is taking the concept 
he or she has appropriated and is modifying it to fit their needs. When moving from the third 
quadrant to the fourth, the person is engaged in publication, which is when that person has 
made their meanings and strategies public for others to comment on. Finally, the movement 

from the fourth quadrant to the first 
is known as conventionalization. In 
this, the “individuals’ public 
manifestations of thinking (i.e., 
their actions and their ideas) are 
incorporated as part of the 
community of discourse in which 
they participate” (Gavelek & 
Raphael, 1996, p. 188). 

We will have preliminary 
analysis and judgment of the 
suitability of this framework. The 
data used for this preliminary 
analysis will be from field-notes 
taken during classroom 
observations and weekly meetings 
as well as recordings of the 
debriefing conducted by the lead 

TA after his third observation during the fall semester. The poster session will provide a 
space to discuss this methodology.   

 

Figure 2: Vygotsky Space 
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In this study, we presented nine mathematics professors with three proofs containing gaps 
and asked the professors to assign the proofs a grade in the context of a transition-to-proof 
course. We found that the participants frequently deducted points from proofs that were 
correct and assigned grades based on their perceptions of how well students understood the 
proofs. The professors also indicated that they expected lecture proofs in the transition-to-
proof course to have the same rigor as those demanded of students, but lecture proofs could 
be less rigorous than the rigor demanded of students in advanced mathematics courses. This 
presentation will focus on participants’ rationales for these beliefs. 

Key words: Mathematical Proofs, Assessment of Proofs, Transition to Proofs, Gaps in Proofs 

In the United States, many mathematics majors are required to take a transition-to-proof 
course prior to taking proof-oriented courses such as real analysis and abstract algebra. A 
central goal of the transition-to-proof course is to help mathematics majors master the 
mechanics of proving so that they can produce acceptable proofs in their future advanced 
courses. There are, of course, a variety of strategies that a mathematics professor may use to 
achieve these goals, including being explicit about what types of inferences are valid (e.g., 
Alcock, 2010) and modeling good proving behavior (e.g., Fukawa-Connelly, 2012). There is 
currently a modest but growing body of research on how mathematics professors introduce 
students to proof-oriented mathematics in their lectures and their motivations for doing so 
(e.g., Alcock, 2010; Hemmi, 2006; Lai & Weber, 2014; Moore, 1994; Nardi, 2008; Weber, 
2012). Recently, however, Moore (2014, submitted) identified an important facet of teaching 
that has received little attention from mathematics education researchers: professors’ grading.  

Moore (2014, submitted) found that mathematics professors viewed their grading, 
including both the marks they assigned and the commentary they provided, as essential parts 
of their teaching. As Moore observed, this raises important research questions. What student-
written proofs in a transition-to-proof course constitute an acceptable product? What criteria 
do professors use for assigning grades? Do professors use the same criteria and assign similar 
grades to the same proofs? Or is there variance in the criteria that they use and the marks they 
assign? The purpose of this contributed paper is to further explore these questions. In 
particular, we presented nine mathematicians with proofs that contained gaps and asked them 
to grade these proofs. We were interested in how mathematicians would evaluate these gaps 
in their grading.  
 

Related Literature 

Mathematicians grading 
As we noted in the introduction, there is little research on how mathematicians assign 

grades to students’ proofs in a transition-to-proof course (or in any other course). Here we 
summarize the main findings from Moore’s (2014, submitted) exploratory study on this topic. 
Moore asked four mathematics professors to assign grades to seven authentic student proofs 
with the aim of investigating the consistency, or lack thereof, in the marks that professors 
assigned. The main findings from Moore’s study were that there was substantial variance in 
the scores they assigned to some proofs that could not be attributed to performance error (i.e., 
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a participant overlooking a flaw in the proof). These disparities were based in part on the 
seriousness of the errors that stemmed from disagreement over whether an error was due to a 
mere oversight on the part of the student (which would receive only a small deduction in 
score or no deduction at all) or a significant misconception held by the student (which would 
receive a larger deduction). The professors all remarked that grading was an important part of 
their pedagogical practice. 

Moore (submitted) called for expanding research in three directions: (i) conducting 
studies with more mathematicians to gain confidence in the generality of the findings, (ii) 
exploring how mathematics professors score different types of proofs, and (iii) looking into 
more depth about what criteria professors use to grade proofs. In this contributed report, we 
follow the recommendations of Moore. We presented nine mathematicians with a different 
type of proof grading tasks – looking at proofs with gaps – that allowed us to both replicate 
Moore’s central findings and to explore them in more depth. 
 
Proofs contain gaps in mathematicians’ practice 

A proof is sometimes defined as a deductive argument where each new statement in a 
proof is a permissible assumption (e.g., an axiom, a definition, a previously proven statement) 
or a necessary logical consequence of previous statements. In mathematical practice, it is 
commonplace for proofs to contain have gaps (Fallis, 2003). That is, the proof may not 
explicitly state exactly how a new assumption follows from previous assumptions, instead 
leaving this task up to the reader (Weber & Alcock, 2005). In many cases, this is because the 
author of the proof believed that the gap could easily be filled in by a knowledgeable reader. 
However, in other cases, the gap might be quite large and require the construction of a non-
trivial sub-proof (Fallis, 2003; Selden & Selden, 2003). Mathematicians and philosophers 
have argued that gaps are both necessary and desirable in mathematical practice. Proofs 
would be impossibly long if every logical detail were included (Davis & Hersh, 1981) and 
supplying excessive logical detail would mask the main methods and ideas of the proof, 
which is a primary reason why mathematicians read published proofs in the first place (Rav, 
1999; Thurston, 1994; Weber & Mejia-Ramos, 2011). 

The pedagogical proofs that mathematics professors present to their students also contain 
gaps. Like published mathematical proofs, this is not only necessary for the sake of time and 
brevity, but also potentially beneficial, as students may learn mathematics from filling in 
some of the details of the proofs themselves (e.g., Alcock et al, 2015; Lai, Weber, & Mejia-
Ramos, 2012). Prior research found a difference in how mathematics majors and mathematics 
professors regarded gaps in proofs presented in mathematics lectures: most mathematics 
majors believed that all the logical details should be specified in a well-written proof. In 
contrast, the majority of mathematics professors believed that even with a well-written proof, 
students would still be expected to justify some of the inferences within the proof (Weber & 
Mejia-Ramos, 2014). In this contributed report, we further explore the differences that 
mathematicians believe are needed with respect to rigor and gaps in lecture-based proofs and 
the proofs that students hand in for credit. 
 
Mathematicians’ evaluations of proofs with gaps 

Prior research has explored how the existence of gaps affect the validity of proof in 
mathematicians’ practice. In particular, mathematicians have not always agreed on the 
validity of specific proofs that contained gaps (e.g., Inglis, Mejia-Ramos, Alcock, & Weber, 
2013; Weber, 2008; see also Inglis & Alcock, 2012). Mathematicians claimed that the 
permissibility of a gap was dependent upon the author of the proof, with some 
mathematicians claiming that they would be inclined to give an expert the benefit of the 
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doubt when reading a proof with a large gap (Weber, 2008; Weber & Mejia-Ramos, 2013). In 
this paper, we illustrate how the mathematicians’ estimation of the competence of the student 
plays a role in their grading when grading a students’ proof with gaps. 
 

Methods 

Participants 
Nine mathematicians in a mathematics department at a large state university in the United 

States agreed to participate in this study. These mathematicians represented a variety of 
mathematical subfields, including combinatorics, graph theory, number theory, partial 
differential equations, topology, and approximation theory. All were tenure-track or tenured 
at the time of the study with three professors representing each level of Assistant, Associate, 
and Full Professor. Six of the participants’ had significant teaching and grading experience of 
over 10 years (three of which had over thirty years of experience) and the other three had four 
or more years of experience. We anonymized the data by referring to the first mathematician 
that we interviewed as M1, the second as M2, and so on. 
 
Methods  

In this study, we examined proofs of three theorems from number theory that might be 
proven in a transition-to-proof course. For each theorem, we generated two proofs. The Gap 
Proof is a proof that we designed to employ a logically correct line of reasoning but leaving 
some of the steps in the proof without a justification. The Gapless Proof is a modification of 
the Gap Proof such that the justifications for each of the steps were filled in. We refer to the 
three theorems as Theorem 1, Theorem 2, and Theorem 3. We refer to the two proofs of 
Theorem 1 as Gap Proof 1 and Gapless Proof 1, the two proofs of Theorem 2 as Gap Proof 2 
and Gapless Proof 2, and the two proofs of Theorem 3 as Gap Proof 3 and Gapless Proof 3. 
 
Procedure 

Each participant met individually with the first two authors and was videotaped during a 
task-based interview. The interviewers made sure that each interviewee understood that the 
given proofs were from a transition-to-proof class. Each interview contained three phases. In 
the Lecture Proof Evaluation phase, the participant was told that a professor presented Gap 
Proof 1 in lecture, asked if they thought the proof was valid, and asked to comment on the 
pedagogical quality and appropriateness of the proof. This process was repeated for Gap 
Proof 2 and Gap Proof 3. In the Student Proof Evaluation phase, the participant was 
presented with Gap Proof 1 and told that a student submitted that proof for credit. They were 
asked to evaluate whether Gap Proof 1 was correct, assign a grade on a ten-point scale to that 
proof, and explain why they assigned that grade. They were then shown Gapless Proof 1 and 
asked to do the same thing. This process was repeated for the two proofs of Theorem 2 and 
Theorem 3. In the Open-Ended Interview phase, each participant was asked general 
questions about their pedagogical practice with respect to proof, with an emphasis on the 
grading of proof. One particular question was, “Do you expect the proofs that students hand 
in to have the same level of rigor as the proofs that the professors present in their lectures?” 
 
Analysis 

All interviews were transcribed. The research team engaged in thematic analysis as 
follows. First, each member of the research team individually read each transcript, flagging 
and commenting on passages that might be of theoretical interest. The research team met to 
discuss and compare their findings and identify themes that might be interesting to analyze in 
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more detail. Next, each member of the research team individually read the transcripts again, 
searching for occasions in which a participant made a comment related to one of the themes 
in question and put this excerpt into a file related to that theme. The research team met again; 
for each theme, they used an open coding scheme in the style of Glaser and Strauss (1990) to 
create categories of participants’ comments related to each theme. 
 

Results 

Summary of Evaluations 
Although some participants were critical of the pedagogical quality of some of the Gap 

Proofs, they usually evaluated them to be correct. In the Lecture Proof Evaluation phase of 
the study, in all but one instance, the participants judged the Gap Proofs that they read to be 
correct. The one exception was when M8 could not decide if Gap Proof 1 was correct. In the 
Student Proof Evaluation phase of the study, none of the participants changed their 
evaluations of the correctness of the proof. Hence, there was only one instance (M8 
evaluating Gap Proof 1) in which a participant evaluated the student proof as incorrect.  

A summary of the grades that the professor assigned to the proofs that they evaluated in 
the Student Proof Evaluation phase is presented in Table 1. As can be seen from Table 1, 
there was substantial variance in the grades that the participants assigned from Gap Proof 1, 
with scores ranging from 6 through 10, thus replicating the findings of Moore (2014, 
submitted). There were 13 instances in which a Gap Proof received a score of less than 10; in 
12 of those instances, the participant had judged the proof to be correct, with one score being 
as low as 6 out of 10. This illustrates how a correct proof is not guaranteed to receive full 
credit.  

Table 1: Mathematicians’ assessment of proofs with gaps authored by students 
Proof M1 M2 M3 M4 M5 M6 M7 M8 M9 Average 
1 – Gap 6 9 8 9 9 7 10 6 8 8.00 
1 – Gapless 9 10 10 10 10 9 10 9 9 9.56 
2 – Gap 10 10 8 10 10 8 10 8 10 9.33 
2 – Gapless 10 10 10 10 10 10 10 10 10 10 
3 – Gap 10 9 10 10 10 10 10 10 8 9.67 
3 – Gapless 10 10 10 10 10 10 10 10 10 10 
 
Students’ Proofs as a Model of Their Understanding 

When discussing how they graded proofs, eight of the nine participants said that their 
grade was based on how well the student understood the proof that they handed in. For 
instance, M9 said1,  

 
M9: I think the way that I grade things is you’re trying to see if the student understands and 

you believe he understands. Not so much that they have every period or word that you 
are looking for, but did they understand the concept … and if you could question them, 
then they could fill in the gaps, but they may have left them out. 

                                                 
1 To increase the readability of the transcript, we lightly edited them by removing stutters, repeated words or 
phrases, and short fragments of text that did not carry meaning. We indicate where we have done so with an 
ellipsis (…). At no point did we add or alter words that participants said or change the meaning of the 
participants’ utterances. 
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Similarly, in describing what he was looking for when he graded, M6 said, “I think it is… to 
see if they really understand what is going on. Careful proof and the steps, probably show 
that they understand the ideas and they can think – they can relate to one sentence to the other 
sentence and see the flow and how things put together”. 

The way that the participants modeled students’ understanding influenced their grading in 
a number of ways. First, five participants indicated that if there was a gap in the proof but the 
inference could only be produced if the student had an adequate understanding of why it was 
true, they would not take off for it. For instance, in explaining why he didn’t require a 
justification for the assertion that n is even in Gap Proof 1, M5 remarked: 

 
M5:  I guess I would say that if somebody was going to write a textbook and this was going 

to be a sample in the textbook, I would want them to say a little bit more. But anyone 
who says what is on the paper here, wouldn’t say it without understanding it. So 
jumping from the fact that n squared is even to n is even, that does not bother me at all. 

 
Similarly, five participants remarked that they would require more justification than was 

necessary for a proof to be correct to ensure that the student fully understood the proof and 
did not just copy or recall a proof that he or she saw elsewhere. For instance, consider the 
exchange between M4 and the interviewer when evaluating Gap Proof 1. 

 
I:  Do you think the proof is correct? 
M4:  Yeah.  
I:  If you had to, as we usually do as instructors, we grade things on some type of scale. 

Say you graded this on a zero to ten scale, what grade would you give this student?  
M4: Well I would probably have to take off a little for not saying those [referring to an 

unjustified statement about why numbers are composite]. These two are obviously 
composite, composite numbers.   

I:  When you take off, a little off, what do you mean? How much is a little?   
M4:  Probably nine out of ten.  
I:  Would you make any comments on the students’ papers?  
M4: I would say why? Or explain why? And then I would think, did the student copy this 

somewhere? [The interviewer and M4 both laugh] Because it is sort of written in a 
mature style, leaving things out which are yes indeed. As I said before, compact proof, 
nicely done. Maybe too nicely.  
 

Further, three participants indicated that they would take into consideration the past 
performance of the student when deciding whether to penalize a gap in the proof, with better 
students being more likely to get the benefit of the doubt. In discussing his strong students, 
M7 described: 
 
M7:  It is okay to leave some steps out because I might get to a point where I respect their 

mathematical minds enough so that I give them the benefit of the doubt that they 
understood what was going on without writing it down. So that is actually nice, a lot of 
people do that – in our own research we do that. 

 
Level of Rigor in Lectures and Student Proofs 

We asked the participants whether students’ proofs should contain the same level of rigor 
as professor’s proofs in lectures. Participants’ responses frequently indicated that it depended 
on the course. For transition-to-proof courses, the answers were mixed, but on average was 
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that the level of rigor in lecture proofs and student-generated proofs should be about the 
same. (Three participants remarked that they would expect less rigor for a student proof than 
a lecture proof based on their assumptions of what students would be capable at that point of 
their mathematical development). However, for upper-level courses like real analysis, six 
participants would expect students’ proofs to contain more rigor. We summarize the 
participants’ responses in Table 2.  
 
Table 2: Rigor demanded in proofs that students submit for credit 
Context Less than lecture proof Same as lecture proof More than lecture proof 
Transition-to-proof M2, M3, M5 M1, M6, M7, M9 M4, M8 
Advanced course M5 M6, M9 M1, M2, M3, M4, M7, M8 
 
M1 explained his justifications as follows. In the context of a transition-to-proof course, M1 
exclaimed, “Yeah, at this level, especially if you are going to take off points, then I think the 
instructor owes it to the student to, you know, to write those things down carefully”. For 
more advanced courses, M1 said: 
 
M1:  I think that is less important as the higher up you go and there is a difference in the 

venue of a lecture presented in class where there is just a, you know, for example for a 
graduate class, there well may be details or things that are clear from context that you 
would not want to spend time writing or take up class time for. You would like to focus 
on the mathematics itself. 

 
Discussion 

In this study, we replicated several of Moore’s (2014, submitted) preliminary findings 
about proof grading. We found substantial variance in mathematicians’ grading of Gap Proof 
1 and we found that grading involved the professor’s building models of how well they 
thought their students understood the proofs. Having these themes independently emerge in a 
study with a larger sample than Moore provides more confidence that his results would 
generalize to a larger number of mathematicians. Still, our sample size of mathematicians is 
rather small. As conducting qualitative analysis of interviews with a substantially larger 
number of mathematicians is impractical, we suggest further research might make use of the 
recent survey methodology that has been used to probe mathematicians’ beliefs (e.g., Mejia-
Ramos & Weber, 2014).  

Our analysis builds on Moore’s work by delving deeper into how and why participants 
use their models of students’ understanding in assigning grades. We found that some 
participants would penalize students for gaps that would ordinarily be permissible, especially 
in proofs generated for a transition-to-proof courses, because they could not assume that 
students knew how to bridge these gaps. This helps explain why professors would assign 
scores of less than 10 to proofs that they judged to be correct. On the other hand, some 
participants would not penalize students for leaving a gap in the proof if they felt the student 
had a full understanding of the proof. Further, some gaps would be permissible for students 
who had previously earned the mathematical respect of the professor. Staples, Bartlo, and 
Thanheiser (2012) claimed that classroom proofs and mathematical proofs satisfy different 
needs and should be judged by different standards; in particular, in K-12 classrooms, the 
request for a proof is often used by a teacher as a lens to evaluate their understanding, 
something not ordinarily done in mathematicians’ practice. The results of this study suggest 
that Staples, Bartlo, and Thanheiser’s insight is relevant for transition-to-proof courses as 
well. 
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We also found that most participants believed an instructor of a transition-to-proof course 
should not expect students’ proofs to be more rigorous than the proofs that he or she presents 
in lecture. However, for more advanced courses, most participants felt that the lecturer could 
be less rigorous in his or her lecture proofs than what he would demand of his or her students. 
This is significant for two reasons. First, this corroborates a finding reported in Lai and 
Weber (2014) that to mathematicians, proofs in advanced mathematics lectures have the 
purpose of communicating content while student-generated proofs are used for demonstrating 
students’ capacities to write proofs. Second, previous research has shown that mathematics 
majors did not get this message (Weber, in press; Weber & Mejia-Ramos, 2014). 
Mathematics majors do not appear to read proofs as a tool to understand mathematical 
content or methods (c.f., Weber, in press) and they do not expect a good mathematical proof 
to have gaps (Weber & Mejia-Ramos, 2014). This has the context that they may ignore or 
misinterpret the most important ideas that a professor attempts to convey when delivering a 
lecture proof (Lew, Fukawa-Connelly, Mejia-Ramos, & Weber, in press). An implication of 
finding out how professors’ standards of rigor in lectures and grading shifts from transition-
to-proof courses to more advanced courses is that this information should be better conveyed 
to mathematics majors. 
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Students’ formalization of pre-packaged informal arguments 
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We gave pairs of students enrolled in a graduate analysis class tasks in which they were 
provided with a video taped informal argument for why a result held and asked to produce a 
rigorous proof of this result. This provided a lens into students’ formalization process and the 
various roles these informal arguments played in each pair’s proving process. Comparing 
across several pairs of participants revealed 3 distinct roles informal arguments can play in 
proving, 1) solely as a starting point, 2) as a reference that can be continually returned to 
during the proving process, and 3) as a convincing argument that does not inform the 
proving process. 

Key words: [proof, argument, formalization] 

Introduction 
Acceptable proofs must conform to norms that constrain which assumptions are 

appropriate starting points, which representations can be used and which inferences are 
allowed (Stylianides, 2007). These norms vary between mathematical and social contexts 
(Mamona-Downs, & Downs, 2010). However, regardless of the specific norms at play, it is 
important to note that the proof generation process need not be constrained by the norms that 
constrain proof (Boero, 1999). Students may generate an informal argument that provides 
justification for a particular mathematical result but does not conform to the norms of proof 
(Harel & Sowder, 1998). A number of researchers have touted the importance of using the 
formalization of such arguments as a mechanism for proof generation (Gibson, 1998; Raman, 
2003; Weber & Alcock, 2004). 

Researchers interested in formalization have primarily examined this phenomenon in 
contexts where it is not specifically prompted for (e.g., Weber & Alcock, 2004, Zazkis, 
Weber, & Mejia-Ramos, 2015). The major benefit of this approach is that the data are 
naturally occurring instances of formalization. However, the generation of informal 
arguments is not particularly common and the successful formalization of these arguments is 
even rarer. This means that researchers interested in formalization must often start with 
particularly large data sets that take years to generate in order to explore formalization (e.g., 
Pedemonte, 2007; Zazkis et al., 2015). Additionally, researchers have little direct control over 
which specific arguments the students that attempt to formalize start with.  

An important under-explored avenue for studying formalization is to use researcher 
selected pre-packaged informal arguments as part of research tasks (e.g., Zazkis & 
Villanueva, in press). This gives the researcher the ability to ensure that a much greater 
percentage of their data is relevant to formalization phenomena and thus eliminates the need 
for starting with particularly large data sets. Zazkis et al. (in press) presented students with 
triples which consisted of one informal argument and two correct proofs of a mathematical 
result, only one of which was a formalization of the informal argument. They observed that a 
majority of the mathematics majors in their sample struggled to identify which of the two 
proofs in each triple was the distractor and which was the formalization of the informal 
argument. They observed that the students’ difficulties with making correct assessments 
could be explained by their focus on a subset of the connections between proofs and informal 
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arguments. This was interpreted as an indication that students had underdeveloped 
conceptions of what it means for an informal argument to be the basis of a proof.  

Methods 
In this work we build on Zazkis et al.’s (in press) findings by taking a different approach. 

We begin by presenting pairs of mathematics students’ informal analysis arguments. We then 
instruct the pair to work cooperatively to turn the given informal argument into a proof.  The 
advantage of this approach is that the entirety of our data set is relevant to formalization. 
From just 4 pairs of students we are able to generate 8 hours of data relevant to formalization. 
For comparison Zazkis et al. (2015) started with a data set of 73 students working on seven 
15 minute tasks. This generated over 120 hours of data. But only about 8 hours of these data 
were relevant to formalization.  

Participants were recruited from a master’s level analysis course. However, some of these 
participants were undergraduates enrolled in this graduate course and the tasks were 
accessible at an undergraduate level. The interviews lasted from one to two hours and were 
conducted in pairs to encourage participants to verbalize their thinking.  

The subject area of analysis was chosen because it often has graphical informal 
arguments that are accessible to students, but the formalization often takes a different form 
(i.e. epsilon-delta proofs). Two of the proofs used were borrowed from (Zazkis et al., in 
press). Two additional tasks were identified through informal conversations with faculty who 
had recently taught analysis.  

Pairs of participants were given a statement to prove and then viewed a video clip 
containing an informal argument that justified why the statement is true. Participants were 
allowed to watch the video as many times as they needed to until they were confident that 
they understood the informal argument. Then they were asked to construct a formal proof 
based on the informal argument. Data was recorded using two video cameras: one recording 
the participants’ gestures and facial expressions and one recording their written work. 

Results 
Below we discuss three of the four pairs of participants who worked to prove that 

∫− =
a

a
dxx 0)(sin3 ,  using the informal graphical argument that the area on each side of the y-

axis will add to zero. We illustrate that each pair’s approach to formalization, specifically the 
formalization of the oddness property, differ tremendously in the following vignettes. We use 
these differences as a launching point for discussing differences in the role informal 
arguments in general may play in proving. 
 
Pair 1 Vignette: After watching the video, Mark immediately broke up the integral into two 
pieces, and noted that the two pieces represent the two corresponding areas in the video. They 
begin to try to manipulate the two integrals by flipping the bounds. They do not mention the 
oddness property at this point. Chris suggests, “So, as far as creating a rigorous proof, short 
of integrating sine cubed…” Mark adds, “Yeah, you could just do sine times sine squared and 
change sine squared to one minus cosine squared, distribute your sine then use u substitution 
to deal with the sine cosine squared part.  That would be one thing.”  

The pair begin with the integral ∫∫ −−
−=

a

a

a

a
dxxxdxx )sin())(cos1()(sin 23 , and use the u-

substitution )cos(xu =  to correctly evaluate the integral. When asked how their solution 
relates to the informal argument, Chris said, “I would say this was not inspired by the video. 
If we hadn't watched the video, I think we would have come to the same conclusion in the 
same manner.” Mark points out that their original idea to split the integral into two pieces 
was inspired by the video.  
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The interviewer asks them to pursue the two pieces idea in more detail.  They show that 
sin3(x)dx

0

a
∫ = −cos(a)+1+ cos3 a

3 −1  using the same calculation as before, and then show that 

the integral from –a to zero was equal to the additive inverse of this expression by again 
repeating the method.  

Throughout their work on the sin cubed task pair 1 seems to have no conception of the 
connection between the geometric and algebraic facets of the oddness property. Although 
they did indicate knowledge of the fact that ( ) )sin(sin xx −=− , they never used it in their 
argument, and it seemed to be a memorized fact unrelated to the graph. They were able to 
extract the fact the integral from zero to a was the additive inverse of the integral from –a to 
zero, however, the symmetry based reasons for this were not a feature of their discussion. 
Thus their original proof had nothing to do with the informal argument and their second proof 
was more inspired by their first proof than the informal argument itself.  
 
Pair 2 Vignette: Heather immediately split up the integral and discussed the impact of the 
oddness property.  

Heather: I think If we are allowed to know this, split it up into the integral from -a to 
zero and zero to a is an idea. 
Rhonda: And maybe use that it's an odd function. Is it odd? 
Heather: Sine cubed odd. Wait, what do you mean by odd? 
Rhonda: They say it's even or odd, I think whenever you put in a negative, it's the 
same as negative of the regular one. So, like (sketches a graph of 2x ) that… I feel like 
this one is even… because you get the same value. 
Heather: Then when it goes the other way it's odd. 

 
Unlike the first pair discussed earlier, pair two worked to flesh out the graphical meaning of 
oddness. They flipped the bounds on one of the integrals, then Rhonda said,  

Rhonda: So, I was wondering. Now, since it's all negative here, we know that's equal 
to negative times what it is with just regular numbers, right? Positive numbers. 
Heather: Wait, what? 
Interviewer: What does it mean for something to be odd for you? 
Rhonda: I think it means whenever you put a negative number into sine cubed, it's the 
same of negative of that positive number into sine cubed. It's just the negative of the 
value of the positive (motions with fingers as though picking corresponding points on 
an odd function). 
Heather: So, if we are given a k in whatever, sine cubed of k is equal to negative sine 
cubed of negative k, right? Is that what you're going for? And since this is true... We 
know that this is the sum… the limit of sum of stuff…  limit of the sum of stuff of the 
sine cubed k of things. Ok, so how would we do that formally? 

 
Heather then began to talk about Riemann sums and chose corresponding rectangles on 

either side of zero. Heather explained, “This is nice 'cause it lets us work with the sine cubed 
value, whereas this (points to integrals) we can't really work with it as much, because it's 
already inside.”  Heather and Rhonda were able to talk through this proof construction, 
though they didn’t flesh out the specific details required for a rigorous proof. In working out 
this proof sketch they commonly went back and forth between working with the graph of sin 
cubed and working with notation. We interpret this back and forth between the graph of sin 
cubed and analytic notation to be a back and forth between the informal argument and their 
proof sketch. Thus unlike pair 1, who almost entirely ignored the informal argument, the 
informal argument played a continuous role in pair 2’s work. It is also worth noting that pair 
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4 created a similar argument based on Riemann sums, which is not discussed in this paper. 
 
 
Pair 3 Vignette: Pair 3 began by discussing whether they should directly integrate (like pair 
1) or whether they should appeal to the fact that sine cubed is an odd function (like pair 2). 
Gautam suggested that sine squared can be converted into one minus cosine squared. Cody 
said, “Yeah, I mean that would show it, but I think it's too much work. We could appeal to 
the fact that… So, I mean, clearly it's equal to this (splits up integral) and then we appeal to 
the fact that it is an odd function right here (points to the integrand in the first integral).” 
They began with the substitution tx −= . Gautam and Cody were able to correctly change the 
bounds and flip the bounds after some discussion. Then they appealed to the oddness 
property, saying “because f is odd, f of minus t is minus f of t.” They realized that they have 
missed a negative sign in their substitution, but they were able to find it and write a fully 
formalized proof.  

After finishing this proof, Cody reflected on their proving process: “The oddness 
definitely made me think of, well, I guess having experience with proofs made me think of 

)()( xfxf −−= , which is the step you need, along with, so you kind of use the symmetry of 
the function and the symmetry of the integral. Both of those are a very similar identity 
because they both involve a flip and a negative sign in some sense. So, you can flip the 
bounds which introduces a negative sign, and there's another negative sign introduced from 
substituting, uh, making this substitution.” 

Pair 3 knew that they needed to use the oddness property in the informal argument. They 
were able to successfully translate the fact that sine cubed was odd into analytic notation. 
However, unlike pair 2, they didn’t draw any more pictures or give any evidence that they 
were continuing to think geometrically after they initially extracted the use of oddness and 
splitting up the integral from the informal argument. So the informal argument provided pair 
three with a viable starting point, after which they fleshed out the details without further 
reference to it. In Contrast, pair 2 continually went back to the informal argument during their 
proving process and pair 1 did not utilize the informal argument during proving. 

Discussion 
In this study we observed three different patterns in students’ usage of pre-packaged 

informal arguments during proving. It is unknown whether the existence of these patterns 
remains intact if the mathematical content is changed, or if students tackle the tasks 
individually. However, since other researchers have noted subject matter influences in other 
types of formalization studies (e.g., Pedemonte, 2008) we anticipate that these influences on 
the role of pre-packaged informal arguments are not insignificant. Additionally, how 
students’ usage of pre-packaged informal arguments differ from their usage of self produced 
informal arguments is an important question for future research.  

It bears mentioning that we do not have evidence that any of the three usage patterns of 
informal arguments provides an advantage over others in relation to producing proofs. These 
utilizations may simply be different routes to achieve the same goal. We also believe that 
students are conscious of the role informal arguments play in their own proving. This belief is 
supported by our participants’ reflections on the role informal arguments played in their 
proving. For example, toward the end of the interview Heather from pair 2 commented on the 
usefulness of returning to informal arguments:  

Heather: I think sometimes it makes a difference. I think, like, maybe not from this, 
but sometimes when things are explained informally, it doesn't make sense. So, you 
play around with it, and after you've played around with it for awhile, then the 
explanation, if you go back to it, it makes more sense… So, I don't know if, like, 
watching it at the beginning doesn't help as much as watching it later.  
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Similarly, Chris from pair 1, after completing his initial proof for task 1, commented 

about his lack of usage of informal arguments during proving: 
Chris: It's funny, 'cause actually in watching the video. I was like, I don't think that 
will help [with writing a proof]. 

Chris and Mark both made similar comments after other tasks in this study. This is an 
indication that they realized the minimal role that the pre-packaged informal arguments 
played in their proving process. Further research is needed to explore whether students that 
treat pre-packaged informal arguments in this way treat their own self-generated informal 
arguments similarly, or perhaps avoid generating informal arguments altogether.  
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Questions for the audience: 
 
1)  Is formalizing informal arguments a skill that all mathematics majors should acquire 

during their undergraduate work, or simply an attribute of some individuals’ proving that 
is not necessarily beneficial for all majors? 

 
2)  What are the links between students’ ability to generate and use their own informal 

arguments and their experience with formalizing pre-packaged informal arguments?  
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Opportunity to learn solving context-based tasks provided by business 
calculus textbooks: An exploratory study 
Thembinkosi P. Mkhatshwa and Helen M. Doerr 

Syracuse University  

The purpose of this study was to investigate the opportunities to learn how to solve realistic 
context-based problems that undergraduate business calculus textbooks in the United States 
offer to business and/or economics students. To do this, we selected and analyzed examples and 
practice problems from six different textbooks that are widely used in the teaching of business 
calculus nationwide. There are three major findings from this study: (1) a majority of the tasks in 
all the textbooks uses a camouflage context, (2) all the tasks in all the textbooks have matching 
information, and (3) only three textbooks had reflection tasks. The findings of this study suggest 
that business calculus textbooks do not offer students rich and sufficient opportunities to learn 
how to solve realistic problems in a business and/or economic context.  

Key words: opportunity to learn, textbook research, textbook analysis, business calculus, 
context-based tasks 

Introduction 
The concept of opportunity to learn (OTL) as it relates to mathematics instruction originated 

in the early 1960s. Carroll (1963) defined OTL as the time allowed for learning a particular 
topic. This study uses Husen’s (1967) definition of OTL which, according to Floden (2002), is 
also the most common definition of OTL used in the mathematics education research literature. 
According to Husen, OTL refers to “whether or not … students have had the opportunity to 
study a particular topic or learn how to solve a particular type of problem” (pp. 162-163).  
Mathematics textbooks are one such opportunity from which students can learn how to solve 
certain types of problems. The role of mathematics textbooks as an opportunity to learn 
mathematics is well documented in the research literature on the learning of pre-university 
mathematics. Referring to mathematics textbooks, Reys, Reys, and Chavez (2004) argued “that 
the choice of textbooks often determines what teachers will teach, how they will teach it, and 
how their students will learn” (p. 61).  

The existing research on pre-university mathematics focuses on students’ opportunities to 
learn mathematical topics such as linear functions and trigonometry (Wijaya, van den Heuvel-
Panhuzen, & Doorman, 2015), addition and subtraction of fractions (Alajmi, 2012; 
Charalambous et al., 2010), probability (Jones & Tarr, 2007), statistics (Pickle, 2012), reasoning 
and proof (Stylianides, 2009; Thompson et al., 2012), proportional reasoning (Dole & Shield, 
2008), and deductive reasoning (Stacey & Vincent, 2009).  Research on students’ opportunities 
offered by mathematics textbooks to learn other mathematics topics, such as optimization, 
especially at the upper secondary and undergraduate level is lacking.  

To our knowledge, only one study (Mesa, Suh, Blake, & Whittemore, 2012) examined 
students’ opportunity to learn about the family of exponential functions, the family of 
logarithmic functions, and transformations of graphs provided by mathematics textbooks at the 
post-secondary level. The scarcity of research that examines the opportunity to learn how to 
solve context problems provided by college mathematics textbooks, is a motivation for this 
study. In particular, this study sought to examine the opportunity to learn how to solve realistic 
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context problems (optimization problems) that occur in business and/or economics provided by 
undergraduate business calculus textbooks that are used nationwide. Our study sought to answer 
the following research questions: 

1. What type(s) of context (relevant and essential, camouflage, no context) is characteristic 
of tasks that are found in undergraduate business calculus textbooks? 

2. What type(s) of information (matching, missing, superfluous) is characteristic of tasks 
that are found in undergraduate business calculus textbooks? 

3. What type(s) of cognitive demand (reproduction, connection, reflection) is characteristic 
of tasks that are found in undergraduate business calculus textbooks? 

In this study, we viewed tasks as optimization examples and practice problems given at the 
end of each optimization section in each of the textbooks that we selected for the study. A 
description of the types of contexts, types of information, and types of cognitive demands is 
given in the methods section. Having rich opportunities to learn how to solve realistic 
optimization problems that are situated in a business or economic context is essential for students 
in several fields of study such as marketing, supply chain management, finance, and economics. 
According to Gordon (2008), over 300,000 students enroll in business calculus each year in the 
Unites States. We are not aware of any existing work where this particular context (business or 
economic) and type of problem (optimization) has been studied, which is the motivation for our 
study.  

Relevant literature 
The term, context, has been defined in several ways by researchers in mathematics education. 

Our view on the meaning of context is consistent with that given by White and Mitchelmore 
(1996). These researchers posited that “in calculus, the context of an application problem may be 
a realistic or artificial “real-world” situation, or it may be an abstract, mathematical context at a 
lower level of abstraction than the calculus concept that is to be applied” (p. 81). White and 
Mitchelmore’s understanding of the term context is consistent with that of other researchers (e.g., 
Gravemeijer & Doorman, 1999; van den Heuvel-Panhuizen, 2005). According to Wijaya et al. 
(2015), mathematical tasks could have a realistic context, a camouflage context, or they could be 
bare (only mathematical symbols). Alajmi (2012) refers to bare mathematical tasks as tasks that 
are situated in a “purely mathematics context” (p. 243). Tasks with a camouflage context “are 
merely dressed up bare problems, which do not require modeling because the mathematical 
operations needed to solve the task are obvious” (Wijaya et al., 2015, p. 45). A realistic context 
is also referred to as a relevant and essential context in the research literature (e.g., de Lange, 
1995; van den Heuvel-Panhuizen, 2005).  

Several researchers (e.g., Maass, 2007; Maass, 2010; Wijaya et al., 2015) have identified 
three types of information that could be in a mathematical task: matching, missing, and 
superfluous. A mathematical problem with matching information is one in which all the 
information required to solve the problem is given in the problem statement. A mathematical 
problem has missing information if some of the information needed to solve the problem is not 
immediately available to the solver, that is, the solver has to deduce this information from the 
problem statement. A mathematical problem with superfluous information is one in which the 
problem statement not only contains the necessary information needed to solve the task but it 
also contains other extraneous or irrelevant information that may not be helpful in solving the 
given problem. Wijaya et al. (2015) argued that: 
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Providing more or less information than needed for solving a context-based task is a way to 
encourage students to consider the context used in the task and not just take numbers out of 
the context and process them mathematically in an automatic way. (p. 45) 

Maass (2010) recommended that students should be given opportunities to deal with these three 
different types of information. 

A related line of research (e.g., Charalambos et al., 2010; Kolovou et al., 2009; Mesa et al., 
2012; Wijaya et al., 2015) has investigated the types of cognitive demands in tasks that are 
presented in mathematics textbooks. The types of cognitive demands are: reproduction, 
connection, and reflection. These types of cognitive demands are similar to the levels of 
cognitive demands discussed by Stein, Grover, & Henningsen (1996). Reproduction tasks are 
routine problems that require the lowest level of cognitive demand to solve. These problems can 
be easily solved using memorized mathematical algorithms. Connection tasks are non-routine in 
nature and may require the solver to represent concepts in multiple representations: algebraically, 
numerically, graphically, and verbally. Mesa et al. (2012) analyzed, among other things, the 
cognitive demands of examples as well as the representations of these examples given in 10 
college algebra textbooks. Five of these textbooks are used at community colleges, three 
textbooks are used at four-year institutions, and the other two textbooks are used at both 
community colleges and at four-year institutions. Mesa and colleagues found that “textbooks, 
independent of the type of institution in which they are used, present examples that have low 
cognitive demands, expect single numeric answers, emphasize symbolic and numerical 
representations, and give very few strategies for verifying correctness of the solutions” (p. 76). 
Reflection tasks require the highest level of cognitive demand to solve. These tasks “include 
complex problem situations in which it is not obvious in advance what mathematical procedures 
have to be carried out” (Wijaya et al., 2015, p. 46). 

Theoretical framework  
With a focus on the role of context in mathematical tasks found in business calculus 

textbooks, this study draws on the theory of realistic mathematics education (RME) which is 
both a theory of teaching and learning in mathematics education that originated in the 
Netherlands in the early 1970s. As a theory of learning, RME emphasizes that students should be 
asked to solve realistic contextual problems that are not only realistic in the sense of being 
connected to a real-world context but also that the context of these problems should be 
experientially real to the students. That is, students should be asked to solve “problem situations 
which they can imagine” (van den Heuvel-Panhuizen, 2000, p. 4). The economic or business 
context as it relates to optimization tasks may be experientially real for some students taking 
business calculus. This is especially true for students who take business calculus after having 
taken high school or college economics classes. In addition to the role of context, optimization 
tasks in business calculus textbooks may vary in terms of types of information and types of 
cognitive demands. These various types of information and cognitive demands are explained in 
the analytical framework presented in the next section.  

Methods 
The study followed a qualitative research design. Data for the study consisted of optimization 

examples and practice problems from undergraduate business calculus textbooks that are widely 
used in the teaching of business calculus in the Unites States.  
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Data collection and setting 
To answer the research questions, we analyzed a total of 195 optimization examples and 

practice problems selected from the latest editions of six undergraduate mathematics textbooks 
that are widely used in the instruction of business calculus at large universities in the United 
States. Table 1 shows a list of the textbooks that were selected for the study. The textbooks were 
selected through google search using key words such as “business calculus textbook,” “business 
mathematics textbook,” “applied calculus textbooks,” etc.  

Table 1 

Analyzed Textbooks 

Textbook Name Author (s) Textbook 
Abbrev-
iation 

Section(s) analyzed Textbook 
Publisher 

Applied Calculus for 
the Managerial, Life, 
and Social Sciences (9th 
ed) 

Tan, S. T. 
(2013) 

TBK 1 Optimization I 
Optimization II 
(chapter 4) 

Brooks/Cole 
(Cengage 
Learning) 

Introductory 
Mathematical Analysis 
for Business, 
Economics, and the 
Life and Social 
Sciences (13th ed) 

Haeussler, 
E. F., Paul, 
R. S., & 
Wood, R. J. 
(2011) 

TBK 2 Applied Maxima and 
Minima 
(chapter 13) 
 

Pearson Education 

Applied Calculus (6th 
ed) 

Waner, S. & 
Costenoble, 
W. (2014) 

TBK 3 Applications of 
Maxima and Minima 
(chapter 5) 

Brooks/Cole 
(Cengage 
Learning) 

Applied Calculus (5th 
ed) 

Hughes-
Hallet et al. 
(2013) 

TBK 4 Profit, Cost, and 
Revenue 
Average Cost 
(chapter 4) 

Wiley 

Calculus and its 
Applications (11th ed) 

Bittinger, 
M. L., 
Ellenbogen, 
D. J., & 
Surgent, S. 
J. (2015) 

TBK 5 Maximum-Minimum 
Problems; Business, 
Economics, and 
General Applications 
(chapter 2) 

Pearson Education 

Calculus for Business, 
Economics, Life 
Sciences, and Social 
Sciences (13th ed) 

Barnett, R. 
A., Ziegler, 
M. R., & 
Byleen, K. 
E. (2015) 

TBK 6 Optimization 
(chapter 4) 

Pearson Education 
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Table 2 

Analytical Framework 

 
Data analysis 

The data (optimization examples and practice problems) were coded using the mathematics 
textbook analysis framework developed by Wijaya et al. (2015) shown in Table 2. In particular, 
there were three dimensions of analysis, namely, type of context, type of information, and type 
of cognitive demand. We coded a total of 195 tasks. We illustrate our coding with the following 
examples:  

Task Characteristic Sub-category Explanation 
Type of context No context -Refers to only mathematical objects, symbols, or 

structures. 
 Camouflage 

context 
-Experiences from everyday life or common sense 
reasoning are not needed. 
-The mathematical operations needed to solve the 
problems are already obvious. 
-The solution can be found by combining all numbers 
given in the text. 

 Relevant and 
essential 
context 

-Common sense reasoning within the context is needed to 
understand and solve the problem. 
-The mathematical operation is not explicitly given. 
-Mathematical modeling is needed. 

Type of 
information 

Matching -The task contains exactly the information needed to find 
the solution. 

 Missing -The task contains less information than needed so 
students need to find the missing information. 

 Superfluous -The task contains more information than needed so 
students need to select information. 

Type of cognitive 
demand 

Reproduction -Reproducing representations, definitions, or facts. 
-Interpreting simple and familiar representations. 
-Memorization or performing explicit routine 
computations/procedures. 

 Connection -Integrating and connecting across content, situations, or 
representations. 
-Non-routine problem solving. 
-Interpretation of problem situations and mathematical 
statements. 
-Engaging in simple mathematical reasoning. 

 Reflection -Reflecting on, and gaining insight into, mathematics. 
-Constructing original mathematical approaches. 
-Communicating complex arguments and complex 
reasoning. 

Table 2: Analytical Framework reproduced from (Wijaya et al., 2015, p. 52) 
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Acrosonic’s total profit (in dollars) from manufacturing and selling 𝑥 units of their model F loudspeaker 
systems is given by 𝑃(𝑥) = −0.02𝑥2 + 300𝑥 − 200,000   (0 ≤ 𝑥 ≤ 20,000). How many units of the 
loudspeaker system must Acrosonic produce to maximize its profit? (TBK 1, p. 301). 

We coded this example as: (1) having a camouflage context because the operations needed to 
solve the problem are already obvious and the context can be ignored when solving this problem, 
(2) having matching information because it contains the exact amount of information needed to 
solve it, and (3) a reproduction task because the strategy required to solve it requires performing 
explicit routine procedures. In the same textbook, this example is also given: 

Dixie Import-Export is the sole agent for the Excalibur 250-cc motorcycle. Management estimates that the 
demand for these motorcycles is 10,000 per year and that they will sell at a uniform rate throughout the 
year. The cost incurred in ordering each shipment of motorcycles is $10,000, and the cost per year of 
storing each motorcycle is $200. Dixie’s management faces the following problem: Ordering too many 
motorcycles at one time ties up valuable storage space and increases the storage cost. On the other hand, 
placing orders too frequently increases the ordering costs. How large should each order be, and how often 
should orders be placed, to minimize ordering and storage cost? (TBK 1, p. 317). 

We coded this task as: (1) having a relevant and essential context because reasoning within the 
context of the task is needed to understand and solve the problem, (2) having matching 
information because it contains the exact amount of information needed to solve it, and (3) a 
reflection task because the solver must construct original mathematical approaches e.g. the 
average inventory level of 𝑥/2 if 𝑥 is the lot size. The results of the coding of all 195 tasks from 
the six textbooks are summarized in Table 3. 

Results 
There are three major findings from this study. First, a majority of the optimization tasks 

given in the business calculus textbooks reviewed in this study use a camouflage context. All of 
the textbooks except TBK 4 rarely had tasks with no context. Only TBK 5 has a significant 
number of tasks with a realistic (relevant and essential) context relative to the number of 
economic problems given in each of the textbooks we analyzed. 

Table 3 

Textbook Analysis Results 

TA NEP Type of Context Type of 
Information 

Type of Cognitive 
Demand 

TBK 1 24 No context: 0 Matching: 24 Reproduction: 19 
(79%) 

Camouflage context: 19 (79%) Missing: 0 Connection: 2 (8%) 
Relevant & essential 
context: 5 (21%) 

Superfluous: 0 Reflection: 3 (13%) 

TBK 2 29 No context: 0 Matching: 29 Reproduction: 28 
(97%) 

Camouflage context: 26 (90%) Missing: 0 Connection: 1 (3%) 
Relevant & essential 
context: 3 (10%) 

Superfluous: 0 Reflection: 0 

TBK 3 29 No context: 2 (7%) Matching: 29 Reproduction: 25 
(86%) 

Camouflage context: 26 (90%) Missing: 0 Connection: 3 (10%) 
Relevant & essential Superfluous: 0 Reflection: 1 (3%) 
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context: 1 (3%) 
TBK 4 56 No context: 23 (41%) Matching: 56 Reproduction: 43 

(77%) 
Camouflage context: 31 (55%) Missing: 0 Connection: 7 (13%) 
Relevant & essential 
context: 2 (4%) 

Superfluous: 0 Reflection: 6 (11%) 

TBK 5 32 No context: 8 (25%) Matching: 32 Reproduction: 13 
(41%) 

Camouflage context: 12 (38%) Missing: 0 Connection: 19 (59%) 
Relevant & essential 
 context: 12  (38%) 

Superfluous: 0 Reflection: 0 

TBK 6 25 No context: 0 Matching: 25 Reproduction: 12 
(48%) 

Camouflage context: 21 (84%) Missing: 0 Connection: 13 (52%) 
Relevant & essential 
context: 4 (16%) 

Superfluous: 0 Reflection: 0 

TA stands for textbook abbreviation. NEP stands for number of economic examples and practice 
problems in the section(s) of each textbook that we analyzed. 

Second, all six textbooks have tasks which contain the exact amount of information students 
need to solve the tasks. As a result, students do not have to make sense of the context (if any) of 
the tasks in order to either deduce missing information or identify important information (in the 
case of superfluous information) that is necessary to solve the tasks from the problem statements. 
Third, only three textbooks (TBK 1, TBK 3, and TBK 4) had reflection tasks, that is, tasks with a 
higher cognitive demand. However, the number of such tasks was extraordinarily low, with only 
13% (n=3) of the tasks in TBK 1, 3% (n=1) of the tasks in TBK 3, and 11% (n=6) of the tasks in 
TBK 4. Hence, the opportunity to learn from such tasks via textbooks is minimal. Reproduction 
tasks were common in all six textbooks. 

Discussion and conclusion 
The results of this study has some implications for different stakeholders, namely textbook 

authors, textbook selection committees, and instructors. Textbook authors need to include a 
much broader range of economic-based optimization examples and practice problems in terms of 
types of context, types of information, and types of cognitive demands to maximize the learning 
opportunities provided by their textbooks. Textbook selection committees need to select 
textbooks that contain a balance of optimization tasks in terms of types of context, types of 
information, and types of cognitive demands to avoid limiting students’ opportunity to learn 
about optimization problems in an economic context to tasks with matching information, 
camouflage context, and tasks of low cognitive demand as the findings of this study suggest. 
Research (e.g., Reys et al., 2004) suggest “that the choice of textbooks often determines what 
teachers will teach, how they will teach it, and how their students will learn” (p. 61). Business 
calculus instructors may have to supplement the examples and practice problems given in 
business calculus textbooks to include tasks with superfluous (or missing) information and/or 
tasks of higher cognitive demands in order to maximize students’ opportunity to learn from such 
tasks which are rare in the textbooks we analyzed. 
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Graphs of inequalities in two variables  

Kyunghee Moon 
University of West Georgia 

In this study, I analyze how preservice secondary teachers represented and explained 
graphs of three inequalities—a linear, a circular, and a parabolic—in two variables. I 
then suggest new ways to explain graphs of inequalities, i.e. some alternatives to the 
solution test, based on the preservice teachers’ thought processes and by incorporating 
the idea of variation. These alternatives explain graphs of inequalities as collections of 
rays or curves, which is similar to graphs of functions as collections of points in one 
variable functions and as collections of curves in two variable functions. I conclude the 
study by applying the alternatives to the solving of optimization problems and discussing 
the implications of these alternatives for future practice and research. 

Keywords: Inequality, Variation, Graph, Preservice secondary teacher 

Introduction 
Mathematical inequalities are important in mathematics due to their connections to 

mathematical equations and their applications to real-life situations. There has however 
been a general lack of attention from the mathematics education community on 
inequalities. Furthermore, the vast majority of the studies on inequalities discuss the 
understandings and difficulties associated with solving algebraic inequalities in one 
variable (Almog & Ilany, 2012; Schriber & Tsamir, 2012; Verikios & Farmaki, 2010). 
Rsearch on inequalities in two variables is almost nonexistent.  

In regards to graphs of inequalities in two variables, which is the main focus of this 
study, most secondary and post-secondary algebra textbooks (David et al., 2011; 
McKeague, 2008) explain graphs of algebraic inequalities through the solution test. For 
instance, for the graph of an inequality, y < x+1, a series of steps are performed: draw the 
graph of y = x+1; select one or more points from one of the two regions divided by the 
graph of y = x+1; and plug in the x and y coordinates of those points to the inequality, y < 
x+1. If the x and y coordinates of the selected points satisfy the inequality, y < x+1, the 
region from which the points were selected is the graph of the inequality. If not, the other 
region is the graph of the inequality.  

Although the solution test might be the simplest way to explain the graph of y < x+1, 
it does not provide a valid justification for why the entire region below the line graph of 
y=x+1 is the graph of the inequality. This lack of justification may potentially impede 
students’ sound development of conceptions about mathematical proof. As shown in 
several studies, many students and teachers erroneously derive the truth-value of a 
mathematical sentence from the truth-value(s) of one or more particular cases (Harel & 
Sowder, 1998). The solution test is not much different from the misconception for proof 
of students and teachers in that it determines the truth-values of y < x+1 for all points (x, 
y) in a region from the truth-values of y < x+1 for some points (x, y) in the region. As 
such, there is a need for a better justification for graphs of inequalities.  

This study has two parts. In the first part, I analyze interview data in order to answer 
the research question: “How is preservice secondary teachers’ instrumental and relational 
understanding of inequalities in two variables?” I then propose alternatives to the solution 
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test based on the preservice secondary teachers’ understanding, but by incorporating the 
concept of the variable as in the topics of one variable and two variable functions (see for 
example, Herscobics & Linchevski, 1994; Weber & Thompson, 2014, for the concept of 
variable in functions). I conclude with the benefits of the alternatives, including their 
connections to graphs of one or two variable functions and their application to the 
understanding and solving of optimization problems.  

Framework 
The theoretical framework related to this study is relational understanding and 
instrumental understanding by Skemp (1976). According to Skemp, there are two kinds 
of understanding under the same name, mathematics. One is instrumental understanding, 
which is knowing “without reasons,” and the other is relational understanding, which is 
knowing both “what to do and why.” With an instrumental understanding, for example, 
one might find a division of fractions, (a/b) ÷ (c/d), by flipping c/d and by multiplying 
tops and bottoms to get at ad/bc, but she may be unable to explain why she flips or 
multiplies. Whereas, with a relational understanding, one might use the relationship 
between division and fraction and the equivalence relationship in fractions, and attain 

(a/b) ÷ (c/d) = 

€ 

a /b
c /d

=
a /b × (bd)
c /d × (bd)

=
ad
bc

 using the relationships.  

There are advantages of relational understanding over instrumental understanding: 
The former is more adaptable to novel situations, can grow like an organic substance, and 
helps learners to remember and sustain knowledge. It however has its drawbacks, such as 
the length of time needed to achieve understanding and in some cases, students’ 
difficulties in obtaining such understanding. Accordingly, teachers often need to make 
reasoned choices between the two understandings. Skemp argues that relational 
understanding is the only adequate understanding for teachers, yet many teachers are 
equipped with only instrumental understanding. 

For graphs of inequalities, the solution test is commonly used for instrumental 
understanding rather than for relational understanding, as it gives instructions on what 
needs to be done in order to draw graphs. The critical ideas of variation and the infinitude 
of points embedded in the algebraic and geometric representations of inequalities are 
omitted, or at least not salient. In the following investigation, I show how preservice 
secondary teachers represented and explained graphs of inequalities. The goal of the 
investigation was not only to examine their instrumental and relational understandings 
but also to investigate the ideas and difficulties involved in their explanations. The details 
follow.   

Preservice Secondary Teachers’ Understanding of the Graphs of Inequalities 
Methodology 

This investigation was performed as part of a larger project that studied the big ideas 
underlying learners’ difficulties in making connections among representations. The 
participants of the project were 15 undergraduate mathematics majors on the secondary 
teaching track at a small doctoral comprehensive university in the Southeast. The level of 
participants’ mathematics backgrounds varied—four taking a precalculus course, one 
taking Calculus I, and the other ten taking Calculus II or above. The participants were 
individually interviewed twice, for about one-and-a-half hours each time, in the form of a 
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semi-structured clinical interview. The interviews were recorded with a video camera and 
were transcribed. Their written responses were also collected. 

The interview items that were relevant to this study were two questions from the first 
interview: 

Q1:  (a) Find a solution of an inequality, x+2y−32<0. 
(b) Represent all the solutions of the inequality above in the Cartesian 

plane. 
Q2:  (a) Find a solution of a system of inequalities, y<x2+1 and x2+y2>1. 

(b) Represent all the solutions of the system of inequalities above in the 
Cartesian plane. 

The interview questions were designed and queried to invoke both the instrumental 
and relational understandings of the participants. In Q1 and Q2, I first asked the 
participants to find a “solution” of an algebraic inequality and of a system of inequalities, 
in order to examine their understanding of the meaning of the solutions of inequalities in 
symbolic forms. To graph an algebraic inequality or a system of algebraic inequalities is 
in fact to represent their solutions in the Cartesian plane. As such, it was important to 
examine their understanding of inequalities in both symbolic and graphical forms. In 
addition, studies show that students have difficulty understanding what a “solution” 
means in algebraic inequalities in one variable (Becarra, Sisrisaengtaksin, & Walker, 
1999; Blanco & Garrote, 2007). As little is known about students’ understanding of the 
meaning of solutions of algebraic inequalities in two variables, such an investigation is 
worthwhile. 

During the interview, I asked the participants why they represented the solutions in 
certain ways or why the x, y coordinates of all the points in the region satisfied the 
inequalities. I also asked participants to represent mathematical statements that were in 
word or algebraic forms geometrically on the Cartesian coordinate plane. Some of those 
statements were created by themselves, such as “x is less than 32 when y=0,” and some 
were created by me (the interviewer), such as “y<x2+1 when x=0.”  

For analysis, I first used an open coding strategy (Strauss, 1987) to code the 
participants’ mathematical behaviors and understandings. Most of the codes used in this 
stage were for the correctness of their work as well as the ideas, strategies, and 
difficulties shown in their written or oral explanations. The initial coding showed some 
patterns and similarities in their thinking and work, and hence yielded categories and 
subcategories that led to some hypotheses. I then performed the second stage of coding: 
reexamining and revising the prior codes, and at the same time performing an axial 
coding (Strauss, 1987) to focus on the categories and subcategories from the previous 
coding, and hence confirming or refuting the hypotheses.  

The results below are some of the findings from the analysis above. The results 
included here pertain to the relational and instrumental understandings of preservice 
teachers and some of the characteristics of their mathematical behaviors that are relevant 
to the alternative explanations shown in the next section.  

Results 
Instrumental and relational understanding. For their instrumental understanding, I 

examined the correctness of their graphs, as instrumental understanding is essentially 
knowing what to do without reasons. For their relational understanding, I used the two 
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factors—the idea of variation, at least to some degree, and the infinitude of points in their 
arguments—, as they are critical components in knowing why of graphs of inequalities, a 
relational understanding. An explanation using the solution test by testing one or multiple 
points was not considered to be relational understanding.  

For the linear inequality x+2y−32<0, 7 out of 15 preservice teachers showed an 
instrumental understanding by correctly representing the graph as the lower half plane of 
the line graph of y=−x/2+16, with 2 of them showing relational understanding to some 
extent. For the circular inequality x2+y2>1, 5 of 15 showed instrumental and partial 
relational understandings to some extent by correctly representing the graph as the region 
outside the circle graph of x2+y2=1 and by providing a reasonable explanation for their 
graph. For the parabolic inequality y<x2+1, 3 of 15 showed an instrumental understanding 
by correctly representing the graph as the lower part of the parabola graph of y=x2+1, 
with 1 showing relational understanding to some extent (see Table 1).  

None of the explanations by the preservice teachers fully used the idea of variation, as 
I show in the next section. It was also noteworthy that for the circular inequality, 
preservice teachers’ graphical image of a circle corresponding to the algebraic form 
x2+y2=r2 helped them to explain their graphs of inequalities 

 
Table 1 Finding a solution in and representing the graph of an inequality 

  Graph-Correct Graph-incorrect 
One-solution 
(Correct) 

6 (3*) 5 Linear: x+2y<32 

One-solution 
(Incorrect) 

1 (0*) 3 

One-solution 
(Correct) 

5 (5*) 4 Circular: x2+y2>1 

One-solution 
(Incorrect) 

0 6 

One-solution 
(Correct) 

2 (1*) 7 Parabolic: y<x2+1 

One-solution 
(Incorrect) 

1 5 

* The numbers inside parentheses indicate the number of participants who show 
relational understanding for graphs of inequalities to some extent.  

 
The following are some examples that showed relational understanding to some 

extent:  
• For the graph of x+2y−32<0, “my y-value is never going to be bigger than 16 

when x=0, so it must be this whole region,” and “anywhere other than the line 
there is going to be either less than or greater than. So if I choose one up here 
then I am going to have really big x and y so it will make the form greater.” 

•  For the graph of x2+y2>1, “x square plus y square is equal to 2, which is greater 
than 1, then that would mean it is a circle slightly larger than the one,” and “I 
guess it is because everything contained in x2+y2 with radius of 1. So nothing 
inside there is going to be greater than 1. It is all going to be less than 1, but 
everything outside should leave you something greater than 1.” 
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• For the graph of y<x2+1, “this is a parabola going out from here upward. So I am 
thinking either it is going to be inside the parabola or outside. You can choose 
negative numbers. Over here it is actually going to be awesome because x is 
squared but y won't. So y is going to be less than that. So the way I am seeing it 
is you can have x and y both being negative. So you can have the Quadrant 3.” 

Knowing the meaning of solutions of an inequality versus representing the 
solutions graphically. The analysis also showed that knowing the meaning of solutions in 
algebraic inequalities was not sufficient for successful representations of graphs of 
inequalities (see Table 1). Although many preservice teachers—11 out of 15 for the linear 
inequality and 9 out of 15 for the circular and parabola inequalities—understood the 
meaning of solutions of algebraic inequalities in that they found one or more pairs of x 
and y values as solutions of inequalities, only about half of those (or fewer for the 
parabolic case) who provided a solution correctly in an algebraic inequality successfully 
provided its corresponding graph—6 of 11 for the linear inequality, 5 of 9 for the circular 
inequality, and 2 of 9 for the parabolic inequality.  

There were many factors that contributed to this failure to transfer, from knowing the 
meaning of solutions in an algebraic inequality to representing the solutions of the 
inequality as a graph. The two most prominent, which are closely related to the 
alternative explanations suggested in this paper, were the following: 

Lack of understanding that a graph of an algebraic inequality is a visual 
representation of the solutions of the algebraic inequality. Many preservice teachers 
who successfully found one or more solutions of the algebraic inequality x+2y−32<0 
drew a graph of the line equation x+2y−32=0, but falsely claimed that the graph of 
x+2y−32<0 was the line, indicating a lack of understanding that the graph of an inequality 
is a collection of all points whose x and y coordinates satisfy the algebraic inequality. Yet 
when they were asked to explain why the points on the line were the solutions of the 
inequality, some were able to reflect on the meaning of the algebraic inequality and 
corrected their graphs. The following is an example of the characteristic.  

  
Interviewer:     So can you give me an example of the solutions? 
Student:   Well. x+2y is less than 32. You still have a plenty of pairs of numbers that 

can satisfy that or not satisfy that. I mean I can give you a random x and y. 
If y=2 and x=1, that is certainly true. 

Interviewer:  Ok, now represent all the solutions in the x-y plane. How would you do 
that? 

Student:   That is why I was thinking about this. I was trying to solve in terms of x, 
so I have a number line because it should be anything on the line. 
Everything on the line should be a solution. 

    Interviewer:    Why are they solutions?   
Student:  Everything on the line should be a solution. Hold on. If I plug in 0, 

16, it is going to be 32. So, it is going to be this, everything below 
this line (pointing the graph of x+2y-32=0). I am trying to think 
now. Everything above this line, your y is going to be bigger, it is 
only this point that is not. Well, any point on this line won't work. I 
am sure there are still other examples to find. If I go below every 
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value of y. Hold on. I have this whole region below. My y-values 
will never going to be bigger than 16 when x=0.  

Lack of ability to represent an inequality when a variable is fixed as a constant. 
Most preservice teachers did not know how to transfer an algebraic or verbal inequality 
statement to a geometric object (which was a horizontal or vertical ray) when a variable 
in the inequality was fixed as a constant. This representational transfer was requested to 
the preservice teachers who generated such statement by themselves or to some 
preservice teachers who successfully provided graphs and/or explanations for graphs of 
inequalities. Out of 5 preservice teachers who were asked to do the representational 
transfer, only one of them was able to represent her statements as rays. As for the other 4 
preservice teachers, they represented “x+2y+32<0 when x=1,”  “my y values will never 
going to be bigger than 16 when x=0,” “when x = 31, y is less than 0,” or “when x=32, all 
the solutions of this inequality would be when y <0” as the entire region below the line 
graph of x+2y+32=0 instead of as a vertical ray; 2 of those 4 teachers also represented 
“y<x2+1 when x = 3” or “y<x2+1 when x=0” as the entire region below the parabola graph 
of y=x2+1 instead of as a vertical ray.    

Graphs of inequalities in two variables: Alternative explanations  
As shown in the Results section, some preservice teachers provided somewhat reasonable 
explanations for graphs of inequalities that included infinitely many points in their 
arguments. Their explanations however fell short in that they did not use the idea of 
variation systemically enough to explain their graphs. This study thereby suggests more 
systematical ways to explain graphs of inequalities in two variables. These alternatives 
utilize preservice teachers’ ideas of fixing a variable by a constant and their use of the 
graphical image of curves as shown in the circular inequality, yet fill the gaps in their 
work by incorporating the idea of variation. 

 

Figure 1 Graph of the inequality, y < x+1 

Using the inequality y < x+1, as an example, the graph of an inequality in two 
variables can be understood as (a) a collection of vertical rays, x=c and y < c+1, if the x 
variable is kept constant; (b) a collection of horizontal rays, y=c and c-1 < x, if the y 
variable is kept constant; or (c) a collection of lines, y-x=c, with c<1, if y-x is kept 
constant. In the first case, shown in Figure 1(a), the graph of y < x + 1 when x=0 is the 

!
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collection of points, (0, y), such that y < 0+1, which is an open vertical ray on the y-axis. 
Similarly, the graph of y<x+1 when x=2 is the collection of points (2, y) such that y< 
2+1, which is an open vertical ray on the line x=2. As x can be any real value, the graph 
of the inequality is the collection of all those open rays, which forms the entire lower half 
plane bounded by the line graph of y=x+1. The same line of thinking works for the 
second case, shown in Figure 1(b). Instead of the x variable, the y variable is kept 
constant; as such, the graph is a collection of open horizontal rays, which forms the entire 
lower half plane bounded by the line graph of y=x+1. In the third case, shown in Figure 
1(c), y < x+1 is equivalent to y−x <1; as such y−x is kept constant with a value less than 
1. Whether c =1/2, 0, or −1, y−x =c forms a line with the slope 1 and the y-intercept c; as 
such, the collection of such lines determines the lower half of the line graph of y=x+1, as 
the graph of the inequality y < x+1.  

Discussion and conclusions 
The suggested alternatives are more than merely different explanations for graph of 

inequalities in two variables. The true benefits of the alternatives are their connections to 
one and two variable functions as well as their applications to real-life optimization 
problems, which are one of the most importance uses of inequalities.  

To elaborate, the graph of an inequality y<f(x) as a collection of rays is an extended 
understanding of the graph of y=f(x) as a collection of points, and an understanding that 
can lead to the graph of z=f(x,y) as a collection of curves. In order to graph the equalities 
and inequalities, a learner performs an action of fixing a variable as a constant value, x=c 
for example, and then finds the value of the other variable in the case of y=f(x) or the 
relationship between the other variables for the case of z=f(x,y). Such an action then 
yields a geometric object—a point (c,f(c) in a plane in the case of y=f(x); a ray, which is 
the graphical representation of {(c, y)|y<f(x)}, in a plane in the case of y<f(x); and a curve 
z=f(c,y) in a 3-dimensinal space in the case of z=f(x,y). The graph is then a collection of 
all geometric objects, with the x variable running through all constant values in the 
domain. In this regard, the above alternatives provide consistency in mathematical 
thinking related to graphing through the concept of variables in functions, equations and 
inequalities.  

The idea embedded in the alternatives can also help students to solve real-life 
inequality-related problems, such as those in the Cookies unit in the high school 
mathematics curriculum, Interactive Mathematics Program. When finding the maximum 
profit from the profit function, f(p, i) = 1.5p + 2i, with various constraints (represented as 
a region determined by linear inequalities), students can consider all points on a 
horizontal (or vertical) line segment by keeping p (or i) constant; they can then 
understand that the maximum can only occur at the upper boundary points of those 
segments, which consist of three linear equations. Students can then determine the 
maximal profit by considering the values of f(p, i) = 1.5p + 2i with constraints given as 
linear equations, which are relatively easy. This approach not only is different from the 
strategies in the Cookies: Teacher’s Guide but also brings a different kind of 
understanding to the problem. This line of reasoning also aligns with calculus ideas in 
that the partial derivatives, fx(x, y) and fy(x, y), with x or y kept constant, play a critical 
role in the determination of the extrema of f(x, y).  

The alternatives proposed in this study are suggestions based on preservice teachers’ 
understanding of graphs of inequalities and on research on the graphs of one variable and 
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two variable functions. Future research should examine the effects of or problems with 
implementations.  
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Students’ ways of thinking for graphs remain an important focus in mathematics education 
due to both the prevalence of graphical representations in the study of mathematics and the 
persistent difficulties students encounter with graphs. In this report, we draw from clinical 
interviews to report ways of thinking (or habits) undergraduate students maintain for 
assimilating graphs. In particular, we characterize actions constituting students’ ways of 
thinking for graphs that inhibited their ability to represent covariational relationships they 
conceived to constitute some phenomenon or situation. As an example, we illustrate that 
students’ ways of thinking for graphs were not productive for their representing a 
relationship such that neither quantity’s value increased or decreased monotonically.  

Key words: Graphing, Covariational reasoning, Quantitative reasoning, Cognition, Function 

 “[U]nderstanding graphs as representing a continuum of states of covarying quantities is 
nontrivial and should not be taken for granted” (Saldanha & Thompson, 1998, p. 303). 
Saldanha and Thompson’s call that educators not take for granted students’ ways of thinking 
for graphs remains relevant given the difficulties students have with topics (e.g., function, 
rate of change and derivatives, and variables) that involve the use of graphs (Carlson, Jacobs, 
Coe, Larsen, & Hsu, 2002; Ellis, 2007; Johnson, 2012; Oehrtman, Carlson, & Thompson, 
2008; Thompson, 1994, 2013; Trigueros & Jacobs, 2008; Zandieh, 2000). In this paper, we 
respond to the need for a better understanding of students’ way of thinking for graphs. 
Namely, we describe students’ graphing actions on tasks we designed to afford tracking 
covarying quantities. We first provide relevant background information and describe our 
clinical interviews and methods. We then identify students’ ways of thinking for graphs that 
were not productive for representing covariational relationships they had conceived some 
phenomenon to entail. We close by arguing that the identified ways of thinking for graphs are 
related to aspects that we perceive to be pervasive in U.S. school mathematics.  
 

Background 

Our core interest is characterizing students’ covariational reasoning–“the cognitive 
activities involved in coordinating two varying quantities while attending to the ways in 
which they change in relation to each other” (Carlson et al., 2002, p. 354)–particularly in the 
contexts of phenomena (e.g., students taking a road trip) and graphs representing covarying 
quantities understood to constitute the phenomena. By quantity and covariation, we do not 
mean numbers (or measures) and numerical patterns of two sets (cf. Confrey and Smith 
(1994, 1995)). Rather, we use quantity to refer to an attribute (e.g., length) an individual 
conceives to constitute some situation or phenomenon such that the individual understands 
the attribute as having a measurable magnitude (Thompson, 2011), possibly with respect to 
numerous unit magnitudes (e.g., meters or feet). We draw attention to a distinction between a 
quantity’s magnitude and its measure because it enables us to approach covariation in terms 
of the simultaneous coordination of magnitudes in flux with the anticipation that these 
magnitudes have specific measures (in an associated unit) at any moment (Saldanha & 
Thompson, 1998); one does not need specified measures at hand to reason covariationally. 

We do not interpret this perspective to diminish the importance of understanding 
covariation in terms of quantities’ measures and patterns in these measures. Such an 
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understanding is important for understanding various function classes and rate of change. Our 
focus on covarying magnitudes provides a complementary lens that researchers, including 
ourselves, have found productive in characterizing students’ images of covarying quantities, 
particularly their conceiving quantities in flux (Castillo-Garsow, Johnson, & Moore, 2013; 
Thompson, 1994). Most relevant to the current study, Moore and Thompson (2015) defined 
emergent shape thinking as a way of thinking about a graph as a locus or trace that is 
produced by the simultaneous coordination of two quantities’ magnitudes. They explained, 
“emergent shape thinking entails assimilating a graph as a trace in progress (or envisioning an 
already produced graph in terms of replaying its emergence), with the trace being a record of 
the relationship between covarying quantities” (Moore & Thompson, in press). As Moore and 
Thompson highlighted, we cannot illustrate such a way of thinking due to the static medium 
of print, but we do provide instantiations in Figure 1. We emphasize that although a 
displayed graph is composed of points, a student thinking emergently constructs a displayed 
graph in terms of a projection of two coordinated magnitudes along the axes with the 
anticipation that these magnitudes correspond to specified measures. 

 
Figure 1. A graph as an emergent (snapshot) coordination of two magnitudes. 

 
Subjects, Setting, and Methods 

Our subjects were ten prospective secondary mathematics teachers (hereafter referred to 
as students) enrolled in an undergraduate secondary mathematics education program in the 
southeastern U.S. The students ranged from juniors to seniors in credits taken, and they had 
completed at least one mathematics course beyond an undergraduate calculus sequence. We 
chose the students on a volunteer basis. We conducted three semi-structured clinical 
interviews (Ginsburg, 1997; Goldin, 2000) with each student. Each interview lasted 
approximately 75 minutes. The lead author facilitated each interview, often with the aid of a 
member of the author team. We asked the students to talk-aloud as much as possible, and we 
asked open-ended questions during their progress to gain insights into the students’ thinking 
with minimal guiding. The interviews occurred throughout one semester with approximately 
1.5 months passing between each interview. The time between the interviews enabled us to 
design subsequent interviews based on retrospective analyses of prior interviews.  

We video- and audio-recorded all interviews and digitized student work after each 
interview. The lead author and fellow interviewer also recorded observation notes after each 
interview. We analyzed the data using selective open and axial methods (Corbin & Strauss, 
2008) in combination with conceptual analysis–an attempt to build models of students’ 
mental actions that explain their observable activity and interactions (Thompson, 2008; von 
Glasersfeld, 1995). First, members from the research team identified instances that provided 
insights into the students’ thinking. The research team then viewed these selected instances in 
order to characterize the students’ thinking. As we developed these characterizations, we 
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continually returned to previously viewed instances (across all students) to revise or provide 
alternative characterizations if necessary. We generated themes among our characterizations 
through this iterative process, including the ones that we report in this paper.     

 
Task Design 

We designed a series of six tasks (two per interview, with each student receiving the same 
sequence of tasks). Each task entailed a different context, but were similar in that we: (1) 
provided a dynamic, albeit often simplified, phenomenon through video; (2) did not include 
numerical values for attributes of the phenomenon; (3) prompted the student to graph a 
relationship between two quantities; and (4) often prompted the student to create a second 
graph, either between different quantities or the same quantities under different axes 
orientations. To illustrate, the second interview with each student included Going around 
Gainesville (Figure 2; see Figure 1 for a solution to Part II), which entails a video depicting a 
car traveling back-and-forth between Athens and Tampa Bay. Reflecting (1) and (2), the task 
consists of a dynamic phenomenon depicted by a video without numerical information. In 
Part I, we prompted the students to graph a particular relationship between two quantities 
(i.e., (3)). In Part II, which we presented after the students completed Part I, we prompted the 
students to graph a different relationship with an imposed axes orientation (i.e., (4)). 

 
Figure 2. The Going around Gainesville task and video.1 

In general, (1)-(3) each reflects our interests in students’ covariational reasoning with 
particular attention to their coordinating magnitudes. Design goal (4) stems from two major 
findings from our previous work. First, we identified that students’ ways of thinking for 
function and their graphs led to perturbations when graphing relationships in different axes 
orientations (Moore, 2014; Moore, Silverman, Paoletti, & LaForest, 2014). Although the 
quantities are slightly modified in Part II above (with us intending that one distance be 
accumulative and the other be displacement), we intended to gain additional insights into the 
perturbations that arose (or did not arise) when graphing the relationships in various 
orientations. Second, we designed the tasks to be what we perceived as non-canonical; our 
previous work led us to conclude that students encounter difficulties with such graphs 
(Moore, 2014). With respect to Part II, and because U.S. students nearly exclusively work 
with graphs such that the quantity represented on the vertical axis is a function of the quantity 

                                                
1 This task is a modification of the task provided by Saldanha and Thompson (1998). We 
strongly suggest that the reader work these tasks before continuing to read.  
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represented on the horizontal axis, we hypothesized that the students might experience 
perturbations graphing a relationship that did not have this property, thus providing us 
additional insights into their ways of thinking for graphs. 
 

Results 

We structure the results section around three interrelated ways of thinking for graphs: 
graphs ‘start’ on the vertical axis, graphs are drawn or read left-to-right, and graphs pass 
the ‘vertical line test’. We present these ways of thinking separately but do not intend to 
imply they exist independently. For instance, we describe students’ anticipating graphs drawn 
or read left-to-right, as well as their anticipating that graphs ‘start’ on the vertical axis. These 
schemes were related in that some students’ ways of thinking for graphs involved the 
sequence of marking an initial point on the vertical axis and then drawing a graph from that 
point to the right. However, if one of these schemes constituted a student’s ways of thinking 
for graphs, then it was not necessarily the case that the other scheme also constituted a 
student’s ways of thinking for graphs. 
 
Graphs ‘start’ on the vertical axis 

We inferred from some students’ activities that a necessary action constituting their ways 
of thinking when drawing a graph was beginning their drawing on the vertical axis. At times, 
‘starting’ their graph on the vertical axis led to what we conceived to be contradictions 
between the relationship that the students claimed or intended the graph to represent and the 
relationship that we perceived the graph to represent. At other times, this way of thinking led 
to the students experiencing perturbations as they conceived ‘starting’ their graph on the 
vertical axis as incompatible with the relationship they intended the graph to represent.  

As an example, we return to Going around Gainesville, Part II. A normative graph 
includes a point on the horizontal axis corresponding to paired magnitudes when starting the 
trip in Athens; the graph includes no points representing a magnitude of zero for the distance 
from Gainesville (see Figure 1). Upon orienting to a task, some students immediately marked 
a point on the vertical axis and anticipated drawing a graph from that point (Excerpts 1).  
Excerpts 1. Two students ‘starting’ graphs on the vertical axis. 
Paula: Your distance from Athens starts at zero [plots point at origin] because you’re in 

Athens. Um, so as you get. Mmm, no, you’re gonna start up here [plots point on 
vertical axis but not at origin]. Ignore that [covering origin]. ‘Cause, oh wait, no, 
stop [crosses out second plotted point]. No, you’re here [points to origin]. 

Annika:  We're in Athens [moves to paper, marks point at origin], as we're moving away 
from Athens we're getting closer to Gainesville [draws segment from the origin 
going up and to the right, Figure 3]. 

 
Figure 3. Annika starting the graph from the origin. 

In anticipating the graph ‘starting’ on the vertical axis, the students’ initial actions were to 
plot a point identifying the appropriate initial distance from Athens (and not the 
corresponding distance from Gainesville). Although Paula identified that the initial distance 
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from Gainesville was non-zero, she maintained an alternative ‘starting’ point on the vertical 
axis and she quickly returned to plotting a point corresponding to the initial distance from 
Athens. As the students moved forward, they experienced perturbations due to their ‘starting’ 
point. Annika eventually noted that she did not take into account the initial distance from 
Gainesville and how to represent that distance as decreasing when first creating her graph. 
Paula experienced a more sustained perturbation, which we explain in the following section. 
 
Graphs drawn or read left-to-right 

Another action constituting some students’ ways of thinking entailed students 
understanding graphs as drawn or read left-to-right. When constructing a graph, students 
anticipated drawing the graph by starting at a point and exclusively moving their pen to the 
right while allowing for movements vertically. The vertical movements either connected 
previously plotted points (regardless of the order that these points were plotted) or captured 
some relationship that they intended the graph to represent (see Annika, Excerpts 1). To 
illustrate, we present two students’ activities (Excerpts 2). Karrie was working the task 
presented by Saldanha and Thompson (1998), which includes a prompt to graph how a 
traveler’s distances from two cities covary (see Figure 4 for animation and a graph). Paula’s 
work is a condensed continuation of that in Excerpts 1.  

 
Figure 4. City Travels animation and graph (modified from Saldanha and Thompson, 1998). 

Excerpts 2. Two students drawing graphs left-to-right. 
[Karrie has plotted five points corresponding to locations during the trip in the order we have 
annotated in Figure 5a] 
Karrie:  Okay, wait. This one [pointing at the leftmost point she plotted] was when he’s 

closest to Lawrenceville, which happens first [labels the point ‘1’], then this one 
[labels the next leftmost point ‘2’, moves pen to the third leftmost point] so it’s 
something like that [making a sweeping motion indicating a curve connecting the 
points from left-to-right in the order we have annotated in Figure 5b].  

[Paula is now focused on the initial point on the vertical axis that is not at the origin–see 
Excerpts 1–and anticipating drawing a segment sloping downward left-to-right from her 
initial point that she later crosses out–see Figure 5c]  
Paula:  I wanted to show that the distance was decreasing [motioning diagonally down 

and to the right from the point plotted on the vertical axis], but that means that 
your distance from Athens is decreasing [tracing along the vertical axis from the 
initial point to the origin]…But your distance from Athens is growing. But your 
distance from Gainesville is decreasing. So, if that’s growing [draws arrow 
pointing upward beside the vertical axis labe] and that’s decreasing, so [draws 
arrow pointing downward beside horizontal axis label and then an arrow pointing 
upwards beside the vertical axis label]…[the student works for six additional 
minutes before having an insight]…Oh, what if I started it like here [plots point on 
the right end of the horizontal axis]…But I don’t want to start like, like I don’t 
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like starting graphs. You know, I don’t know. Work backwards. That’s 
weird…[draws in what we perceive to be a correct initial portion of the graph 
over the next minute and a half]… my graph is from right-to-left, which is 
probably not right…Backwards is traveling from right-to-left. But I think my 
graph is just, I think I’m just not clicking. I think I’m missing something.  

In Karrie’s case, we highlight her immediate move to anticipate connecting the points 
from left-to-right after ordering two points from left-to-right (Figure 5b). Paula, on the other 
hand, did not plot points other than her initial point. Instead, she anticipated drawing a graph 
left-to-right from the initial point to indicate a decreasing distance from Gainesville. 
However, as she reflected on her anticipated graph with respect to the axes, she understood 
that such a graph would indicate a decreasing distance from Athens. Over the next seven 
minutes, Paula produced what we perceived to be a correct graph by thinking of the graph 
emergently (Figure 5c), but her resulting graph continued to perturb her due both to the 
‘starting’ point on the horizontal axis and to having to draw a graph from right-to-left. 

           
(a)                                               (b)                                             (c) 

Figure 5. Karrie’s annotated work (a-b) and Paula’s work (c). 
 

Graphs pass the ‘vertical line test’ 
Some students’ ways of thinking for graphs involved students anticipating that their 

drawn graph must pass the ‘vertical line test’ (i.e., a graph such that each abscissa value only 
corresponds to one ordinate value). In some cases, their anticipation was related to drawing 
graphs exclusively left-to-right. However, this way of thinking for graphs also emerged when 
students could anticipate graphs not drawn in this way. To illustrate, consider Angela’s work 
on Going Around Gainesville, Part II (Excerpt 3). She did not encounter issues while 
drawing part of the graph right-to-left to indicate the distance from Gainesville decreasing as 
the distance from Athens increases. However, drawing a vertical segment, which she 
understood as representing the distance from Gainesville remaining constant as the distance 
from Athens increased, perturbed her to the extent that she both hesitated drawing a vertical 
segment and continued to question this vertical segment throughout working the task.  
Excerpt 3. Angela anticipating that a drawn graph pass the ‘vertical line test’. 
[Angela has plotted three points corresponding to positions on the semicircular path] 
Angela:  So, that’s weird [motions pen indicating a vertical segment connecting the points]. 

I don’t wanna connect those dots, but, [laughs softly] I really don’t like that.  
Int.: What don’t you like?   
Angela: I just don’t like that [draws in a correct graph with a vertical segment] my graph 

looks like this…I dunno. If I was taking a test and I drew that [quickly motions the 
pen over the graph in the direction she had connected the points] I’d feel like my 
answer was wrong. But I feel [quickly motions pen back over the graph in the 
reverse direction] like I graphed my points correctly… 
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Discussion 

We find the above results notable for a few reasons. First and foremost, it is significant 
that undergraduate students who have completed mathematics courses beyond a calculus 
sequence hold ways of thinking for graphs that inhibit their ability to represent covariational 
relationships. Moreover, the students’ difficulties did not stem from underdeveloped images 
of phenomenon, as is sometimes the case (Carlson et al., 2002; Moore & Carlson, 2012), but 
instead stemmed from ways of thinking for graphs that limited their ability to represent 
conceived relationships. We interpret this finding to corroborate researchers’ (Moore, 
Paoletti, & Musgrave, 2013; Moore & Thompson, 2015) conjecture that ways of thinking that 
do foreground graphs as emergent traces of covarying quantities are more productive for 
accommodating novel phenomena and relationships than those ways of thinking that do not. 
A student thinking of a graph emergently maintains a focus on simultaneously coordinating 
magnitudes along axes with a trace emerging from this coordination; the mental operations 
that generate a trace are essentially equivalent regardless of the resulting trace and properties 
of its shape. On the other hand, ways of thinking for graphs that foreground recalling a 
repertoire of shapes and properties of these shapes (e.g., graphs passing the ‘vertical line 
test’; graphs being traced left-to-right) are constrained to those phenomena or situations that 
are compatible with these shapes and properties.   

We also find the results notable given the extent that some students remained perturbed 
after they had constructed graphs they conceived to represent a relationship compatible with 
the relationship they conceived to constitute some phenomenon. In these cases, and due to 
their resulting graphs being incompatible with particular ways of thinking they had 
previously constructed for graphs, the students questioned the correctness of their graphs (see 
Paula and Angela). We find the students’ inability to reconcile their states of perturbation 
significant, especially because the students are prospective secondary mathematics teachers. 
Both researchers and policy authors (Carlson et al., 2002; Ellis, 2011; Johnson, 2015; Moore 
et al., 2014; National Governors Association Center for Best Practices, 2010; Thompson, 
2013) have argued that covariational reasoning should underpin middle and secondary school 
mathematics (including precalculus and calculus). Our results raise questions about the extent 
that prospective teachers’ ways of thinking support their capacity to heed this argument.    

 
Closing Remarks 

We close by noting that the aforementioned findings are, in retrospect, unsurprising given 
the traditional focus of U.S. mathematics curricula. For instance, U.S. mathematics curricula 
nearly exclusively limit the study of relationships to those relationships that are functions 
even if not explicitly defining such relationships as functions (e.g., the study of linear 
relationships in middle school). Such curricula afford students repeated opportunities to 
construct and re-construct ways of thinking compatible with those described here, possibly to 
the extent that these ways of thinking become habitual responses to graphing situations. For 
instance, if students only experience graphs such that the quantity represented along the 
horizontal axis is monotonically increasing, then there is little need for the student to 
maintain attention to variations in this quantity’s value while attending to another quantity’s 
value; students can merely focus on the latter quantity while assuming the other quantity’s 
value is increasing. We conjecture that our findings have implications for curricular 
approaches to functions, relationships, and their graphs. Namely, students might benefit from 
opportunities to graph a wider range of relationships between covarying quantities.  
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Interpreting proof feedback:  Do our students know what we’re saying? 
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Instructors often write feedback on students’ proofs even if there is no expectation for the 
students to revise and resubmit the work.  However, it is not known what students do with that 
feedback or if they understand the professor’s intentions. To this end, we asked eight advanced 
mathematics undergraduates to respond to professor comments on four written proofs by 
interpreting and implementing the comments.  We analyzed the student’s responses through the 
lenses of communities of practice and legitimate peripheral participation. This paper presents 
the analysis of the responses from one proof. 
 
Keywords:  Proof Writing, Proof Grading, Proof Instruction, Proof Revision, Student Thinking  
 

Introduction and Research Questions 
 

Rav (1999) claimed proofs “are the heart of mathematics” and play an “intricate role … in 
generating mathematical knowledge and understanding,” (p. 6).  Proof is perhaps the dominant 
feature of the advanced undergraduate mathematics curriculum. While practice writing proofs is 
certainly important in developing students’ proficiency with proof-writing, without feedback 
students are unlikely to improve their proof-writing. Moreover, mathematicians act as if they 
believe that giving students feedback is critical to their learning, writing marks and notes on 
student proof-productions (Brown & Michel, 2010; Moore, 2014; Strickland & Rand, in press). 
Yet this feedback improves student learning only if students read, make sense of, and incorporate 
it into their future work. But few studies have examined the effectiveness of this process of 
giving feedback and asking students to revise their proofs. Thus, in this study we investigate the 
following questions: 

1. How do students interpret professors’ marks and comments on student-written proofs? 
a. How do students interpret and describe each mark or comment? 
b. How do students explain the rationale for making the proposed changes? 

2. What changes do students make to the proofs in response to their interpretations of the 
comments? 

3. How do students’ responses to each of questions 1a and 1b above align with the way that 
is normative in the discipline (as described by mathematically enculturated individuals)? 

 
Literature and Theory 

 
Theoretical orientation 

The theoretical orientation for this study is a version of social constructivism referred to as 
the emergent perspective (Cobb & Bauersfeld, 1995; Cobb & Yackel, 1996), drawing on ideas 
primarily from the social perspective. In particular, “The social perspective indicated is 
concerned with ways of acting, reasoning, and arguing that are normative in a classroom 
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community” (Cobb, et al, 2001, p. 118). Students produce proofs as part of class, and the 
professor holds them to some standard and, we argue, communicates the normative ways of 
reasoning and arguing for the classroom via written comments on their proofs. That is, within the 
class she acts as the representative of the mathematical community with a goal of helping 
students to develop discipline-specific ways of writing. As a result, we draw on the notions of 
communities of practice and legitimate peripheral participation (Lave & Wenger, 1991). 

We take a community of practice to be a group of people coming together in a process of 
collective learning in a shared domain, in this case learning about advanced undergraduate 
mathematics. There are two overlapping communities of practice of import to this study: the 
community of professional mathematicians and the community of advanced undergraduate 
mathematics students where the professor acts as a representative of the community of 
mathematicians. In such situations, we take learning to be a move towards fuller participation in 
the practices of the target community. Legitimate peripheral participation is a way to understand 
novices’ attempts to participate as well as the means by which they learn. While to a 
mathematical expert, novice proof-productions are filled with errors of logic, grammar, syntax 
and more, under the lens of legitimate peripheral participation we instead view them as attempts 
to communicate in the style of the community where the rules are, at best, partially mastered and 
often tacit.   

 
Student and mathematician misunderstandings 

While we argue that professor comments on student proof-productions have a significant role 
in student learning to produce proofs, we also have reason to believe that students are likely to 
misinterpret them. In particular, regarding conceptions of proof, previous research, including that 
of Ko and Knuth (2013) and Selden and Selden (2003) have shown that students often fixate on 
the form, such as the ritualistic inclusion of particular features or the presence of mathematical 
symbols, rather than the content of the proof. 

Research on student understanding of lectures suggests that students develop significantly 
different understandings of the presented material and meaning for professor actions than the 
professor intends (cf. Lew, Fukawa-Connelly, Mejia-Ramos, & Weber, in press; Weinberg, 
Weisner, & Fukawa-Connelly, 2014). We use this prior research on misunderstandings and 
“misses of understanding” to form hypotheses about how students are likely to interpret a 
professor’s comments on proof-productions. In particular, we hypothesize that they are likely to: 

● not apprehend some comments, 
● develop only a surface-level understandings of comments, and 
● interpret comments in ways that differ from what mathematical experts would do. 
Moreover, we argue that the latter two of these hypotheses are supported by the construct of 

legitimate peripheral participation as described above because learners are likely to make exactly 
these kinds of production and interpretation mistakes.  

 
Methods 

 
Participant selection 

The participants were 8 students, 4 men and 4 women, with advanced undergraduate standing 
from two teaching-focused institutions, four from each institution. They had each taken at least 2 
proof-based undergraduate mathematics classes, including a transition-to-proof course. We 
purposefully selected participants who had experience with writing proofs and receiving  
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feedback from their professors so as to give the best possible chances for their success in 
understanding the proofs and interpreting the professor’s comments in this study. 

 
Data collection 

We engaged each participant in a 90-minute task-based interview where the primary task was 
to describe and interpret a professor’s comments about proofs.  The interviews were audio-
recorded and pencast with Livescribe pens. In each interview, we asked basic demographic 
questions and reflective questions about the participant’s typical use of professor comments. 
Subsequently, we asked the participant to engage in the proof-comments task on a maximum of 4 
proofs. We ensured that each proof had a mix of comments related to notation and presentation, 
and that some of the proofs also included comments that addressed logical issues. The proofs and 
professor comments were taken from a previous research project exploring professors’ proof 
grading (Moore, 2014). An example proof, with comments, is shown in Figure 1. 

 

 
Figure 1. An example of the proofs and professor comments used in the interviews  

  
We presented the written proofs to the participant one at a time, told her it had been written 

by a student, and asked her to read and understand it as best she could.  Then we presented a 
marked proof to the participant with a professor’s feedback written in red ink.  To determine 
whether the participant’s interpretation of the mark or comment matched our own, we asked the 
participant to explain why the professor had made each individual mark or comment and what 
changes she thought the professor wanted. Finally, we asked the participant to rewrite the proof 
in order to allow us to further explore her interpretation of the comments and see how she 
implemented the professor’s recommendations. 
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Data analysis 
For each comment in each proof each of the researchers wrote a description of what change 

we believed the professor wanted in the proof and an explanation for the change. Based on these 
individual notes, we created a consensus description of what each proof-comment was asking the 
participant to change and the reason for the change. 

For each interview we first transcribed the interview and then chunked it at a number of 
levels. We parsed the demographic and reflective questions in one piece and the participant’s 
discussion of each of proof in additional pieces. We partitioned the discussion of each proof by 
identifying the participant’s initial reading and the beginning- and endpoints of their 
conversation about individual comments. In cases where participants discussed multiple 
comments in the same utterance, we looked across interviews, and when it was common, we 
treated the comments as a single unit to parse all interviews similarly. We made a final block of 
the talk-aloud proof-writing process, for which we chunked their utterances around the 
comments and linked those to what they were writing in the proof. 

To code the participant’s utterances about each comment we first wrote a brief holistic 
summary. Then we developed a coding sheet identifying: 

● What the participant identified as the part of the proof the comment was addressing, 
● What the participant’s response suggests should change in the proof, 
● Any reasoning that the participant gave to explain the intended change, 
● An inference about the participant’s thinking about proofs, 
● A summary of what the participant changed in his proof revision, 
● A comparison of each of the above to our consensus expert-interpretation, and  
● An explanation of how an unanticipated change exhibited during the proof writing could 

be understood as a logical interpretation of the professor’s comments. 
We then created summaries first by summarizing across participants within individual proof-
comments and then by further aggregating within types of comments (e.g., logical issues) and 
describing the understanding of proof that was demonstrated by the related responses.   
 

Results 
 

We report three principal findings in response to the research questions. In the interest of 
space, we will limit our presentation of evidence to the proof displayed above. Overall, the 
participants were very successful at interpreting what a professor wanted them to do in response 
to any comment. We saw the following success rates:  For each of the eight comments 100% of 
participants correctly identified an acceptable part of the proof to be changed, and they all 
executed a change in a manner logically consistent with our understanding of the comment. 
However, how they interpreted the comments and executed the requested changes was not 
always consistent with our understanding. In the sections that follow, we explore the 
participants’ work and thinking about the professor’s comments. 
 
Students’ revisions of specified changes 

Six of the professor’s eight comments on Proof A were very specific.  Five of them indicated 
to the student that something in the proof should be crossed out and replaced. For example, 
comment 2 in the first line of the proof in Figure 1 specifies replacing Z with R. In these 
instances, the participants unsurprisingly always identified what they believed the professor 
wanted them to revise and implemented the revisions in a way that conformed with expert 
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understanding. Comment 1 was also specific but suggested the addition of new text, namely the 
phrase “We want to prove,” rather than the replacement of existing text.  In this case, seven of 
the participants added the recommended phrase as indicated, whereas one participant, Adam, 
showed some individuality by assuming that xRy and yRz and then writing, “We will prove that 
xRz.” Thus, when the professor’s comment was either a change of proof-text or an addition to the 
proof-text and the change was explicitly written out, the participants’ identification and 
implementations of the recommended changes were largely consistent with the expert consensus, 
but according to the expert consensus, the participants did not always understand why the 
professor recommended a change. 
 
Students’ interpretations of the logic of specified changes 

The participants were also asked to describe why they thought the professor had specified 
these changes to the proof-text, and their answers revealed a variety of ways of thinking about 
proof. With 8 participants and 8 professor comments on Proof A, there were 64 opportunities for 
students to explain their reasoning about the comments.  Of these 64 potential explanations, 41 
agreed with the experts’ consensus interpretation, 18 did not agree (partial agreement was 
counted as half agreement, half disagreement), one student simply did not give explanations for 2 
changes, and 3 explanations were unclear. Three students gave 7 or 8 explanations that aligned 
with the expert interpretation, suggesting they were very strong students in terms of proof 
comprehension. The difference between “let” and “for some” was where students most 
commonly gave explanations that did not align with the expert consensus. 

For example, consider the direction to add, “We want to prove” to the beginning of the proof. 
The expert consensus was that the statement improved the readability of the proof by making 
clear that the first sentence expressed the goal of the proof. The experts all agreed that the clause 
the student wrote could have been deleted, but as written, the statement assumes the conclusion 
of the theorem. Bella explained that she understood the reason for the comment as, “that’s just 
one of the proper ways to start a proof, that from what I’ve learned, yeah, it’s just the way to start 
a proof.” That is, her thinking appears to focus on the form of proofs, that they may begin with 
“we want to prove” rather than focusing on the function of the statement. This type of form 
thinking was relatively rare among the participants.  

Five participants described the added phrase as entirely focused on clarifying the 
presentation. For example, Don said, “This is just to me good syntax. It's a way of setting it up to 
be understand better and to be read more easily.” Yet our expert consensus was that the professor 
intended to point out a lapse in logic, as noted by two participants, including Genevieve, who 
explained: “I think the professor meant that at the beginning of this [proof] you have this 
statement which is, uh, it’s the claim that you are seeking to prove at the end, and so if you are 
assuming that every statement in the proof is true, having said it, you ought to have something at 
the beginning that says we want to prove it.” Thus, we suggest that the logic the professor 
intended to motivate by this comment was not successfully communicated to six of the 
participants.  But at the same time, we agree that the first sentence is unnecessary for a 
successful proof, i.e., it could be omitted. Note that in terms of the revised proof-productions, it 
would be impossible to distinguish between a participant who included the phrase “we want to 
show” because “that’s how proofs should start” from one who did so for reader clarity, or from 
one who understood the logical underpinnings.    

The participants also initially showed mixed understanding of the reasons for the “cross out 
and replace” comments that the professor wrote, and there were differences in the participants’ 

19th Annual Conference on Research in Undergraduate Mathematics Education 1154

19th Annual Conference on Research in Undergraduate Mathematics Education 1154



interpretations when the comments were logically necessary as opposed to more stylistic. For 
example, for comment #2, which specified changing  Z to R, the experts argued that the student’s 
proof-text did not actually prove the statement for all real numbers x, y, and z, and thus the 
change was logically necessary. Six of the interviewed participants gave an explanation that 
approached that of the experts, including Genevieve who said, “there is no reason to believe that 
x, y, z are in the integers. The theorem never states that they are in the integers. [The theorem 
states] on the set of real numbers.” Don gave a somewhat mixed explanation, initially saying 
“they [Z and R] are both correct but the real numbers are more applicable, in most cases,” but 
later in the interview noting that the theorem specifies that x, y, z are real numbers. In this case, 
we suggest that the fact that the statement of the theorem invoked both real numbers and integers 
increased the difficulty of parsing the domains and relating them to the appropriate piece of the 
definition of the relation, and as a result, Don’s explanation for the requested change did not 
reject the original statement as inappropriate for the proof. Finally, we note that most participants 
gave a response that described normatively correct logic, yet none of them noted that the original 
proof attempt did not prove the theorem.   

The changes requested in comments 3 and 4 were to change 𝑥𝑥 − 𝑦𝑦 ∈ 𝒁𝒁 and 𝑦𝑦 − 𝑧𝑧 ∈ 𝒁𝒁 to   
𝑥𝑥 − 𝑦𝑦 = 𝑘𝑘 and 𝑦𝑦 − 𝑧𝑧 = 𝑐𝑐. The expert consensus interpretation describing the rationale for this 
comment was that the professor was attempting to give advice that would help the student revise 
the proof as written, rather than changing the structure of the subsequent argument.  Thus, 
assuming that the remainder of the argument was to be preserved as much as possible, and 
because the student was asked to let 𝑥𝑥 − 𝑦𝑦 = 𝑘𝑘 and 𝑦𝑦 − 𝑧𝑧 = 𝑐𝑐 in that argument, the expert 
consensus was that this change is stylistic. As the statements are written originally, while 
possibly confusing due to lack of parentheses, they are correct and contribute to the argument, 
but they induce redundancies in the subsequent algebraic part of the argument.  

Charles noted, as did five other participants, that “the student failed to define k and c, in my 
opinion, as necessary constants. It was a bit ambiguous…” Thus, these participants seemed to 
recognize that the professor’s comment is directed at a logical issue, how constants should be 
introduced and defined. These participants wanted the constants to be defined earlier and 
specifically identified as being members of a particular domain.  

In reference to comment 5, only two students, Don and Nancy, articulated the distinction 
between “let” and “for some,” and only Genevieve gave a reason in her revised proof for the 
changes corresponding to comments 3, 4, and 5 by referring to the definition of the relation R. 
Thus, again we argue that the participants did not fully understand the motivation for the 
professor’s comment. 
 
Comments that did not specify the change 

Two comments on Proof A were more general in that they did not ask for specific changes. 
Comment 6 was “hard to follow” and comment 8 was “proofs should be complete sentences.” As 
for the first of these, the participants agreed with us that the main issue was that the algebraic 
steps lacked readability, and they succeeded in writing revised proofs that were more readable. In 
response to comment 8, four participants rewrote the entire proof in complete sentences, 
including the sequence of algebraic equations, whereas the other four displayed a sequence of 
algebraic equations. Both are reasonable interpretations of the professor’s note and are 
stylistically acceptable. 
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Conclusion 
 

The first significant aspect of this study is that it is the first study that describes and analyzes 
how students interpret and respond to the comments that professors write on proofs. We 
recognize that this is a single, exploratory case study with only analytical generalizations. 
Moreover, we note two significant limitations to this study that suggest the need for further work 
in this area. First, the participants were reading and writing proofs on mathematical topics that 
most of them had not worked with in some time, possibly since their introduction to proof class. 

The second significant limitation is that we asked the participants to interpret comments on 
proofs they had not written, thus imposing a need to make sense of another student’s proof 
attempt prior to interpreting the comments. These limitations raise questions of how students’ 
ability to interpret comments relates to their proof-writing and proof-comprehension abilities 
generally. More research is clearly needed to explore these questions, yet without a body of 
empirical evidence, there is no basis for more theoretical work. Thus this first exploratory study 
provides direction for those further studies. We note one final limitation: initially the four experts 
did not always agree on the reasons for the changes. While we could come to a consensus 
interpretation, there were significant differences in our initial interpretations, which means that 
different researchers, or a different mix of researchers, might have arrived at a different 
consensus interpretation of the professor’s comments. This is a limitation of the study and 
suggest an avenue for future research, motivated by Weber’s (2014) argument that proof is a 
clustered concept. We hypothesize that while professors might share instructional goals about 
proof and use similar notes and language to communicate with students, in reality they may be 
attempting to convey very different content via the same notes, which has significant 
implications for students. 

The first finding is that when participants revised the written proofs, they made all of the 
changes requested by the professor and very few changed anything that was not requested. In 
particular, when the professor specifically indicated a change in the way to write the proof, such 
as replacing a symbol or adding a phrase, most participants made the exact change that the 
professor suggested.  When the professor’s comment was more ambiguous, such as “write in 
complete sentences,” the participants all complied with the request, but interpreted it in different 
ways, some writing a paragraph proof with equations in sentence form, and some writing a stack 
of displayed equations but adding text at more strategic points. Similarly, the phrase “hard to 
follow” prompted some participants to include reasons for each step in the revision while others 
made more minimal revisions. Only two participants revised a portion of the proof that the 
professor did not specifically indicate: two rewrote the beginning of the proof and one added a 
reason that the integers k and c must exist by the definition of the relation R. 

The second finding is that the participants often gave explanations for the requested changes 
that did not align with how experts understood the reason for the changes. The participants were 
more likely to over-attribute the notion of “sounds better” or “that’s what you do,” which we 
interpreted as describing the cultural conventions of proof.   

The third finding, which is closely tied to the second, reinforces the claim that participants 
often fail to understand professors’ lectures in the intended way, or even in the way that 
mathematical experts do. Although the participants made the requested changes, they missed the 
professor’s reasoning because the professor’s comments did not convey the difference between 
logically necessary and stylistic changes, nor did the comments help the participants understand 
the logically problematic aspects of the original proof.  
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Effect of teacher prompts on student proof construction 

                     Margaret Morrow   Mary Shepherd 
  SUNY—Plattsburgh    Northwest Missouri State University 

Many students have difficulty learning to construct mathematical proofs.  In an upper level 
mathematics course using inquiry based methods, while this is some research on the types of 
verbal discourse in these courses, there is little, if any, research on teachers’ written 
comments on students’ work.  This paper presents some very preliminary results from 
ongoing analysis from Morrow’s written prompts on students’ rough drafts of proofs for an 
Abstract Algebra course.  The teacher prompts will initially be analyzed through a 
framework proposed by Blanton & Stylianou (2014) for verbal discourse and the framework 
will be modified in the course of the analysis.  Can we understand if a type of prompt is 
“better” in some sense in getting students to reflect on their work and refine their proofs?  It 
is anticipated that teacher prompts in the form of transactive questions  are more effective in 
helping students construct proofs. 

Key words: Abstract Algebra, transactive questions, mathematical proof, Inquiry-Based 
Learning 

Overview 

Many students, who are quite successful at lower level undergraduate mathematics 
courses where calculations and applications are stressed, have difficulty as they learn to 
construct mathematical proofs, the focus of upper level mathematics courses (Harel & 
Sowder, 1998; Weber, 2001;  Raman, 2003).  Speer, et al. (2010) call for more research in the 
practice of mathematics teaching at the undergraduate level.  As active learning approaches to 
teaching (as opposed to straight lecturing methods) become more prevalent in undergraduate 
mathematics classes, teacher skills of listening to students, and responding to their ideas 
becomes ever more important.  There has been a little research on the verbal discourse that 
occurs in these classrooms that emphasize active learning and inquiry based learning methods 
(Blanton & Stylianou, 2014; Johnson, 2013;  Remillard, 2014).   Yet, teachers also interact 
with students when they (the teachers) comment on students’ written work.  At least in both 
authors’ classrooms, we comment on student work and we expect students to read our 
comments and revise their work based on our comments.  But little research has been found 
in mathematics education research (or physics or engineering education) that deals specially 
with the types of comments mathematics teachers make on written work, or the effect of 
these comments on revisions of student work. There is a body of research in the Rhetoric and 
Composition discipline on feedback but its applicability to the writing of proofs seems 
limited.   

One of the active teaching methods used at the collegiate level is Inquiry Based Learning 
(IBL).  In a common form of this, students are given a “list” of definitions and theorems, 
maybe some problems, that they work through and present to the class.  In the Spring 2015, 
Morrow, in an Abstract Algebra class, had students prepare rough drafts of the proofs they 
would present the day before the proofs were to be presented in class.  These drafts were 
hand written and submitted directly to Morrow.  She had about four hours to provide short 
written prompts (comments) to students on their rough draft proofs.  Copies of the drafts with 
comments were made and retained by Morrow as the initial artifact of the research. The drafts 
with comments were then given back to the students.  It was the intention that the students 
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would use these prompts to refine their proofs before class meeting.  These second drafts of 
proofs were maintained in a portfolio by the students and collected at the end of the semester.  
Copies were made of the proofs corresponding to the rough drafts received.  In reviewing the  
proofs in the portfolios, it seemed some of the prompts proved effective, some not so much.   

 
Literature Review and Theoretical Framework 

Mathematicians understand and believe that constructing proofs is a creative process that 
can involve imagery, heuristics and intuition (Raman, 2003).  Mathematical creativity has 
been described as the process that results in insightful solutions to a given problem 
(Sriraman, 2004). IBL methods attempt to get students to practice this creative craft of 
mathematics.  In an IBL approach to a classroom, teachers must be “active participants in 
establishing the mathematical path of the classroom community while at the same time 
allowing students to retain ownership of the mathematics." (Johnson, 2013)  This ownership 
is in part in the form of creating their own proofs of the various statements, an often messy 
process.  The IBL process, as implemented in Morrow’s class, requires students to work 
alone without consulting tutors, fellow students or other resources.  It not only calls for 
students to present their proofs but also calls for the other students to evaluate and validate 
(or not) the presented proofs.  This is often done in whole class discussions.  

Blanton & Stylianou (2014) have found that when transactive reasoning/discourse was 
promoted in whole class discussions, there were positive implications for the students’ 
learning of proof.  “Transactive reasoning is characterised by clarification, elaboration, 
justification, and critique of one’s own or [anothers’] reasoning.” (Goos, et al. 2002)  In the 
study by Blanton and Stylianou (2014), teachers participated and focused the classroom 
discourse with various types of utterances.  Transactive teacher utterances included requests 
for critiques, explanations, justifications, clarifications, elaborations, or strategies.  They were 
in the form of questions that asked students for immediate responses requiring transactive 
reasoning. Other types of teacher utterances were facilitative (often rephrasing a student 
utterance), didactive (lecture), and directive.   

Giving prompts on written work is asynchronous, as opposed engaging in verbal 
classroom discourse which occurs in real time (synchronously).  Yet the goal is much the 
same, to get students not only to explain and justify where necessary, but to also reflect on 
their work and refine their proofs.   In an inquiry oriented classroom, the asynchronous 
prompts and synchronous discussions are all part of the sociocultural approach to teaching 
(Goos, 1999; Goos, et al, 2002; Vygotsky, 1978).  Looking at the type of prompts given in 
the pilot study, and the responses to those prompts lead us to believe that transactive prompts 
in the form of questions might be the most effective prompts in this context. 

Framework   
As far as we know, there is not an established framework within which to work, so we 

will be drawing on the work of Blanton and Stylianou (2014) in their verbal discourse 
analysis to start to categorize the types of written teacher prompts in the pilot data. We will 
initially look at the written prompts through a transactive/facilitative/didactive/directive lens.  
We will also look at the student pre and post work to  identify whether the student appears to 
need to clarify or is on the wrong track entirely, drawing on Vygotsky’s  notion of zone of 
proximal development (ZPD).   Finally we will see if there appears to be any effect of the 
type of prompt given.  We want to identify  the most effective type of written prompt.  
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Our research question is:  Do different types of written prompts affect students’ 
constructions of proofs? 

Methods and Very Preliminary Data: 

Data collected in the pilot study by the Morrow during the spring 2015 semester will be 
coded and analyzed by both authors.  Approximately 130 rough (and not so rough) drafts of 
proofs with teacher prompts and their associated final proofs were collected from that spring 
2015 class.  Additionally, during the fall 2015 semester, the Morrow will collect some 
additional written proof sketches (with prompts) and final proofs from her introduction to 
proofs class.  Also, during the fall, 2015 semester, Shepherd will collect copies of written 
proof sketches (with prompts) and final proofs from her Abstract Algebra—Groups class.  
The initial coding scheme will be based on the Blanton-Stylianou teacher utterances 
classifications (transactive, facilitative, didactive, directive) for the teacher prompts during 
whole class discussion.  Additionally, a coding for the assumed need the student should 
address from the pilot study will be jointly developed guided by Vygotsky’s ZPD ideas.  Is 
the student on the “right track?” What is needed by the student to progress?  Is the student is 
on a “wrong track” what does the student need to move toward a more productive line of 
thinking.  This two track coding scheme, in addition to being used to analyze the data 
collected last spring, will be applied to the new data received this fall.  Each teacher will 
initially code her own students, then the other teacher’s students.  Differences in coding will 
be discussed and adjustments made so that a consistency in coding can be developed.  In 
addition, there will be an assessment of the students’ final proof attempts to decide the 
effectiveness of the initial teacher prompt.   

It is expected that the coding will have to be revised throughout the coding process as 
possible unanticipated patterns in prompts or responses occur.  Very preliminary analysis of 5 
examples from Morrow’s spring 2015 Abstract Algebra class seems to indicate that 
transactive questions (utterances that are both transactive and posed as a question) are more 
effective.  Two examples are given below. 

In example 1 we see a case where a transactive question prompt was posed and the final 
proof was essentially correct,  along the same idea as the initial sketch (as opposed to being 
very different and essentially what some other student presented in class), and seems to show 
the teacher prompt was effective.1  This teacher prompt is considered a transactive question 
since it asks the student to clarify a statement. 

Example 1:  Problem 93.  Suppose that  and  are groups, and that  is 
an isomorphism.  Prove that if  is abelian, then  is abelian. 

(initial student proof with prompts)  
Let  be an isomorphism. 
Let G be abelian. 
Then, for all , . 
                                      
  
Let  such that  
and . 

                                                
1 The teacher prompts are the drawn and italicized parts. 
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Then, . 

Therefore, since ,  is abelian. 
 
                                ?  Clarify ? 
 Where does this a come from.   
 Can you convince me that such an a exists? 
___________________________________________________________ 
(final student proof)  
Let  be an isomorphism. 
                      Let G be abelian. 
                      Then, for all , . 
 
Let . 
Since  is an isomorphism, it is onto 
So there exist  such that 

 and . 
 
Then, . 
Since  is abelian,  so 

. 
 
Thus, since ,  is abelian. 

 

Example 2 shows a teacher prompt where the revisions are not as good as they should 
have been.  Some of the errors are fixed.  The first set of prompts, both involving the 
incorrect operation in the group , would be considered a transactive question, and effective.  
The longer (italicized) prompt is more directive, telling the student what needs to be done and 
is not effective. It would appear the student did not re-engage with the material in a 
transactive fashion to address showing that any element of the group is a power of . 

Example 2:  Suppose , where  has finite stack-height (order) .  Prove 
that if  is an integer relative prime to , then  is also a generator of . 

(Initial student proof with prompts) 
Let  be an integer relative prime 
to .  Then there exists integers 

 and  such that 
 
           
                        ? operation in G? 
Then, 
         
                     (?) 
So,  
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So             aha 
      
 
Then,  is a generator 
for , since to a power 
is equal to the generator .  
 
             Yes – that’s the key idea… 
  but you you still need to turn it 
  into mathematical proof – 
  the main part is to show that  
  IF , then for some 
                                integer . 
___________________________________ 
(final student proof) 
Let . 
Then    , note . 
 
So,  
Then  
So,  
And  
So,      , note that . 
 
Then  
 
So  
 
Then, is a generator for  
since  raised to a power is  
equal to the generator . 
 

Preliminary results will be presented at the 2016 RUME Conference, and further 
questions and research will be designed for the spring 2016 semester so that a more complete 
framework can be constructed.  It is anticipated that the data will show that teacher prompts 
in the form of  transactive questions  are more effective in helping students construct proofs. 

Questions for discussion 

1. Is the transactive, facilitative, didactive, directive scheme used the most 
appropriate for this type of analysis? 

2. If indeed transactive questions are more effective, how can we train teachers 
and TAs in their use? 
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Students’ symmetric ability in relation to their use and preference for  
symmetry heuristics in problem solving   

 
Meredith Muller & Eric Pandiscio 

University of Maine  
 
 

Advanced mathematical problem solving is marked by efficient and fluid use of multiple solution 
strategies. Symmetric arguments are apt heuristics and eminently useful in mathematics and 
science fields. Research suggests that mathematics proficiency is correlated with spatial 
reasoning.  We define symmetric ability as fluency with mentally visualizing, manipulating, and 
making comparisons among 2D objects under rotation and reflection. We hypothesize that 
symmetric ability is a distinct sub-ability of spatial reasoning which is more accessible to 
students due to inherent cultural biases for symmetric balance.  Do students with varying levels 
of symmetric ability use or prefer symmetric arguments in problem solving? How does 
symmetric ability relate to insight in problem solving? Results from a pilot study indicate that, 
among undergraduates, there is high variation in symmetric ability. Further, students with 
higher symmetric ability tend towards more positive attitudes about mathematics. Methods, 
future research, and implications are discussed. 
 

Key words: [Symmetry, Problem Solving, Heuristics, Cognitive Spatial Reasoning] 
 

Background and Research Questions 
Schoenfeld (1987) demonstrates that metacognitively aware problem solvers read, analyze, 

explore, plan, implement, and verify during their problem solving process. The “analyze” phase 
involves creating hypotheses of how a problem can be solved. Symmetry is often an easy path in 
problem solving and broadly appeals to students and mathematicians alike as a major 
convergence point of mathematics and beauty (Drefus, T., Eisenberg, 1990; Goldin & 
McClintock, 1980).  

A typical American geometry curriculum is capped around age 16 with construction based 
proof geometry and trigonometry. Given this typical educational history it is unsurprising that 
undergraduate students have trouble with geometric transformations, including symmetrical 
relationships (Rizzo, 2013) a deficit which the CCSSM has addressed by including geometric 
transformations and symmetry of functions in its content suggestions (Initiative., 2011). Beyond 
this, however, the utility of symmetry as heuristic has application in multivariate calculus, 
organic chemistry, applied engineering and design, and physics. Expanding the bounds of a 
student’s ability to use and conceive of multiple solution strategies serves to increase this 
“analysis” phase of problem-solving. Problem-solving and critical thinking are the main pillars 
of reformed K-12 curricula (Initiative., 2012; Mathematics., 2000) and are pervasive in PCAST 
reports (Holdren & Lander, 2012).  It is the goal of this study to characterize the relationship 
between students’ ability in and application of symmetry to problem solving. This will serve as a 
research basis for the continued curricular expansion of treatments of symmetry within the 
geometric transformations and provide insight into how students currently think about symmetry 
as a heuristic. Future research might seek to find out how one’s symmetric ability can be built 
upon in challenging problem solving situations.  

Previous research with in-service teachers shows that they generally do not use symmetric 
solution strategies, and are skeptical of the mathematical validity or sufficiency of such solution 
strategies when working on multiple solution tasks (Leikin, Berman, & Zaslavsky, 2000; Leikin, 
2003).  Similarly they believe that conventional solution strategies (relying on calculus, algebra, 
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or geometric definitions) are more trustworthy and that they have more confidence in teaching 
them. This relationship, between ability to think symmetrically, the insightful recognition of 
when to use symmetric arguments, and preference for/against symmetric arguments among 
worked out solutions has not been investigated with students. Research indicates that 
affective/attitudinal factors greatly influence mathematical achievement (E. Fennema & 
Sherman, 1977) as well as selective processes. Meaning that one’s attitudes about mathematics 
influence one’s mathematics performance as well as one’s decisions having to do with 
mathematics. This selection was studied as it related to career choice (Betz & Hackett, 1983).  
We propose to look at this in relation to problem scale mathematic preferences (ranking of 
solution strategies). In response to the research background and instructional significance 
presented here, this research project is designed to answer the following research questions:  

1. How do students’ attitudes about mathematics relate to their ability with symmetry? 
2. How does students’ symmetric ability relate to their use and preference for symmetric 

arguments in problem-solving? 
 

Research Methods 
In this section I describe pilot data that has already been collected and describe plans for 

future data collection. We have developed an instrument to measure students’ symmetric ability 
defined as: a student’s ability to mentally visualize, manipulate, and make comparisons among 
2D geometric objects and as applied to cultural material in terms of reflectional and rotational 
symmetry. Our definition mimicks those that Olkun (2003) summarizes of, spatial ability in 
reasoning, relations, and vizualizations with an added cultural component influenced by research 
on ethnomathematics (Abas, 2004; D’Ambrosio, 2001; Eglash, Bennett, O’Donnell, Jennings, & 
Cintorino, 2006). Sample items can be seen in Figures 1-4. 

 
Figure 1. Cultural item from symmetric ability survey, one of five. 

Cultural items were developed by the researchers with consideration of D’Ambrosio's (2001) 
findings on ethnomathematics: that using local cultural material in curricula, in this case flooring 
and quilt patterns, symbols and logos, and architecture, increases student engagement.  
Geometric 2D items were chosen from the literature on spatial reasoning (Ekstrom, French, 
Harman, & Derman, 1976; French, Ekstrom, & Price, 1963), and attitudinal items were drawn 
from the Fennema-Sherman confidence, beliefs, and effectance subscales (Fennema & Sherman, 
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1976). In error, only partial subscales were used in this pilot, future research will use the entirety 
of the confidence and effectance subscales.  

    

Figure 2. (left) Geometric 2D items from symmetric ability survey, tests 
rotational ability. Students mark whether the eight images are rotationally 

symmetric (S) or different (D) from the leftmost image. Three of ten. 
Figure 3. (right) Geometric 2D items from symmetric ability survey, tests 

reflectional ability. Images to the left of the bold line show a series of folds and 
hole punches done on a square piece of paper. Students choose the image to the 

right that corresponds to the correct pattern of holes when the paper is unfolded in 
place. Four of ten. 

 

    
Figure 4. Attitudinal items from symmetric ability survey. Four of eleven. 

 

Cultural and geometric problems were preceded by instructions with worked examples; students 
were encouraged to ask for clarification of these instructions as necessary. This timed survey was 
administered to a small (n=11) pilot sample of students in an introductory general mathematics 
course at a large northeastern university. Post survey interviews are in process to establish survey 
validity of the researcher-developed cultural items.  

Primary data collection is set for the autumn of 2015. The symmetric ability survey (Fig. 1-4) 
will be administered to n~100 students enrolled in introductory calculus or more advanced math 
courses. A subsample, n~20, will be selected to take part in a think-aloud interview centering on 
multiple solution tasks. We will select students to ensure high variation of symmetric ability and 
attitude within the subpopulation. Example multiple solution tasks that assess use of symmetric 
heuristics, open response format, and preference for symmetric heuristic, ranking format, can be 
seen in figures 5-6.  Sample prompts drawn from the cognitive interview protocol can be seen in 
figure 7. Students must have some access to ideas from calculus to complete preference 
questions; unfortunately calculus students were not available for the pilot. While students work 
through two problems of each type, use (Fig. 5) and preference (Fig. 6), prompts like those in 
Figure 7 will be used to elicit student thinking and understanding. Qualitative and grounded 
theory methods will be used to analyze audio/video recordings of these problem-solving 
interviews.  
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Figure 5. (left) Students may respond to this open question with several solution 
strategies. Expected solutions include parameterization and minimization, guess 

and check, and reflection of B about CD to form the straight path AB’ and 
application of the Pythagorean theorem. 

Figure 6. (right) Students respond by ranking their preferred solution strategy. 

 

Figure 7.  Sample question prompts from the problem solving interview protocol. 
Data Analysis 

A rubric was developed to establish this survey as a quantitative measure of symmetric 
ability and to provide insight into any relationships between cultural symmetric ability, 
geometric symmetric ability, and mathematics attitude. Cultural symmetry questions (e.g., Fig. 
1) were scored out of three: one point for the correct number of rotations, one point for the 
correct number of reflectional axes, and one point for the correct placement of axes on the image. 
In cases where students responded with a valid answer (e.g., infinite rotations) but which were 
incorrect (because the question asked about only one 360 degree rotation), points were awarded 
when there was consistency of response across questions. A total of fifteen points were possible 
in this section. Card rotations questions (Fig. 2) and Paper folding questions (Fig. 3) were scored 
following the guidelines provided by the distributors (Ekstrom et al., 1976). Likert scale 
attitudinal data (Fig. 4) were scored using the reverse coding method (Field, 2009).  

Future data analysis will: assure sampling validity by comparing the performance of the 
survey population to normative performance on the geometric tasks, search for trends within the 
card rotations and paper folding test having to do with angular difference (Cooper, 1975) and 
fold complexity, and establish inter-rater reliability.   

 

Preliminary Results  
In the initial sample population we see high variation in symmetric ability in three of the four 
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measures (Fig. 8), indicating that this instrument can parse.  Further, there seems to be a positive 
correlation between symmetric ability and mathematics attitude (Fig. 9).  

   
Figure 8.  Summary statistics for each section of the symmetric ability survey. Note: scores 

on the geometric and attitude tasks have been scaled to 15 for comparison purposes.  
Figure 9. The data appear to show that as symmetric ability increases (an equal weight given to 

cultural, card rotations, and paper folding items), so does mathematics attitude depicted as 
percent ideal response. 

 

Anecdotal and preliminary interview analysis suggests that the cultural items are being 
interpreted as intended.  

Implications and Future Inquiry  
Based on preliminary findings it seems that there is a broad range of symmetric abilities 

among this population of undergraduate students. Further, that having higher levels of symmetric 
ability may correlate with more positive mathematics attitude. These results suggest that 
differences may exist between students with high or low symmetric ability. Future research plans 
include: expanding rigor and sample size of the symmetric ability instrument, and investigating 
the intersection of symmetric ability with problem solving through interviews.  Possible 
interview findings include: high symmetric ability students prefer but do not natively use 
symmetric heuristics, low symmetric ability students do not prefer and do not natively use 
symmetric heuristics, or any combination therein. Further, this line of inquiry will provide a 
characterization of how students think about symmetry as a heuristic.  

Discussion Questions 
1. What are your thoughts on the interview tasks? Can you think of other useful tasks to 

consider? 
2. Have you encountered students with high symmetric ability in your own teaching? Did 

these students have an advantage in your mind? 
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Impact of Advanced Mathematical Knowledge on the 
Teaching and Learning of Secondary Mathematics 
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There has been a longstanding debate in the mathematics and mathematics education 

communities concerning the knowledge secondary mathematics teachers need to provide 
effective instruction. Central to this debate is what content knowledge secondary teachers should 
have in order to communicate mathematics to their students, assess student thinking, and make 
curricular and instructional decisions. Many educators believe that mathematics teachers should 
have a strong mathematical foundation along with the knowledge of how advanced mathematics 
is connected to secondary mathematics (Papick, 2011). But according to others, more 
mathematics preparation does not necessarily improve instruction (Darling-Hammond, 2000; 
Monk, 1994). Therefore, it is important that, as a field, we investigate the nature of the present 
mathematics content courses offered (and required) of prospective secondary mathematics 
teachers to gain a better understanding of which concepts and topics positively impact teachers’ 
instructional practice.  

This exploratory study aims to advance our understanding of the nature of mathematics 
offered to prospective mathematics teachers by looking at mathematical connections. We 
investigate how in-service and pre-service teachers make connections between tertiary and 
secondary mathematics as well as if and how the understanding of connections influences 
teachers’ thoughts about teaching and learning mathematics. The research questions for this 
study are as follows: 

1) How does exposure to and instruction in tertiary mathematics impact the way teachers 
understand secondary mathematics? 

2) How does exposure to and instruction in tertiary mathematics impact the way teachers 
approach secondary classroom instruction? 

Conceptual Framework 
We consider connections between tertiary and secondary mathematics to be ones that 

encompass both mathematical content and ways of thinking about and engaging with that 
content. To better understand these connections, we draw on three areas of research: 
mathematical knowledge for teaching (e.g., Ball, Thames, & Phelps, 2008), mathematical 
practices (e.g., Council of Chief State School Officers [CCSSO], 2010; RAND, 2003) and habits 
of mind (e.g., Cuoco, Goldenberg, & Mark, 1996). Mathematical knowledge for teaching (MKT) 
(Ball et al., 2008) incorporates both subject-matter knowledge and pedagogical content 
knowledge. One component in the larger domain of subject-matter knowledge is called horizon 
content knowledge. We believe this particular aspect of MKT is a potentially useful idea for 
thinking about what advanced content knowledge prospective mathematics teachers at the 
secondary level need for their teaching. 

To expand the notion of subject-matter knowledge, it is also useful for us to consider what 
secondary teachers need to know beyond content and concepts and to encompass mathematical 
habits of mind (e.g., Cuoco et al., 1996) and engagement in mathematical practices (e.g., CCSS, 
2010). These include looking for patterns, making conjectures, attending to precision, and 
connecting representations. Such habits and practices in mathematical thinking and learning 
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extend across content areas and levels of mathematical study. Therefore, as we consider how 
advanced mathematical content impacts teachers’ knowledge and understanding of the teaching 
and learning of secondary mathematics, it is important for us to consider habits and practices that 
may also influence how tertiary ideas are learned and interpreted for teaching. 

We drew on these ideas to develop a unit for practicing middle school mathematics teachers 
that highlights a particular connection between advanced mathematics and secondary 
mathematics. This unit, described below, seeks to not only show how connections can be purely 
mathematical in nature and relate directly to subject-matter knowledge, but to also illustrate how 
connections can go beyond knowledge of mathematics and encompass engagement in 
mathematics through the lens of mathematical habits of mind and mathematical practices. 

Research Methodology 
Participants are 14 students in a master’s level mathematics education course. Of this group, 

one is a special education teacher, two are pre-service teachers, and eleven are in-service 
teachers with one to fifteen years teaching experience. 

There will be three data sources: a mathematics questionnaire, an instructional unit, and 
interviews. The researchers will first give participants a mathematical content knowledge 
questionnaire; the purpose of which is to gain insight into the level of mathematical content 
knowledge that the participants possess as well as their thoughts on the impact of tertiary 
mathematics on instruction. Responses to this questionnaire will also be considered when 
analyzing the video and audio data collected during the instructional unit. After completing the 
questionnaire, one researcher will teach one two-and-half hour lesson. The lesson will be filmed 
and all written artifacts will be collected. During the lesson, participants will engage in an 
instructional unit on solving equations; the purpose of which is to challenge teachers’ 
understanding of procedures used for solving equations and to consider how attention to the 
algebraic structures and their properties may inform procedures and solutions. Following the 
classroom lesson, approximately four volunteers will be asked to participate in a follow-up 
interview; the purpose of which is to clarify ideas discussed in class and to probe students’ 
thinking on the impact of tertiary knowledge on the understanding of secondary mathematics and 
instruction. 

To analyze the data, the researchers will use initial coding (Saldana, 2009) of the video data 
transcripts to split the data individually coded segments. The researchers will then use theoretical 
coding as a way to “constantly compare, reorganize, or “focus” the codes into categories” 
(Saldana, 2009, p. 42). The goal is to code the data based on thematic or conceptual similarities 
with respect to how the participants make connections between tertiary and secondary 
mathematics as well as if and how the understanding of connections influences their thoughts 
about teaching and learning mathematics.  

Applications and Implications 
In this exploratory study, we investigate questions regarding mathematics teachers’ content 

knowledge and preparation. In particular, we would like to better understand which concepts 
might positively impact teachers’ instructional practice. We do this by considering how in-
service and pre-service teachers make connections between tertiary and secondary mathematics 
as well as if and how the understanding of connections influences teachers’ thoughts about 
teaching and learning mathematics. While many researchers of mathematics and mathematics 
education may intuitively understand how secondary mathematics teachers’ deep knowledge of 
mathematics is related to the ability to be an effective mathematics instructors in secondary 
schools, the field still needs to understand how secondary teachers use their tertiary mathematics 
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instruction in teaching secondary mathematics, which can lead to a better sense of the kinds of 
mathematics courses that can provide teachers with the content knowledge they need to make 
best use of these connections. 
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Transforming graduate students’ meanings for average rate of change 
 

Stacy Musgrave Marilyn Carlson 
California Polytechnic State University, Pomona Arizona State University 

This report offers a brief conceptual analysis of average rate of change (AROC) and shares 
evidence that even mathematically sophisticated mathematics graduate students struggle to 
speak fluently about AROC. We offer data from clinical interviews with graduate teaching 
assistants who participated in at least one semester of a professional development 
intervention designed to support mathematics graduate students in developing deep and 
connected meanings of key ideas of precalculus level mathematics as part of a broader 
intervention to support mathematics graduate students in teaching ideas of precalculus 
mathematics meaningfully to students. The results revealed that the post-intervention 
graduate students describe AROC more conceptually than their pre-intervention 
counterparts, but many still struggle to verbalize a meaning for AROC beyond average 
speed, a geometric interpretation based on the slope of a secant line, or a computation.   

Key words: graduate student teaching assistant, average rate of change, precalculus  

It may seem natural to assume that a graduate student in mathematics possesses strong 
meanings of foundational mathematics ideas because of their extensive experience studying 
mathematics. However, Speer (2008) and colleagues (Speer, Gutmann, & Murphy, 2005) 
reported that completion of more advanced mathematics courses does not necessarily 
improve a teacher’s understandings and teaching practices. Other studies have advocated that 
teachers need productive meanings of the ideas they intend to teach (Carlson & Oehrtman, 
2009; Moore, et al., 2011). Thompson, Carlson & Silverman (2007) claimed that: 

If a teacher’s conceptual structures comprise disconnected facts and 
procedures, their instruction is likely to focus on disconnected facts and 
procedures. In contrast, if a teacher’s conceptual structures comprise a web of 
mathematical ideas and compatible ways of thinking, it will at least be 
possible that she attempts to develop these same conceptual structures in her 
students. We believe that it is mathematical understandings of the latter type 
that serve as a necessary condition for teachers to teach for students’ high-
quality understanding (pp. 416-417).  

In a recent study, Teuscher, Moore & Carlson (2015) report that a teacher’s mathematical 
meanings provide a lens through which a teacher makes sense of student thinking. The 
teacher’s model of students’ thinking influences her subsequent instructional actions, 
including the nature of her questions, her questioning patterns, and the quality of the 
discussion she leads.  

In a context of an intervention to support mathematics graduate students to act in 
productive pedagogical ways, we engaged graduate students preparing to teach precalculus at 
the college level in completing tasks aimed at developing their meanings of key ideas of 
precalculus level mathematics that are foundational for learning calculus. This study 
investigated mathematics graduate students’ meanings of average rate of change (AROC) for 
the purpose of understanding graduate students’ pre-intervention meanings of AROC and the 
degree to which our interventions impacted their meanings of this idea.  

We describe what research has reported to be a productive meaning for the idea of AROC 
(Thompson, 1994). We follow this with a description of our intervention for shifting graduate 
mathematics students’ meaning for AROC and conclude by reporting on results that point to 
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the distinctions between pre- and post-intervention participants’ meanings for AROC, and 
reveal the varied fluency among participants in speaking with meaning about AROC when 
probed in a clinical interview setting (Clark, Moore, & Carlson, 2008). 

Theoretical Framework 

We view an individual’s expressed meaning of an idea as the spontaneous utterances that 
an individual conveys about an idea. From these utterances we can make inferences about 
how an individual has organized her experiences with the idea. The meaning held by an 
individual is then the organization of the individual’s experiences with an idea, also referred 
to as a scheme. It is through repeated reasoning and reconstruction that an individual 
constructs schemes to organize experiences in an internally consistent way (Piaget & Garcia, 
1991; Thompson, 2013; Thompson, Carlson, Byerley, & Hatfield, 2013). For example, an 
individual’s meaning for the idea of average rate of change might consist of the calculation 
for the slope of a secant line, or simply ∆y/∆x. An individual who has committed to memory 
that the average rate of change is the slope of a secant line does not possess the same meaning 
as someone who sees the slope of a secant line as the constant rate of change that yields the 
same change in the dependent quantity (as some original non-linear relationship) over the 
interval of the independent quantity that is of interest. These two individuals hold different 
meanings for the same idea, and the consequences of such differences can be profound. 

An individual’s meaning for the idea of average rate of change can be further developed 
through reflection, which occurs when she is faced with perturbations to her current meanings 
for average rate of change (Dewey, 1910).  

A productive meaning for the idea of average rate of change 
Constructing a rich meaning of average rate of change entails conceptualizing a 

hypothetical relationship between two varying quantities in a dynamic situation. Given a 
relationship between the independent quantity A and the dependent quantity B, and a fixed 
interval of measure of quantity A, the average rate of change of quantity B with respect to 
quantity A is the constant rate of change that yields the same change in quantity B as the 
original relationship over the given interval. In order to understand this complex idea 
meaningfully, an individual must first conceptualize the idea of quantity as a measurable 
attribute of an object (e.g., an airplane’s height in feet above the ground, number of minutes 
elapsed since noon). Next, provided a situation in which two quantities vary in tandem, an 
individual must develop an understanding for what it means to describe the rate of change of 
one quantity relative to the other. Namely, the individual must conceptualize the 
multiplicative comparison of changes in the two quantities (the change in the output quantity 
is always some constant times as large as the change in the input quantity). In the special case 
that the relative size of changes in one quantity relative to the other remains constant, we say 
the quantities vary with a constant rate of change (CROC). Individuals with a robust meaning 
will draw connections between AROC and CROC and view those two connected ideas as a 
means for approximating values of varying quantities in dynamic scenarios. 

The Intervention 
The graduate students initially participated in a 2-3 day workshop in which they 

completed mathematical tasks that were designed and sequenced to support graduate students 
in constructing a productive meaning for the idea of average rate of change1. The graduate 
                                                
1 The idea of average rate of change is the culminating idea of the first instructional unit of the 
precalculus level course the graduate students will be teaching during the upcoming semester.  
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students confronted problems and questions designed to perturb their expressed meanings for 
AROC.  The intent was to prompt reflection and subsequent shifts in their meanings of this 
idea. Concurrent with teaching the course during the fall or spring semesters, the graduate 
students attended weekly 90-minute seminars. The main goals of the weekly seminars were to 
support the graduate students in developing more productive meanings of the key ideas to be 
taught during the upcoming week, and to support them in clearly explaining their meanings 
for those ideas to others. As part of the work towards these goals, each of the graduate 
students decided on a lesson implementation plan detailing how they would engage their 
students in achieving their learning goals for that week prior to each seminar meeting. 
Participants further prepared mini-presentations of the material to practice talking about 
difficult or novel ideas. When preparing, participants used the Pathways Precalculus 
curriculum (Carlson, Oehrtman, & Moore, 2015), a research-based curriculum that 
incorporates student thinking and scaffolds the development of key ideas. The Pathways 
curriculum included materials designed to advance participants’ understanding of AROC 
when preparing to use the student materials in their own classrooms. 

Methods 

We collected data from mathematics graduate students and instructors at three large, 
public, PhD-granting universities in the United States. Participants’ teaching experience 
varied between zero and 11 years, at both the K-12 and tertiary level. We conducted semi-
structured clinical interviews with 21 graduate teaching assistants, all of whom had at least 
one semester experience teaching the Pathways Precalculus course as lead instructor or 
recitation leader (Clement, 2000). Interviews addressed multiple issues, ranging from 
perceived shifts in beliefs about the roles of students and teachers to understandings of 
mathematical ideas to descriptions of teaching practices and goals. The lead author conducted 
these interviews, recording each using both a video camera and Livescribe technology to 
capture audio-matched written responses to sample teaching scenarios provided during the 
interviews. Interviews lasted 1-2 hours, and were transcribed and coded by three members of 
the research team. Members of our team analyzed videos in pairs at first, identifying themes 
of interest relative to our conception of a productive expressed meaning for AROC before 
working individually to continue coding and reconvening as a group to discuss our findings 
(Strauss & Corbin, 1990).  

Results 

We first share data that reveals the common meanings that the graduate students held for 
the idea of AROC when entering the program. We then share excerpts from clinical 
interviews with experienced participants to reveal the varied fluency participants 
demonstrated when describing the idea of AROC. The results show that the meanings for 
AROC conveyed by the novice and experienced groups are, in fact, categorically different; 
however, not all experienced participants shifted to speak fluently about the idea of AROC.  

Pre-Intervention Meanings for AROC 
As a warm-up activity for the start of a Summer 2015 teaching assistant workshop, we 

asked seven math graduate students to describe the meaning of “average rate of change.” 
Each participant’s response is recorded in Figure 1. Their responses align with the authors’ 
prior experiences with both students and teachers at the secondary and tertiary levels; most of 
the participants provided geometric interpretations based on imagining a secant line between 
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two points on the graph of a function. In particular, we see that Alan2 described AROC both 
computationally (i.e., ∆y/∆x) and geometrically as a line, instead of highlighting the key 
attribute of the line—its slope. Brian did mention slope, though he did so while conveying the 
idea that slope is an amount of change in the dependent quantity for each unit change in the 
independent quantity, a somewhat restrictive meaning for slope as it fails to support 
reasoning about variation when changes in the independent quantity have magnitude other 
than 1. Cassie and Diane spoke explicitly about steepness, a visual aspect of a graph that is 
simultaneously restricted to the Cartesian coordinate system and, in that setting, is potentially 
misleading when the coordinate axes do not have the same scale. Edgar provided two 
equivalent descriptions of how to compute the AROC over a given interval, but did not 
communicate what the result of that computation would represent. Greg commented on the 
“predictive” quality of AROC, making him the only participant to explicitly highlight the 
idea that AROC provides an alternate means for characterizing how two quantities change 
together. This thinking, however, is missing many elements of what we have previously 
characterized as a productive meaning for AROC. 
 
Responses to the question: What does “average rate of change” mean to you? 

Alan: A straight line between two points on a graph 
Brian: As one variable changes for every one unit, how much is the other variable 

changing. Slope.  
Cassie: Steepness of a graph, like how steep or how flat it is. 
Diane: Steepness of a graph. […] Uh, I don’t have actual words.[…] Slope or 

derivative. 
Edgar: Rate of change over an interval  
Frank: The amount the dependent variable changes divided by the amount the 

independent variable changes. Delta y divided by delta x.  
Greg: I lost all the words…It’s the predictive effect of changing one variable and the 

amount and how it’s going to affect the other variable. One quantity affecting 
change in another quantity.  
Figure 1. Pre-intervention participant descriptions of AROC 

While most of the responses were accurate statements about AROC, the participants’ 
expressed meanings were predominantly geometric or computational; moreover, only one of 
the seven participants spontaneously hinted at the idea that the AROC serves as a tool of 
approximation for rates of change within dynamic scenarios.  

Post-Intervention Meanings for AROC 
We have analyzed 11 clinical interviews with participants who experienced at least one 

summer workshop and one semester of our intervention. In contrast to the predominantly 
geometric and computational descriptions of AROC from our pre-intervention participants, 7 
of the 11 participants attempted to describe a conceptual meaning for AROC. These 
descriptions can be classified as: the productive, general meaning described in our theoretical 
framework; a special case of that meaning for average speed; or, in one instance, a distinct 
interpretation the participant called “linearization.” The other four participants offered 
explanations that fall into the last four categories described in Table 1.   

                                                
2 Psuedonyms are used throughout the reporting to protect the identity of participants.  
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Table 1. Experienced participant descriptions of AROC 

Expressed 
Meaning 
Category 

Sample Excerpts from Clinical Interviews Number of 
Instances* 

Productive –
General  

[Students] have to understand constant rate of change 
because the average rate of change is the constant rate of 
change someone else would have to go, and I'm talking 
about average speed now, to achieve the same change in 
output for a given change in input. So, if you don't have 
meaning for constant rate of change, well, then average rate 
of change is just this number.  

4 

Average 
Speed 

[AROC] is a constant rate of change for that specific time 
and distance, or uh, you know how I mean… 

6 

Conceptual 
Other 

I would like to say linearization. Right, this idea of 
approximating something that isn't linear in a linear fashion. 

1 

Computational … this final minus initial over the outputs and this final 
minus initial over the inputs and that's a rate. 

2 

Geometric Average rate of change is the constant rate of change to go 
between two points. 

2 

Incorrect I want my students to understand that constant rate of 
change is a special case, I guess of average rate of change. 
It’s this special case that exists when the corresponding 
changes in our two quantities are proportional. 

2 

None  1 
* Total exceeds 11 because some interviewees conveyed more than one expressed meaning. 
 

The excerpts in Table 1 highlight the fact that the impact of the intervention on 
participants is far from uniform. One participant failed to provide a clear statement of a 
meaning for AROC as he talked around the issue for 14 minutes during his interview. We 
found this surprising in light of the fact that this participant had taught the idea of AROC 
from conceptually oriented materials for the past 4 semesters. Two of the six participants who 
mentioned average speed did not convey a meaning for AROC beyond the context of 
comparing distance and time. The sample excerpt for an incorrect meaning suggests that the 
participant developed a meaning for AROC linked to CROC in a non-standard way; 
conventional treatment of the two ideas typically describes AROC as a CROC approximation 
instead of viewing CROC as a special case of AROC. Yet another participant proclaimed, “I 
will forever think of average rate of change as the slope of the secant line.” The fact that 
these participants did not immediately produce the meaning for AROC supported both by the 
intervention and the curriculum materials points to the complexity of the idea of AROC and 
the difficulty that even graduate students had in modifying their strongly held geometric and 
computational images of the idea of AROC to a more robust scheme with connections that 
are rooted in a conceptual meaning that can be expressed in multiple representational 
contexts.  

Nonetheless, many participants’ expressed meanings did align with our productive 
meaning for AROC, even if only as the special case of average speed, focusing on a 
relationship between varying quantities. During the intervention, leaders encouraged 
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participants to “speak with meaning” as a tool to support their students in reasoning about 
quantities.  To “speak with meaning” means to use appropriate language, describe the 
underlying meanings of specialized vocabulary (e.g., explains “proportional” instead of just 
using that word), and offer multiple ways of explaining a concept. Consider the “Productive 
Meaning” excerpt from Table 1 that was conveyed by a participant with 3 years of experience 
with the intervention, first as a participant and more recently as a leader. Not only did she 
express a productive meaning for AROC, using appropriate descriptions that highlighted 
changes in quantities as opposed to values of quantities, she further made explicit the 
connection between CROC and AROC and described the mental imagery she hopes her 
students develop. She later elaborated the importance of students imagining a second object 
or scenario that displays a CROC relationship that would yield the same change in output 
over the given interval of the input quantity. 

Similarly, Hannah stumbled slightly, but ultimately described AROC in terms of 
changes in quantities, as seen in the following: 

I think one needs to understand that average rate of change means that […] 
two quantities are varying but not necessarily at a constant rate of change—
like the output quantity can, umm, not have a constant factor with respect to 
the input quantity. But the average rate of change of that relationship would 
be like if the…if there was a constant rate of change, the same output would 
be covered for a given amount of input. I think the easiest one for students to 
understand with that is like the example of like distance and speed. So if 
you're driving your car at a constant speed and I am like stopping and going 
and slowing down and speeding up, we will cover the same amount of 
distance in the same amount of time. And your—the constant rate that you 
go—is the same with my average rate. But I find that with that example it's 
really […] hard for students to talk about things not in terms of time. I also 
find that using the word “average” is confusing to students.  

She continued to reflect on a driving context as a familiar example to support 
students’ reasoning about AROC, but demonstrated an awareness of student thinking 
by highlighting that particular example as potentially problematic for students to 
generalize beyond contexts dependent on time. She also expressed an awareness of 
student difficulties with the multiple meanings of the word “average” appearing in the 
phrase average rate of change. Interestingly, though Hannah demonstrated a 
relatively high level of fluency in speaking with meaning about AROC, she pointed 
out that this particular idea is usually difficult for her to discuss with her students, 
saying:  

I was struggling with it, and […] it’s just hard to word it in terms of input and 
output and varying quantities without having a concrete example. And so, to 
me I'm not even sure that [students are] not getting it so much as that they're 
not able to articulate it.  

Discussion 

The vast majority of participants held weak meanings for the idea of AROC at the 
beginning of the study. Our findings further revealed that our interventions were only 
moderately effective in supporting the graduate students to acquire productive meanings for 
the idea of AROC. The initial impoverished meanings expressed by graduate students were 
widespread across all three institutions, suggesting that that the issues involved in shifting 
graduate students’ meanings are not unique and require further investigation. These findings 
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challenge the assumption that graduate students in mathematics have strong meanings of 
fundamental ideas of mathematics. Failure to act on this faulty assumption may have severe 
consequences for improving the predominantly procedural focus that exists in many 
introductory undergraduate courses in colleges and universities across the US.  

Graduate mathematics students who hold a meaning for AROC that is strictly geometric 
(i.e., slope of secant line) will be unable to support their students in developing a quantitative 
meaning for AROC that could be leveraged to build ideas of accumulation from rate of 
change foundational to applications of calculus. Moreover, though several of the participants 
commented on how the Pathways materials exposed them to new ways of thinking about the 
mathematical ideas, these new ways of thinking do not necessarily translate to what the 
participants have as goals for their students’ learning.  

We also note that, though not described here, our experiences in working with the 
graduate students during the interventions produced encouraging anecdotal evidence that the 
opportunity to reconceptualize fundamental ideas may have a lasting impact on their image of 
what effective mathematics teaching entails. This leaves us optimistic that ours and other 
similar efforts might motivate mathematicians to engage in work to make undergraduate 
mathematics instruction more meaningful for students. 
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Why students cannot execute their own global plans 
 

Kedar Nepal 
Mercer University 

This qualitative study investigates undergraduate students’ mathematical problem solving 
processes in time restraint situations by analyzing their global plans. The students in three 
undergraduate courses were asked to write their global plans before they started to solve 
problems in in-class quizzes and exams. Students’ execution behaviors and their success or 
failure in producing correct solutions were explored by analyzing their solutions. Only 
student work that used clear and valid plans was analyzed, using qualitative techniques to 
determine students’ success (or failure) in producing correct solutions, and also to identify 
the factors that were hindering their effort. Many categories of execution errors were 
identified, and how those errors affected students’ efforts will be discussed. This study 
employed Garofalo and Lester’s (1985), and also Schoenfeld’s (2010) frameworks to 
understand students’ problem solving behaviors. Their frameworks consist of some 
categories of activities or behaviors that are involved while performing a mathematical task.  

Key words: [Global plans, Problem solving, Metacognition, Mathematics teaching, 
Mathematics writing] 

Withdrawal and failure rates in undergraduate mathematics courses are higher than most 
other undergraduate courses (Steen, 1999, MAA notes; Gardner Institute, 2013). One of the 
most common ways that instructors assess students’ mathematical understanding in colleges 
is grading their written work. Written work such as homework, quizzes, and exams mostly 
determine students’ overall course grades in most instructors’ grading schemes. Students’ 
success or failure in undergraduate mathematics courses is usually determined by the 
weighted average of grades they obtain in a course by the end of the semester. Based on my 
own experience as a college mathematics instructor, many students’ classroom interaction 
with the instructor and their peers indicate that they clearly seem to have grasped the 
understanding of the subject matter. But many of them cannot solve mathematical problems 
successfully on in-class quizzes and tests, and fail to earn the higher course grades that they 
actually deserve. Their failure to solve mathematical problems, and getting lower than 
expected grades could be a source of frustration among students and instructors alike. It is 
also reasonable to assume that students’ poor performance in written assignments could be 
contributing to higher dropped, failed or withdrawn (DFW) rates in undergraduate 
mathematics courses. There is not enough information as to what factors are hindering 
undergraduate students’ ability to solve mathematical problems successfully, even if they 
have the required understanding of the subject matter. This study is an attempt to look for 
reasons that might be hindering their effort to solve mathematical problems successfully in 
in-class assignments.  

Students’ writing is a source of information for instructors to assess how their students’ 
think and learn mathematics. Writing can be considered as thinking aloud on paper, and 
therefore it provides rich data and a means of observing important processes that are difficult 
to identify using other methods (Flower & Hayes, 1981). It is not always sufficient to have 
our students spend time thinking about mathematical concepts; we should also require them 
to articulate their mathematical ideas in writing (Porter & Masingila, 2000). The purpose of 
this qualitative study is to study the connection between undergraduate students’ global plans 
(articulation of their ideas) for solving mathematical problems in time restraint situations and 
their success in actually being able to produce correct solutions, by analyzing their written 
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work. The study also attempts to compare the organization and execution behaviors of 
successful and unsuccessful problem solvers while performing a mathematical task, by 
examining their global plans and respective solutions of mathematical problems. More 
specifically, the study attempts to answer the following research questions: 

1. How are students’ global plans related to their success in mathematical problem 
solving? 

2. What are some primary factors that lead to unsuccessful problem solving, even when 
students have a valid global plan for solving mathematical problems?  

Literature Review and Theoretical Framework 

This study employed Garofalo and Lester’s (1985), and also Schoenfeld’s (2011) 
framework to understand students’ problem solving behaviors. Garofalo and Lester (1985) 
identified four categories of metacognitive activities involved in performing a mathematical 
task: orientation, organization, execution, and verification. According to them, the orientation 
phase pertains to strategic behavior to assess and understand the problem. The organization 
phase pertains to planning of behavior and choice of actions. Metacognitive behaviors during 
this phase include identification of goals and subgoals, global planning, and local planning 
(to implement global plans). The execution phase is related to regulation of behavior to 
conform to plans. This phase involves metacognitive behaviors such as performance of local 
actions, monitoring of progress of local and global plans, and trade-off decisions (such as 
speed vs. accuracy, degree of elegance). The verification phase is related to evaluations of 
decisions made and of outcomes of executed plans. Schoenfeld (2011) claimed that people’s 
decision making and their success (or failure) in problem solving is a function of knowledge 
and resources, and beliefs and orientations. He also added that students’ metacognitive 
activities or behaviors during problem solving also play a role in determining their success or 
failure in problem solving. 

 Time pressure might have some impact on student performance in in-class assignments. 
But studies show that extended time has no significant impact on students’ test performance 
(Caperton, 2000; Orfus, 2008). It is not reasonable to expect our students to engage in high 
level of metacognitive activities during time restraint situation, but research shows that a 
metacognitive framework is evident in students’ writing about their problem solving 
processes (Pugalee, 2004). It is therefore reasonable to assume that existing knowledge and 
metacognition both have roles in students’ success or failure in problem solving in time 
restraint situations.  

From a review of studies related to metacognition in problem solving, Simon (1987) 
found that monitoring, regulation, and orientation processes appear more frequently in the 
problem solving protocols of successful problem solvers. From a study with middle school 
students, Lester (1989) found that orientation to the problem actually has the most influential 
effect on students’ successful performance in problem solving. Pugalee (2004) found that the 
students who construct global plans (stated or implied) are more likely to be successful at the 
problem solving tasks. In addition, he reported that the execution behaviors comprised the 
largest number of problem solving actions. It is therefore reasonable to assume that students’ 
likelihood of making errors during the execution phase is somewhat higher, even if they have 
a valid global plan for solving the problem. Pugalee (2004) also found that most students do 
not check the accuracy of their final answers. Few or no metacognitive activities in the 
verification phase might also hinder students’ effort in solving problems successfully, even if 
they have a clear conceptual understanding needed to solve the problems. Students’ 
conceptual and procedural knowledge, therefore, might increase the likelihood of, but that 
alone does not guarantee, their success in problem solving. Schoenfeld (1985) found that 
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effective problem solvers engage in self-regulation (or metacognitive) activities more often 
than others. Other studies have shown that successful problem solvers engage in 
metacognitive activities, and also have better understanding of mathematical concepts 
(Pugalee, 2004; Schur, 2002). Representation analysis of students’ problem solving contexts 
in a recent study revealed that students who employed a nonsymbolic representation were 
more than three times more likely to solve the problems than the ones who employed 
symbolic representations (Yee & Bostic, 2014). From an analysis of the types of errors made 
by high school students in Algebra I, Pugalee (2004) found that 66.2% of all errors were 
procedural, 23% were computational, and 10.8% were algebraic. Based on the existing 
studies, an obvious assumption to this study is that students’ lack of skills (both current and 
prerequisite) skills might be adding challenges to their effort to solving problems 
successfully.  

Methodology 

The researcher, who was also the instructor of the courses, collected data over the Spring 
2015, Summer 2015 and Fall 2015 semesters from three undergraduate mathematics classes: 
Introductory Differential Equation (IDE) (three sections), Calculus I (one section), and 
Calculus II (three sections). The participants were traditional undergraduate students from a 
medium-sized university in the southeastern United States. The collected data is comprised of 
students’ written work from in-class quizzes and tests. The researcher required all the 
students to write their brief global plans and follow the plans to solve mathematical problems. 
The problems were familiar or small deviation of the problems the students had seen or 
solved in the class. The problems were written for typical exams and quizzes, which included 
both procedural and word problems, but all these problems required multiple steps to solve. 
In other words, many of the problems were close to being exercises rather than actual 
“problems”. In each quiz, the instructor announced that the students would be given 3-4 
additional minutes on top of allocated time for a quiz (usually 12 minutes) to write their 
global plans. Lengths of exam times were similarly adjusted.  

One of the reasons for requiring students to write their global plans was to see how they 
articulate their mathematical ideas to solve the problems and organize their problem solving 
processes. Students’ articulation of ideas might serve as a form of thinking aloud on paper, 
which might be helpful to understand their planning behavior, understanding and thinking. 
Since some of the students did not attend classes regularly or stopped attending, the number 
of responses collected per student varies. The researcher also conducted audiotaped 
interviews with a few purposefully selected samples of students, asking them to describe their 
plans for solving the problems and have them solve. The selection is based on the analysis of 
student’s written work. A representative sample of students having clear and valid global 
plans but failing to successfully solve the problems was selected based on the types of errors 
they made while solving the problems. The purpose of conducting audio or videotaped 
interviews was to illicit their detailed plan for solving problems, because it might be difficult 
for students to describe the detail of their plan in writing. Also, brief global plans might not 
provide enough evidence to know if the students have clearly understood the underlying 
concepts and the procedures for solving the problems. Interviews also allow the researcher 
the flexibility to ask follow-up questions.  

Data Analysis 

The first phase of data analysis involved the analysis of students’ global plans and their 
solutions to mathematical problems from the written data. The data was analyzed using 
qualitative techniques: the constant comparative method (Strauss & Corbin, 1998)) and 
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thematic analysis (Braun, 2008; Creswell, 2012). The data analysis involved both inductive 
and deductive approaches (Braun, 2008). Students’ global plans were categorized into one of 
the two predetermined categories: valid or invalid/unclear. The solution plans that seemed 
capable of leading to correct solutions, provided that they were executed successfully, were 
categorized as valid. Figure 1 shows an example of a valid solution plan provided by a 
student in Calculus II in the fall 2015 semester. Some students did not know how to articulate 
their plans in writing, but their sketch clearly communicated their understanding and thought 
processes. Such global plans were also categorized as valid. Figure 2 shows an example of 
such a plan. 
 

Figure 1. An example of a valid solution plan 

 
 

Figure 2. An example of a valid but not clearly articulated solution plan 
 

 
Students’ errors in the solutions were also categorized into predetermined categories 

algebraic, computational, and procedural (Pugalee, 2004). See figure 3 for an example of an 
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algebraic error found in one of the responses.  
 

Figure 3. An example of algebraic error in student work 
 

 
 

More error categories emerged during data analysis: calculus, carelessness, conceptual, 
other prerequisite, and plan not followed. Errors pertaining to only calculus I related concepts 
or skills were put into calculus category. An example of calculus error can be seen in figure 
5. Errors due to lack of orientation (such as not reading the problem carefully) and 
concentration during writing solutions mostly comprised the carelessness category. See 
figure 4 for an example of error due to student’s carelessness.  
 

Figure 4. An example of carelessness 

 
 

Figure 5. An example of prerequisite calculus error 
 

 
 
Errors related to prerequisite concepts or skills (such as due to lack of trigonometry 

concepts or skills) other than algebraic, computational or calculus errors were put into the 
other prerequisite category. Some students gave legitimate plans but did not follow them and 
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failed to produce correct solutions. Such errors were put into the category plan not followed. 
Errors that did not fall into any of the categories discussed above all fell into the other 
category. 

Some of the students’ work had multiple occurrences of errors that fell into the same 
category, but they were recorded collectively as 1 (detected) or 0 (not detected). Students’ 
final answers or conclusions were categorized as correct or incorrect. Solutions with correct 
answers or conclusions supported by valid work were considered as solved successfully. The 
percentage of points that was taken off from each problem (out of the maximum possible 
score) due to one or a combination of all errors was also recorded. Solutions with correct 
answers not backed up by valid work did not receive full credit. This preliminary analysis 
includes data in the form of students’ written work from two sections of Calculus II (one 
section each from the spring 2015 and fall 2015) and one section of IDE (spring 2015). A 
colleague was asked to grade and analyze a few student responses in order to establish 
intercoder reliability. There were small disagreements in categorizing a couple of student 
errors, as they would qualify to fall into more than one category. But a general consensus was 
reached by placing those errors under only one agreed-upon category, in order to avoid 
counting student errors more than once. 

  
Results and Discussion 

The number of students in each class was almost identical: 24 Calculus II-spring, 23 in 
IDT, and 24 in Calculus II-fall. But the number of responses collected was different; the 
number of assignments depended on the course as well as on the semesters and classroom 
dynamics. This section is focused primarily on those responses that had valid global plans but 
students were not able to execute them successfully. 

Of the 272 responses collected from Calculus II-spring, global plans of 199 responses 
(73%) were coded as clear and valid. This means that 199 of the plans convinced the 
researcher that the students could solve the problems successfully if they followed their plans 
and did not make any execution errors. Of those 199 responses, solutions in only 97 
responses (48.7%) were correct and in the remaining 102 responses were incorrect. Similarly, 
118 written samples collected from IDE were analyzed. Of these, 98 responses (83%) had 
clear and valid global plans, and solutions in only 43 (43.9%) of these 98 responses were 
correct. Likewise, 333 responses were collected from Calculus II-fall, 215 (64.5%) of which 
had valid plans. Of these 215 valid plans, 113 (52.6%) responses had correct solutions. See 
Table 1 for the summary of the data.  

 
Table 1. Data summary 

 
Data Cal II-Spring IDE-Spring Cal II-Fall 

No of Stds 24 23 24 
No of responses 272 118 333 

Valid plans 199 (73%) 98 (83%) 215 (64.5%) 
Correct solutions 97 (48.7%) 43 (43.9%) 113 (52.6%) 

 
Calculus II-spring 

There were 204 errors recorded in 102 responses with clear and valid plans but incorrect 
solutions; if any error type occurred more than once in a response, they were counted as one. 
Table 2 below summarizes the number (and percentages) of errors detected in those written 

19th Annual Conference on Research in Undergraduate Mathematics Education 1187

19th Annual Conference on Research in Undergraduate Mathematics Education 1187



samples that had clear and valid plans but incorrect solutions. The numbers in the column 
headings are the total number of responses with valid plans but incorrect solutions. The sum 
total of all procedural and conceptual errors was 49, which is 24% of all errors. The sum total 
of all errors related to required prerequisite knowledge was 96, which accounts for 47% of all 
errors. Of the 102 responses with clear and valid plan but incorrect solutions, 43 (42.16%) 
responses lost more than 20% of the maximum possible score. This means that they received 
a grade of C or lower. 
Calculus II-fall 

There were 333 errors recorded in 102 responses that had valid plans but incorrect or 
incomplete solutions. Conceptual and procedural errors accounted for 26.42% of all errors. 
Required prerequisite knowledge-related errors altogether accounted for 45.5% of all errors. 
Among those 102 responses, 31 (30%) responses received a grade of C or lower. 

 
Table 2. Error counts in responses with clear and valid plans but incorrect solutions 

 
Types of Errors Calc II-Spr 

(Total = 102) 
IDE 

(Total  = 55)  
Calc II-Fall 
(Total  = 102)  

Algebraic 13 (6.4%) 23 (27.06%) 8 (5.6%) 
Carelessness 23 (16.2%) 6 (7.06%) 17 (11.8%) 

Calculus 44 (21.6%) 14 (16.47%) 46 (31.9%) 
Computation 14 (6.9%) 1 (1.18%) 4 (2.8%) 
Conceptual 26 (12.8%) 20 (23.53%) 23 (16%) 

Others 5 (2.4%) 3 (3.53%) 20 (13.9%) 
Other Prerequisite 25 (12.2%) 7 (8.23%) 7 (4.9%) 
Plan not Followed 21 (10.3%) 0 (0.00%) 4 (2.8%) 

Procedural 23 (11.3%) 11 (12.94%) 15 (10.42%) 
Total 204 (100%) 85 (100%) 144 (100%) 

 
Figure 6. Comparison of error percentages by courses 

 

 
 

Differential Equations-spring 
There were 85 errors recorded altogether from the 55 responses with a correct plan but 

incorrect solutions. The total number of errors related to all types of prerequisite knowledge 
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was 45, which accounts for 53% of all errors. Among those 55 responses, 27 (slightly less 
than 50%) responses received less than 80% of available points. See Figure 6 to see how the 
percentages of errors compare in different courses. 

Results show that 48.7% of all responses with clear and valid global plans actually solved 
the problems successfully in Calculus II-spring. The corresponding figures in Calculus II-fall 
and IDE were 52.6% and 43.9%. This shows that having clear and valid plans does not 
guarantee students’ success in producing correct written solutions. If the students had not 
made required prerequisite knowledge related errors, many more would have performed 
better in the courses. Even though student responses had clear and valid plans for solving the 
problems, prerequisite knowledge related errors accounted for 47% of all errors in Calculus 
II-spring, 45.5% in Calculus II-fall and 53% of all errors in IDE-spring. Result indicates that 
lack of required prerequisite knowledge, especially the lack of precalculus concepts and 
skills, is hindering students’ efforts to solve the problems successfully in in-class 
assignments.  

Many students also seem to be not performing well because of carelessness and not 
following their own global plans. In Calculus II-spring, 44 out of 204 errors were due to 
either carelessness or not following their own plans, which accounts for 21.6% of all errors. 
The corresponding figure in Calculus II-Fall was 34.7%. But this figure is significantly 
smaller in IDE course; only 7.06% of all errors were due to carelessness, and none of the 
responses failed to follow their plans. Although the purpose of the research was not to 
compare the performance of students in these courses, it is noteworthy that 27.06% of all 
errors were algebraic in IDE, as compared to only 6.4% in Calculus II-spring and 5.6% in 
Calculus II-fall. On the other hand, 6.9% and 2.8% of all errors were computational in 
Calculus II-spring and Calculus II-fall as compared to only 1.18% in IDE. Obviously the 
problems posed in the courses were different, and a different level of algebraic or 
computational manipulations might have been necessary to solve them in two different 
courses. But it was interesting to see that 27.06% of all errors in the IDE course were 
algebraic, whose prerequisite course was Calculus II. This number could be much higher if 
we also counted the students’ responses with incorrect and/or invalid global plans. Similarly, 
the percentages of prerequisite calculus I concepts or skills related errors were very high in 
all three sections: 21.6% in Calculus II-spring, 31.9% in Calculus II-fall and 16.47% in IDE-
spring, which the students of both courses were expected to know.  

Results show that overall less than 50% of the student responses with valid plans 
executed their plans successfully even though their global plans clearly indicated that they 
knew how to solve the problems. Results also confirm the findings from earlier research that 
most students did not even check the accuracy of their answers (Pugalee, 2004) even though 
many of them had enough time left. Very few students wrote in their global plans that they 
would check their answers, and fewer did so in the solutions. Although time restraints could 
be blamed as a cause of some of the errors such as those due to carelessness, not reading the 
problems carefully, not following their own plans, and not checking the accuracy of their 
answers, it would be interesting to see how often such errors would be detected if students 
were allowed to solve these problems in no time restraint situations.  

It is also evident from the results that students’ success in writing solutions is not only a 
function of knowledge of the current concepts being assessed, but also a function of students’ 
prerequisite knowledge and skills. The combined total of prerequisite knowledge-related 
errors in each course was very high as compared to the combined total of conceptual and 
procedural errors (see Table 2). Many of the precalculus related errors or errors due to 
carelessness might not have big impact on students’ understanding of the upper level 
(Calculus I and higher) mathematical concepts. It was found, however, that those students 
with better conceptual understanding also had better procedural and skills proficiency, as 
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evident in students’ global plans and solutions. These days skills proficiency is considered 
less important as compared to students’ conceptual understandings of the subject matter. But 
the results of this study suggests that conceptual understanding does not come at the cost of 
sacrificing skills proficiency (Engelbrecht, Harding, & Potgieter, 2005). Also, it is difficult to 
assess students’ learning using mathematical problems that require minimal amount of 
algebraic, trigonometric and computational concepts or skills. These prerequisite skills in first 
few steps set the stage for further steps in solving processes of many mathematical problems. 
Use of technology such as use of calculators could be helpful in reducing many of the 
precalculus concept or skills related errors. But technologies are not always helpful in 
enhancing students’ conceptual understandings.  

It has been widely documented that learning requires skills (Paris & Winograd, Wittrock, 
1986; Paris, Washik, van der Westhuizen, 1988). But results from this study also show that 
communicating what has been learned in writing also requires skills. Detection of large 
number of errors in carelessness category suggests that orientation to the problem (such as 
reading the problem carefully), concentration, regulation and monitoring of progress are 
some of the skills that are helpful to the students. Understanding of mathematical concepts 
and being able to communicate the understanding in writing are two different aspects of 
learning process. The results confirm the evidence of existing research that successful 
problem solvers engage in metacognitive activities in addition to having better understanding 
of mathematical concepts (Pugalee, 2004; Schur, 2002). An implication to this finding is that 
students should also be encouraged to learn test-taking skills in addition to learning the 
mathematical concepts being assessed. Students’ engagement in metacognitive activities 
while learning and solving (or writing solutions of) mathematical problems not only improves 
their learning (Schoenfeld, 1985), but might also improve their test-taking skills. In order to 
increase the likelihood of success in problem solving, metacognitive monitoring of progress 
becomes even more important in time restraint situations. These results indicate that students 
need to have more experience (or practice) in problem solving and writing solutions. At the 
present time, when online homework systems are taking the place of traditional homework 
assignments, these results indicate that students should be encouraged or required to 
communicate their understanding in writing more often. 

Few student behaviors were observed while they were writing solutions, but these 
behaviors were difficult to document. First, many students (in all three sections) jumped into 
writing the solutions first before laying out their global plans. The instructor had to 
continuously monitor and remind the students to write their plans first and follow them to 
solve the problems. These students tended to describe how they solved the problems instead 
of describing how they would solve. This study does not have enough data or evidence to 
explain reasons behind such behavior of students. Many of them might have either difficulties 
in articulating their global plans in writing, or not even have clear big picture or path to 
follow and solve the problems in their minds. Second, some students erased their original 
plan and rewrote them after they realized that their original plan did not or would not lead to 
a correct solution. This could be taken as an indication of students being engaged in 
regulation activities while solving the problems. They might have changed their plans after 
they realized that their original plans did not or would not lead to correct solutions. 
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Fostering teacher change through increased noticing: Creating authentic opportunities for 
teachers to reflect on student thinking  

 
Alan E. O’Bryan    Marilyn P. Carlson 

Arizona State University                Arizona State University 
 
This paper reports results from a case study focusing on a secondary teacher’s sense-making as 
she was challenged to reinterpret her meanings for algebraic symbols and processes. Building 
from these opportunities, she redesigned lessons to gather information about how her students 
conceptualized quantities and how they thought of variables, terms, and expressions as 
representing those quantities’ values. She then used this information to respond productively to 
her understanding of individual students’ meanings and reasoning elicited during these lessons. 
We argue that this case study demonstrates the potential for coordinating quantitative reasoning 
with teacher noticing as a lens to support teacher learning and we recommend specific 
mathematical practices that can help teachers develop more focused noticing of students’ 
mathematical meanings during instruction. 
 
Key words: Professional Development; Quantitative Reasoning; Teaching Mathematics 

 
Introduction and Context 

 Many states adopted the new Common Core State Standards for Mathematics (National 
Governors Association Center for Best Practices & Council of Chief State School Officers, 
2010) as part of an effort to improve student learning and achievement. But research suggests 
that substantial change, at least in the short-run, will be difficult for the following reasons: (1) 
teaching practices and teachers’ conceptions of their curricula are more significant indicators of 
student achievement than curricula alone (Boaler, 2003; Thompson, 1985), (2) teaching practices 
are learned implicitly as a cultural activity (Stigler & Hiebert, 2009), (3) teachers have a limited 
tolerance for the discomfort they feel while trying to implement reforms (Frykholm, 2004), and 
(4) reform efforts challenge teachers’ traditional images of efficacy (Smith, 1996). 
 Smith (1996) and Thompson, Phillip, Thompson, and Boyd (1994) argue that thoughtful 
lesson planning that includes carefully conceptualizing learning goals, generating conjectures 
about how a person might come to understand certain ideas, and considering alternative solution 
methods may alleviate some of the uncertainty teachers feel in shifting their practice and might 
positively impact student learning. But our experience is that shifting teachers’ practices is 
difficult. Interventions that only target a teacher’s personal mathematics knowledge, such as 
providing additional upper level math coursework, might not translate to teachers modifying 
their established curricula and lessons. Some reasons for this may be that mathematics 
coursework does not advance teachers’ knowledge of student learning of specific mathematics 
content; nor does it address challenges teachers encounter when determining and implementing 
curriculum for a particular course. Interventions with broad goals, such as shifting the emphasis 
from direct instruction to student-centered activity, often fail to impact student learning 
positively if teachers make only superficial changes in their teaching (Stigler & Hiebert, 2009).  
 

Theoretical Perspective 
We agree with Thompson’s (1993, 2013) assertion that meaning is not carried by symbols or 

pictures on a page but rather exists in the mind of an individual. Accordingly, at any moment 
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during an interaction between two individuals there is a meaning in the mind of the person 
communicating and a meaning in the mind of the interpreter. In the moment of teaching, 
students’ current mathematical meanings are critically important because these are the meanings 
students either build upon or transform to advance their mathematical understandings. We align 
with von Glasersfeld (1995) who argues that one person cannot transmit knowledge to another. 
An individual must construct knowledge and meanings for himself through personal experiences. 
Thus, it is ineffective to tell teachers what students think (even if we knew), how to respond to 
students’ questions, or how to leverage student thinking to provide more meaningful 
mathematical experiences. Instead, we must help teachers to become fluent in revealing the 
variety of student reasoning existing in their classrooms and to recognize the utility in being 
sensitive to student thinking when planning and delivering instruction. Mason (2002) argues that 
professional development is always a personal endeavor and that change occurs when a person 
increases the scope as well as the specificity of what he notices while engaged in professional 
practice and uses this intentional noticing to inform his actions at relevant moments. The more a 
teacher engages in disciplined noticing, the more likely it is that the teacher constructs new 
images of how a student may conceptualize and represent a problem or idea.  

If we can foster increased noticing of student thinking in teaching and learning situations, we 
believe that teachers will be more likely to set goals related to building models of student 
thinking and to see their own practice as a source of learning and personal professional 
development (Cobb & Steffe, 1983; Lage-Ramirez, 2011; Stigler & Hiebert, 2009; Teuscher, 
Moore, & Carlson, 2015; Thompson & Thompson, 1996). We further believe that a focus on 
what Thompson (1994, 2013) calls quantitative reasoning is a fruitful avenue for fostering 
increased and disciplined noticing. By focusing attention on quantities, their relationship to one 
another, and how to represent the values of quantities using expressions or reasonable operations 
for calculating the values (Thompson, 1993), teachers have a potentially small but useful set of 
guidelines for fostering the sociomathematical norm of speaking with meaning (Clark, Moore, & 
Carlson, 2008) whereby the classroom atmosphere is about making sense of others’ thinking and 
representing one’s own thinking. In such an environment, teachers are primed to be more 
disciplined at noticing and motivated to make use of the thinking they do notice. 

 
Practices that Support Meaning-Making 

Our experience with teachers and review of relevant literature suggest that it is difficult for 
teacher professional development to achieve measureable gains in student learning. Our 
hypothesis is that a small set of teaching practices focused on using quantitative reasoning to 
generate meaningful representations of quantitative relationships can foster more focused 
noticing of student meanings and improve a teacher’s ability to react productively to student 
thinking. Synthesizing the works described in our theoretical perspective, we generated the 
following set of practices and expectations that we call meaningful mathematical 
communication, or MMC, practices. 

1. An expectation that people speak clearly and meaningfully by avoiding the use of 
pronouns and referencing specific quantities in class conversations and written 
assignments (Clark et al., 2008; Mason, 2002). 

2. An expectation that, when a person writes an expression or performs a calculation, she 
first writes out in words or says verbally what she intends to calculate. After a person 
writes an expression or performs a calculation, she justifies what the expression or 
calculation represents (Thompson, 1993; Thompson, 2013). 
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3. An expectation that when a person writes a formula or mathematical expression he is 
attempting to communicate his thinking. Therefore, each person in the course is 
responsible for being able to justify what his mathematical statements are intended to 
convey. If someone else creates a different representation (including mathematically 
equivalent statements that contain different expressions or orders of operations) then it 
may represent a fundamentally different way of thinking, and each person is responsible 
for trying to understand this thinking (Thompson 1993; Thompson et al., 1994). 

 The following example highlights why we think these are important classroom norms to 
establish and support. Consider an arithmetic series with an even number of terms. Figure 1 
summarizes three methods one might use to efficiently determine the sum. 

 
Figure 1. Different ways to conceptualize finding the sum of an arithmetic series. 
 The three formulas � �� �12

n
n nS a a � , � �� �1

2
na a

nS n � , and � �� �1
12n nS n a a �ª º¬ ¼  produce the 

same sum for every arithmetic series. But it is not enough to treat the formulas off-handedly as 
merely mathematically equivalent statements and settle on one as a preferred method. Each 
formula derives from a different conception of efficiently calculating the sum and, when treated 
in this way, helps students understand that mathematical symbols and formulas are ways to 
communicate and represent their thinking. Explaining what someone intends to calculate before 
generating the mathematical representation helps to highlight this point. It also promotes 
synchronizing the reasoning process that generated the formula with the order of operations one 
performs while evaluating it and highlights how a different order of operations corresponds with 
a different way of reasoning.  
 We hypothesize that most teachers can implement the MMC practices regardless of the level 
they teach or their background in attempting to make student thinking an important part of their 
lessons. We also believe that the MMC practices are not overly ambitious in terms of the 
demands they place on teaches.  
 

Research Questions 
Based on our theoretical perspective and our conceptualization of the MMC practices, we 

designed a professional development intervention and conducted a study aimed at answering the 
following research questions. 1) How did the teacher come to make sense of quantitative 
reasoning as a lens for interpreting symbols and processes? 2) How, and to what degree, did the 
teacher attempt to recreate similar experiences for her students? 3) To what extent did the teacher 
adopt the MMC practices as classroom norms and use them to gather evidence about her 
students’ meanings and reasoning? [In other words, did the teacher engage in disciplined and 
productive noticing? We say a teacher engages in disciplined and productive noticing when she 
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intentionally chooses to gather evidence of student thinking and leverages what she notices to 
make productive instructional moves such as posing questions to help students build new 
connections, asking students to compare their reasoning to their peers’ reasoning, or generate 
alternative representations of their thinking.] 
 

Methods 
 This study involved one teacher in a large urban middle school in the Southwestern United 
States. Tracy was teaching an honors Algebra II course using the Pathways Algebra II 
curriculum (Carlson & O’Bryan, 2014). The study included five one-on-one professional 
development sessions and five classroom observations spread throughout the Fall 2014 semester 
and concluded with a final follow-up interview near the end of the Spring 2015 semester. The 
professional development sessions had two goals. First, to present tasks and contexts where 
thinking carefully about quantities’ values being represented by mathematical expressions is 
useful and where mathematically equivalent statements can represent different ways of 
conceptualizing a context. Second, for Tracy to reflect and comment on anything she observed 
while implementing a similar focus during class sessions with students. We conducted classroom 
observations to determine if Tracy implemented the MMC practices and, if so, the effect they 
had on the quality of classroom discourse. 
 The first author video recorded and transcribed each professional development session and 
most classroom observations. A delay in receiving signed parental consent forms for videotaping 
classroom sessions necessitated using shorthand techniques to transcribe the first two classroom 
sessions in person. He later expanded these notes to a very close approximation of the class 
conversations. We analyzed the transcripts using open coding (Strauss & Corbin, 1990) and then 
looked for recurring and emergent themes over the course of the semester. In this paper we 
report results relative to one identified theme (increased noticing). 

 
Results 

Mason (2002) says that a teacher with a disciplined and systematic approach to noticing 
creates opportunities to gather important feedback from her students, and this feedback is used in 
planning for and acting in future learning moments. For Excerpt 1, the first author asked Tracy to 
explain anything that stood out to her while grading a recent quiz. 
Excerpt 1. 
1   Tracy: Um on number three…You leave a school and start walking home at a constant speed 

of four feet per second. Five minutes later you are a hundred feet from your house. 
Assume you're walking in a straight path to your house. Write a formula to define the 
relationship between the quantities distance from your house and time since leaving 
the school. And so then the first one was writing a formula telling them how to define 
the variables, and then the second two questions were so how far is your house from 
the school and how long did it take you to get there. What was interesting is almost 
everybody got b and c correct. A lot of people missed a. Because they were like I 
know you told me that the distance should be distance from my house, but what I 
would really like to do is distance from school. (laughs) So a lot of them used an 
incorrect reference point um or they, they said okay I'll use distance, but I’m gonna 
make it this other distance. So we really have done several problems like this after 
that…I've had them walk across the room. [Student] was on the little pretend bicycle 
…I have problems where I had them model okay so now back up what's happening? 

19th Annual Conference on Research in Undergraduate Mathematics Education 1195

19th Annual Conference on Research in Undergraduate Mathematics Education 1195



And go forward, what's happening to the distance? And I also did several problems 
after this where I made them write both formulas. Okay, you really wanted to do this 
formula, fine do that one and do this one, and so they knew because they had to do 
two that they had to be different, and then we also talked a lot about that afterwards. 
How, one thing that I realized they were doing is your reference point has to match 
your variables, so like they would be using a reference point where the d in the 
reference point was distance from house, or school in this case, so they're using a 
reference point maybe of distance from school, but then they're trying to write a 
formula distance from house. Well, if your formula's tracking distance from house, 
your reference point has to be in distance from house, or if it's distance from school, it 
has to be in-, so we talked about the importance of, what my, what the meaning of the 
reference point and the variables that it's keeping track of, those need to be the 
variables that are appearing in the equation so then that got back to a discussion of 
and how important is it that we define (laughs) our variables accurately.  

Tracy noticed a difference between how she and her students conceptualized a situation. This 
was an important moment for her because she saw a need to practice thinking about different 
ways to conceptualize a situation and how choosing different pairs of co-varying quantities to 
compare creates different relationships. After Tracy noticed that students did not conceptualize 
the situation as she intended, she modified her future instruction to account for this tendency and 
was primed to notice similar inconsistencies in the future. 

In Excerpt 2, Tracy described her students’ work to interpret the parts of the general explicit 
formula for geometric sequences. 

 
Figure 2. Exploring student meanings for expressions (Carlson & O’Bryan, 2014, p. 94). 
Excerpt 2 
1   Tracy: [See Figure 2]. The one that was most concerning to me actually out of these five, cuz 

I feel like they got most of them, well like-like for example on this one [points to part 
(b. v.)], they said this is the first term multiplied by the ratio n minus one times, and I 
said, well, what does that find? Well, the nth term. Okay, so this represents the nth 
term. Then they said this- when I asked them what this was [points to part (b. iii.)] 
they said that's the position before the nth position. They didn't see it as that's how far 
you need to change, that's how far your position is changing away from one. So that 
led to a discussion. And so, and then it had to be linked to this is multiplying by the 
ratio this many times but why? Because you're changing away that many positions. 

 According to Tracy, her students had little difficulty generating the formula an = a1∙rn–1 
inductively from several examples. But because Tracy asked them to describe their meanings for 
the different parts of the formula, she noticed that their meaning for at least one of the 
expressions differed from her own (and thus from the meaning she expected them to develop). 
Tracy said that in the past she was satisfied once students generated and could use the explicit 
formula, but she would not have realized that the students’ conceptualizations of the formula 
differed from her own. After this experience Tracy created her own set of follow-up tasks 
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designed to help students build a meaning for n – 1 as the value of the quantity “change in term 
position away from n = 1”. 

In the professional development sessions the first author encouraged Tracy to develop a 
personal appreciation for how different ways of conceptualizing a situation might lead to 
different (but equivalent) mathematical representations and that this point of view creates 
flexibility in modeling a situation. During the third such session, Tracy realized that she could 
use any term in the sequence as a reference point for relating the term values to their positions. 
That is, instead of an = a1∙rn–1 representing the general explicit formula for a geometric sequence, 
she could think about the general formula as an = aj∙rn–j where aj is the jth term in the sequence. 
Tracy said that she wanted her students to develop a similar understanding, and so she wrote and 
assigned the problem shown in Figure 3. She wanted students to understand that they could write 
the formula as either an = 15∙rn–3 or an = 143∙rn–7 with an appropriate choice of r. However, she 
was also sensitive to noticing alternative valid representations by working to make sense of the 
thinking behind these representations and wanted to help her students do the same. 

 
Figure 3. Tracy’s problem for defining a geometric sequence’s explicit formula. 

   
Figure 4 (left). Student response to the warm-up.   Figure 5 (right). Tracy’s clarification. 
Excerpt 3 
1   Tracy: Yeah. Now take a look at S1’s work. I want you to just read her work and think about 

it. [Tracy shows Figure 4.] S1, can you explain your work? 
2   S1: Well, first we tried to find r but it was really messy. So we wanted to just leave it as r. 
3   Tracy: So you did find r?  
4   S1: Yeah. It was about nine point five three three three and then we had to take a root. It 

was kind of like the second one. 
5   Tracy: So...wait. Tell me how you got nine point five three? 
6   S1: The change in position was four, so r to the fourth is a hundred forty three divided by 

fifteen. [Tracy writes Figure 5.]…So then we focused on finding the first term, which 
is two positions away so we divided by r squared. 

7   Tracy: [long pause] Should this work? [pause] Think back to yesterday, think of the formula 
we developed and the reference point. What did we use? 

8   S2: One comma a one. The first term. 
9   Tracy: Yes. And our goal was to write a formula that allows us to calculate the output a n for 

any input n. Think about the parts of the function and what they represent. What does 
a one represent? 

10  S2: First term. 
11  Tracy: Okay, a one is our first term. What does r represent? 
12  S3: What we multiply by to get the next term. 
13  Tracy: What is n minus one? We had some discussion yesterday about the possible 

interpretations. Some of you said that it was the position before the nth position, but 
we talked about how that might not be the most useful interpretation here.  

Given a geometric sequence with a3 = 15 and a7 = 143, write the explicit formula. 
(Note that you do not need to calculate the value of r.) 
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14  S3: It’s the change away from one. 
15  Tracy: Yes, the change in term position away from one. Now we don’t know a sub one, 

instead we know a sub three, but by dividing by r to the second we can represent the 
value of a sub one even though we don’t otherwise know what it is.  

In another lesson, Tracy asked students to consider the contribution of a fictitious classmate 
who supposedly made the claim about finite geometric series shown in Figure 6. 

 
Figure 6. Exploring a claim about geometric series (Carlson & O’Bryan, 2014, p. 106). 
Tracy’s goal was for students to see that the difference between the sum of the series and r times 
the sum of the series was the difference between a1 and r∙an. As students worked on this task, 
Tracy asked them to think about the meaning of various expressions, and in doing so noticed that 
some students, seeing S6 – 3∙S6 = 5 – 3,645, were confused because S6 was not 5 and 3∙S6 was not 
3,645. We believe that a focus on the MMC practices helped Tracy notice and address this 
incorrect conception and reinforce what the various expressions represented in this context. 
 

Discussion 
We believe that teachers who state their learning goals in terms of student thinking (and not 

just in terms of performance objectives) are better equipped to monitor the development of 
students’ meanings and to respond productively in the moment when they notice that these 
emerging meanings deviate from intended meanings. Excerpts from Tracy’s teaching 
demonstrate that a teacher can leverage quantitative reasoning to make fine grained observations 
about students’ mathematical reasoning. Specifically, Tracy worked to implement the MMC 
practices in her classroom on a daily basis and thus developed a disciplined practice of noticing 
that prompted her to adjust her instructional activities and trajectory to focus on and monitor 
students’ mathematical meanings and make productive instructional moves.  

We acknowledge that this case study involved only one teacher and that we do not have 
detailed observations of Tracy’s teaching prior to her participation in the study. We only have 
Tracy’s testimonial that the MMC practices were a significant contributing factor in what we 
witnessed and so we stop short of claiming that our professional development intervention in 
particular was responsible for Tracy engaging in disciplined and productive noticing. However, 
it was clear that Tracy leveraged quantitative reasoning in reinterpreting her own meanings for 
algebraic expressions and processes, designed lessons to create similar opportunities for her 
students, and leveraged quantitative reasoning to interpret and respond to students’ classroom 
contributions. Thus, we believe that quantitative reasoning can serve as a useful tool to help 
teachers refine their noticing in the context of teaching mathematics. We hope that future 
research can develop and refine a framework to characterize teachers’ quantitative reasoning and 
the connection between quantitative reasoning and disciplined and productive noticing. 
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Changes in assessment practices of calculus instructors  
while piloting research-based curricular activities

Michael Oehrtman, Matthew Wilson, Michael Tallman, and Jason Martin
Oklahoma State University 

We report our analysis of changes in assessment practices of introductory 
calculus instructors piloting weekly labs designed to enhance the coherence, rigor, and 
accessibility of central concepts in their classroom activity. Our analysis compared all items 
on midterm and final exams created by six instructors prior to their participation in the 
program (355 items) with those they created during their participation (417 items). 
Prior exams of the six instructors were similar to the national profile, but during the pilot 
program increased from 11.3% of items requiring demonstration of understanding to 
31.7%. Their questions involving representations other than symbolic expressions 
changed from 36.7% to 58.5% of the items. The frequency of exam questions requiring 
explanations grew from 4% to 15.1%, and they shifted from 0.8% to 4.1% of items requiring 
an open-ended response. We examine qualitative data to explore instructors’ attributions for 
these changes. 

Key words: [Calculus, Assessment, Cognitive Level, Representations, Problem-Solving] 

One component of the recent national study of calculus programs in the United States 
(Bressoud, Mesa, & Rasmussen, 2015) examined the assessment practices of instructors of 
these courses. Tallman & Carlson (2012) analyzed the content of 150 Calculus 1 final exams 
sampled from a variety of post-secondary institutions in the larger study along three 
dimensions in their Exam Characterization Framework (ECF) detailing the cognitive 
orientation, mathematical representations, and answer format of each item. The study 
demonstrated that few final exam items required a demonstration or application of 
understanding of the material, primarily involved only symbolic representations, and rarely 
required explanation or involved open-ended responses. One explanation of these results may 
be that faculty assessment practices simply reflect the expectations of institutionally adopted 
curriculum. Lithner (2004), for example, found that a majority of exercises in calculus 
textbooks could be solved by choosing examples or theorems elsewhere in the text based on 
surface-level features and mimicking the demonstrated procedures.  

We examined the assessment practices of pilot instructors implementing activities in their 
calculus courses designed to simultaneously enhance the coherence, rigor, and accessibility of 
student learning throughout the course. Project CLEAR Calculus provided weekly labs in 
which students participated in group problem-solving activities to scaffold the development 
of central concepts in the course along with instructor training and support to implement the 
labs. While the project did not address student assessment through exams, we hypothesized 
the conceptual focus in the labs and requirements of student write-ups would significantly 
impact the instructors’ assessment practices. We address the following research questions: 

1. How do the pilot instructors’ exam questions compare to their previous exams along the
three ECF dimensions?

2. What factors do the pilot instructors attribute for any shifts in their assessment practices?
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approximation. Oehrtman found that, unlike most other cognitive models employed by 
students, the structure of students’ spontaneous reasoning about approximations shares 
significant parallels with the logic of formal limit definitions while being simultaneously 
conceptually accessible and supporting students’ productive exploration of concepts in 
calculus defined in terms of limits. With this in mind, we contend that a false dichotomy 
exists between a formally sound, structurally robust treatment of calculus on the one hand 
and a conceptually accessible and applicable approach on the other. By adopting an 
instructional framework utilizing approximation and error analyses, we designed labs based 
on criteria listed in Figure 1 intended for weekly use in an introductory calculus sequence. 

Design Criteria 1. Language, notation, and constructs used in the labs should be conceptually accessible to 
introductory calculus students. 

Design Criteria 2. The structure of students’ activity should reflect rigorous limit definitions and arguments 
without the language and symbolism of formal ߜ-ߝ and ߝ-N notation that is a barrier to most 
calculus students’ understanding. 

Design Criteria 3. The labs should present a coherent approach across all concepts defined in terms of limits 
and effectively support students’ exploration into these concepts. 

Design Criteria 4. The central quantities and relationships developed in all labs should be coherent across 
representational systems (especially contextual, graphical, algebraic, and numerical 
representations) 

Design Criteria 5. All labs should foster quantitative reasoning and modeling skills required for STEM fields. 
Design Criteria 6. The sequence of labs should establish a strong conceptual foundation for subsequent 

rigorous development of real analysis. 
Design Criteria 7. All labs should be implemented following instructional techniques based on a constructivist 

theory of concept development. 
Figure 1. Design criteria for the labs. 

When left unguided, students’ applications of intuitive ideas about approximations are 
highly idiosyncratic (Martin & Oehrtman, 2010a, 2010b; Oehrtman, 2009). To systematize 
students’ reasoning concerning approximation ideas and support an accessible yet rigorous 
approach to calculus instruction, throughout the labs students are engaged in contextualized 
versions of the questions in Figure 2. These questions develop coherence between structural 
components, reveal operations performed on these components, and highlight relationships 
among the operations, foundational for the generation of new understandings. 

Question 1.   Explain why the unknown quantity cannot be computed directly. 
Question 2.   Approximate the unknown quantity and determine, if possible, whether your approximation is an 

underestimate or overestimate 
Question 3.   Represent the error in your approximation and determine if there is a way to make the error 

smaller. 
Question 4.   Given an approximation, find a useful bound on the error. 
Question 5.  Given an error bound, find a sufficiently accurate approximation. 
Question 6.   Explain how to find an approximation within any predetermined bound. 
Figure 2. Approximation questions consistent across most labs. 

Background 

Limit concepts are at the core of mathematics curriculum for STEM majors, but decades 
of research have revealed numerous misconceptions and barriers to students’ understanding. 
Building off of work by Williams (1991, 2001), Oehrtman (2009) identified several cognitive 
models employed by students that met criteria for emphasis across limit concepts and for 
sufficient depth to influence students’ reasoning. Williams noted that frequently students 
attempt to reason about limits using intuitive ideas associated with boundaries, motion, and 
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Item Orientation 
Tallman and Carlson adapted the six intellectual behaviors in the conceptual knowledge 

dimension of a modification of Bloom’s taxonomy (Anderson & Krathwohl, 2001) to 
characterize the cognitive demand of exam items. The six categories of item orientation are 
hierarchical with the lowest level requiring students to remember information and the highest 
level requiring students to make connections (see Table 1). 

Table 1 
Item orientation codes (adapted from Tallman & Carlson, 2012) 
Cognitive Behavior Description 

Remember Students are prompted to retrieve knowledge from long-term memory. 

Recall and apply 
procedure 

Students must recognize what procedures to recall and apply when directly prompted to 
do so. 

Understand Students are prompted to make interpretations, provide explanations, make comparisons 
or make inferences that require an understanding of a mathematics concept. 

Apply understanding Students must recognize recognize the need to use a concept and apply it in a way that 
requires an understanding of the concept. 

Analyze Students are prompted to break material into constituent parts and determine how parts 
relate to one another and to an overall structure or purpose.  

Evaluate Students are prompted to make judgments based on criteria and standards.  

Create Students are prompted to put elements together to form a coherent or functional whole; 
reorganize elements into a new pattern or structure.  

Item Representation 
The item representation domain of the ECF involves classification of both the 

representation of mathematical information in the task as well as the representation the task 
solicits in a solution (see Table 2). A task statement or solution may involve multiple 
representations. Since many tasks can be solved in a variety of ways and with consideration 
of multiple representations, we observed Tallman and Carlson’s recommendation of 
considering only the representation the task requires. 

Exam Characterization Framework 

Tallman and Carlson (2012) developed a three-dimensional framework to analyze a large 
sample of post-secondary Calculus 1 final exams and generate a snapshot of the skills and 
understandings that are currently being emphasized in college calculus. Their Exam 
Characterization Framework (ECF) characterizes exam items according to three distinct item 
attributes: (a) item orientation, (b) item representation, and (c) item format. 
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Proof The task presents a conjecture or 
proposition. 

The task requires students to demonstrate the 
truth of a conjecture or proposition.  

Example/ 
counterexample 

The task presents a proposition or 
statement. 

The task requires students to produce an example 
or counterexample. 

Explanation Not applicable.  The task requires students to explain the meaning 
of a statement. 

Item Format 
The third and final dimension of the ECF is item format. The most general distinction of 

an item’s format is whether it is multiple-choice or open-ended. However, there is variation 
in how open-ended tasks are posed. For this reason, Tallman and Carlson define three 
subcategories of open-ended tasks: short answer, broad open-ended, and word problem. A 
short answer item is similar in form to a multiple-choice item, but without the choices. A 
student can anticipate the form of the solution of a short answer item upon reading the item. 
In contrast, the form of the solution of a broad open-ended item is not recognizable upon 
immediate inspection of the item. Broad open-ended items therefore elicit various responses, 
with each response typically supported by some explanation. Word problems can be of a 
short answer or broad open-ended format, but prompt students to create an algebraic, tabular 
and/or graphical model to relate specified quantities in the problem, and may also prompt 
students to make inferences about the quantities in the context using the model. Also, tasks 
that require students to explain their reasoning or justify their solution can be supplements of 
short answer or broad open-ended items.  

Exam Characterization Results of the National Sample 
Tallman and Carlson coded 14.83% of items in their randomly-selected sample of 150 

post-secondary calculus I final exams, collectively containing 3,735 items, at the 
“Understand” level of the item orientation taxonomy or higher. Their coding also revealed 
that 34.55% of items in their sample were not stated symbolically and required a symbolic 
representation in the solution. Also, Tallman and Carlson found that only 1.34% of items in 
their sample were broad open-ended questions.  

Methods 

Twelve instructors piloted up to 30 labs in 24 different first and second semester calculus 
classrooms at eight different institutions from Fall 2013 to Spring 2015. Training began with 

Representation Task statement Solicited solution 

Applied/ 
modeling 

Symbolic 

Tabular 

Graphical 

Definition/ 
theorem 

The task presents a physical or 
contextual situation. 

The task conveys information in the 
form of symbols.  

The task provides information in the 
form of a table.  

The task presents a graph. 

The task asks the student to state or 
interpret a definition or theorem. 

The task requires students to define relationships 
between quantities or use a mathematical model 
to describe a physical or contextual situation.

The task requires the manipulation, interpretation, 
or representation of symbols. 

The task requires students to organize data in a 
table. 

The task requires students to generate a graph or 
illustrate a concept graphically.  

The task requires a statement or interpretation of 
a definition or theorem. 

Table 2 
Item representation codes (Tallman & Carlson 2012) 
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that were created by other faculty, so these all exams from these instructors were removed 
from the comparative sample. 

A lead researcher in the development of the ECF and its application in the national study 
trained two members of our team to code with the framework resulting in 89% agreement 
between coding the training sample. Subsequent training focused on discrepancies. One 
member of our team has coded 355 items from 21 exams given by six instructors prior to 
using CLEAR Calculus labs and 417 items from 22 exams given by the same instructors 
while implementing the labs. A small number of exams remain to be coded, and we will 
choose a random sample of items to be coded by the second team member and the trainer to 
determine agreement and resolve discrepancies. 

We collected self-reported characterizations on the impact of pilot instructors’ teaching 
and exams through their implementation of CLEAR Calculus labs. We are currently 
analyzing this data for themes in and for shifts in assessment priorities. 

Preliminary Results 

Our analysis of exams given by our pilot instructors prior to participating in the project 
revealed a pattern very similar to the national profile found by Tallman & Carlson (2012) as 
shown in Table 3. In contrast, while implementing the labs the instructors nearly tripled the 
frequency at which they asked questions requiring a demonstration or application of 
understanding (from 11.3% to 31.7%) and included representations other than symbolic 
expressions at over 1.5 times the previous frequency (36.7% to 58.5%). They asked for 
explanations nearly 4 times as often (4% to 15.1%) and included broad open-ended items 
over 5 times as often (0.8% to 4.1%). 

Table 3 
Shifts in CLEAR Calculus pilot instructor’s assessment practices. 

Tallman & Carlson 
National Sample 

(3735 items) 

Pilot instructors prior 
to CLEAR Calculus

(355 items) 

Pilot instructors with 
CLEAR Calculus 

(417 items) 

Items requiring understanding 
or higher level reasoning 14.83% 11.3% 31.7% 

Items involving representations 
other than symbolic 34.55% 36.7% 58.5% 

Items requiring explanation 2.36% 4.0% 15.1% 
Broad open-ended items 1.34% 0.8% 4.1% 

To document changes in the pilot instructors’ assessment practices, we collected mid-
term and final exams from the calculus classes the instructors taught prior to implementing 
CLEAR Calculus labs and from the classes in which they were implementing the labs. Five 
of the instructors either had not previously taught calculus or were required to give exams 

in-person and online meetings with pilot instructors before the start of the Fall semesters, 
and most of the instructors attended a three-day workshop outlining the goals, strategies, 
and activities of the project. We supported their implementation of the labs throughout the 
fall and spring semesters with online meetings with project personnel. The project website 
provided instructors with student materials, instructor notes for each lab, solutions, grading 
rubrics, and supporting handouts and virtual manipulatives. Support meetings frequently 
included discussions of assessing lab write-ups but did not include discussions of creating 
or grading exams. 
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Discussion Questions 

As our coding is nearly complete our presentation  of the complete analysis will be very 
close to the data shown above. In addition, we will present themes from our qualitative data 
on instructors’ attributions for these changes as well as interesting patterns in the differences 
of the individual instructors. We will seek a discussion with the audience on questions of 
additional ways to analyze the ECF data to reveal other insights, potential follow-up 
questions to pursue with the instructors represented in this data, and additional data we may 
collect as we work with our third round of pilot instructors. 
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Students Perceptions of Learning College Algebra Online using Adaptive Learning 
Technology 

 
Lori Ogden 

West Virginia University 
 

Adaptive learning technology was used in the teaching of an online college algebra course.  As 
students worked on the mastery goals set for them, the technology helped students identify 
content that they already understood and other content that they had yet to master.  Goal 
orientation theory suggests that when learning is mastery-oriented, a student’s motivation to 
learn may improve (Ames & Archer, 1988).  Qualitative methodology was used to describe how 
students perceived the instruction of their college algebra course and their learning in the 
course.  Preliminary findings suggested that an adaptive teaching approach may help build 
students’ confidence because they can control the pace of instruction and chose where to focus 
their effort without drawing negative attention to themselves. 
 

Keywords: adaptive learning, college algebra, blended learning 
 

High failure rates in entry level mathematics courses continue to be problematic across 
college campuses in the United States (Haver, 2007).  Low student motivation has been 
identified as a factor contributing to this high failure rate (Thomas & Higbee, 1999; Walter & 
Hart, 2009). Since most college students are required to take college algebra and many need 
additional mathematics courses such as trigonometry and calculus, it is important to design, 
implement, and evaluate instructional strategies that can increase a student’s motivation to learn 
mathematics.   
   

Theoretical Perspective 
 

In order to combat low motivation, goal orientation theorists advocate interventions that 
utilize a mastery-oriented or goal-oriented learning approach (Ames & Archer, 1988).  A goal 
oriented approach to learning focuses achievement on mastering a task, the learning process, and 
self-improvement, whereas a performance oriented approach emphasizes normative standards or 
getting the highest grades.  Ames and Archer (1988) found that when a mastery goal oriented 
approach was perceived by students, students reported using more learning strategies, enjoying 
their class, and having willingness to tackle challenging problems.    
  

Literature Review 
 

Universities have continued to increase the number of online course offerings each year in an 
effort to accommodate the needs of today’s student (Allen & Seaman, 2014).   Adaptive learning 
technologies have emerged in online courses as a means to customize instruction to learners’ 
backgrounds, experiences, and prior knowledge.  Adaptive learning technologies have provided 
students with an opportunity to self-pace instruction and an opportunity to focus instruction on 
their individual needs rather than the collective needs of the whole class (Vandewaetere, Desmet, 
& Clarebout, 2011).   As researchers have begun to evaluate the effectiveness of adaptive 
learning technologies, findings have suggested that adaptive learning has positively impacted 
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both student learning and satisfaction (McKenzie, Perini, Rohlf, Toukhsati, Conduit & Sanson, 
2013). The implementation of an adaptive teaching approach may provide instructors an 
opportunity to design an online college algebra course that addresses individual learner needs, 
supports a mastery oriented learning approach, and in turn motivates students to learn college 
algebra.   

In order to effectively examine the efficacy of this teaching approach as a way to bridge 
the gap between perceived ability and actual mathematical ability, this study was conducted as 
part of a larger design and development research study.  This paper focused on the outcomes of 
the study specifically relating to student perceptions of the adaptive teaching approach used in 
their college algebra course.  The research question guiding this study was:  What are the 
students’ perceptions of the adaptive teaching approach used in their college algebra course? 
 

Instructional Approach 
 

For the purposes of this study, an adaptive learning courseware was implemented as the 
primary source of instruction for one section of an online college algebra course at Northeast 
University in the United States.  The courseware implemented was an artificially intelligent 
assessment and learning system that used adaptive questioning to determine which topics 
students already knew and which topics students needed to learn.   
 Before the course began, the instructor identified which topics to include in the college 
algebra course.  On the first day of class, students completed a pre-test in the courseware.  
Student performance on the test determined how many college algebra topics each student had 
yet to master.  As students worked through topics in the courseware they were able to take 
advantage of several online resources.  These resources included lecture videos, an e-version of 
the textbook, worked examples, and written explanations.  In addition, the instructor held weekly 
office hours online and on-campus.     
 Mastery goals were set to encourage students to maintain an appropriate pace (see Table 
1).  By the end of week 1, students were to have mastered 20% of all topics in the course and by 
the end of week 6 they were to have mastered 100%. Grades were awarded each week.  For 
example, if a student mastered 19% of the topics in week 1, his grade would be 95% for total 
mastery for week 1.    
 
Table 1 
 
Summary of Weekly Mastery Goals 
Mastery goals Total course mastery 
Week 1 20% 
Week 2 40% 
Week 3 60% 
Week 4 75% 
Week 5 90% 
Week 6 100% 

 
 
 The students’ final grade was determined by their progress on specific mastery goals, a 
time goal, and two exams (see Table 2).  Total mastery was worth 30% of their final grade and 
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reflected the number of topics the student mastered out of the total number of topics (403 topics).  
Mastery of each objective was worth 35% of the final grade and reflected the number of topics 
mastered within each of the five objectives (Equations and Inequalities, Graphs and Functions, 
Polynomial and Rational Functions, Exponential and Logarithmic Functions, and Systems of 
Equations).  The weekly time requirement was worth 10% of the final grade.  Students were 
required to spend ten hours a week working in the courseware.  A comprehensive midterm and 
final exam were given and worth 25% of the final grade. 
 
Table 2 
 
Components of Students’ Final Grade 
Component Percentage of final grade 
Total Mastery 30% 
Mastery of each objective 35% 
Weekly Time Spent 10% 
Midterm/Final Exam 25% 

 
 

Methodology 
 

Participants included 27 undergraduate students and the instructor of record.  The instructor 
was also the researcher and has been teaching algebra for the last 15 years.  Qualitative 
methodology was used to analyze the empirical materials (Miles & Huberman, 1994).   

An online anonymous survey with eight open-response questions was administered to all 
students during the last week of class.  These surveys were used to provide students’ an 
opportunity to assess their learning and the course.  Twenty students completed the survey.   In 
addition, a university course evaluation questionnaire was administered to all students during 
the last week of class. Question formats included Likert scale questions (both university-
developed and instructor-developed) and open-response questions.  Twenty-one students 
completed university evaluations.   

Data analysis is still in a preliminary stage, however; the following steps have been taken.    
First, an initial reading of student responses was conducted.  Starter themes emerged as the 
researcher was able to organize the responses into categories.  Next, responses were coded 
according to each category.  Sub-themes in each category were identified because of their 
frequent occurrence.   
   

Results 
 

Findings are described according to the themes and sub-themes that emerged during data 
analysis.  Student responses were categorized into two themes:  instructional approach and self-
evaluation of learning.  Sub-themes for theme one were:  Adaptive learning technology, course 
structure, opportunity to self-pace instruction, and suggestions for improvement.  Sub-themes 
for theme two were:  self-discipline and overall learning in the course.  Each theme and sub-
theme is explained in detail in the following paragraphs.  Specific quotations from the student 
surveys are provided to exemplify each theme. 
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Theme one: Instructional approach 
Theme one included student responses from the anonymous survey and university course 

evaluations that specifically referred to the instruction of the course.  
 
Sub-theme one: Adaptive learning technology 

Students overwhelming felt that the adaptive learning courseware enabled them to work at 
their own pace.  When asked, “What do you like best about the course?”, 65% of the students 
mentioned that they liked working at their own pace.  One student wrote, “I was able to move 
through the program at a pace that worked best for me.”  Another student wrote, “I like that it is 
self-paced.”  Thirty percent of the students provided comments related to how the adaptive 
nature of the instruction positively impacted their learning.  One student commented, “I like the 
adaptive structure because it measures us on what we know instead of the class as a whole and I 
think this is an easier way to learn instead of having to keep up with everyone.”   

When asked directly, “Do you like the adaptive nature of the course?”, 80% of the students 
answered “yes.”  Comments included, “yes, because I can spend more time learning things that I 
actually already need to work on and less time learning things I already know” and “yes, I 
struggle with math so I’m not holding anyone back.”  Five percent of students answered “no.”  
Comments included, “no, there isn’t enough time to work diligently on a topic you’re struggling 
with otherwise you fall completely behind in the course.”  Fifteen percent of students answered 
“yes and no” citing reasons such as, “I like that it is online, but I struggle to learn all of this on 
my own.” 

 
Sub-theme two: Course structure 

Students were asked, “What would you like to change about the course?”  Twenty-six 
percent responded nothing.  Seventy-four percent provided comments related to the structure of 
the course.  Responses included references to pacing (the course took place during a 6-week 
summer session), lowering the weekly time goal, requiring office hours, providing more lecture 
videos, and not requiring the final exam to be taken on campus.  Illustrative comments included, 
“I wish I was required to meet with my instructor once a week” and “If the course is only going 
to be in a 5-6 week time span, some of the material should be left out.  If that can’t happen, the 
course should be longer.  Monday-Friday I spend an average of 5 hours a day working on the 
[Aleks] pie, yet I still struggle to meet the deadlines.” 

 
Theme two: Self-evaluation of learning 

Theme two included student responses from the anonymous survey and university course 
evaluations that specifically referred to the instruction of the course.  

 
Sub-theme one: Self-discipline 

Students were asked, “What steps could you take to improve your own learning in this 
course?”  Seventy-five percent admitted that they need to spend more time working on the 
course material.  For example, one student said, “I should have invested more time and focused 
more and taken the opportunities to get help.”  Ten percent said that they were satisfied with 
their learning”, and 15% identified resources that they did not take advantage of such as “office 
hours” and “online lecture videos”.   
 
Sub-theme two: Overall learning 
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The majority (81%) of students rated their overall learning in the course as good (19%) or 
excellent (62%).  On the university course evaluations, students were asked to identify how 
much knowledge they have gained in the subject matter during the summer session.  Forty-eight 
percent of students chose “quite a lot”, 24% chose “more than average”, 24% chose “some”, and 
4% chose “very little”.    
 

Implications 
 

The purpose of this study was to describe students’ perceptions of the adaptive teaching 
approach used in their online college algebra course.  Preliminary results indicated that students 
felt that the teaching approach allowed them to adjust the pace of the course to accommodate 
their individual learning needs.  In addition, students liked that they could focus their energy on 
topics that they found difficult but did not have to spend time on topics that they already knew.  
However, many students still wanted their instructor to control the learning environment to some 
extent as they admitted to not taking the initiative to seek help or study on their own when it was 
not required.   

Students appreciated the opportunity to work on topics while not feeling as though they were 
holding other students back.  This outcome is consistent with findings from (Ames & Archer 
1988) which found that when students were engage in the learning process and were working 
toward their own mastery goals rather than competing for high grades and out-performing other 
students, their motivation to learn improved.  By focusing on mastery-goals, the instructor can 
provide an environment where potentially less motivated students feel safe.  The incorporation of 
adaptive learning technologies should be studied more rigorously.  Although this study has 
provided a glimpse into student perceptions regarding its use, more work is necessary to further 
examine a possible relationship between student motivation and the use of adaptive learning 
technologies in the instruction of undergraduate mathematics courses.   
 
 
Questions for Audience  
 

1.  Do you have experience using adaptive learning technologies in your undergraduate 
mathematics courses?  If so, do you have any recommendations for implementation? 

2. Do you know of other studies that discuss the use of adaptive learning technologies in 
mathematics courses? 

3. Do you know of other studies that connect the use of adaptive learning technologies with 
mastery-goal orientation? 
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Covariational and parametric reasoning 
 

Teo Paoletti Kevin C. Moore 
Montclair State University University of Georgia 

Researchers have argued that students can develop foundational meanings for a variety of 
mathematics topics via quantitative and covariational reasoning. We extend this research by 
examining two students’ reasoning that we conjectured created an intellectual need for 
parametric functions. We first describe our theoretical background including different 
conceptions of covariation researchers have found useful when analyzing students’ activities 
constructing and representing relationships between covarying quantities. We then present 
two students’ activities during a teaching experiment in which they constructed and reasoned 
about covarying quantities and highlight aspects of the students’ reasoning that we 
conjecture created an intellectual need for parametric functions. We conclude with 
implications the students’ activities and reasoning have for future research and curriculum 
design. 

Key words: Covariational reasoning; Quantitative reasoning; Parametric Functions; Cognition 

An increasing number of researchers have made contributions to the literature base on 
students’ quantitative and covariational reasoning (Carlson, Jacobs, Coe, Larsen, & Hsu, 
2002; Carlson, Larsen, & Jacobs, 2001; Castillo-Garsow, 2012; Confrey & Smith, 1995; 
Ellis, 2007; Ellis, Ozgur, Kulow, Williams, & Amidon, 2012; Johnson, 2012a; Thompson, 
1994a, 1994b) with respect both to students’ understandings of various content areas (e.g., 
function classes, rate of change, and the fundamental theorem of calculus) and to their 
enactment of important mental processes (e.g., generalizing, modeling, and problem solving). 
Although maintaining the common intention of understanding students’ covariational 
reasoning, researchers’ treatments of covariation are varied. For instance, Confrey and Smith 
(1994, 1995) approached covariation in terms of reasoning about discrete numerical values, 
finding patterns in these values, and interpolating patterns between them. In contrast, 
Thompson and Saldanha (Saldanha & Thompson, 1998; Thompson, 2011) approached 
covariation in terms of coordinating changes in two continuous magnitudes thus not 
constraining covariation to the availability of numerical data or specified values. 

In this report, we detail results from a teaching experiment in which students conceived of 
simultaneously covarying quantities in ways compatible with Thompson’s and Saldanha’s 
descriptions of covariation. We focus on the students’ actions during the closing sessions of 
the teaching experiment to discuss how the students represented relationships that constituted 
some situation or phenomena using projected magnitudes with an associated coordinate 
system, which Moore and Thompson described as emergent shape thinking (2015, in 
preparation). In characterizing the students’ reasoning, we highlight the parametric nature of 
their reasoning including the extent that students were explicitly aware of the parametric 
nature of their reasoning. We close by highlighting aspects of the students’ reasoning that 
may have supported the students in developing an intellectual need (Harel, 2007) for 
parametric relationships and functions.  

 
Theoretical Background 

 
Researchers who draw from interpretations of Piagetian and radical constructivist theories 

of knowing and learning have developed definitions and frameworks they have found useful 
when describing the mental processes and conceptual structures entailed in reasoning about 
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relationships between quantities (Carlson et al., 2002; Johnson, 2012a, 2012b; Moore & 
Thompson, 2015, in preparation; Steffe, 1991; Thompson, 1994a, 2011; Weber, 2012). Of 
importance to this report, Carlson et al. (2002) presented a developmental framework that 
allows for a fine-grained analysis of students’ covariational reasoning. The authors identified 
mental actions students engage in when coordinating covarying quantities including 
coordinating direction of change (quantity A increases as quantity B increases; MA2), 
amounts of change (the change in quantity A decreases as quantity B increases in equal 
successive amounts; MA3), and rates of change (quantity A increases at a decreasing rate 
with respect to quantity B; MA4-5). 

Also of importance to this report, Saldanha and Thompson (1998) described the 
developmental nature of images of covariation, “In early development one coordinates two 
quantities’ values to think of one, then the other, then the first, then the second, and so on. 
Later images of covariation entail understanding time as a continuous quantity, so that, in 
one’s image, the two quantities’ values persist” (p. 298). Extending this description, 
Thompson (2011) provided a first-order model of such an understanding in which an 
individual conceives of a quantity’s value, x, varying over (conceptual) time, t. The 
individual could then conceive of covering the domain of t-values using intervals of size ε, 
and consider the variation of x in these intervals (i.e. considering xε as the set of x-values 
(x(t), x(t + ε)) = x(tε)). Thompson (2011) concluded his description, “I can now represent a 
conception of two quantities’ values covarying as (xε, yε)= (x(tε), y(tε)). I intend the pair (xε, 
yε) to represent conceiving of a multiplicative object—an object that is produced by uniting in 
mind two or more quantities simultaneously” (p. 47). Apparent in both descriptions is the 
parametric nature of covariational reasoning; a student imagines two quantities varying with 
respect to (conceptual or experienced) time, eventually coordinating these two quantities with 
respect to each other to form a multiplicative unit.  

Drawing on the parametric conceptions of covariation described by Thompson (2011) and 
Saldanha and Thompson (1998), researchers (Moore & Thompson, 2015, in preparation; 
Weber, 2012) have described emergent shape thinking as a student conceiving graphs in 
terms of an emergent trace constituted by covarying (projected) magnitudes. We use Figure 1 
to represent instantiations of an emergent image of a graph representing the height and 
volume of liquid in a bottle covarying as liquid is poured into the bottle (i.e. hε = h(tε) and vε 
= v(tε) both increase as time, tε, increases). A student with such an image of a graph 
understands that the magnitude of the blue segment represents the height of liquid in the 
bottle and the magnitude of the red segment represents the volume of liquid in the bottle at a 
certain moment of (experiential or conceptual) time, and that the resulting trace is a product 
of tracking how these quantities covary with respect to (experiential or conceptual) time (i.e. 
understands the graph as representing (hε, vε) = (h(tε), v(tε))).  

 

     
Figure 1: A representation of an emergent conception of covarying quantities. 

Methods 
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We conducted a semester-long teaching experiment (Steffe & Thompson, 2000) with two 
undergraduate students, Arya and Katlyn (pseudonyms), to explore the ways of reasoning 
students engage in during activities intended to emphasize reasoning about relationships 
quantitatively and covariationally (e.g., if the students engaged in emergent shape thinking, 
what ways of reasoning supported this?). The students were enrolled in a secondary education 
mathematics program at a large state institution in the southern U.S. Both were juniors (in 
credit hours taken) who had successfully completed a calculus sequence and at least two 
additional courses beyond calculus. The teaching experiment consisted of three individual 
semi-structured task-based clinical interviews (per student) (Clement, 2000) and 15 paired 
teaching episodes (Steffe & Thompson, 2000). Each clinical interview and teaching episode 
lasted approximately 1.25 hours. We video and audio recorded the sessions and we captured 
and digitized records of the students’ written work at the end of each episode.  

When analyzing the data we conducted a conceptual analysis–“building models of what 
students actually know at some specific time and what they comprehend in specific 
situations” (Thompson, 2008, p. 60)–to develop and refine models of the students’ 
mathematics. With this goal in mind, we analyzed the records from the teaching episodes 
using open (generative) and axial (convergent) approaches (Clement, 2000; Strauss & 
Corbin, 1998). Initially, we identified instances of Arya’s and Katlyn’s behaviors and actions 
that provided insights into each student’s understandings. We used these instances to generate 
tentative models of the students’ mathematics that we tested by searching for confirming or 
contradicting instances in their other activities. When evidence contradicted our constructed 
models, we made new hypotheses to explain the students’ ways of operating and returned to 
prior data with these new hypotheses in mind for the purpose of modifying previous 
hypotheses or characterizing shifts in students’ ways of operating. 

 
Task Design 

 
Throughout the teaching experiment, we provided Arya and Katlyn tasks that included 

prompts asking them to represent relationships between covarying quantities. We followed 
certain principles when designing these tasks. First, we designed tasks to include situations 
that would be familiar and accessible to the students, with most tasks including videos, 
applets, or images of phenomena (e.g., circular motion). Second, we avoided tasks that 
provided specific values for quantities to support the students in developing images of 
covariation that were magnitude based. Finally, we often asked students to construct multiple 
graphs related to a situation to explore if, and if so how, the students would leverage their 
images of the quantities and covariation between quantities when creating multiple graphs 
that may or may not differ in appearance. 

To illustrate, we used a variation of the Bottle Problem, which was designed by the Shell 
Centre (Swan & Shell Centre Team, 1985) and used by researchers investigating students’ 
covariational reasoning (e.g., Carlson et al. (2002), Carlson et al. (2001), Johnson (2012, 
2015)). We provided the students with a pictured bottle and asked them to imagine the 
experience of filling the bottle with liquid. We then asked them to graph the relationship 
between volume and height of liquid in the bottle as it filled with liquid. After they 
constructed a graph for a given bottle and a bottle for a given graph, we altered the prompt to 
ask the students to imagine liquid evaporating from the bottle. We then asked the students to 
represent the relationship between height and volume of liquid in the bottle for this new 
scenario.  

 
Results 
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We first summarize the students’ actions when creating graphs to represent how the 
height and volume of liquid covaried as a bottle filled with liquid. We then present their 
activities addressing liquid evaporating from the bottle in order to illustrate the students 
representing an additional aspect of the situation in their graph: the direction in which they 
imagined the graph being traced out. We conclude by highlighting the students’ activities on 
a task that we implemented during the last clinical interview in which we explicitly asked the 
students to discuss a parametrically defined function for a graphed relationship. 

 
Overview of students’ activities addressing the Bottle Problem 

As the teaching experiment progressed, the students exhibited activities indicative of 
reasoning about graphs as emergent traces representing two covarying quantities they 
conceived as constituting some situation (i.e. emergent shape thinking). For instance, during 
the first part of the Bottle Problem, each student coordinated how the volume and height of 
liquid in a bottle covaried in terms of direction of change (MA2) and amounts of change 
(MA3); each student conceived that the two quantities increase in tandem and then 
determined how the volume of liquid changes for equal successive increases in liquid height. 
Each student then created a graph while maintaining an explicit focus on how all drawn 
points and traces represented the relationship she conceived between the height and volume 
of liquid. As an example, consider Katlyn’s activity as she created her graph (see Figure 
2(c)). Describing why she was drawing the red segment longer than the blue segment, Katlyn 
stated, “‘Cause this [pointing to (B) in the picture of the bottle recreated in Figure 2(a)] is so 
big compared to this [pointing to (A) in the picture of the bottle].” Katlyn then shaded in parts 
of her bottle (Figure 2(b)) corresponding to the segments in her graph, adding a dashed blue 
segment to represent the volume contained between tick 2 to tick 3 in her bottle (Figure 2(c)). 
Katlyn reasoned about the magnitudes of color-coordinated segments she constructed as 
representing amounts of volume within specific height intervals, understanding that each 
added segment corresponded to an amount of volume added to the total volume. Underlying 
this was Katlyn’s understanding of the trace of her curve representing projected magnitudes 
as represented in Figure 1 (i.e. using Thompson’s (2011) notation she conceived her graph as 
composed of the coordinate points (hε, vε) = (h(tε), v(tε)) with h(tε) and v(tε) representing 
height and volume as experiential or conceptual time, tε. elapses).  

 

  

(a)  (b)  (c)    (d)    
Figure 2: (a) Katlyn’s bottle (numbers and letters added for referencing), (b-c) Katlyn 

representing total volume with respect to height in the situation and a graph, and (d) 
Katlyn’s resultant graph from tick 0 to tick 3. 

Addressing water evaporating from the bottle 
After the students had constructed a graph for the bottle in Figure 2(a), we asked them to 

graph the relationship between height and volume of liquid in the bottle as the liquid 
evaporated from the bottle. We asked them to complete the graph on the same whiteboard as 
a graph representing the relationship between height and volume of liquid in the bottle as the 
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bottle filled. Indicating they did not anticipate that their previously completed graph might 
represent the posed relationship, the pair first drew a new set of axes. As they continued to 
consider the new scenario, Arya noted they should start at “full volume, full height.” Katlyn 
then added, “It’s going to look backwards… We can literally just travel this way instead 
[motioning over the completed prior graph from the top-right most point back to the origin]. 
[To the interviewers] We’re done, we’re just going to travel this way [again motioning over 
the original curve from the top-right most point back to the origin].” As the interaction 
continued, Katlyn’s actions suggested she now conceived the prior graph as (h2ε, v2ε) = (h(t2ε), 
v(t2ε)) with h(t2ε) and v(t2ε) decreasing as experiential or conceptual time in this second 
situation, t2ε, elapses (recreated in Figure 3(a)-(c)).  

 

 
(a)   (b)   (c)   (d) 

Figure 3: (a)-(c) A recreation of the students’ graph as an emergent trace and (d) a recreation 
of their graph with the added arrow representing the direction of the trace. 

To investigate if using the same curve for a new context created a perturbation for the 
students, we asked, “Is the situation the same? You’re ending up with the same graph.” 
Katlyn responded, “No, I just want to draw little arrows... we’re going this way now [draws 
an arrow on the curve pointing towards the origin, recreated in Figure 3(d)].” As she 
addressed the displayed graph representing two (experientially) different situations, Katlyn 
differentiated the two situations by adding an arrow to indicate the direction in which the 
graph is traced out with respect to the second situation; Katlyn parameterized her graph (from 
our perspective) with respect to (experiential or conceptual) time to differentiate how it is 
traced out with respect to how the previous graph is traced out. Adopting Thompson’s (2011) 
notation, Katlyn understood the displayed graph as composed of points (h, v) representing the 
appropriate magnitudes of height and volume of liquid in the bottle, regardless if liquid is 
entering or leaving the bottle. In the first scenario, she understood (h, v) = (h1ε, v1ε) = (h(t1ε), 
v(t1ε)) with t1ε representing (experiential or conceptual) time as liquid enters the bottle. In the 
second scenario she understood (h, v) = (h2ε, v2ε) = (h(t2ε), v(t2ε)) with t2ε representing 
(experiential or conceptual) time as liquid evaporates from the bottle.  

 
The Car Problem 

We conjectured that the students’ actions addressing the Bottle Problem had the potential 
to support them in becoming explicitly aware of the parametric nature of their reasoning as 
well as possibly bringing to the surface parametric functions. We intended to explore the 
extent that we could support the students in bringing this reasoning to the forefront as they 
addressed the Car Problem that Saldanha and Thompson (1998) designed to investigate 
students’ covariational reasoning. This task involves the students representing the 
relationship between an individual’s distances from two cities as the individual travels back-
and-forth along a road (see Figure 4(a)). Because the relationship is such that neither distance 
is a function of the other distance, we conjectured raising the idea of function after the 
students constructed their graphs might support them in reasoning about an explicitly defined 
parametric function.  
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Both students initially described the directional variation of each distance (e.g., as Homer 
moves from the beginning of his trip, the distance from each city decreases) (MA2). As Arya 
attempted to represent this relationship in her graph, she drew a segment from right to left 
getting closer to the horizontal and vertical axis (indicated by (1) in Figure 4(b)). After Arya 
re-described the directional relationship she conceived in the situation, she moved to her 
graph and marked points on each axis to confirm her graphed segment represented that 
Homer’s distance from each city was decreasing (indicated by (2) and (3) in Figure 4(b)). As 
in previous situations, Arya conceived her graph as an emergent trace representing two 
projected covarying magnitudes, indicated by her careful attention to the axes when drawing 
this segment. Further, and similar to the students’ activities addressing the Bottle Problem, 
Arya added an arrow to her completed graph (Figure 4(c)) to represent an additional aspect of 
the situation: how the graph was traced as Homer traveled along the road. 

 

     
(a)     (b)    (c) 

 
Figure 4: (a) The Car Problem applet, (b) a recreation of Arya’s work, and (c) a recreation of 

Arya’s final graph. 

After Arya described that her graph did not represent distance from Springfield as a 
function of distance from Shelbyville or distance from Shelbyville as a function of distance 
from Springfield, and hoping to raise the idea of a parametrically defined function, a 
researcher asked, “What if your input was total distance traveled and your output was two-
dimensional?” He then described the output as being composed of both the distance from 
Springfield and the distance from Shelbyville. Arya stated that this relationship represented a 
function as each total distance input corresponded to exactly one pair of distances.  

Similarly, addressing whether the relationship with the same two-dimensional output but 
with ‘distance on the path’ as the input represented a function, Katlyn identified, “Well that’s 
what [my graph] shows, right?” Katlyn stated that for any of Homer’s distances on the path 
there was only one corresponding coordinate point on her graph, concluding that this 
relationship represented a function. Katlyn added, “I understand, like, what I’ve been drawing 
this whole time is like, how I’m traveling on like this purple path. But I don’t, I never thought 
of that as my input, but it really is.” Both students were able to assimilate a question 
concerning a one-dimensional input and two-dimensional output to consider a parametrically 
defined function after they had engaged in constructing the relationship via covariational 
reasoning and considered the graph as an emergent trace of this covariation. 

 
Discussion 

 
The students’ activities here (and throughout the teaching experiment) provide examples 

of students who developed and maintained images of covariation we interpreted to be 
compatible with the descriptions of Thompson, Saldanha, and Moore. In addition, we 
conjecture the students’ reasoning addressing the Bottle Problem raised an intellectual need 
for parametric functions, a need that we then capitalized on with the Car Problem. Harel 
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(2007) described, “The term intellectual need refers to a behavior that manifests itself 
internally with learners when they encounter an intrinsic problem—a problem they 
understand and appreciate” (emphasis in original, p. 13).  

When addressing water evaporating in the Bottle Problem, the students’ actions resulted 
in their encountering an intrinsic problem (i.e. experiencing an intellectual need). 
Specifically, the students came to understand one curve as corresponding to two different 
experiential situations, which resulted in them seeking to determine how to differentiate 
between the two situations while using one curve. We conjecture that this problem, which 
was supported by their thinking about graphs as emergent traces of covarying quantities, was 
critical to the students considering the parametric nature of the relationships they represented. 
That is, by understanding one curve as representing two different emergent traces, the 
students became explicitly aware of their thinking about the curve in terms of two related 
quantities and (experiential or conceptual) time.  

When addressing the Car Problem, we interpreted the students’ initial activities to 
indicate their reasoning parametrically about the relationship between Homer’s distance from 
the two cities covarying as Homer’s total distance or ‘distance on the path’ varied. However, 
the students did not explicitly conceive their graph parametrically until we asked the students 
to consider a relationship with a one-dimensional input and two-dimensional output as 
representing a function. Addressing this question, the students brought to the surface a 
particular conception of the graph, a graph as an emergent trace of covarying quantities, in 
relation to “function” (i.e. the uniqueness of a mapping). Both students described such a 
parametrically defined relationship as representing a function with Katlyn explicitly 
addressing the novelty of this reasoning to her (e.g., “I never thought of that as my input, but 
it really is”).  

In one of the few studies examining students’ understanding of parametric functions, and 
parameters more generally, Keene defined dynamic reasoning as “developing and using 
conceptualizations about time as a dynamic parameter that implicitly or explicitly coordinates 
with other quantities to understand and solve problems” (2007, p. 231). The students’ 
reasoning was compatible with Keene’s (2007) definition of dynamic reasoning with their 
initial activities in each problem being compatible with Keene’s description of implicitly 
coordinating time with other quantities. Although the students engaged in reasoning that was 
parametric or dynamic in nature when responding to both tasks, the students did not exhibit 
activities to indicate they were explicitly aware of the parametric nature of their reasoning 
until they addressed later questions that we designed to focus in this area. 

Unlike Keene (2007) and other researchers who have set out to examine students’ 
understandings of parameters and parametric function in differential equations or calculus 
settings (Stalvey & Vidakovic, 2015; Trigueros, 2004), in this study, we intended to examine 
students’ developing understandings of pre-calculus concepts through their quantitative and 
covariational reasoning; although this reasoning can be parametric in nature (e.g., emergent 
shape thinking) we did not expect to examine the students’ developing parametric function 
understandings. That fact that the students spontaneously engaged in reasoning that we 
interpreted as creating an intellectual need for parametric functions has both curricular and 
research implications. Future researchers and curriculum designers might examine how 
providing students with experiences in constructing graphs as emergent traces provide 
foundations for more explicit and formal introductions to parametric functions. For instance, 
and stemming from the current study ending before we could more extensively pursue the 
students’ reasoning about parametric relationships, researchers and educators should further 
explore how using different situations that result in students constructing and reasoning about 
the same displayed graph via different emergent traces has the potential to create an 
intellectual need for parametric relationships and functions.  
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Prospective teachers’ evaluations of students’ proofs by mathematical induction 

Hyejin Park 
University of Georgia 

 
This study examines how prospective secondary teachers validate several proofs by 
mathematical induction (MI) from hypothetical students and how their work with proof 
validations relates to how they grade their students’ proofs. When asked to give criteria for 
evaluating a student’s argument, participants wished to see a correct base step, inductive step, 
and algebra. However, participants prioritized the base step and inductive step over assessing 
the correctness of the algebra when validating and grading students’ arguments. All of the 
participants gave more points to an argument that presented only the inductive step than to an 
argument that presented only the base step. Two of the participants accepted the students’ 
argument addressing only the inductive step as a valid proof. Further studies are needed to 
determine how prospective teachers evaluate their students’ arguments by MI if many algebraic 
errors are present, especially in the inductive step.  
 
Key words: Mathematical induction, Prospective secondary teachers, Proof validation, Proof 
grading 
 

The proof method of mathematical induction (MI) is significant in the discipline of 
mathematics. In the Principles and Standards for School Mathematics, the National Council of 
Teachers of Mathematics (2000) asserts “students should learn that certain types of results are 
proved using the technique of mathematical induction” (p. 345). Secondary mathematics teachers 
are expected to teach MI (e.g., Australian Curriculum, Assessment, and Reporting Authority, 
2012; California Department of Education, 2013; Korean Ministry of Education, Science, and 
Technology, 2012) and, therefore, are required to have a robust knowledge of MI as a 
prerequisite, including proficiency in reading and analyzing students’ arguments that use MI. 
Most of the previous studies on the learning and teaching of MI have focused on examining 
either the students’ or the teachers’ knowledge of MI, showing their difficulties with MI, 
especially in their proof production or while exploring the pedagogy of MI for better supporting 
students’ learning. Little research, however, has been devoted to how teachers read and reflect on 
students’ arguments using MI. In this study, I examine the characteristics of five prospective 
secondary teachers when validating and grading student arguments using MI. These arguments 
were presented in an interview setting and situated in the context of teaching at the secondary 
level.  

 
Relevant Literature 

Proof validation is an important mathematical activity, especially for mathematics 
undergraduates, prospective and practicing teachers, and mathematicians (Selden & Selden, 
2003). Weber (2008) stated, “Teachers need to be able to determine if the justifications and 
proofs that students submit are acceptable and to provide feedback when they are not” (p. 4). 
Some researchers have begun to examine how undergraduate students, practicing teachers, and 
mathematicians validate proofs, but there have been few studies focusing on MI. Knuth (2002) 
found that some practicing teachers accepted an argument by MI as a proof by relying on its 
form (appearance) rather than understanding its reasoning. Dickerson (2006) found the same 
result in his study with two prospective teachers. In the process of examining both prospective 
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secondary and elementary teachers’ knowledge of proof by MI, Stylianides, Stylianides, and 
Philippou (2007) asked participants to validate two arguments, which were invalid. Stylianides et 
al. reported that although both groups had similar difficulties with MI, the prospective secondary 
teachers validated arguments more accurately than the prospective elementary teachers. In their 
study, participants who provided correct answers recognized that the first argument that they 
were asked to validate omitted the base step and judged the argument invalid. However, some of 
them were not able to explain the necessity of the base step. Stylianides et al. concluded that 
their participants focused on the form of proof by MI during proof validation. 

Grading students’ proofs is also an important teaching practice, but there has been little 
attention to how teachers assess and respond to students’ written work. The process of proof 
grading includes judgments about a proof’s validity, clarity, and readability. Previous studies 
(e.g., Inglis, Mejía-Ramos, Weber, & Alcock, 2013; Weber, 2008) showed that mathematicians 
used different criteria when evaluating students’ proofs and disagreed on what arguments are 
considered valid proofs. These studies lead us to expect that mathematicians might also use 
different criteria when grading students’ proofs and the scores that they give students might vary. 
Moore (2015), in his preliminary study, reported that the scores that four mathematicians 
assigned to students’ proofs varied drastically even though they agreed on their overall 
evaluations of the proofs.  

 
Theoretical Framework 

Teacher learning occurs in multiple contexts such as “university mathematics and teacher-
preparation courses, preparatory field experiences, and schools of employment” (Peressini, 
Borko, Romagnano, Knuth, & Willis, 2004, p. 69). According to the situative perspective, only 
relying on an individual’s acquisition of knowledge without consideration of his or her 
participation in social contexts leads to difficulties in understanding his or her practices. A 
situative perspective is relevant for understanding how a teacher's knowledge can be 
recontextualized across situations. Borko et al. (2000) showed that the situative perspective 
assisted in understanding how a teacher, Ms. Savant, transferred her conceptions of proof as she 
participated in the multiple contexts of teacher education and in her actual teaching. Because I 
was interested in participants’ conceptions of proof by MI in different situations, I used this 
situative lens (following Peressini et al., 2004) and situated my interview questions and proof 
tasks in participants' roles as teachers and students. The situative perspective was useful in 
making sense of the participants’ responses. Because they had encountered MI as students and 
could imagine themselves encountering MI as teachers, the participants often referenced the 
settings of university and middle or high school mathematics classes when evaluating students’ 
arguments and giving answers about their conceptions of proof by MI in school mathematics.  

The activity of proof validation requires judging the correctness of arguments. Validating 
arguments is an important part of a teacher's work in assessing student work. A validator’s 
judgment of whether an argument is a valid proof or not occurs mentally in his or her work on 
proof validation and, therefore, might not be observable. For analysis of the participants’ proof 
validations, I referred to Selden and Selden’s (2003) description of proof validation, which 
demonstrates it as a complex process by which someone reads and reflects on an argument in 
order to determine its validity. They suggested that the activity of proof validation includes such 
things as “asking and answering questions, assenting to claims, constructing sub-proofs, 
remembering or finding and interpreting other theorems and definitions, complying with 
instructions, and conscious feelings of rightness or wrongness” (p. 5). In this study, I examined 
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the participants’ behaviors in their proof validations and how they judged whether arguments by 
MI were valid.   

 
Methodology 

Five prospective secondary teachers, who were concurrently enrolled at the University of 
Georgia in either the undergraduate secondary mathematics teacher education program or the 
master’s degree program leading to certification as a secondary school mathematics teacher, 
participated in this study from July to the middle of November 2014. Three of the participants 
were pursuing dual degrees in mathematics and mathematics education. All had taken 
Introduction to Higher Mathematics offered by the Mathematics Department in which they learn 
mathematical reasoning and proof writing, including proof by MI. Pseudonyms were used for 
identifying the participants –Emily, Jason, David, Brad, and Blain – to protect their anonymity. 
For this study, I conducted semi-structured interviews of about 80 minutes in length (one 
interview per participant). In the interviews, participants were asked to communicate their 
thoughts about the teaching and learning of MI, to prove two mathematical statements (an 
equation problem and an inequality problem), and to evaluate students’ arguments purported to 
be proofs by MI that respond to the same statements (three arguments per statement). I created 
the student arguments used in this study by referring to literature (e.g., Baker, 1996; Harel, 2002) 
showing students’ common mistakes in proving by MI (see Table 1 for a summary of the proof 
tasks). When validating arguments, the participants were asked what they thought about each 
argument and whether each argument was a valid proof and was convincing. Also, they were 
asked to assign a grade (out of 10 possible points) for each argument. The following are some of 
the questions I asked during the interview: Is this argument a valid proof? Why? How many 
points would you assign each argument? What factors would go into your grading? I conducted, 
video-recorded and transcribed all the interviews, and the transcriptions were checked by another 
person to verify their accuracy.  

 
Table 1 

A Summary of the Proof Tasks Presented to the Participants 
Problem Argument Argument summary 

Prove that for any positive 
integer n, 1+ 2+⋯+ n =

!(!!!)
!   

Rebecca’s No base step 
Shane’s No inductive step 

This argument concludes that the statement is true 
from three cases 

Polly’s One minor algebraic error in the inductive step 
Prove that for any positive 

integer n ≥ 4, 2! < !! 
Kelly’s Incorrect base step 

This argument shows that the statement is not true 
for n = 1 

Garrison’s One equality/inequality error in the inductive step 
Laura’s In the inductive step, this argument addresses the 

induction hypothesis but does not show how 
!(! + 1) is derived from !(!)  

For the data analysis, I used an open coding system (Strauss & Corbin, 1990). I first 
identified and coded parts of the data where participants talked about MI in general and then 
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separated them from the parts in which the participants were working with the six arguments. 
After that, I summarized how each participant validated the students’ arguments, including 
grades/scores they would give the arguments, and then compared their work across the 
participants.  

 
Results 

In this section, I report characteristics of the participants’ work when validating and grading 
students’ arguments that use MI and what relationships existed between their work with proof 
validation and their grading work on the students’ arguments. Participants used similar criteria 
when evaluating students’ arguments such as a correct base step, induction hypothesis, inductive 
step, and algebra. Some of the participants considered whether the arguments addressed the 
concluding statements and used the ! !  notation, but they did not focus as much on these 
aspects in their evaluations.  
The Equation Problem (Prove that for any positive integer n, 1+ 2+⋯+ n = ! !!!

! ) 
When analyzing Rebecca’s argument, all participants recognized that there was no base step, 

and three of them concluded that this argument was not a valid proof. Two of participants, David 
and Brad, accepted this argument as a valid proof based on either their past learning experiences 
with MI or their perceptions of proof by MI. For example, when asked whether Rebecca’s 
argument was a valid proof, Brad said, “It’s a valid proof. Like I said, the only problem is, 
basically, there is no base case and there was no checking that the statement is true with that.” 
When grading Rebecca’s argument, participants took two or three points off (out of ten possible 
points) on average (See Table 2). For Shane’s argument, all participants pointed out that there 
was no inductive step and concluded that this argument was not a valid proof. When grading 
Shane's argument, they gave him lower grades than they had given Rebecca’s argument by 
observing that either the inductive step was an important part of proof by induction or that the 
inductive step was harder for students to understand than the base step. David, for instance, 
stated, “I think any students could be able to prove the base case, because that’s not that hard, 
and any students could be able to look at the inductive step and then to say if the statement is true 
or not. But, actually defining a statement from a given problem and then taking out the inductive 
step takes a lot more careful effort and more cognitive demand. And, so that’s why they put more 
emphasis on those parts of the questions.” For Polly’s argument, the participants checked each 
step of the argument, including whether the base step and inductive step were using algebra 
correctly. However, none of the participants recognized one minor algebraic error in the 
inductive step, even though four of them had correctly proven this statement before examining 
the students’ arguments (Jason was not able to complete the inductive step). They determined 
that this argument was a valid proof in that everything – the base step, inductive step, and 
algebra – was correct and gave it full credit (see Table 2).  
The Inequality Problem (Prove that for any positive integer n ≥ 4, 2! < !!) 

When validating Kelly’s argument, all of the participants recognized that she used an 
incorrect base case, determined that this argument was not a valid proof and gave her a small 
amount of credit (less than 3 out of the 10 points; see Table 2). In evaluating Garrison’s 
argument, two of the participants found one algebraic error in the inductive step, but they did not 
put as much emphasis on this minor error in their validation and even in their grading. Brad said, 
“I’m less concerned with so much of the algebra. I’m looking at the logic and the use of 
induction,” while completing his validation work. The other three participants did not recognize 
the error. However, all of participants concluded that Garrison’s argument was a valid proof, and 
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all except David gave him full credit. David took one point off Garrison’s argument by pointing 
out that “he did not define ! ! .” David was the only participant who discussed the proper use 
of notation in his evaluation of Garrison’s argument. As for Laura’s argument, all of participants 
recognized that Laura addressed only the inductive hypothesis and did not show the inductive 
step. So, they concluded that this argument was not a valid proof and gave her 5.4 points (out of 
10) on average (see Table 2). 
 
Table 2 

Scores Assigned to the Students’ Arguments by the Participants  
Participant Argument (out of 10 possible points) 

Rebecca’s Shane’s Polly’s Kelly’s Garrison’s Laura’s 
Emily 8 5 10 2 10 6 
Jason 7 5 10 —* 10 7 
David 8 2 10 0 9 4 
Brad 8 or 9 3 or 4 10 2 or 3 10 6 
Blain 6 or 7 2 10 1 10 4 

Average 
score 

7.6 3.4 10 1.25 9.8 5.4 

* Jason did not assign a score for Kelly’s argument, but instead, he stated, “I won’t give her zero. 
I would say…just some kind of credit” when asked to assign a grade for Kelly’s argument.  
 

Conclusion 
Overall, when grading the arguments, the participants gave more points to an argument that 

presented only the inductive step, rather than an argument that presented only the base step. 
Participants gave an argument full credit when they concluded that it included the correct base 
step, inductive step, and algebra. Even when they noted a minor algebraic error, most 
participants gave the student full credit, as was the case with Garrison’s argument. Such criteria 
were also used when validating whether the arguments were valid proofs or not. When asked 
what criteria they used for proof validation, they wished to see the correct base step, inductive 
step, and algebra. All participants accepted the student arguments, recognizing three components 
as determinants of the proofs being valid or invalid. However, when given the student argument 
that addressed only the inductive step, two participants accepted that as a valid proof. Most 
participants compared the students’ arguments to their own work when checking the correctness 
of the algebraic manipulations in the inductive step. However, some of the participants had 
difficulties understanding the students’ algebraic manipulations and completely disregarded the 
algebraic manipulations in the proofs or presumed that all of the algebra in the inductive step was 
correct. Participants who recognized algebraic errors in the inductive step also did not put as 
much emphasis on the correctness of the algebra when validating students’ proofs. Rather, both 
groups focused on the form of the arguments, whether they included the base case, inductive 
hypothesis, and inductive step, while validating and grading the proofs, without considering 
algebraic details. This finding raises questions about how the participants would evaluate student 
arguments if more algebraic errors were present. Future research should examine whether similar 
results can be found with other cohorts and how participants respond to student arguments by MI 
that include more errors in the algebraic manipulations. 
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Re-claiming during proof production 
David Plaxco, University of Oklahoma 

Abstract: In this research, I set out to elucidate the construct of Re-Claiming - a way in which 
students’ conceptual understanding relates to their proof activity. This construct emerged 
during a broader research project in which I analyzed data from individual interviews with 
three students from a junior-level Modern Algebra course in order to model the students’ 
understanding of inverse and identity, model their proof activity, and explore connections 
between the two models. Each stage of analysis consisted of iterative coding, drawing on 
grounded theory methodology (Charmaz, 2006; Glaser & Strauss, 1967). In order to model 
conceptual understanding, I draw on the form/function framework (Saxe, et al., 1998). I 
analyze proof activity using Aberdein’s (2006a, 2006b) extension of Toulmin’s (1969) model 
of argumentation. Reflection across these two analyses contributed to the development of the 
construct of Re-Claiming, which I describe and explore in this article. 

Key words: Mathematical Proof, Conceptual Understanding, Abstract Algebra 

Mathematical proof is an important area of mathematics education research that has 
gained emphasis over recent decades. The majority of empirical research in proof focuses on 
individuals’ proof production (e.g., Alcock & Inglis, 2008), individuals’ understanding of or 
beliefs about proof (e.g., Harel & Sowder, 1998), and how students develop notions of proof 
as they progress through higher-level mathematics courses (e.g., Tall & Mejia-Ramos, 2012). 
Researchers have also generated philosophical discussions that explore the purposes of proof 
(e.g., Bell 1976; de Villiers, 1990). Much of this latter discussion centers on the explanatory 
power of proof (e.g., Weber, 2010), with the primary focus being on the techniques and 
methods involved in a given proof (e.g., Thurston, 1996), rather than the development of 
concepts or definitions (Lakatos, 1976). Few studies, however, use grounded empirical data 
to explicitly discuss the relationships between an individual’s conceptual understanding and 
his or her engagement in proof (e.g., Weber, 2005). In this research I set out to explicitly 
explore the relationships between students’ conceptual understanding and proof activity.  

 
Methods and Analytical Frameworks 

Data were collected with nine students in a Junior-level introductory Abstract Algebra 
course, entitled Modern Algebra. The course met twice a week, for one hour and fifteen 
minutes per meeting, over fifteen weeks. The curriculum used in the course was Teaching 
Abstract Algebra for Understanding (TAAFU) (Larsen, 2013), an inquiry-oriented, RME-
based curriculum, relies on Local Instructional Theories that anticipate students’ development 
of conceptual understanding of ideas in group theory. Three individual interviews (forty-five 
to ninety minutes each) took place at the beginning, middle, and end of the semester, 
respectively. These interviews were semi-structured (Bernard, 1988) and used a common 
interview protocol so that each participant was asked the same questions as the others. Un-
planned follow-up questions were asked during the interview to probe students’ descriptions 
and assertions. The goal for each interview was to evoke the participants’ discussion of 
inverse and identity and engage them in proof activity that involved inverse and identity. I 
developed initial protocols for these interviews, which were then discussed and refined with 
fellow mathematics education researchers. 

Each interview began by prompting the student to both generally describe what “inverse” 
and “identity” meant to them and also to formally define the two mathematical concepts. 
Additional follow-up questions elicited specific details about what the participant meant by 
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his/her given statements, figures, etc. The interview protocol then engaged each participant in 
specific mathematical activity aimed to elicit engagement in proof or proof related activity. 
Participants were asked to prove given statements, conjecture about mathematical 
relationships, and describe how he or she might prove a given statement. As with the 
questions about defining, each of these tasks had planned and unplanned follow-up questions 
so that all participants were asked at least the same base questions, but their reasoning was 
thoroughly explored. Throughout the interviews I kept field notes documenting participants’ 
responses to each interview task. I also audio and video recorded each of the interviews, and 
all participant work and field notes were retained and scanned into a PDF format. I then 
transcribed all spoken communication during each interview with three of the participants 
(Violet, Tucker, and John), including thick descriptions of participants’ gestures. 

The retrospective analysis of the three participants’ interview responses consisted of three 
stages, which I ordered so that each stage built upon the previous stages toward a resolution 
of the research question. This consisted of an iterative coding process to generate thorough 
models of the participants’ conceptual understanding and engagement in proof and proof-
related activity. I carried out this analysis separately for each participant, coordinating each 
data source chronologically so that the model of each participant’s conceptual understanding 
corresponds with his or her conceptual development over the semester. I then investigated 
relationships between the participant’s conceptual understanding and proof activity, exploring 
instances in which meaningful interactions between understanding and activity occurred.  
Models of individual students’ understanding 

In this research I operationalize participants’ conceptual understanding using Saxe et al.’s 
constructs of form and function (Saxe, Dawson, Fall, & Howard, 1996; Saxe & Esmonde 
2005; Saxe et al, 2009). Throughout the literature, forms are defined as cultural 
representations, gestures, and symbols that are adopted by an individual in order to serve a 
specific function in goal-directed activity (Saxe & Esmonde, 2005). Three facets constitute a 
form: a representational vehicle, a representational object, and a correspondence between the 
representational vehicle and representational object (Saxe & Esmonde, 2005). Saxe focuses 
on the use of forms to serve specific functions in goal-directed activity as well as shifts in 
form/function relations and their dynamic connections to goal formation. Through this 
framework, learning is associated with individuals’ adoption of new forms to serve functions 
in goal-directed activity as well as the development of new goals in social interaction.  

The form/function analysis for participants’ understanding consisted of iterative analysis 
similar to Grounded Theory methodology (Charmaz, 2006; Glaser & Strauss, 1967). This 
analysis is differentiated from Grounded Theory most basically by the fact that the purpose of 
this specific analysis was not to develop a causal mechanism for changes in the students’ 
conceptual understanding, but rather that it was used to develop a detailed model of students’ 
conceptual understanding at given moments in time. For each interview transcript, I carried 
out an iteration of open coding targeted towards incidents in which the concepts of inverse 
and identity were mentioned or used. In this iteration, I focused on the representational 
vehicles used for the representational objects of identity and inverse and pulled excerpts that 
afforded insight into the correspondence that the participant was drawing between the 
representational vehicle and object in the moment. Along with the open codes, I developed 
rich descriptions of the participants’ responses that served as running analytical memos. After 
the open coding, I carried out a second iteration of axial coding using the constant 
comparative method, in which open codes were compared with each other and generalized 
into broader descriptive categories. These categories emerged from the constant comparison 
of the open codes and were used to organize subsequent focused codes until saturation was 
reached. Throughout this process, I wrote analytical memos documenting the decisions that I 
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made in forming the focused codes and, in turn, providing an audit trail for the decisions 
made in the development of the emerging categories. This supports the methodology’s 
reliability (Charmaz, 2006).  
Documenting engagement in proof 

In order to model the participant’s proof activity, I use Aberdein’s (2006a) adaptation of 
Toulmin’s (1969) model of argumentation. Several researchers have adopted Toulmin’s 
model of argumentation to document proof (e.g., Fukawa-Connelly, 2013). This analytical 
tool organizes arguments based on the general structure of claim, warrant, and backing. In 
this structure, the claim is the general statement about which the individual argues. Data is a 
general rule or principle that supports the claim and a warrant justifies the use of the data to 
support the claim. More complicated arguments may use backing, which supports the 
warrant; rebuttal, which accounts for exceptions to the claim; and qualifier, which states the 
resulting force of the argument (Aberdein, 2006a). This structure is typically organized into a 
diagram, with each part of the argument constituting a node and directed edges emanating 
from the node to the part of the argument that it supports (Figure 1).  

 
Figure 1. Visual representation of Toulmin models 

Aberdein (2006a) provides a thorough discussion of using Toulmin models to organize 
proofs, including several examples relating the logical structure of an argument to a Toulmin 
model organizing it. Using “layout” to refer to the graphic organization of a Toulmin model, 
Aberdein includes a set of rules he to coordinate more complicated mathematical arguments 
in a process he calls combining layouts: “(1) treat data and claim as the nodes in a graph or 
network, (2) allow nodes to contain multiple propositions, (3) any node may function as the 
data or claim of a new layout, (4) the whole network may be treated as data in a new layout” 
(p. 213). The first two rules are relatively straightforward – the first focuses on the treatment 
of the graphical layout, as for the second, one can imagine including multiple data sources in 
the same data or claim node. The third and fourth rules provide a structure for combining 
different layouts and rely on organizational principles that Aberdein uses. He provides 
examples of combined layouts (Figure 2).  

     
Figure 2. Five Ways of Combining Layouts (Aberdein, 2006a, p.214) 

In this second stage of analysis, I first separated statements that conveyed a complete 
thought, initially focusing on complete sentences and clauses. I then reflected on the intention 
of each statement, focusing on prepositions and conjunctions that might serve to distinguish 
the intentions of utterances that comprise the sentence or clause. Following this, I compared 
these utterances to the model’s constructs, focusing on which node an utterance might 
comprise. I constantly and iteratively compared each utterance relative to the overarching 
argument in order to parse out how the utterance served the argument in relation to other 
statements within the proof. For each proof, I then generated a working graphic organizer 
(i.e., a figure with the various nodes and how they are connected), including corresponding 

Claim Data 

Rebuttal 

Qualifier 
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Warrant 
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transcription highlighting the structure of the participant’s argument. I then iteratively refined 
the graphical scheme to more closely reflect the structure of the argument as the participant 
communicated it. After this process, I completed a final iteration in which I compared the 
scheme to the participant’s communication of the proof in its entirety to ensure that the model 
most accurately reflected the participant’s communication of the proof. An expert in the field 
then compared and checked the developed Toulmin schemes against transcript of the 
interview in order to challenge my reasoning for the construction of the scheme, supporting 
the reliability of the constructions of the Toulmin schemes.  
Relating conceptual understanding and proof 

During the third and final stage of analysis, I focused on the participants’ use of forms 
and functions within nodes of the Toulmin scheme, comparing the roles that specific forms 
and functions served in various nodes within the argument. I also focused on the shifts in 
which the participants’ generated new, related arguments, specifically attending to concurrent 
shifts in forms and functions. I compared across arguments, looking for similarities and 
differences between the forms upon which the participant drew and the functions that the 
forms serve within the respective arguments. As in the previous stages, the analysis across 
conceptual understanding and proof centered on an iterative comparison of the patterns 
emerging across the analyses of the three participants’ argumentation. In this comparison, I 
noted differences and similarities in the overall structures of Toulmin models for arguments. 
Further, I attended to the aspects of form/function relations that served consistent roles across 
similar types of extended Toulmin models. I continuously built and refined hypothesized 
emerging relationships through constant comparative analysis and memos. Through this 
process, I characterized constructs that unify the patterns found between the roles forms and 
functions of identity and inverse served across Toulmin schemes for the three participants. 

 
Results 

In this section, I discuss data from Tucker’s second (midsemester) interview in order to 
demonstrate a broader construct of Re-Claiming that emerged during the third stage of 
analysis. I first discuss specific aspects of the form/function model of Tucker’s understanding 
of inverse and identity relevant for discussing a selected part of his response to Question 7 of 
the protocol, which asked the participants to prove or disprove whether a defined subset H of 
a group G was subgroup of G (Figure 3). Specifically, Tucker’s discussion throughout the 
interviews supported the development of three functions of inverse served by various forms 
of inverse (in this instance, the “letter” form of inverse): an “end-operating” function of 
inverse in which Tucker operates on the same end of both sides of an equation with a form of 
inverse, a “vanishing” function of inverse in which an element and its inverse are described as 
being operated together and are removed from an algebraic statement, and an “inverse-
inverse ” function of inverse characterized by an element serving a function of inverse in 
relation to its inverse. Throughout his proof activity in this excerpt, Tucker draws on the 
“letter” form of inverse to serve these functions. 

“Prove or disprove the following: for a group G under operation * and a fixed 
element h ∈G, the set H = {g ∈ G : g*h*g-1 = h} is a subgroup of G.” 

Figure 3. Asking participants to prove about the normalizer of h 
During part of his response to this part of the protocol, Tucker reads over his work 

and says, “I- you know what I might do actually?” (line 1078). He then begins an 
explanation, but pauses and restarts in order to explain his thinking more clearly, saying, 

So, right now, we have g star h star g inverse is equal to h. We want to get to 
somewhere that looks like- … Want to show. g inverse star h star g is equal to h. In 
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order for the inverse of g to satisfy this (points to definition of H) right here. Cause 
that's what you do when you put in the g inverse. (lines 1084-1086).  

With this excerpt, Tucker begins a subargument (Figure 4) for his broader, overarching proof 
in which he attempts to show that the set H contains inverses of its elements. He begins with 
the equation used to define H, saying, “right now, we have g star h star g inverse is equal to 
h” (line 1085), which serves as initial data (Data1.1) for the argument. He then describes 
wanting to show that g-1*h*g = h, which serves as the claim in the subargument (Claim1). He 
supports this claim by explaining that this goal means that g-1 satisfies the given equation, 
saying, “Cause that's what you do when you put in the g inverse” (line 1087). This warrants 
the claim by reflecting Tucker’s previous activity in which he replaced g in the equation used 
to define H with its inverse and drew on the “inverse-inverse” function of inverse to rewrite 
the equation (g-1*h*g = h). This constitutes a shift in Tucker’s description of what it would 
mean for the set H to contain inverse elements, anticipating a manipulation of the definition 
of H to result in the same equation.  

 
Figure 4. Tucker’s inverse subproof in response to Interview 2, Q7 

Tucker then continues, explaining how he might manipulate the first equation so that it 
looks like the second equation. Tucker begins by left-operating with g-1, saying, “let's apply 
the g inverse to that. So, applying g inverse to both sides would give you h star g inverse is 
equal to g inverse star h” (Warrant1.1, lines 1089-1091). This process comprises a warrant 
that draws on the “end-operating” and the “vanishing” functions of inverse to support the 
claim that a new equation (Claim1.1/Data1.2) can be produced. This equation then serves as 
data as Tucker describes right-operating with g to produce the equation h = g-1*h*g 
(Claim1.2). Similar to the left-operation with g-1, this draws on the “end-operating” and 
“vanishing” functions of inverse to warrant the new claim. However, this action also subtly 
draws on the “inverse-inverse” function of inverse in that Tucker is using the element g as the 
inverse of its own inverse in order to cancel the g-1 on the right end of the left-hand side of 
the equation. Tucker then interprets the result of this activity, saying, “Which is what we got 
right here. Meaning that the inverses for each element in G which satisfy that (points to 
definition of H), mean that must be in H” (lines 1093-1095), which comprises a warrant and 
claim for the overarching argument that H contains the inverses of its elements.  

Tucker’s work in this instance exemplifies a broader construct of re-claiming (Figure 5), 
which I define as the process of reframing an existing claim in a way that affords an 
individual the ability to draw on a specific form of identity or inverse and the functions that 
this form might be able to serve. In this study, it was often the case that re-claiming occurred 
when a participant was asked to prove or disprove a general statement and, in response, 

Warrant: Which is what we got right here. (points to prior work) 
Meaning that the inverses for each element in G which satisfy that 
(points to definition of H, lines 1094-1095) Claim: meaning that [inverses] 

must be in H. (line 1095) 

 Data1: 

Claim1.2:  
h = g-1*h*g. (lines 1093-1094) 

Warrant1.1: So, applying g inverse to 
both sides would give you (lines 1090) 

Warrant1.2: and then next, you just apply 
g to [the right] side. (line 1091) 

Data1.1:  
g*h*g-1 = h. (line 1085) 

Claim1.1/Data1.2:  
h*g-1 = g-1*h. (lines 1090-1091) 

Claim1: Want to 
show. g-1*h*g = h.  
(lines 1085-1086) 

Warrant1: In order for the inverse of g to satisfy this right here (points to definition 
of H). Cause that's what you do when you put in the g inverse. (line 1086- 1087) 
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interpreted the general statement using a specific form to produce a new claim in terms of this 
form. An important part of successfully re-claiming is the consistency between the original 
claim and new claim. The individual must also be able to interpret any possible hypotheses or 
assumptions of the original claim with respect to the new form upon which they draw. Once 
the individual generates appropriate initial data from the given hypotheses and assumptions, 
he or she is then able to draw on the new form to serve specific functions, which affords the 
development of meaningful argumentation toward the new claim. Finally, after supporting 
the new claim, the individual should be able to provide a warrant for how or why this claim 
supports the original claim. More concisely, participants reinterpret a general claim by 
generating initial data in a specific form based on the original claim (in this case, being a 
proof by contradiction, they each draw on the “letter” form of identity to necessarily produce 
data contradictory to the original claim). They then draw on available functions of identity 
and inverse that this form serves in order to generate new. Finally, each participant interprets 
this claim to argument that it supports the original conjecture. 

 
Figure 5. Toulmin scheme reflecting the general structure of re-claiming 

A sense of the various facets involved in re-claiming can be drawn from the discussion of 
Tucker’s proof activity. Specifically, in re-claiming, it is not sufficient, to only reframe a 
claim. Rather, one must likely also reframe its related (often hidden) hypotheses. These 
aspects of reclaiming reflect the frequently taught proof mantras of “what do I know?” and 
“what do I want to show?” In this case, Tucker describes needing to show that g-1*h*g = h 
and begins with the equation g*h*g-1 = h, which reflects the assumption that g satisfies the 
definition of H. In the context of the form/function framework, these restated hypotheses 
serve as initial data (drawing on a specific form of identity or inverse) in a new argument in 
which the participant is able to draw on the form of identity or inverse with which the data is 
reframed to serve appropriate functions of identity and inverse in support of the new claim. 
The individual should then be able to reason that this new argument supports the original 
claim. In this sense, Re-Claiming provides a type of proof activity in which an individual’s 
conceptual understanding (forms upon which an individual draws and the functions that these 
forms are able to serve) informs the his or her proof approach. Specifically, the access to a 
form that is able to serve specific functions affords the individual an opportunity to generate a 
meaningful argument that he or she would likely not have been able to produce without Re-
Claiming the initial statement. This activity is not necessarily an inherent necessity of a given 
conjecture, but rather depends on the individual’s understanding in the moment. This reflects 
the importance of Balacheff’s (1986) call to focus on students’ understanding when 
considering their proof activity. 

 
Conclusions 

The current research was constrained by several factors. First, my focus on three 
students’ responses to individual interview protocols limits analysis of the relationships 
between conceptual understanding and proof activity, warranting further analysis of different 
participants’ conceptual understanding and proof activity. Also, although this analysis was 
informed by the broader contexts of the classroom environment, the focus on the individual 
interview setting affords insight into a specific community of proof in which argumentation 
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develops differently than in other communities. For instance, the structure of the interview 
setting necessitated that participants developed their arguments solely relying on their own 
understanding in the moment and for the audience of a single interviewer. My early 
observations of and reflections on the development of argumentation in the classroom and 
homework groups included the mutual development of argumentation in which participants’ 
argumentation was informed by their interactions. Accordingly, analysis of the classroom and 
homework group data is warranted.  

This research contributes to the field by drawing on the form/function framework to 
characterize students’ conceptual understanding of inverse and identity in Abstract Algebra. 
This affords insight into the forms upon which students participating in the TAAFU 
curriculum might draw as well as the various functions that these forms are able serve. The 
broader research also contributes to the field by providing several examples of how 
Aberdein’s (2006a) extension of Toulmin’s (1969) model of argumentation might be used to 
analyze proofs in an Abstract Algebra context. Further, this research draws attention to an 
aspect of the relationships between individuals’ conceptual understanding and proof activity. 
These results situate well among the work of contemporary mathematics education 
researchers. For instance, Zazkis, Weber, and Mejia-Ramos (2014) have developed three 
constructs that also draw on Toulmin schemes to model students proofs in which the 
researchers focus on students development of formal arguments from informal arguments. 
These constructs provide interesting parallels with the three aspects of relationships between 
conceptual understanding and proof activity developed in the current research. Zazkis, 
Weber, and Mejia-Ramos (2014) describe the process of rewarranting, in which an individual 
relies on the warrant of an informal argument to generate a warrant in a more formal 
argument. However, the current research focuses more on the aspects of conceptual 
understanding that might inform such activity.  

Moving forward from this research, I intend to analyze the data from other 
participants’ individual interviews in order to develop more form and function codes for 
identity and inverse, affording deeper insight into the various form/function relations students 
in this class developed. Such analysis should also explore the proof activity of the other 
participants in the study, which would provide a larger sample of proof activity, in turn 
affording new and different insights into the relationships between mathematical proof and 
conceptual understanding. I also intend to analyze the sociomathematical norms and 
classroom math practices within the classroom. This will afford insight into the sociogenesis 
and ontogenesis of forms and functions at the classroom and small group levels in order to 
support and extend the individual analyses – which are focused on microgenesis – in the 
current research. 
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Communicative Artifacts of Proof: Transitions from Ascertaining to Persuading 
 

David Plaxco     Milos Savic 
University of Oklahoma  University of Oklahoma 

With this poster, we wish to highlight an important aspect of the proving process. 
Specifically, we revisit Harel and Sowder’s (1998, 2007) proof schemes to extend the 
authors’ constructs of ascertaining and persuading. With this discussion, we reflect on the 
original theoretical framework in light of more recent research in the field and draw focus to 
a critical aspect of the proving process in which the prover generates the communicative 
artifacts of proof (CAP) critical to shifts between ascertaining to persuading. We also discuss 
possible ways in which an attention to the psychological and social activities involved in the 
development of the CAP might inform research and instruction. 

Key words: Communicating Proof, Ascertaining, Persuading 

With their influential work, Harel and Sowder (2007) outlined a perspective for viewing 
proof in which the authors distinguish between two primary subprocesses in the proving 
process – ascertaining and persuading.  

 
Seldom do these processes occur in separation. Among mathematically experienced 
people and in a classroom environment conducive to intellectual interactions among 
the students and between the students and the teacher, when one ascertains for 
oneself, it is most likely that one would consider how to convince others, and vice 
versa. Thus, proving emerges as a response to cognitive-social needs, rather than 
exclusively to cognitive needs or social needs - a view consistent with Cobb and 
Yackel’s emergent perspective (p. 6, 2007). 
 

As stated, the authors situate these subprocesses of proof relative to a broader community. 
This perspective emphasized both the individual’s reasoning to gain conviction about the 
validity or invalidity of a conjecture and the individual’s communication of his or her 
thinking. Importantly, the authors point out that ascertaining and persuading often occur 
simultaneously, underscoring the anticipation of communicating a person’s reasoning in a 
community.  

This aspect of the “proof schemes” framework connects well with more recent research 
emphasizing socially situated aspects of the proving process. For instance, Stylianides’ 
(2007) provided a way of defining proof relative to the classroom community with three 
properties: “set of accepted statements…modes of argumentation…modes of argument 
representation” (pp. 291-292). In his discussion, Stylianides pointed out that individuals 
within a community may not agree on valid reasoning or types of arguments. While 
investigating mathematicians’ practices, Weber (2008) also emphasized the importance of the 
community in which an argument is presented when considering the argument’s validity. As 
Harel and Sowder stated in the excerpt, these points are consistent with an emergent 
perspective, which holds at the fore the development of mathematical practices as 
individuals’ participate in mathematical communities.  More recently, Weber (2010) 
maintained the emergent perspective by discussing the explanatory power of proof, focusing 
on the importance of the audience’s interpretation of a proof as the source of any proof’s 
explanatory power. 
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Figure 1: Diagram of interplay between individual and proof community 

 
Our Theoretical Hypothesis on Ascertaining and Persuading 

We envision the process of the development of a communicative artifact of proof as a 
result of the interplay between an individual and the proof community (Figure 1). While a 
version of this interplay may generalize to model any type of communication, we are focused 
on the dynamics involved in proof production. Specifically, we hypothesize that individuals’ 
subprocess of ascertaining during proof production involves a cycle in which the individual 
balances conviction with skepticism. Throughout this process, the individual might anticipate 
the communication of their ideas within a broader community – anticipation that would likely 
inform the ascertaining subprocess, particularly during moments of skepticism, and 
persuading subprocess during the development and presentation of the communicative 
artifacts of proof (CAP).  

The notion of CAP should inform the field’s understanding and investigation of proof and 
the proving process by allowing proof researchers to distinguish between specific aspects of 
proof and focus on the specific proof activity in a participant’s proving process. Further, these 
early notions of CAP can be developed to better explicate the types activity constituting the 
subprocesses of ascertaining and persuading. Refinement of the proving process may allow 
both researchers and instructors pinpoint hardships that students experience in their proving 
process, or may allow students to specifically target self-evaluation of their own proving. 
 

References 

Cobb, P., & Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives in the 
context of developmental research. Educational psychologist, 31(3-4), 175-190. 

Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. 
Research in collegiate mathematics education III, 7, 234-282. 

Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and 
teaching of proof. Second handbook of research on mathematics teaching and 
learning, 2, 805-842. 

Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for research in 
mathematics education, 38(3), 289–321. 

Weber, K. (2008). How Mathematicians Determine If an Argument Is a Valid Proof. Journal 
for Research in Mathematics Education, 39(4), 431–459. 

Weber, K.. (2010). Proofs that develop insight. For the learning of mathematics, 30(1), 32–
36. 

19th Annual Conference on Research in Undergraduate Mathematics Education 1237

19th Annual Conference on Research in Undergraduate Mathematics Education 1237



Analyzing Classroom Developments of Language and Notation for Interpreting Matrices as 
Linear Transformations 
 

Ruby Quea  Christine Andrews-Larson 
Florida State University Florida State University 

 
As part of a larger study of students reasoning in linear algebra, this research analyzes how 
students make sense of language and notation introduced by instructors when learning matrices 
as linear transformations. This paper examines the implementation of an inquiry-oriented 
instruction that consists of students generating, composing, and inverting matrices in the context 
of increasing the height and leaning a letter “N” placed on a 2-dimensional Cartesian 
coordinate system (Wawro et. al., 2012). I analyzed two classroom implementations and noted 
how instructors introduced and formalized mathematical language and notation in the context of 
this particular instructional sequence, and then related that to the ways that language and 
notation were subsequently taken up by students. This work was conducted in order to enable me 
to build theory about the relationship between student learning and the ways in which language 
and notation are introduced. 
 
Keywords: inquiry-oriented instruction, linear algebra, linear transformations, language and 
notation 

 
The topic of matrix transformations is commonly taught in introductory linear algebra classes 

offered at many community colleges and four-year universities (Carlson, Johnson, Lay & Porter, 
1993). The interpretations students need to develop and coordinate in the context of matrix 
transformations have been detailed in the literature (Larson and Zandieh, 2013).  Studies have 
shown that students experience difficulties understanding functions (e.g. Oehrtman, Carlson, & 
Thompson, 2008); this work has the potential to inform our understanding of the difficulties 
students experience in coming to understand matrix transformations. This study has the potential 
to build theory about the relationship between how instructors introduce language and notation 
and how students make sense of that in the context of learning about matrix transformations. 
 

Background 
 

In the mathematics education community, researchers continue to find ways to support 
students’ learning of concepts in ways that can be formalized into general definitions and 
theorems with instructional guidance. A hypothetical learning trajectory (HLT) is a theoretical 
model that is comprised of three components: learning objectives, a series of learning tasks, and 
a theorized learning process (Simon, 1995). This paper examines implementation of a particular 
HLT that consists of getting students to generate, compose, and invert matrices.  This work is set 
in a 2-dimensional, geometric setting where students work to transform a letter “N” into a tall 
and leaner “N”. Intuitively, students are investigating function mappings through a matrix 
transformation.  Students’ work in this context draws on ideas of matrix multiplication, 
noncommutativity of matrices, and invertible mappings.  
 

Research Questions 
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When and how did instructors introduce and formalize language and notation in the context 
of this instructional sequence? How is the use of language and notation subsequently taken up by 
students?  

Data Sources and Context 
 

In order to explore these research questions, I analyzed two HLT classroom implementations 
that took place where students explored how to italicize the letter “N”. Data sources include 
video recordings of two different instructors implementing the instructional sequence at different 
institutions.  The sequence took about three to four class periods, each of which were fifty 
minutes in length. My focus was on portions of the class in which there was whole class 
discussion and lecture. 

Before students began working on the task sequence, the instructors both provided a review 
of three ways one can interpret the product of a matrix with a vector: as a linear combination, a 
system of equations, or a transformation.  The third of these interpretations was highlighted and 
analogized to students’ previous work with functions as they begin to work on the three tasks. 
The first task consists of having the student figure out what matrix transforms a regular “N” to a 
tall and lean “N.”  This task is aimed at supporting students to consider how the matrix 
representation of a transformation can be found by coordinating input vectors with output 
vectors.  The second task requires students to consider the transformations from the previous task 
in two parts: one that stretches the “N” to make it taller and one that then skews/leans the taller 
“N” to make it look “italicized”.  Students must coordinate this two-part transformation in a way 
that helps them conceptualize the composition of matrix transformations. The third task requires 
students to undo the italicization of the “N” by two ways: using a single matrix transformation 
and by using two separate matrix transformations. This is intended to give rise to the concept of 
invertible matrices, as students were instructed to find a matrix that ‘undoes’ the original 
transformation. In other words, students make sense of the definition of the inverse of an 
invertible square matrix 𝐴 as that matrix 𝐵 that “undoes” 𝐴 so that 𝐴𝐵 = 𝐼 and 𝐵𝐴 = 𝐼 where 𝐼 
is the identity matrix. 
 

Methods of Analysis 
 

The first phase of my analysis involved developing content logs as I watched videos of both 
classroom implementations that were recorded. These logs contain detailed descriptions of the 
interactions between the students and the instructor. This information was organized in a table 
with time stamps for each key event. The type of interaction was be categorized as whole class 
discussion, student, group work, and lecture. I made note when language and notation was first 
introduced during the sessions. From there, I started a timeline of instances that summarizes 
when terminology and notation were introduced by the instructor and how those were 
subsequently used by students.  

In the next phase of my analysis, I will first identify key terms and notation introduced by the 
two instructors, and develop categories for ways in which terms and notation were introduced, as 
well as categories for ways in which terms and notation were taken up by students.  I will then 
trace the development of student thinking across the four days of instruction in each of the units. 
Finally, I will consider similarities and differences in the themes relating the categories for 
development of language and notation in the two classes. I will then discuss implications for 
when and how instructors might introduce definitions in order to bridge the gap between 
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informal and formal mathematical language. I will also provide examples on my poster of the 
instances mentioned and speculate on patterns within and across these instances in order to 
address my research questions. 
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Using the chain rule to develop secondary school teachers’ Mathematical Knowledge 
for Teaching, focused on the rate of change: Secondary mathematics teachers’ 

knowledge of the chain rule and its’ impact on their teaching of the rate of change. 

Zareen Gul Rahman, Debasmita Basu, Karmen Yu, Aminata Adewumi 
Montclair State University 

The unit described in this study was designed to connect secondary and advanced 
mathematical topics. It focused on how the knowledge of chain rule impacts secondary 
teachers’ understanding and teaching of rate of change so that they can address students’ 
misconceptions. This project is informed by the idea of Mathematical Knowledge for 
Teaching, which encompasses both subject-matter knowledge and pedagogical content 
knowledge of teachers. The goal was to enhance secondary school teachers’ teaching of the 
rate of change and the unit featured tasks connecting rate of change problems as seen in high 
school algebra to the concept of chain rule. The unit was designed to engage mathematics 
teachers in discourse about the content learned at the college level to content that is taught at 
the secondary school level.  

Key words: [Chain rule, secondary school teaching, rate of change, Mathematical Knowledge 
for Teaching] 

Introduction 

According to the CCSSM standards, the concept of nonlinear models should be 
introduced in eighth grade but this introduction is limited to analyzing graphs to understand 
the functional relationship between two quantities (CCSS, 2013). This leads to several gaps 
in students’ understanding of the rate of change of non-linear models. Furthermore since 
students learn the concept of linearity early in their primary and secondary school careers and 
this concept is reinforced they feel comfortable using it and tend to apply it without discretion 
(De Bock, 2002). Consequently, when students are introduced to higher level concepts, 
specifically in differential calculus, they struggle to develop conceptual understanding 
because of their assumptions of linearity (Brabham, 2014). It is important therefore to 
introduce rate of change as it relates to both linear and non-linear models so students get a 
deeper conceptual understanding of the rate of change. For this purpose we created an 
instructional unit as part of our class project. 

 Our unit was created with the goal to make connections between secondary and advanced 
mathematical topics. Specifically, our research question is: How does the knowledge of chain 
rule impact secondary school teachers’ understanding and teaching of the rate of change? 

Conceptual Framework 

Our project is informed by the idea of Mathematical knowledge for teaching (MKT) 
(Ball, Thames & Phelps, 2008), which encompasses both subject-matter knowledge and 
pedagogical content knowledge. For example teachers need the knowledge to check correct 
answers, definitions and concepts but also specialized content knowledge to meet the 
demands of teaching mathematics. These include skills needed to pose questions, interpret 
students’ responses, use multiple representations to provide explanations and most 
importantly make connections.  Some MKT is a result of blending mathematics with other 
knowledge, like knowing the students, the curriculum, pedagogy etc. A recently added type 
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of MKT is “horizon knowledge” which gives teachers a mathematical “peripheral vision” that 
is so important for effective teaching. It is “an awareness of how mathematical topics are 
related over the span of mathematics included in the curriculum” (Ball et al., 2008, p. 403). It 
provides a larger view of mathematics that gives the teachers a sense of where to place the 
content that they are teaching and how it is connected to higher level mathematics (Ball and 
Bass, 2009). 

Research suggests that strong MKT is linked to certain habits of mind like careful 
attention to mathematical detail, reasoning skills, dexterity with various forms of 
mathematics curricula, working with students etc. Sometimes teachers develop this 
knowledge on their own by engaging in mathematics focused professional development but 
other times they need support (Hill & Ball, 2009). Based on the nature of MKT, there is a 
need to develop instructional guidance for teachers (Hill & Ball, 2009). For this reason, a unit 
was developed with the understanding that it will enhance secondary school teachers’ 
teaching of the rate of change. The unit featured tasks connecting rate of change problems as 
seen in high school algebra to the concept of chain rule. Our goal in creating this unit was to 
engage mathematics teachers in discourse about the content learned at the college level to 
content that is taught at the secondary school level. Our unit employed tasks designed by Hill 
and Ball (2009) which focused on analyzing student errors, experiencing alternative 
solutions, choosing examples etc. 

Research Methodology 

Participants 
The two participants in this study are fulltime students in a doctoral level mathematics 

education course. Of the two, one is currently a high school mathematics teacher in the 
United States and the other participant has several years of teaching experience in India. 

Data Collection 
The class was audio taped and observation notes of the lesson were taken focusing on 

participants’ mathematical conversations and comments in regards to the lesson.  
Participants’ work was also collected 

Instructional Unit   
The unit was designed to engage the teachers in discourse about the content learned and 

to make connections between mathematical content at the secondary and tertiary education 
levels. It posed a series of thought provoking questions which led the participants to examine 
the teaching of rate of change at the secondary level; specifically, the relationship between 
the instantaneous rates of change, the constant rate of change, and the chain rule. At the end 
of the lesson, the participants shared their reflection on the topic, both verbally and in writing. 

Data Analysis 
Our group analyzed participants’ work to find recommendations for content and 

pedagogy to improve teaching of the concept of rate of change in secondary education. We 
also recorded any connections between secondary and tertiary mathematics as well as student 
misconceptions on this topic.   

Implications 
This pilot study focused on a unit developed as part of a class project. In the future, we 

plan to revise our unit and conduct this study with pre-service mathematics teachers. 
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A national investigation of Precalculus through Calculus 2 
 

Chris Rasmussen Naneh Apkarian David Bressoud 
San Diego State University San Diego State University Macalester College 

   
Jessica Ellis Estrella Johnson Sean Larsen 

Colorado State University Virginia Tech Portland State University 
 

We present findings from a recently completed census survey of all mathematics 
departments that offer a graduate degree (Master’s and/or PhD) in mathematics. The 
census survey is part of a larger project investigating department-level factors that 
influence student success over the entire progression of the introductory mathematics 
courses that are required of most STEM majors, beginning with Precalculus and 
continuing through the full year of single variable calculus. The findings paint a portrait 
of students’ curricular experiences with Precalculus and single variable calculus, as well 
as the viewpoints held by departments of mathematics about that experience. We see that 
departments are not unaware of the value of particular features characteristic of more 
successful calculus programs, but that they are not always successful at implementation. 
However, our data also suggest hope for the future. Our work not only reveals what is 
currently happening, but also what is changing, how, and why. 

 
Keywords: Census Survey, Precalculus, Calculus, Program success 
 
There is a growing body of research pointing to why students are leaving STEM fields in general 
and first-year mathematics courses in particular. Contrary to common belief, introductory 
mathematics courses are not serving as a filter for students who are academically unprepared 
(Steen, 1988). Students who leave STEM majors are consistently shown to be as academically 
prepared as their persisting counterparts (Berrett, 2011; Rasmussen & Ellis, 2013; Reich, 2011; 
Taylor, 2011). Instead, students leaving STEM fields often cite poor instructional experiences in 
introductory level courses as the primary reason for their departure. These results are consistent 
with Tinto’s integration framework, which emphasizes the effects of student engagement and 
integration on retention, especially in the first year of college (Kuh et al., 2008; Tinto, 1975, 
2004). Integration occurs through a negotiation between the students’ incoming social and 
academic norms and the norms of the department and broader institution. From this perspective, 
student persistence is viewed as a function of the dynamic relationship between the student and 
other actors within the institutional environment, including the classroom environment. 
 
Literature focusing on student success in the pre-calculus to calculus sequence provides further 
insights into why students are leaving first-year mathematics courses (and therefore STEM 
fields). This research consistently indicates that: students are not learning what we want them to 
in these courses (Breidenbach et al., 1992; Carlson, 1998; Tallman et al., 2015; Thompson, 
1994); these courses are not adequately preparing students for subsequent courses (Carlson, 1995, 
1998; Selden & Selden, 1994; Thompson, 1994); students lose interest in STEM after taking 
these courses (Bressoud, Mesa, & Rasmussen, 2015; Seymour & Hewitt, 1997). These findings 
point to significant shortcomings in students’ experiences. Unfortunately, many of these studies 
are focused on a limited number of institutions, a small number of students, or a single course. 
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What is currently missing is a national portrait of students’ Precalculus through calculus 
curricular experiences and how these experiences relate to what is known about effective 
programs that support student success. In this paper we present initial findings from the Progress 
though Calculus (PtC) project, which builds on the insights from a recently completed five-year 
project, Characteristics of Successful Programs in College Calculus (CSPCC) (Bressoud, Mesa, 
& Rasmussen, 2015). The overall goal of the PtC project is to investigate, at a national level, 
department-level factors that influence student success over the entire progression of the 
introductory mathematics courses that are required of most STEM majors, beginning with 
Precalculus and continuing through the full year of single variable calculus. We refer to this 
sequence as Precalculus to Calculus 2 (P2C2).  

As reported in Bressoud & Rasmussen (2014), the CSPCC study found that institutions with 
more successful Calculus I programs shared many of the following characteristics: (1) Calculus I 
was coordinated across sections and individual instructors contributed significantly to communal 
course decisions; (2) faculty used local data to check on the effectiveness of their program and 
make improvements; (3) for programs that made use of graduate, there was an extensive training 
of the Graduate-student Teaching Assistants; (4) faculty supported and encouraged active 
learning strategies; (5) the department had rigorous courses and high expectations for students; 
(6) the university offered many student supports, such as all day free tutoring centers and 
Supplemental Instruction; and (7) had adaptive placement systems that sought to place students 
in the highest course for which they could succeed. 

In this report we address the following research questions: 
1. How do mathematics departments prioritize the importance of the seven characteristics 

found in the CSPCC study? 
2. How do mathematics departments characterize their implementation of the practices of 

successful programs identified in CSPCC study, what changes are being considered, and 
why? 

3. What instructional format and structures (e.g., bridge courses, stretched out calculus) are 
currently in place in the P2C2 sequence and how common are they nationally? 

 
Methods 

The five-year PtC project, which began in early 2015, is being conducted in two phases. Phase 1 
is a census survey of all mathematics departments that offer a graduate degree in mathematics. 
These institutions were selected because they produce the bulk of STEM graduates while often 
struggling to find a balance between the demands of research and teaching. Phase 2 will consist 
of in depth longitudinal case studies. In this report we focus on initial findings from the census 
survey. In the United States there are a total of 330 institutions that offer either a Masters or PhD 
in mathematics. All 330 institutions, which included 178 PhD granting institutions and 152 
Master’s degree granting institutions, were surveyed. The overall response rate was 67.6%, with 
a response rate of 75% from the PhD institutions and 59% from the Master’s institutions.  
We designed the census survey to gather information on the implementation of the seven features 
of successful programs identified by the CSPCC project as well as to gain an understanding of 
the variety of P2C2 programs currently being implemented across the country, the prevalence of 
such programs, and what institutions are doing to improve their programs. The survey consisted 
of three main parts. Part I asked for a list of all courses in the mathematics department 
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mainstream Precalculus/calculus sequence. “Mainstream” refers to any course in this sequence 
that would be part of student preparation for higher-level mathematics courses such as a 
sophomore- or junior-level course in differential equations or linear algebra. Part II asked about 
the departmental practices in support of the Precalculus/calculus sequence. Part III asked for 
detailed information about each course in the mainstream P2C2 sequence, including enrollment 
data and details about course delivery. The survey was closed mid August 2015. 

Given the fact that the survey has only recently been closed, we begin analysis of the cleaned 
data set with descriptive statistics (counts, frequencies, means, standard deviations) which will 
then be followed by additional descriptive methods (e.g., Multiple Correspondence Analysis; 
clustering; Principal Components Analysis) to reveal patterns in the census data. Our aim is to 
identify models of existing P2C2 programs in their entirety rather than simply identifying 
patterns within individual components.  

Sample Results 
 
For research question 1, our data allow us to see how departments of mathematics view the 
practices identified in CSPCC as characteristic of successful institutions. Participants were asked 
to consider eight characteristics and group them by their importance to a successful P2C2 
sequence. The results from this question are summarized in Figure 1. Note that in general, PhD- 
and MA-granting institutions agree on the importance of individual features, with the exception 
of GTA teaching preparation programs, in which case MA-granting institutions report the feature 
as less important than PhD-granting institutions. Of course many MA-granting institutions do not 
make extensive use of GTAs and so this difference is expected.  

  
Figure 1. Reported importance of CSPCC features for successful P2C2 sequence. Nall = 219, NPhD=132, NMA=87. 

 
Further, participants were asked how successful their program is with each of these features. The 
results from this question are summarized in Figure 2. Again we see general agreement between 
the institution types as to their relative success at implementation, with the exception of GTA 
teaching preparation, where MA-granting institutions reported a much higher rate of “NA.”  
 
Student placement and student support programs are the two CSPCC features where the widest 
gap was observed between perceived importance and perceived success. Both were reported as 
very important to the success of a P2C2 sequence, but most participants reported that they were 
only somewhat successful at implementation of these features. 
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Ac)ve	learning	

strategies	
Challenging	
courses	 GTA	prepara)on	 Instructor	

mee)ngs	
Monitoring	
local	data		

Student	
placement		

Student	support	
programs	

Uniform	
components	

Not	 0.09	0.12	0.05	 0.05	0.04	0.08	 0.18	0.02	0.43	 0.21	0.20	0.24	 0.08	0.09	0.06	 0.01	0.02	0.00	 0.00	0.00	0.00	 0.06	0.07	0.06	

Somewhat	 0.47	0.46	0.47	 0.49	0.54	0.43	 0.32	0.33	0.30	 0.51	0.48	0.56	 0.53	0.50	0.56	 0.12	0.14	0.09	 0.33	0.36	0.29	 0.38	0.35	0.44	

Very	 0.44	0.42	0.48	 0.45	0.42	0.49	 0.50	0.65	0.28	 0.27	0.33	0.20	 0.40	0.41	0.38	 0.87	0.84	0.91	 0.67	0.64	0.71	 0.55	0.58	0.51	
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Figure 2. Reported success at CSPCC features for successful P2C2 sequence. Nall = 218, NPhD=131, NMA=87. 

 
Regarding research question 2, our data also captures detailed aspects of how CSPCC practices 
are being implemented by departments of mathematics as well as what changes are being 
planned and why. In the full paper we will report on how departments initially place students 
into the P2C2 sequence, how they gather and use local data to monitor and modify the sequence, 
and what supports (in particular tutoring centers) are in place for P2C2 students. A separate 
proposal has been submitted that details how GTAs are prepared for their teaching roles. We also 
have information about satisfaction levels and the status of these features (i.e., if changes have 
recently occurred or are being planned). These results are summarized in Figures 3 and 4. 
Satisfaction ratings with the tutoring center and GTA preparation programs were collected only 
from departments reporting that they have these programs in place, while queries about status 
were asked of all participants. 

 
Figure 3. Satisfaction levels with selected CSPCC features. Sample sizes for student placement and use of local 

data: NAll=217, NPhD=132, NMA=85. For the tutoring center: NAll=169, NPhD=108, NMA=61. For GTA preparation: 
NAll=160, NPhD=118, NMA=42.  

Again we see that PhD- and MA-granting institutions report similar levels of satisfaction for 
each of these program features. However, the reports of being satisfied (program is adequate) are 
higher than reports of being “very successful” with these same programs. This appears to 
indicate that many departments are satisfied with being somewhat successful in their 
management of the P2C2 sequence. 
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Figure 4. Status of selected CSPCC features. Parentheticals indicate N. Options were not mutually exclusive. 

 
The data regarding the status of individual CSPCC features indicates that most departments of 
mathematics are not planning changes to department-run tutoring centers, their use of local data, 
or GTA teaching preparation programs. While about half of participating schools indicate that no 
changes to their placement procedures are planned, it seems that this feature is the least static, 
tallying with our discovery that institutions across the nation feel that initial placement into the 
P2C2 sequence is important and that they are not entirely successful with this process. That most 
departments are not planning changes to their tutoring centers is more surprising, as it was 
widely reported that student supports are important to successful programs and departments do 
not report high rates of success. Note that in with all four features, the reports of “no changes 
planned” are higher than rates of “very successful.” It appears that while many departments 
believe they are not entirely successful with their implementation of these CSPCC practices, they 
are not prepared to amend these processes.  
 
In addition to the broad characterizations of satisfaction and status of department programs 
presented in this proposal, our presentation will include details of how the seven features 
identified in the CSPCC study are implemented across the nation with regards to the P2C2 
sequence. For placement this will include initial placement procedures (e.g., AP exam results; 
MAA placement exam) and what (if any) procedures for revisiting and adjusting initial 
placement exist. Resources to support students include detailed information about the existence 
and format of tutoring centers for students in the P2C2 sequence, as well as supports available to 
students (e.g., online tutoring; arranged study groups) and any supports aimed particularly 
toward “at-risk” and/or underrepresented groups in mathematics (e.g., scholarships; targeted 
supplemental instruction). We will present also the types of local data that departments of 
mathematics collect and how departments have been using that data to inform decisions about 
their undergraduate program. In addition to reporting on the variety of implementation models, 
we will report on their relative frequency across institutions. 
 
For research question 3, information about P2C2 instruction and structures in place across the 
nation was ascertained through Part III of the census survey. 201 institutions completed this 
section of the survey. Therein, participants were queried about details regarding the 
implementation of each course that is part of the mainstream P2C2 sequence at their institution. 
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Of particular interest are the data regarding primary instructional format. We collected detailed 
information about 904 P2C2 courses, and found that nearly 70% of these are reportedly taught in 
a lecture format and 15% are taught in a format that incorporates some active learning techniques 
alongside lecture. Around 10% of courses did not report a single primary instructional format, 
and fewer than 5% fell into the categories: mainly active learning (including flipped), lecture 
plus computer-based instruction, or “other.” These values reflect the primary instructional format 
across all P2C2 courses, but the general pattern is the same for each category of courses (e.g., 
Precalculus courses, Calculus I courses). However, we note that the proportion of classes being 
taught in traditional lecture format increases through the sequence (from 57% to 75%), while all 
other formats decreased in frequency. That fewer than 20% of all P2C2 courses report 
incorporating any level of active learning in regular course meetings is remarkable, particularly 
in light of the fact that 44% of institutions noted that active learning strategies are “very 
important” to having a successful P2C2 sequence, and 75% reported being at least “somewhat 
successful” at implementing active learning strategies.  
 
In the presentation we will provide more detail as to different P2C2 progressions that are in place 
as well as course-specific details such as enrollment data, DFW rates, instructor profiles, contact 
hour breakdown, prevalence and form of recitation sections, coordinated aspects of parallel 
sections, coordinator profiles, and the status of each course (e.g., if changes are being discussed). 
This will further illuminate what P2C2 sequences are experienced by undergraduates across the 
country. 
 
Conclusion 
 
This paper provides the first overview of the information we have gathered with regard to 
introductory undergraduate mathematics programs across the country. The findings paint a 
national portrait of students’ curricular experiences with Precalculus and single variable calculus, 
as well as the viewpoints held by departments of mathematics about that experience. We see that 
departments are not unaware of the value of particular features, but that they are not always 
successful at implementation. However, our data also suggest hope for the future. Our work not 
only reveals what is currently happening, but also what is changing, how, and why. We note that 
many institutions reported in open-ended questions that they want to make improvements, but 
are not sure how. We believe that our work will not only describe what is happening in 
mathematics departments at the national scale, but will illuminate ways of reaching institutions 
interested in change – of which there are many. One institution wrote to us saying, “We should 
do more. This survey is giving me ideas.” We suspect there are many other institutions ready for 
change. This report provides a first in its kind baseline of what is happening in the P2C2 
sequence across the nation. 
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On the Variety of the Multiplication Principle’s Presentation in College Texts 
 

Zackery Reed      Elise Lockwood 
Oregon State University    Oregon State University 

 
The Multiplication Principle is one of the most foundational principles of counting. Unlike 
foundational concepts in other fields, where there is uniformity in presentation across text and 
instruction, we have found that there is much variety in the presentation of the Multiplication 
Principle. This poster highlights the multiple aspects of this variety, specifically those with 
implications for the combinatorial research and education community. Such topics include the 
statement types, language and representation of statements, and mathematical implications. 
 
Key words: Combinatorics, Multiplication Principle, Student Thinking, Textbook Analysis 
 

Introduction and Research Questions 
 

Combinatorics problems embody a duality of accessibility and difficulty for students at 
various levels. Because of the growing need for discrete mathematics in scientific fields, it is 
important for the mathematics education community to understand student conceptions of 
foundational counting principles and techniques. The multiplication principle (MP) is widely 
accepted as an important and fundamental principle in combinatorics, and serves as the basis for 
many basic counting formulas (Gersting, 1999; Mazur, 2009; Richmond & Richmond, 2009). 
We have experienced a variety in the presentation of the multiplication principle. This variety, 
and the importance of the principle motivated a formal analysis of a large sample of textbooks in 
combinatorics, finite, and discrete mathematics textbooks. This poster presents on the results of 
that study which sought to answer the following two research questions: 1) What is the nature 
and extent of the variation of statements of the multiplication principle presented in 
combinatorics, discrete mathematics, and finite mathematics textbooks?  
2) What mathematical issues arise in comparing and contrasting different statements of the 
multiplication principle? 

Relation to Literature 
 

There have been recent studies that investigated student thinking in combinatorial 
contexts in which correct application of multiplication was a vital component of the learning 
process (eg. Lockwood & Coughman, 2015; Kavousian, 2008; Tillema, 2011; Tillema, 2013). 
There are also a number of researchers (e.g., Dubois, 1984; Fischbein & Gazit, 1988; Piaget, 
1975) who have studied student discovery and application of counting formulas which rely 
heavily on the multiplication principle. While the above studies relate multiplication to counting, 
there is a lack of studies directly involving student thinking on the MP. This textbook analysis 
offers a glance at the pedagogical issues surround the MP that students are exposed to in their 
learning process.  

 
Theoretical Perspectives 

 
Researchers have examined textbooks to better understand how ideas are presented to 

students in the fields of linear algebra (Cook & Stewart, 2014; Harel, 1987), trigonometry (Mesa 
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& Goldstein, 2014), and abstract algebra (Capaldi, 2012). We adopt this examination to 
combinatorics texts.  
 We also utilize Lockwod’s (2013) model for student combinatorial thinking in terms of 
sets of outcomes and counting processes. We combine Lockwood’s model with Sfard’s (1991) 
dual nature of mathematical conceptions. Her language reflects that students can think of 
mathematical concepts as objects (reflecting a structural conception) and process (reflecting an 
operational conception). This dualistic language proves vital to statement analysis.  
 

Methodology 
 

 We selected textbooks for our analysis from a list of 76 colleges nation-wide. The list 
was made to include colleges from each state, as well as colleges of differing size and ranking. 6 
colleges were excluded from the study. In total, we analyzed 32 textbooks that served as the 
assigned reading for 92 different courses from the 70 universities. We also then added textbooks 
from our personal libraries to make a total of 64 textbooks analyzed.  
 Our analysis followed Strauss and Corbin’s (1998) constant comparative method of 
qualitative analysis. The data collected was scanned textbook sections introducing the MP and 
the surrounding narratives (Thompson, et al., 2012). In our initial glances at the data we noted 
emergent observed phenomenon, and built a coding scheme inductively. In each section we were 
specifically interested in statements of the MP, and so with each statement given we 
characterized the different statement types, the language used, and the representations given to 
accompany the statement. We were also interested in the mathematics of the statement types, 
specifically noting if each statement discussed independence of events, distinctness of composite 
outcomes, and subtleties involving the Cartesian product.  
 

Results and Implications 
 

 This poster will demonstrate the variety across the different statements and textbooks. 
We categorized three inherently distinct statement types: structural, operational, and bridge. The 
former two statement types are in accordance with Sfard’s dualistic concept notions and the latter 
merges the characterizations. We note, and will display, that there were differences in the 
combinations of these statement types in the textbooks. For instance, 6 discrete mathematics and 
4 combinatorics books gave only structural statements. These different statement types further 
research in student thinking on the MP by providing researchers different conceptions of the MP 
to leverage when investigating combinatorial thought.  
 We will also display the extent of the diversity of the other considerations we accounted 
for in our analysis. We found that the languages and representations of the MP varied greatly. 
This variety is noteworthy to educators in that they may now be made aware of the kinds of 
presentations of the MP that exist in textbooks. Educators with this awareness can make more 
informed decisions when choosing the textbooks for their classes. 

Finally, we found that statements accounted for differing combinations of the three 
mathematical considerations listed above. It is pedagogically important to note that these 
considerations can affect the accuracy of students’ applications of the MP. For instance, not 
accounting for the distinctness of the composite outcomes may lead a student to misapply the 
MP and over-count when solving a particular counting problem. This discussion will be useful 
for the combinatorial instruction. 
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Exploring	tensions:	Leanne’s	story	of	supporting	pre-service	mathematics	
teachers	with	learning	disabilities	

	
							Robyn	Ruttenberg-Rozen																																										Ami	Mamolo	

																York	University																				University	of	Ontario	Institute	of	Technology	

	
This	paper	presents	a	case	study	of	a	mathematics	teacher	educator,	Leanne,	and	her	story	

of	 trying	 to	 support	 the	 development	 of	 two	 pre-service	 elementary	 school	 teachers	 with	
recognized	learning	disabilities.	We	analyze	data	through	a	lens	of	mathematical	knowledge	
for	teaching,	focusing	in	particular	on	concerns	and	tensions	about	(i)	maintaining	academic	
rigor	 while	 meeting	 the	 emotional,	 cognitive	 and	 pedagogical	 needs	 of	 her	 students,	 (ii)	
seemingly	 opposing	 pedagogies	 between	 special	 education	 and	 mathematics	 education	
practices,	and	(iii)	equitable	opportunities	for	teachers	with	disabilities	and	the	consequences	
for	 their	 potential	 pupils.	 We	 offer	 an	 analysis	 of	 Leanne’s	 personal	 struggle,	 highlighting	
implications	for	teacher	education	and	offering	recommendations	for	future	research.	
	

Keywords:	Mathematics	Teacher	Educators,	Learning	Disabilities,	Mathematical	

Difficulties,	Pre-service	teachers,	Pedagogical	Content	Knowledge	

	

Preparing	future	elementary	teachers	in	mathematics	is	often	challenging,	with	a	

multiplex	of	considerations	that	aim	to	help	prospective	teachers	transition	from	(and	to)	

being	engaged	mathematics	learners	to	being	engaging	mathematics	teachers	who	can	

support	the	diverse	needs	of	their	future	students.		The	learning	needs	within	an	

elementary	pre-service	mathematics	classroom	itself	can	be	just	as	diverse	as	the	classes	

for	which	the	pre-service	teachers	are	being	prepared.	One	consideration	for	teacher	

education	that	has	not	received	much	research	attention	is	the	preparation	of	future	

elementary	teachers	with	learning	disabilities	and	the	pedagogical	content	knowledge	it	

entails	of	teacher	educators.	This	paper	presents	a	case	study	of	a	mathematics	teacher	

educator,	Leanne,	and	her	story	of	trying	to	support	the	pedagogical	and	mathematical	

development	of	two	pre-service	elementary	school	teachers	with	recognized	learning	

disabilities.	Leanne’s	story	took	place	in	a	math-for-elementary	school	course,	which	

focused	on	mathematical	problem	solving	and	content	knowledge.	We	use	the	theoretical	

framework	of	mathematical	knowledge	for	teaching	(Ball,	Thames	&	Phelps,	2008),	

specifically	knowledge	of	content	and	students	(KCS),	to	analyze	the	data.	Analysis	of	the	

data	revealed	three	areas	of	tension	Leanne	experienced	while	trying	to	meet	the	learning	

needs	of	her	students,	despite	her	background	in	special	education.		We	discuss	concerns	

and	tensions	about	(i)	maintaining	academic	rigor	while	meeting	the	emotional,	cognitive	

and	pedagogical	needs	of	students,	(ii)	seemingly	opposing	pedagogies	between	special	

education	and	mathematics	education	practices,	and	(iii)	equitable	opportunities	for	

teachers	with	disabilities	and	the	consequences	for	their	potential	pupils.		We	offer	an	

analysis	of	Leanne’s	personal	struggle,	highlighting	implications	for	teacher	education	and	

offering	recommendations	for	future	research.	
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Mathematics	Teacher	Educators	
	

Mathematics	teacher	educators	are	integral	to	the	learning	and	growth	of	each	

generation	of	the	pre-service	and	in-service	teachers	they	teach	and,	by	extension,	to	

mathematics	education	reform	as	well	(Tzur,	2001).	Yet,	there	has	been	relatively	little	

research	into	the	learning	and	growth	needs	of	mathematics	teacher	educators	(Goos,	

2014).	This	lack	of	research	may	echo	the	progression	of	mathematics	education	research	

where	the	original	focus	was	on	learners	and	not	on	teachers	(Even,	2008).	Just	like	

teachers	of	mathematics,	mathematics	teacher	educators	require	the	subject	matter	and	

pedagogical	knowledge	of	mathematics	in	order	to	teach	children.	However,	mathematics	

teacher	educators	also	require	additional	subject	matter	and	pedagogical	knowledge	of	

mathematics	in	order	to	teach	teachers	(Jaworski,	2008).	For	this	latter	knowledge,	teacher	

educators	metamorphose	from	being	“math	teachers”	to	being	“math	teaching	mentors”,	

where	mentorship	involves	preparing	individuals	for	future	teaching	scenarios	that	may	

not	be	predictable(Lampert	&	Ball,	1999).	Mason	(2008)	describes	this	accomplishment:		

“the	effective	teacher	educator	aims	to	direct	attention	so	that	participants’	

attention	is	drawn	out	of	the	actions	of	doing	mathematics	and	also	out	of	the	

actions	of	teaching	mathematics,	so	that	awarenesses	become	explicit.	In	this	way,	

individuals	and	their	social	milieu	may	serve	to	educate	that	awareness,	and	thus	

inform	actions	in	the	future”	(p.50).	

	

Mathematical	knowledge	for	teaching	and	KCS	
	

Given	the	dearth	of	research	on	teacher	educator’s	pedagogical	content	knowledge,	we	

look	to	research	conducted	with	teachers	to	frame	our	analyses.		Ball	and	colleagues	(2008)	

argued	that	the	specific	knowledge	required	to	teach	mathematics	may	be	qualitatively	

different	than	the	knowledge	needed	to	teach	other	school	subjects.	They,	thus,	posited	the	

theoretical	framework,	mathematical	knowledge	for	teaching,	as	an	extension	to	Shulman’s	

(1986)	pedagogical	content	knowledge	framework.	Ball	and	colleagues	found	that	the	

knowledge	required	for	teaching	mathematics	was	complex,	with	multiple	layers	of	

knowledge	required.	They	saw	mathematical	knowledge	for	teaching	as	having	two	main	

general	categories,	with	each	category	further	broken	down	into	three	subcategories:	

Subject	Matter	Knowledge	(SMK)	consists	of	content	knowledge,	specialized	content	

knowledge	and	knowledge	at	the	mathematical	horizon,	and	Pedagogical	Content	

Knowledge	(PCK)	consists	of	knowledge	of	content	and	students	(KCS),	knowledge	of	

content	and	teaching,	and	knowledge	of	curriculum.		We	focus	on	KCS.		

At	the	root	of	KCS	is	knowledge	about	student	learning	of	mathematics,	and	the	specific	

background	knowledge	that	allows	a	teacher	to	anticipate,	recognize	and	mediate	likely	

misconceptions	and	errors	in	students’	learning	of	mathematics.	Using	knowledge	of	the	

mathematics	curriculum	and	knowledge	about	potential	errors,	a	teacher	can	then	create	

lessons	that	have	at	their	center	the	goal	of	(re)mediation	of	the	potential	errors	(Hill,	Ball,	

&	Schilling,	2008).		An	important	distinction	between	KCS	and	common	content	knowledge	

is	that	the	former	requires	teachers	to	anticipate	and	prepare	for	mistakes	while	the	latter	
entails	responsiveness	to	such	mistakes	(Ball	et	al.,	2008).	For	a	rich	KCS,	teachers	require	

more	than	knowledge	of	mathematics,	but	also	knowledge	of	how	learners’	may	interpret,	

respond	to,	or	represent	mathematical	ideas	(Hill	et	al.,	2008).	
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Leanne’s	Story	
	

Leanne	teaches	a	required	mathematics	content	course	for	elementary	pre-service	

teachers.	The	purpose	of	the	course,	like	others	of	its	kind	(Goos,	2014),	is	to	develop	much	

needed	content	knowledge	and	problem	solving	skills	for	pre-service	teachers.	The	course	

uses	the	text	Thinking	Mathematically	by	Mason,	Burton	and	Stacey	(2010)	and	is	

structured	around	mathematical	tasks.	Leanne’s	academic	background	is	in	mathematics	

education,	and	her	professional	background	includes	special	education	teaching	in	the	

elementary	school.	Through	a	series	of	informal	interviews,	Leanne	reflected	on	tensions	

she	felt	when	trying	to	support	two	students	with	identified	learning	disabilities	in	

mathematics.	She	discussed	what	she	felt	were	successes	and	failings	in	her	attempts	to	

meet	the	needs	of	these	students.	In	what	follows	we	analyze	Leanne’s	reflections	with	an	

eye	toward	what	the	construct	of	KCS	could	mean	for	teacher	educators.		

	

Results	
	

Maintaining	academic	rigor	while	meeting	the	emotional,	cognitive	and	pedagogical	needs	of	
her	students:	
Leanne:	I	want	to	practice	what	I	preach,	and	even	in	a	university	class	I	tried	to	

differentiate,	but	there	is	always	a	stress	about	academic	rigor.	

Leanne:	I	really	want	my	students	to	succeed,	these	students	were	so	labor	intensive…	

spending	time	with	me	outside	of	class	time…	they	took	class	time	and	all	my	office	

hours	and	then	some…	The	population	itself	is	already	riddled	with	its	own	

problems,	and	layered	on	top	of	that	are	students	with	special	needs	who	have	had	

negative	experiences	with	mathematics.		It	is	a	circular	attempt	to	help	them…	I	do	

not	have	enough	information	about	how	to	help	special	needs	populations,	but	we	

are	in	the	class	now	so	it	is	a	trial	and	error	mode.	

Here,	Leanne	expresses	tensions	concerning	meeting	the	emotional	needs	of	her	students	

while	maintaining	academic	rigor.	Leanne	wanted	to	support	her	students	with	special	

needs	in	the	same	way	she	supported	her	students	when	she	was	an	elementary	teacher.		

However,	Leanne	faced	barriers	of	knowledge	and	tried	to	compensate	by	spending	more	

time	inside	and	outside	of	class	with	her	students.	Leanne	expressed	she	did	not	feel	she	

was	progressing	in	helping	her	students;	describing	her	attempts	as	“circular.”	

	

Seemingly	opposing	pedagogies	between	special	education	and	mathematics	education	
practices:	
Leanne:	It	is	not	the	same	in	elementary	school.	There,	you	are	supporting	them	for	doing	

well	on	a	test…	not	for	this.	You	can	use	all	these	strategies	to	help	the	students	

because	the	question	is,	if	the	kid	passed	the	test,	not	if	they	know	the	material.	Of	

course	I	wanted	my	students	with	learning	disabilities	to	know,	but	we	need	to	help	

them	pass	and	we	don’t	know	how	to	get	them	to	know.	
Leanne:	In	math	research,	I	don’t	know	why,	we	have	the	ideal	student	and	it	is	definitely		

not	the	LD	kid.	In	math	research,	there	is	so	much	of	a	focus	on	conceptual	

understanding	and	abstractness…	but	not	in	special	education.	There	the	focus	is	on	

procedures.	Procedures,	and	they	don’t	care	if	there	is	understanding.		

Here,	Leanne’s	views	of	teaching	from	special	and	mathematics	education	perspectives		
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seem	to	oppose	each	other.	In	Leanne’s	view	mathematics	educators	and	special	educators	

have	different	purposes.	Mathematics	education	teaches	for	understanding	beyond	the		

classroom,	and	special	education	teaches	for	success	in	a	classroom.	Leanne	finds	herself	

bending	towards	the	special	education	perspective	as	“we	need	to	help	them	pass.”		

However,	this	view	is	in	direct	disagreement	to	the	purposes	of	the	course	she	is	teaching.		

	

Equitable	opportunities	for	teachers	with	disabilities	and	the	consequences	for	their	potential	
pupils:	
Leanne:	The	other	student	didn’t	ask	for	any	help.	As	soon	as	we	started	looking	at	

anything	resembling	mathematics,	she	disappeared.	She	would	be	there	at	the	

beginning	of	class,	I	think	she	was	trying,	hoping	each	day	was	different,	that	maybe	

we	wouldn’t	do	anything	resembling	math	that	day...	So	I	spoke	to	her…I	think	I	was	

successful	for	her	and	the	other	student	because	in	the	end	they	had	a	more	positive	

attitude	towards	mathematics.	Some	might	argue	that	they	should	not	be	teaching	

because	of	their	low	content	knowledge	but	we	could	lose	a	great	teacher	and	what	

does	this	mean	for	equity?	

Leanne:	I	know	that	the	best	teachers	for	kids	with	special	needs	are	often	those	with		

special	needs	themselves.	But	kids	also	need	teachers	who	have	knowledge	of	the		

content.		

Leanne	deeply	believed	that	all	of	her	students	had	the	right	to	become	teachers	and	that	

great	teachers	may	develop	with	a	variety	of	different	backgrounds,	abilities,	and	

needs.		However,	she	also	had	pressing	concerns	about	the	subject	matter	knowledge	

demonstrated	by	her	students	and	how	to	prepare	them	to	meet	the	mathematical	

demands	of	the	profession	while	accommodating	their	special	needs	and	disabilities.	

	

Discussion		
	

Similar	to	Mason’s	(2008)	observations,	Leanne	seemed	to	take	for	granted	that	her	

experience	of	being	a	special	education	teacher	would	be	a	seamless	transition	to	

mentoring	students	with	special	educational	needs	in	a	university	setting.	However,	it	was	

fraught	with	difficulties	and	tensions.	Leanne	tried	to	use	the	strategies	she	had	acquired	

from	teaching	in	special	education,	however	those	strategies	were	meant	for	scholastic	

achievement	in	a	school	setting	and	not	for	supporting	the	development	of	math-for-
teaching.	Leanne	described	a	lack	of	KCS	to	teach	her	students	with	special	needs.	KCS	
would	have	allowed	her	to	anticipate	their	difficulties	and	to	create	a	program	around	

those	difficulties.	Instead,	and	not	dissimilar	to	what	happens	in	elementary	schools	with	

children	with	special	needs,	Leanne	was	frantically	trying	to	support	her	students	to	

achieve	after	the	fact.		

Students	with	learning	disabilities	can	learn	mathematics	but	learn	differently	(Lewis,	

2014).	What	Leanne	was	feeling	relates	to	how	little	we	know	of	how	to	help	students	who	

learn	differently	in	mathematics	and	especially	in	a	university	setting.	Leanne	associated	

her	tensions	with	academic	rigor,	however,	the	issues	may	have	stemmed	from	a	mismatch	

of	settings.	Just	as	the	knowledge	needed	to	teach	mathematics	is	different	from	the	

knowledge	needed	to	teach	mathematics	teachers	(Simon,	2008),	so	too,	here	the	

knowledge	needed	to	help	those	who	learn	differently	in	an	elementary	setting	is	different	

than	the	knowledge	needed	to	help	those	in	a	university	setting.		
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The	differences	in	special	education	needs	in	the	university	and	in	the	elementary	

classroom	may	also	have	their	roots	in	the	differences	between	the	fields	of	special	

education	and	mathematics	education	(Sfard,	2007).	The	elementary	school	system	is	

structured	so	that	a	child	can	do	well	on	a	final	exam	or	a	state	test	and	be	ready	to	

progress	to	the	next	grade.	The	question	is	not	if	the	child	“understands	the	mathematics”	

or	sees	the	aesthetic	beauty	of	the	mathematics,	or	if	she	can	use	the	mathematics	in	the	

outside	world.	The	child	has	passed	the	test	and	is	ready	to	move	on.	In	university,	and	in	

this	course	in	particular,	the	purposes	diverge.	One	of	the	many	goals	of	a	course	like	this	is	

to	“help	students,	who	do	not	see	the	world	as	examples	and	non-examples	of	the	

operation,	to	do	so”	(Simon,	2008,	p.21).	In	other	words,	the	students	in	the	mathematics	

course	that	Leanne	is	teaching	will	have	to	go	out	and	aid	their	own	students	in	making	

sense	of	the	mathematical	world.	They	will	have	to	use	what	they	learned	from	the	course	

as	a	tool	to	help	their	own	students.	Thus,	the	way	remediation	is	used	in	elementary	

schools	cannot	be	duplicated	in	universities	where	the	purposes	differ.	However,	one	might	

argue	that	with	the	new	reform	efforts	towards	understanding	in	elementary	mathematics	

classrooms,	they	too	require	new	strategies	for	remediation.	

Many	universities	require	their	pre-service	elementary	teachers	to	take	and	pass	some	

iteration	of	a	mathematics	course	in	order	to	graduate.	For	many	students	this	course	may	

stand	in	the	way	of	their	aspirations	of	becoming	teachers.	However,	the	content,	delivery	

and	theoretical	underpinnings	that	frame	these	math	courses,	like	Leanne’s,	vary	across	

universities.	Thus,	mathematics	acts	as	a	gatekeeper	for	teaching,	in	different	ways	to	

different	students	in	different	spaces.	In	this	case,	as	Leanne	reflected,	there	were	many	

facets	to	the	problem	of	equity:	there	is	the	pre-service	teacher	who	is	faced	with	a	barrier;	

the	future	student	who	deserves	to	have	access	to	mathematical	content	knowledge;	and	

there	is	also	the	mathematics	teacher	educator	who	requires	her	own	specialized	KCS.	

	

Remarks	and	Questions	
	

						Elementary	pre-service	teachers	already	arrive	at	pre-service	programs	with	a	variety	

of	needs	in	regards	to	(re)	learning	mathematics.	We	would	argue	that	an	additional	need,	

not	given	attention	in	the	literature	is	the	knowledge	needed	to	teach	students	with	

learning	differences.	It	is	notable	that	Leanne	experienced	tensions,	despite	her	training	in	

special	education.	This	stresses	the	importance	for	special	attention	to	be	paid	to	KCS	for	

helping	special	needs	populations	understand	mathematics	at	the	university	level.	
Mathematics	teacher	educators	need	the	knowledge	of	misconceptions,	errors	and	

difficulties	and	how	to	create	lessons	that	address	them	for	even	their	most	different	

students.	In	this	way,	mathematics	teacher	educators	can	create	more	equitable	

opportunities	for	all	their	students	and	themselves.		We	propose	the	following	questions:	

• In	what	ways	might	a	teacher	educator’s	KCS	differ	from	that	of	a	school	teacher’s?	
• How	can	teacher	educators	use-to-advantage	their	KCS	such	that	they	can	adequately	

support	pre-service	teachers’	development	of	math-for-teaching?	
• In	what	ways	do	learning	disabilities	impact	pre-service	teachers’	development?		What	

are	the	challenges?	What	are	the	advantages?		How	can	teacher	educators	better	support	
the	learning	and	professional	needs	of	this	community?	
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On the use of dynamic animations to support students in reasoning quantitatively 
Grant Sander 

Dr. Marilyn P. Carlson 
Arizona State University 

 
This study addresses the well-documented issue that students struggle to write meaningful 
expressions and formulas to represent and relate the values of quantities in applied problem 
contexts. In developing an online intervention, we drew from research that revealed the 
importance of and processes involved in conceptualizing quantitative relationships to support 
students in conceptualizing and representing quantitative relationships in applied problem 
contexts. The results suggest that the use of dynamic animations with prompts that focus 
students’ attention on conceptualizing and relating quantities can be effective in supporting 
students in constructing meaningful expressions to represent the value of one quantity in 
terms of another, and formulas to define how two co-varying quantities change together.  

Key words: Quantitative Reasoning; Problem Solving; Online Learning; Dynamic Imagery 

Introduction 

This study investigated student learning in the context of online lessons that were 
designed to support students in conceptualizing and relating quantities in applied contexts. It 
is well documented that students have difficulty knowing how to approach word (or applied) 
problems (Schoenfeld, 1992; DeFranco, 1996; Geiger and Galbraith, 1998; Carlson & 
Bloom, 2005; Moore & Carlson, 2012). A major difficulty for students in defining 
meaningful formulas or functions to model how quantities are related in an applied context 
results from their lack of effort to conceptualize the quantities in the problem and consider 
how they are related and change together (Moore & Carlson, 2012). Writing formulas to 
represent how two varying quantities change together further requires that students 
conceptualize variables as a means of representing the varying value that a quantity assumes, 
as opposed to only seeing a variable as an unknown value to solve for (Trigueros & Jacobs, 
2008; Jacobs, 2002). This study leveraged these research findings to design an instructional 
intervention to support student learning in an online instructional environment. Furthermore, 
past research findings informed the development of research-informed and adapted 
instructional sequencing to support students in employing reasoning abilities needed to 
construct formulas and graphs that are meaningful to students as ways of conveying how two 
varying quantities change together in applied problem contexts. In this article we describe the 
online instruction. We then report the results of a study that examined a student’s thinking as 
he interacted with the online dynamic animations, responded to instructional prompts, and 
viewed videos designed to support students in conceptualizing and relating quantities and 
expressing these relationships symbolically. 

Theoretical perspective 
 

The orientation phase in problem solving has been generally described by Polya 
(1957) and Carlson & Bloom (2005) as making sense of the problem, organizing relevant 
information, and developing a plan for producing a solution. In more recent studies it has 
been revealed that the mental process of orienting to a problem context involves initially 
conceptualizing the quantities in the situation and imagining how the relevant quantities are 
related and change together (Carlson & Moore, 2015; Moore and Carlson, 2012). The 
conceptualization of quantities in a situation and how they are related has been described by 
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Thompson (2002) as quantitative reasoning; the act of analyzing a situation into a network of 
quantities and relationships between quantities. Thompson further describes a quantity as a 
conceived attribute of an object that one envisions as being measureable. Integral to 
reasoning quantitatively is the act of quantification, “the process of conceptualizing an object 
and an attribute of it so that the attribute has a unit of measure, and the attribute’s measure 
entails a proportional relationship … with its unit” (Thompson, 2013). Upon deciding on a 
unit of measure, the value of a quantity is the numerical value assigned to the measurement of 
that quantity. According to Thompson (2013) it is important that students are able to perform 
quantitative operations - mental operations on quantities for the purpose of characterizing 
new quantities - as opposed to only performing numerical operations on real numbers. An 
example of a quantitative operation is comparing the lengths of Car A and Car B additively to 
determine how much longer Car A is than Car B, using subtraction to determine 
(numerically) this difference, and knowing that the length of Car A – the length of Car B 
represents the amount by which the length of Car A exceeds the length of Car B. An example 
of a numerical operation is performing the calculation 5–12 for the purpose of finding a 
number.  

Writing meaningful formulas further requires that one consider how the two varying 
quantities to be related with a formula change together. Carlson et al. (2002), Saldanha & 
Thompson (1998), and Thompson (1992) have described covariational reasoning to be the 
cognitive activities involved in coordinating two varying quantities while simultaneously 
attending to the ways in which they change in relation to each other. In the context of this 
study, we examine covariational reasoning in the context of two continuously varying 
quantities. In general, we use the term covariational as an adjective to describe an entity that 
involves two quantities varying simultaneously. 

Conceptual analysis and design 
 

Stemming from the work of Von Glasersfeld (1995), Thompson (2008) presents two 
meanings for the term conceptual analysis – to build a model of knowing that might help the 
researcher understand how a person might know an idea, and to devise a way of 
understanding an idea such that if a student had such a way of understanding, it would likely 
support that student in dealing mathematically with his or her environment. We refer to these 
as conceptual analyses of the first and second type, respectively.  In this section, we use the 
term in the latter manner – to propose a way of thinking that may be powerful for supporting 
a student in building particular mathematical meanings. 

Lesson 1 was designed to support students in identifying and relating quantities in a 
given applied problem-context. The over-arching student-learning goal for Lesson 1 of the 
intervention is for students to be able to write an expression that describes the value of one 
quantity in terms of the value of another quantity.  Past research has shown that the act of 
conceiving of a situation in terms of quantities and determining how the conceived quantities 
are related and vary together is imperative for writing meaningful expressions and formulas 
(Moore & Carlson, 2012; Carlson & Moore, 2015; Moore, 2013). As such, in this lesson the 
student watches an animation of a dynamic situation in which at least two quantities are 
varying together (See Figure 1). They are prompted to determine values of one quantity when 
specific values of another quantity are known, and are then asked to consider changes in one 
of the varying quantities when given that the other varying quantity changes from one 
specific value to another. We have evidence from past studies that the mental imagery 
required to respond to these types of questions requires students to conceptualize how the 
value of some known fixed quantity can be combined with specific values of one varying 
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quantity to determine values of the other varying quantity (e.g. Moore & Carlson, 2012; 
Carlson & Moore, 2015). Therefore, we provide the student with multiple occasions to 
engage in covariational reasoning and imagine combining a fixed quantity and a varying 
quantity to obtain another varying quantity in various non-complex problem contexts. 

 
Figure 1: Jo Walking to Car 

Lesson 2 introduced ideas of variable, expression, and formulas. Since past studies 
have documented that students have difficulty interpreting what is being asked when a 
problem requests students to define “one variable in terms of another,” specific prompts were 
included to support students in developing this meaning.  Past studies have also revealed that 
students have a strong tendency to view variables as always representing a single unknown 
value to solve for (Trigueros & Jacobs, 2008). A student who only thinks about a variable as 
an “unknown to solve for” will likely have difficulty using variables meaningfully to write 
formulas that define how two co-varying quantities change together. We introduce a variable 
as a letter or symbol that represents the varying value that a quantity can assume, and provide 
an emphasis on the varying nature of variables. The use of variables is motivated by the 
notion that trying to precisely relate the values of varying quantities via words can quickly 
become very cumbersome. Subsequently, the student is engaged in describing the meaning of 
variables in dynamic problem contexts. The student is also provided with tasks that involve 
determining how the value of one variable changes when the value of another variable 
changes from some initial value to some final value. Once the student has been provided with 
an intellectual need to use variables, we introduce the notion of formula as a mathematical 
statement that both expresses the value of one quantity using the value of another quantity 
and describes how the values of two quantities co-vary. In this intervention, we present 
formulas in a function-like manner. We reserve the phrase “in terms of” to describe the 
directionality of the formula – that is, to describe which quantity’s value is being explicitly 
represented using the value of the other quantity. For example, we take a formula to express x 
in terms of y if the formula determines the value of x given any valid value of y; as a 
convention, such a formula is in the form x = <some expression in y>. The student is 
provided with instructional videos discussing the idea of formula, as well as the surrounding 
conventions. Amongst the probing questions in this lesson, the student is given practice 
computing the value of one quantity given the value of another quantity, and writing formulas 
to express one quantity “in terms of” another. 

 
Methods 

 
 An online intervention was developed to support students in first conceptualizing 
quantities in an applied context and then consider how two varying quantities in the context 
change together. The design of the intervention was guided by past research on writing 
meaningful formulas to relate two co-varying quantities. To justify the content and 
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scaffolding of the online intervention we performed a conceptual analysis (of the second 
type) of the mental processes involved in: conceptualizing and relating relevant quantities in 
a problem context, defining variables, and writing meaningful formulas to relate the values of 
two co-varying quantities. The online intervention in this study consisted of two consecutive 
“lessons.” Each lesson was of a similar structure, consisting of carefully scaffolded 
instructional videos, mathematical animations, interactive applets, and probing questions. 
Once a learning trajectory was developed, I designed animations and applets using GeoGebra 
(Hohenwarter, 2001), a dynamic geometry software. We then recorded the instructional 
videos using a screen-recording software. We embedded these videos, animations, applets 
and probing questions into a math-assessment and course platform, IMathAS (Lippman, 
2006). 

The lessons were piloted with two Pre-Calculus level students who completed a series 
of three clinical interviews in which they worked through the online intervention while the 
interviewer watched the student and periodically asked questions to elicit the student’s 
thinking. After the interview data was collected, we analyzed the data and performed a 
conceptual analysis (of the first type) for the purpose of building a model of the student’s 
thinking. We then made inferences about the ways in which the online intervention shifted 
the student’s meanings. We conclude by offering suggestions for using these research 
findings to guide future revisions of the online instructional materials. The subject discussed 
in this manuscript is Alex1, an undergraduate student studying pre-law at a large university in 
the Southwestern United States. 

Results 
 

The first page of Lesson 1 is grounded in the following context: “Jo walks the 140 
foot distance from the front door of her house to her car.” The student was given the 
animation portrayed in Figure 1. He was then asked a series of questions designed to support 
him in conceptualizing and relating pairs of related quantities in the problem context. The 
first two tasks prompted the student to select from a list of quantities that vary and those that 
are constant within the given problem context. Alex had no difficulty identifying the constant 
and varying quantities in this situation. The next task provided the student (consecutively) 
with three values for the distance from Jo to her front door (in feet), and asked the student to 
compute the corresponding distance from Jo to the car (in feet). The resulting interactions are 
provided in Excerpt 1. 
Excerpt 1: 
1 Alex How far is Jo when she is 40 feet from her front door. She’s 40 feet from the 

door [on the animation Alex uses mouse to point from front door to 
somewhere between the door and the car] and this is 140 feet [points to line 
segment with 140 marked on it] means she is 100 feet from her car [with 
mouse, points from somewhere between the door and the car to the car]. 

2 Alex When she is one-hundred and fifteen feet. [1-second pause] One hundred and 
forty minus one hundred and fifteen is twenty-five. 

3 Alex [Alex computes 140 – 55.3 in head] Normally I would be writing this down. 
But the thought process is one-forty minus that number. 

 In Line 1 of Excerpt 1 Alex used the mouse to point at the quantities in the animated 
diagram that he used to determine Jo’s distance from her car.  While doing so he noted the 40 
feet Jo had walked from the front door and the 140 feet between the front door and car, and 

                                                
1	Alex is a pseudonym.	
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realized that the distance Jo needed to walk to her car could be determined by considering 
what he must add to Jo’s distance from her front door (40 feet) to obtain the total distance of 
140 feet. We consider this mental process to be a quantitative operation, wherein Alex 
envisioned comparing two quantities to obtain a new quantity; subtraction was the 
appropriate numerical operation to evaluate the value of the quantity resulting from the 
quantitative operation. Lines 2 and 3 of Excerpt 1 then show Alex performing the same 
numerical operation without reference to the diagram. We interpret this as Alex generalizing 
the quantitative operation and resulting numerical operation he enacted in Line 1 to other 
situations wherein the distance from Jo to the front door is known and the distance from Jo to 
the car is to be determined. Alex then went on to correctly answer a prompt to select a 
worded expression that represents the quantity “the distance from Jo to her car.” After Alex 
completed Page 1 of Lesson 1, the interviwer (Grant) asked him for his reactions to the page. 
This interaction is displayed in Excerpt 2. 
Excerpt 2 
1 Grant Alright, good. So what. What are your initial thoughts on this page? Is there 

anything that seemed confusing to you other than using words instead of x 
and y? 

2 Alex No. I thought the diagrams really, really helped. And that’s kind of what I 
was visualizing before. A constantly moving person, but the 140 stays fixed. 
Knowing those two things grounds pretty much everything else that I thought 
about in this problem. 

3 Grant Okay, good. So what about… what do you think of these line segments that 
change as she walks [moves mouse to the diagram in the instructional video]? 

4 Alex I really like that. Because it shows that you have two different variables 
changing as she’s walking, or moves. And I like that in relation to that 140, 
which doesn’t move. In my mind, I was taking that a step further and picture 
numbers on the two distances, one increasing and one decreasing. To show 
the relationship between the two, not just in lines but also in distances. 

  In Lines 2 and 4 of Excerpt 2 Alex expressed that the quantitative images provided by 
the animation supported him in reasoning about the problem context. In Line 2, Alex’s 
comments suggest that knowing and visualizing how the three relevant distances varied in 
relation to one-another grounded his thinking for “pretty much everything else that I thought 
about in this problem.” In Line 4, Alex’s comments suggest that he visualized the moving 
distance segments as representing “two different variables changing as she’s walking,” one 
whose value is increasing while the other’s is decreasing. We infer that the animated diagram 
supported Alex in both conceptualizing the relevant quantities as well as imagining how they 
co-vary.  
 The first page of Lesson 2 is grounded in the following context: “A 14-inch long 
candle is lit and steadily burns until it is burned out.” This page starts with an instructional 
video designed to motivate the usefulness of variables as a means of representing the varying 
values that a varying quantity assumes. In this context the variable b was defined to represent 
the varying number of inches that have burned away from the candle; the variable b is 
portrayed on the animated diagram next to a steadily increasing line segment representing the 
burned length of the candle. This video was followed by prompts to explain the meaning of 
the variable b and the expression 14 – b. The last of these tasks prompts the student: 
“According to the video, what does the letter b represent in the context of the candle-burning 
problem?” Alex’s verbal reaction to this task is presented in Excerpt 3. 
Excerpt 3 
1 Alex …the length that has been burned. And before I’m looking at the answers, 
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I’m thinking that’s what I have in my head. And it is an unknown value, so 
[option] A looks right. But I’m going to scan the other answers. It’s not the 
remaining length. Oh, but it’s not! I did that wrong. I was focusing on the 
‘unknown’ versus ‘known,’ but that’s not the contrast. The contrast is a single 
unknown versus a varying value, and I am looking for a varying value. That 
would be the burned length. 

 In Excerpt 3, Alex’s response revealed that he conceived of the variable b as 
representing varying values, rather than a single unknown value. The second instructional 
video describes how one could use a value of b to determine the remaining length of the 
candle (in inches). The variable r is also defined to represent the values of the remaining 
length of the candle (in inches). Following this video is a series of tasks designed to engage 
the user in determining how the value of r changes if b changes from some initial value to 
some final value. Alex responded to the prompt “As b varies from b = 7.5 to b = 12 inches, 
how does r vary?” by determining that the remaining length of the candle would decreases 
from 7.5 to 2 inches. The next task on this page began with the prompt: “What does your 
answer to the above question mean?” The student is then given a sentence with four missing 
words that can be selected via dropdown select-menus (displayed in Figure 2 below). Alex’s 
response to this task is presented in Excerpt 4 below. 

 
Figure	2:	Candle	Burning	Task	

Excerpt 4: 
1 Alex So what does the above answer mean? So I look at the above answer and try 

to predict first, as opposed to looking at the answers. So that means as the 
burned length of the candle increases, the length, r, decreases. I’m seeing a 
similar structure… And that is how we initially conceptualized it. And that 
makes sense, because you’re essentially just saying as one variable goes up 
the other variable goes down. 

2 Grant And does that make sense to you… like if you imagine the candle, does that 
make sense? 

3 Alex Yes, especially from the video, when they showed how one variable was 
increasing while the other one was decreasing. That wording is how I would 
have worded that from the video. 

In Line 1 of Excerpt 4, Alex determined that as the value of b increases, the value of r 
decreases. In Line 3, Alex explained that this statement aligned with his dynamic image of 
the variables changing together. In Line 3 Alex mentioned the dynamic diagram and how it 
“showed how one variable was increasing while the other was decreasing,” suggesting that 
the dynamic diagram supported Alex in conceptualizing how the relevant quantities vary 
together. From Line 3 of Excerpt 4 we infer that the dynamic diagram supported Alex in 
conceiving of the variables b and r as varying while imagining how they change together as 
the candle burns. Although it may be the case that, without the dynamic diagram, Alex could 
have conceived of b and r as varying wherein r decreases as the value of b increases, Excerpt 
4 suggests that the dynamic diagram strongly supported Alex in bolstering these conceptions. 
A few minutes after the interaction in Excerpt 5, Alex responded to the task prompt: “What 
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does the expression 14 – b represent in the context of the candle burning question?” by 
saying,  
Excerpt 5: 
1 Alex So 14 is the initial length of the candle. b we know is the burned length. So 

that equation is going to be varying because we know b is a varying variable. 
And if you have that in an equation and you don’t have b, you don’t have a 
varying value. So, we know that A is correct because 14 minus b gives you 
the remaining length as a varying value. 

 Line 1 of Excerpt 5 suggests that Alex conceived of the expression 14 – b as 
representing the varying values of the remaining length of the candle. Alex did not only 
conceive of 14 – b as representing the remaining length of the candle, he also conceived of it 
as varying as the value of b varies. Alex continued working through this Page of Lesson 2, 
and was able to determine a formula that expresses r in terms of b and a formula that 
expresses b in terms of r. 
 

Conclusions and implications 
 

 The findings suggest that the dynamic diagrams presented in the intervention 
supported Alex’s construction of a coherent and useful image of the quantities in the problem 
context, and how relevant quantities change together. These images emerged as Alex 
conceptualized the quantities in the situation and determined how they were related. This 
suggests that the dynamic animations with accompanying prompts that support students in 
conceptualizing the quantities in a problem context, and how they change together, can be 
effective in helping students construct expressions and formulas that are meaningful to them.  
 From these results we draw the following implications relative to computer-based 
instructional design. 

i. Dynamic diagrams can be useful tools for supporting students in conceptualizing 
relevant quantities in problem contexts. To further support students in 
conceptualizing relevant quantities in a problem context, these animations should be 
supported by questions that probe the student to consider various quantities in the 
context and describe how they vary together. 

ii. The dynamic nature of the diagrams can be leveraged to support students in thinking 
in dynamic ways. For example, the candle burning animation was effective in 
supporting the student in conceptualizing variables as varying, not as single unknown 
values. This can be extended to other ideas, such as constant rate of change and 
proportionality, that students often think of statically but are perhaps more 
productively thought of as dynamic. 

iii. Computer-based tools can be used to simultaneously represent the co-variation of two 
quantities via different representation systems. This capability can be used to support 
students in “seeing” the meaning of the symbols that they write on their paper, in the 
sense that in the student’s mind, the symbols and expressions they write represent the 
values of quantities within the context. 

 
Although the implications we mention above are framed in the context of computer-

based instructional activities, we believe that such implications are relevant to in-class 
practice. Dynamic diagrams and applets can be used to center classroom conversation around 
particular mathematical ideas while simultaneously providing a dynamic view of how 
multiple quantities might vary together and how one might represent the varying values of 
these quantities and how they are related. 
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PHYSICS STUDENTS’ CONSTRUCTION AND USE OF DIFFERENTIAL ELEMENTS 
IN MULTIVARIABLE COORDINATE SYSTEMS  

 
 Benjamin P. Schermerhorn  John R. Thompson  
 University of Maine University of Maine 
 
As part of an effort to examine students’ understanding of non-Cartesian coordinate systems 
when using vector calculus in the physics topics of electricity and magnetism, we interviewed 
four pairs of students. In one task, developed to force them to be explicit about the components of 
specific coordinate systems, students construct differential length and volume elements for an 
unconventional spherical coordinate system. While all pairs eventually arrived at the correct 
elements, some unsuccessfully attempted to reason through spherical or Cartesian coordinates, 
but recognized the error when checking their work. This suggests students’ difficulty with 
differential elements comes from an incomplete understanding of the systems. 
 
Key words: Coordinate Systems, Differential Elements, Physics, Vector Calculus 
 

Introduction 
Various physics education researchers have explored student difficulties with the 

mathematics applied in Electricity and Magnetism (E&M). These studies have assessed student 
understanding of integration and differentials (Doughty et al., 2014; Hu & Rebello, 2013; 
Nguyen & Rebello, 2011); have identified difficulties in applying Gauss’s and Ampère’s Laws, 
two integral components of E&M courses that involve a surface integral and line integral, 
respectively (Guisasola, 2008; Manogue, 2006; Pepper, 2012); and have addressed calculation, 
understanding, and application of gradient, divergence, and curl in both mathematics and physics 
settings (Astolfi & Baily, 2014; Bollen, 2015).   

A key factor in the application of these mathematical concepts and operations in E&M is a 
working understanding of the spherical and cylindrical coordinate systems appropriate for the 
symmetry of most physical situations. In order to solve problems, students are expected to use 
differential line, area, and volume elements, as well as position vectors that describe the 
locations of charges distributed over volumes, surfaces, and lines, in order to set up appropriate 
integrals. A further complication is that the differential line and area elements are vector 
quantities and thus have a specific direction, while the volume elements are scalar. Given the 
importance of these differential elements – in different coordinate systems – to the calculations, 
the main research questions of this study are: 

• How do students make sense of and work with coordinate systems, specifically 
cylindrical and spherical coordinates? 

• How do students construct differential vector elements within a given coordinate system? 
While disciplinary conventions (e.g., φ and θ angle labels switch from math to physics) can 

be an obstruction to student understanding early in the course (Dray and Manogue, 2003; 2004), 
even when these are addressed, students have difficulty constructing these differential elements.  

 
Methods 

Clinical think-aloud interviews were conducted with pairs of students (N=8) at the end of the 
first semester of a year-long, junior-level E&M sequence. Pair interviews allowed for a more 
authentic interaction and sharing of ideas between students with minimal influence from the 
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interviewer. This report focuses on a task in which students were given an unconventional 
spherical coordinate system. Students were asked to conclude whether the system was feasible, 
and to build and verify the differential line and volume elements. As students work through these 
tasks, we are able to see how they reason about the differential elements in a specific coordinate 
system, thus giving insight into the choice and use of these elements in their problem solving. 

Our initial analysis has identified student specific difficulties (Heron, 2003) and successes. 
We are currently connecting these to aspects of student concept images (Tall & Vinner, 1981) of 
the differential elements and of the non-Cartesian coordinate systems. Similar analysis has been 
done for student difficulties with divergence and curl in electrodynamics (Bollen et al., 2015). 

        
Figure 1: (a) Conventional (physics) spherical coordinates; (b) an unconventional spherical 
coordinate system given to students, for which they were to construct differential length and 

volume elements. The correct elements for each system are in (c) and (d), respectively. 
 

Results 
Results shed a unique light on how students build differential elements within a coordinate 

system. None of the interview pairs determined the correct elements at first, often attempting, 
incorrectly, to map from a conventional coordinate system rather than constructing the necessary 
differential elements geometrically. However, all of the pairs correctly attempted to verify the 
volume element with a spherical integral, which is when they recognized any error(s) in their 
differential elements. 

Some pairs attempted to recall how to decompose the vector M into its Cartesian 
components. Two pairs, trying to map directly to a spherical system, incorrectly included a sin(α) 
in the β component of their differential length rather than the appropriate cos(α); this is 
reminiscent of “x,y syndrome” (White & Mitchelmore, 1996), wherein students remember 
expressions in terms of symbols used rather than in terms of the concept. Another pair had no 
trigonometric function in their components.  

Regardless of the elements determined, all pairs attempted integration to obtain the spherical 
volume formula. All pairs eventually realized the need for cos(α) because of the projection into 
the xy-plane. In some cases the cosine term arose in an attempt to obtain the correct formula by 
integration, while in other cases the need for the vector to project into the xy plane was 
recognized first, and the cosine term was inserted or substituted into the differential.  

Our results suggest students do not have a robust understanding of how to build differential 
elements, but are able to check the validity of these elements and adjust terms appropriately. 

This work is preliminary; subsequent data interpretation will use perspectives that have been 
productive in describing student understanding of mathematics in physics contexts, including 
layers (Zandieh, 2000; Roundy et al., 2015) and symbolic forms (Sherin, 2000; Jones 2013). 
Additional plans are to develop instructional resources that improve student understanding of the 
construction of differential elements in multivariable coordinate systems in physical contexts. 

(c) 

(d) 

(b) (a) 
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Student interpretation and justification of “backward” definite integrals 
 

 Vicki Sealey 
West Virginia University 

John Thompson 
University of Maine 

 

 
The definite integral is an important concept in calculus, with applications throughout 

mathematics and science. Studies of student understanding of definite integrals reveal several 
student difficulties, some related to determining the sign of an integral. Clinical interviews of 5 
students gleaned their understanding of “backward” definite integrals, i.e., integrals for which 
the lower limit is greater than the upper limit and the differential is negative. Students initially 
invoked the Fundamental Theorem of Calculus to justify the negative sign. Some students 
eventually accessed the Riemann sum appropriately but could not determine how to obtain a 
negative quantity this way. We see the primary obstacle here as interpreting the differential as a 
width, and thus an unsigned quantity, rather than a difference between two values. 

 
Key words:  Definite integrals, Calculus, Differential 
  

In this preliminary report, we examine the role of the differential in the “backward” definite 
integral, ∫ 𝑓(𝑥)𝑑𝑥𝑎

𝑏  where 𝑎 < 𝑏. The definite integral is a fundamental concept in calculus, with 
applications throughout mathematics and science. Studies of student understanding of definite 
integrals reveal several difficulties (Bajracharya, Wemyss, & Thompson, 2012; Bezuidenhout & 
Oliver, 2000; Jones, 2013; Lobato, 2006; Sealey, 2006, 2014; Sealey & Oehrtman, 2005). The 
existing literature on definite integrals tends to support a specific approach to developing an 
understanding of the definite integral, specifically by recognizing it as the sum of infinitely small 
products, which are formed via Riemann sums (Jones, 2013; Meredith & Marrongelle, 2008; 
Sealey, 2008, 2014). Additionally, Sealey (2006) and Jones (2013) point out that recognizing the 
Riemann sum as a sum of products of the function value 𝑓(𝑥) and the increment on the x-axis 
(∆x) is necessary for students to understand the meaning of the area under the curve, which is, 
arguably, the most prominent metaphor/interpretation of the definite integral. On the other hand, 
reasoning about a definite integral as area under the curve may limit students’ ability to apply the 
integral concept (Norman & Prichard, 1994; Sealey, 2006; Thompson & Silverman, 2008).  

Another aspect of the definite integral that leads to student difficulties is the meaning of the 
differential itself. Students treat the differential as an indicator of the variable of integration 
rather than a fundamental element of the product in integration of both single- and multivariable 
functions (Hu & Rebello, 2013; Jones 2013). This could stem from a failure to understand the 
product layer of the integral (Sealey, 2014; von Korff & Rebello, 2012). Other recent work has 
shown students treating dx as a width rather than a difference or change, both for positive and 
negative integrals (Bajracharya et al., 2012; Hu & Rebello, 2013; Wemyss, Bajracharya, 
Thompson, & Wagner, 2011). 

Interpreting the sign of the integral has been shown to be difficult for students. In particular, 
definite integrals that have a negative result are of particular difficulty geometrically. Students 
often do not treat the area as a negative quantity, effectively associating it with spatial area rather 
than the quantity represented by the product of 𝑓(𝑥) 𝑑𝑥. This is true for integrals for which 𝑓(𝑥) 
is negative, i.e., below the x-axis (Bezuidenhout & Oliver, 2000; Lobato, 2006), as well as those 
for which dx is negative, i.e., the direction of integration is in the negative direction (Bajracharya 
et al., 2012). The former type of negative integral is more common, but the latter also has 
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relevance to applications in physical situations (e.g., finding thermodynamic work during the 
compression of a gas). Bajracharya et al. (2012) found that students could justify the sign of a 
negative integral represented graphically by overlaying a physical context on the graph.  

The notion of dx as a signed quantity is somewhat controversial, depending on the way one 
defines the differential. The perspective here, which is consistent with applications in physics 
and other fields, is that dx is defined as an infinitesimal change in the quantity x, akin to the limit 
of the change in x for the products in a Riemann sum: ∆𝑥 = 𝑏−𝑎

𝑛
;  𝑑𝑥 = lim

𝑛→∞
𝑏−𝑎

𝑛
. This is 

consistent with von Korff & Rebello (2012), who argue that infinitesimal quantities and 
infinitesimal products are important for an understanding of the meaning of definite integrals. 
Generally the sign of these quantities is not of interest, since b>a in most cases. However, if 
b<a, then ∆x, and thus dx, are negative. In Stewart’s (2007) most recent text, he explains that the 
backward integral is negative because ∆x is negative, but does not explicitly refer to dx as a 
signed quantity.  

Given the prior work in this area, we wanted to explore the facets of students’ concept image 
(Tall & Vinner, 1981) of the definite integral that apply to the sign of the integral. In particular, 
the role of the differential in a backward integral, ∫ 𝑓(𝑥)𝑑𝑥𝑎

𝑏 , is crucial in interpreting the sign. 
We suspected that students would not recognize the fact that the differential would be negative 
for backward integrals. Thus the backward integral had the potential to illuminate students’ 
understanding of the meaning of differentials, definite integrals, and to some extent, the Riemann 
sum, beyond what has been seen in the literature to date. 

 
  Methods 

 
During clinical interviews, students were asked a series of questions about the relationship 

between forward and backward integrals. As this was a pilot study, we chose to interview five 
students at various levels: two second-semester freshmen (both double majors in math and 
physics and concurrently enrolled in a second-semester calculus course), one junior math major, 
one senior math major, and one first-semester Ph.D.-level graduate student in math/math 
education. Interviews were videotaped and transcribed. The interview subjects were volunteers 
who were either former students or teaching assistants of one of the authors. Interviewees 
received a $10 gift card at the conclusion of the interview. Prior to the interviews, we developed 
an interview protocol and agreed upon the order in which the questions would be asked of the 
students, starting with the open ended general expressions shown below and concluding with a 
physical example. In each case we gave the forward integral first, then asked about the backward 
integral of the same expression. 

1. General expressions:  ∫ 𝑓(𝑥)𝑑𝑥𝑏
𝑎  and ∫ 𝑓(𝑥)𝑑𝑥𝑎

𝑏  
2. Specific expressions:  ∫ 2𝑥 𝑑𝑥3

1  and ∫ 2𝑥 𝑑𝑥1
3  

3. Physical scenario:  Work required to stretch a spring, ∫ 𝐹 𝑑𝑥𝑥2
𝑥1

, where 𝐹 = 𝑘𝑥 
 

Data and Results 
 

All five students were able to use the Fundamental Theorem of Calculus (FTC) to justify 
why ∫ 𝑓(𝑥)𝑑𝑥𝑏

𝑎 = − ∫ 𝑓(𝑥)𝑑𝑥𝑎
𝑏 . Specifically, they were able to state that ∫ 𝑓(𝑥)𝑑𝑥𝑏

𝑎 = 𝐹(𝑏) −
𝐹(𝑎), where 𝐹(𝑥) is the antiderivative of 𝑓(𝑥), and then that ∫ 𝑓(𝑥)𝑑𝑥𝑎

𝑏 = 𝐹(𝑎) − 𝐹(𝑏), which 
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would have the opposite sign. Graphically, the students had much more difficulty. In the 
preliminary analysis, several student difficulties were observed; two of these are discussed in 
more detail here. We are still in the process of analyzing the data and determining plans for 
future data collection.  
 
Student thinking about the differential 

Most of the students were able to think about dx in at least two ways. Many of the students 
mentioned that the dx refers to the variable of integration, and most also were able to discuss the 
dx as the width of individual rectangles under a curve. Subsequent data analysis will note which 
concept image for dx was evoked in different circumstances, which concept image was evoked 
first, and if/when the students changed the way in which they thought about the dx. Of particular 
interest to us is whether or not the students can conceive of dx as a signed quantity, as either a 
negative width, or as a negative value obtained from 𝑥2 − 𝑥1. According to our preliminary 
analysis, none of the students thought about dx as a signed quantity on their own accord, but with 
prompting from the interviewers, some were able to do so.  

Anna, a senior math major, had no trouble thinking about ∆x as a negative width, but did not 
seem comfortable thinking about dx being positive or negative. Her explanation of why the 
backward integral was negative was because the width was negative, and explained, “You’re 
going to have that negative width times a positive value, which is going to give you a negative 
number, so you’re going to get the addition of a bunch of negative numbers.”  Much later in the 
interview, one of the interviewers asked Anna if it was possible for dx to be positive or negative, 
and Anna responded, “I’ve actually never thought of that. So I’m not sure. I mean I guess it 
could, but I just always viewed the dx as the indication of what term to integrate to. So I’m not 
actually sure, I guess.” 

Similar to Anna’s response, Matt, a junior math major, eventually was able to think about Δ𝑥 
as a negative quantity and described dx as the limit as Δ𝑥 approached zero. After many attempts 
from Matt, the interviewer asked him if dx could be negative. His response indicated that he was 
not confident in his answer, but responded, “That’s probably the hidden spot that I couldn’t 
figure out before. Yeah I would say that this dx would be negative (from a to b) and this one 
would be positive (from b to a) because it’s approaching 0 so this (from a to b) would still stay 
positive like stay right north of 0. And this one (from b to a) would stay under, yeah I’m going to 
say this dx here (from b to a) is negative and this dx is a positive dx (from a to b), and I guess 
that’s where it’s hidden and that's what their difference is? I don’t know.” 

Nick, a mathematics graduate student, focused his explanation as to why the backward 
integral was negative on direction. He said that the dx represents a change, and that change 
implies motion. He seemed to be thinking about the variable x representing time, and mentioned 
more than once that the backward integral would be like playing a movie in reverse. On another 
note, Nick spent a great deal of time during the interview talking about the two terms that made 
up the product in the definite integral, namely the 2x and the dx in ∫ 2𝑥 𝑑𝑥1

3 . He knew that when 
multiplying two quantities to obtain a negative result, exactly one of the terms multiplied must be 
negative. He debated if the x turned negative or the dx turned negative. He “voted” for the dx to 
be negative, but didn’t seem confident of his answer. He said to be sure, he would have to go 
back to the definition of ∆𝑥 in the textbook to see if he was right.  
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Using area under the curve and the Fundamental Theorem of Calculus 
All of the students seemed comfortable discussing the integral as the area under the curve. 

While they were able to consider the total area as the sum of small rectangles (or trapezoids), 
their calculation of the total area ended up being an interesting part of our analysis.  

Sara, a sophomore mathematics and physics double major, evaluated ∫ 2𝑥 𝑑𝑥3
1  by finding the 

area of the large triangle (Fig. 1a) and subtracting the area of the small triangle (Fig. 1b) to 
obtain the desired area (Fig. 1c). She noticed that these calculations corresponded to the values 
she obtained when applying the FTC to the same problem:  the area of the large triangle 
corresponded to 𝐹(3), and the area of the small triangle to 𝐹(1). Then, when computing 
∫ 2𝑥 𝑑𝑥1

3 , she reversed the order of her subtraction, subtracting the area of the large triangle (Fig. 
1a) from the area of the small triangle (Fig. 1b), and said, “But I’m not sure why that order is. I 
mean I know why for the integral [symbolically] because it’s written that way, but if you were to 
solve this geometrically, I don’t know why you would change the order of the subtraction.”   
 

   
Figure 1:  Sara’s method of computing the area 

Matt also was able to justify the relationship between the forward and backward integral 
symbolically using the FTC, but also struggled to justify the result graphically. When computing 
the area under the function 2x between 𝑥 = 1 and 𝑥 = 3, he recognized it as a trapezoid. Instead 
of using Sara’s method of subtracting the smaller triangle from the larger triangle (Fig. 1), Matt 
added the area of the lower rectangle (Fig. 2a) to the area of the upper triangle (Fig. 2b) to obtain 
the total area (Fig. 2c).   

 

   
Figure 2:  Matt’s method of computing the area 

Matt’s solution is perfectly valid, but did not mimic the calculations from the FTC, as did 
Sara’s method. Matt tried several different ways to graphically justify the negation of the 
backward integral but was never completely content with his justification. He noted that the 
backward integral represented the same area as the forward integral, but the backward integral 
would have to be negative since the limits were reversed “because I already know that, like as a 
fact, that it’s a negative if you want to flip the bounds.”  He did state that he believed there 
should be a graphical justification, but he did not know what one would be.  

We do not mean to imply that Sara’s solution was in some way better than Matt’s, but simply 
note the connection to the FTC in Sara’s solution. In fact, both Sara and Matt used solutions that 

1a

1 2 3 x

y

1b

1 2 3 x

y

1c

1 2 3 x

y

2a

1 2 3 x

y

2b

1 2 3 x

y

2c

1 2 3 x

y
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sidestep the need for thinking about the Riemann sum and the dx specifically. Near the end of 
Sara’s interview, we pushed her to consider each rectangle under the curve, which she had 
described at the beginning of her interview. Sara was comfortable with 𝑓(𝑥) being negative or 
positive, depending on if it was above or below the x-axis, but said, “Well no, I don't think dx 
would ever be negative because it’s just a distance, it’s not like an actual value.” 
 

Discussion 
 

Students recognized the negative value of the backward integral based on the 
FTC/antiderivative difference formula, but when asked for a geometric interpretation, most said 
they hadn’t thought about it before and had difficulty making a reasonable interpretation on their 
own. Most students’ graphical explanation of why the backward integral yields a negative result 
seemed to be invoking the direction of the integration, treating the area as a macroscopic 
negative quantity, but failed to recognize the role of the differential in generating that sign. We 
know from the literature and our own prior research (Bajracharya et al., 2012; Sealey, 2006; 
Thompson & Silverman, 2008) that students often lack an understanding of why or how area 
under a curve is a representation of a definite integral. Our subjects, who we acknowledge may 
be more advanced than the average calculus student, did not seem to have this difficulty and 
were able to describe the definite integral as the sum of the areas of very small rectangles, and 
adequately described the product layer that makes up these small rectangles. They could all 
explain that 𝑓(𝑥) represented the height of the rectangles and that ∆𝑥 (and sometimes dx) 
represented the width of the rectangle.  

However, thinking about the backward integral adds another level of difficulty to describing 
the definite integral in terms of area. The students did not always recognize that ∆𝑥 and dx could 
be negative values. Instead of thinking about ∆𝑥 as a difference, (e.g. as (𝑥𝑖+1 − 𝑥𝑖) or as 𝑏−𝑎

𝑛
), 

they initially thought of Δ𝑥 as the width of a rectangle, and usually assumed it was always a 
positive value.  

We certainly do not mean to imply that Δ𝑥 and dx should never be thought of as a width. In 
fact, research by Hu and Rebello (2007) suggested that dx-as-width is an important perspective 
for problem solving in physics. Instead, we emphasize the necessity for being able to think about 
dx as positive or negative widths and the change between two quantities. With moderate 
prompting, most of our research subjects were able to do this, and our future research will 
examine what type of instruction or intervention enables students to make this connection.  

 
Discussion Questions 

 
1. We have some examples in physics where one might consider the backward integral 

(stretching/releasing a spring). Are there other examples in mathematics where it makes 
sense to consider ∫ 𝑓(𝑥)𝑑𝑥𝑎

𝑏 ? 
2. Where do you think this difficulty might be best addressed?  Calculus 1?  Calculus 1?  Real 

analysis?  Physics? 
3. Student functional understanding of the differential seems to be the underlying cause of 

several difficulties with students (in our work as well as other studies in the literature). Do 
you have recommendations for why and/or how this can be improved?  
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An example of a linguistic obstacle to proof construction: 
Dori and the hidden double negative 

 
                                         Annie Selden                                 John Selden 
                            New Mexico State University      New Mexico State University 
This paper considers the difficulty that university students’ may have when unpacking an informally 
worded theorem statement into its formal equivalent in order to understand its logical structure, 
and hence, construct a proof. This situation is illustrated with the case of Dori who encountered just 
such a difficulty with a hidden double negative. She was taking a transition-to-proof course that 
began by having students first prove formally worded “if-then” theorem statements that enabled 
them to construct proof frameworks, and thereby, make initial progress on constructing proofs. But 
later, students were presented with some informally worded theorem statements to prove. We go on 
to consider the question of when, and how, to enculturate students into the often informal way that 
theorem statements are normally written, while still enabling them to progress in their proof 
construction abilities.  

 
Key words: Transition-to-proof, Proof Construction, Informally Worded Theorem Statements, 
Proof Framework, Unpacking 
 
 This paper considers linguistic obstacles1 that university students often have when 
unpacking informally worded mathematical statements into their formal equivalents. This can 
become especially apparent when students are attempting to prove such statements. We illustrate 
this with an example from Dori, who was taking a transition-to-proof course that began by 
having students construct proofs for formally worded “if, then” theorem statements. Early on, 
she was introduced to the idea of constructing proof frameworks (Selden, Benkhalti, & Selden, 
2014; Selden & Selden, 1995) and was successful. Later, she encountered difficulty when 
attempting to interpret and prove an informally worded statement with a hidden double negative. 
First we will introduce our theoretical perspective and the idea of proof frameworks. 

 
Theoretical Perspective 

 
 We adopt the theoretical perspective as described in Selden and Selden (2015); that is, we 
consider a proof construction to be a sequence of mental or physical actions, some of which do 
not appear in the final written proof text. Each action is driven by a situation in the partly 
completed proof construction and its interpretation (Selden, McKee, & Selden, 2010). For 
example, suppose that in a partly completed proof, there is an “or” in the hypothesis of a statement 
yet to be proved: If A or B, then C. Here, the situation is having to prove this statement. The 
interpretation is realizing that C can be proved by cases. The action is constructing two 
independent sub-proofs; one in which one supposes A and proves C, the other in which one 
supposes B and proves C.  

We also note that a proof can be divided into a formal-rhetorical part and a problem-centered 
part. The formal-rhetorical part is the part of a proof that depends only on unpacking and using 
the logical structure of the statement of the theorem, associated definitions, and earlier results. In 
general, this part does not depend on a deep understanding of, or intuition about, the concepts 
involved or on genuine problem solving in the sense of Schoenfeld (1985, p. 74). Instead it 
depends on a kind of “technical skill”. The remaining part of a proof has been called the problem-
centered part. It is the part that does depend on genuine problem solving, intuition, heuristics, 

                                                           
1 The idea of linguistic obstacles to learning mathematics is not new to mathematics education research (Boero, 
Douek, & Ferrari, 2002; Ferrari, 1999). However, to our knowledge, no one has previously discussed hidden 
double negatives. 
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and a deeper understanding of the concepts involved (Selden & Selden, 2013).  
One might suppose that the problem-centered part of a proof is the most important part, and 

as students make progress in their proof construction ability, this may be true. However, for 
students of a one-semester transition-to-proof course, constructing the formal-rhetorical part of a 
proof can be non-trivial, yet easier to learn than the construction of the problem-centered part. 
Furthermore, first writing some of the formal-rhetorical part of a proof is often helpful for 
constructing the problem-centered part of the proof because the formal-rhetorical part exposes 
the “main problem” to be solved (Selden & Selden, 2009). 

 
Proof Frameworks 

 
A major feature that can help one write the formal-rhetorical part of a proof is a proof 

framework, of which there are several kinds, and in most cases, both a first-level and a second-
level framework. For example, given a theorem of the form “For all real numbers x, if P(x) then 
Q(x)”, a first-level proof framework would be “Let x be a real number. Suppose P(x). … 
Therefore Q(x),” with the remainder of the proof ultimately replacing the ellipsis. A second-level 
framework can often be obtained by “unpacking” the meaning of Q(x) and putting its (second-
level) framework between the lines already written for the first-level framework. Thus, the proof 
would “grow” from both ends toward the middle, instead of being written from the top down. In 
case there are subproofs, these can be handled in a similar way. A more detailed explanation with 
examples can be found in Selden, Benkhalkti, and Selden (2014). A proof need not show evidence 
of a proof framework to be correct. However, we have observed that use of proof frameworks 
tends to help novice university mathematics students write correct, well-organized, and easy-to-
read proofs (McKee, Savic, Selden, & Selden, 2010). 

 
The Formal-Informal Distinction and Linguistic Obstacles 

  
An informal statement is one that departs from the most common natural language version 

of predicate and propositional calculus or fails to name variables. For example, the statement, 
“differentiable functions are continuous,” is informal because a universal quantifier is understood 
by convention, but is not explicitly indicated, because the variables are not named, and because 
it departs from the familiar “if-then" expression of the conditional. Such statements are 
commonplace in everyday mathematical conversations, lectures, and books.  They are not 
ambiguous or ill-formed because widely understood, but rarely articulated, conventions permit 
their precise interpretation by mathematicians, and less reliably, by students. In our experience, 
mathematicians, including those with no formal training in symbolic logic, move easily between 
informal statements and their equivalent more formal versions. 

We conjecture that an informal version of a theorem will often be more memorable, that is, 
more easily remembered and brought to mind, but also be more difficult to prove, and also, given 
a proof, be more difficult to validate, than a formal version. This suggests the question: Can 
undergraduates who have taken a transition-to-proof course reliably unpack an informally stated 
theorem into its formal version? Our earlier paper on students’ unpacking of the logic of 
statements (Selden & Selden, 1995) indicates that the answer to this question is often no. Because 
validation is difficult to observe directly, data were collected to determine whether the 
participants could reliably unpack, rather than validate, informally written statements, many from 
calculus, into their formal equivalent versions. (See Selden and Selden, 1995, for details.) 

Because the inability to unpack an informally written theorem statement into a formal 
version can often prevent a student from constructing a proof, we think that the informal way that 
a theorem is stated can be a linguistic obstacle. Such an obstacle need not be a mistake or 
misconception (i.e., believing something that is false). Indeed, the obstacles mentioned in the 
Selden and Selden (1995) paper are related to difficulties with unpacking the logic of informally 
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worded mathematical statements. In what follows, we extend this work and examine a linguistic 
obstacle of a somewhat different kind. 

 
The Case of Dori and the Hidden Double Negative 

 
What happens when a student is confronted with a hidden double negative in a theorem 

statement and wants to construct a proof? We report, using our field notes and photos, on a 
mathematics graduate student, Dori, who in a tutoring session at the end of an inquiry-based 
transition-to-proof course, was confronted with the task of proving: A group has no proper left 
ideals. (This was in a semigroup setting, in which L is a left ideal of a semigroup S if L �S and 
SL�L.) Dori had already experienced proving theorems on sets, functions, real analysis, and 
abstract algebra (semigroups). She had available to her the course notes, with all previous 
definitions and theorems. In the same tutoring session, she had just taken 40 minutes to prove, 
with some difficulty and backtracking, that group inverses are unique. Specifically, she had just 
proved: Let G be a group with identity 1. If g, g,' g ׳׳� G with gg׳= g׳g=1 and gg׳׳= g׳׳g=1, then 
g׳=g׳׳. 

Dori, who was working at three seminar room blackboards, next began to prove a theorem 
about left (semigroup) ideals by writing the theorem statement on the middle board . She wrote: 
A group has no proper left ideals. Dori then looked up various definitions, such as that of left 
ideal and proper, in the course notes. We then talked with her about what “not proper” means, 
after which she wrote GI≠I and GI�I on the right board and suggested doing a proof by 
contradiction. We were surprised at this suggestion, and now speculate this might have been 
because of the word “no” in the theorem statement. At the time, however, realizing that this would 
not be a productive approach, we suggested that Dori write a proof framework as she had been 
accustomed to doing in the past. She continued writing, below the theorem statement on the 
middle board:  
 
Suppose G is a group and I is a left ideal of G. 
… 
Then G=I. 
Therefore, I is NOT a proper left ideal of G. 
 

We then suggested that Dori write in her scratch work the properties of a group and of a left 
ideal of a semigroup. She wrote these additional observations correctly on the right board. These 
included noting that G has an identity and inverses, that I being a left ideal means that GI={gi | g 
� G, i�I}, GI�I, and I≠�. Dori also noted the existence of the identity element, 1�G and that 
there is an i�I and so i�G. In addition, Dori drew an appropriate diagram of the situation, with 
one circle labeled I contained in a larger circle labeled G, with i�I and 1in the space between the 
two circles. (See Figure 1.)  

The emphasis, in Dori’s scratch work, on what it means for I to be a proper ideal may not 
have been helpful, as she, according to her proof framework, was trying to show that I was not 
proper, namely, the negation. It is often difficult for university students to form proper 
mathematical negations; instead, they often formulate the opposite, as they would in everyday 
life (Antonini, 2001). Somehow, Dori did not note, at this point, that in order to show that G=I 
(the penultimate line of her proof framework), all she needed to show was G�I. One can speculate 
on why this might have been. 
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Figure 1. Some of Dori’s scratch work with the diagram. 

 
Difficulties Inherent in Converting the Theorem Statement to its Formal Version 
 

As Dori was working diligently on her scratch work, it appeared to one of us that the informal 
wording of the theorem statement might be causing Dori difficulty. So, while Dori continued her 
scratch work, this one of us decided to try to translate the theorem into “if-then” format, judging 
that it might be easier to comprehend. It became clear that there were two negations involved in 
the phrase “no proper”. The first was contained in the word “no”. The second was hidden within 
the word “proper”, which means that the ideal, I, is a proper subset of G, namely, that I≠G. Thus, 
there is a double negation in the statement of the theorem. Having noted this, we went on to use 
this observation to write the theorem statement in a positive “if-then” way as, If I is a left ideal of 
G, then I=G, on the left blackboard. We went over this version of the theorem statement with 
Dori. The positive “if-then” formulation of the theorem has the following apparent advantages: 
(1) The notation has been introduced. (2) It is in the formal “if-then” form, from which a proof 
framework can be written in a straightforward way. (3) It does not have a hidden double negation, 
but rather is entirely positive and straightforward.  

Dori had had no trouble introducing the notation. Perhaps this was because of the theorem 
on inverses that she had proved earlier that day; it already contained the notation G for a group 
and 1 for the identity element. With encouragement from us, towards the beginning of her proof 
attempt, Dori had written a proof framework, introducing the letters G for the group and I for a 
left ideal of G, and scrolling to the bottom, had written G=I in the penultimate line and had 
concluded in the final line that I is not a proper left ideal of G, as well as having produced some  
scratch work (Figure 1). After discussing with her the positively worded version of the statement, 
namely,  If I is a left ideal of G, then I=G, we suggested that she “Suppose 1�I” to see what 
happens.  Dori wrote “Let 1�I” and also, “Let g�G, i�I, so gi�I. Let i=1, so g∙1=g�I.” This 
essentially completes the argument that G�I, and hence, proves the theorem. From start to finish, 
this entire proving episode took 45 minutes. 

To recapitulate, to prove the theorem, one observes, as Dori had, that ideals are non-empty, 
so there is an i�I, that i-1�G, and hence, i-1∙i�I because I is a left ideal. That means 1= i-1∙i�I, 
But if 1�I, then g=g∙1�I for any g�G. So G�I.  

 
The Hidden Double Negation 

 
Did the presence of a hidden double negation in the informal version of the theorem 

statement cause Dori difficulty? We cannot say for sure. However, it seems quite clear that the 
informal version of the statement, like many such informal versions, while definitely memorable, 
is difficult for students to unpack into its formal (positive) version. It is well-known to cognitive 
psychologists that negations are hard to decode and understand. Pinker (2014) reasoned as 
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follows: 
The cognitive difference between believing that a proposition is true (which require no  
work beyond understanding it) and believing that it is false (which requires adding and  
remembering a mental tag), has enormous implications for a writer [and a reader]. The  
most obvious is that a negative statement like The king is not dead is harder on the reader  
than an affirmative one like The king is alive. Every negation requires mental homework,  
and when a sentence contains many of them the reader can be overwhelmed. Even worse, a  
sentence can have more negations that you think it does. Not all negation words begin with  
n; many have the concept of negation tucked inside them, such as few, little, least, seldom,  
though, rarely, instead, doubt, deny, refute, avoid, and ignore. The use of multiple negations 
in a sentence … is arduous at best and bewildering at worst …” (pp. 172-173).   

The word “proper”  in the above informally worded theorem statement has the concept of a double 
negation “tucked” inside it, and according to Pinker, would be arduous and bewildering. 

 
Transitioning Students from Proving Formally Stated Theorems 

to More Informally Stated Theorems 
 
When we write our course notes, we begin by including all notation and write the statements 

of theorems in “if-then” format, which allows students to write at least a first-level proof 
framework without difficulty. In addition, if they can “unpack” the conclusion (the final line of 
their emerging proof), they can produce a second-level proof framework. This goes a long way 
to exposing the real mathematical problem to be solved in order to construct the rest of the proof. 
Eventually, during our course, we begin to transition students to less formal ways of stating 
theorems, by for example, having them prove: Every semigroup can have at most one identity 
element and at most one zero element. Here the difficulty is not in introducing notation, but in 
deciding what “at most” means and how to structure a proof of it (namely, by assuming there are 
identity elements e and f and using the definition of identity in a clever way).  

Perhaps a better progression would be to have students first prove a number of “if, then” 
theorems with all notation included, and then to have them introduce the notation and reformulate 
an “easy” informal statement into its formal version. For example, we might ask students to prove: 
The composition of two 1-1 real functions is 1-1, omitting the names of the two functions. Here 
it is relatively easy to introduce notation,  f  and g, for the two functions, and to put the statement 
in “if-then” form.” In addition, composition has been defined in the course notes so there are no 
decisions to make on how to structure a proof, provided students can unpack the definition of 
composition. We feel such a rearranged course design would help increase student success and 
the early building of a sense of self-efficacy (Bandura, 1994, 1995), while gradually transitioning 
students to more informally worded theorem statements that are more difficult to unpack. 

We anticipate that further theoretical and linguistic comments and conjectures will be 
included in the presentation.  

Discussion Questions 
 
1. What sorts of problems do students have in unpacking informally worded theorem statements, 
other than: (1) Suitable notation has not been included and has to be introduced. (2) It is not in 
“if-then” format, so it is not clear how to structure a proof (i.e., it is unclear how to construct a 
proof framework) . (3) Lack of positive phrasing (e.g., hidden double negations)? 
2. What are some possible progressions that would help undergraduate mathematics students 
transition to being able to interpret informally stated mathematical theorems into their formal 
equivalents in order to construct proofs of them? How would one research their effectiveness? 
3. Would it be an interesting research project to examine a variety of undergraduate textbooks to 
determine how many theorems are stated in an informal, possibly confusing, way? 
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The complement of RUME: What’s missing from our research? 
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The Research in Undergraduate Mathematics Education (RUME) community has generated 
a substantial literature base on student thinking about ideas in the undergraduate 
curriculum. However, not all topics in the curriculum have been the object of research. 
Reasons for this include the relatively young age of RUME work and the fact that research 
topics are not necessarily driven by the content of the undergraduate curriculum. What topics 
remain largely untouched? We give a preliminary analysis, with a particular focus on 
concepts in the standard calculus sequence. Uses for this kind of analysis of the literature 
base in the education of novice researchers and potential future directions for further 
analyses are discussed.  

Key words: student thinking, calculus, literature review 

Overview 

The inherently applied nature of research in undergraduate mathematics education 
(RUME) means it is natural for non-researchers seeking information about teaching and 
learning to desire (or perhaps even expect) that members of the RUME community carry out 
research that spans the undergraduate curriculum. This desire and/or need for research-based 
information about how student learn particular content, vetted teaching practices, and 
validated assessment measures can prompt college mathematics instructors to ask of their 
mathematics education colleagues, “Is there any research on [topic X]” where “topic X” 
might be anything in the undergraduate curriculum from limits to infinite-dimensional vector 
spaces. Although our field is generating research related to many topics, we are far from 
having a complete catalog of findings on all topics taught in undergraduate mathematics 
courses.  

In a field as young as RUME, it is to be expected that considerable effort is focused on 
the development and refinement of theory as researchers work to identify and characterize 
factors that shape learning. There is, however, value in periodically taking stock of where we 
are. As a contribution to this effort, we pursued the following questions: What topics from the 
undergraduate curriculum have been the objects of research with direct links to practice? In 
particular, if one looks through the table of contents for typical texts for the calculus 
sequence, which items are associated with research findings about student thinking and which 
have yet to be examined? In short, what’s the complement of our existing literature base? In 
this Preliminary Report, we offer our answers to these questions based on literature reviews 
we conducted in the process of writing a book on student thinking for novice mathematics 
instructors. Our findings indicate that the contents of the complement include some topics 
known to be challenging for both students and instructors and some topics with strong 
connections to concepts from secondary mathematics. Although we provide a rationale for 
this work below and some findings in subsequent sections, we consider this work 
“preliminary” because we are seeking feedback on potential uses for and ways of 
representing/communicating the products of this kind of literature review.  
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Rationale and Relevant Literature 

Others (e.g., Schoenfeld, 2007) have noted tensions that can exist between theory 
development and the desire to address practical or applied issues in fields such as education 
research. On the one hand, from economic and other societal perspectives there are 
significant and pressing needs to improve the teaching and learning of undergraduate 
mathematics (Holdren & Lander, 2012) and to do so we need research-based answers to 
questions derived from practice. On the other hand, the relative newness of the field of 
RUME means that we have significant needs for basic research and the associated 
development of theories. We see two primary ways in which an “inventory” of topics already 
addressed and missing can aid the field in balancing these needs and in making progress in 
ways that address both the applied and theory-focused needs in the field. 

The first rationale is connected to the fact that we are not currently operating in a time of 
“normal science.” Times of “normal science” (Kuhn, 1970) are characterized by having 
methods for conducting research in a field with substantial track records of accepted use as 
well as theory to guide investigations that has accumulated and withstood examination over 
time. Although there have been substantial advances in these areas over the past several 
decades, the field of RUME is still in a phase of significant theory-building and development 
of tools for research. Although this description characterizes the field overall, some areas 
have been the object of more research than others. Therefore, it is productive to identify areas 
in which the most development has occurred because those areas may be where methods and 
theory are most mature. This can help researchers identify theory and methods that might be 
good candidates for use when conducting studies in less well-developed areas in RUME.  

The second reason an inventory could be useful has to do with the issue of problem 
identification. There are many reasons for selecting a focus for research and that decision 
need not be shaped only by where no research has yet been done. However, in seeking out 
areas for research, it can help to know where the gaps are. Informed decisions can then be 
made about whether questions of significance can be pursued by venturing into an area where 
literature is scarce or by focusing instead on issues in an already somewhat established area. 
This is of particular importance for those who mentor new researchers (e.g., graduate 
students) because “beginning researchers need to learn how to identify and frame workable 
problems– meaningful problems on which legitimate progress can be made in a reasonable 
amount of time” (Schoenfeld, 1999, p. 170). And unfortunately, “For most students, problem 
identification is not part of the research apprenticeship process” (Schoenfeld, 1999, p. 168).  

 
Research Design 

This is the story of what happened when we set out to write an instructors’ guide to 
student thinking about topics spanning the undergraduate curriculum. Our goal was to 
provide novice instructors with insights into student thinking that were based on research 
findings and to do that for as many topics from the calculus sequence and core major courses 
as possible. To locate relevant literature, we did the following:  

• Generated list of topics, basing it on a “standard” course sequence, with particular 
emphasis on the calculus sequence because of our primary target audience for the 
book (graduate students and novice faculty instructors). We consulted tables of 
contents from widely used textbooks (e.g., Stewart, 2015). 

• Set out to find published research, utilizing Google Scholar and literature reviews or 
summaries (e.g., Carlson & Rasmussen, 2008). We created lists of relevant articles for 
each of the sections as part of the preparation for drafting chapters of the book. 
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• Sent draft chapters to expert scholars in the area of the chapter and asked if we were 
missing anything. In particular, we asked them: Have we faithfully reported the 
literature, remaining true to each researcher’s intent while still making it accessible to 
those outside of the education world? Have we missed any significant findings or 
citations that should be included? We then revised chapters based on the feedback, 
incorporating additional references suggested by reviewers. 

• We gave up on writing some chapters or sections because of lack of literature. 
• After all chapters were drafted, reviewed, and revised, we returned to our original 

topic list. We compared that to the final table of contents and noted topics that were 
missing. 

Our goal was to generate text that illustrated how students think (productively and 
unproductively) about key ideas in the undergraduate curriculum. Because of this particular 
focus, we were seeking research of a particular sort—research that either had an explicit 
focus on describing student thinking about the topic or where there were clear implications 
from the findings to students’ ways of thinking. This focus means that certain kinds of work 
that are incredibly valuable to the RUME community (e.g., teaching studies, theory 
development and testing, assessment and evaluation studies) were outside the scope of our 
search.  

Findings 

For the purposes of this proposal, we present the findings based on our analysis of the 
literature review done for just a few chapters. In particular, we focus on topics in calculus: 
limit, derivative, application of derivatives, integral, and sequences and series. The references 
listed are representative of the literature we located for each topic – however, they are not 
comprehensive of all existing literature on the topic.  
 
Limits  

This is perhaps the most extensively covered topic in the calculus sequence. We found 
research findings related to both student thinking about core ideas of limit and computations 
done to determine limits. These findings include, for example, ways students think 
(incorrectly) about limits of functions by treating all functions as if they are continuous (e.g., 
Bezuidenhout, 2001; Tall & Vinner, 1981), thinking of a limit as an unreachable bound (e.g., 
Davis & Vinner, 1986; Grabiner, 1983), viewing all limits a monotonic (e.g., Davis & 
Vinner, 1986), and believing that testing a few values is sufficient to evaluate a limit (e.g., 
Williams, 1991).  

 
Derivatives  

We located research on student thinking about derivative as well as about computations to 
generate derivatives and uses of derivative on applied problems. This literature addressed 
various specific topics, including: 

• student difficulties with the building blocks of derivative such as understanding 
the secant line representation for limits of difference quotients (e.g., Carlson, 
1998; Habre & Abboud, 2006; Monk, 1994; Orton, 1983); 

• difficulties with applying various procedures for calculating derivatives (e.g., 
Cipra, 2000; Horvath, 2008; Smith & Ferguson, 2004; Zandieh, 2000); 

• trouble with graphical representations of derivatives (e.g., Ferrini-Mundy & 
Graham, 1994; Nemirovsky & Rubin, 1992; Orton, 1983); 

• thinking associated with linking features of first and second derivatives (positive, 
negative, increasing, decreasing, etc.) with properties of the original function (e.g., 
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increasing, decreasing) (Carlson, M. P., Jacobs, S., Coe, E., Larsen, S., & Hsu, 
2002; Zandieh, 2000). 

 
What’s missing from the literature on derivatives? 

In comparing the sections of commonly-used texts to the list of topics for which we could 
locate research findings, several stood out as missing from the existing literature. The topics 
that are in the “complement” of the existing literature on derivatives include: 

• implicit differentiation, in particular examinations of what sense students make in the 
transition from df/dx to d/dx and the idea of differentiation as an operator; 

• student thinking and sense making about linear approximation and differentials; 
• connections between trigonometric functions (as ratios of lengths of triangle sides) 

and the calculus of them; 
• Newton’s method, in particular what sense students make of the process. 
Some topics that have been addressed in only a few studies could benefit from 

substantially more attention from researchers include: chain rule, related rates, and 
optimization. 
 
Integrals 

As with derivatives, the literature on student thinking about integrals provides insights 
into how students think about the concept of integration and how they think about 
computations used to determine the value of integrals. The research articles we located 
addressed various topics, including the following: 

• definition and meaning of integrals (e.g., Abdul-Rahman, 2005; Fuster & Gómez, 
1997; Gonzalez-Martin & Camacho, 2004); 

• integral as a measure of accumulation (e.g., Anaya & Cavallaro, 2004; Carlson, 
M. P., Jacobs, S., Coe, E., Larsen, S., & Hsu, 2002; Thompson & Silverman, 
2008); 

• Riemann Sums (e.g., Bezuidenhout & Olivier, 2000; Oehrtman, 2009; Thompson 
& Silverman, 2008); 

• anti-derivative computations (e.g., Hirst, 2002; Orton, 1983b). 
 

What’s missing from the literature on integrals? 
Substantial topics from a standard treatment of integration for which we were unable to 

locate research include: 
• integration techniques involving the very commonly-used method of substitution; 
• other integration techniques and what sense, if any, students make of this topic; 
• volumes of revolution.  

 
Sequences and Series 

This very challenging topic has been the object of a fair amount of research on student 
thinking about the following: 

• characteristics of the real numbers and how that intersects with understanding 
sequences and series (e.g., Anderson, Austin, Barnard, & Jagger, 1998); 

• ideas related to limit and their impact on thinking about sequences and series (e.g., Li 
& Tall, 1993; Tall, 1977); 

• issues of representation, in particular, coordinating algebraic and other views of 
sequences and series (Cornu, 1991; Tall & Vinner, 1981); 

• definition of convergence and proofs of it (e.g., Harel & Sowder, 1998; Pinto & Tall, 
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1999). 
 
What’s missing from the literature on sequences and series? 

Topics where research is very limited included: 
• power series, especially the question of what sense students make of the overarching 

idea of approximating one function with other functions; 
• Taylor and Maclaurin Series and what students think the core ideas are behind the 
computations we ask of them. 

 
Conclusions, Implications and Ideas for Further Research 

Efforts of the RUME community have resulted in research-based answers to the question 
of how students think productively and unproductively about a wide range of topics in the 
undergraduate curriculum. From our analysis of that literature and the topics typically 
addressed in that curriculum, there are ideas for which we still lack insights into student 
thinking. Looking just at the calculus sequence, limit appears to have been a rich and 
productive arena for research, resulting in findings about key ideas as well generating and 
refining theories about student thinking. For differentiation and integration, the literature does 
not seem to address the topics as uniformly. Although the existing research provides valuable 
insights into student thinking about some ideas, there are some noticeable gaps. These 
include the challenging ideas and techniques associated with implicit differentiation, 
linearization, various techniques of integration, and applications such as volumes of 
revolution. The community might also benefit from additional investigations into student 
thinking about power and other kinds of series. As with topics such as implicit differentiation 
and some techniques of integration, we suspect that there is much to be learned about what 
sense students do (and do not) make of the processes used in these sections of the course. The 
areas in which significant amounts of research have already occurred might be useful sources 
of theories that could be tested out in the less-researched areas. 

Our search for literature was limited to research on student thinking and learning but 
further analyses could be conducted of research related to teaching, curriculum development 
or other genres of studies found in RUME. In addition, a separate kind of analysis could be 
done of just the works represented in RUME proceedings. This might provide insights into 
trends in the field or areas of investigation that have not yet found their way into journal 
publications.  

Describing the complement of what exists in the literature may be useful in guiding 
graduate students or others new to the field. Knowing where theory development and findings 
are scarce or plentiful can help researchers (and those who advise them) to know whether 
their chosen topic is apt to take them into well-understood territory or whether they will 
encounter few studies and perhaps only limited theoretical frameworks to guide their efforts.  

 
Questions to be posed to the audience:  

• What are the reasons behind the dearth of research on various topics? Are these 
simply areas the last to be visited – or is there something about some topics that make 
them less interesting or productive for researchers?  

• Might the RUME community benefit from this type of high-level view of its research 
– including who is studying what mathematical topics? What is the best way to 
assemble such information – and disseminate it?   
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SUPPORTING PRESERVICE TEACHERS’ USE OF CONNECTIONS AND 
TECHNOLOGY IN ALGEBRA TEACHING AND LEARNING 

Eryn M. Stehr, Michigan State University 
Hyunyi Jung, Calvin College 

The Conference Board of the Mathematical Sciences recently advocated for making connections 
and incorporating technology in secondary mathematics teacher education programs, but 
programs across the United States incorporate such experiences to varying degrees. This study 
explores preservice secondary mathematics teachers’ opportunities to expand their knowledge of 
algebra through connections and the use of technology and to learn how to use both to support 
teaching and learning of algebra. We explore the research question: What opportunities do 
secondary mathematics teacher preparation programs provide for PSTs to learn about 
connections and encounter technologies in learning algebra and learning to teach algebra? We 
examine data collected from five teacher education programs chosen from across the U.S. Our 
data suggest not all secondary mathematics teacher preparation programs integrate experiences 
with making connections of different types and using technology to enhance learning across 
mathematics and mathematics education courses. We present overall findings with exemplars. 

Key words: Algebra, Technology, Connections, Secondary Teacher Training 
 
Algebra plays a prominent role in mathematics education reform efforts because it is valued 

as a foundational subject in mathematics. Particularly in the United States, preparing future 
secondary mathematics teachers to teach algebra has gained importance as, in response to 
algebra-for-all initiatives, more states include algebra as a high school graduation requirement 
(Teuscher, Dingman, Nevels, & Reys, 2008). Due to these new requirements, not only are more 
secondary mathematics teachers teaching algebra in their first professional position, but these 
new teachers are also expected to teach algebra to a more diverse population of students than 
ever before (Stein, Kaufman, Sherman, & Hillen, 2011). Hence it is imperative that we study 
how teaching programs prepare preservice teachers (PSTs) for teaching algebra to this diverse 
population. Particularly important is attention to how future mathematics teachers are supported 
in developing a deep understanding of algebra.  

This presentation is situated within a larger project that has used several different 
perspectives in exploring opportunities PSTs have to learn algebra and learn to teach algebra in 
teacher preparation programs. In this presentation, we have chosen to focus particularly on two 
ways that can support PSTs in deepening their own understanding of algebra, as well as 
supporting them in developing strategies for supporting their future students' algebra learning.  

Standards for both secondary mathematics content and teacher preparation have emphasized 
the importance of developing PSTs’ abilities to make connections and to use appropriate 
educational technologies in their own mathematical learning and in their future mathematics 
teaching. Particularly with respect to PSTs' mathematics courses, Mathematics Education of 
Teachers II (METII) recommended that instructors of mathematics courses support PSTs in 
“forming connections” (p. 56) and that experience with technology “should be integrated across 
the entire spectrum of undergraduate mathematics” (CBMS, 2012, pp. 56-57).  

19th Annual Conference on Research in Undergraduate Mathematics Education 1296

19th Annual Conference on Research in Undergraduate Mathematics Education 1296



 

Standards developed for teacher preparation program accreditation agencies, such as 
Interstate Teacher Assessment and Support Consortium [InTASC] and National Council for 
Accreditation of Teacher Education [NCATE], have emphasized the importance of developing 
PSTs’ abilities to see mathematics as a complex, connected system woven through other non-
mathematical disciplines as well as a way to make sense of the real world (Council of Chief State 
School Officers [CCSSO], 1995; National Council of Teachers of Mathematics [NCTM], 2012). 
PSTs must think about mathematics as a “whole fabric” as they make connections among 
mathematical topics and in relation to others (NBPTS, 2010). To support this view of 
mathematics, PSTs need to make connections within algebra, and between algebra and other 
mathematical fields, while linking algebra with real-world situations. PSTs should prepare to 
teach using "rich mathematical learning experiences" and provide their future students with 
opportunities to "make connections among mathematics, other content areas, everyday life, and 
the workplace (NCTM, 2012). Further, PSTs should also be able to prepare to support their 
future learners in reflecting "on prior content knowledge, link[ing] new concepts to familiar 
concepts, and mak[ing] connections to learners' experiences" (CCSSO, 1995). 

Teacher preparation standards have emphasized the importance of PSTs’ own learning of 
mathematics content using technologies as both a “practical expedient” as well as to enhance 
learning. Teachers also need support in critically evaluating and strategically using technology in 
mathematics teaching and learning (CBMS, 2012; CCSSO, 1995; NCTM, 2012). In addition, 
METII emphasized the importance of PSTs’ preparation for using a variety of technologies, 
including problem-solving tools and tools for exploring mathematical concepts (CBMS, 2012).  

This study explores opportunities provided by secondary mathematics teacher preparation 
programs for PSTs to expand their knowledge of algebra by making connections and using tools 
and technology and to learn how to incorporate their own use of connections and technology 
when they teach algebra. We explore the following research question: “What opportunities do 
secondary mathematics teacher preparation programs provide for PSTs to learn about 
connections and encounter tools and technologies in learning algebra and learning to teach 
algebra?” Making connections in the service of algebra teaching and learning might include 
making connections within algebra, between algebra and other mathematical fields, between 
algebra and non-mathematical fields, and between ideas in advanced algebra and school algebra. 
Encounters with technology in the service of algebra teaching and learning might include using 
or learning about a variety of algebra-appropriate technologies, as well as thinking critically 
about technology use. In this study, we define tools and technology broadly as electronic tools 
and software, as well as physical tools such as manipulatives. 

Method 
This study is part of Preparing to Teach Algebra (PTA), a mixed-methods study that explores 

opportunities provided by secondary mathematics teacher preparation programs to learn algebra 
and to learn to teach algebra. The PTA project consists of a national survey of secondary 
mathematics teacher preparation programs and case studies of five universities. The current 
study is a qualitative analysis of the case studies focusing on the opportunities provided to PSTs 
to encounter technology and to make connections in learning algebra and learning to teach 
algebra. 
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The PTA project purposefully chose secondary mathematics teacher preparation programs at 
five universities to explore. We refer to these universities as Beta, Gamma, Kappa, Sigma, and 
Zeta Universities. Beta, Kappa, and Zeta Universities have Carnegie classification of Master’s L 
(Master’s-providing Colleges and Universities – larger programs). Gamma and Sigma 
Universities are doctorate-granting institutions with Carnegie classification of RU/VH (Research 
Universities – very high research activity). Beta, Gamma, and Kappa Universities are located in 
the Great Lakes region of the U.S., while Sigma is in the Southeast and Zeta is in the Far West.  

We compiled data by conducting two focus groups of 3-4 PSTs and 10-13 instructor 
interviews at each site (except Zeta, where we conducted three interviews) and collected 
corresponding instructional materials from each instructor we interviewed. In the instructor 
interviews at each site, we included required mathematics, mathematics for teachers, 
mathematics education, and general education courses selected for potential algebra content.  

Among other interview questions, we asked instructors which types of tools and technologies 
they used in a particular course and how they supported PSTs in making connections in algebra. 
Similarly, we asked PSTs in focus groups to identify required courses that incorporated 
opportunities to make connections or to use technology in learning algebra or learning to teach 
algebra. We asked PSTs explicitly about their required or shared experiences with connections 
and with technology.  

Prior to considering the data for mentions of connections or technology, the PTA project 
team had coded data for algebraic content. In analyzing data, four researchers worked in pairs, 
reading the interview and focus group transcripts and discussing potential opportunities reported 
by instructors or PSTs.  

For connections, the two researchers individually coded data sources based on the major four 
types of connections (e.g., connections within algebra, connections between algebra and 
mathematics) and met to make consensus on the coding. We then developed summary 
documents of each university, including tables of the number of opportunities and quotations in 
each course. We will analyze the quotations to document different types of opportunities that 
were reported (e.g., algebraic topics that PSTs were exposed, specific activities that PSTs 
engaged with, or/and opportunities to help PSTs learn to teach connections).  

For tools and technology, the two researchers have so far only considered instructors’ 
interviews and instructional materials. We captured types of tools or technologies mentioned by 
course instructors and PSTs, as well as details of the experiences the rationale (if any) given by 
the instructor detailing why (or why not) tools and technology were used (e.g., “dulls the mind” 
or “representations help students understand quantitative situations”). Based on previous 
research, we will analyze instructors’ and PSTs’ reports of technology use to understand why 
opportunities are or are not provided in particular mathematics or mathematics education 
courses, and to understand the types of experiences provided, whether the experiences are as a 
“practical expedient,” or to “advance learning,” or to provide opportunities for PSTs to think 
critically about choice and use of tools and technology by engaging with potential affordances 
and limitations (CBMS, 2001). 

Results 
For the purposes of this proposal, and due to space limitations, we focus on finding 

exemplars of types of experiences provided to PSTs by two of the five different programs (i.e., 
Beta and Kappa) and focus on experiences in Abstract Algebra, Linear Algebra, and Secondary 
Mathematics Methods courses. We are not evaluating the programs; rather, exploring strengths 
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and challenges of each program to understand what rich experiences across a program’s 
offerings could look like, and to understand the challenges that arise. 
Connections 

Beta University. Linear Algebra instructor reported opportunities related to all four types of 
connections, while Abstract Algebra instructor provided examples of three types (except for the 
connections between algebra and non-mathematics) and Secondary Mathematics Methods 
instructor provided two types of connections (within algebra and between algebra and non-
mathematics). To be specific, Linear Algebra instructor reported that he discussed the meaning 
of solving an equation connected to distributivity and associativity (within algebra), probability 
through Markov chains (between algebra and other math), population dynamics through 
modeling (between algebra and non-math), and connections between solving systems of linear 
equations and college algebra (e.g., identities, inverse). Abstract Algebra instructor reported that 
he emphasized common structures and themes behind different number systems, discussed 
connection between ring isomorphisms and graph morphissms in Discrete Mathematics course, 
and discussed the relationships between high school level division algorithm and machinery in 
the division algorithm. Secondary Mathematics Methods instructor focused on how PSTs made 
connections rather than how the instructor made them. The instructor said that PSTs made 
algebraic connections when they created lesson plans and participated in reading workshops. 

Kappa University. Instructors of the three courses made different types of connections: 
Linear Algebra and Secondary Mathematics Methods instructors reported that they made the 
major types of connections except for connections between college and school algebra; and 
Abstract Algebra instructor reportedly provided opportunities except for connections between 
algebra and non-mathematics. Specifically, Linear Algebra instructor mentioned that PSTs 
studied how to solve systems of equations, connected them with the topics in the course, and 
learned how technology could best assist them. Abstract Algebra instructor reported PSTs’ 
opportunities to learn about abstract proofs that are related to college algebra and the usefulness 
of number theory and set theory. Secondary Mathematics Methods instructor provided a specific 
activity (border problem) where PSTs discussed the meaning of the variable in context and 
generalized the situation by using both words and symbols, which provided them the opportunity 
to connect different representations and use geometry. 
Tools and Technology 

Beta University. The Abstract Algebra instructor reported using little technology in his 
course. He did provide experiences using instructional technologies to facilitate communication, 
however, by asking students in the course to collaboratively develop class agendas using 
GoogleDocs. For example, as part of the agenda, the instructor asked students to post questions 
on readings and add checkmarks to questions posted by classmates that they also had. Use of 
technology was extensive in Linear Algebra, as the instructor reported using Maple and targeted 
Java applets in weekly computer lab activities. When talking about the computer activities, the 
instructor used phrases like “they discover the concept” and “they develop intuitive 
understanding.” The Secondary Mathematics Methods instructor reported focusing more on 
supporting PSTs in thinking about “the appropriate use of technology and helping their students 
[with] the appropriate use of technology” based on experiences that the PSTs have in their 
student teaching classrooms. For example the instructor reported discussing the possibility of the 
PSTs asking their students, “Here’s a calculator. You need to tell me which five problems you 
want to use the calculator on and why.” As a part of the course, the PSTs also keep a blog to 
communicate their experiences with each other and receive feedback on ideas they’re trying out. 
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Kappa University. The Kappa Abstract Algebra instructor also reported using little 
technology in his course, but he also used instructional technologies to facilitate course 
communication. He used the Blackboard Learning Management System to communicate to 
students and asked students to write course or homework questions in the discussion section of 
Blackboard. He said that he also has recently begun using his iPad to record his voice and 
writing as he answers students’ questions during office hours. He then posts those videos on 
Blackboard so that the student who asked the question “can go back and play it over and it’s 
there for them” but also other students with similar questions can see his responses. The Linear 
Algebra instructor did not report using technology explicitly in his course, although he did 
provide access to Mathematica for his students. He did report using unsharpened pencils as 
physical tools in class to represent vectors and vector operations, and said he sometimes sees his 
students bring their own pencils to exams. The Secondary Mathematics Methods I course 
instructor reported using, “SMARTBoards, algebra tiles, pattern blocks, TI-83 calculators, 
Fathom, TinkerPlots, and GeoGebra.” The instructor reported emphasizing “not using the 
technology and the resources for the sake of using them but making sure that there is a purpose 
and a reason behind why are we using this technology.” The instructor reported many discussion 
about potential pedagogical uses of different tools and technology, especially focused on having 
students use their resources in mathematical investigations. 

Discussion 
Our preliminary results show different types of opportunities that PSTs were provided 

related to the learning of algebraic connections and the use of technology to learn and learn to 
teach algebra. There was a wide range of opportunities that instructors provided related to 
algebraic connections: some instructors provided lists of topics and ways that they made 
connections (e.g., Linear Algebra at Beta); others reported specific activities that engaged PSTs 
to make connections (e.g., Secondary Mathematics Methods at Kappa). At Beta University, 
mathematics instructors described how they emphasized different types of connections, while the 
mathematics education instructor focused on how PSTs made connections in his class. At Kappa 
University, instructors described connections among not only algebraic topics (e.g., systems of 
equations, variables), but also practices that can be used in different courses and grade levels 
(e.g., proofs, generalization), along with how technology can be used to make such connections 
(e.g., Linear Algebra instructor). We heard concerns from both mathematics and mathematics 
education instructors that technology could impede PSTs’ learning. Some mathematics education 
instructors argued, to the contrary, that use of technology enabled PSTs to increase their 
understanding of algebra topics in ways that were not possible otherwise. At each university 
there was at least one opportunity for PSTs to think critically about their future educational use 
of technology, but experiences varied.  

Our preliminary results on the other cases (i.e., Gamma, Sigma, Zeta) show patterns among 
the major types of connections and uses of technology in different courses, which we plan to 
share during the presentation. We will additionally provide detailed examples of how instructors 
provided PSTs with opportunities to make algebraic connections and use technology as 
recommended by policy documents (e.g., CCSSO, 1995; NCTM, 2012), along with different 
types of opportunities that can help other educators assess their own programs. 

In our presentation, we plan to ask participants: From our preliminary analysis, what do you 
find surprising? What recommendations would you make for our analysis or what would you like 
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to see in published reports? One perspective on technology use in mathematics is that technology 
should mainly be used as a practical expedient to support applied mathematics projects. We plan 
to analyze our data specifically for opportunities for PSTs to engage in experiences that combine 
mathematical modeling, technology, and making connections. What would be interesting to you 
as results? How can we approach the analysis to make our results stronger? 

Endnote 
This study comes from the Preparing to Teach Algebra project, a collaborative project 

between groups at Michigan State (PI: Sharon Senk) and Purdue (co-PIs: Yukiko Maeda and Jill 
Newton) Universities. This research is supported by the National Science Foundation grant 
numbers DRL-1109256/1109239 and by the National Science Foundation, Spencer Foundation. 
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Investigating college students difficulties with algebra 
 

Sepideh Stewart                         Stacy Reeder 
 University of Oklahoma           University of Oklahoma  

Algebra is frequently referred to as the “gateway” course for high school mathematics. Even 
among those who complete high school Algebra courses, many struggle with more advanced 
mathematics and are frequently underprepared for college level mathematics.  For many years, 
college instructors have viewed the final problem solving steps in their respective disciplines 
as “just Algebra”, but in reality, a weak foundation in Algebra maybe the cause of failure for 
many college students. The purpose of this project is to identify common algebraic errors 
students make in college level mathematics courses that plague their ability to succeed in 
higher level mathematics courses.  The identification of these common errors will aid in the 
creation of a model for intervention.   

Keywords: Algebra, Common Errors, Symbolic World 
 

Algebra is often referred to as a gateway course because it is foundational and fundamental 
to STEM subjects and it is clearly here to stay.  At college level, algebra content is considered 
as assumed knowledge and the professors are not expected to re-teach it. Calculus curricula are 
demanding and fast moving leaving no extra time to resolve basic algebra issues.  However, it 
seems that many college level instructors are only concerned with one side of the coin and are 
somewhat disconnected from students’ prior experiences, let alone the psychological effects 
and possible negative experiences that originated many years ago. Although, Stacey, Chick and 
Kendal (2004) in their edited book titled: The Future of the Teaching and Learning of Algebra, 
discussed the main problems on Algebra in school Algebra, very little mentioned in the way of 
consequences in college level.   

A survey published by the National Center for Education Statistics reported that 
nationwide, in 2000, 28% of incoming freshmen took a remedial class (U.S. Department of 
Education, National Center for Education Statistics (NCES), 2004).  Beyond those who find 
themselves underprepared for college level mathematics coursework, the majority of students 
struggle due to incomplete or insecure understandings of many important Algebraic topics. The 
impact of weak or incomplete mathematical understanding at the middle school and high school 
level, and Algebra in particular, has a profound impact on the future mathematical success of 
students and their educational possibilities.  

This research will employ Tall’s (2008, 2010, 2013) framework of embodied, symbolic and 
formal mathematical thinking in an effort to construct a model of mathematical thinking for 
investigating students’ understanding of algebra concepts. Tall (2010) defines the worlds as 
follows: The embodied world is based on “our operation as biological creatures, with gestures 
that convey meaning, perception of objects that recognise properties and patterns...and other 
forms of figures and diagrams” (p. 22). Embodiment can also be perceived as giving body to 
an abstract idea. The symbolic world is based on practicing sequences of actions which can be 
achieved effortlessly and accurately as operations that can be expressed as manipulable 
symbols. The formal world is based on “lists of axioms expressed formally through sequences 
of theorems proved deductively with the intention of building a coherent formal knowledge 
structure” (p. 22).  Through in-depth qualitative research we anticipate ascertaining more about 
each of the three worlds as well as the blending of relationships between the worlds, and 
ultimately proposing a model that is applicable to interventions for the algebra skills needed 
for success in calculus. 
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 In an effort to identify common student errors and gain insight about how best to develop 
appropriate interventions, this project is focused on the following research questions:  1) In 
what areas of algebra do the major difficulties occur? 2) How would algebra interventions 
affect a student’s understanding of calculus and help them with more symbolic ways of 
interpreting mathematics? 3) As students advance into various STEM disciplines and encounter 
more formal mathematics, how does the lack of understanding algebra affect them and what 
interventions would help them? 4) What are some of the pedagogical challenges related to the 
symbolic world of mathematics? 

For the purpose of this poster presentation we will only answer the first research question. 
  

Method 
 

Our interdisciplinary, multi-institutional team includes two mathematics educators, two 
mathematicians, a cognitive psychologist who specializes in children’s algebra thinking 
process, an elementary school algebra teacher and two graduate students. To achieve the project 
goals and answer the research questions, a pilot study was conducted at a mathematics 
department at a large research university in South-West of the United States. Data were 
gathered from approximately 2500 students’ final exams from the following five different math 
courses: College Algebra; Pre-Calculus and Trigonometry; Pre-Calculus for Business, Life and 
Social Sciences; Calculus I for Business, Life and Social Sciences; and Calculus and Analytical 
Geometry. A small sample of the pilot data were analyzed in order to provide preliminary 
results. We plan to use the results of this study to develop a model for intervention. Data will 
be collected before and after the intervention to further our understanding of both the common 
errors and how best to help students overcome them. 

 
Preliminary Results 

 
The initial analysis of the pilot study data show several themes emerging among the types 

of common errors made by students while encountering fractions and exponents and dealing 
with variables and mathematical properties. The frequent occurrence of these categories of 
errors amplify significantly in calculus courses and will have a negative impact on students’ 
overall performance. For the purpose of this proposal, we have provided two examples from 
the data that reflect the common errors while encountering fractions (see Table 1). 

 
Table 1. Sample students’ common errors causing significant disruption in solving problems.  

Calculus I problems Errors 

 

Simplifying 
fractions 
causing 
difficulties in 
finding the 
domain 

 
 

Simplifying 
fractions 
causing 
difficulties in 
finding the 
derivative 
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More than a century ago, De Morgan (1910) wrote about the difficulties students face in 
learning mathematics noting common errors related to arithmetic and rational number 
computation.  Since that time, other researchers have catalogued common errors in 
computation and algebra (Ashlock, 2010; Benander & Clement, 1985; Booth, Barbieri, Eyer 
& Pare-Blagoev, 2014). Connecting with the existing body of knowledge on students’ 
persistent problems related to algebra our preliminary findings seem to parallel some of these 
categorizations and document that these errors persist in college level. In many cases, students 
are working to learn concepts that are new to them in college calculus courses and the results 
on assessments, formative or summative, are often more reflective of student difficulties with 
algebra than the newer concepts. The frequency of such errors creates frustration for both 
students and their instructors and may create barriers to student advancement in college level 
mathematics. We believe that the model generated by this project will be generalizable and can 
be used to examine the effect of students’ understanding of Algebra in other sciences e.g. 
Physics and Chemistry. Moreover, the study will have an enormous impact on our 
understanding of the symbolic world and its pedagogical complexities. 
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The Intermediate Value Theorem as a starting point for multiple real analysis topics

Steve Strand

Portland State University

In this paper I argue that the proof of the Intermediate Value Theorem (IVT) provides a rich and 

approachable context for motivating many concepts central to real analysis, such as: sequence 

and function convergence, completeness of the real numbers, and continuity. As a part of the 

development of a local instructional theory, an RME-based design experiment was conducted in 

which two post-calculus undergraduate students developed techniques to approximate the root of

a polynomial. They then adapted those techniques into a (rough) proof of the IVT.

Key words: RME, instructional design, design experiment, real analysis, limit

Introduction

The concept of limit has served as the theoretical foundation for the calculus and its 

applications ever since the work of Cauchy, Bolzano, and others in the early and mid-19th 

century (Grabiner, 1981). Specifically, in a standard analysis class, the ideas of limit and 

convergence lie at the heart of such topics as sequences, continuity, derivative, integral, and the 

completeness of the real numbers. It follows that a formal understanding of the limit concept is 

essential to any investigation of the theoretical underpinnings of the calculus.

Presented here is a description of how the context of the Intermediate Value Theorem 

(IVT) can serve as a natural launching point for many topics in a real analysis course, starting 

with formalizing the concepts of limit and convergence. The IVT provides such a context in two 

ways: 1) using said theorem to approximate the root of a polynomial and 2) adapting that 

approximation technique into a formal proof. I will report on an RME-based design experiment, 

the goal of which was to investigate the following questions:

• What student strategies anticipate the formal limit concept?

• What problems or tasks can be used to elicit these strategies?

• How can these strategies be leveraged to develop more formal understandings of the 

limit concept?

• What student strategies suggest avenues for developing other real analysis topics?

Literature Review

Student understanding of the limit has received a great deal of attention from the 

mathematics education research community. A great deal of research has focused on 

investigating the struggles students face in working with limits and the tools they use to deal with

those struggles (Bezuidenhout, 2001; Cornu, 1991; Davis & Vinner, 1986; Moru, 2009; 

Oehrtman, 2009; Sierpińksa, 1987; Szydlik, 2000; Tall & Schwarzenberger, 1978). Briefly, 

students employ intuitive metaphors (e.g. “limit as motion”, “collapsing dimension”, “limit as 

unreachable boundary”) that can be problematic in more formal endeavors. The other main area 

of focus has been investigating the process of students formalizing their understanding of limit 

(Cottrill, et al., 1996; Oehrtman, Swinyard, & Martin, 2014; Swinyard & Larsen, 2012; 

Williams, 1991); that is, coming to understand and work with limits in a way that is consistent 

with the standard formal definition(s)1. One important development in our understanding has 

1 There are many logically equivalent formulations of these definitions, so saying “the standard formal 

definitions” is perhaps misleading. By “standard” I refer to the ε-δ (or ε-N) characterizations found in most 
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been the recognition that formal definitions of convergence, and therefore formal work with 

limits, serve a markedly different purpose than informal work with limits (Swinyard & Larsen, 

2012). Specifically, tasks in the calculus sequence generally involve finding or evaluating limits, 

while more formal tasks focus on verifying limit candidates, or constructing proofs given the 

existence of certain limits. Motivating this shift in character, while still building on intuitive 

knowledge gained in the calculus sequence, heavily influenced the development of the task 

sequence and local instructional theory for this design experiment.

Theoretical Framework

This paper reports on an RME-based design experiment, which represents the early stages

of curriculum development for a real analysis course. Design experiments should inform both 

instructional design and theory development (Cobb, et al., 2003; Gravemeijer, 1998). The design 

heuristics of Realistic Mathematics Education (RME), namely guided reinvention, emergent 

models, and didactic phenomenology, guided the development and implementation of the 

experiment as well as the underlying theory. The contribution of each of these heuristics will be 

discussed briefly below.

Guided Reinvention

On a macro level, the heuristic of guided reinvention motivated my overall instructional 

goal of having the students develop their own formal definitions of convergence, rather than 

working to make sense of the standard formal definitions. In RME, the goal is not that everything

be strictly reinvented by the students, but rather that, “formal mathematics would be experienced 

as an extension of [students'] own authentic experience” (Gravemeijer & Doorman, 1999). That 

is, instructional activities should be designed and sequenced so that the formal mathematics 

emerges from students' informal mathematical activities, so that students feel a sense of 

ownership over the mathematics developed. While guided reinvention provides a macro-level 

structure for instructional design, other RME heuristics are more useful at filling in this structure.

For actual task generation, sequencing, and refinement, I relied largely on the design 

heuristics of didactic phenomenology and emergent models.

Didactic Phenomenology

In order to find an intuitive context that could evoke potentially useful student strategies, 

the heuristic of didactic phenomenology suggested that I look to the origins of the formal 

definition, paying particular attention to the didactic implications (i.e. consequences for 

instruction) of those origins. From where did our modern formal definition of convergence 

come? What problems did it solve for mathematicians at the time? Approximations of various 

kinds played a pivotal role in the historical development of the limit concept (Grabiner, 1981). 

Mathematicians (especially Lagrange) of the late 18th and early 19th centuries had made great 

strides in techniques of approximation and error-bounding in applied contexts. Cauchy is 

credited with developing the first ε-δ style definitions of convergence, and there is strong 

evidence to suggest that he took inspiration from these approximation techniques (Grabiner, 

1981). Further, both he and Bolzano developed formal proofs with these definitions by adapting 

those same approximation techniques2. Prior to these developments, the mathematical 

community, including Newton and Leibniz, had only been able to justify limits with vague (by 

analysis textbooks, e.g.: For every ε > 0 there exists a δ > 0 such that if 0 < | x – a | <  δ then | f(x) – L | <  ε.

2 For a clear, thorough demonstration of this, see Grabiner, 1981, especially pp. 69-76.
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today's standards) statements about “vanishing quantities” and “infinitesimals”. The work of 

Cauchy and Bolzano put calculus on a firm, well-defined foundation for the first time.

Additionally, Gravemeijer and Terwel interpreted didactic phenomenology to suggest 

that, “situations should be selected in such a way that they can be organized by the mathematical 

objects which the students are supposed to construct” (2000, p. 787). That is to say, in order to 

support students in reinventing a formal definition of convergence, a curriculum designer should 

seek contexts and tasks in which the students would able to reason intuitively, and in which a 

formal definition would have power to organize and solve problems. Inspired by the works of 

Cauchy and Bolzano, I conjectured that approximating the roots of a polynomial using the 

Intermediate Value Theorem (IVT), and then constructing a formal proof of the theorem3, would 

be just such a context.

Figure 1: The IVT for continuous functions.

There are a few features that make the IVT such a context. First, the IVT is a fairly 

intuitive result which students will likely assume even if they have never been exposed to the 

formal theorem (Figure 1). This context requires students to draw on their concept images of 

functions and limits, and so builds on their intuitive knowledge gained from the calculus 

sequence. Second, the IVT provides an incredibly rich context for investigating the properties of 

real numbers and convergence. If we follow Cauchy's example and adapt our proof from the 

approximation techniques of Lagrange, then a rigorous proof of the IVT requires formal 

definitions of sequence convergence, continuity, and the limit of a function at a point. Some form

of the Completeness axiom of the real numbers is also necessary, and so this context could 

motivate investigations in that direction as well. (Exploring these possibilities will be the focus 

of ongoing analysis.) In this way the context of approximating roots using the IVT, and then 

constructing a proof of the IVT for continuous functions, is a mathematically rich context that 

provides the students with a need to develop the desired formal definitions of convergence, as 

3 Technically, if we restrict ourselves to establishing the existence of roots of continuous functions, then we are 

only proving a special case of the IVT (sometimes referred to as Bolzano's Theorem). But the proof is easily 

adapted to the general case by a simple vertical shift.
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well more formal understandings of continuity and the completeness of the real numbers. The 

specific development of students Brad and Matt in this design experiment will be outlined below.

Emergent Models

The heuristic of emergent models provides one way to describe the process by which 

formal mathematics might emerge from informal student activity in these contexts. The use of 

“models” in RME is not restricted to physical drawings or tools. In describing a local 

instructional theory for the development of the quotient group concept, Larsen conjectured that, 

“the quotient group concept could emerge as a model-of students' informal mathematical activity

as they searched for parity in the group D8 (the symmetries of a square)” (Larsen & Lockwood, 

2013). Thus “model” in this sense can also refer to a concept or structure that the teacher or 

researcher recognizes as a model of the students' mathematical activity, but of which the students

themselves may not be aware. Continuing with Larsen's example, once the students had begun to

reflect on their activity with parity and other group-like partitions of groups, conjecturing and 

verifying common properties, the concept of quotient group became a model for their reasoning 

in this new mathematical reality; a “model of” informal mathematical activity had become a 

“model for” more formal mathematical reasoning. “This shift from model of to model for 

concurs with a shift in the students' thinking, from thinking about the modeled context situation 

to a focus on mathematical relations” (Gravemeijer, 1999, p. 162). In RME-based instruction, 

this progressive mathematization is the primary mechanism by which students develop more 

formal mathematics and create new mathematical realities for themselves.

The modern formal definition of convergence can be seen as a model of the 

approximating activity of the mathematics community in the 18th and 19th centuries. A formal 

definition of convergence emerged from these activities of approximating and error-bounding, 

first for Cauchy and then for the rest of the mathematical community. In this way the historical 

development of the concept of limit suggested that a formal definition of convergence could 

emerge as a model of student activity centered around approximations. By reflecting on and 

organizing this approximating activity, such a formal definition could emerge from their activity 

and serve as a model for more formal mathematical reasoning about limits and convergence. 

Students' informal understandings of approximations and error-bounding have also been 

used as a foundation for instruction of the calculus sequence. Research suggests that this 

foundation has supported students in formalizing their concept of limit (Oehrtman, 2008; 

Oehrtman, Swinyard, & Martin, 2014). In this way formal characterizations of convergence can 

be seen as a useful model for describing and supporting students' progressive mathematization.

Methods

The design experiment involved two students, Brad and Matt, working together on a 

sequence of tasks over the course of 10 sessions, approximately 60-minutes each. Data consisted 

of the video/audio recordings of each session, researcher notes, and student-generated summaries

from the conclusion of each session. After each session an outline of the students' progress was 

made, with key segments being analyzed in greater depth. This analysis focused on finding 

student strategies and statements on which to build toward the larger goal of formalizing their 

understanding of limits, which in turn supported the ongoing development of the task sequence.

Brad and Matt begin their investigation by working on the following task:

Does p(x) have a root in [0,3]?

p(x) = x4 – 4x3 – 7x2 +22x + 10
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This polynomial was intentionally constructed to have only irrational roots, so that students 

would not be able to use algebraic tools (e.g. factoring, the quadratic formula, polynomial 

division, the rational roots theorem, etc.) to find the exact roots and would have to find a way to 

approximate. Subsequent tasks had the students approximating the root to different degrees of 

accuracy, and then working to generalizing their technique. The task was then to prove a version 

of the IVT which they had postulated, which in turn motivated the development of formal 

definitions of multiple types of convergence.

Preliminary Analysis and Results

On the  first  task,  Brad and Matt  developed an approximation  strategy wherein  they

iteratively bifurcated the given interval to get more and more accurate approximations for the

root. Through the course of constructing a proof of the IVT from this approximation technique,

Brad  and  Matt  were  tasked  with  developing  their  own  formal  definitions  of  sequence

convergence, function limit at infinity, continuity, and function limit at a point. Below I have

included their first and their final definitions for what it means for a function to have a limit of

zero as x tends to infinity.

Def 1b:  1/ε,  ∀ ∃ n s.t. f(n) < 1/ε.  ε, n in R.  

Def 3:  1/ε   an interval (∀ ∃ xa, ∞) s.t. |f(x)| < 1/ε   ∀ x in (xa, ∞)

Current analysis is focusing on explaining how these reinventions were supported by the 

students' activity in the starting task.

Subsequent analysis will focus on identifying fruitful starting points, within the proof of 

IVT task, for follow-up tasks investigating other real analysis topics. Brad and Matt had some 

very interesting conversation about continuity which were not fully capitalized on. Further, their 

approximation strategy suggested many possible approaches to the idea of the completeness of 

the real numbers, including the Monotone Convergence Theorem, the Nested Interval Property, 

and even the Least-Upper Bound Property. Designing and implementing these tasks will also be 

the focus of future design experiments in the further development of this real analysis curriculum

and local instructional theory.

Questions:

 What do you consider to be central topics in an introductory real analysis course?

 What student strategies presented here suggested possible paths for further development 

of other topics?

 What role should counter/pathological examples play in an introductory real analysis 

course?
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Teaching is inherently uncertain, and teaching secondary mathematics is no exception. We 
take the view that uncertainty can present opportunity for teachers to refine their practice, 
and that undergraduate mathematical preparation for secondary teaching can benefit from 
engaging pre-service teachers in tasks presenting uncertainty. We examined 13 secondary 
teachers’ reactions to mathematical uncertainty when engaged with concepts about extending 
the domain for the operation of exponentiation. The data are drawn from an interview-based 
study of items developed to assess mathematical knowledge for teaching at the secondary 
level. In our findings, we characterize ways in which teachers either denied or 
mathematically investigated the uncertainty. Potential implications for instructors include 
using mathematical uncertainty to provide an opportunity for undergraduates to learn both 
content and practices of the Common Core State Standards. The proposal concludes with 
questions addressing how undergraduate mathematics instructors could use uncertainty as a 
resource when teaching preservice teachers. 

Key words: Preservice Secondary Teachers, Uncertainty, Algebra, Teacher Assessment 
 
 

Overview and Research Questions 
 

This study attends to how cases of mathematical uncertainty can be used to elicit teacher 
thinking in ways that might help them learn to engage in and model mathematical practices 
for their students. The research questions are:  

• How did teachers respond to a mathematically challenging teacher assessment item?  
• How the student work in the item influence the teachers’ responses?  

In this paper, we discuss an example case of a teacher assessment item that creates 
mathematical uncertainty, and a set of teacher responses illustrating patterns of thinking that 
emerged as those teachers reasoned about the situation. 

Theoretical Perspective: Uncertainty 
 

“Teaching is evidently and inevitably uncertain” (Floden & Buchmann, 1993, p. 373). 
Uncertainty in thought, encountered while teaching, can be conceptualized as cognitive 
“perplexity, confusion, or doubt” (Dewey, 1933). Sources of uncertainty are ubiquitous in 
teaching and the teaching environment, and range from instructional content or teacher 
authority (Floden & Buchmann, 1993) to student traits or school culture Labaree (2003).  

While the literature reflects clear consensus that uncertainty is inevitable because of the 
complexity of teaching (Cohen, 1988; Floden & Buchmann, 1993; Helsing, 2007; Labaree, 
2003; Zaslavsky, 1995), there is less agreement about whether either the existence of or the 
ways that teachers respond to that uncertainty should be considered a good thing (Helsing, 
2007). Helsing (2007) describes two schools of thought, one of which characterizes 
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uncertainty as a deficiency and another that characterizes it as productive in teacher learning. 
In other words, uncertainty could be a signal of systemic dysfunction or teacher 
underpreparation, but uncertainty can also be something that would be productive to celebrate 
rather than avoid. Denying uncertainty may restrict teachers’ opportunities to look for 
alternative teaching methods and in turn limit students’ learning (Cohen, 1988; Helsing, 
2007). By pretending everything is certain and under control, teachers potentially lower their 
standards so to mask potential ineffectiveness, establishing routines that increase 
predictability, accepting status quo to maintain security, and blaming students, other teachers, 
parents, or society for students’ failures (Helsing, 2007). These attempts decrease the 
opportunities teachers have to enhance their own practices. When a teacher confronts 
uncertainties and accepts that teaching is open and fluid, the chance to develop their practices 
and their subject matter knowledge increases (Floden & Buchmann, 1993; Labaree, 2003). 
And we might expect this to be as true for more expert teachers than for more novice 
teachers; Floden and Chang (2007) suggest the metaphor of a jazz score for teaching, where 
certain frames of reference can be nailed down and others are, of necessity, open to creativity 
and interpretation, and in fact a sign of expertise is the ability to make use of uncertainty 
rather than the ability to avoid uncertainty. 

In this paper, we focus our attention on teachers’ mathematical uncertainty. Most 
literature on uncertainty in teaching attends to general sources that have less to do with 
subject matter knowledge and more to do with the complexity of teaching itself (exceptions 
include Rowland (1995) and Zaslavsky (1995)). This may be due to the perception that 
teachers can deal with and resolve uncertainty around the subject matter by further studying it 
and simply learning the subject better. However, as Lakatos (1976) argues persuasively, 
mathematical knowledge can be under continual revision. In other words, the subject matter 
itself may be uncertain beyond whatever uncertainty a teacher may have due to not 
understanding it fully. Therefore, mathematical uncertainty can be as irreducible as other 
uncertainties. For the purposes of this paper, we conceptualize mathematical uncertainty 
following Zaszlasky (1995) as any mathematical situation in which competing claims, an 
unknown path or questionable conclusion, or non-readily verifiable outcome occurs. 
Uncertainty is both a condition of the situation (that something cannot be known) and the 
associated emotions. As Mason (1994) posits, “emotion is harnessable”. Here we examine 
one instance of how the experience of uncertainty may be harnessable for learning to attend 
to a particular mathematical issue, that of domain extension.  

Data, Method, and Analysis 
 

We drew on a subset of data from a larger study focused on validation of secondary-level 
items for assessing teachers’ mathematical knowledge for teaching (MKT) (Ball & Bass, 
2003; Ball, Thames, & Phelps, 2008). Researchers in the larger study conducted retrospective 
cognitive interviews (Ericsson & Simon, 1985) of more than 20 secondary mathematics 
teachers on a subset of assessment items, in which the participating teachers were asked to 
talk aloud about their reasoning processes in responding to the items. The interviews were 
audio recorded and transcribed.  

For this analysis, we focused on 13 teacher interview transcripts responding to a 
particular item from the set. This item (see Figure 1) asks teachers to examine the validity of 
two samples of student work where students have been asked to evaluate the expression ((–
9)1/2)2.  
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Figure 1. Ms. Williams item. (Copyright @ 2013 Educational Testing Service) 

In terms of the underlying mathematics, the item seeks to assess whether the respondent 
knows that the law of exponents (xa)b = xab does not hold in general, for instance when x is a 
negative number and a or b is non-integer. One student work sample has reached the ‘correct’ 
answer of –9 and the other has reached an incorrect answer of +9, but both have over-
generalized the above law of exponents and applied it in a situation where it is not 
appropriate. In other words, the student whose answer is correct reached a correct answer 
coincidentally and not by use of a valid method, by overgeneralizing a rule that applies when 
both the base and the exponent are positive integers. The situation is additionally complex in 
that, while one student has reached the ‘correct’ answer of –9, the mathematical justification 
for this being the ‘correct’ answer depends on the use of complex numbers, and the item 
describes the students as not yet familiar with complex numbers. Arguably, if limited to real 
numbers, it might be more ‘correct’ to state that the expression is not defined. This example 
resembles one of Zaslavsky (1995)’s examples of competing claims, taken from Tirosh and 
Even’s (1997) study, which discusses different mathematically-substantiated possibilities for 
(–8)1/3. In the case here regarding squaring the 1/2 power of –9, the student work represents 
competing claims.  

Responses to this particular item, because of the embedded mathematical uncertainty, and 
because many of the participants reported experiencing uncertainty or showed evidence of 
uncertainty, presented an ideal situation in which to examine patterns of reasoning in 
response to uncertainty. Transcripts were coded using grounded theory (Suddaby, 2006) for 
evidence of uncertainty, to characterize the nature of the response overall, and more 
specifically, to characterize the nature of the response to uncertainty. We paid particular 
attention to strategies that teachers engaged in as methods of resolving uncertainty, and to the 
valance they assigned that uncertainty when they noted it.   

Potential Implications for Future Research 
 

In this paper, we examined teachers’ experiences of uncertainty, in particular, in the face 
of competing claims. One interesting observation about the teachers’ different experiences 
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was the range of certainty about the verifiability of the claims. Some teachers felt more 
certain than others about the verifiability of the answer than others. The engagement of those 
that felt less certain suggests that the perception of verifiability may play a role in how 
productive a situation of competing claims can be for learning. If there are competing claims, 
but one is perceived to be automatically more correct to the point of disregarding flawed 
reasoning to a valid conclusion, then engagement with the claims may be less productive than 
if claims are seen to be less automatically verifiable. Indeed, the point of this task was to 
engage in verifying the claims so as to be aware of how students may have overreached on 
the domain of the laws ostensibly applied. 

Feedback and Suggestions for Future Directions for the Research 
 

• One of our conclusions is that perceived verifiability may play a role in the 
productiveness of a task structured around competing claims. Does this conclusion 
seem plausible to you? What experiences have you had as a researcher or 
undergraduate instructor that might support or counter this conclusion? (The purpose 
of this question is to see whether this conclusion is reasonable enough to dig deeper 
into the analysis with this idea in mind.) 

• If we were to investigate the role of verifiability further, what analytic frameworks or 
coding strategies would you suggest for looking into the data further? 
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Effects of dynamic visualization software use on struggling students’ understanding of 
calculus: The case of David 
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Using dynamic visualization software (DVS) may engage undergraduate students in calculus 
while providing instructors insight into student learning and understanding. Results 
presented derive from a qualitative study of nine students, each completing a series of four 
individual interviews.  We discuss themes arising from interviews with David, a student 
exploring mathematical relationships with DVS who earns a C in calculus. David prefers to 
visualize when solving mathematical tasks and previous research suggests that such students, 
while not the ‘stars’ of their mathematics classroom, may have a deeper understanding of 
mathematical concepts that their non-visualizing peers. Using modified grounded theory 
techniques, we examine evidence of uncontrollable mental imagery, the need to refocus 
David on salient aspects of the animations, instances when David’s apparent conceptual 
knowledge is neither fully connected to nor supported by procedural knowledge, and David’s 
failure to transfer knowledge when DVS was not offered during assessment. 

Key words: calculus, visualization, dynamic visualization software 

The urgent need for the United States to produce an additional one million graduates 
studying science, technology, engineering and mathematics (STEM), the fact that students to 
choose to leave the sciences often cite uninspiring introductory courses as the reason  
(President's Council of Advisors on Science and Technology (PCAST), 2012) and our 
knowledge that students who fail to obtain a deep understanding of calculus abandon their 
quest for a STEM degree (Carlson, Oehrtman, & Thompson, 2007) lead us to consider 
innovative methods for student engagement in college calculus that may also provide insight 
into student learning of the subject.  Dynamic Visualization Software (DVS) facilitates visual 
investigation of important mathematical relationships and may assist students in exploring 
topics in a way that promotes conceptual understanding.  Presmeg (2006) found that students 
in the high school mathematics classroom who prefer to visualize when solving mathematical 
tasks are not the ‘superstars’ of the classroom but that their understanding of the concepts and 
ideas of mathematics may be stronger than those of their non-visualizing peers. Presmeg 
defines visualization as including, “the processes of constructing and transforming both 
visual and mental imagery and all the inscriptions of a spatial nature that may be implicated 
when doing mathematics,”  (Presmeg, 2006, p. 3).  This case study of David, is part of a 
larger study that explores how student interactions with DVS influence the learning and 
understanding of calculus for undergraduate STEM majors (Sutton, 2015).  

Study Design 

In this study we investigate how the use of DVS influences student understanding of 
derivative as a rate of change of one quantity with respect to another and how the experiences 
with DVS affect student understanding of derivative at a point as well as a student’s 
graphical, analytical and conceptual understanding of derivative.  We also explored student 
understanding of the relationship between continuity and differentiability. 

We completed this study during the Fall 2013 semester at a large university in the 
Southwestern United States. Participants came from a single section of calculus with 110 
students enrolled. Fifty students enrolled in this section also participated in an intervention 
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program that met twice weekly and focused on problem solving.  Funding guidelines required 
that students in the intervention program be first-time, first-semester freshmen US Citizen or 
permanent resident, majoring chemistry, engineering, physics or mathematics. 

During the first week of classes, all students enrolled in the selected section of calculus 
completed a background demographic survey and Presmeg’s (1985) Mathematical Processing 
Instrument (MPI).  Scoring of the MPI only provides information about the student’s 
preference to visualize when solving mathematical tasks. However, when reviewing the MPI 
we saw that not all students had adequately solved the problems in the instrument and we 
decided to assign each student two scores: one indicating the preference to visualize (0-24) 
and an additional score showing the number of questions that student correctly answered (0-
12).  We did this in an effort to select participants most likely to complete the course 
successfully.  Students with a correctness score less than eight were not invited for 
participation.  We invited eight visualizers (MPI score above 15) and seven non-visualizers 
(MPI score less than 8) to participate in a series on four individual interviews.  Nine students 
(five visualizers) completed three one-hour interviews and a thirty-minute Exit Interview.  

We placed each student in one interview group: DVS or Static.  Students experiencing the 
DVS interviews explored the mathematical relationships highlighted during each interview 
using pre-designed visualizations called sketches.  Students in the static interview group 
worked on problems adapted from a calculus textbook and answered questions analogous to 
those from the DVS interviews.  We provided students in both groups a basic scientific 
calculator, paper and a writing instrument.  Interviews were video recorded and smartpen 
technology captured real-time voice and written data.  We transcribed the interviews and 
analyzed common themes using open coding techniques (Corbin & Strauss, 2007). 

 
David 

 
David, an eighteen year-old black male majoring in mechanical engineering, graduated 

from a large (more than 2100 students) urban high school in 2013.  The only Advanced 
Placement course David completed was Calculus AB.  He correctly answered 10/12 items on 
the MPI and has an MPI visualization score of 18/24, classifying him as a visualizer.  David 
participated in the intervention program offered for calculus and he earned a C in the course.  
He participated in the DVS interview group for this study. 
Interview I 

During Interview I David, explored relationships between tangent and secant lines and 
how they corresponded to the relationship between average rate of change over an interval 
and instantaneous rate of change at a point contained within the interval.   

The first sketch in Interview I presented David with the graph of a quadratic function.   
The sketch includes a fixed point, 𝐴, corresponding to (𝑥𝑎, 𝑓(𝑎)), a dynamic point, 𝐵, 
corresponding to (𝑥𝑏, 𝑓(𝑏)), and the secant line containing both 𝐴 and 𝐵. During the 
interview, David manipulated 𝐵 as he collected data in a dynamic table.  The data in the table 
included the values for 𝑥𝑎, 𝑥𝑏, 𝑓(𝑥𝑎), 𝑓(𝑥𝑏), and 𝑓(𝑥𝑏)−𝑓(𝑥𝑎)

𝑥𝑏−𝑥𝑎
.  Eventually, David moves 𝐵 

sufficiently close to 𝐴 and the secant line disappears from the screen.  The interviewer asks 
David why he thinks this happened, “The change in 𝑥 is equal.  When 𝑥 - - I  mean, when 
𝐴 = 𝐵 the change is 0 ‘cuz… the same thing so… there is no average speed.”  When asked if 
there is a relationship between the function’s average rate of change over [𝑥𝑎, 𝑥𝑏] when the 
points are close together and the function’s instantaneous rate of change at point 𝐴, David 
says that there is a relationship, but the instantaneous rate of change at point 𝐴 is undefined. 
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The disappearance of the secant line when points 𝐴 and 𝐵 are sufficiently close together leads 
David to believe that the instantaneous rate of change of the function at point 𝐴 is undefined. 

The final sketch of Interview I focused on investigations related to 𝑓(𝑥) = 𝑒𝑥. Before he 
began exploring, the researcher asked David about his knowledge regarding such functions. 
David responds that, “… like, it’s never touching, whatever, like at the 4 and 0.” While 
making this statement, David makes hand gestures indicating that the function has a vertical 
asymptote at 𝑥 = 4 and a horizontal asymptote at 𝑦 = 0.  The researcher asks for more 
information regarding his statement that it never touches at 4.  David continues to gesture and 
states, “it’s like it’s going up, so there’s an asymptote and, and asymptote right there.”  He 
clarifies that the function has a horizontal asymptote at 𝑦 = 0 and, “…a vertical asymptote 
at… I’d say 4 ‘cuz it passed right through it.”   

David’s ability to use the software did not hinder his exploration of the graph 𝑓(𝑥) = 𝑒𝑥.  
In fact, on a previous sketch he asked if he could explore and used a dynamic point on the 
function graph that he found interesting to do so.  His assertion that the graph of 𝑓(𝑥) = 𝑒𝑥 
has a vertical asymptote at 𝑥 = 4 is a powerful referent that he continues to hold through this 
and subsequent interviews. Prior to beginning Interview II, the researcher asks David what he 
remembers from Interview I; he states that the exponential function has a vertical asymptote. 

While exploring the exponential function in a similar manner as he did with the quadratic 
function, David appears to gain some insight into the relationship between the function’s 
average rate of change over an interval and its instantaneous rate of change at a point within 
the interval.  He states that when two points 𝐴, corresponding to (𝑥𝑎, 𝑓(𝑥𝑎) and 𝐶, 
corresponding to (𝑥𝑐, 𝑓(𝑥𝑐)), on a graph are “really close” together the secant line 
connecting them could represent, “the tangent line. Oh! The speed! The speed.”  The 
researcher continues to ask probing questions and David says that the slope of the tangent 
line corresponds to the instantaneous speed of a particle whose position with respect to time 
is determined by the exponential function.  Using another dynamic table to collect data, and 
through some probing questions from the researcher, David eventually relates, “the 𝑦 value of 
𝐴,” to the particle’s speed point 𝐴.  “So, yeah. If you, if you have your 𝑦 value then it would 
be equal to the instantaneous speed of the particle [at that time].”   

During Interview I, David experiences several transitions in thinking about the 
relationship between average rate of change over an interval and instantaneous rate of change 
at a point within the interval. Initially, David believes that the instantaneous rate of change at 
point 𝐴 does not exist, or at least he believes that he cannot find it, when points 𝐴 and 𝐵 
coincide.  However, after further exploration (with the initial quadratic function, a quartic 
function and, finally, the exponential function) David appears to make a connection between 
the decreasing size of [𝑥𝑎, 𝑥𝑐] and the slope of the secant line as an appropriate estimate for 
the instantaneous rate of change at point 𝐴.  After stating this connection, David discusses the 
slope of the tangent line at point 𝐴 as the value of the function’s instantaneous rate of change 
at the point.  Though he may be building upon previous conceptual knowledge, it was not 
evident that he possessed this knowledge prior to the interview. It may be that the DVS 
evoked this knowledge that he did not demonstrate initially. We did not observe evidence of 
procedural knowledge or skills during this interview. 
Interview II 

Prior to beginning Interview II, David recalls the relationships he explored during 
Interview I.  David uses his hands to illustrate that he understands relationships between 
secant lines, tangent lines, average rate of change over an interval and instantaneous rate of 
change at a point contained in the interval and he draws a sketch (prompted by the researcher) 
illustrating that he understands the role of interval size in this relationship. However, when 
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asked what he knows about derivatives David’s response is rambling and nonsensical. He 
says that, “derivative is the velocity… and the derivative of velocity is… well…” 

The first sketch in Interview II presents the graph of a cubic function, a dynamic point 𝑃, 
corresponding to (𝑥𝑝, 𝑓(𝑥𝑝)), and a line tangent to the graph at point 𝑃. As David 
manipulates 𝑃, he mentions that the value of 𝑓′(𝑥𝑝) corresponds to, “the slope of the point on 
the graph at that instant.”  He also collected data in a dynamic table listing the values 
𝑥𝑝, 𝑓(𝑥𝑝), and 𝑓′(𝑥𝑝).  When asked what information from the table would be needed to plot 
a point lying on the graph 𝑦 = 𝑓′(𝑥), he struggled to answer. After answering some probing 
questions, he eventually realizes that the point (𝑥𝑝, 𝑓′(𝑥𝑝)) lies on the graph of the derivative 
of 𝑓, though he struggles to equate 𝑓′(𝑥𝑝) with the instantaneous rate of change at point 𝑃. 
Using the software, David checks his hypothesis and, by manipulating point 𝑃 along the 
function graph, he traces out the derivative graph of 𝑓. 

The final sketch presented during Interview II revisits the graph of 𝑓(𝑥) = 𝑒𝑥.  He 
explores the function using a dynamic point 𝑃 corresponding to (𝑥𝑝, 𝑓(𝑥𝑝)). He notes that, 
“it [the instantaneous rate of change at point 𝑃] is always positive,” and that, “as it moves 
farther [in the positive direction of the 𝑥-axis] it changes faster.”  David collects data in a 
dynamic table listing the values of 𝑥𝑝, 𝑓(𝑥𝑝) and 𝑓′(𝑥𝑝).  He immediately notices, “wherever 
it is on the 𝑦-axis it’s the same as the slope—the slope of the tangent line,” and states that the 
point (𝑥𝑝, 𝑓(𝑥𝑝)) lies on the graph of 𝑓’.  David says that he learned in class that, “the 
derivative of 𝑒𝑥 is just 𝑒𝑥. When asked if other exponential functions, say 𝑓(𝑥) = 5𝑥, have 
this same property, David is unsure.  He reasons that, “if you have 𝑒𝑥 and you add an ln it 
would just be 𝑥, " but he remains unsure what this means mathematically or how to even 
write it. In the end, David says that he, “just knows” that if 𝑓(𝑥) = 𝑒𝑥 then 𝑓(𝑥) = 𝑓’(𝑥) . 

During Interview II, David continues to make conceptual connections about the 
relationship between a function’s instantaneous rate of change at a point and the derivative 
value at the point.  He struggled, but succeeded, in giving the coordinates of points lying on 
the graph of 𝑓’ when provided with the graph of 𝑓.  Evidence of David’s weak procedural 
knowledge emerges in his inability to show or explain why 𝑓(𝑥) = 𝑓′(𝑥)  for  𝑓(𝑥) = 𝑒𝑥. 
Interview III 

Unlike Interviews I and II, Interview III consisted of a single sketch showing the graph of 
a piecewise-defined function on a closed interval (see Figure 1).  This interview focused on 
the Extreme Value Theorem and the relationship between continuity and differentiability. 

 
Figure 1 Screenshot of DVS Interview III. 

Prior to working with the DVS for Interview III, the researcher asks David what it means 
for a function to be continuous on its domain.  He responds, “… that it will go through all the 
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𝑥 values. The positive ones and negative ones… there’s no holes and asymptotes or no, like 
stops in the graph.”  He relates differentiability to a lack of “corners or cusps” on the graph of 
the function.  When the researcher probes about what David means by this he responds that, 
“it’s like 0 at the corner, I’m guessing. You can’t find the derivative of 0. I just know like - - I 
just remember that if there’s a corner or a cusp you can’t… it’s not differentiable.” 

Once he begins exploring properties of the function graph using the dynamic point A 
corresponding to (𝑥𝑎, 𝑓(𝑥𝑎)), David easily identifies the maximum function value and 
minimum function value on the given domain and to state that the function is defined on a 
closed interval. He is unable, however, to write an inequality guaranteed by the EVT for all 
function values compared to the maximum function value.  After further questioning from the 
researcher, David eventually concludes that 3 ≥ 𝑓(𝑥) for all 𝑥 in [−7.25, 7.25], though he in 
unable to explain an analogous inequality for the function’s minimum value.  He also states 
that if 𝑓(𝑥𝑑) is the function’s minimum or maximum function value the 𝑓′(𝑥𝑑) = 0, because, 
“… it changes from increasing to decreasing… or the other way.”  

The researcher asks David to use the DVS capability to collect data in a dynamic table 
and to mark points on the graph where he estimates that the instantaneous rate of change is 
greatest given several closed intervals. For each 𝑥𝑖 he indicated, David is asked about the 
value of 𝑓′(𝑥𝑖).  He states that the points (𝑥𝑖, 𝑓′(𝑥𝑖)) would correspond to “relative maxes,” 
on the graph of 𝑓′ and that (𝑥𝑖, 𝑓′′(𝑥𝑖)) would correspond to zeros on the graph of 𝑓’’.  

David struggles to understand why the derivative at a point corresponding to a sharp 
corner on a function graph does not exist.  Initially, David believes that, “you can’t set the 
derivative equal to zero,” at such a point.  However, after investigating on the graph (see 
Figure 1) near 𝑥 = −2 he realizes, “… so the derivatives from both sides aren’t equal.”  
David continues to investigate his notion near 𝑥 = 1 and 𝑥 = 3 on the same graph and 
concludes that his statement also applies there.  The final question in Interview III required 
David to explain the relationship between continuity and differentiability; he responds that, 
“… like it can be continuous but that doesn’t mean that it is differentiable everywhere.”  

The transcripts for Interview III contain several examples of David acquiring conceptual 
knowledge, or experiencing transitions to existing conceptual knowledge.  He demonstrates 
how changes in one quantity result in changes in another quantity as he relates 𝑓(𝑥𝑖), 𝑓′(𝑥𝑖), 
and 𝑓′′(𝑥𝑖).  However, it is unclear if he adjusted his conceptual knowledge relating a point, 
𝑥𝑎, 𝑓(𝑥𝑎), that corresponds to a maximum function value to include that 𝑓′(𝑥𝑎) may equal 0 
or be undefined.  Through probing questions from the researcher and exploration with DVS, 
David makes conceptual connections about the derivative at sharp corners of the graph of 𝑓. 
Exit Interview 

The Exit Interview for all students was administered in a static fashion.  No DVS was 
offered for exploration and the interview protocol was identical for all student participants.  

The first question asks students to say what comes to mind when they hear the word 
derivative.  David’s responses only include lists of specific derivative rules and examples. 
“𝑥2 derivative equals 2𝑥.  cos 𝑥 derivative is − sin 𝑥…” 

The second task included the graphs of two polynomial functions with the point (2,3) 
marked on each graph. David is asked to compare the instantaneous rate of change at 𝑥 = 2 
of each function. His response, “you take the derivative and plug in 2,” while correct, relied 
upon the function definitions, but only graphs were given. He does make some comparisons, 
“… where it goes from increasing to decreasing, the point where it does that, the point where 
it switches the 0, the instantaneous rate of change, which is the derivative of the function 
would be 0.” He reasons that the instantaneous rate of change at 𝑥 = 2 is the same value as 
the slope of the line tangent to each graph at (2,3) and attempts to find this.  Yet, for one 
graph he chooses (2,0) and (2,3) to find the slope of the tangent line and becomes confused.   
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David also struggles with the idea that a continuous function may not be differentiable 
over the entire interval.  He states that “…it’s continuous and differentiable,” when asked 
about what continuity implies about differentiability.  He also struggles with the relationships 
between the function value at a point and the derivative at a point and, at times, is unsure 
which he is referencing. After drawing a graph similar to the graph of 𝑦 = |𝑥|, David appears 
to clear up his confusion and he states that the derivative is undefined at a point making a 
sharp corner, but he amends this statement at the end of the interview and states the 
derivative would be zero. When asked why at a point, (𝑥𝑎, 𝑓(𝑥𝑎)), corresponding to a sharp 
corner on the graph of 𝑓, 𝑓’(𝑥𝑎) would not exist, David replies, “I’ve never thought about 
that before.”  His understanding of why the derivative does not exist at the point he indicated 
is limited to an incorrect, rudimentary procedural understanding that, ”… Because it's - -  it's 
a 0 or not 0, undefined so.  Never thought about that.  Cuz the - - what's it called?  The slope 
at that point is like, no - - I guess it would be 0.  And you can't find the derivative of 0 so - -.”  

Overall, David exhibited a weak ability to complete the tasks presented to him during the 
Exit Interview. He was, in general, able to make correct, or partially-correct, conceptual 
statements.  Even when his statements suggested that he possessed the procedural knowledge 
necessary to complete a task it was a challenge for him to do so.  David’s inability to 
accurately explain why 𝑓′(𝑥𝑎) exists when (𝑥𝑎, 𝑓(𝑥𝑎)) corresponds to a point making a 
corner on the graph of 𝑓 is puzzling, as he was able to explain this during Interview III. 
Course Performance 

The course grades for calculus at this institution are based heavily (80%) on departmental 
exams.  These exams included minimal visualization and very few conceptual questions.  
Instead, the exams are heavily procedurally based.  Given the evidence of David’s weak 
procedural ability, his grade of C in the course is unsurprising. 

Literature Review and Discussion 

We interweave the supporting research literature into the discussion of the themes 
emerging from the open coding of our interview transcripts.   

Throughout David’s interviews the researcher refocused his attention toward the 
particular mathematical relationship highlighted in the sketch when he seemed unsure where 
to direct his attention, when he overlooked the mathematical relationship presented or when 
he simply needed further guidance.  During Interview III, the researcher asks David to 
investigate near 𝑥 = −2, using the dynamic point and data table.  Even when David explains 
why 𝑓′(−2) is undefined, he is again refocused toward places on the function graph with 
similar characteristics.  This need to refocus the learner’s attention to the highlighted 
mathematical relationship is called focusing phenomena (Lobato & Burns-Ellis, 2002).  
Without such refocusing it is possible that many of the conceptual gains noted in David’s 
interviews would either be fewer in number or quality or not present at all.  This underscores 
the importance of the instructor’s role in refocusing attention when needed, especially in an 
environment where greater numbers of students may interact with dynamic visualizations as 
part of online homework while working alone.  

David’s struggle during Interview II to give the coordinates of a point on the graph of 𝑓′ 
illustrates how scaffolding, instructor probing, and refocusing resulted in the student 
successfully completing the task. Only after David answers probing questions can he state 
that the points on the graph of 𝑓’ all had the form (𝑥𝑝, 𝑓′(𝑥𝑝)). He is then able to validate his 
hypothesis using the software and additional scaffolding included in the sketch.  This 
supports Henningsen & Stein’s (1997) work on the need and importance of scaffolding 
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during problem-solving tasks and suggests that it may play an equally vital role in DVS 
exploration as well as work regarding student validation routines (Walter & Barros, 2011).   

A balance of both conceptual and procedural knowledge is necessary for student success 
in calculus (Gray, Loud, & Sokolowski, 2009; White & Mitchelmore, 1996; Hardy, 2009; 
Lithner, 2004; Szydlik, 2000). David made many statements in each interview suggesting that 
he either possessed conceptual knowledge relevant to the topic being discussed, or he made 
statements of a conceptual nature in a procedural manner. 

There are instances where David makes a statement showing evidence of conceptual 
knowledge that is either not replicable or that does not transfer to newly encountered 
situations.  These episodes suggest that, for David, the interactions with DVS are possibly not 
resulting in the creation of connected schema between concepts.  It is possible that his lack of 
access to DVS for exploration during the Exit Interview also contributed to this. Had DVS 
been allowed, his responses may have reflected the conceptual knowledge present in earlier 
interviews.  However, it is possible that David’s isolated conceptual remarks that were 
unsupported by procedural knowledge may be statements learned from lecture, lab or the 
intervention workshops but forgotten due to the lack of connections with which to form 
schema (Cooley, Baker, & Trigueros, 2003). Possibly for David, working with DVS enabled 
him to communicate his understanding of concepts, but the absence of the tool, limited his 
access to connections needed to complete the task in the Exit Interview (Lobato, 
Rhodehamel, & Hohensee, 2012).   David’s weak procedural knowledge failed when he was 
unable to access his understanding of mathematical relationships in the absence of DVS and 
he could not apply his previous knowledge to the new situation.   

David’s experience with uncontrollable mental imagery (Aspinwall & Shaw, 2002; 
Aspinwall, Shaw, & Presmeg, 1997) is important to note as he carried the incorrect notions 
regarding the graph of 𝑓(𝑥) = 𝑒𝑥 having a vertical asymptote at 𝑥 = 4 with him throughout 
the interviews. Though David’s previous statements suggest his comfort with exploring using 
DVS, he chose not to do so when faced with probing questions regarding his observation 
about the graph.  Situations where this occurs should be carefully discussed and addressed to 
address student thinking and understanding in an effort to address uncontrollable mental 
imagery and to limit possible misconceptions introduced by DVS. 

Conclusions 

The case of David, a struggling C student in calculus, raises important issues regarding 
the use of DVS in calculus learning. DVS accompanied by instructor guidance or embedded 
scaffolding questions may enhance conceptual gains and limit possible drawbacks in using 
DVS. Also, static assessments may not accurately reflect understanding for students who use 
DVS in learning the concepts. We observed that David needed consistent refocusing and 
additional probing questions from the researcher throughout the interviews.  Without the 
presence of scaffolding or the focusing phenomena, it is unlikely the outcomes regarding 
conceptual knowledge would be the same. We also observed that, when not offered DVS as a 
tool, David’s assessment results indicate a below average understanding of calculus (his 
grade of C in the course) and that he may be unable to transfer his knowledge. 
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Effect of emphasizing a dynamic perspective on the formal definition of limit

Jeremy Sylvestre William Hackborn
University of Alberta, Augustana Campus University of Alberta, Augustana Campus

ABSTRACT. We attempt to determine the efficacy of using an alternate, equivalent formulation of
the formal definition of the limit in a first-year university calculus course in aiding the understanding
of the definition and of alleviating the development of common misconceptions concerning the limit.

Introduction

Students face many difficulties in learning calculus, and in learning the concept of limit in par-
ticular (see Tall, 1993; Williams, 1991, for example). One difficulty that is commonly experienced
by students is in resolving their intuitive, dynamic, step-by-step view of the limit of a function
with the static, continuous point of view required for understanding the formal �-� definition. This
difficulty is exacerbated by the fact that the language that both textbooks and instructors use in
discussing limits is rife with dynamic terms like “approaching,” and dynamic notation like the �
symbol (see Monaghan, 1991).

In making formal definitions, mathematicians usually have foremost in mind utility for theoret-
ical development, with a generous helping of an appreciation for elegance and conciseness. Such
goals can be at odds with the tasks of teaching and learning. The formal definition of limit in
calculus is a notoriously difficult topic for introductory calculus students to grasp, let alone de-
velop deep understanding. It captures the notion of limit in a succinct and mathematically rigorous
manner, but for neophytes the connection between informal idea and formal definition is often lost
in a soup of Greek letters, mathematical symbols, and nested logic. Given that it is often possible
to formulate a formal definition in multiple equivalent ways, might it not be preferable for mathe-
matics educators, at such an introductory level, to choose a definition most conducive to teaching
and learning rather than a definition conducive to doing mathematics in the style of professional
mathematicians? In this study, we attempt to investigate whether a definition using convergence
of sequences might meet this criterion. To begin to study the effectiveness of such a definition, we
study its effect on the development of common misconceptions concerning limits.

Methodology

In the fall term of 2014, pre- and post-tests were administered to students across four sections of
two first-year introductory calculus courses, and results from 134 participants were retained. The
first author was the instructor for two sections (henceforth referred to as ‘Section A1’ and ‘Section
A2’) of ‘Course A,’ a standard introductory calculus course attended by students both with and
without prior calculus exposure at the high school level. The second author was the instructor for
a third section (henceforth ‘Section A3’) of Course A and for the sole section (henceforth ‘Section
B’) of ‘Course B,’ a slightly more challenging introductory calculus course with prior calculus
exposure at the high school level as a prerequisite. In Course A, the usual �-� formal definition
of limit was used, while in Course B, an equivalent definition using convergence of sequences

Key words and phrases. Calculus, Limit, Formal Definition, Dynamic Perspective.
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was introduced. Students in Course B did not have a preceding in-depth unit on sequences and
convergence, relying only on a brief introduction to sequences sufficient for their use in the study
of the limit. The relevant definitions are given below.

Definition. A sequence {xn} approaches c (or converges to c) if for every possible error bound E,
no matter how small, all but a finite number of terms lie within c±E.

Definition. We say that the limit of f as x approaches c is L, and write limx�c f (x) = L, when
every possible input sequence {xn} with xn � c (but xn �= c) produces an output sequence {yn}
with yn � L.

In the definition of convergence of sequences above, we chose a definition appropriate for an
introductory calculus course, rather than the more technical �-N version typical of more advanced
analysis courses. Also, the notation c±E represents the interval (c�E,c+E), and was used to be
consistent with the notation of error bounds in other scientific disciplines.

Table 1. Concepts and misconceptions evaluated on the pre/post-tests.

Question Concept/Misconception
1 Limit versus value of a function.
2 A function’s values must approach but never equal the limiting value.
3 A finite table of values is enough to determine a limit with certainty.
4 The values of a function always monotonically approach the limiting value.
5 Input-output order reversal/confusion in the formal definition.
6 Negation of the formal definition.

In each test, students were given six multiple choice questions designed to test common mis-
conceptions about the limit. The pre-test was administered shortly after the concept of limit was
introduced. The formal definition of the limit and all discussion regarding formal justification of
limit properties were then delayed until the end of the unit on limits. The post-test was adminis-
tered some time after discussion of the formal definition of the limit, to give the definition and its
relationships to the idea and calculation of limits time to sink in. The post-test was identical to
the pre-test, with the exceptions that the order of the questions, the order of the possible answers
for each question, and some of the numbers involved in the questions were changed. The students
did not know beforehand that the questions on the post-test would be essentially the same as the
questions on the pre-test, and students were not given answers to either test until both tests were
completed. The concept or misconception that each question was designed to measure is listed in
Table 1.

Results

Question 1 asked students whether it is possible for limx�c f (x) = f (c) to be true for a given
function f . From experience with elementary functions, students often are under the misconception
that this equality is always true. Or, they believe that the equality cannot hold because a function
cannot actually “reach” its limit. In Table 2, we summarize the student responses to this question.
In the table headings for this table and all subsequent tables, the symbols �and � are used as
shorthand for “correct” and “incorrect,” respectively, and an arrow indicates a change in response
between the pre- and post-tests.

Question 2 asked students about the relationship between a known limiting value L of a function
f , the value f (c) (if any) at the point of interest c, and the values f (x) at points x near c. Students
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Table 2. Student responses on question 1.

Section N Pre � Post � ��� ���
A1 37 35% 76% 49% 8%
A2 29 38% 83% 55% 10%
A3 35 57% 66% 23% 14%
A (all) 101 44% 74% 42% 11%
B 33 70% 85% 21% 6%

often believe that the values at neighbourhood points must be close to L, but should not equal either
L or f (c). Student responses to Question 2 are summarized in Table 3.

Table 3. Student responses on question 2.

Section N Pre � Post � ��� ���
A1 37 8% 30% 27% 5%
A2 29 3% 7% 7% 3%
A3 35 6% 11% 9% 3%
A (all) 101 6% 17% 15% 4%
B 33 27% 15% 3% 15%

In Question 3, students were given a finite table of values for a function at points near a point of
interest c, both to the left and to the right, where the values appeared to be approaching a specific
common value from both sides of c. They were then asked about possible inferences that could be
made about the limit of the function at c. The insufficiency of a finite table of values in establishing
a limit with certainty is a fundamental issue addressed by the formal definition of the limit. Table
4 summarizes the student responses to this question.

Table 4. Student responses on question 3.

Section N Pre � Post � ��� ���
A1 37 16% 14% 11% 14%
A2 29 38% 28% 0% 10%
A3 35 17% 34% 26% 9%
A (all) 101 23% 25% 13% 11%
B 33 30% 24% 3% 9%

In Question 4, students were given a limiting value and a nearby value of a function, and were
asked about possible inferences that could be made about the value of the function at a point in
between the two given values. Students often conceptualize a limit as always being monotoni-
cally approached by the values of the function nearby, and this question aimed to expose such
misconceptions. The student responses are summarized in Table 5.

Questions 5 and 6 aimed to probe students’ understanding of the formal definition in plain
language. In Question 5, students were required to choose the phrase that correctly justified a limit,
where the incorrect phrases contained various forms of input-output reversal. Because students
are used to the input-output order of function evaluation, they often struggle with the process of
working in the reverse order, starting with an arbitrary interval of y-values around the limiting
value and working backwards to an appropriate interval of x-values around the point of interest.
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Table 5. Student responses on question 4.

Section N Pre � Post � ��� ���
A1 37 14% 11% 11% 14%
A2 29 7% 17% 14% 3%
A3 35 3% 11% 9% 0%
A (all) 101 8% 13% 11% 6%
B 33 18% 12% 6% 12%

In Question 6, students were required to choose the phrase that correctly justified why a proposed
value could not be the limit of an example function. Because of the nested logic involved in the
formal definition of the limit, students struggle with understanding the negation of the definition.
It was hoped that the convergence version of the formal definition would aid with this task, as in
this version the nested logic broken out into the separate definitions of convergence and limit via
convergence.

Responses to Questions 5 and 6 are summarized in Tables 6 and 7.

Table 6. Student responses on question 5.

Section N Pre � Post � ��� ���
A1 37 14% 38% 30% 5%
A2 29 28% 38% 21% 10%
A3 35 14% 17% 14% 11%
A (all) 101 18% 31% 22% 9%
B 33 15% 21% 18% 12%

Table 7. Student responses on question 6.

Section N Pre � Post � ��� ���
A1 37 22% 32% 22% 11%
A2 29 41% 14% 7% 34%
A3 35 23% 11% 11% 23%
A (all) 101 28% 20% 14% 22%
B 33 24% 30% 27% 21%

Overall, the initial results from the pre- and post-tests are disappointing: on most questions,
students who learned the formal definition via sequences (Section B) performed more poorly on
the post-test than on the pre-test. Question 6 in particular was one on which it was expected
that unchaining the nested logic of the formal definition into separate definitions would be of
benefit to the students. However, while the percentage of students in Section B answering this
question correctly increased from the pre-test to the post-test (and the percentage in the other
sections actually decreased), we see that almost as many students in Section B moved from correct
thinking to incorrect between tests as did vice versa.

Conclusion

In this study, we attempted to determine the efficacy of using an alternate, equivalent formu-
lation of the formal definition of the limit in aiding the understanding of the definition and of
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alleviating the development of common misconceptions concerning the limit. On both counts, the
alternate definition did not seem to produce any improvement in student performance over the tra-
ditional definition, and perhaps could be construed to actually have produced a decrease in student
performance.

These results might be explained by factors other than the definitions used. First, the instructors
of the courses involved in the study have many years experience teaching first-year calculus using
the traditional formal definition, and with that experience comes the knowledge of typical student
difficulties with the material and strategies to mitigate those difficulties. But for the instructor of the
experimental Section B, teaching a formal definition in terms of sequences was a new experience.
Second, sequences were only introduced in Section B at the end of unit on limits, to facilitate the
discussion of the formal definition. The sequence version of the formal definition might be more
relevant and attractive to the students if the entire unit on limits was infused with sequences.

On the other hand, it may be the case that the formal definition of the limit via sequences,
while unchaining the nested logic of the traditional definition into two separate definitions, has
merely pushed the conflict between informal, dynamic conception and formal, static definition
to the definition of convergence of sequences. Or, it could be that briefly introducing sequences
merely introduces a significant, preliminary learning barrier, beyond which students were unable
to progress to the learning of the formal definition of the limit.

Some questions, the discussion of which would help further this research, follow.
• Would it be worthwhile to reverse the set up of the experiment and have students in Course A

(who mostly have not previously studied calculus) exposed to a sequences version of limits?
• Should the pre- and post-tests focus more on understanding of the formal definition itself?
• In the experimental version, formal understanding of limit is dependent on formal understand-

ing of convergence of sequences. Should understanding of sequences be simultaneously tested,
to be correlated with understanding of limits?
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Investigating the role of a secondary teacher’s image of instructional constraints on his 
enacted subject matter knowledge 

 
Michael A. Tallman 

Oklahoma State University 

I present the results of a study designed to determine if there were incongruities between a 
secondary teacher’s mathematical knowledge and the mathematical knowledge he leveraged 
in the context of teaching, and if so, to ascertain how the teacher’s enacted subject matter 
knowledge was conditioned by his conscious responses to the circumstances he appraised as 
constraints on his practice. To address this focus, I conducted three semi-structured clinical 
interviews that elicited the teacher’s rationale for instructional occasions in which the 
mathematical ways of understanding he conveyed in his teaching differed from the ways of 
understanding he demonstrated during a series of task-based clinical interviews. My analysis 
revealed that that the occasions in which the teacher conveyed/demonstrated inconsistent 
ways of understanding were not occasioned by his reacting to instructional constraints, but 
were instead a consequence of his unawareness of the mental activity involved in 
constructing particular ways of understanding mathematical ideas. 

Key words: Mathematical Knowledge for Teaching; Enacted Knowledge; Instructional 
Constraints; Secondary Mathematics. 

Introduction 

Mathematics educators have devoted increased attention in recent years to: (1) identifying 
categories of knowledge that teachers must possess to effectively support students’ 
mathematics learning (e.g., Ball, 1990; Ball, Hill, & Bass, 2005; Ball, Thames, & Phelps, 
2008; Hill & Ball, 2004; Hill, Ball, & Schilling, 2008; Hill, Schilling, & Ball, 2004; 
Shulman, 1986, 1887), (2) characterizing the specific mathematical ways of understanding 
that allow teachers to engage students in meaningful learning experiences (e.g., Ma, 1999; 
Yoon et al., 2014), (3) discerning how teachers might construct such ways of understanding 
(e.g., Harel, 2008; Harel & Lim, 2004; Silverman & Thompson, 2008; Tallman, 2015), and 
(4) developing instruments to measure teacher’s knowledge and its effect (e.g., Hill et al., 
2008; Hill, Rowan, & Ball, 2005; Thompson, 2015). These initiatives, while essential to the 
enterprise of improving students’ mathematics learning, do not ensure teachers will utilize the 
full extent of their knowledge in the act of teaching. Teachers must recognize the knowledge 
they possess as appropriate to employ in the process of achieving their goals and objectives in 
the context of practice. This recognition is subject to a host of cognitive and affective 
processes that have thus far not been a central focus of research on teacher knowledge in 
mathematics education (Day & Qing, 2009, p. 17; Hargreaves & Shirley, 2009, p. 94; Meyer, 
2009, p. 89; Schutz et al., 2009, p. 207). Identifying the factors that condition the knowledge 
teachers utilize in the context of teaching, and understanding the effect of such factors on the 
quality of teachers’ enacted knowledge, is imperative for improving students’ mathematics 
learning and for fashioning well-informed teacher preparation and professional development 
programs and educational policies that take seriously the effect of teacher knowledge and the 
factors that compromise it. It is to this end that the present paper seeks to contribute. In 
particular, I address the following research questions:  
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RQ1: Are there incongruities between a teacher’s subject matter knowledge and his 
enacted subject matter knowledge? 1 

RQ2a: If so, in what ways does the teacher’s image of instructional constraints condition 
the subject matter knowledge he utilizes while teaching? 

RQ2b: If not, how is the teacher appraising and/or managing what he perceives as 
instructional constraints so that these constraints do not condition the 
mathematical knowledge he enacts while teaching? 

 
Theoretical Framing 

The “image of” qualifier in the title of this paper suggests my radical constructivist 
approach to defining instructional constraints. I take the position that environmental 
circumstances per se in the absence of a teacher’s construal of them cannot constrain his or 
her practice, but the teacher’s construction and appraisal of environmental circumstances can 
and often does. For this reason, I contend that particular circumstances cannot maintain an 
ontological designation as instructional constraints, however consensual are teachers’ 
construction and appraisal of such circumstances. Therefore, in consonance with radical 
constructivism’s skeptical position on reality, I define instructional constraints as an 
individual teacher’s subjective construction of the circumstances that impede the teacher’s 
capacity to achieve his or her instructional goals and objectives. Such subjective 
constructions are the only “constraints” that maintain the potential to influence teachers’ 
instructional actions. Accordingly, I locate instructional constraints in the mind of 
individuals, not the environment. This conceptualization stands in stark contrast to the 
common perception of instructional constraints as external pressures that exert influence on 
the quality of teachers’ instruction. According to this view, the pressure comes from without 
instead of from within. My interest in understanding how a secondary teacher’s image of 
instructional constraints conditioned the mathematical ways of understanding and ways of 
thinking he utilized in the context of teaching necessitated my constructing a model of the 
teacher’s construction of those circumstances he appraised as constraints on his practice. 

As a result of my view that instructional constraints are subjective constructions that 
reside in the minds of teachers, I consider anything that a teacher appraises as an imposition 
to achieving his or her instructional goals and objectives to be an instructional constraint. The 
appraisal need not even be of an external circumstance. A teacher may appraise internal 
characteristics such as his or her mathematical self-efficacy, social endowments, creativity, 
tolerance, attitude, perseverance, temperament, empathy, confidence, etc., as imposing limits 
on the quality of his or her instruction. Since a teacher’s appraisal of such intrinsic 
characteristics is a subjective construction in the same way that a teacher’s appraisal of 
external circumstances is, both types of appraisals have the capacity to influence teachers’ 
practice in the same way.  
 

                                                
1 I note that the identification of incongruities between the teacher’s subject matter 
knowledge and the subject matter knowledge he invokes while teaching is from my 
perspective. Similarly, characterizing the effect of a teacher’s image of instructional 
constraints on his enacted mathematical knowledge is also a characterization from my 
perspective.  
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Methods 

My experimental methods proceeded in three phases. In the first phase, I conducted a 
series of nine task-based clinical interviews (Clement, 2000; Goldin, 1997; Hunting, 1997) 
that allowed me to construct a model of the participating teacher’s (David’s) mathematical 
knowledge of various topics associated with trigonometric functions. In the second data 
collection phase, I used video data from 37 classroom observations to construct a model of 
the mathematical knowledge David utilized in the context of classroom practice. Finally, I 
employed a phase of three semi-structured clinical interviews to construct a model of David’s 
perception of instructional constraints and to discern the role of this image on the quality of 
his enacted mathematical knowledge. 

The goal of the series of task-based clinical interviews was to facilitate my construction 
of a model of David’s ways of understanding and ways of thinking (Harel, 2008) relative to 
angle measure, the outputs and graphical representation of sine and cosine, and the period of 
sine and cosine. Constructing a model of an individual’s cognition by projecting or imputing 
one’s cognitive schemes to the individual constitutes developing a first-order model (Steffe & 
Thompson, 2000). This is in contrast to developing a second-order model, in which the 
researcher attempts to make sense of the individual’s actions by interpreting them through the 
lens of his or her model of the individual, not through his or her own cognitive schemes 
(ibid.). It is important to note that the goal of the series of task-based clinical interviews I 
conducted was to construct a second-order model of David’s mathematical knowledge. 
Although I constructed a second-order model of David’s mathematics, this model does not 
constitute a direct representation of David’s knowledge, but rather a viable characterization 
of plausible mental activity from which his language and observable actions may have 
derived. Constructing such a model involved my generating prior to, within, and among task-
based clinical interviews tentative hypotheses of David’s ways of understanding that 
explained my interpretation of the observable products of his reasoning. I developed these 
provisional hypotheses by attending to David’s language and actions and abductively 
postulating the meanings that may lie behind them. I designed and modified tasks for 
subsequent interviews to test, extend, articulate, and refine my tentative hypotheses of 
David’s mathematical knowledge. 

All task-based clinical interviews took place in David’s classroom after school on the 
days that best suited his schedule. I attempted to schedule the interviews so that there was at 
least one day between each to accommodate for ongoing analysis, and accomplished this with 
the exception of the last two task-based clinical interviews. In each interview, I obtained 
video recordings that captured David’s writing, expressions, and gestures. I also created 
videos of my computer screen via QuickTime Player to capture the didactic objects 
(Thompson, 2002) David and I discussed as well as any work David completed on the 
computer. Additionally, I collected and scanned all written work that David produced during 
the interviews. 

I collected daily video recordings of two of David’s Honors Algebra II class sessions over 
a seven-and-a-half-week period, which resulted in 37 videos of classroom teaching. The only 
days I did not intend to collect videos of David’s teaching were those days students were 
testing or the days David was teaching content unrelated to the angle measure, sine, or cosine. 
While the classroom observations did not demand the type of ongoing analysis that was part 
and parcel of the series of task-based clinical interviews, I documented, in the form of 
memos, the mathematical understandings and ways of thinking David afforded his students 
the opportunity to construct. I must emphasize that I characterized the ways of understanding 
and ways of thinking David allowed his students to construct, and not the understandings and 
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ways of thinking his students actually constructed. In essence, I documented the 
understandings that I would be able to construct, and the ways of thinking that I would be 
able to develop, were I an engaged student in the class with sufficient background 
knowledge, uninhibited by unproductive understandings or disadvantageous ways of 
thinking. 

The objective of the third phase of my experimental methodology was to obtain data that 
allowed me to construct a model of David’s image of those aspects of his environmental 
context that he appraised as constraints on the quality of his instruction, and to determine the 
way in which this image conditioned the mathematical knowledge he employed in the context 
of teaching. Constructing such a model and determining the effect that David’s image of 
instructional constraints had on his enacted subject matter knowledge involved my 
conducting a series of three semi-structured clinical interviews after David completed his 
instruction of trigonometric functions. 

The content of these semi-structured clinical interviews was heavily informed by my 
analysis of the data I obtained from the series of task-based clinical interviews as well as 
from David’s teaching. Based on my analysis of this data, I selected video clips to discuss 
with David during the clinical interview sessions to discern the role of David’s image of 
instructional constraints on the quality of his enacted mathematical knowledge. I devoted 
particular attention to ascertaining David’s rationale for those instructional actions in which 
the mathematics he allowed students to construct differed from the mathematical ways of 
understanding he demonstrated during the series of task-based clinical interviews. It is 
essential to point out that I did not assume David recognized the discrepancies I noticed in the 
videos excerpts I selected to discuss. Therefore, after having presented pairs of videos to 
David that I believed demonstrated him conveying/supporting discrepant meanings, I asked 
him to compare the ways of understanding he communicated in both videos. My rationale for 
doing so was to determine if David recognized the same inconsistencies that I noticed in the 
ways of understanding he demonstrated/conveyed. 

 
Analytical Framework 

I leveraged explicit formalizations of quantitative reasoning (Smith & Thompson, 2007; 
Thompson, 1990, 2011) in the design of the present study and my analysis of its data. A 
growing body of research (e.g., Castillo-Garsow, 2010; Ellis, 2007; Moore, 2012, 2014; 
Moore & Carlson, 2012; Oehrtman, Carlson, & Thompson, 2008; Thompson 1994, 2011) has 
identified quantitative reasoning as a particularly advantageous way of thinking for 
supporting students’ learning of a wide variety of pre- and post-secondary mathematics 
concepts. Additionally, this body of research has demonstrated the diagnostic and 
explanatory utility of quantitative reasoning as a theory for how one may conceptualize 
quantitative situations. 

 Quantitative reasoning is a characterization of the mental actions involved in 
conceptualizing situations in terms of quantities and quantitative relationships. A quantity is 
an attribute, or quality, of an object that admits a measurement process (Thompson, 1990). 
One has conceptualized a quantity when she has identified a particular quality of an object 
and has in mind a process by which she may assign a numerical value to this quality in an 
appropriate unit (Thompson, 1994). It is important to note that quantities do not reside in 
objects or situations, but are instead constructed in the mind of an individual perceiving and 
interpreting an object or situation. Quantities are therefore conceptual entities (Thompson, 
2011). 
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Conceptualizing a quantity does not require that one assign a numerical value to a 
particular attribute of an object. Instead, it is sufficient to simply have a measurement process 
in mind and to have conceived, either implicitly or explicitly, an appropriate unit. 
Quantification is the process by which one assigns numerical values to some quality of an 
object (Thompson, 1990). Note that one need not engage in a quantification process in order 
to have conceived a quantity, but must have in mind a quantification process whereby she 
may assign numerical values to the quantity (Thompson, 1994). Defining a process by which 
one may assign numerical values to a quantity often involves an operation on two other 
quantities. In such cases we say that the new quantity results from a quantitative operation—
its conception involved an operation on two other quantities. Quantitative operations result in 
a conception of a single quantity while also defining the relationship among the quantity 
produced and the quantities operated upon to produce it (Thompson, 1990, p. 12). It is for this 
reason that quantitative operations assist in one’s comprehension of a situation (Thompson, 
1994). It is important to note the distinction between a quantitative operation and a numerical 
or arithmetic operation. Arithmetic operations are used to calculate a quantity’s value 
whereas quantitative operations define the relationship between a new quantity and the 
quantities operated upon to conceive it (Thompson, 1990). 

 
Results 

On several occasions David demonstrated ways of understanding during the series of 
task-based clinical interviews that were inconsistent or incompatible with the ways of 
understanding his instruction supported. I selected three such occasions to discuss with David 
during a phase of clinical interviews I conducted after David completed his instruction of 
trigonometric functions. Specifically, I presented David with three pairs of videos, each 
containing an excerpt from the series of task-based clinical interviews and an excerpt from 
his classroom teaching. From my perspective, these pairs of videos exemplified David 
communicating discrepant mathematical meanings. My purpose in presenting David with 
these pairs of videos was to determine if he willingly compromised the quality of his enacted 
mathematical knowledge in response to the circumstances and events he appraised as 
instructional constraints. The following is a presentation of my analysis of our conversation 
around one of these three pairs of video excerpts. I do not discuss my analysis of David’s and 
my conversation around the second and third pair of video excerpts since the conclusions 
drawn therefrom are consistent with those I present below. 

I presented David with a video from the fourth task-based clinical interview in which he 
used an applet (see Table 1) to successfully approximate the values of sin(0.5) and cos(¾). 
During this interview David interpreted the task of approximating the value of sin(0.5) as, 
“Estimate how many radius lengths is Joe north of Abscissa Boulevard when the angle traced 
out by his path is 0.5 radians.” In particular, David interpreted the 0.5 as representing the 
number of radius lengths that Joe had traveled along Euclid Parkway and sin(0.5) as 
representing Joe’s distance north of Abscissa Boulevard in units of radius lengths. David 
similarly interpreted the task of approximating the value of cos(¾) in the following way: 
“Estimate how many radius lengths Joe is to the east of Ordinate Avenue when his path has 
traversed an arc that is 3/4ths times as long as the radius of Flatville.” David’s response to the 
task of using the applet in Table 1 to approximate the values of sin(0.5) and cos(¾) suggests 
that he had constructed the outputs of sine and cosine as quantities; that is, as measurable 
attributes of a geometric object. After David watched the video except from the fourth task-
based clinical interview, he described the way of understanding he demonstrated in a way 
that was consistent with my interpretation. 
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Table 1 
Applet Designed to Support a Quantitative Understanding of Sine and Cosine Values 
Suppose Joe is riding his bike on Euclid Parkway, a perfectly circular road that defines the 
city limits of Flatville. Ordinate Avenue is a road running vertically (north and south) through 
the center of Flatville and Abscissa Boulevard is a road running horizontally (east and west) 
through the center of Flatville. Assume Joe begins riding his bike at the east intersection of 
Euclid Parkway and Abscissa Boulevard in the counterclockwise direction. 

Ordinate
Ave.

Abscissa
Blvd.

Euclid
Pkwy.

Joe

 
 
After David watched the video excerpt from the fourth task-based clinical interview, I 

presented him with a video excerpt from Lesson 7 (which occurred four days after the fourth 
task-based clinical interview) in which he defined the outputs of sine and cosine relative to 
the following two cases: (1) when the radius of the circle centered at the vertex of an angle 
has a measure of one unit and (2) when this radius does not have a measure of one unit. 
Specifically, in the video excerpt David claimed that if the radius of the circle has a measure 
of one unit, then the sine and cosine values of the angle’s measure are respectively equal to 
the y- and x-coordinates of the terminus of the subtended arc. David then explained that if the 
radius of the circle centered at the angle’s vertex does not have a measure of one unit, then 
the values of sine and cosine are given by the respective ratios of the y- and x-coordinate of 
the terminal point to the length of the radius. It is noteworthy that David’s explanation did not 
support students in conceptualizing sine and cosine values as the measure of a quantity in a 
particular unit. In other words, David’s explanation in Lesson 7 did not support students in 
being able to answer the question, “What are the attributes to which sine and cosine values 
may respectively be applied as measures and in what unit are these attributes being 
measured?” In contrast to the quantitative way of understanding the outputs of sine and 
cosine David demonstrated in the fourth task-based clinical interview, during Lesson 7 David 
conveyed sine and cosine values as respectively representing y- and x-coordinates of the 
terminal point, or as arithmetic operations (i.e., sin(θ) = y/r and cos(θ) = x/r).  

After David viewed the two video excerpts, I asked him to determine if the way of 
understanding he supported in the excerpt from Lesson 7 differed from the understanding he 
employed to approximate the value of sin(0.5) and cos(¾) in the excerpt from the fourth task-
based clinical interview (Excerpt 1). 

 
Excerpt 1 
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Michael: Is there any way that the understanding of sine and cosine you convey in this clip 
(Lesson 7) is different from what you did here (Task-Based Clinical Interview 4)? 

David: Only in the units of measure that we started with to obtain the ratio, but in the end 
we end up with an output that is a proportion of the entire radius. So in the end, no 
[they aren’t different]. In the end they end up giving me the same thing. 

 
David did not appear to recognize the way of understanding he demonstrated in the first 

video excerpt as being fundamentally different from the way of understanding he conveyed in 
the second. David’s remark in Excerpt 1 focused primarily on the outcome of his application 
of two discrepant (from my perspective) ways of understanding instead of attending to the 
ways of understanding themselves. Like several occasions in other interviews in which David 
demonstrated an incapacity to attend to ways of understanding—either his own or his 
students’—his remarks in Excerpt 1 demonstrate that he had not achieved clarity relative to 
the mental activity involved in his own ways of understanding, nor of those he intended to 
support in his teaching. Had David done so, he would likely have been positioned to notice 
the discrepant meanings he conveyed in the videos I presented. David similarly failed to 
identify the inconsistent meanings he communicated in the other two pairs of video excerpts I 
presented to him.  
 

Discussion 

To investigate the role of David’s image of instructional constraints on his enacted 
subject matter knowledge, I provided opportunities for him to rationalize occasions in which 
the ways of understanding he supported in his teaching differed from the ways of 
understanding he demonstrated during a series of task-based clinical interviews. My analysis 
of our conversation around all three pairs of video excerpts revealed that David failed to 
notice the discrepancy in the ways of understanding he conveyed/demonstrated in these 
excerpts. David’s inability to recognize such discrepancies suggests that he was not 
consciously aware of the mental actions that comprise the meanings he intended to promote 
in his teaching, as such awareness would likely have equipped David with the cognitive 
schemes to recognize the inconsistent and often incompatible ways of understanding he 
conveyed in the excerpts we discussed. My analysis further revealed that the occasions in 
which David conveyed/demonstrated discrepant ways of understanding were not occasioned 
by his reacting to his image of instructional constraints.  

The results of this study suggest that inconsistencies between mathematics teachers’ 
subject matter knowledge and their enacted subject matter knowledge do not necessarily 
result from teachers’ making conscious concessions to the quality of their enacted knowledge 
in the process of accommodating for the circumstances and events they appraise as 
constraints on their practice. Such inconsistencies may be a byproduct of teachers’ 
unawareness of the mental activity that constitute their ways of understanding mathematical 
ideas. Pre-service mathematics teacher educators and in-service professional development 
specialists should therefore take care to provide opportunities for teachers to have explicit 
answers to questions like, “When my students read the symbols ‘sin(θ)’ what do I want them 
to imagine?” and “When my students look at an angle and think about measuring it in 
radians, what do I want them to visualize in their minds?” Providing opportunities for 
teachers to achieve such conscious awareness of the mental activity involved in particular 
ways of understanding may minimize the potential that teachers will not leverage the full 
extent of their subject matter knowledge to support students’ mathematics learning. 
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Physics: Bridging the embodied and symbolic worlds of mathematical thinking 
 

Clarissa A. Thompson   Sepideh Stewart & Bruce Mason 
Kent State University    University of Oklahoma 

  
Physics spans understanding in three domains – the Embodied (Real) World, the Formal 
(Laws) World, and the Symbolic (Math) World. Expert physicists fluidly move among these 
domains. Deep, conceptual understanding and problem solving thrive in fluency in all three 
worlds and the facility to make connections among them. However, novice students struggle 
to embody the symbols or symbolically express the embodiments. The current research 
focused on how a physics instructor used drawings and models to help his students develop 
more expert-like thinking and move among the worlds. 
 
Keywords: Embodied and symbolic worlds of mathematical thinking; visualization; physics 

 
Introduction 

Mathematics educators have long been fascinated by the power of visualization for 
learning and teaching mathematics. For example, researchers have cited the theoretical 
framework in Tall and Vinner’s (1981) Concept image and concept definition paper over 
1600 times. Presmeg (2006) reviewed over 20 years of papers from the Psychology of 
Mathematics Education (PME) Proceedings and found that there is great interest in the topic 
of visualization. For example, Dreyfus (1991b) stated during his plenary address at PME-15: 
“It is therefore argued that the status of visualization in mathematics education should and 
can be upgraded from that of a helpful learning aid to that of a fully recognized tool for 
learning and proof” (p. 33). Presmeg’s review concluded with the statement that: “An 
ongoing and important theme is the hitherto neglected area of how visualization interacts 
with the didactics of mathematics. Effective pedagogy that can enhance the use and power of 
visualization in mathematics education is perhaps the most pressing research concern at this 
period” (p. 227). Almost two decades later, Presmeg’s proposed list of 13 “Big Research 
Questions” pertaining to the topic of visualization still remains unanswered. Some of her 
questions include:  “How can teachers help learners to make connections between visual and 
symbolic inscriptions of the same mathematical notions? How may the use of imagery and 
visual inscriptions facilitate or hinder the reification of processes as mathematics objects? 
How may visualization be harnessed to promote mathematical abstraction and generalization? 
What is the structure and what are the components of an overarching theory of visualization 
for mathematics education?” (Presmeg, 2006, p. 227).   

The overarching aim of the current paper is to find out how an expert visualized 
mathematical ideas and how he subsequently helped his novice students hone their own 
visualization skills. In this research, we used physics as a case study to investigate how an 
instructor engaged over 200 students to use visual representations, in particular diagramming 
physics problems, during lecture and assessments. 

 
Theoretical Framework 

We employed Tall’s (2013) three-world model of mathematical thinking (conceptual 
embodiment, operational symbolism, and axiomatic formalism) to describe the possible 
tensions that novices may face while learning physics. The embodied world involves mental 
images, perceptions, and thought experiments; the symbolic world involves calculation and 
algebraic manipulations; the formal world involves mathematical definitions, theories and 
proofs. In Tall’s (2008) view, “all humans go through a long-term development that builds 
through embodiment and symbolism to formalism” (p. 23). Bridging between the embodied 
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and symbolic worlds is of critical importance according to Tall: “A curriculum that focuses 
on symbolism and not on related embodiments may limit the vision of the learner who may 
learn to perform a procedure, even conceive of it as an overall process, but fail to be able to 
imagine or ‘encapsulate’ the process as an ‘object’ (p. 12). 

In the current research, we operationalized the embodied world as demonstrations, real 
world examples, and models that represent real phenomena. We operationalized the symbolic 
world as the mathematical operations and computations, such as vectors and calculus, used to 
solve physics problems. Finally, we considered the formal world to be the rules, laws, and 
abstract quantities of physics, such as conservation laws, concepts of fields, and energy. In 
this work we focused on the embodied and symbolic worlds, although using the formal 
structures of physics was an important course goal held by the physics instructor we studied. 

In our perspective, physics must “bridge” the embodied and symbolic worlds of 
mathematical thought (Figure 1). Expert physicists and engineers embody problems by 
visualizing them with diagrams, graphs, and schematics prior to solving them symbolically, 
while novice physics students will “plug and chug.” Students have limited experience relying 
on visualizations to help them “make sense” of problems, perhaps due to expectations 
developed from computations in their mathematics classes. We have depicted the bridge that 
one experienced physics instructor created for his students to move between the embodied 
and symbolic worlds. The instructor put several connected support pillars in place, including 
classroom demonstrations of physical phenomena, a student response system that allowed 
real-time communication with the instructor, and peer instruction. The experienced instructor 
acted as a guide for his novice students as they traversed unfamiliar territory.  

Our current research question investigated how physics bridges the symbolic and 
embodied worlds of mathematical thought: How does an expert physics instructor construct a 
bridge between the embodied and symbolic worlds of mathematical thought and help his 
novice students cross this bridge?  
 

 
 

Figure 1. (a) Cognitive development through three worlds of mathematics (Tall, 2008, p. 9).                                
(b) The process of embodying the symbolism and symbolizing the embodiment in physics. 
 

Novice Versus Expert Understanding in Physics 
Classic research in cognitive psychology suggests that physics experts and novices 

approach problems differently (Chi, Feltovich, & Glaser, 1981). For example, experts 
categorize physics problems on the basis of the underlying physics principle involved, 
whereas novices categorize the problems on the basis of superficial similarities found across 
problems. For instance, novices may view all inclined plane problems as equivalent. Experts 
have a rich, intertwined, hierarchical structure to their knowledge base, whereas novices rely 
on isolated facts that are not highly structured (Van Heuvelen, 1991). This lack of knowledge 
structure makes it quite difficult for students to identify the “conceptual unity” in the physics 
they are taught (Van Heuvelen, 1991). Physics experts effortlessly switch between 
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representations—physical, graphical, schematic, and algebraic—as they reason about 
problems. It is difficult for novices to learn to identify and use representations that will 
improve their accuracy and problem solving efficiency (Dreyfus, 1991a; Siegler, 1996).  

Van Heuvelen (1991) argues that to get students to think like an expert physicist, students 
should (1) construct qualitative representations, (2) reason about physical processes through 
the use of diagrams, (3) construct mathematical representations by referencing the diagrams, 
and (4) solve the problems using quantitative methods. It is more common for students to 
attempt a means-end analysis by finding an equation that appears to be appropriate for the 
problem than it is for them to first employ a sense-making strategy, such as drawing a 
diagram, to understand how the physical system in question is behaving (Maloney, 2011). 
Students may resist using diagrams because they do not fully understand the concepts 
represented in the diagrams, the students have minimal opportunities to develop and practice 
creating diagrams because they are often passive observers as their instructors create the 
diagrams, and students’ preconceived notions about the way the world works may conflict 
with what they are being taught in class (Van Heuvelen, 1991). There is educational value in 
using multiple representations. “The ability to identify and represent the same thing in 
different representations, and flexibility in moving from one representation to another, allows 
one to see rich relationships, develop a better conceptual understanding, broaden and deepen 
one’s understanding, and strengthen one’s ability to solve problems” (Even, 1998, p. 105). 
However, visualization is not a trivial task for novice physics students: “We consider the 
ability to translate between physical and mathematical descriptions of a problem and to 
meaningfully reflect on or interpret the results as two defining characteristics of a physicist, 
yet these are areas where our students struggled most” (Wilcox et al., 2013, p. 020119-11). 

Sometimes novices who are immersed in a physics course where the instructor values the 
use of multiple representations to solve problems (e.g., visualization strategies as well as 
computational strategies) will draw pictures to help them solve problems because that is the 
course norm. They may not actually understand why they should use the drawings to help 
them solve problems (Kohl & Finkelstein, 2008). Kohl and Finkelstein (2008) noted that 
many introductory physics courses do not teach meta-level problem-solving skills, such as 
highlighting the importance of using diagrams to solve problems. Students may solidify these 
skills after taking several physics courses, and it is unclear how to effectively teach these 
skills in an introductory course.  

 
Method 

Our qualitative research investigated the ways an expert physics instructor made 
instructional decisions to help his novice introductory physics students bridge the gap 
between the embodied and symbolic worlds. The research team consisted of three members: a 
mathematician, who specializes in mathematics education research (second author), a 
cognitive psychologist, who investigates learning and transfer of knowledge in the domain of 
mathematics (first author), and a physicist, Bruce (third author), who focuses on physics 
education. We examined the daily teaching journals that Bruce kept as he taught a 240-person 
introductory physics course in the Spring 2014 semester. An innovative aspect of this 
research is that Bruce is not only a participant in our qualitative research, but he is also an 
integral member of our research team. Bruce was a consultant throughout the research 
process from research question design, to data collection and coding, to data analysis and 
dissemination of results. Bruce was able to confirm whether we had accurately portrayed his 
teaching techniques and decision-making processes. The research team met weekly to discuss 
the contents of Bruce’s teaching journals and to give Bruce a chance to expand on his weekly 
lesson plans. Transcripts of these weekly meetings were another source of data. 
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With Bruce’s help, the team qualitatively coded his journals based on the following 
themes (arranged from most-to-least frequently mentioned): (1) teaching (126 instances, or 
35%: goals, real time feedback, question creation, examples, philosophy/best practices, 
lecture only, sequencing, pedagogical content knowledge), (2) reflections (97 instances, or 
27%: on instructor, student understanding/effort, class quality), (3) questions (48 instances, or 
13%: instructor questions, peer instruction, in-class quizzes, pre-class questions, formal 
assessment, qualitative, calculation, homework), (4) visualizations (34 instances, or 9%: 
student abstract/concrete, instructor abstract/concrete, kinesthetic) (5) students (26 or 7%: 
real time feedback, questions asked, engagement level), (6) demonstrations (19 instances, or 
5%: interactive, illustrative, affective), and (7) mathematics (15 instances, or 4%: qualitative-
sense making, quantitative-calculation, use in physics). There were 365 total coded instances. 
An instance was one or several sentences. Multiple codes could be applied to each instance.  

Additional data was drawn from interviews with Bruce in which he created a table of the 
most difficult concepts that students face in his class. A student in Bruce’s course kept a daily 
journal about his course experiences, and we also investigated answers on an end-of-semester 
exam and responses submitted during class to Learning Catalytics 
(http://www.learningcatalytics.com), an online polling system. Students used Learning 
Catalytics to answer in-class questions, such as multiple choice and free-response questions, 
to submit drawings for discussion, and to send backchannel questions to Bruce. 
 

The Course Structure and Bruce’s Teaching Philosophy 
The course that we examined was the second introductory physics course in a two-course 

sequence focused on thermodynamics, electricity and magnetism, and simple circuits. One of 
the course goals mentioned on Bruce’s syllabus highlighted the importance of bridging the 
embodied and symbolic worlds: “improve problem solving skills by approaching new 
problems in a systematic way, plotting out strategies for solution, building and using models, 
and developing critical thinking skills.”  

In Bruce’s view, the purpose of classes is for students to learn, not for instructors to 
“teach,” and learning is an active process that requires student engagement and effort. Bruce 
engaged students in active learning activities that included student predictions and 
explanations. Students prepared for class by completing pre-class reading questions and often 
worked on peer instruction activities during class (Mazur, 1997). 

Bruce’s philosophy characterized his beliefs about the connections between math and 
physics. Physics is about real things that behave in predictable ways, and symbols and 
numbers are used to represent the properties of these things. If students do not make 
connections to things, they are doing abstract math, not physics. Students did not need to 
memorize equations in Bruce’s class, but they were expected to understand and use the 
equations to solve physics problems. His philosophy also characterized the role of models in 
his physics course. Physics, and all science, is done using models. As approximations to the 
real world, models allow scientists to consider what is important and ignore what is not. 
Models can be represented by drawings, graphs, equations, and basic physical concepts. 
Identifying and applying correct models and representations are important skills to learn. 

 
Results and Discussion 

Bruce taught this particular course many times, so he could anticipate the concepts that 
students would struggle with the most. There are many well-known, well-researched 
stumbling blocks faced by physics students. We asked Bruce to list his lesson plans for all of 
the difficult course topics that contained some element of visualization. Table 1 provides an 
example of the use of embodied (e.g., demonstrations, simulations, and visualizations) and 
symbolic (e.g., visualizations and mathematics) representations by the instructor and students 
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for a challenging concept, using Pressure-Volume (PV) diagrams and models of gas 
processes to describe real phenomena.  

 
Table 1: Example representations and mathematical tools used for thermodynamics. 
 

Representation Example Description Physics 

Demonstration 
Heat Engines Display of Steam and Stirling 

heat engines. (Class) 
Heat exhaust and relative 
efficiency 

Hard Sphere 
Model 

Styrofoam balls in a cylinder, 
agitated by a motor. (Class) 

Pressure, volume, and energy 
in an ideal gas. 

Simulation 
Ideal Gas Model 

Simulation of gases with visible 
bouncing molecules. (Class, 
Homework) 

Pressure, volume, and 
temperature in gas processes. 

Engine Models Animated engine illustrations 
with PV Diagrams. (Class) 

Physical applications 
involving ideal gas processes.  

Visualization PV Diagrams 

Draw and interpret pressure vs 
volume graphs for standard 
processes. (Class, Homework, 
Tests) 

Sign and magnitude of work, 
heat, and energy change. 

Mathematics 

Integration Work as area under a PV graph. 
(Class, Homework, Test) 

Work and related energies 
from PV representations. 

Functions 
Work, heat, and entropy as 
logarithms or power laws. (Class, 
Homework) 

Shape and relative slope of 
curves. Connection with 
physical properties. 

 
Figure 2 shows visualizations from thermodynamics lessons. The first and last are static 

images that students create. The visualizations of an operating engine are animations of these 
static images. Bruce first asked students to make connections between the animated engine 
and a real engine that was running at the front of the classroom throughout his lesson.  
 

 
 
 

 
Students are expected to use these visualizations on assessments, both for group problem 

solving and on a summative exam. Figure 3 shows student-generated representations of an 
adiabatic gas process, where Constant=γVP , collected through Learning Catalytics. These 
give real-time insight into student thinking and use of visual representations. About 60% of 

Three representations of a heat engine showing, from left to right, (1) a 
schematic real-world operation, (2) details of the gas processes used for 
quantitative analysis, and (3) a high-level abstraction of energy transfer. 

Instructor-provided diagram 
for in-class questions on the 
physics of gas processes, 
asking about energy and 
temperature. 

Figure 2: Instructor-created visual representations in thermodynamics. 
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students submitted diagrams similar to the first (correct) or second (mostly correct) examples. 
The next three diagrams illustrate various types of confusion. The final example shows that a 
few, but not many students attempted to solve the problem, but gave up. Bruce encouraged a 
fun learning environment. After students submitted their PV Diagrams, some were shown to 
the class (anonymously) for further discussion by small groups and the entire class to help 
foster students’ use of drawings as they attempted to solve physics problems. 

 
 
 
 
 
 
 

In our weekly meetings, Bruce identified that part of students’ difficulty with generating 
the PV diagrams was that many students do not realize that P and V are variables (physics) 
like X and Y are variables (math): “Let’s make P equal to Y and V equal to X, so Y is equal 
to C over X. Draw that. That one they can do. So this is the ability to generalize that P and V 
are variables just like you use in math, and therefore you can do the same operations. That’s 
sort of more abstract thinking that a lot of them are working through.” 

Bruce often broke more complex problems down into smaller, more manageable pieces. 
“I sort of lead them through it. The first thing I asked them to do is to tell me for this process 
is the final temperature going to be bigger or smaller? Is the final pressure going to bigger or 
smaller? It’s purely qualitative so that there’s no calculation necessary. Then, I would say 
draw a PV diagram. Then, they actually calculate something. They start out doing it by 
themselves, and then I have them discuss it. When I’m actually having them calculate things, 
I have them work together. Then [I’ll] step them through the calculation and then sometimes 
finish up with another qualitative question.” 

For the visualizations that Bruce showed in class, he allowed the drawing to unfold a little 
bit at a time: “If it’s something that is a picture that I would expect them to create, I try to 
animate it [on my slides], bring it in piece by piece so that they see how they would build it. 
So first you draw the axis, you draw this arrow, you draw this arrow, then you label this.” 

Bruce noted the importance of students creating visualizations on a regular basis: “There 
are things that I’ve probably gotten away from a little bit [that] I got back to which is them 
actually drawing and submitting their drawings. So I’m going to do more of that for the rest 
of the semester. I kind of got away from that [having them draw pictures and discussing them 
as a class], and I think that was a mistake. Draw representations that work and then apply 
those representations to get and organize the equations that will allow you to solve it.” 

Sometimes students’ main obstacle to crossing the embodied-symbolic bridge is simply a 
lack of mathematical knowledge: “I wish I could guarantee that my students had vector 
calculus when we were talking about some of this.” Sometimes algebra poses a difficulty: 
“Frankly, we need to get them better at doing algebra. Not really basic algebra, most of these 
students can do the really simple stuff, but ratios and powers they can’t. The music analogy 
is: algebra is like doing your scales. You know it’s just the machinery that you have to be 
able to do. That should be well practiced, but it’s not.” 

How do students view the experience of crossing the embodied-symbolic bridge? One 
student agreed to keep a journal about his experiences in Bruce’s class. His entries showed 
the role that diagrams played in facilitating an “a-ha” moment as he bridged the embodied 
and symbolic worlds.  “Often, the diagrams will still be stuck in my head hours later, even if I 
can’t recall the expressions or even much of what was said, and I will keep thinking about 
them. Then after reading something on Wikipedia, or Googling the material, or reading 

Figure 3: Student submitted in-class drawings for an adiabatic gas process. 
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something in the textbook, the diagram will “resolve” and I suddenly understand why it’s that 
way. Rarely do I understand this in class when it is taught. However, Bruce’s depictions were 
absolutely crucial to my understanding of physics. I just could never make sense of it in class. 
The most frequent “a-ha” moments for me occur during the homework. As I labor to 
understand the expressions, I’ll recall the diagrams or models and try to understand how the 
expression describes the model/diagram.” 

Students’ self-generated drawings on the final exam (Figure 4) indicated that crossing the 
bridge is a protracted process: the drawings show gaps in students’ embodied understanding 
even though their overall exam grades showed that they had a firm grasp on how to 
symbolically solve related problems. Figure 4 shows a problem that is a comparison of 
isothermal (logarithmic) and adiabatic (power law) processes. Students did well on this 
question overall, but some responses still showed student misunderstanding. These examples 
are from students who received a B on the test, and thus had a reasonable grasp on symbolic 
solutions to these problems.  
 

Conclusions   
This study analyzed teaching diaries and weekly meeting transcripts from an expert 

physics instructor, who encouraged students to create and submit diagrams through an online 
response system during his large, introductory physics lectures. Our intention was to begin an 
investigation of how expert instructors may help novice students navigate the worlds of 
symbolism and embodiment. Novice students do not possess the dense, interconnected web 
of physics knowledge that experts have at their disposal (Van Heuvelen, 1991). Students need 
to be guided or trained as they attempt to cross the bridge between the symbolic and 
embodied worlds of mathematical thinking. In closing, we offer recommendations that might 
help physics students make connections between the embodied and symbolic worlds. For 
example, math instructors may provide students with concrete examples relevant to real 
world phenomena covered in science and engineering courses. For instance, when instructors 
are discussing the reciprocal function (Y = 1/X), they could provide an example of the 
physics concept, Boyle’s law (V = C/P), that states when temperature is constant (C), the 
volume of a gas (V) is inversely proportional to pressure (P). Physics instructors may need to 
help students hone their drawing and visualization skills, and this is a skill that should be 
practiced regularly. Instructors may remind students that their drawings are models, but they 
are important for identifying the relevant elements of the symbolic and formal worlds for 
different physical problems. Models are approximations of actual physical systems that can 
highlight “conceptual unity” and help answer the question “What’s the Physics?” These 
models help problem solvers to approach a correct answer. Of course, the use of the model 
must be confirmed through computations and comparison with the real world. 

Expansion rather 
than compression 

Incorrect curvature 
and temperatures Decreasing 

temperatures 
Incorrect temperature and 
curvature 

Figure 4: Student submitted drawings from an exam comparing isothermal and 
adiabatic gas processes. 
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Mathematicians’ ideas when formulating proof in real analysis 
 

Melissa Troudt 
University of Northern Colorado 

This report presents some findings from a study that investigated the ideas professional 
mathematicians find useful in developing mathematical proofs in real analysis.  This research 
sought to describe the ideas the mathematicians developed that they deemed useful in moving 
their arguments toward a final proof, the context surrounding the development of these ideas 
in terms of Dewey’s theory of inquiry, and the evolving structure of the personal argument 
utilizing Toulmin’s argumentation scheme. Three research mathematicians completed tasks 
in real analysis thinking aloud in interview and at-home settings and their work was captured 
via video and Livescribe technology.  The results of open iterative coding as well as the 
application of Dewey’s and Toulmin’s frameworks were three categories of ideas that 
emerged through the mathematicians’ purposeful recognition of problems to be solved and 
their reflective and evaluative actions to solve them.   

Key words: proof construction, Toulmin argumentation scheme, inquiry, real analysis, 
mathematicians 

Writings of mathematicians and mathematics education researchers note that the 
mathematical proving process involves a formulation of ideas; specifically, for 
mathematicians, there is a reflection, reorganization of ideas and reasoning that “fill in the 
gaps” so a proof will emerge (Twomey Fosnot & Jacob, 2009).  Byers (2007) described an 
idea as the answer to the question “what’s really going on here?”, and Raman, Sandefur, 
Birky, Campbell, and Somers (2009) observed three critical moments in the proving process 
in which there were opportunities for a proof to move forward.  Tall and colleagues (2012) 
gave a description of proof for professional mathematics that “involves thinking about new 
situations, focusing on significant aspects, using previous knowledge to put new ideas 
together in new ways, consider relationships, make conjectures formulate definitions as 
necessary and to build a valid argument” (p. 15).  Rav (1999) stated that the term “proof” can 
describe the written product used to “display the mathematical machinery for solving 
problems and to justify that a proposed solution to a problem is indeed a solution” (p. 13, 
italics in original); however the process of constructing proof involves informal and formal 
arguments to find methods to attack the problem as well as incomplete proof sketches 
(Aberdein, 2009).  Despite these writings, little research describes the context around the 
formulation of ideas that a professional mathematician finds useful and how these ideas 
influence the development of the mathematical argument.  This study focused on describing 
mathematicians’ development of these ideas when constructing proofs in real analysis made 
evident in changes in the structure of the argument (Toulmin, 1958/2003) utilizing Dewey’s 
(1938) theory of inquiry to describe the problem situation.   
 

Research Questions 

Part of a larger project, this report focuses on the findings for the research questions:  
What ideas move the argument forward as a professional mathematician’s personal argument 
evolves?  What problem situation is the mathematician currently entered into solving when 
s/he articulates and attains an idea that moves the personal argument forward? 
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Theoretical Perspective 

This research conceived of the mathematical proving process as an evolving personal 
argument.  The personal argument is a subset of one’s total cognitive structure associated 
with the proof situation (described as a statement image by Selden and Selden (1995)) that 
the individual deems relevant to making progress in proving the statement.  The personal 
argument is graded in that some aspects of the statement image may be central and others 
may lie on the periphery.  The personal argument evolves or moves forward when an 
individual develops an idea that s/he sees as useful in making progress in proving the 
statement.  The focus of this study was to describe the ideas incorporated and the inquirential 
context surrounding that development. 

Toulmin’s (1958/2003) argumentation model provided a means of describing structurally 
the evolution of the personal argument as the individual incorporated new ideas.  The 
framework notes the content of the statements given in the argument (either explicitly or not) 
as well as the purposes that those statements serve.  The framework classifies statements of 
an argument in six different categories.  The claim (C) is the statement or conclusion to be 
asserted. The data (D) are the foundations on which the argument is based. The warrant (W) 
is the justification of the link between the grounds and the claim. Backing (B) presents further 
evidence that the warrant appropriately justifies that the data supports the claim. The modal 
qualifiers (Q) are statements that indicate the degree of certainty that the arguer believes that 
the warrant justifies the claims. The rebuttals (R) are statements that present the 
circumstances under which the claim would not hold.  

New ideas result from periods of ambiguity or when engaged in non-routine problem 
solving (Byers, 2007; Lithner, 2008).  John Dewey (1938) posited in his theory of inquiry 
that new knowledge or ideas are developed when one is engaged in active, productive inquiry 
into a problem.  An individual engaged in the cyclical process of inquiry reflects on problem 
situations, selects and applies tools to the situations, and evaluates the effectiveness of the 
tools (Hickman, 1990).   Dewey’s framework provided for understanding the context 
surrounding the emergence of new ideas from the participant’s point of view.   

 
Related Literature 

This research followed the lead of other researchers who have conceived of the proof 
construction process as a particular type of problem solving (i.e. Savic, 2012; 2013; Weber, 
2005).  Selden and Selden (1995; 2013) maintained that there is a close relationship between 
problem solving and proof, and that two kinds of problem solving could occur in proof 
construction:  solving the mathematical problems and converting an informal solution into a 
formal mathematical product.  Building upon extensive work in understanding the problem 
solving process and investigating the problem solving processes of twelve mathematicians, 
Carlson and Bloom (2005) developed a Multidimensional Problem Solving framework 
providing a description of the cyclical progression through the phases of problem solving 
(orientation, planning, executing, and checking), cycling, and problem-solving attributes.  
Savic (2013) found that the four phases of Carlson and Bloom’s framework could be used to 
code and describe most portions of the proving process.  However, he found some differences 
including the mathematician cycling back to orienting after a period of incubation and one 
participant not completing the full cycle; Savic hypothesized additional problem solving 
phases could be added. 

Some research has been conducted and documented the existence of and provided initial 
descriptions of the types of ideas that this study sought to describe.  Raman (2003) 
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characterized three types of ideas involved in the production of a proof: heuristic ideas (ideas 
based on informal understandings linked to private aspects of proof), procedural ideas (ideas 
based on logic and formal manipulations), and key ideas (heuristic ideas that can be mapped 
to formal proofs).  In later work Raman and colleagues (Raman, Sandefur, Birky, Campbell, 
& Somers, 2009) identified the potential for three critical moments when constructing proof 
(1) attaining a key idea (later termed conceptual insight; Sandefur, Mason, Stylianides, & 
Watson, 2012) that gives a sense of why the statement is true; (2) gaining a technical handle 
for communicating a key idea, and (3) the culmination of the argument into a standard form.  
The potential for a key idea to exist apart from a technical handle exists when a prover is 
engaged in some informal mathematical reasoning.  Although they did not describe them as 
ideas, Ingils, Mejia-Ramos, & Simpson (2007) found mathematics graduate students used 
warrants based on both formal mathematical deductions (deductive warrants) and non-
deductive reasoning including inductive reasoning (inductive warrants)and intuitive 
observations or experiments with some kind of mental structure (structural-intuitive 
warrants).  Noting these ideas’ existence is interesting but calls for further research into 
descriptions of how these ideas are developed and what kinds of ideas are deemed important 
when formal or informal reasoning is utilized. 

 
Methods 

Three professional mathematicians with faculty appointments at four-year universities 
who specialized in researching or in teaching courses in real analysis served as the 
participants for this study.   Each participant worked on a task or tasks in a “think-aloud” 
interview setting, continued to work on the tasks on their own, turned in their at-home work 
captured via Livescribe technology, participated in a follow-up interview replaying the video 
and Livescribe capture of their previous work, and repeated this process with new tasks in the 
next interview.  Each participant worked on three to four tasks in total.   

Data analysis proceeded in two phases. In the preliminary analysis of the participants’ 
work on the tasks, I noted moments where participants articulated insights, observations, or 
hypotheses, and these acted as markers in the transcripts.  I hypothesized Toulmin models of 
the participants’ personal argument as well as the inquirential context while these ideas were 
formulated (perceived problem, contributing actions and tools, and anticipated outcomes of 
applying the tools) prior to and following these markers.  These hypotheses informed the 
questions asked at the follow-up interview.  In the primary analysis, the follow-up interviews 
provided information to complete and modify the initial analyses.  For each task, I wrote 
stories of the participant’s complete work on the task sectioned by the ideas in order to 
capture the evolution of the argument.  I conducted open iterative coding of each idea, the 
problem situation encountered, the tools that influenced the generation or articulation of the 
idea, and the anticipated outcome of said tools.  Most analysis was inductive; however, I 
borrowed language from the literature when elements fit the descriptions given by other 
authors.  I analyzed across the ideas of each participant and across participants along the 
common tasks to look for emerging themes and patterns.  I report some findings regarding the 
types of ideas formulated and the problems encountered when ideas were articulated.   

 
Results 

In presenting these results, I first give an overview of the characteristics of the ideas that 
moved the argument forward and then brief descriptions of each idea type and sub-type.  I 
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describe the problems that participants were entered into solving when they developed these 
ideas and finally illustrate these themes through one participant’s, Dr. C’s, work on a task. 

The ideas that moved the argument forward either were accompanied by a structural shift 
in the personal argument captured by a Toulmin diagram, provided a means for the 
participant to communicate their personal argument in a logical manner, gave a participant a 
sense that his way of thinking was fitting, or were explicitly referred to by the participant as a 
useful insight.  While pictures, examples, or individual actions were not included as ideas, the 
insights extracted from performing and reflecting upon these tools or a collection of tools 
were included.  Ideas were coded in terms of the work they did for the participant.  In total, I 
identified fifteen sub-type ideas grouped into three categories: ideas that focus and configure, 
ideas that connect and justify, and monitoring ideas (see Table 1).  An action or evaluation of 
that action from one particular moment could solve multiple problems or give rise to multiple 
feelings.  Therefore, multiple idea-types at times characterized a single moment.  For 
example, an insight that provided a deductive warrant could also give the prover a sense of I 
can write a proof.  Note that three of the idea sub-types that connect and justify are meant to 
keep in the spirit of the descriptions given by Inglis et al. (2007). 

No distinct pattern involving the types of problems and tools that contributed to the 
generation of certain ideas.  There was a discernable pattern of a participant proposing or 
articulating an idea or tool, testing the usefulness of the proposed idea or tool or the prior 
ideas against the consequences of the new idea, and then articulating a new idea or 
evaluation.  This process involved the passing through, perhaps multiple times, the 
inquirential cycle of reflecting, acting, and evaluating against the ideas’ abilities to solve a 
perceived problem.  The participants transitioned through the following four phases of 
problems to tackle or tasks to complete in order to finish the construction of the proof. 

1. Understanding the statement and/or determining truth 
2. Determining a warrant of some kind 
3. Validating, generalizing, or articulating those warrants 
4. Writing the argument formally 
At times the participants proceeded linearly through the four phases; however, there were 

instances where participants needed to cycle back to a previous phase when a proposed idea 
or tool was not fitting or if no tool could be found to solve the current problem (see Figure 1).  
Aside from these major problems to solve, the participating mathematicians also tackled 
problems parallel to or embedded within these problems such as dealing with a found 
problem with a tool.  Writing the argument formally typically was not problematic for the 
professional mathematician once they had developed a deductive warrant.   

To illustrate these themes, consider Dr. C’s work on the task: Let f be a function on the 
real numbers where for every x and y in the real numbers, f(x + y)= f(x)+ f(y).  Prove or 
disprove that f is continuous on the real numbers if and only if it is continuous at 0.   

Upon his initial reading of the problem, Dr. C declared that he believed the statement was 
true for the rational numbers but not generally true for the real numbers.   

Dr. C: I was thinking about the well-known fact that the only continuous linear 
functions in the reals to the reals are those of the form y equals mx for some 
fixed m.  And one shows that those are continuous on the rationals fairly easy 
- linear functions are continuous on the rationals pretty easily by doing some 
induction. 

This idea was in response to the problem of determining the truth of the statement and was 
coded as a truth proposal, informing the statement image, and a structural-intuitive warrant 
since he was basing his conjecture on a connection between the additive property and 
linearity and his conceptual knowledge.    
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Table 1 
Descriptions of ideas that moved the argument forward sub-types  
 

Idea sub-type Description  
Ideas that focus and 
configure 

Ideas that gave a sense of what was relevant, what claims 
to connect to the statement, fitting strategies to achieve 
connections, and how to structure and articulate the 
argument 

Informing statement 
image 

Ideas that broadened or narrowed the conception of the 
situation. 

Task type Assessments about what tools or ways of approaching 
developing connections between the conditions and the 
claim would be fitting 

Truth proposal Participant-generated conjectures about the validity of a 
given claim based on a warrant of any type 

Identifying necessary 
conditions 

A sense that “The statement can’t possibly be true unless 
this condition is fulfilled” 

Envisioned proof path A proposal of a series of arguments that will lead to a 
solution that may be missing connections 

Logical structure & 
representation system of 
proof 

Decisions regarding structuring and communicating the 
formal argument 

Ideas that connect and justify Warrants and backing, the means of connecting data with 
claims 

Deductive warrant*1 Reasoning based on generalizable logical statements 
Inductive warrant* Reasoning based on specific examples 
Structural-intuitive 
warrant* 

Reasoning based on a feeling that is informed by 
structure or experience 

Syntactic connection Symbolic manipulations deemed useful to connect given 
evidence to a claim that may not be supportable by 
deductive reasoning or attend to the mathematical objects 
that the symbols represent 

Proposed backing Proposed support for previously identified non-deductive 
warrants or vague senses of what would underlie a 
possible warrant 

Ideas that monitor the 
argument evolution 

Ideas or feelings about the mathematicians’ progress 

Truth conviction Personal belief as to why a statement must be true 
“I can write a proof” A feeling of formulating the connections necessary to 

communicate the argument in a final proof 
Unfruitful line of inquiry An idea that persuaded the participant that the tools or 

actions pursued or considered were not optimal for 
achieving the set goal 

Support for line of 
inquiry 

A sense that one’s actions were fitting 

 

                                                 
1 The asterisks indicate that the titles of idea sub-types of deductive warrant, inductive warrant, and structural-
intuitive warrant borrow from the descriptions of reasoning given by Inglis et al. (2007). 
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Figure 1. Illustration of the problem phases observed and the potential to cycle back. 
 
Dr. C then set about determining a deductive warrant by proposing a counterexample 

function that was continuous at zero and the rational numbers but discontinuous on the reals, 
namely, the piecewise defined function that has an output of zero when the input is rational 
and the value of the input otherwise.  He then tested this function and found it to not possess 
the additive property and concluded that the given statement might be true. 

Dr. C:  It turned out that didn’t work.  And if the easier ones didn’t work, then the 
harder ones probably wouldn’t either.  Matter of fact, if the easier one didn’t 
work, then it seemed likely that none of the harder ones would work.   

I:  Okay.  So I was going to ask about that.  So after you found that it didn’t 
work, it didn’t satisfy it.  You paused for a while.  Was it because you were 
trying to think of different examples, or were you convincing yourself that it- 

Dr. C:  Yeah.  I was trying to convince myself that if this didn’t work, then nothing 
would. 

Dr. C recognized an unfruitful line of inquiry, moved back to the problem of determining 
the truth of the situation, and gave a new truth proposal based on the generated example 
function coupled with his knowledge of functions (an inductive warrant).   He then moved to 
try to prove the statement was true (look for a deductive warrant).  In exploring, he developed 
a string of inequalities based on instantiations of the definition of continuity and logical 
mathematical deductions, and he identified the necessary condition that lim

𝜀→0
𝑓(𝜀) = 0.  He 

recalled a proof that 𝑓(0) = 0 and that the function was given to be continuous at zero to 
fulfill the condition.  Dr. C symbolically evaluated that his written assertions were correct and 
declared a sense that he could now write the proof based on his deductive warrants.  Because 
his work in proving the task was based on deductive warrants within the representation 
system of proof, the writing of the proof did not require the formulation of any new ideas.   
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Discussion and Conclusions 

Every participant on each task identified ideas from each of the three idea categories.  As 
was described above with Dr. C, the evolution of the personal argument was not linear in 
identifying focusing and configuring ideas, identifying connections and justifications, and 
then making monitoring decisions.  The process of articulating ideas, testing the new idea or 
previous ideas against these new ideas, and then proposing new ideas was apparent.  The 
process of testing ideas varied by idea-type, but the process involved active, productive 
inquiry in that ideas were tested against their abilities to do work in solving a perceived 
problem. 

The four identified phases of understanding the statement or determining truth, looking 
for a warrant, working to validate, generalize, justify or articulate their warrant; and writing 
the formal proof are reminiscent of findings of other researchers.  The following aspects have 
been identified as part of the proof construction process: understanding the statement or 
described objects (Alcock, 2008; Alcock & Weber, 2010; Carlson & Bloom, 2005; Savic, 
2013); determining the truth of the statement (Sandefur et al., 2012); determining why the 
statement is true (Raman et al., 2009; Sandefur et al., 2012); translating ideas into analytic 
language (Alcock & Inglis, 2008; Alcock & Weber, 2010; Weber & Alcock, 2004); and 
justifying a previous idea (Alcock, 2008; Alcock & Weber, 2010).  This research is unique in 
its specific efforts to identify the problems encountered as participants developed new ideas 
and in its use of Dewey’s theory of inquiry to explain how ideas were developed and tested 
against these problems.  The mathematicians progressed through these four phases but 
needed to cycle back to a previous phase when the ideas that the mathematicians had 
previously incorporated into the personal argument were insufficient in resolving a situation 
in a later phase.   

The choice to conceive of the proof construction process as involving an evolving 
personal argument was made due to a desire to talk about all the ideas, relationships, 
concepts, pictures, and so on that an individual personally judges as important to providing a 
final proof and the relationships amongst these elements at various points in time.  This 
conception allowed for attending to moments when ideas were generated that the prover saw 
as useful which broke the construction process into significant events to illustrate the story of 
the argument’s evolution.  As researching the proving process in this manner is relatively 
unexplored, many avenues of research are open to explore how these ideas develop, how they 
are tested, and the consequences their development provides for the evolution of the 
argument.  The findings of this study were descriptive and exploratory and the fifteen idea 
sub-types found may or may not be salient in other studies.  It is probable that varying the 
mathematical content area or narrowing the research questions would provide new and 
clarifying findings to refine the categorizations or provide insight as to how the proof 
construction process compares across mathematical content.  
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College-educated adults on the autism spectrum and mathematical thinking

Jeffrey Truman

Simon Fraser University

This study examines the mathematical learning of adults on the autism spectrum, currently or

formerly undergraduate students.  I aim to expand on previous research, which often focuses

on younger students in the K-12 school system.  I have conducted various interviews with

current  and  former  students.   The  interviews  involved  a  combination  of  asking  for  the

interviewee's  views  on  learning  mathematics,  self-reports  of  experiences  (both  directly

related  to  courses  and  not),  and  some  particular  mathematical  tasks.   I  present  some

preliminary findings from these interviews and ideas for further research.

BACKGROUND ON AUTISM-RELATED RESEARCH

The Autistic Self Advocacy Network (2014) states that autism is a neurological difference

with certain characteristics (which are not necessarily present in any given individual on the

autism spectrum), among them differences in sensory sensitivity and experience,  different

ways of learning, particular focused interests (often referred to as 'special interests'), atypical

movement, a need for particular routines, and difficulties in typical language use and social

interaction.  Over the past few decades, there have been many research studies about learning

in students on the autism spectrum, such as those reviewed by Chiang and Lin (2007).  A

large portion of these studies focus on K-12 students, and particularly elementary students,

but  some of the ideas  and procedures  in those studies  lend themselves  to  use in  a post-

secondary context.

INTERVIEW PROCEDURES

After  an  initial  period  of  background  information  and  anything  else  in  particular  my

interviewees  wished  to  share  about  their  perspectives  on  mathematics,  I  gave  various

mathematical tasks to elicit more specific responses.  Some of these were directly related to

specific courses, such as the example-generation tasks used by Bogomolny (2006) and the

Magic Carpet Ride sequence used by Wawro et al. (2012).  I have also given more general

tasks, such as the paradoxes examined by Mamolo and Zazkis (2008); one reason for this was

the interplay between visual and algebraic explanations seen in some student responses to

these paradoxes.

THEORETICAL FRAMEWORK

There were several reported characteristics of people on the autism spectrum which I thought

could be promising for mathematics education research.  In particular,  I was interested in

details of prototype formation, special interests, and geometric approaches.  I will detail each

of these with a comparison to the particular findings relevant to them in Joshua's case.
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PROTOTYPE FORMATION

I  started  looking into  prototype  formation  after  reading  a  study by Klinger  and Dawson

(2001).  It suggested that people on the autism spectrum did not form prototypes of objects

when given tasks asking about group membership, instead taking an approach based on lists

of rules.  Although this is presented as a problem, like many other autism-related studies, I

suspected that this approach could be helpful for more abstract or proof-based mathematics.  I

have found many other students having trouble with mathematical questions that appear to

result from a prototype-based approach, and this is particularly true when the course focuses

on mathematical  proof.   In fact,  I  found a very similar  division reported in mathematics

education research by Edwards and Ward (2004), phrased as lexical or extracted definitions

versus stipulative definitions.   This did not appear to be the case for Joshua; he reported

having this kind of thinking in the past, but was quite focused on “big picture” ideas today

(this was, in fact, a recurring phrase in the interviews).

GEOMETRIC FOCUS AND VISUALIZATION

Particularly due to the work of Temple Grandin, one of the most famous people on the autism

spectrum,  there is  often  an association  between the spectrum and visualization  or spatial

reasoning (Grandin, Peterson, and Shaw, 1998).  While I would caution against being too

broad  with  an  association  like  that,  I  did  find  a  strong preference  for  visual,  spatial,  or

geometric reasoning in the interviews I conducted with at least one student.  My suspicion is

currently that there may be stronger variance or preference in types of reasoning, but that it is

not all necessarily toward the geometric type.

PARADOXES

I have also presented several paradox tasks during my interviews.  Like many of the students

in  previous  studies,  the  people  I  interviewed  found these  to  be  strange  and paradoxical.

However,  the response was notably more positive than those from most  students.  I  also

found it notable that I did not see any tendency toward rejecting the mathematical facts after

they had been presented, unlike in many of the students in the prior studies.
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Students’ concept image of tangent lines compared to their understanding of the definition 
of the derivative 

 
Brittany Vincent and Vicki Sealey 

West Virginia University 
 

Our research explores first-semester calculus students' understanding of tangent lines and the 
derivative concept through a series of three interviews conducted over the course of one 
semester. Using a combination of Zandieh's (2000) derivative framework and Tall and Vinner's 
(1981) notions of concept image and concept definition, our analysis examines the role that 
students' concept image of tangent lines plays in their conceptual understanding of the derivative 
concept. Preliminary results seem to indicate that students are more successful when their 
concept image of tangent includes the limiting position of secant lines, as opposed to a tangent 
line as the line that touches the curve at one point. 
 
Key Words: Tangent Line, Derivative, Conceptual Understanding 
 

 “Conceptually, the role of visual thinking is so fundamental to the understanding of calculus 
that it is difficult to imagine a successful calculus course which does not emphasize the visual 
elements of the subject” (Zimmerman, 1991, p. 136). This quote encapsulates the relevance and 
motivation of our research efforts in studying students' understanding of tangent lines in first-
semester calculus. Given the crucial role that tangent lines play in the visual aspects of the 
derivative concept, it is pertinent to consider how misconceptions about tangent lines may 
contribute to a lack of conceptual understanding of the derivative concept. Our preliminary 
analysis seems to reveal that students who consistently defined a tangent line as the limiting 
position of secant lines were also able to graphically explain the definition of the derivative, 
while those who used other definitions for a tangent line, such as a line intersecting the graph at 
only one point, were not able to do so. 

 
Literature Review 

 
It has been well documented that students' early experiences with tangency in geometry have 

the potential to negatively affect their understanding of tangency in subsequent settings 
(Fischbein, 1987; Tall, 1987; Winicki & Leikin, 2000; Biza, Christou, & Zachariades, 2008). In 
addition, Biza's (2011) study demonstrated that developing a concept definition of tangency 
characterized by its use in analysis is both difficult and non-intuitive for students. Vincent, 
LaRue, Sealey, and Engelke (2014) identified misconceptions first-semester calculus students 
may have concerning tangent lines, such as believing that several tangent lines may exist at a 
single point or confusing the notion of a tangent line with the tangent function (y = tan x).  

 We know that students typically prefer working with the derivative concept algebraically and 
often struggle with the visual aspects (Asiala, Cottrill, Dubinksky, & Schwingendor, 1997; Habre 
& Abboud, 2006). Similarly, Hahkionieme's (2006) research project accentuated the difficulties 
students have interpreting what the formal definition of the derivative means graphically. Other 
studies have highlighted students' confusions concerning the relationship between tangent lines 
and the derivative, such as confusing the y-coordinate of the point of tangency with the 
derivative or equating the tangent line to the derivative (Orton, 1983; Amit & Vinner, 1990).  
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Theoretical Perspective 

 
Our research incorporates a blend of two theoretical perspectives: Tall and Vinner's (1981) 

concept image and concept definition and Zandieh's (2000) derivative framework. The concept 
image represents the overall cognitive structure constructed by the learner and includes all the 
mental pictures and associated properties and processes that an individual has built up over time. 
Any concept image has a related concept definition, which is a learner's description of his or her 
understanding. Based on a student's language and written work, interpretations can be made 
about pieces of knowledge that do or do not belong to the concept image. 

 According to Sfard (1991), processes are operations on previously established objects that 
can be reified into objects and acted on by other processes. This forms what Zandieh (2000) calls 
process-object pairs. Zandieh's derivative framework (Table 1) is made up of three layers (Ratio, 
Limit, and Function) of process-object pairs and is meant to describe what the mathematical 
community means by the concept of the derivative (within four key contexts) at the first-year 
calculus level. Part of an individual's understanding may be noted within the grid when he or she 
mentions a context and any component of the layers of the derivative concept in response to 
interview questions. A circle in the grid indicates that the student has at least demonstrated a 
pseudo-object (an object with no internal structure) understanding of the row and column that 
intersect at that box. A shaded circle represents that the student has also demonstrated an 
understanding of the underlying process of the layer. 

Process-object 
layer 

Graphical 
(Slope) 

Verbal 
(Rate) 

Physical 
(Velocity) 

Symbolic 
(Diff. Quotient) 

Other 

Ratio      
Limit      

Function      

Table 1. Zandieh’s derivative framework.   
Methodology 

 
Our study took place during the spring 2015 semester with twelve first-semester calculus 

students enrolled in a large public university. Each participant completed a series of three 
interviews over the course of one semester: beginning half of the semester (immediately 
following instruction on tangent lines and the definition of the derivative), midterm, and end of 
term. Each interview focused on the concept of tangent lines- students’ personal concept 
definition as well as tasks involving construction of tangent lines. Interviews 2 and 3 additionally 
consisted of tasks involving the derivative- sketching the graph of f'(x) given the graph of f(x) 
and interpreting the formal definition of the derivative graphically. 

We are currently in the process of analyzing the data. At this stage, we have completed a 
detailed analysis for two of the twelve participants (Jamie and Andy) and a surface level analysis 
of the remaining ten. Jamie and Andy's series of interviews have undergone multiple viewings 
along with detailed notes and have been transcribed and coded. To code the data related to the 
derivative concept, we used Zandieh's derivative framework (Table 1, above). The concept of 
tangent lines is situated within the first two layers of this framework, and so, a modified version 
of the framework (Table 2) was used to code interview data related to tangent lines. Comparing 

19th Annual Conference on Research in Undergraduate Mathematics Education 1361

19th Annual Conference on Research in Undergraduate Mathematics Education 1361



these coded sections of the data, we are interested in examining relationships between students' 
concept images of tangent lines and the derivative.  

 
Process-object 

layer 
Graphical 

(Slope) 
Verbal 
(Rate) 

Physical 
(Velocity) 

Symbolic 
(Diff. Quotient) 

Other 

Ratio      
Limit      

Table 2. Modified version of derivative framework used to code data on tangent lines.  

Results 
 

The results presented in this section focus on the preliminary analysis of one of twelve of the 
participants (Jamie), but we will also make reference to some of the other participants as well as 
discuss general themes found in the data, thus far. We will specifically focus on analysis of 
Jamie's concept image of tangent line (Interviews 1, 2, and 3) and her graphical understanding of 
the definition of the derivative (Interview 3), identifying relationships between the two.  

Throughout all three interviews Jamie consistently defined a tangent line in terms of its “one 
point” relationship with the graph. When constructing tangent lines and justifying her work, she 
mainly reasoned about the location of the point of tangency and whether or not the tangent line 
should be “above” or “below” the curve. She never defined a tangent line in terms of the limiting 
position of secant lines. Due to her unstable concept definition, she almost always constructed a 
tangent line at places where one should not have existed. Table 3 shows Jamie's coded chart for 
her responses to the question “What is a tangent line?” from Interviews 1, 2, and 3. 

Process-object 
layer 

Graphical 
(Slope) 

Verbal 
(Rate) 

Physical 
(Velocity) 

Symbolic 
(Diff. Quotient) 

Other 

Ratio      
Limit      

Table3. Jamie’s summary chart for definition of tangent line. 
The open circle in the limit row represents Jamie's definition of a tangent line as “where it hits 
one point on a graph.” Since she did not discuss the limiting process, this circle is not shaded in, 
and since she did not mention the notion of slope in any of her explanations, there is not a code 
in the  slope row. 

During Interview 3 Jamie was asked to graphically interpret the formal definition of the 
derivative concept. Table 4a below shows an excerpt from her transcript. 
199 Jamie  Maybe like when you graph it you determine the tangent line. Maybe if you want to 

find like one exact point I guess on it. I don't know. 

200 Int. Ok. So if you come back to this for a second. So, you're not sure about, like if you take 
the limit part away do you know what this portion of the definition of the derivative 
represents? 

201 Jamie No. No.  

205 Jamie Oh! The h might be a slope of zero.  

206 Int.  So, what do you mean by that?  
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207 Jamie Like, here it'd be zero and here would be zeroes [constructs horizontal tangents].  

Table 4a. Jamie. Example response. Definition of derivative  

Jamie did not discuss the role of tangent lines on her own initiative. Her ideas in line 199 
were a response to the interviewer’s question about the role, if any, tangent lines may play in the 
graphical interpretation of the derivative. She mentioned the idea of finding “one exact point,” 
and this response was coded with an open circle in the limit row (Table 4b). Jamie was also 
uncertain about the meaning of h in the definition of the derivative, and because h is going to 
zero, the idea of zero slope (horizontal tangents)  was triggered in her concept image. The open 
circle in the ratio row demonstrates her understanding that slope is somehow involved in the 
derivative concept, but this circle is not filled in because again, she does not discuss the process 
of determining slope, such as rise over run or change in y over change in x. Table 4b shows 
Jamie's coded chart for her entire response to the graphical derivative question posed during 
interview 3.  

Process-object 
layer 

Graphical 
(Slope) 

Verbal 
(Rate) 

Physical 
(Velocity) 

Symbolic 
(Diff. Quotient) 

Other 

Ratio    x  
Limit    x  

Function    x  

Table 4b. Jamie’s summary chart for definition of the derivative.  

It is important to note that although Jamie did not mention the notions of rate of change or 
velocity during her explanations, other students did. Since participants were given the symbolic 
definition of the derivative and were not responsible for generating it on their own, we were 
unable to code the symbolic column of the chart and have labeled it with x's.  

Although Jamie's concept image for tangent line and her concept image for derivative have 
similar structures and seem to influence one another, throughout the interviews she demonstrated 
that she was unaware of such connections (Table 5). For example, she often could not 
mathematically justify her work, stating: “it's not coming to me yet”, or “cause this is how we 
learned it in class”, or simply “I don't know”. She also reasoned that it was possible to contruct 
tangent lines at places where the derivative didn’t exist. So, even though we see similar 
structures in Jamie's concept images according to Zandieh's framework, she is not aware of the 
connection between these to concepts. 
216 Int. Ok. Um, so you said that this is the definition of the derivative and then I asked you 

about tangent lines and their relationship and what was your... what do you think about 
that? 

217 Jamie Maybe there is. Maybe there isn't.  

196 Int. Ok. And are tangent lines...how do tangent lines...what role do they play in this whole 
thing?  

197 Jamie I don't know. 

Table 5. Example of disconnect between concept images.   
 Considering Tables 3 and 4b, we see that pseudo-objects in Jamie's concept image of tangent 

line transferred to pseudo-objects in Jamie's concept image of the graphical derivative (or vice 
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versa). We see similar results with Andy (Table 6)- structural understandings in the layers of 
tangent line transferred to structural understanding in the layers of the graphical derivative.  
 

 Definition of Derivative Tangent Line 
Process-object 

layer 
Graphical 

(Slope) 
Verbal 
(Rate) 

Graphical 
(Slope) 

Verbal 
(Rate) 

Ratio     
Limit     

Function   N/A N/A 

Table 6. Andy’s summary chart of the definition of the derivative and tangent lines.   

 These preliminary results reveal a connection between students’ personal concept definition 
of tangent line and their graphical understanding of the derivative concept. In reviewing the data 
of all twelve participants, only two participants were able to graphically explain the definition of 
the derivative. The remaining ten were unsuccessful in their attempts and also consistently (in 
their definitions and justifications) used other definitions for tangent such as a line intersecting 
the graph at only point and did not use the limiting position of secant lines definition. 

In comparing Jamie to Andy, we see Andy exhibited an understanding of the processes 
involved in the layers of both concepts. Andy often indicated he was “searching” his concept 
definition, using phrases such as, “hold on let me think about this.” Jamie never demonstrated 
such activity. In contrast, she exhibited that her reasoning mainly flowed  from her concept 
image, using phrases such as “this is how we did it in class” or referencing “similar homework 
problems”. Vinner (1991) discussed that students most often reason from their concept image 
rather than their concept definition. We are interested in further exploring these ideas and their 
implications as we progress in our analysis.  

Our preliminary results indicate that students' understanding of the graphical derivative may 
be strongly influenced by their concept definition of tangent lines. While this connection may not 
be surprising, it is surprising how many tasks Jamie was able to complete with her “one point” 
concept definition of tangent line. Even though she was able to sketch most tangent lines 
accurately, she was never able to connect the definition of the derivative with the tangent line.  
Andy, however, was able to make these connections, and our preliminary analysis suggests that 
his concept image of tangent line as the limiting position of secant lines played a big part in his 
success.  Additional data analysis is necessary to further explore this conjecture.   

 
Implications for teaching 

 
Shortcut definitions for tangency, such as “the line touching the graph at one point” or even 

“the line whose slope is equal to the derivative” are helpful but should not replace the definition 
of tangency as the limiting position of secant lines. Consistent classroom use of shortcut 
definitions may result in the creation of pseudo objects within students' concept images of 
tangent line and the derivative. These definitions do not accentuate the underlying processes 
involved in the layers of Zandieh's framework. We do not imply that consistent use of the secant 
line definition of tangency will magically result in structural understandings, but our results do 
seem to imply that pseudo objects within the tangent line concept image transfer over to the 
derivative concept image, and likewise for structural understandings.   

 
Questions for the audience 
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1. What are your thoughts on the modified version of the derivative framework for tangent lines? 
2. What role should the series of interviews play in data analysis? 
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Examining Student Attitudes and Mathematical Knowledge  
Inside the Flipped Classroom Experience 

 
Matthew Voigt 

San Diego State University  
 

Flipped classrooms or hybrid online courses are becoming increasingly prevalent at the 
undergraduate level as institutions seek cost-saving measures while also desiring to implement 
technological innovations to attract 21st century learners. This study examined undergraduate 
pre-calculus students’ (N=427) experiences, attitudes and mathematical knowledge in a flipped 
classroom format compared to students in a traditional lecture format. Our initial results 
indicate students in the flipped format were more positive about their overall classroom 
experiences, were more confident in their mathematical abilities, were more willing to 
collaborate to solve mathematical problems, and achieved slight higher gains in mathematical 
knowledge. Contrary to prior research, this study indicated that a majority of students in the 
flipped classroom would take the class again in the same format, but of concern is the gender 
disparity, indicating that female students are much more likely to resist taking a class in a 
flipped format.  
 
Key Words: Flipped Classrooms, Technology Enhanced Learning, Pre-Calculus, Student Attitudes 

The development of online math education has made huge strides in recent years with the 
creation and wider availability of open source math tutorials such as Khan Academy, Udacity, 
and Coursera.  This has lead traditional institutions to seek time and money saving measures by 
developing pre-recorded lectures and utilizing problem-based education inside the classroom 
(Bacow & Bowen, 2012; Mehaffy, 2012); however, little consideration is given to the effects 
that these changes will have on students’ attitudes and academic performance toward the subject 
of mathematics. One of the key-concepts behind the “flipped classroom” or the “inverted 
classroom” approach is using technology to offload traditional style lectures to allot more 
classroom time for problem based exploration and applied learning (Lage, Platt, & Treglia, 2000; 
Sams & Bergmann, 2012).   

Review of the Literature 
There is a limited amount of peer-reviewed research available on flipped classroom 

approaches; however, studies have been steadily increasing in recent years. Preliminary reports 
seem to suggest that students in flipped classrooms show improved academic success and 
achieve greater learning outcomes as compared to students in traditional classroom models, 
(Baepler, Walker, & Driessen, 2014; Love, Hodge, Grandgenett, & Swift, 2014; Mason, 
Shuman, & Cook, 2013; Wilson, 2013) or at worst does no harm (Mason et al., 2013; McCray, 
2000, Bagley, 2014).  

In addition, student attitudes are fairly consistent and show students view the flipped 
classroom as promoting their learning (Arnold-Garza, 2014; Scida & Saury, 2006), increasing 
confidence in their abilities (Baepler et al., 2014; Kim, Kim, Khera, & Getman, 2014) 
encouraging social engagement with students and teachers (Baepler et al., 2014; Jaster, 2013; 
Love et al., 2014), as more relevant to their future career goals (Love et al., 2014) and appreciate 
the flexibility allowed by online videos (Jaster, 2013); however there is evidence that given a 
choice, students prefer a traditional model of learning (Arnold-Garza, 2014; Jaster, 2013).  
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Although recent studies support the use of flipped classrooms, most studies thus far have 
used small samples sizes, and  with the exception of a few conference proceedings (Overmyer, 
2013; Wasserman, Norris, & Carr, 2013; Bagley, 2014) most are not specific to the subject of 
undergraduate mathematics. Since the research on the effectiveness of this pedagogical approach 
is limited, there are clear gaps in the literature that this study hopes to address. Accordingly, this 
study is a first step in determining how do students in a flipped learning undergraduate math 
course compare to students in a traditional lecture course in their:  

x Attitudes (motivation, enjoyment and confidence) and beliefs about learning 
mathematics? 

x Experiences and opinions of the course activities and interactions? 
x Perceived learning gains and mathematical knowledge? 

 
Research Design and Methodology 

  Participants were students from four undergraduate pre-calculus II course sections 
offered at a large Research University in the Midwest. Two of the courses used the flipped 
learning model (FL) for instruction and two used the traditional lecture model (TL) for 
instruction. Each of the course sections met for three hours a week of classroom time and one 
hour for a Q&A section lead by a graduate assistant. The TL courses used the traditional 
classroom time to lecture on the classroom material with limited interaction between teacher and 
students. In comparison, The FL classes used online video tutorials that features a voiceover 
PowerPoint to present the lecture material outside of classroom (https://goo.gl/DMyd6q) and 
classroom time was then used primarily to complete group (3-4 students) based worksheets with 
low level practice problems combined with mathematical proofs to derive trigonometric 
formulas in an active learning classroom. 

The research instruments and design methodology parallel the research conducted by 
Laursen et al. (2014) regarding inquiry-based learning.  The first survey instrument referred to as 
the attitudinal assessment, consisting of 54 questions using a seven point Likert-scale, and was 
used to measure changes in student’s affect (motivation, enjoyment, and confidence), and beliefs 
and strategies about learning.  The second survey instrument is based on a subset of the 
mathematically focused Student Assessment of their Learning Gains, referred to as the SALG-M 
and measures student’s experiences and learning gains using a 5-point Likert scale from (1 –No 
gains) to (5-Great gains) for each item.  The attitudinal assessment pre-survey was administered 
at the start of the second week of the course and the attitudinal post-survey and SALG-M were 
administered in the last week of the course. Scores from the multiple choice section of the 
mathematics department common final examination were used to assess student's mathematical 
performance. In addition, demographic information including gender, race, class year, college 
major, previous math courses taken, and GPA were requested.  

 
Results 

We received 427 responses (87.5% of enrolled students) from the pre-survey and 300 
responses (61.5% of enrolled students) from the post survey. Using the unique identifier we were 
able to match 214 (43.8% of enrolled students) pre- and post-surveys. Based on prior research 
from Laursen et al. (2014), a factor analysis was performed on each of the survey items to create 
composite variables to measure changes in students affect (motivation, enjoyment, confidence), 
beliefs about learning, and strategies for problem solving problems (See Table 1). In addition 
composite variables were determined to assess students perceptions of the classroom 
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experiences, and self-reported learning gains as a result of the course (See Table 2). A summary 
of the composite variables and reliability ratings are reported in Table 1 and Table 2.   

 
Table 1: Composite Variables of Attitudinal and Learning Behaviors in Mathematics 

Variable Description Reliability Cronbach alpha 
Pre Post 

Motivation Motivation to learn mathematics .761 .771 
 Interest Interest in learning and discussing math outside of the classroom .749 .774 
 Math degree Desire to pursue a math major/minor .838 .822 
 Math future Desire to pursue and study for additional math courses. .536 .672 
 Teaching Desire to teach mathematics - - 
Enjoyment Pleasure in doing and discovering mathematics .893 .908 
Confidence Confidence in math and math teaching ability .828 .859 
 Math confidence Confidence in own mathematical ability .805 .852 
 Teaching confidence Confidence in teaching mathematics .682 .745 
Beliefs about learning 
 Instructor-driven Exams, lectures, instructor activities .687 .689 
 Group work Small group presentation and critique of math .639 .629 
 Exchange of ideas Active exchange with other students .765 .728 
Strategies 
 Independent Find one’s own way to think and solve problems .450 .640 
 Collaborative Work with other students to brainstorm and solve problems .717 .683 
 Self-regulatory Review and organize one’s own work; check one’s understanding .562 .647 
 
Table 2: Composite Variables for Student Experiences and Learning Gains 

Variable Description Reliability  
Post 

Experiences of course practices 
 Overall Overall experience, workload, and pace of the course .797 
 Active participation Participating in discussion, group work, and explanation of work. .800 
 Individual work Studying on your own - 
 Lectures Listen to lectures - 
 Assignments Tests, homework, feedback on written work .603 
 Personal interactions Interacting with peers, TAs and instructors .667 
Cognitive Gains 
 Math concepts Understanding concepts .906 
 Math thinking Understanding mathematical thinking .819 
 Application Applying ideas outside math, making math understandable for others. .828 
Affective Gains 
 Positive attitude Appreciation of math .812 
 Confidence Confidence to do math .889 
 Persistence Persistence, ability to stretch mathematical capacity .781 
Social Gains 
 Collaboration Working with others .773 
 Teaching Comfort in teaching - 
Independent Gains Ability to work on your own .828 

 
Linear regression analysis was performed on each of the composite variables to 

determine the main effect of classroom format. The results of this analysis, which are displayed 
in Figure 1, indicated significant differences for students experiences in the classroom, math 
confidence, and collaborative strategies for problem solving.  In addition there were significant 
differences in self-reported affective, cognitive, and social learning gains, but no difference in 
independent learning gains (See figure 2). We subsequently discuss the themes that emerged 
from this initial analysis.  
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Figure 1. Average Classroom Experiences and Changes in Pre and Post Survey Attitudinal Variables Based on 
Classroom Format with Standard Error Bars. 
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Figure 1.  Average Rating with Error Bars for Learning Gains Based on Classroom Format.  

 
Classroom Experiences 
 As suggested by prior research, students in a flipped format viewed the overall 
experiences in the course (workload, pace, and overall approach to the course) as a significantly 
greater help to their learning than students in a traditional format; however, the research goal was 
to further investigate the specific components of the course that may have contributed to the 
overall differential experiences of students in the FL versus the TL format.  Active participation 
(class discussions, group work, explaining work to other students, and listening to other students 
explain their work), personal interactions (with the instructor, teaching assistant, and peers in the 
course) and lectures were seen as a greater help to students in the FL format, while individual 
work such as studying on your own was seen as a greater help to students in the TL format.  
Assignments were viewed as equally supportive for students in either the FL or the TL format. 

In addition to questions about classroom experiences, students were asked, “Would you 
recommend taking another course offered in the SAME FORMAT as this one?”  Contrary to the 
findings of  Arnold-Garza (2014) and Jaster (2013), a large majority of the students (67%) in the 
FL courses would take the course again in the same format given the choice, compared to a 
similar but smaller percentage of TL courses students (54%) who said they would take the course 
again in a traditional lecture format. Further investigation into the make-up of students who 
would not recommend taking a flipped classroom format, showed a significant difference 
(𝜒2 (1, N = 182) = 8.12, p = .004) in the gender composition with a larger proportion of 
women (N=40) saying they would not recommend the format as compared to men (N=15). The 
same difference was not present in the traditional class (𝜒2(1, 𝑁 = 118 ) = .145, 𝑝 = .70). 
Although gender and gender interactions with flipped learning were not significant for any of the 
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composite variables, the fact that women were almost three times as likely to indicate a 
preference for not take the course again in flipped learning format warrants further investigation.  

 
Affective and Learning Strategies Changes  

Our results from the attitudinal assessment mirror the results of the MAA national study 
(Bressoud, Carlson, Mesa, & Rasmussen, 2013) indicating overall students are less confident in 
their mathematical ability after the completion of the course, but notably students in the FL 
course had significantly smaller declines in mathematical confidence (𝐹(1, 210) = 5.44, 𝑝 =
.02). In addition FL students as a result of the course reported higher affective learning gains 
including positive attitude (𝛽 = −.39, 𝑡(282) = −2.92, 𝑝 = .004), confidence (𝛽 =
−.56, 𝑡(284) = −4.65, 𝑝 < .001), and persistence in mathematics (𝛽 = −.25, 𝑡(283) =
−1.98, 𝑝 = .048). We conjecture that there are two contributing elements that resulted in the 
smaller declines in confidence for the FL students. One notable difference between the FL and 
TL courses, was the implementation of ten proficiency based quizzes that students had to master 
in order to pass the course. This mastery based learning approach gives students the opportunity 
to assert that they fully understand the core topics in the course. In addition to the mastery 
quizzes the availability of having the online lectures, which our log data shows a majority of 
students watched multiple times, also provides students with increased scaffolding to support 
understanding and learning of the course topics.   

Students in the FL course also show attitudinal changes in the benefit they see in using 
collaborative strategies toward learning indicating that they are more likely to seek help from 
others and share information with other peers (𝐹(1,211) = 5.39, 𝑝 = .02).  This change in 
collaborative learning strategies we attributed to the reported social gains in collaboration (𝛽 =
−0.53, 𝑡(259) = −2.48, 𝑝 = 0.01) due to the course, where FL students reported higher gains in 
their ability to work well with others, willingness to seek help from others and appreciation of 
difference perspectives as a result of the course. 
 
Mathematical Knowledge 

Results from student performance on the common math final indicate modest gains in 
academic performance for students in the FL course (M=67.2) compared to students in the TL 
course (M=64.7) format (𝐹(407,1) = 3.38, 𝑝 = .067, 𝑑 = .18). Although it was not possible to 
obtain prior mathematical ability, the two course formats had no significant differences between 
the GPA’s, number of college math courses taken, and highest high school math taken for the 
students, indicating that the prior mathematical ability among the two course formats were 
roughly equal. This information coupled with the reported higher cognitive learning gains for 
math concepts (𝛽 = −.48, 𝑡(285) = −4.25, 𝑝 < .001) for the FL students, indicates the FL 
format was beneficial for student learning. Future studies should examine if the increases in 
collaboration and confidence for FL students will translate to better knowledge of higher level 
mathematical concepts, since we were only able to assess lower-order mathematical thinking on 
final exam multiple choice items.  

 
Conclusions and Future Studies 

Results from this study are promising for the future implementation of flipped style 
learning in undergraduate mathematics education. Students generally respond positively to 
flipped classroom learning experiences, and as a result show increased gains in confidence and 
willingness to collaborate with others in solving mathematical problems. In addition students 
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show modest gains in mathematical knowledge. These positive trends indicate that flipped 
learning not only does no harm, but actually benefits students academically and attitudinally. 

 The next phase in this study will assess the qualitative data obtained through the survey 
instruments as well as course artifacts in order to understand with greater richness the 
experiences students had throughout the course, and answer some of the questions raised through 
our initial quantitative analysis. We seek to understand what factors contributed to the gender 
disparity in preference for taking a flipped course and whether there exist gains in higher-order 
mathematical knowledge as a result of using the flipped format. Additionally, we will be 
collecting longitudinal data to assess the impact this course had on persistence in STEM fields 
and student performance in subsequent math courses.  
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ANALYZING STUDENTS’ INTERPRETATIONS OF THE DEFINITE INTEGRAL 
AS CONCEPT PROJECTIONS 

 
Joseph F. Wagner 
Xavier University 

 
This study of beginning and upper-level undergraduate physics students extends earlier research 
on students’ interpretations of the definite integral.  Using Wagner’s (2006) transfer-in-pieces 
framework and the notion of a concept projection, fine-grained analyses of students’ 
understandings of the definite integral reveal a greater variety and sophistication in some 
students’ use of integration than previous researchers have reported.  The dual purpose of this 
work is to demonstrate and develop the utility of concept projections as a means of investigating 
knowledge transfer, and to critique and build on the existing literature on students’ conceptions 
of integration. 
 
Key words:  Definite integral, Knowledge transfer, Physics, Knowledge in pieces 

 
This article, rooted in Wagner’s (2006) transfer-in-pieces framework, considers the problem 

of knowledge transfer from mathematics into physics, although the implications extend to other 
disciplines as well. A distinguishing characteristic of this perspective is that knowledge 
flexibility and transfer at all levels of expertise are supported not by a purely abstract quality of 
the knowledge in question, but by its ability to adapt to and accommodate contextual differences. 
In this sense, knowledge is said to be context sensitive. Wagner (2006, 2010) argued that 
applying a single mathematical principle or concept across a variety of contexts, for example, 
may require the knower to construct a variety of collections of knowledge resources known as 
concept projections. By this means, seeing and using the “same” concept in different 
circumstances requires the use of different (though perhaps overlapping) combinations of 
knowledge resources. 

Because the definite integral lends itself to a variety of different conceptual interpretations, it 
is a rich area for the study of knowledge flexibility and transfer. A recent series of papers by 
Jones (2013, 2013/2014, 2015a, 2015b) categorized students’ conceptions of the definite integral 
and argued that different conceptions are more productive than others in the study of physics. 
The purpose of this paper is twofold. First, using interview data of both beginning and upper-
level undergraduate physics students, it will demonstrate the utility of a concept projection as a 
theoretical construct for knowledge flexibility across levels of expertise. Second, it will expand 
on Jones’ work by examining data revealing both novices’ and upper-level physics students’ 
understanding of the definite integral. These findings suggest how concept projections might 
function to support expert understanding, and point toward opportunities for additional research. 

 
Background: Physics Students’ Use of Mathematics 

Challenges in transferring mathematics into physics 
Both physics and mathematics educators have long observed that even students who have a 

considerable background in mathematics do not readily use it or apply it in the context of 
learning physics. Researchers have documented students’ challenges in applying ideas from 
calculus (Christensen & Thompson, 2010; Cui, Rebello, & Bennett, 2006, 2007; Doughty, 
McLoughlin, & van Kampen, 2014; Nguyen & Rebello, 2011a, 2011b), trigonometry (Ozimek, 
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2004), and algebra (Torigoe & Gladding, 2011) to concepts and problems in physics. Although 
some of these researchers have pointed to deficits in students’ understanding of mathematics, 
Yeatts and Hundhausen (1992) and more recently Dray, Edwards, and Manogue (2008) have 
suggested that students’ difficulties result from a “mismatch” or a “gap” between what is taught 
in mathematics classrooms and what students actually need to use in their study of physics. 

 
Students’ understanding and use of the definite integral 

A large portion of the research on students’ understanding of the definite integral has 
revealed the limitations in their understanding even after completing a several semesters of 
calculus. Ferrini-Mundy and Graham (1994) showed the fragility of a student’s concepts of 
integration and other topics in calculus that more recent research continues to find. Most 
students, it would seem, complete a course in integral calculus with some degree of proficiency 
in evaluating a definite integral and some knowledge of its applicability to computing the “area 
under a curve,” but students’ overall knowledge of procedures, definitions, and underlying 
concepts are often weak and disconnected (Grundmeier, Hansen, & Sousa, 2006; Mahir, 2009; 
Rasslan & Tall, 2002). 

Evidence suggests the primary interpretation that many students place on the definite integral 
is an area under a curve (Bezuidenhout & Olivier, 2000; Jones, 2015b), which may limit 
students’ ability to apply integration to other contexts (Sealey, 2006; Jones, 2013, 2015a). 
Increasingly, researchers have argued that interpreting the integral as a Riemann sum, a sum of 
(infinitesimal) products, or an accumulation is advantageous to understanding how to use and 
apply integration to contexts outside of mathematics (e.g., Doughty, McLoughlin, & van 
Kampen, 2014; Jones 2013, 2015a; Nguyen & Rebello, 2011a, 2011b; Sealey, 2006, 2014; 
Thompson & Silverman, 2008). These results have emerged in parallel with a growth of research 
directed toward supporting the development of such understandings in students (Carlson, Smith, 
& Persson, 2003; Doughty, McLoughlin, & van Kampen, 2014; Engelke & Sealey, 2009; 
Kouropatov & Dreyfus, 2014). 

A recent series of studies by Jones (2013, 2015a, 2015b) has documented a variety of 
interpretations and understandings that students use to make sense of integration, the definite 
integral, and its notation. In particular, he found that the most frequent interpretations of the 
integral used by students could be categorized as area under a curve, antiderivative, or 
multiplicatively based summation (Jones, 2015b; see also Jones 2013), and of these, the area and 
antiderivative interpretations were by far the most common. Jones (2015a) further argued that the 
multiplicatively based summation conception is more productive for sense-making in applied 
contexts. In this paper, Jones’ (2013, 2015a, 2015b) research is used as a basis for critique and 
development.  Further discussion of his work is placed in the analytical sections below. 

 
Theoretical Framework 

This study adopts a cognitive, constructivist framework rooted in diSessa’s (1993) 
knowledge- in-pieces epistemology. Wagner (2006) took advantage of the knowledge-in-pieces 
framework’s attention to the context sensitivity of knowledge to use it as a basis for a new 
understanding of transfer, transfer in pieces. He argued that, contrary to traditional approaches to 
transfer that presume it takes place due to some abstract nature of knowledge, transfer actually 
occurs as a learner develops, (re)organizes, and integrates varieties of knowledge resources to 
accommodate rather than overlook contextual differences. 

19th Annual Conference on Research in Undergraduate Mathematics Education 1376

19th Annual Conference on Research in Undergraduate Mathematics Education 1376



Wagner (2006) described a concept projection as “a specific combination of knowledge 
resources and cognitive strategies used by an individual to identify and make use of a concept 
under particular contextual conditions” (p. 10; see also diSessa & Wagner, 2005; Wagner 2010). 
From this perspective, recognizing or using a concept (such as a definite integral) in a particular 
context requires an individual to engage a specific collection of knowledge resources, but the 
makeup of that collection of resources may vary when the same individual makes use of the 
same concept in a different contextual situation. The current work takes the applicability of 
concept projections further by showing that a single individual may use different concept 
projections in order to “see” or interpret different manifestations of the same concept, in this 
case, the definite integral, in a single context.  

 
Methods 

Student Participants 
Students who took part in this study were enrolled in a large public university using a quarter 

system of eight-week terms. Volunteers included eight beginning students enrolled in an 
introductory calculus-based physics course focusing primarily on classical mechanics and seven 
third-year physics majors who had already completed two terms of multivariable (vector) 
calculus, and at least one additional course in advanced mathematics. For ease of presentation, 
students will be referred to by a letter and number combination, with beginning students 
identified as B1- B8 and upper-level students as U1-U7. 

 
Interviews 

Students were interviewed individually by the author every other week during the course of 
an eight-week term, with each interview typically lasting 45-60 minutes. Questions and problems 
involved conceptual and procedural aspects of integration, differentiation, and other aspects of 
calculus, some in purely abstract mathematical form, and others in applied contexts. Each 
segment of an interview typically began with a written question or problem that the student was 
asked to read aloud, and the student was then asked to respond, thinking aloud as much as 
possible and explaining his or her thinking as clearly as possible. Further questioning was open-
ended and free-flowing. Except in rare circumstances, the interviewer avoided taking on an 
instructive role. The interviews were audiotaped and videotaped using two cameras and an 
additional audio recorder.  

 
Data analysis 

Analysis of the data took part in stages, using primarily qualitative methods. For the present 
research, the student’s responses and explanations were analyzed and classified according to the 
type of interpretation of the integral that the student used. In the transfer-in-pieces framework, 
these categories of interpretation were understood as constituting classes of concept projections. 
Careful attention was given to students’ reasoning strategies and their patterns of use, particular 
use of language and gesture, the use of intuitive and naive knowledge, and changes and patterns 
of reasoning across contexts to infer marked characteristics of the different concept projections 
students used to interpret definite integrals. The goal was not to attempt to specify the entire 
make-up of any single concept projection, but, by highlighting characteristic knowledge 
resources that constitute a particular concept projection, to infer differences in concept 
projections used by an individual under different contextual circumstances, as well as differences 
in concept projections used by different individuals.  
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Students’ Concept Projections for the Definite Integral 
Jones (2013) examined undergraduate students’ conceptions of the definite integral and 

found three principal ways that students interpreted integration and corresponded to normative 
reasoning.  He named these perimeter and area, function matching, and adding up pieces 
(multiplicatively based summation). Jones (2015b) later added one more: average.  In this paper, 
I will interpret these categorizations as distinct classes of concept projections.  Due to constraints 
on length, I focus on only two. 

 
The integral as a measure of change 

Jones’ (2013) function matching category for students’ reasoning was later identified as an 
antiderivative conceptualization in Jones (2015b). Under his analysis, this interpretation refers to 
students’ perception of the integral as a process of finding an “original function” from which the 
integrand was derived through differentiation, followed by a process of evaluating the difference 
of the original function’s values at the two endpoints of integration. Although Jones (2015b) 
permitted the possibility of “a modest layer of meaning” in students’ antiderivative 
conceptualization, he appeared to suggest that this represented a deficient conceptualization: 

However, what is striking is the high prevalence of the anti-derivative conceptions for the 
definite integral, when anti-derivatives do not actually compose the underlying meaning 
of the definite integral. It is simply a tool used for calculation purposes à la FTC. (p. 9) 

Although it is quite possible that some students hold understandings of the definite integral that 
support very little sense-making beyond the procedural, the current study found a number of 
students who made entirely good conceptual and contextual sense of the use of the definite 
integral to retrieve an “original function.” 

 
Figure 1.  The RPM Problem (adapted from Jones, 2013).  The statement of the problem inadvertently omitted units 
in which time was measured.  In all cases, students either made an arbitrary choice of units, or they were told to 
assume that t was measured in minutes. 

All of the students in this study were asked to consider the RPM Problem, shown in Figure 1.  
Beginning student B2 quickly concluded that the integral would determine “how many 
revolutions there were between time 0 and time 600.”  He offered the following explanation: 

B2: R(t) would be the change in revolutions, in change of time, and if I were to integrate 
that-. Like that's a form-, it's like a derivative of some function. And if I were to 
integrate that it would just become a function that was the revolutions rather than the 
change of revolutions in-, per minute, for example. Revolutions per minute indicates 
that it's like a ratio of revolutions and minutes. So whatever the integral of this is, it's 
going to be just an equation that gives you revolutions. And if you were to plug in 
these values, 600, you would get how many revolutions there were at time 600. And 
then if you subtracted off revolutions at 0, you would get how many revolutions there 
were between these bounds. 

The RPM Problem 
The durability of a car engine is being tested.  The engineers run the engine at varying levels 
of “revolutions per minute” for a period of time.  Denote the number of revolutions per 
minute at time t by 

€ 

R(t) .  Interpret the following: 

€ 

R(t)dt
0

600∫  
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The student’s explanation stands in contrast to Jones’ (2015) assertion that “anti-derivatives 
do not actually compose the underlying meaning of the definite integral.”  To the contrary, B2 
had constructed a more sophisticated antidifferentiation concept projection for the definite 
integral that allowed him to interpret the antidifferentiation process in a conceptually meaningful 
manner.  His concept projection was composed not only of those procedural resources identified 
earlier, but also of additional interpretive resources.  In addition to understanding differentiation 
and integration as reversible procedures, he invoked resources that enabled him to reverse the 
interpretation of the derivative of a quantity as the rate of change of that quantity.   In this way, 
he could conclude that integrating turned a rate of change of something (“the change of 
revolutions in-, per minute”) into a function that gave an amount of that something.  Further 
resources allowed him to interpret the substitution and subtraction procedure as a means of 
finding how much that something changed over the interval of integration. 

In a pure math context, or faced with a need simply to evaluate an integral, B2 would 
probably not need to invoke all of the resources at his disposal.  But in a contextually meaningful 
situation, he gathered a rich collection of interpretive resources to construct a concept projection 
that gave meaning to the function matching procedures.  B2 was not alone.  Among all the 
participants of this study, three beginning students and two upper-level students all demonstrated 
an ability to use an equally meaningful concept projection for the antidifferentiation process. 
Although these concept projections are elaborations on function matching, they may deserve to 
comprise a class of their own, which I call integration as change. 

The example of B2 offers a nice opportunity to highlight the context-sensitivity of concept 
projections.  Although B2 (and others) could be observed using an integration as change concept 
projection in some circumstances, both B2 and another student could not use it to interpret 
integrals whose integrand was not known to them as a derivative or a rate of change.  When 
asked to consider an integral whose integrand was a position function, B2 concluded that the 
integrand made no sense because there had to be “a change in something else.”  He concluded, “I 
don’t really know if that correlates to real life.”  Similarly, another beginning student who 
showed herself able to use an integration as change concept projection in some circumstances 
denied that one could integrate a force function, because she believed one could integrate only “a 
function that gives a rate,” and she did not perceive a force as a rate.  Such examples demonstrate 
the delicate relationship between mathematical knowledge and contextual understanding.   

One should not conclude, however, that an integral as change concept projection is somehow 
poor or deficient.  It serves a perfectly fine purpose in appropriate contexts, and it demonstrates 
that students who may appear to be using a purely procedural function matching interpretation of 
the definite integral may well be trying to engage in meaningful sense-making. 

 
The integral as a weighted average 

Jones (2015b) added the notion of an integral as an average to his earlier list of categories for 
integral interpretations.  In this conceptualization, the integral is interpreted “as a process that 
takes a non-uniform function and ‘smooths’ it out over the domain to make it as though it were 
uniform” (p. 11).  The uniform function represents the average value of the integrand over the 
interval of integration, and the value of the integral is the area under the graph of the average 
value over the same interval.  Jones’s data did not permit him to investigate the basis for this 
conception, however, and he initially framed it as potentially in conflict with “the underlying 
meaning of the integral,” and he suggested that it might be the result of “interesting circular 
reasoning” (p. 12, emphasis original). 
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One of the upper-level students in the present study, U2, also demonstrated an ability to 
conceptualize the definite integral using an averaging process, and, over the course of several 
interviews, he offered substantial explanations for his understanding that are not rooted in 
circular reasoning.  I argue that he developed a weighted average concept projection for the 
definite integral that is entirely sensible, based on a variation of a sum of products concept 
projection, and, perhaps surprisingly, powerful in its ability to enable him to make intuitive sense 
of an integral that is otherwise quite difficult to interpret.  A thorough analysis of U2’s 
understanding of integration requires lengthy and detailed investigations of his thinking over 
several problems and several interviews.  What I provide here will necessarily be an insufficient 
summary of that analysis. 

In U2’s discussion of the definite integral in the abstract (ie, apart from a specific problem or 
application), he demonstrated an ability to interpret the integral as sum of products. He resisted 
the notion of the differential as an “infinitesimal,” however, and so he preferred to avoid the 
language of products, concluding instead that “you’re doing a two dimension sort of summing 
that “coupled” the integrand with the differential in a way that measures how “present” the 
values of the integrand are over the interval of integration.  Several times throughout the 
interviews, he referred to the “presence” of the integrand, usually using the gesture of air-quotes 
to highlight his use of the word.  In further discussion, U2 proposed the following: 

U2: I wonder if it could be explained with like a weighted average kind of, where you are 
weighting each number in the range by its, kind of like, "presence" [indicates air 
quotes] in the range, where its-, each number has an infinitely small presence in the 
range of this like weighted average.  But we can still compute it, because integrals 
allow us to do that. 

U2 used the term range to refer to all the possible values of the integrand over the interval of 
integration.  When I asked him what, specifically, was doing the weighting, he replied, “the 
weight of each value is the width of that value,” and referred to a graph of a Riemann sum area 
approximation, clearly indicating that the “width” referred to the rectangles, or the role of the 
differential in the integral.  He superimposed a horizontal line over an existing graph of a non-
constant function, calling it the average value of the function, and concluded, “if you just find the 
area of this shape [shades the rectangular part], you would have the area of the original shape.”  
This is precisely what Jones (2015b) reported observing with some of his students. 

From a mathematical perspective, the overall argument that U2 made is entirely sensible, if 
accompanied by some clarifying detail.  Technically, for example, finding the (weighted) 
average of the integrand requires weights equivalent to the width of the subintervals divided by   
the width of the interval of integration, but since the actual average is never found, U2 never 
approached the question at that level of detail.  The point is that U2 constructed a concept 
projection for the integral that permits a way to imagine how the value of the integral is found 
(not simply, as Jones suggested, how to interpret its answer).  In a follow-up discussion, U2 also 
indicated that he was aware that the actual value of the average value of the function is never 
actually found or needed, rather, “It's kind of like a conceptual tool…, so there is no average that 
ever happens.” 

U2’s developed notions of interpreting the integral as measuring the “presence” of values of 
the integrand were pervasive throughout his interviews.  He spontaneously explained at one 
point, that if one were to integrate the constant function 

€ 

f (x) = 7 , the result could be interpreted 
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as “the sevenness that's done between these bounds.”  He reaffirmed it:  “Its seven-ness.  That 
makes sense to me.” 

This way of looking at the integral is not simply novel; it actually has some power behind it.  
I asked all students in this study to consider the meaning of an integral of a position function 
over an interval of time.  In practice, this integral has no common interpretation, and I was 
primarily interested in whether or not students could deduce its units.  Nonetheless, U2 was the 
only student who was able to give a rather insightful interpretation of the integral: 

U2: So the units of your integral are going to be distance times time, since you're 
integrating over time.  And so [...], so I guess, yeah, my brain can't interpret the 
physical-.  I'm trying to think of like a real world problem that would do something like 
this, and, I don't know, like, "awayness," [uses air quotes] like, you wanted to figure 
out how far a particle was from a location where both distance and time are important. 

U2’s interpretation of the integral as a measure of “awayness” clearly comes from his weighted 
average concept projection.  He paralleled his language of “sevenness” used above, and he 
reintroduced the air quotes he used in the past when he spoke of the integral as a measure of the 
“presence” of the integrand.  His concept projection allowed him to offer the only conceptual 
interpretation of the integral of distance with respect to time suggested in this study.  To my 
eyes, it is a lovely interpretation, capturing, as he noted, the sense that, when one is away, “both 
distance and time are important.” 

Discussion 
Concept projections offer a way to consider how a variety of different meanings can be (are!) 

constructed to interpret and make sense of integration.  Which meaning is most advantageous or 
useful to any individual in any particular circumstance can and will vary.  In many cases, for 
both students and experts, interpreting an integral using an integral as change concept projection 
is entirely sufficient, without any appeal to Riemann sums.  It is a simpler, perhaps more direct, 
way of making sense of integration through antidifferentiation, it holds up mathematically, and it 
appeals to the meaning of the antiderivative.  Furthermore, using a weighted average concept 
projection is also a legitimate way to see meaning in the integration process, and one that carries 
its own interpretive advantages.  It is true that nowhere in the process of integration does one 
actually find or use the average value of the integrand.  It is, as U2 indicated, a conceptual tool.  
But it is equally true that nowhere in the integration process carried out through 
antidifferentiation does one actually find rectangles, infinitesimals, or sums.  Riemann sum 
interpretations are also conceptual tools.  There is no single “meaning” of the definite integral. 

There are ongoing efforts being made to expand opportunities for students to learn more 
conceptually sophisticated interpretations of the definite integral, particularly Riemann sum-
based interpretations.  I believe that thinking of the educational task at hand as supporting 
students in developing a variety of concept projections for the integral can be helpful in 
developing and measuring the success of these efforts. The repeated message that comes through 
research based on the knowledge-in-pieces and transfer-in-pieces frameworks is that contextual 
differences that experts have learned to think about as irrelevant, only appear irrelevant after 
engaging with them enough to construct the cognitive resources required to accommodate them.   
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STUDENTS’ OBSTACLES AND RESISTANCE TO RIEMANN SUM 
INTERPRETATIONS OF THE DEFINITE INTEGRAL 

 
Joseph F. Wagner 
Xavier University 

 
Students use a variety of resources to make sense of integration, and interpreting the definite 
integral as a sum of infinitesimal products (rooted in the concept of a Riemann sum) is 
particularly useful in many physical contexts. This study of beginning and upper-level 
undergraduate physics students examines some obstacles students encounter when trying to 
make sense of integration, as well as some discomforts and skepticism some students maintain 
even after constructing useful conceptions of the integral. In particular, many students attempt to 
explain what integration does by trying to interpret the algebraic manipulations and 
computations involved in finding antiderivatives. This tendency, perhaps arising from their past 
experience of making sense of algebraic expressions and equations, suggests a reluctance to use 
their understanding of "what a Riemann sum does" to interpret "what an integral does.” 
 
Key words:  Definite integral, Riemann sums, Knowledge transfer, Physics 
 

Researchers have argued that the Riemann sum-based interpretation of the definite integral is 
perhaps the most valuable interpretation for making sense of integration in applied contexts, 
particularly physics (Doughty, McLoughlin, & van Kampen, 2014; Sealey, 2014). Generally, a 
“Riemann sum-based interpretation” refers to imagining the definite integral as a sum of 
products, in which one of the factors is an infinitesimal or a “very small amount.” Despite the 
utility of Riemann sum-based interpretations, many students do not develop such reasoning in 
their calculus courses, despite having studied Riemann sums (Jones, 2015b). It is likely that at 
least part of the reason for this situation is that Riemann sum-based interpretations are not 
generally emphasized in traditional calculus classrooms, where procedural methods and “area 
under the curve” ideas dominate (Jones, 2015b). I argue here, however, that there are also 
psychological factors at work that can interfere with students’ ability to adopt Riemann sum-
based reasoning, and that even among students who do adopt such reasoning, these factors 
continue to lead students to doubt its legitimacy. 

 
Background 

Earlier research has shown that what typical students do know about integration when they 
complete a course in integral calculus is often confined to the procedural knowledge necessary 
for solving certain integrals symbolically, while their conceptual understanding is limited to 
interpreting the definite integral as an “area under a curve” (Bezuidenhout & Olivier, 2000; 
Jones, 2015b).  Nevertheless, evidence suggests that area interpretations are often not the most 
useful for using the integral in applied contexts (Sealey, 2006; Jones, 2013, 2015a). Furthermore, 
although many students do not have a well-developed understanding of the definite integral as a 
sum, several researchers have argued that a Riemann sum interpretation is perhaps the most 
useful to support students in making sense of many applications of integration (Doughty, 
McLoughlin, & van Kampen, 2014; Jones 2013, 2015a; Nguyen & Rebello, 2011a, 2011b; 
Sealey, 2006, 2014; Thompson & Silverman, 2008).  This situation exists even though most 
traditional calculus textbooks and curricula in the United States include presentations of 
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Riemann sums and their limits, as well as numerical methods for approximating areas based on a 
Riemann sum understanding. 

Some have suggested that there is a mismatch between what is emphasized in traditional 
calculus curricula and what is actually most useful to students in applications to disciplines 
outside of the mathematics classroom (Dray, Edwards, & Manogue, 2008; Yeatts & 
Hundhausen, 1992).  I think that this is likely to be true.  I argue in this paper, however, that 
learning to interpret the definite integral using a Riemann sum conception offers particular 
psychological challenges to students that may, in fact, be exacerbated by traditional pedagogical 
approaches.  In other words, I claim that the problem is not merely a pedagogical one, but also a 
psychological one rooted in students’ inability to reconcile a Riemann sum interpretation with 
the symbolic manipulations involved in computing the value of a definite integral using the 
Fundamental Theorem of Calculus. 

 
Interpretive framework 

Although students and experts alike commonly use an “area under a curve” interpretation of 
the definite integral, it is important to note that this is really a means of interpreting what the 
value of the integral might represent. Riemann sums, however, can be used as part of a process 
through which that value is found. Of interest to this research is how students understand the 
process of using Riemann sums, and how they understand the process of integration. That is, 
from a student’s perspective, what do these two processes do and what do they have to do with 
each other? 

 
What does a Riemann sum do? 

Under standard definitions of the embedded symbols, the definite integral can be expressed 
(or defined) as a Riemann sum: 

€ 

lim
n→∞

f (xi)Δx
i=1

n

∑  

As a mathematical, algebraic statement, the Riemann sum representation of an area as a 
combination of rectangular areas has explanatory sense built into it, in that a meaningful 
algebraic and geometric process for finding area can be mapped onto the symbols of the 
expression, and the process can be directly modeled and investigated. The area of each rectangle 
is computed by multiplying its height and width, and is represented by 

€ 

f (xi)Δx .  The 
summation indicates that all the rectangles are to be added together and combined into a total 
area.  The limiting process mathematizes the notion of letting the width of the intervals get “very 
small” (or, equivalently, letting the number of rectangles increase without bound).  Furthermore, 
the fact that the limiting process has a completion point, the limit itself, supports the notion of 
the rectangles themselves becoming “infinitesimally thin.”  In short, the Riemann sum process 
algebraically does what it says it does. There is a clear way in which algebraic and geometric 
meaning can be mapped on to the algebraic syntax. 

 
What does a definite integral do? 

The situation with regard to the definite integral, however, is quite different from the 
perspective of a student who considers a definite integral to be the means of calculating an area 
using antidifferentiation. Although the symbols used in expressing a definite integral lend 
themselves to being interpreted as the sum of the products of lengths and widths of rectangles, 
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the actual process of computing the definite integral is entirely different.  Consider a simple 
example: 

€ 

x3
0

2∫ dx =
1
4
x4

0

2
=
16
4
− 0 = 4  

In this case, what the integral “does” is transform the integrand, 

€ 

x3, into its antiderivative, 

€ 

1
4 x

4, 
through a process that cannot be subjected to algebraic sense-making. The power rule for finding 
such an antiderivative can be readily proven, of course, but the computation takes advantage of a 
known pattern associated with antiderivatives of polynomials, and the algebraic manipulation is 
immune to any sort of geometric explanation or metaphorical algebraic interpretation, except 
perhaps in the simplest cases.  In addition, no actual “summation” of any sort takes place, nor 
does anything “get very small,” and the differential dx appears simply to be extraneous and to 
evaporate in the solution process.  (Indeed, a number of the beginning students wondered aloud 
why the differential was used at all.)  Riemann sum-based reasoning may fit the syntax of the 
original integral expression, but it cannot be used to explain or extract meaning from the 
computational process. 

The central thesis of this paper is that the algebraic solution process for finding an area as a 
limit of a Riemann sum is inherently different from the solution process for finding an area 
through the computation of an antiderivative, and that this difference can cause varying levels of 
confusion and puzzlement to students.  At the very least, nothing would suggest that importing a 
Riemann sum-based explanation into the process of integration via antidifferentiation ought to be 
automatic or natural for students, at least, not for students who are accustomed to trying to make 
sense of their mathematical activities. Nothing they do when computing a definite integral is at 
all related to Riemann sum-based ideas. I am not aware of any other circumstances in typical 
mathematics curricula prior to the study of calculus that asks students to use the semantics of one 
mathematical process to interpret the syntax of another.  The purpose of this research is to 
document how this conflict between syntax and meaning is manifested in the reasoning used by 
undergraduate physics students. 

 
Methods 

Data for this study are taken from extensive interviews between the author and individual 
undergraduate physics students.  Eight beginning students were selected from among volunteers 
in an introductory calculus-based physics course, focusing primarily on classical mechanics.  
These students, representing a variety of majors, had all completed at least one academic quarter 
each of differential and integral calculus.  Seven upper-level students were also selected from a 
third-year cohort of physics majors, each of whom had completed two quarters of multivariable 
(vector) calculus. Students were interviewed using open-ended interview methods about every 
other week during the course of an eight-week term.  All students completed at least two 
interviews, and most completed four.  The questions presented to students involved primarily 
problems and concepts of calculus, both in abstract mathematical form and in applied problem 
contexts.  The interviewer asked students to answer questions and solve problems, sometimes 
using mechanical devices, thinking aloud as best they could.  Additional questioning continued 
until the interviewer believed he understood the reasoning the students were using, but, in 
general, the interviewer refrained from evaluating the students’ ideas or offering instruction.  All 
interviews were audio- and video-recorded for later analysis.  The portions of the interviews 
transcribed for and relevant to the present research all involved students’ use and interpretation 
of definite integrals in both abstract and applied contexts. 
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Searching for meaning in integration 
A thorough presentation of the data requires a careful and extended analysis of a large 

number of lengthy interview transcripts.  In the limited space allotted here, I offer only 
summaries of the central findings of this work, absent the detailed transcripts that support these 
findings.  A more comprehensive paper is in preparation. 

At the time of the interviews, none of the beginning students demonstrated an ability to use 
Riemann sum-based reasoning to interpret the definite integral.  All of these students, however, 
had studied both Riemann sums and definite integration.  When asked about the relationship 
between the two topics, many students indicated an awareness of some relationship, but none 
could articulate it.  About half identified them as two different ways of finding the same thing, an 
area.  The other half focused on Riemann sums as a means of approximating an area, while a 
definite integral could find it exactly.  As such, integrals were preferred, and Riemann sums were 
invoked only as a last resort when an integral could not be directly computed.  When asked why 
solving a definite integral through antidifferentiation found an area, none of the beginning 
students (and only one of the upper-level students) could answer the question.   

Most of the beginning students, either spontaneously or under direct questioning, indicated 
that their knowledge of Riemann sums did not in any way inform their understanding of the 
definite integral.  Throughout the interviews, however, many students showed evidence of 
searching for meaning in the procedures used to compute definite integrals through 
antidifferentiation and the Fundamental Theorem of Calculus.  This search for meaning arose in 
at least three different aspects of the solution process. 

 
Searching for meaning in symbol manipulations 

I described above how the algebra of Riemann sums directly supports algebraic and 
geometric sense-making for finding areas.  Several students in this study showed evidence of 
looking for or expecting similar sense in the symbolic manipulations of the antidifferentiation 
process.  These students, for example, questioned why the power rule for finding the 
antiderivative of a polynomial should result in a function that gives area, or why that same rule 
used in an applied context resulted in a change of units between the original function and its 
antiderivative. They specifically noted an expectation of meaning to be found in the symbolic 
manipulations: 

I don’t know why, like, bringing up a constant in the exponent, or whatever you have to 
do to solve it … I don’t know why that means that it’s now revolutions instead of 
revolutions per minute, if I was integrating revolutions per minute. 

Even upper-level students appeared to expect to find sense in the symbolic manipulations.  One 
upper-level student, also discussing the power rule, suggested that there should be a geometric 
explanation for it: 

I know it’s the power rule, but I guess they never showed me why behind the power rule, 
or like, the visual, a connection between the graph-. 

The data lead me to conclude that some students are treating the symbolic manipulations of 
antidifferentiation as though they are algebraic manipulations, and should be subject to algebraic 
interpretation and sense-making.  Both physics and mathematics educators alike have 
emphasized the importance of developing conceptual understanding to underlie algebraic skills 
(Kieran, 2007; Sherin, 2001), but we have not yet directed attention to the possibility of students’ 
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subsequent search for such meaning in the context of integration and antidifferentiation 
techniques where it cannot be found in the same way. 
 
Searching for meaning in substitution procedures 

Some students showed evidence of finding significance in the substitution procedures using 
the limits of integration at the end of the integral evaluation process.  The appeal to the 
substitution procedures typically arose as students were trying to explain why the units of an 
integrand changed in the process of integration; for example, why the antiderivative with respect 
to time of a function with units of revolutions per second was a function with units of 
revolutions.  A student using Riemann sum-based reasoning could appeal to a cancellation of 
units between the integrand and the differential.  Without such Riemann sum-based reasoning 
skills, these students appealed, instead, to the substitution process as the source of the change in 
units.  For these students, the antiderivative, in itself, essentially maintained the units of the 
original integrand.  They reasoned, however, that during the substitution procedure, the units of 
the limit were inserted into the antiderivative, thereby resulting in a change of units.  One student 
gave an extensive explanation for this and maintained his reasoning for the final units of 
“revolutions” under repeated questioning: “Because you’re adding in the time component.  
You’re substituting in.”  He argued that, during the substitution process (and only then), the units 
of the original integrand cancelled with the units of the limits of integration. 

 
Searching for meaning in the geometry of the antiderivative 

In their attempt to explain why a definite integral could be interpreted as an area, some 
students sought geometric structure within the algebraic form of the antiderivative.  They 
reasoned that, since finding an antiderivative is necessary for finding the area under the curve, 
there ought to be a way to uncover the area calculations within the algebraic structure of the 
antiderivative.  This is, in a sense, an attempt to construct a direct parallel to finding the 
underlying geometric structure within a Riemann sum, where heights, widths, and sums of 
rectangles are all represented in the algebra. 

One beginning student made a considerable effort to deconstruct an antiderivative 
algebraically in an attempt to match its algebraic structure to her graph of the area she knew it 
was used to find.  In the end, she exhibited some satisfaction in mapping her calculations to two 
area regions, the difference of which gave her the final answer.  She could not, of course, explain 
why the algebra produced the correct areas, and she quickly realized that she still could not 
explain why the antiderivative process should be used at all.  At that point, she returned to a 
written expression of the power rule, appeared to try to make sense of why it should yield an 
area, and soon gave up: “I don’t know.” 

Recall that none of these students ever invoked Riemann sum-based reasoning to interpret an 
antiderivative, and most gave convincing evidence that they could not do so.  In these 
circumstances, attempts to explain why integration does what it does led students to bring out the 
only other tools they had at their disposal: algebraic and geometric reasoning tools that serve 
well in other circumstances.  What was lacking was an awareness that antidifferentiation 
procedures are not subject to algebraic reasoning. 

 
Skepticism of Riemann sum reasoning 

In contrast to the beginning students, all of the upper-level students demonstrated 
competence in using Riemann sum-based reasoning to interpret definite integrals.  They all, in 
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fact, used it quite well for both abstract mathematics problems and contextually rooted physics 
problems.  Nonetheless, a number of the students clearly and repeatedly expressed skepticism in 
the validity of using such reasoning. 

One student interrupted his otherwise clear Riemann sum-based explanation for an integral 
he set up with a humorous expression of embarrassment: 

 Yeah, I do it.  I don’t-, I’m not proud of it, but I hope there’s some way to justify it. 

Asked to explain his comment, the student indicated that such reasoning seemed to him to be 
“kind of a trick,” but that he could not justify it mathematically, and he did not know if it could 
be justified mathematically.  He seemed particularly troubled by interpreting a differential as an 
infinitesimal, calling such an identification “hokey.”   

Another upper-level student, equally skilled at demonstrating Riemann sum-based reasoning 
when asked to do so, went out of his way to avoid using such reasoning.  His explicit reason was 
that the Riemann sum explanation did not reflect what integration actually does.  He observed, 
correctly, that integration via antidifferentiation involved a function transformation, but that this 
transformation took place through an entirely mysterious process that was not subject to sense 
making: 

Like, it’s impossible to actually accurately explain what this integral is conceptually.  It’s 
impossible to do it….  It’s not possible … to talk about an infinitesimal volume and an 
infinitesimal density.  That doesn’t make sense. 

This student’s case is particularly striking because, unlike the beginning students, he understood 
that the antidifferentiation process could not be subjected to algebraic or geometric 
interpretation, but he equally rejected a Riemann sum-based explanation because he could not 
accept that one could reason sensibly about infinitesimals.  What all of these students have in 
common, however, is an inability to reconcile reasoning about Riemann sums with the actual 
computational process of calculating a definite integral through antidifferentiation. 
 

Discussion 
A number of researchers in both physics and mathematics education have observed that 

many students, even those with a strong calculus background, fail to use Riemann sum-based 
interpretations of the definite integral, despite its unique value to supporting sense-making in 
many applied contexts.  There can be little doubt that part of the reason for students’ 
unfamiliarity with such reasoning process is that they are not given much emphasis in traditional 
calculus curricula.  What I hope this research demonstrates, however, is that addressing this 
situation is more complex than it may first appear. 

I am arguing that there are psychological explanations for why students do not quickly pick 
up Riemann sum-based reasoning, and why such reasoning may seem puzzling or suspect to 
them even when they have been taught to use it.  I hope it is clear that this paper should not be 
interpreted as another exposition of “student deficits.”  To the contrary, the heart of the argument 
is that most of the students who took part in this research were actively trying to make sense of 
the mathematical activities that make up the integration process.  The problems they ran into, 
however, exist because of the peculiar marriage that must take place between the reasoning of 
Riemann sums and their limits, and the algebraic symbols and symbolic manipulations that 
represent the process of integration by means of antidifferentiation.  At face value, there is no 
obvious reason that students can find for using Riemann sums to interpret antidifferentiation 
procedures that not only appear to be, but actually are, algebraically unrelated to the complex 
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limit and summation procedures they have learned for Riemann sums.  The algebra of Riemann 
sums readily supports reasoning about area computations; the procedures on which the 
Fundamental Theorem of Calculus is based do not.  We should not be surprised that students 
question the validity of using the reasoning for one to interpret the computational results of the 
other.  If they are to be successful, increased attempts to introduce students to the use of 
Riemann sum-based reasoning will need to accommodate these peculiar psychological hurdles 
that students will encounter. 

 
Acknowledgments 

Funding for this research was provided in part by the National Science Foundation under 
Grant PHY-1405616, and in part by a Xavier University faculty development leave. 
 

References 
 
Bezuidenhout, J., & Olivier, A. (2000). Students' conceptions of the integral. In T. Nakahara & 

M. Koyama (Eds.), Proceedings of the 24th Conference of the International Group for 
the Psychology of Mathematics Education, 2, 73-80. 

Doughty, L., McLoughlin, E., & van Kampen, P. (2014). What integration cues, and what cues 
integration in intermediate electromagnetism. American Journal of Physics, 82, 1093-
1103. 

Dray, T., Edwards, B., & Manogue, C. A. (2008). Bridging the gap between mathematics and 
physics. Retrieved 8 June 2015, from http://tsg.icme11.org/document/get/659 

Jones, S. R. (2013). Understanding the integral: Students’ symbolic forms. The Journal of 
Mathematical Behavior, 32(2), 122-141. 

Jones, S. R. (2015a). Areas, anti-derivatives, and adding up pieces: Integrals in pure mathematics 
and applied contexts. The Journal of Mathematical Behavior, 38(1), 9-28. 

Jones, S. R. (2015b). The prevalence of area-under-a-curve and anti-derivative conceptions over 
Riemann sum-based conceptions in students’ explanations of definite integrals. 
International Journal of Mathematics Education in Science and Technology, 46(5), 721-
736. 

Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels: 
Building meaning for symbols and their manipulation. In F. K. Lester, Jr., (Ed.), Second 
handbook of research on mathematics teaching and learning (pp. 707-762). Greenwich, 
CT: Information Age Publishing. 

Nguyen, D. H., & Rebello, N. S. (2011a). Students’ understanding and application of the area 
under the curve concept in physics problems. Physical Review Special Topics-Physics 
Education Research, 7(1), 010112. 

Nguyen, D. H., & Rebello, N. S. (2011b). Students’ difficulties with integration in electricity. 
Physical Review Special Topics-Physics Education Research, 7(1), 010113. 

19th Annual Conference on Research in Undergraduate Mathematics Education 1391

19th Annual Conference on Research in Undergraduate Mathematics Education 1391



Sealey, V. (2006). Definite integrals, Riemann sums, and area under a curve: What is necessary 
and sufficient. Proceedings of the 28th annual meeting of the North American Chapter of 
the International Group for the Psychology of Mathematics Education (Vol. 2, p. 46). 

Sealey, V. (2014). A framework for characterizing student understanding of Riemann sums and 
definite integrals. The Journal of Mathematical Behavior, 33, 230-245. 

Sherin, B. L. (2001). How students understand physics equations. Cognition and instruction, 
19(4), 479-541. 

Thompson, P. W., & Silverman, J. (2008). The concept of accumulation in calculus. Making the 
connection: Research and teaching in undergraduate mathematics, 73, 43-52. 

Yeatts, F. R., & Hundhausen, J. R. (1992). Calculus and physics: Challenges at the interface. 
American Journal of Physics, 60(8), 716-721. 

 

 
 
 
 
 

19th Annual Conference on Research in Undergraduate Mathematics Education 1392

19th Annual Conference on Research in Undergraduate Mathematics Education 1392



Enriching Student’s Online Homework Experience in Pre-Calculus Courses: Hints and Cognitive 
Supports 

1 
 

Nathan Wakefield 
University of Nebraska-Lincoln 

Wendy Smith 
University of Nebraska-Lincoln 

 
Abstract: As part of reforming our Pre-Calculus courses, we realized that reforms to instruction 

needed to be accompanied by reforms to the homework.  We utilized the online homework system 
WeBWorK but recognized our students wanted more support on missed questions.  WebWorK “hints” 
provided us an avenue to ask students leading questions to prompt thinking over procedures.  Preliminary 
data show many students are using these hints and the hints are working as intended.  We plan to expand 
hints beyond our Pre-Calculus courses.  The open source nature of WeBWorK provides an opportunity 
for hints to be implemented on a wide scale. 

 
The Department of Mathematics at the University of Nebraska-Lincoln (UNL) in the midst of 

reforming high-enrollment (first-year) mathematics courses. The reforms include implementing an active 
learning model for instruction; common activities, exams and lesson plans; and a blended course format 
using the WeBWorK online homework system to supplement in-class instruction and activities.  
 The reform efforts began in fall 2012, and the first attempts prompted much more extensive 
involvement by faculty and a more comprehensive research study. The extra support of instruction and 
additional data allowed us to both experience greater success and better understand the positive 
contributors to the success. While the levels of success have increased substantially (from 62% to 80%), 
there is still room for improvement. During focus group interviews of students in fall 2014, the biggest 
complaint students had is the way the online homework system works.  

In 2005, Hauk and Segalla conducted an extensive study of student perceptions of web-based 
homework using the WeBWorK online homework system. They found  

as a facilitator for engaging in mathematical self-regulation WeBWorK is involved only as a 
monitor for correctness…the web based tool does some monitoring but the responsibility for 
metacognitive control (response to the monitoring), problem-solving heuristics, and the impact of 
mathematical beliefs rests on the student. (p. 241) 

Thus, while an effective tool, WeBWorK lacks in a key aspect of the triadic reciprocity proposed by 
Bandura (1986) and modified by mathematics educators (e.g., Cohen, Raudenbush, & Ball, 2002). 
WeBWorK lacks the environmental interaction with a subject expert to provide the cognitive 
apprenticeship. This project aims to improve these interactions through direct modification of elements of 
the triadic reciprocity within our courses. Specifically, we attempted to improve interactions between the 
students and the mathematics content (WeBWorK), the students and the teachers (instructors, learning 
assistants and tutors), and the teachers and the mathematics content, all within the UNL context. 

This poster will talk about the collection of modifications to the WeBWorK system and problems.  
One benefit of online homework is that students are given immediate feedback regarding the 

correctness of their answer, and are allowed multiple attempts, on the exact same problem, to get a correct 
answer. One problematic aspect of this type of system is minor errors are treated the same as more 
egregious errors. Additionally, knowing an answer is incorrect almost never helps a student determine 
how to correctly complete a problem. Hauk and Segalla (2005) quote students as having reported “I prefer 
getting feedback from the professor because he could help me understand what I did wrong” (p. 244). 

Thus, we attempted to 
leverage a new WeBWorK 
“Hint” feature.  Our hypothesis 
was that using the “Hint” 
button would provide students 
with focused questions to 
prompt higher-order thinking 
about problems the student has 
answered incorrectly.  In the 
figure, the hint button only 
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works after the student has attempted the problem and input an incorrect answer.  The hint also involves 
more than just showing students and example problem but leverages the questioning one might expect 
from an actual instructor.  
 In social cognitive theory, people are said to learn from their social environment. According to 
Schunk (2004), learning can occur vicariously through engagement with electronic materials. Adding a 
feature that allows a hint to be given will further enhance the interaction students have with the electronic 
materials on WeBWorK. We note that while some online homework environments (such as MyMathLab) 
offer hints in the form of similar problems worked out correctly, our hints are in the form of questions 
designed to help students think about common errors related to each particular problem. Providing student 
with “cookie cutter” examples increases the likelihood students will try to learn through memorizing 
procedures, rather than reinforce our active learning philosophy that students need to learn through 
higher-order thinking and making sense of mathematical problems.  
 After creating the hints in the summer of 2015, students were given the opportunity to use the 
hints in the fall of 2015.  We surveyed students about their use of WeBWorK hints and recorded results 
from 274 students (27% response rate).  Among those surveyed, 84% reported accessing the hints at least 
once, with responses evenly split among “more than once a week”, “less than once a week” and “a few 
times a semester”.  We further asked students to report on the usefulness of the hints.  Students reported 
“sometimes (42%)” or “rarely (37%)” finding the hints helpful.  We did not find this surprising since the 
students accessing the hints were already stuck on the problem and may have needed more help than a 
few questions could provide.  In fact, only 12% of the respondents stated that they never found the hints 
helpful.  Nine percent of the respondents reported “usually” finding the hints helpful.  We claim this 
supports the goal of creating a hint that prompts higher order thinking instead of walking students through 
procedures.  Students often want to be walked through a procedure, and see anything short of this as 
unhelpful. Therefore, we do not expect students to identify the hints as “always” helpful.  Our hints are 
designed to maintain the cognitive demand of the questions while also helping students to clear up any 
common misunderstandings.  We thus view a successful hint as one in which some students find the hint 
helpful but not every student found the hint satisfactory. 
 All indications show that in our university online homework is here to stay.  Further research 
needs to be conducted into how to support students most effectively.  We have found the hints to be a 
valuable resource in supporting student thinking and plan to extend the use of hints into other courses 
beyond our Pre-Calculus courses. Due to the open nature of WeBWorK, other instructors using 
WeBWorK homework can also make our hints available to their students. 
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This paper presents case studies of two instructors implementing a research informed                       
multivariable calculus curriculum. The analysis, structured around social constructivist                 
concepts, focuses on the interactions between the roles of the instructor in facilitating student                           
discussions and the instructors’ experiences with the activities. This study is a part of an effort to                                 
evaluate and improve the project’s effectiveness in supporting instructors in implementing the                       
activities to promote rich discussions with and among students. We find these instructors to be                             
focused on their roles as facilitators for studentcentered smallgroup discussion and that they                         
choose not to have of whole class discussions. We argue that initiating whole class discussions                             
would address concerns and negative experiences reported by the instructors.   
 
Keywords:  Multivariable calculus, Active engagement, Instructor roles, Whole class discussions 
 

The Raising Calculus to the Surface (RC) project uses physical manipulatives, group work, 
and openended questions to encourage students to discover multivariable calculus concepts and 
use different representations of multivariable functions. During lab activities, the materials are 
designed for the instructor to move between two roles: (a) acting as a smallgroup discussion 
facilitator or questioner to help students within a group resolve difficulties, and as a (b) 
wholeclass discussion facilitator to help the whole class together engage in meaningful 
discussion about the newly discovered concepts. As a smallgroup discussion facilitator , 
instructors do not inject content, but by asking questions, they help groups move toward 
meaningful discoveries while maintaining the group’s autonomy and ability to struggle 
meaningfully. As a wholeclass discussion facilitator, the instructor shapes the discussion 
productively by prompting students with important questions and ideas. 

In contrast to the instructor’s roles of lecturer, question answerer, or answer checker, the 
instructor’s role in these activities often requires much less active talking. This is sometimes a 
challenge for instructors to adopt, in part because it is so easy to focus on only one role instead of 
moving between roles and is uncomfortable for some lecturefirst instructors. The project 
includes several support mechanisms for instructors, including (a) a training workshop, (b) an 
instructor’s guide, and (c) an online support website. This paper explores the implementation of 
RC materials by two instructors in order to better understand how the project team can support 
instructors in having rich discussions with students in group and wholeclass discussions. 

Theoretical Perspective and Methods 

Theoretical perspective 
Our overall research, similar to activelearning research studies, is structured around social 

constructivist concepts (Ernest, 2010; Vygotsky, 1978 & 1986). This conceptual lens regards 
individuals and their learning environment as an interconnected unit where learning of an 
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individual occurs both in sociocultural activity and in the mind of individuals. With this 
perspective in mind, all class interactions (group work, instructor communication and interaction, 
etc.) play an important role on the students’ development of mathematical concepts. Students’ 
inclass engagements on tasks with more knowledgeable and capable others such as the 
instructor and peers help them develop the mathematical concepts through communication. Thus, 
it is important to focus on instructors' interaction and the ways in which they communicate with 
their students.   

In this paper, we specifically focus on how instructors enact discussions with students during 
studentcentered activities. Both personal characteristics (e.g. knowledge of different teaching 
strategies and beliefs about how to support student learning) (Ball, et al., 2008) and situational 
factors (e.g. expectations of content coverage, class size and room layout) (Henderson and 
Dancy, 2007) influence such actions.  

Methods 
Data for this paper were accumulated from pre/post surveys for two instructors, Rickie and 

Janos, about their participation in the project (summer 2014, December 2014, and spring 2015 if 
implemented a second time), a postsurvey about the training workshop (summer 2014), 
electronic weekly reports submitted by adopting instructors (fall 2014 and spring 2015), an 
evaluation interview (summer 2015), and some student data. The instructor data are in the form 
of responses written by the instructors on surveys and reports, an audio recording and transcript 
of Janos’s interview, and detailed notes from Rickie’s interview (no recording was made). The 
student data are written work and audio recordings of student groups in Janos’s class working on 
an activity and scanned copies of Rickie’s students’ activity worksheets. The pre/post surveys 
included items about the instructors’ attitudes and beliefs about student learning in multivariable 
calculus and items about practices. The interviews were semistructured and included logistical 
questions about how the activities were used and reflection questions about how the activities 
went and the instructors’ opinions about the geometric and contextual features of the activities.  

The authors surveyed the corpus of data and took notes on information interesting to the RC 
project. The authors revisited the data and took additional notes focusing on how the instructors’ 
implemented the activities and how the instructors supported and managed students’ discussions. 
These notes were used to create descriptions of the instructors’ implementation of the activities 
and how they supported and managed discussions during the activities. 

Both instructors have characteristics for adoption: they both voluntarily chose to adopt the 
activities, attended an offsite training workshop, describe themselves as valuing active learning, 
and have in the past used active learning classroom strategies apart from the RC materials. 
Additionally, they both have been/are participants in a professional organization which focuses 
on helping mathematicians grow professionally in their early years in a tenuretrack position. We 
choose to highlight these two instructors because, despite these commonalities, the role of the 
instructor in these implementations was conceived of and put into practice differently. In 
examining these two cases, we hope to understand how to support instructors in facilitating 
productive discussions across a variety of implementations.  

The descriptions presented here are not an attempt at a comprehensive picture of these 
instructors’ experiences in implementing the activities. They are focused on one aspect of the 
implementation: the instructors’ roles during the activity in facilitating student discussions. 
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Additionally, these instructors were not selected to be representative of the average adopting 
instructor, but rather to illustrate a range of instructors included in the project.  

Descriptions of Implementation for Two Instructors 

Rickie teaches at a large public Master’sgranting university, used the project materials in 
two sections of multivariable calculus in Fall 2014 and another two sections in Spring 2015. He 
was able to attend the full workshop, had previously taught multivariable calculus at his home 
institution for multiple semesters, and incorporated the project materials in both fall and spring 
terms with two sections each semester.  

In contrast, Janos teaches at a medium private Ph.D.granting university and used the project 
materials in one section of a thirdsemester calculus course. Janos attended only the first three 
hours of the nine hour workshop, had a curriculum mismatch with the project materials 
(multivariable functions were introduced in the previous, second semester calculus course), and 
hence chose to implement the materials on the last day class.  
 
Implementation by Rickie 

Rickie initially attempted to change his instructional practice to a more studentcentered 
approach by attempting to “not talk” to the entire class and to not provide answers to students. 
He then expressed frustration at students missing opportunities to discuss important aspects and 
not reflecting on their answers. He modified the student worksheets to prompt these 
discussions/reflections. At the end of the second semester, he reported that he highly valued the 
active, social nature of his class as a result of using the activities, consistent with studentfocused 
approach, but wished the worksheets contained extension questions that challenged students to 
reflect on their answers. 

The curriculum is designed for students to discover mathematical content in small groups, 
prior to lecture. This process often requires that instructors give students the space to make and 
correct mistakes. Rickie conscientiously attempted to achieve this goal. After implementing the 
first activity, Rickie wrote that “I focused as much as possible on not talking. That is obviously 
difficult” (weekly report, 9/1/2014). When asked what went well in the first activity, Rickie 
wrote “Letting them take over their own learning. Good prep for the next lab” (wr, 9/1/2014). 
When asked what could have gone better, Rickie said “Too little of me helping each group. I 
have 9 groups making it very tough to always help. Or prompt” (wr, 9/1/2014). We interpret 
these comments as meaning that Rickie felt the groups generally needed assistance from him to 
be productive, but that he was trying to give students space to explore by not addressing the 
entire class and providing explanations, or “not talking,” an unnatural instructional mode for 
him. He mentions “not talking” in his reports of the first two activities in both semesters.  

The instructor expressed a desire for students “to have someone in the group question 
responses that were incorrect” (wr, 1/17/2015).  Students are not likely trained in this ‘cynic’ 
role, but it is an important part of authentic mathematical practice.  The instructor can model this 
by prompting or promoting student discussion during either smallgroup discussion or whole 
class discussion. By doing it with the whole class, all of the students can see how this role 
contributes to and shapes the discussion.  

In his evaluation interview, Rickie also noted that he particularly valued the wrapup 
questions on the student worksheets which challenge students’ new understandings of 
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mathematical content.  On the second activity, a wrapup question intended to create a twosided 
debate between students based on relying upon (or not upon) their intuition.  Done in the whole 
class, this question provides the instructor multiple students for each side who can argue using 
knowledge gained from the activity.  By putting the question on the activity sheet, Rickie gained 
an ability to address issues with students at their pace at the smallgroup level. He altered the 
question to address the conflict between the surface’s height referring to lead level and not 
elevation. He diverted a whole class discussion into a small group discussion. This decision 
removed opportunity for students to contribute to the class’s collective understanding. Rickie 
expressed a desire to offload whole class discussions onto the worksheet on several occasions. 

One benefit of employing wholeclass discussion is it offers flexibility to instructors during 
the activity. Rickie noted on the fourth activity in the fall semester that "I think if at least one of 
the pos[itive] x or pos[itive] y direction was such that the slope was negative, the activity would 
have more ‘bang’ to it in terms of discussion" (wr, 9/27/2014) He also noted that "A question 
like 'where should you draw the gradient vector...on the surface or on the grid paper'? Do it. 
Why? might be nice. Better yet, have them do it on the contour map for that surface" (wr, 
9/27/2014). Rickie provided this constructive feedback to the project as a way to improve the 
activity sheet.  Mathematically, specific scenarios like the first suggestion described above 
cannot be guaranteed.  Hypothetical questions on an activity sheet are confusing; such questions 
fit better in discussion.  The whole class discussion allows students with different surfaces and 
different scenarios to share their work and find the common mathematical ideas common across 
cases.  This sharing of knowledge across groups helps focus students on underlying math 
content, not studying their specific surface. 

In the postcourse survey, Rickie notes the project’s impact on the classroom and student 
learning: “The social interactions are much improved in my mind. The early labs really help 
break the ice and make the class more lively (both during class and after hours). That alone is 
worth consideration for continuation” (2nd post survey, spring, 2015). 

Implementation by Janos 
In a manner similar to Rickie, Janos “spent most of my time answering their [the students] 

questions” (weekly report, 12/8/2014) in small groups and did not engage the students in a whole 
class discussion. 

Janos worked diligently to help students address their concerns and understandings during 
the class period, consistent with the intended smallgroup discussion facilitator role described 
above. Audio recordings of student group discussions revealed that the instructor had meaningful 
discussions with students and used questioning techniques with students. He noted that as a 
result, "I was exhausted by the end of the class!" In a separate part of the report, the instructor 
noted “Running this activity took a lot of energy and I could not get to each of the seven groups 
quick enough” (weekly report, 12/8/2014). 

We believe two aspects of the implementation contributed to the fatigue reported by Janos: 
focusing on his smallgroup discussion facilitator role and inadequate preparation (reported by 
the instructor). First, when moving between student groups, an instructor will encounter the same 
student difficulties/questions several times. Another strategy would be for the instructor to 
orchestrate a wholeclass discussion when encountering questions/difficulties common to several 
student groups. This strategy has several advantages, including being more energy efficient for 
the instructor, providing opportunity for students in other groups to suggest or share resolutions 
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to difficulties (promoting student authority), and allowing for a common language and consensus 
to develop among the groups (engaging in authentic mathematical practice). 

Second, Janos used a lot of intellectual energy addressing students’ questions. He reported 
instances of not being quite sure about how to address some of the students’ questions and 
attributed this to a lack of preparation on his part. “I feel like I should have read the instructor 
[guide]. I thought that going through it once with my advanced physics kids would be enough 
but, um, it wasn't. I should havelater, after it happened, I went and I looked at all the different 
material and I thought, ‘Oh, I really should have read this' because … they [the researchers]  saw 
… common students' responses and questions, and those definitely came up [in my class].” 
(evaluation interview). 

Janos mentioned having a really interesting conversation while practicing with two former 
students in preparation for class. He attributes the opportunity for this to happen to his role as a 
more equal member of the group. “I remember we started talking about functions and ‘1:1’ and 
‘onto’, I think that's what it wasand inverses, but with respect to, you know, in three space. 
And, I thought that was a really interesting conversation I had with them because it was like the 
three of us were in a group together, working on this together, you know. I wasn't acting like the 
professor guiding them; I was learning with them … but that conversation did not come up in 
class in any of the groups that I witnessed… I think that if … we had someone IN each group… 
who can kind of guide the conversation then it might have gone there, but since I was bouncing 
around...I wasn't able to really spend that deep time with any of the groups” (evaluation 
interview). One possible way to address this facilitation challenge is to allow time for a 
wholeclass discussion. In a wholeclass discussion, the instructor can participate as a more equal 
member of the class than when moving from group to group where his participation in each 
group is necessarily transient. 

Discussion and Questions 
These case studies describe instructors who focus on the role of smallgroup discussion 

facilitator and do not facilitate wholeclass discussions. The case studies above include instances 
where having a wholeclass discussion may result in less work for the instructor and increase 
opportunities for all groups to participate in important discussions. Although the workshop 
modeled whole class discussions and the instructors guides provide support for instructors to 
conduct whole class discussions, these cases suggest that this support does not go far enough. It 
seems that these instructors may have ideas about studentcentered instruction, or about the 
specific RC curriculum, that do not include a role for whole class discussions. Given this 
backdrop, we ask the following questions: 

a. What aspects of a training workshop can support instructors in initiating and moderating 
whole class discussions? 

b. What kinds of instructor discourse promotes student autonomy in whole class discussions? 
c. What impact do whole class discussions have on student learning and mathematical 

practices in studentcentered curricula?  
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Assessing Students’ Understanding of Eigenvectors and Eigenvalues in Linear Algebra 
 

 Kevin Watson Megan Wawro Michelle Zandieh 
 Virginia Tech Virginia Tech Arizona State University 
 
Many concepts within Linear Algebra are extremely useful in STEM fields; in particular are the 
concepts of eigenvector and eigenvalue. Through examining the body of research on student 
reasoning in linear algebra and our own understanding of eigenvectors and eigenvalues, we are 
developing preliminary ideas about a framework for eigentheory. Based on these preliminary 
ideas, we are also creating an assessment tool that will test students’ understanding of 
eigentheory. This poster will present our preliminary framework, and examples of the multiple-
choice-extended questions we have created to assess student understanding. 
 
Key Words: Linear Algebra, Eigenvector, Eigenvalue, Assessment 
 

The study of linear algebra is highly useful to students in science, technology, engineering 
and mathematics (STEM) fields and is often introduced in the first or second year of university. 
The use of linear algebra extends into upper-division university studies as well, in courses such 
as quantum physics. One crucial, and particularly valuable, concept encountered by students in 
linear algebra is that of eigentheory. As part of a larger study investigating how students reason 
about and symbolize concepts related to eigentheory in quantum physics (Project LinAl-P), we 
are (a) creating a preliminary framework for student understanding of eigentheory, and (b) 
developing an assessment to examine students’ understanding of eigentheory. These research 
activities go hand-in-hand because, as we strive to develop a way to measure students’ rich and 
nuanced understanding of eigentheory, our measurement tool (a collection of multiple-choice-
extended questions) must be grounded in and aligned with a research-based framework that 
characterizes what it means to understand eigentheory (Izsák, Lobato, Orrill, & Jacobson, 2011).   

 
Literature and Preliminary Framework 

Although other researchers have examined students’ understanding of eigenvectors and 
eigenvalues (Gol Tabaghi & Sinclair, 2013; Salgado & Trigueros, 2015; Sinclair & Gol Tabaghi, 
2010; Stewart & Thomas, 2006; Thomas & Stewart, 2011), a comprehensive framework 
encompassing and connecting the elements necessary to conceptually understand eigenvectors 
and eigenvalues and their uses (such as in diagonalization) does not currently exist. To begin our 
preliminary framework, we consulted this literature base. In particular, we drew from 
delineations of conceptual understanding of eigenvectors and eigenvalues through genetic 
decompositions (Salgado & Trigueros, 2015; Thomas & Stewart, 2011); these papers mainly 
focused on the mental constructs necessary to understand the standard algorithm for calculating 
eigenvalues and eigenvectors, rather than geometric or structural modes of reasoning. We also 
examined a Quantum Mechanics textbook (McIntyre, 2012) to investigate what skills related to 
eigentheory, such as diagonalization, were crucial to applications within that discipline. 

As we progressed, we noted the compatibility of our work with that of Sierpinska (2000), 
who distinguished three modes of reasoning – synthetic-geometric, analytic-arithmetic, and 
analytic-structural – available to students in linear algebra corresponding to three interacting 
languages. These languages are: “the ‘visual geometric’ language, the ‘arithmetic’ language of 
vectors and matrices as lists and tables of numbers, and the ‘structural’ language of vector spaces 
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and linear transformations” (p. 209). While our framework is still a work in progress, it will 
include delineations across: comprehending calculations involved in finding the eigenvalues and 
eigenvectors of a given matrix and why they work; understanding eigenvectors, eigenvalues, and 
eigenspaces geometrically when working within ℝ! and ℝ!; using eigenvectors and eigenvalues 
in applications (e.g., diagonalization, long-term behavior of dynamical systems, Markov Chains); 
and drawing structural inferences from known information such as algebraic and geometric 
multiplicities. By the time of the conference, we aim to have this framework more fully fleshed 
out and organized into a structure useful for examining student understanding of eigentheory. 
 

Assessment Instrument 
Our current work in student understanding of linear algebra in physics draws its foundation 

from a larger research project in the teaching and learning of linear algebra; one research product 
from that project is an assessment instrument for measuring student understanding of key linear 
algebra concepts (Zandieh et al., 2015). This instrument contains closed-ended questions in an 
adapted multiple-choice format, which we call multiple-choice-extended (MCE). This format, 
which is just appearing in physics education research, is based on work by Wilcox and Pollock 
(2013), who adopt questions from the valid and reliable electricity and magnetism diagnostic to 
explore “the viability of a novel test format where students select multiple responses and can 
receive partial credit based on the accuracy and consistency of their selections,” to allow for 
“preserving insights afforded by the open-ended format” (p. 1). Questions written in a MCE 
format begin with a multiple-choice element and then prompt students to justify their answer by 
selecting all statements that could support their choice. In Project LinAl-P, we have been 
working to create a MCE-style assessment instrument for measuring and characterizing students’ 
understanding of eigentheory in linear algebra. Figure 1 contains an example of a MCE question 
from the pilot version of Project LinAl-P’s assessment instrument.  
 

An eigenvalue of the matrix ! = 4 2
1 3  is: 

(a) ! = 2  
(b)   ! = 3 

 

Because …  (select ALL that could justify your choice)  
  

(i) This eigenvalue is a solution to the characteristic equation of !. 
(ii) This eigenvalue makes det ! − !" = 0 a true statement. 
(iii) This eigenvalue makes det ! − ! ! = ! a true statement. 
(iv) When acted on by matrix !, all vectors in ℝ! are stretched by the amount of this eigenvalue. 
(v) When acted on by matrix !, there is a line of vectors in ℝ!!that are stretched by the amount of this 

eigenvalue. 
(vi) !! = !! is equivalent to ! − !" ! = !,  and this eigenvalue makes it possible for ! − !" ! = ! 

to have a nontrivial solution. 
(vii) !! = !! is equivalent to ! − !" ! = !, and this eigenvalue makes it possible for ! − !" ! = ! 

to have only the trivial solution. 
(viii) !! = !! is equivalent to ! − ! ! = !, and this eigenvalue makes it possible for ! − ! ! = ! to 

have a nontrivial solution. 
Figure 1. Example of an MCE question from the eigentheory assessment instrument. 

 
In Fall 2015, we interviewed two students using pilot versions of eight MCE questions, 

which led to minor question revisions. In January 2016, we will administer the questions in 
written format to approximately 20 students entering a quantum physics course. Data and 
analysis from both of these sources will be included on the poster.    
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Support for proof as a cluster concept: 
An empirical investigation into mathematicians’ practice 

 
Keith Weber 

Rutgers University 

Abstract. In a previous RUME paper, I argued that proof in mathematical practice can 
profitably be viewed as a cluster concept in mathematical practice. I also outlined several 
predictions that we would expect to hold if proof were a cluster concept. In this paper, I 
empirically investigate the viability of some of these predictions. The results of the studies 
confirmed these predictions. In particular, prototypical proofs satisfy all criteria of the 
cluster concept and their validity is agreed upon by most mathematicians. Arguments that 
satisfy only some of the criteria of the cluster concept generate disagreement amongst 
mathematicians with many believing their validity depends upon context. Finally, 
mathematicians do not agree on what the essence of proof is. 

Key words: Cluster concept; Mathematical practice; Proof 

Mathematics educators agree that an important goal of mathematics education is to 
improve students’ abilities to write proofs. Unfortunately, there is also a consensus that 
mathematics educators do not agree on what a proof is (Balacheff, 2002; Reid & Knipping, 
2010; Weber, 2009). In a previous RUME theoretical report (Weber, 2014), I suggested that 
proof in mathematicians’ practice might profitably be viewed as a cluster concept in the sense 
of Lakoff (1987). Essentially, this means that there may not be a precise definition that 
distinguishes a proof from a non-proof; rather, proof is actually a cluster of characteristics 
where a proof was expected to satisfy most or all of the characteristics but an argument might 
still be a proof if any one or two of the characteristics were not. I claimed that this had the 
following testable hypotheses: 

(i) Mathematicians would believe that an argument that satisfied all characteristics of the 
proof cluster would be regarded as a proof by all mathematicians and would not 
be viewed as controversial. 

(ii) Arguments that satisfied some, but not all, of the characteristics of the proof cluster 
would be viewed as controversial by mathematicians. There would not be a 
consensus on whether these arguments were proofs and such evaluations would be 
context-dependent. 

(iii)  Mathematicians would not agree on what the true essence of proof was. 
In the studies reported in this contributed report, I specifically test whether these hypotheses 
were true. 

Theoretical perspective 

The goal of this paper is to test the viability of the theoretical perspective that proof is a 
cluster concept. I begin by briefly summarizing the arguments from Weber (2014). I start 
with the presumption made by many mathematics educators: we want our definition of proof 
to be descriptive and align with mathematical practice1. That is, the arguments that we define 
to be proofs must include the proofs that mathematicians actually read and write. As 

                                                
1 A mathematics educator need not adopt this presumption (c.f., Staples, Thanheiser, & Bartlo, 2012). This 
article offers consequences for those who accept the presumption that our delineation of proof should be 
accountable to mathematicians’ practice, which I believe constitutes the majority of mathematics educators who 
are studying proof. 
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educators, we are not satisfied with define proofs as types of formal derivations that would 
exclude nearly all of the proofs in the published literature (CadwalladerOlsker, 2011). As 
Lakoff (1987) observed, when we try to define categories such as proof, we naturally try to 
list a set of properties that all proofs satisfy. However, Lakoff also argued that most real 
world concepts and many scientific ones cannot be defined in this way. In Weber (2014), I 
present arguments for why proof is an example of a concept that cannot be defined by 
properties that all proofs satisfy. One alternative that Lakoff (1987) suggested is that some 
concepts are cluster concepts which occurs when as “a number of cognitive models combine 
to form a complex cluster that is psychologically more basic than the models taken 
individually” (p. 74). 

I suggested that proof might be a cluster concept with six components: (i) a proof is a 
convincing argument; (ii) a proof is a perspicuous argument; (iii) a proof is deductive and 
non-ampliative; (iv) a proof is sufficiently transparent so that a knowledgeable mathematician 
can fill in any gaps; (v) a proof is written in a representation system with agreed upon 
methods of inference; and (vi) a proof is an argument that is sanctioned by the mathematical 
community. In Weber (2014), I give a more detailed account and rationale for these criteria. I 
also claimed that no single criterion above is sufficient to define proof. For each criterion, we 
can find arguments accepted as proofs by (most) mathematicians that fail to satisfy that 
criterion. (e.g., computer-assisted proofs are not perspicuous and we do not expect a 
knowledgeable mathematician to be able to complete each of the gaps contained within that 
proof). 

If proof can productively be conceptualized as a cluster concept, then this makes three 
predictions. First, an argument that satisfies all elements of the cluster concept should be 
viewed as prototypical and non-controversial. Mathematicians should all agree that such an 
argument is a proof independent of context and expect their colleagues to agree with them. 
Second, if an argument satisfies some but not all elements of the cluster concept, it should be 
viewed as an atypical proof whose validity is questionable. There should be variance in 
mathematicians’ responses and they should be aware of the controversial nature of these 
arguments. Third, proof does not have an “essence”. That is, mathematicians should not agree 
on which criterion in the proof concept is most important.  

Citing philosophers of mathematical practice, in Weber (2014), I argued that each of the 
above hypotheses is plausible. In the current paper, I complement these theoretical arguments 
with an empirical study. As I will discuss in the contributed report, it is somewhat 
problematic to rely on writings about mathematical practice as the claims in the literature are 
often contradictory. Take, for example, the claim that computer-assisted proofs are 
controversial proofs that are ultimately accepted by mathematicians, a claim that has been 
made by philosophers (e.g., Aberdein, 2009) and mathematics educators (e.g., Dreyfus, 
2004). In this contributed report, I provide empirical support for this claim, which might lead 
a skeptic to say that I am merely verifying the obvious. Hence, it is important to note that 
there are philosophers and mathematicians who write about computer-assisted proofs as 
being uncontroversial, arguing that they are clearly epistemologically on par with more 
conventional proofs (Fallis, 1996; Montano, 2012) and even that debates about their validity 
are “anachronistic” as this issue has been decided years ago (Fallis, 1996). On the other side, 
there are those who claim that computer-assisted proofs- in spite of being undeniably correct- 
are not recognized as proofs by the mathematical community (Rota, 1997) and others who 
believe that computer-assisted proofs are fundamentally unreliable for obtaining conviction 
(Jean-Pierre Serre; as cited in Raussen & Skau, 2004). With the exception of Serre, each of 
the authors cited in this paragraph used their assumptions about computer-assisted proofs as 
starting points to deduce strong conclusions about mathematical practice; they cannot all be 
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right. The main point here is that citing philosophers and mathematicians to justify empirical 
claims about mathematical practice is problematic as there is internal disagreement between 
the groups; by carefully choosing who is cited, a researcher can find grounds to justify both a 
strong claim, its negation, and qualified version of that claim2.  
 
Methods 

Participants. These studies are comprised of two internet-based survey in which 
mathematicians were asked to evaluate the validity of five purported proofs. The rationale, 
validity, and methodolgoy of using the internet to obtain a large sample of mathematicians 
has been discussed elsewhere (Inglis & Mejia-Ramos, 2009; Lai, Weber, & Mejia-Ramos, 
2012) and is not discussed in detail here for the sake of brevity. For the first study, e-mails 
were sent to the secretaries at the mathematics departments at 25 large state universities in the 
Great Britain. In these e-mails, the secretaries were asked to forward a request to participate 
in the study with a link to the study’s website to the faculty members of their department. 
Through this process, 95 mathematicians agreed to participate in the study and completed the 
survey. For the second study, the same process was completed with 25 large state universities 
in the United States, yielding a total of 110 mathematician participants 

Procedure. In the first study, which I will call the proof evaluation survey, participants 
were told that they would be asked to make validity judgments on five mathematical 
arguments from number theory.  The participants were told that the focus of the study was on 
the type of reasoning within the argument and that no attempt was being made to deceive 
them. They were then told that each proof was published, each sentence in the argument was 
true, and each calculation was carried out correctly. These provisions were put in place 
because my previous research has shown that validating proofs in number theory can be a 
time-consuming process for those who did not specialize in that area (Weber, 2008), which 
would limit the number of mathematicians who would invest the time to complete this 
survey. Further, I wanted to avoid generating disagreement amongst mathematicians due to 
performance errors (c.f., Inglis et al, 2013)-- that is, I did not want mathematicians to disagree 
on whether a proof was valid because some mistakenly thought a true statement was false. I 
was interested in the types of reasoning mathematicians considered valid in a proof rather 
than their evaluations of particular arguments. 

The participants were then shown five arguments in a randomized order and told the 
publication source from where the argument came. The five arguments were: 

• Prototypical Proof 1 (PP1): A conventional proof that “The nth prime pn satisfies 
pn ≤ 2^(2n-1) for all n≥1” taken from Jones and Jones (1998) Elementary Number 
Theory textbook that was published by Springer. 

• Prototypical Proof 1 (PP2): A conventional proof that, “if n is a number of the 
form 6k-1, then n is not perfect” by Holdener (2002) that appeared in the 
American Mathematical Monthly. 

• Empirical Proof (EP): An empirical argument to support “if n is an odd integer, 
then n2 is an odd integer” based on verifying the claim for n = 1, 3, and 5. The 
participants were told this appeared in Weber (2003)3.  

                                                
2 To be clear, quantitative studies are certainly not without their limitations as well. The point is that it is better 
to have a good theoretical argument and quantitative evidence to support it. This is especially true in the case of 
investigating mathematical practice, where the leading theoretical experts do not agree about factual claims 
about what arguments mathematicians accept. 
3 The argument did appear, but as a common type of invalid student proof. However, based on recent studies 
(Iannone & Inglis, 2010; Weber, 2010), I no longer think these proofs are that common amongst mathematics 
majors in proof-based courses. 
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• Visual Proof (VP): A visual proof of the claim that “if n is an odd integer, then n2 
is congruent to 1 (mod 8)” by Nelsen (2008) that appeared in Math Horizons. 

• Computer Assisted Proof (CAP): A modification of a computer-generated proof 
that  given by Adamchik and Wagon 
(1996) in the American Mathematical Monthly. 

After each proof was presented, participants were asked to make four judgments: 
• On a scale of 1-10, how typical was the reasoning used in this proof of the proofs 

that they read and write?  
• In their estimation, was this argument a valid proof? (yes/no) 
• What percentage of mathematicians did they think would agree with their 

judgment? (>90%, 71-90%, 51-70%, <50%) 
• For a more nuanced judgment on validity, did they think that: (i) The proof was 

valid in nearly all mathematical contexts, (ii) I think the proof is valid but there 
are some mathematical contexts in which it would be invalid, (iii) I think the proof 
is invalid, but there are some mathematical contexts in which it would be valid, 
and (iv) The proof would be invalid in nearly all mathematical contexts. 

The prediction is that the two conventional proofs, which satisfied all the criteria in the 
cluster concept, would not be controversial. They would be regarded as prototypical proofs 
(scoring high on the first judgment), widely recognized as valid (most participants would 
answer “yes” to the second judgment) independent of context (most participants would 
answer (i) for the fourth judgment), and most would believe that the mathematical 
community would agree with them (most participants would answer >90% on the third 
judgment). Likewise, the empirical argument that satisfies none of the criteria of cluster 
concept would also not be controversial. Most participants would say this was not a proof, 
independent of context, and would expect their colleagues to agree. 

The visual proof and computer-generated proof satisfy some, but not all, criteria of the 
cluster concept. Visual proofs are not written in a conventional representation system and 
computer-generated proofs are not perspicuous and contain gaps that could not be necessarily 
filled in by a knowledgeable mathematician. Hence the prediction is that these proofs would 
be controversial. Mathematicians would find these to be atypical of the proofs that they read 
(scoring low on the first judgment), would disagree on their validity (there would be a 
significant percentage of participants who answered yes to the second judgment but also a 
significant percentage who answered no), would be aware that there was disagreement (most 
participants would not answer >90% on the third judgment), and would think the validity of 
the proof was contextual (most participants would answer (ii) or (iii) for the third question). 

In the second survey, which I call the proof essence survey, participants were asked what 
they believed the essence of a proof was and were given nine options to choose from: 

1. A proof provides a mathematician with certainty that a theorem is true 
2. A proof provides a mathematician with a high degree of confidence that a theorem is 

true 
3. A proof is a deductive argument with each step being a logical consequence from 

previous steps 
4. A proof is a blueprint from which a mathematician could write a complete formal 

proof if he or she desired 
5. A proof, in principle, can be translated into a formal argument in an axiomatized 

theory 
6. A proof explains why a theorem is true 
7. A proof convinces a particular mathematical community that a result is true 
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8. None of the above captures the essence of proof 
9. There is no single essence of proof 
If proof is a cluster concept, then we would predict that there is no single criterion that 

captures the essence of proof. Hence, we would not expect the majority of participants to 
choose any one of these responses. 

Results 
 Mean 

Typicality 
Validity Judgment Anticipated Level of Agreement  

Proof Rating Valid Invalid 91-100% 71-90% 51-70% 0-50% 
PP1 7.4 99% 1% 90% 9% 1% 0% 
PP2 6.8 98% 2% 78% 20% 2% 0% 
VP 2.6 62% 38% 14% 46% 33% 7% 
CAP 2.7 39% 61% 10% 41% 37% 12% 
EP 1.6 0% 100% 92% 0% 1% 6% 

Table 1. Participants’ judgments on the validity of the five proofs that they read 
 

Proof Valid proof in nearly all 
contexts 

Valid proof but invalid 
in some contexts 

Invalid proof but valid in 
some contexts 

Invalid proof in nearly 
all contexts 

PP1 94% 5% 1% 0% 
PP2 79% 20% 0% 1% 
VP 21% 33% 40% 6% 
CAP 10% 33% 42% 15% 
EP 1% 1% 3% 95% 

Table 2. Participants’ judgment on the more fine-grained question on utility 
 
The results of the proof evaluation survey are presented in Tables 1 and 2. The results of 

the study confirmed the predictions. For PP1 and PP2, the large majority of participants 
claimed the arguments were valid, valid in nearly all mathematical contexts, and thought 
most of their peers (>90%) would agree with them. The median score for how representative 
these proofs were of what they actually read and wrote was about seven. For VP and CAP, 
there was substantial disagreement amongst the participants, the participants were mostly 
aware that at least 10% of their colleagues would disagree with them, and the majority 
thought the validity of the proof depended on context. 

For the Essence phase of the study, no participant chose “none of the above” and 11% 
chose 9, that there was no single essence of proof. No choice gathered the majority of the 
participants; the fourth choice (that proof was a blueprint where a knowledgeable 
mathematician could fill in every gap) was the most popular, chosen by 25% of the 
participants, and the first choice (that proof provided certainty) being chosen by 22% of the 
participants. Every option aside from 8 (none of the above) was chosen by at least three 
participants.  

Discussion and significance 

The proof evaluation phase of the study 
 

There are philosophers and mathematics educators who claim that there is a very high rate 
of agreement amongst mathematicians as to whether a particular argument is a proof or not 
(e.g., Azzouni, 2004; Selden & Selden, 2003). However, there are also philosophers and 
mathematics educators who challenge this claim (e.g., Aberdein, 2009; Auslander, 2008; 
Dreyfus, 2004; Inglis et al., 2013; Rav, 2007; Weber, Inglis, & Mejia-Ramos, 2014). The data 
presented here offer a potential approach to resolve this discrepancy. For typical proofs, 
mathematicians may indeed usually agree on their validity. Disagreements may arise due to 
performance errors (e.g., a reviewer overlooks a flaw in the proof), but this could presumably 
be resolved in a conversation between mathematicians, as Selden and Selden (2003) 
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suggested. The disagreements do not concern the legitimacy of the type of reasoning being 
used. Hence, those who highlight mathematicians’ “unusual degree of agreement about the 
correctness of arguments” (Selden & Selden, 2003, p. 7) seem to be correct in the following 
sense: for the proofs that mathematicians typically encounter in their working lives, it may 
well be the case that there is usually a high level of agreement amongst mathematicians on 
the validity of these proofs.  

However, for atypical proofs, arguments that satisfy some but not all criteria of the cluster 
concept, disagreement on validity is common and mathematicians are aware of it. 
Importantly, the majority may think validity judgments about these proofs are contextual. (A 
good follow-up study would be to interview individual mathematicians to get a better sense 
of what these contexts are). Hence, those who challenge the claim that mathematicians share 
the same standard of proof are right to note that there are classes of proofs where this is not 
so.  

The finding about the validity of atypical proofs being contextual has a useful 
consequence for methodological design. In a sense, we can say that asking someone whether 
a visual argument is a proof is not a well-formed question. The majority of the participants in 
this study felt the answer depended on mathematical context. In general, asking individuals to 
judge whether an imperfect argument without a fatal flaw is a proof to make a binary 
judgment on the argument’s validity might be asking an artificial and unreasonable question. 
It might be better to ask in what sense is the argument a proof (and in what sense is it not) 
and in what contexts the argument would be acceptable (and in what contexts would it not be 
acceptable). 

The essence phase of the study 
 
The data on the proof essence phase of the study offer a strong challenge to a researcher 

who wants to describe what proof essentially is to mathematicians. For instance, take the 
claim that proof is, at its essence, a convincing argument- an assertion made by numerous 
mathematics educators (e.g., Balacheff, 1987; Harel & Sowder, 1998; Mason, Burton, & 
Stacey, 1982) and some philosophers (e.g., Davis & Hersh, 1981). If this were so, we might 
expect that for the essence question, most participants in this study would have chosen option 
1 (proofs provide a mathematician with certainty), 2 (proofs provide a mathematician with a 
high degree of confidence), or 7 (a proof convinces a mathematical community). Perhaps 
some participants might have chosen 9 (there is no single essence of proof) on the grounds 
that a proof needed to be convincing and something else. Yet if we add the number of 
participants who chose 1, 2, 7, or 9, we only reach 41%. It seems difficult to claim that 
mathematicians essentially view proof as a convincing argument if the majority of 
mathematicians chose another facet of proof that proof is essentially about (in particular, 
choices 3, 4, 5, and 6). To avoid misinterpretation, no single study can be offered as a 
definitive rebuttal to the claim that many mathematicians view proof as something other than 
a convincing argument. What I do contend is that those who want to claim that proof is 
essentially about conviction (or explanation or anything else) should at least be held to 
account for these empirical findings. 

This offers a practical suggestion for teachers or researchers who desires that proof in 
their classrooms to be epistemologically consistent with mathematicians’ practice. They 
should not take conviction, explanation, social acceptance, or deduction as the primary 
criteria for what constitutes a proof. Different mathematicians place different weight on the 
importance of each of these. My contention is that good proofs satisfy all of these roles and I 
would encourage classroom research to reflect that. 
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This paper presents some initial findings of an investigation focused on mathematics teachers’ 
ways of thinking about proportional relationships, with an emphasis on multiplicative reasoning. 
Deficiencies in proportional reasoning among teachers can be serious impediments to the 
development of robust reasoning among their students. As such, this study focuses on how 
mathematics teachers reason through tasks that involve proportional reasoning by addressing 
the following two research questions: (1) In what ways do teachers reason through a specific 
task designed to elicit proportional reasoning? and (2) What difficulties do teachers encounter 
while reasoning through such tasks? This paper discusses the construction of a robust 
proportional reasoning structure in the context of a specific task and discusses one particular 
obstacle, which impedes the construction of such a structure.  

Key words: Proportional reasoning; Multiplicative reasoning; Within-measure comparison; 
Across-measure comparison 

 
Recent reform efforts to institute the Common Core State Standards for Mathematics 

(CCSSM, 2010) have called for an increased emphasis on multiplicative and proportional 
reasoning, particularly in the middle grades. According to Lesh et al. (1988), proportional 
reasoning is the capstone of elementary school mathematics and the cornerstone of high school 
mathematics. One of the most critical elements of proportionality is the ability to make sense of 
the multiplicative relationships among the relevant quantities. Multiplicative reasoning is rooted 
in the ability to reason quantitatively and make sense of contexts involving multiplicative 
structures. The CCSSM standards themselves call for students to be able to “describe a ratio 
relationship between two quantities” (CCSS.math.content.6.rp.a.1). Yet historically, the 
mathematics traditionally taught in K-12 has emphasized additive reasoning and ill-
conceptualized procedures for multiplicative situations, rather than building productive ways of 
thinking about quantities, relationships among quantities, ratios, multiplicative comparisons, and 
proportional relationships. This paper describes an investigation conducted with middle school 
teachers who are participating in a large-scale professional development program designed to 
improve their conceptual understanding of mathematics in the middle grades. Specifically, this 
study describes teachers’ conceptions of proportionality through the lens of a proportional 
reasoning structure and highlights the challenges that teachers encountered. 

 
A Discussion of the Literature 

Centrally nested in the idea of multiplicative reasoning is the ability to first conceive of the 
quantities that need to be compared multiplicatively. In this study, the notion of quantity is 
aligned with Thompson’s (1993) definition of quantity: “a person constitutes a quantity by 
conceiving of a quality of an object in such a way that he or she understands the possibility of 
measuring it” (p. 165). Thompson (1994) refers to the mental operation of conceiving one 
quantity in relation to another as a quantitative operation. Thompson also points out that “a 
quantitative operation creates a structure – the created quantity in relation to the quantities 
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operated upon to make it work” (p. 185). The mental structure created as a result of a 
quantitative operation ultimately supports images of other numerical operations.  

Reasoning about quantities is necessary for reasoning about proportional relationships. 
Cramer et al. (1993) outlined several components involved in proportional reasoning: (1) 
understanding the multiplicative relationships that exist within proportional situations, (2) being 
able to differentiate proportional situations from non-proportional ones, (3) realizing the 
existence of and relationships between multiple solution pathways, and (4) being unaffected by 
the situational context or the types of numbers in the task. Kaput and West (1994) found that the 
context of the problem, the language of the task, the kinds of quantities involved, and the 
numerical values of the quantities all impact student thinking. 

 
Methodology 

This investigation focuses on nine middle school mathematics teachers who were recruited 
for this investigation based on their participation in a large-scale, two-year professional 
development program. Leveraging Goldin’s (2000) principles, this study incorporated semi-
structured, task-based interviews for investigating teachers’ thinking when working through 
tasks involving proportional relationships. The teachers participated in five, one-hour videotaped 
interviews. The research team analyzed all interview sessions with the lens of characterizing 
teachers’ thinking and reasoning as they grappled with the tasks. The design and implementation 
of this study was guided by the following two research questions: (1) In what ways do teachers 
reason through a specific task designed to elicit proportional reasoning? and (2) What 
difficulties do teachers encounter while reasoning through such tasks?  
 

Creating a Robust PR Structure 

In situations where two quantities are proportional, there exists an opportunity to construct a 
structure that can be utilized when addressing missing value proportion problems. A proportional 
reasoning (PR) structure is a network of multiplicative relationships that exist among the values 
of proportional quantities. This section of the paper presents one PR structure that is robust and 
founded on meaningful reasoning. Consider the Shape Task, which was used in this study: 

  
In the Shape Task, it is important to recognize that the value of an area, measured in 

triangles, is proportional to the value of the same area measured in rectangles. Most of the 
teachers in the study were able to deduce through various methods that the area of 4.5 triangles is 
the same as the area of five rectangles. However, it was not trivial for many teachers to 

The Shape Task: Suppose the area of 3 triangles is the same as the area of 2 squares. 

   
Also, suppose the area of 3 squares is the same as the area of 5 rectangles. 

 
What is the area of 2 triangles, measured in the rectangle areas? Explain your reasoning. 
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subsequently determine the amount of rectangles that is equivalent to two triangles, and a few 
were not able to overcome this challenge. We present data in this paper that highlights this one 
particular obstacle. 

For the Shape Task, the constant of proportionality is 10/9 (found by computing 5÷4.5); 
which results from a multiplicative comparison of the two area measurements, five rectangles to 
4.5 triangles. Kaput & West (1994) refer to this comparison of 10/9 (or its reciprocal of 9/10) as 
an across-measure comparison because it is a multiplicative comparison of two distinct ways to 
measure one quantity (i.e. area in triangles versus area in rectangles). We interpret the across-
measure comparison of 10/9 as 10/9 rectangles for every one triangle, just as we interpret 9/10 as 
9/10 of a triangle for every one rectangle. 

Another approach is to construct a scale factor within the same measure (e.g. scaling one 
area measured in triangles, to a new area measured in triangles). By multiplicatively comparing 
two triangles to 4.5 triangles, the scale factor of 4/9 (found by computing 2÷4.5) can be 
constructed and then applied to the second measure (area in rectangles) to maintain the 
proportional relationship. Kaput & West (1994) call the comparison of 4/9 (or its reciprocal of 
9/4) a within-measure comparison because it is a multiplicative comparison of two values within 
the same measure space, each value expressed using the same unit. We interpret the within-
measure comparison of 4/9 as representing that the area of 2 triangles is 4/9 times as large as the 
area of 4.5 triangles. A robust PR structure includes both ways of reasoning – across-measure 
and within-measure – as well as the associated reverse operations. The construction of a robust 
structure is depicted in the figure below. 

 

Identify both comparisons Use both comparisons Complete the structure 

   
 

The ability to construct a PR structure as described above depends on the refinement of 
other ways of thinking about mathematics. For example, one should be able to use division to 
evaluate multiplicative comparisons as instinctively as one might use subtraction to evaluate 
additive comparisons. Our data indicates that utilizing division to evaluate multiplicative 
comparisons is not trivial for some middle school mathematics teachers. Unless one is able to 
meaningfully determine the across- and within-measure comparisons, one will not be able to 
construct the PR structure described. 
 
Where is the relationship of cross-products: !.! !"

! = (!) ! ? 
The PR structure that we describe deliberately omits the cross-product relationship because 

it is not a necessary component of a robust proportional reasoning structure. Research has shown 
that students and teachers who leverage the procedure of cross-multiplying as a strategy for 
solving proportional tasks often lack the conceptual knowledge to explain why this strategy 
works (Cramer et al., 1993). An important goal in mathematics is to help students develop the 
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ability to make sense of their world and to reason through problems. As supported by NCTM’s 
Principles to Action (2014), procedural fluency should emerge from conceptual understanding. 
When trying to reason why cross-multiplication is effective, it can be challenging to explain the 
meaning of the cross-products. In the Shape Task, we have difficulty making sense of the 
product of an area (measured in triangles) and an area (measured in rectangles). Consequently, 
we claim that techniques involving cross-multiplication (or other procedures) should only be 
introduced after a solid foundation of proportional reasoning is constructed. 
 

Discussion of Findings 

In this study, initial data have revealed that the difficulties teachers encountered while 
solving the Shape Task were consistent with past research findings about student thinking (Kaput 
& West, 1994; Thompson, 1994). This study contributes to the field by investigating obstacles 
that teachers encounter while reasoning about situations that involve proportional relationships. 
The following is a discussion of the data from two teachers who grappled with the Shape Task, 
each of whom demonstrated difficulty in answering the mathematical question: What do I need 
to multiply this by to get that? 
 
The Case of Ellie: 

Within the first couple of minutes of engaging with the task, Ellie deduced that 4.5 triangles 
was equivalent to five rectangles. She recognized the need to scale 4.5 triangles to two triangles, 
but she was unable to determine the scale factor by which to do so. 

 
Ellie: I have to divide nine halves by, to get to two, I have to divide it by two ninths? No, 
that’s going to give me one…What I was trying to do was, okay, I have to get down to two 
triangles (points at the 4.5 triangles drawn on the page)… 
 

Ellie’s inability to determine how to scale 4.5 triangles to two triangles led her to abandon a 
sensible way of thinking – a way of thinking that is essential to the construction of the PR 
structure set forth in this paper. During another attempt to answer the question, she again 
encountered difficulty when trying to scale 1.5 triangles to two triangles. 

 
Ellie: So then I’ve confused myself again. 
Interviewer: How have you confused yourself? What are you thinking? 
Ellie: …How do I get to two from one and a half? What do I have to multiply by? And I 

could not, for the life of me, think of what that would be. But it would have to be 
(long pause) four thirds? Does that work? 

 
Although successful in determining how to scale 1.5 triangles to two triangles, the cognitive load 
was heavy and she ultimately relied on algebraic methods – writing down and then solving the 
algebraic equation !! x = 2. 
 
The Case of Anne: 

Like Ellie, Anne quickly deduced that 4.5 triangles were equivalent to 5 rectangles. Anne 
unitized this relationship to 0.9 triangles per one rectangle, but struggled to leverage this 
information productively. 
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Anne: So two full triangles would be…Oh now for some reason I’m getting stuck and I 
know all I have to do is enlarge it. What do I do? Okay, um, to get to two full triangles… 

 
Unable to multiplicatively scale 0.9 triangle to two triangles, Anne relied on additive reasoning 
to combine the amounts of triangles (see written work below).   

 
 
 

 
 

This initial approach was eventually abandoned since Anne could not determine how many 
rectangles were equivalent to 2/10 of a triangle. After moving on with other tasks in the 
interview, Anne returned to the Shape Task and successfully completed the task using a modified 
strategy of scaling three triangles to two triangles, which did not seem to pose a challenge. 
 

Anne: But I want two triangles. I have three triangles. So I’m gonna multiply this, I’m 
just gonna multiply this whole thing by 2/3, will let me say two triangles. 
 

Anne’s initial challenge with the task could be indicative of issues pertaining to scaling with 
fractional numbers – scaling from a whole number to another whole number is less cognitively 
demanding than scaling from a fraction to a whole number. According to Cramer et al. (1993), 
Anne does not have a robust ability to reason proportionally because the numbers in the task 
affected her reasoning. 
 

Conclusion and Discussion Questions 

The initial data reveal that several teachers struggled to evaluate multiplicative comparisons, 
which is a severe hindrance to the construction of the robust PR structure that we have described. 
Also, the data reveal that teachers in this study have inconsistent – and sometimes incoherent – 
ways of thinking about the quantities and their proportional relationships. At times, the teachers 
in the study lose track of the quantities they are relating together and they experience difficulty in 
describing how the quantities are related. Other instances have revealed that teachers rely on 
additive reasoning in order to cope with an inability to compare two quantities multiplicatively. 
A PR structure that sensibly relies on multiplicative comparisons may have provided the teachers 
with a conceptual understanding of proportionality to further facilitate their thinking and mitigate 
their struggles. As part of the presentation, the following questions will be posed and discussed 
to further the direction of this research investigation: (1) Have other PD researchers encountered 
similar obstacles to proportional reasoning and, if so, how have they addressed them? (2) How 
can we develop video coding frameworks to investigate proportional reasoning? (3) Are there 
researchers who already have such coding frameworks that we could adopt? 
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Students’ sense-making practices for video lectures 
 

Aaron Weinberg Matthew Thomas 
Ithaca College  Ithaca College 

 
Abstract 

There has been increased interest in the use of videos for teaching techniques such as “flipped” 
classrooms. However, there is limited evidence that connects the use of these videos with actual 
learning. Thus, there is a need to study the ways students experience and learn from videos. In 
this paper, we use sense-making frames as a tool to analyze student’s video-watching. We 
describe preliminary results from interviews with 12 students who watched short videos on 
introductory statistics and probability concepts and discuss implications for student learning.  
 
Key words: Video Lecture, Statistics Education, Sense-Making 

 
Introduction & Background 

In the past decade, the ideas of “flipped” classrooms, “blended” classrooms, and massive 
open online courses (“MOOCs”) have been increasingly hailed as effective teaching strategies 
and innovative ways to deliver content to students (e.g.,White House, 2013; USA Today, 2012). 
Most MOOCs and many flipped classrooms rely on video-recorded lectures to deliver their 
content. Despite the increasing interest in these pedagogical techniques, relatively little is known 
about how students watch and learn from these videos. 

There have been numerous studies that have described the the positive influence of flipped 
classrooms—and, indirectly, video lectures—on student learning (e.g., Bergmann & Sams, 2008; 
Day, 2008; Demetry, 2010; Franciszkowicz, 2008; Frydenberg, 2012; Fulton, 2012; Gannod, 
Burge, & Helmick, 2008; Green, 2012; Lage, Plat, & Treglia, 2000; Lockwood & Esselstein, 
2013; McGicney-Burelle, Jean, & Xue, 2013; Moravec, Williams, Aguilar-Roca, & O’Dowd, 
2010; Seltzer, Gladding, Mestre, & Brookes, 2008; Toto & Nguyen, 2009; Warter-Perez & 
Dong, 2012; Wasserman, Norris, & Carr, 2013). However, there are few studies on flipped 
classrooms that provide empirical data to support their claims. Even those that do tend to suffer 
from several significant methodological issues. First, the data sources tend to consist of surveys 
in which students self-report their own engagement and learning; when studies use more 
objective measures of learning, these have tended to be very broad, such as students’ scores on 
in-class exams and standardized state tests such as ACT scores. Second, many of the studies 
failed to use blinding or randomization when comparing groups of students in different types of 
classrooms, and did not account for variables such as instructor enthusiasm, instructor planning, 
and the effects of the novelty of the pedagogy. Third, most of the studies do not determine the 
degree to which the students are using out-of-class resources (in particular, watching videos). 

In addition to these methodological issues, the studies generally do not attempt to separate 
learning that might occur in the classroom from learning that might occur from utilizing the out-
of-class resources. Consequently, these studies have not established a connection between what 
the students do outside of class and what the students learn. Thus, it is essential for us to begin to 
investigate what students learn from watching video lectures, independently of class time. 

The research questions we are attempting to answer are: 
1. How do students make sense of video lectures? 
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2. What do students learn from video lectures, and how does this relate to their 
sense-making practices? 

 
Theoretical Framework 

We use the idea of sense-making frames (Weinberg, Wiesner, & Fukawa-Connelly, 2014) to 
describe the aspects of video lectures that students attend to and the ways students make sense of 
these aspects. A conceptual frame is “a mental structure that filters and structures and 
individual’s perception of the world by causing aspects of a particular situation to be perceived 
and interpreted in a particular way” (Weinberg, Wiesner, & Fukawa-Connelly, 2014, p. 169). 
From this perspective, a student who is watching a video lecture experiences and seeks to 
organize a collection of phenomena; the student uses his or her prior knowledge and experience 
to create a conceptual frame, and this frame then determines which phenomena are noticed and 
how they are interpreted. While watching the video, students encounter gaps, which are 
“questions that must be answered in order for the student to engage in or construct meaning for 
the mathematical situation or activity” (Weinberg, Wiesner, & Fukawa-Connelly, 2014, p. 170). 
When the student answers the question, we say that she or he has constructed a bridge. There are 
four basic types of sense-making frames: 
● Content-oriented: Students notice mathematical aspects of the situation (e.g., symbols, 

definitions, facts, and concepts) and encounter gaps about the meaning of the 
mathematical content or how to use it in an example that is being presented. 

● Communication-oriented: Students notice the instructor’s spoken, written, and gestural 
actions for organizing and presenting mathematical ideas and seek to understand the ways 
the instructor is categorizing or connecting ideas, the ideas communicated by board 
layout, and the instructor’s organizational cues. 

● Situating-oriented, mathematical purpose: Students notice mathematical aspects of the 
situation and seek to determine why the concept is useful or why it is mathematically 
significant. 

● Situating-oriented, pedagogical purpose: Students notice communicational aspects of the 
situation and seek to understand how the instructor’s pedagogical actions and decisions—
such as choosing and ordering lecture content—are related to the meaning or significance 
of the mathematical ideas. 

 
Methodology 

The goal of sense-making research is to elicit the student’s perspective and experience of 
watching a video lecture. Thus, the methodology focuses on providing students an opportunity to 
directly experience a situation (in this case, by watching a video lecture); to identify and discuss 
the gaps they encounter; and to investigate the ways they bridged the gaps. To do this, we used 
message q/ing and abbreviated timeline methods (Dervin, 1983; Glazier & Powell, 1992; Spirek, 
Dervin, Nilan, & Martin, 1999) as part of an interview protocol: 
● In message q/ing, participants are asked to read a text and stop at places where they have 

a question to engage in an in-depth analysis. In order to generate stopping points, we 
asked students to take notes while they watched the video and to write a question mark in 
the margins of the paper when they felt that there was an aspect of the video that was 
unclear or confusing. 
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● In abbreviated timeline, the researchers select excerpts from the video and have students 
discuss these chronologically. We identified numerous points in each video that we 
thought included an interesting description of a mathematical concept, an interesting 
aspect of the way the concepts were presented or organized, or aspects of mathematical 
concepts that illuminated an aspect of a “big idea.” 

We wanted to know how the students’ sense-making might be influenced by the 
mathematical content, conceptual focus (i.e., focusing on conceptual or procedural aspects), and 
presentation style of the video. For the mathematical foci of the videos, we selected two concepts 
from introductory statistics: the five-number summary and basic probability computations using 
counting, addition, multiplication, and complements. We selected these topics because they 
require relatively little background mathematical knowledge. Some research suggests the 
presentation style might influence students’ engagement with the video lecture (e.g., Guo, Kim, 
& Rubin, 2014) and there is some evidence that explicitly addressing conceptual difficulties in 
videos might improve student understanding (e.g., Muller, Bewes, Sharma, & Reimann, 2007). 
Thus, for each content area and conceptual focus, we decided to use videos that had one of three 
presentation styles: A two-person discussion that explicitly addressed potential areas of 
confusion; a “talking head” video with an instructor drawing on a tablet or writing on a board; or 
a “Khan academy” style video with an instructor narrating a drawing or Powerpoint slides. 

 
Methods 

To recruit students, we visited all of the introductory mathematics classes at our institution (a 
mid-side, comprehensive Northeastern college) and invited all students who had not previously 
taken a statistics class to participate; students were offered a $20 gift certificate as compensation. 
Twelve students expressed interest in participating and all were interviewed. 

In order to find videos that fit each of the twelve categories described above (i.e., two content 
areas, three presentation styles, and two conceptual foci), we searched various online sources 
(e.g., Coursera). We were unable to find any Discussion-style videos, so we created these 
ourselves, attempting to make the content and examples roughly equivalent to those presented in 
the other videos. 

Each interview lasted approximately one hour, which was divided into a two half-hour 
blocks, the first one focusing on the measures of spread video and the second focusing on the 
probability video. In each block, the students were asked to describe their prior experience with 
the content area in order to gauge their background knowledge. Then, the students watched the 
video and took notes using the message q/ing method. The students then summarized the main 
ideas of the video and worked on several conceptual and procedural problems. After answering 
the questions, the students identified each place in the video where they had written a question 
mark, describing what was happening, what aspect they thought was unclear or confusing, and 
how they had eventually understood what was happening. If there was time remaining in the 
block, the interviewer “rewound” the video to several of the pre-selected excerpts and asked the 
students to describe the mathematical content, the significance of the content, and/or the 
instructor’s reasons for including or explaining the concepts in a particular way. 

The entire interview was audio-recorded; the student’s note-taking was recorded with a 
Livescribe pen; the video was played on a tablet using Coach’s Eye software (which allowed the 
student to draw on the video) and the student’s playback of the video was recorded using 
Camtasia software. The audio recordings were transcribed and used as a basis for analysis. 
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����-�;��;0-���-��.�)��-,)���#�.�)�-� After applying the codes individually to one of the 
interview transcripts, the members of the research team compared codes and used differences in 
the coding to refine the coding manual. This process of refinement occurred until over 80% 
agreement was reached, and then we individually coded all of the transcripts. 
 

Preliminary Results and Discussion 

Although we are still in the early stages of analysis, we have already noticed four interesting 
aspects of the data related to identifying gaps and constructing bridges. 

First, no two students identified the same gaps while watching the videos. This suggests that 
it is not possible to design a video that all students would experience in the same way or that 
would be an equally effective learning tool for all students. 

Second, students identified relatively few gaps while watching the videos. Out of the twelve 
students, only three wrote more than one question mark in the margins of their notes; most of the 
students felt that they had constructed bridges for the gaps as they watched. However, all of the 
students had difficulty responding to many of the interviewer’s questions. Student 4 summarized 
this at the end of his interview: 

I think, well until, like I said like before just watching the videos, that was all fine. 
And then when you actually broke down the video and then asked me like why do 
you think, like motives behind certain things that he did I kinda was like, kind of 
stumped I mean because I don't really know, I don't really know his teaching 
methods or his styles so I didn't know if it was something mathematical based like 
you were saying or if that's just the way he teaches to kind of give us a further 
understanding. 

In addition to not recognizing when parts of the video didn’t make sense, this student’s 
description suggests that this may be, in part, a consequence of not attending to, at various 
points, the mathematical content, the instructor’s way of presenting the content, or the big picture 
ideas. One way to interpret this is that productively interpreting the video requires the student to 
use and switch between multiple sense-making frames. 

Third, all of the students encountered the issue of only recognizing aspects that they didn’t 
understand when the interviewer asked them specific questions. For example, Student 1 did not 
make any question marks in the margins of her notes, and stated that the video made sense while 
watching it. When she was later asked what is meant by a “random variable,” after a long pause 
she responded that she “definitely didn’t” understand the term. There are two ways we might 
interpret this result. First, the student might experience a gap, but various constraints—such as 
the need to quickly attend to subsequent parts of the video—might prohibit the student from 
consciously recognizing the gap and constructing a bridge. Second, the gap might not exist until 
the researcher helps the student notice particular aspects of the video and choose an appropriate 
sense-making frame.  
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Fourth, in addition to not recognizing aspects of the video that they didn’t understand, most 
students also experienced gaps and constructed bridges that, when questioned by the interviewer, 
appeared to have flaws. For example, Student 12 described how he was able to interpret the 
symbol string P(Y)=2 while taking notes, but subsequently was unable to understand what it 
meant: 

Interviewer: So here he says Y is the total number of heads, P Y equals two. What does 
that mean when he says P Y equals two? 
Student 12: Your guess is as good as mine. I think it's the possi... let's pretend that P 
equals two and I don't know what two would mean. Yeah I have no idea. I wrote it down 
and it made sense when I was writing it down here, but I have absolutely no—I can't 
fathom what it is.  

There are several ways we might interpret this result. First, the constraints described above might 
prohibit the student from fully examining his bridge and recognizing its limitations. Second, the 
student might have been using a sense-making frame that did not enable him to construct a 
“robust” bridge. Third, the student might not match the implied reader (Weinberg & Wiesner, 
2011) of the video and does not possess the necessary background knowledge or ways of 
interpreting aspects of the video that are required to construct an accurate bridge. 

These last two results have important implications for students’ opportunities to learn from 
watching videos. If one of the benefits of video use is that students are able to pause and rewatch 
sections that are confusing or aren’t making sense, then an implicit assumption is being made 
that students are able to recognize when this is happening and either identify concepts with 
which they need help or construct a correct understanding of the concepts. Our data suggest that 
students may have difficulty recognizing these moments and, when students do recognize such 
moments, they might not realize when their understanding is insufficient. Consequently, students  
may not be able to take full advantage of the potential benefits that video use may provide. 

As indicated above, we have not yet completed the analysis of our data. In the future, we plan 
on identifying patterns in the students’ use of various sense-making frames; the role that 
background and cross-disciplinary knowledge play in sense-making; what the students learned 
from watching the videos; and how the students’ sense-making practices are connected to their 
learning. We hope to use these results to make recommendations for structuring students’ video-
watching practices to help them use videos effectively as learning tools. 

 
Discussion Questions 

● What aspects of videos might influence the ways students make sense of the videos? 
● How might we structure students’ video-watching to support their learning? 
● What are the limitations of sense-making frames as a theoretical tool? 
● What additional tools might be useful for analyzing this data? 
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Exploring pre-service teachers’ mental models of doing math 
 

Ben Wescoatt 
Valdosta State University 

This preliminary study explores the mental models pre-service teachers hold of doing math. 
Mental models are cognitive structures people use while reasoning about the world. The 
mental models related to mathematics would influence a teacher’s pedagogical decisions and 
thus influence the mental model of mathematics that their students would construct. In this 
study, pre-service elementary teachers drew images of mathematicians doing math and of 
themselves doing math. Using comparative judgements, they selected an image that best 
represented a mathematician doing math. Most images of mathematicians doing math were 
of a man in front of a blackboard filled with mathematical symbols. The mathematicians 
appeared happy. In contrast, many images of participants showed them to be unhappy or in 
confused states. The preliminary results suggest that their shared mental model of doing 
math is naïve and shaped by limited experiences with mathematics in the classroom.  

Key words: Mental Models, Drawing Research, Pre-service Teacher Mathematics Beliefs 

In a recent article of the MAA FOCUS magazine, Francis Su, newly installed president of 
the MAA was asked the following question, “What is your earliest memory of doing 
mathematics?” Dr. Su spoke of solving arithmetic problems on worksheets, prior to being of 
kindergarten age, given to him by his father. He further clarified that, at that time, this was 
what he believed mathematics to be (Peterson, 2015). What does it mean to do math? Being 
able to better understand this notion and clearly explain it is imperative, especially for those 
involved in education, as beliefs about it drive curricular and pedagogical decisions. 
Additionally, lack of a clear vision hampers efforts to help people learn mathematics and to 
recruit future mathematicians into the field, endangering mathematics as a whole. This 
current study aims to explore mental models held by pre-service elementary teachers to better 
understand their perceptions of what it means to do math. 

Mental Model Theory 

Mental model theory is a theory of how people reason about the world. A mental model is 
a cognitive structure that is constructed by an individual as a representation of a possibly real, 
imaginary, or hypothetical external reality (Gentner, 2002; Jacob & Shaw, 1999; Johnson-
Laird, Girotto, & Legrenzi, 1998; Jones, Ross, Lynam, Perez, & Leitch, 2011). Due to 
cognitive limitations of an individual, a model cannot contain every detail of the reality and 
thus are not complete or technically accurate representations (Gentner, 2002; Jones et al., 
2011; Norman, 1983/2014). However, a model will have structural features in common with 
the represented domain and be as iconic as possible (Johnson-Laird, 2004). Thus, structural 
relations present in the reality will have analogous representations in the individual’s mental 
model (Johnson-Laird, 1998). 

An individual constructs a mental model through experience, by perceiving or imagining 
the reality, or by understanding discourse and gaining formal knowledge (Jacob & Shaw, 
1999; Johnson-Laird et al., 1998; Jones et al., 2011). Because of how models are constructed, 
a mental model is contextually bound, constrained by an individual’s experiences with the 
represented domain (Norman, 1983/2014). In addition to experience, goals and motives for 
construction of the model influence the structural aspects of the reality that end up being 
represented in the model (Jones et al., 2011). An individual uses mental models as conceptual 
frameworks through which to interpret, understand, and reason about the world (Gentner 
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2002; Jacob & Shaw, 1999). New information filters through the model (Jones et al., 2011), 
and the individual reasons about situations, leading to predictions and decisions through 
mental manipulations of the models (Johnson-Laird, 2005). 

Reasoning about unfamiliar situations occurs as an individual constructs a new mental 
model by appealing to existing models. An individual imports structural relationships from a 
mental model of a similar domain via analogical thinking. As described by Collins and 
Gentner (1987), “People construct generative models by using analogy to map the rules of 
transition and interaction from known domains into unfamiliar domains. Analogy is a major 
way in which people derive models of new domains” (p. 263). Thus, new mental models are 
created from existing mental models of situations that appear analogous to the new situation. 

Closely related to mental models is the notion of a mental image. Mental models are 
considered to be more general than a mental image. As some features of a mental model may 
not be visualizable, a mental image refers to the visualizable aspects. Hence, underlying any 
mental image is a mental model, with the image being the projection of the mental model’s 
visualizable aspects (Johnson-Laird, 1998; Johnson-Laird, Girotto, & Legrenzi, 1998). 

Although mental models are typically explored as an individual’s model, research has 
been conducted into models shared by cultural groups. One such model is the shared mental 
model, which is the “overlapping mental representation of knowledge by members of a team” 
(Van den Bossche, Gijselaers, Segers, Woltjer, & Kirschner, 2011, p. 285). It is generally 
accepted that for teams to function in an effective manner, the members of the team must 
share a mental model (Langan-Fox, Code, & Langfield-Smith, 2000). 

In addition to representing physical aspects of a particular domain, mental models also 
incorporate an individual’s beliefs related to the domain. Therefore, mental models are 
reflective of belief systems (Libarkin, Beilfuss, & Kurdziel, 2003; Norman, 1983/2014). The 
connection to belief systems can be used as a means to explore an individual’s mental model. 
Due to being internal constructs, mental models are difficult to explore. While one method of 
exploration is the direct questioning of an individual’s beliefs, people generally have 
difficulty clearly articulating their beliefs (Gentner, 2002). As a result, novel methods are 
necessary to construct an external representation of an internal mental model (Jones et al., 
2011). 

Efforts continue in order to improve methods for constructing external representations of 
internal mental models. For example, some recent studies have explored mental models via 
participant-made drawings. Included among the models explored via drawings are elementary 
and middle school students’ mental models of circuits (Jabot & Henry, 2007), pre-service 
teachers mental models of themselves as teachers of science (Thomas, Pederson, & Finson, 
2001), pre-service agriculture teachers’ mental models of effective teaching (Robinson, 
Kelsey, & Terry, 2013), and pre-service teachers’ mental models of the environment 
(Moseley, Desjean-Perrotta, & Utley, 2010). While not explicitly using mental model theory, 
other studies have used a drawing methodology to explore pre-service elementary teachers’ 
visual images of themselves as mathematics teachers (Utley & Showalter, 2007) and middle 
and secondary students images of mathematicians at work (Aguilar, Rosas, Zavaleta, & 
Robo-Vazquez, 2014; Picker & Berry, 2000; Rock & Shaw, 2000). 

In their work, Picker and Berry (2000) suggested a model for how a cultural image of 
mathematicians and their work is formed. A young learner, someone unfamiliar with the 
stereotypical cultural view of mathematics, begins school. Through exposure to cultural 
stereotypes and memes via media, adults, and peers, through interaction with teachers lacking 
rich images of mathematics who could otherwise challenge stereotypes, through a pedagogy 
that reinforces stereotypes, and through the lack of clear intervention by the mathematics 
community, students begin forming their mental model of mathematics. Stereotypes fill the 
void left vacant by desirable alternatives, and the student’s mental model is validated through 
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experience. The student can now take his or her place in the culture and perpetuate the shared 
mental model. Teachers play a key early role in inculcating students into the stereotypes of 
mathematics and thus could rescue students from entering the vicious cycle. However, the 
teachers would need to hold a healthy model of mathematics themselves to have much effect, 
as a teacher’s beliefs influence the mathematical experiences they have with their students 
and so influence the model that the students form (Mewborn & Cross, 2007). If students do 
not have healthy images of mathematics, they may choose to pursue other vocations, 
potentially robbing society of valuable mathematical innovation. Thus, exploring pre-service 
teachers’ mental models related to mathematics is of importance. 

Doing Math 

From a survey of twenty-five post-secondary mathematics professors, Latterell and 
Wilson (2012) formulated a working definition stating that in order to be considered doing 
math, mathematicians must be creating new mathematics. Schoenfeld (1994) stated, 
“research – what most mathematicians would call doing mathematics – consists of making 
contributions to the mathematical community’s knowledge store” (p. 66). As a result of their 
definition, Latterell and Wilson specifically excluded teachers of mathematics from being 
considered as mathematicians and only included mathematics professors as being 
mathematicians doing math if they were engaged in research mathematics. The general 
populace does not necessarily hold to this same definition. 

Through a survey of children in grades K-8, Rock and Shaw (2000) determined that the 
students believed mathematicians did the same kind of math the students did in the 
classroom, only with larger numbers. Students also tended to believe mathematicians solved 
the hard problems no one else wanted to do. Many images drawn by the participants showed 
a mathematician in a classroom setting.  Picker and Berry (2000) found similar results when 
they explored the images that 12-13 year olds had of mathematicians at work. About one-fifth 
of the drawings were of a teacher. The images of mathematicians adhered to some 
stereotypes found in the research of images of scientists; most of the images were of men, 
and some of the drawings resembled Einstein. In a follow-up prompt, the plurality of students 
mentioned that mathematicians were hired to teach math, suggesting that students actually do 
not have a clear idea of what mathematicians did. As a result, Picker and Berry suggested that 
mathematicians and their work were basically invisible to the students. Fralick, Kearn, 
Thompson, and Lyons (2009) studied the drawings of middle schoolers to explore 
perceptions of scientists and engineers at work. Approximately one-fourth of the drawings of 
engineers contained no discernible action. Other drawings showed engineers more in the role 
of a “worker bee” rather than suggesting that engineering required mental efforts, leading to 
the conclusion that students’ images of engineers and their work were naïve or incomplete. 

From a study of images of mathematicians at work created by high-achieving high school 
students attending a mathematics and science school, Aguilar, Rosas, Zavaleta, and Romo-
Vázquez (2014) discovered that while the images were mostly male figures and contained 
many images of teachers, the students had a richer conception of what mathematicians did. 
They suggested this richer view developed from more exposure to advanced mathematics. 
Also, since many of the images contained items found in school settings, the students’ limited 
interactions with math, mainly in the schools, heavily influenced their image of doing math. 

Due to the important role that teachers and the school setting play in the formation of a 
student’s mental model of mathematics, this study will explore the following questions. 

1. What shared mental model of doing mathematics is held by pre-service elementary 
teachers in a mathematics content course? 

19th Annual Conference on Research in Undergraduate Mathematics Education 1427

19th Annual Conference on Research in Undergraduate Mathematics Education 1427



2. To what extent do pre-service elementary teachers’ mental models of themselves 
doing mathematics align with this shared model? 

To address these questions, this study will use mental model theory to explore drawings 
of “doing math” generated by the participants. In this study, drawings created by the 
participants are taken to be external representations created by them of their own mental 
images, which are in turn the projections of the visualizable aspects of the corresponding 
internal mental model. An individual’s mental model is influenced by the culture to which he 
or she belongs and thus forms a shared mental model. The formation of the shared mental 
model occurs in a fashion as described by Picker and Berry (2000).  

Methodology 

The study was conducted at a regional university in the southeastern United States. 
Participants in the study were undergraduate students in a teacher preparation program. The 
students were enrolled in one of three sections of a mathematics content course for pre-
service teachers. The course was the third in a sequence of four mathematics content courses 
required by the program. Forty-six students were enrolled in the sections. The students were 
divided between two disciplines, early childhood education (31, 67.4%) and special education 
(15, 32.6%). Of these students, 4 (8.7%) are male and 42 (91.3%) are female. Additionally, 2 
are Hispanic (4.3%), 10 are African-American (21.7%), and 34 (73.9%) are Caucasian. 

During the sixth week of classes, students responded in an at-home activity to the 
following four prompts: 1.) Draw a picture of a mathematician. 2.) Draw a picture of a 
mathematician doing math. 3.) Draw a picture of you doing math. 4.) Draw a picture of one 
of your students doing math. Students had approximately one week to create the drawings. 
The drawings were subsequently collected and scanned to create electronic files. 

The Mathematician and Mathematician doing Math drawings were uploaded to the No 
More Marking website (nomoremarking.com). During the ninth week, for an at-home 
activity, students were invited to perform comparative judgments on the two sets of drawings 
with the following questions, respectively: 1.) Which best represents who a mathematician is? 
2.) Which best represents a mathematician doing math? Furthermore, participants were 
instructed to compare each drawing and choose the one they believed best answered the 
questions, to give honest responses, and to not judge the pictures on artistic merit. Each 
participant made 40 comparisons per data set. 

Based upon the results of the comparative judgments, the top 11 drawings for each set 
were compiled into files. During week eleven, students reviewed each set of drawings and 
listed features common among the drawings. They then compared and contrasted their 
drawing they made of You doing Math to the Mathematician doing Math images, explaining 
why they believed their drawings were either similar or dissimilar. 

Finally, during the twelfth week, for an at-home activity, students were shown the image 
selected through comparative judgment as the best representative of a Mathematician doing 
Math and answered the following prompts: 1.) Why do you believe this picture was selected 
as the best representation of a mathematician doing math? 2.) To what extent does this picture 
align with your beliefs of what it means for a mathematician to do math? 3.) To you, what 
does it mean to be a mathematician? 

Participant drawings and responses will be explored for common themes using an open 
coding procedure. The drawing of a mathematician doing math selected through comparative 
judgement as the most representative will be used as an initial model to construct the shared 
mental model the class had of a mathematician doing math. The themes from the drawings of 
themselves doing math will be used to construct a shared mental model of the pre-service 
teachers doing math. The themes from the drawings and written responses will be used to 
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Figure 1. Image selected as best representing a mathematician doing math. 

triangulate the results. A comparison will be made of the mental models of a mathematician 
doing math and the pre-service teacher doing math. 

Discussion and Implications 

As data analysis is currently ongoing, early results and implications will be offered. 
Figure 1 shows the image selected through comparative judgement of a mathematician doing 
math. The selected image apparently shows a teacher discussing Euler’s formula and prisms. 
This suggests that experience and context played a key role in the students’ mental model. 
For them, a math teacher teaching represented a mathematician doing math. Additionally, the 
content on the board can be explained by the content of the mathematics course the students 
were enrolled in, geometry. This image of a mathematician doing math fits in with the 
students’ previous experiences with mathematics as being a classroom subject involving 
formulae and facts to be memorized.  

When considering the next ten highly selected drawings, every single one showed a 
person standing in front of a chalkboard covered in math symbols. The symbols were all 
related to mathematical content that would have been experienced within a classroom. The 
person was either apparently teaching the content or pondering the problem. Moreover, while 
over 90% of the participants were female, very few participants actually drew 
mathematicians that could be considered female. Of the top 11 selected drawings, only 2 
could potentially represent a female mathematician. 

While the drawings of the mathematicians generally appeared to be happy or in a pensive 
state, many of the drawings that participants made of themselves doing math showed people 
who were dismayed, stressed, or upset. Even drawings that suggested the participant as a 
teacher lacked confidence. Also, some drawings showed participants in more of a student role 
or working with very basic math, suggesting students had trouble viewing themselves as 
potential mathematicians. 

Overall, the images suggest that students’ limited experience with math and 
mathematicians has led to a mental model that is very naïve. Unless these students experience 
an intervention, this model will continue to be reinforced as they experience struggles with 
math, commiserating with each other, while witnessing the apparent ease with which their 
teacher interacts with math. 

Audience Questions 

1. Should teachers of mathematics be considered mathematicians? 
2. What implications would there be in comparing images of mathematicians doing math 

and the participants doing math, and would these implications be worthwhile? 
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Abstract 

 The flipped classroom has garnered attention in post-secondary mathematics in the past 
few years, but much of the research on this model has been on student perceptions rather than its 
effect on the attainment of learning goals. Instead of comparing to a “traditional” model, in this 
study we investigated student-learning gains in two flipped sections of Calculus I.  In this 
session, we will focus on the question of determining learning gains from delivering content via 
video outside of the classroom.  In particular, we will compare student-learning gains after 
watching more conceptual videos versus more procedural ones. We will share qualitative and 
quantitative data gathered from surveys and quizzes, as well as results from in-class assessments. 

Keywords: Flipped Classroom, Video Lessons, Learner-Centered Teaching, Calculus 
 

Background 
 Learner-centered or active classrooms are those which change the role of the instructor 
from “sage on the stage” to “guide on the side” and encourage students to construct their own 
meaning while engaging in authentic problem-solving.  Recent research has consistently showed 
that active classrooms improve student learning in a variety of fields; for example, in 2014 the 
National Academy of Sciences published a meta-study of 225 studies on student performance 
and failure rates in undergraduate science, technology, engineering, and mathematics (STEM) 
classrooms employing active learning components.  Their analysis suggests that students in 
traditional lecture classrooms are 1.5 times more likely to fail than students in classrooms 
including any type of active learning techniques (Freeman et al., 2014). 
 The flipped classroom structure is one example of an active learning method that has 
become increasingly popular.  This classroom structure takes on many forms, but the common 
trait is that most of the initial content delivery happens outside of the classroom while in-class 
time is spent solving problems, often in small groups, to assimilate the new knowledge and to 
deepen understanding.  Some instructors deliver content through assigned readings from a text or 
other source, while others use videos that they made or found online.  The core idea is to use 
classroom time for challenging problem solving where students can draw support from their 
peers and instructor; this design more effectively uses the experience and knowledge of the 
instructor to guide students through the topic at hand.   

Literature Review 
As the flipped classroom has gained popularity among undergraduate STEM educators, 

more literature has appeared.  Much of the initial literature on flipped classrooms only described 
the varying structures of such classrooms or the particular technologies employed by teachers 
using a flipped classroom.  The controlled studies published on this classroom model have often 
focused on student perceptions of and attitudes towards the structure rather than its impact on the 
attainment of learning goals.  For example, Foertsch, Moses, Strikwerda, and Litzkow (2002) 
described the use of a specific video streaming software in an engineering classroom, and 
reported student opinions of the videos and software, and Ford (2015) described her activity 
structure in a math course for pre-service elementary teachers.  Strayer (2007) gathered data on a 
traditional and flipped introductory statistics classroom to evaluate the learning environment of 
each structure, and found that students enjoyed the innovation and cooperation in the flipped 
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class, but had a low “comfortability” with the learning activities in this environment.  Roach 
(2014) found that 76% of his economics students believed that video lectures helped them learn, 
and the same percentage would take another class using the flipped format. 

While lecturing as been a staple of academia for close to a millennium, the flipped 
classroom structure might be seen as a return to an even older system of teaching where 
classroom time was centered around academic debate and discussion rather than the transmission 
of information, just using newly available technologies.  This recent resurgence dates to at least 
the mid-1990s when Eric Mazur, a physics professor at Harvard, started using team learning and 
in-class activities as ways to stop lecturing (Mazur, 1996).  Jonathan Bergmann and Aaron Sams 
(2012) started using video lectures in the mid-2000s and are often credited with pioneering the 
flipped classroom and its current popularity.  Since then, many educators in a variety of fields 
and at a wide range of institutions have started using this structure.  For example, Gaughn (2014) 
wrote about her experiences running a flipped history classroom, and Findlay-Thompson and 
Mombourquette (2014) published research from their flipped business classroom.  Bishop and 
Verlager (2013) did a meta-analysis of the literature on flipped classrooms in all areas of STEM, 
as well as economics and sociology.  Additionally, the research ranges from high school level 
(Johnson, 2013; Moore, Gillett, & Steele, 2014) to upper division medical courses (Sharma, Lau, 
Doherty, & Harbutt, 2015).  Education-focused video repositories like Khan Academy are 
available on the web, and many have spoken about their experiences with various forms of the 
flipped classroom at local and national professional meetings (e.g., in 2014 the Joint 
Mathematics Meetings included a session titled Flipping the Classroom with 37 different talks). 
 More recently, research studies used classroom data to evaluate the success of flipped 
classrooms.  Lape et al. (2014) and Mason, Shuman, and Cook (2013) compare grades on 
individual assessment questions in engineering between flipped and traditional sections of the 
same course and found few cases of statistically significantly higher scores in the flipped 
classroom, but no cases where students in a lecture section outperformed students in a flipped 
section.  Wilson (2013) found that students in a flipped section of statistics did outperform their 
lecture counterparts on exams and the course post-test.   In mathematics in particular, McGivney-
Burelle and Xue (2013) flipped a unit in a Calculus II course and showed that student grades on 
exams and homework were higher for the flipped section than the traditional section.  Love, 
Hodge, Grandgenett, and Swift (2014) found that students in a flipped linear algebra course had 
greater improvement in exam scores than those in a traditional section, and outperformed them 
on the final exam.  Additionally, PRIMUS has a forthcoming special issue on research in flipped 
classrooms that will increase the literature within mathematics education. 

Research Question 
 Since students in the flipped classroom model do introductory learning of topics outside 
of the classroom, it is prudent to investigate the effectiveness of the content delivery method.  
The classroom in our study most often introduced new content outside of class through the 
instructor's own video-recorded lessons.  Studies about using video have been conducted 
previously; for example Zappe, Leicht, Messner, Litzinger, and Lee (2009) investigated how 
students used online lecture videos to learn in an undergraduate engineering course, including the 
percentage of videos watched, students reviewing unclear segments, and time spent per video.  In 
this paper we investigate the effectiveness of these videos on the learning gains made by students 
enrolled in two sections of a standard first semester calculus course.  In particular, we explore 
student-learning gains from watching videos outside the classroom to determine students’ 
development of conceptual understanding and procedural skills in calculus. 
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Methods 
Participants 

The participants were undergraduate students in a first semester calculus course at a large 
university in the Mid-Atlantic United States.  Of the 59 students in the study, 51 (86%) were 
freshmen, 5 (8%) were sophomores, 2 were juniors, and 1 was a senior.  The majority of the 
students were male (64% male, 36% female).  Four students withdrew from the course before the 
end of the semester.  More than 80% of the students had previously had a course in calculus, 
generally in high school.  The majority of the students were majoring in STEM fields.  The 
students were divided into two sections (34 students in one section, 25 in the other) and generally 
covered the same material on the same days. 
Classroom 

This was the third semester that the instructor had run a flipped Calculus I classroom.  
Before each class, students would have a pre-class assignment, such as watching a video or 
completing a reading.  Nearly all class sessions started off with a short quiz related to their pre-
class assignment.  The majority of class time was spent on group-work activities.  The students 
worked in groups of 2–4 and the instructor would interact with the groups one-on-one.  Students 
were also given homework and practice problems to be completed outside of class. 
Data Sources 

Over the course of the semester, we gathered qualitative data from the students, including 
student feedback about specific video lectures (for example, questions like “What did you find 
confusing?” or “What helped clear up confusion?”), student answers to post-video or post-
activity questions or problems (calculus content questions to evaluate learning gains), and 
student surveys about their perceptions of the class structure and their learning gains.  Aggregate 
quantitative data, such as assessment scores and course grades, were also recorded.  We used 
video recording on certain class days to help the instructor objectively evaluate and improve 
student-teacher interactions in the classroom.  This data was used to make changes to course 
attributes in order to increase potential learning gains, as well as to consider the general 
effectiveness of the class model. 
Analysis 
 We created rubrics to analyze the written feedback from students.  For example, the 
rubric shown in Table 1 was used to analyze responses to a question asking students to describe 
L’Hôpital’s Rule.  We then used two-tailed pairwise comparisons (α = 0.05) to compare groups 
of students (e.g., students who had previously viewed a more conceptual video about the 
mathematical content versus a more calculational video) or to compare pre- and post-test results.  
Written responses were also categorized so that we could view trends in the data.  
 
Table 1. 
Rubric Used for Scoring Responses to Conceptual L’Hôpital’s Rule Question 
Score Explanation 

0 Answer was blank or made no mention of tangent lines. 
1 Answers either lack "functions act like their tangent lines", or say something about 

tangent lines but neither "slope" nor "compare”. 
2 Answer states that functions act like their tangent lines near a point, and that one can 

find limits of f (x)/g(x) (or compare f (x) and g(x)) which have indeterminate forms by 
comparing the slopes of their tangent lines. 
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 Students were also given some in-class surveys consisting of Likert-scale questions.  The 
surveys generally asked students about their perceptions of the class structure and their learning 
gains.  Aggregate quantitative data, such as assessment scores and course grades, were also used 
to look for prevailing student trends. 

Results 
 While data analysis is still ongoing, in this section we share a subset of results from our 
study.  In particular, we share students’ overall opinions about video use and data around one 
class period specifically designed to help us see differences in the ways students learn conceptual 
and procedural content via video. 

Several times throughout the semester, students were given surveys where they could 
voice their opinions about the structure of the class.  When asked to compare learning a new 
topic outside of class via reading assignment versus watching a video, students overwhelming 
preferred videos (86%).  However, when asked what part of their class structure had the greatest 
positive impact on their learning, 56% of students said the pre-class videos and readings, 
whereas 46% said the in-class activities and interactions.1  We also asked the students to state 
their beliefs on how the videos increased both their conceptual understanding and computational 
skills in the class (see Table 2).  For both questions, the majority of the class believed the videos 
greatly or significantly helped their mathematical understanding and skills, although more of the 
students found video helpful for their conceptual understanding than their computational skills. 
 
Table 2. 
Students’ Beliefs About Video Usage 

 Greatly Significantly Moderately Slightly 
Conceptual understanding  38% 38% 24% 0% 

Computational skills  20% 40% 30% 10% 
 

So the students believed the videos were helpful, but what objective evidence for learning 
gains could be seen in the students’ work in the classroom?  Prior to an in-class activity about 
L’Hôpital’s Rule, we had the students watch an introductory video about the topic.  However, we 
split the classes into two groups: one group watched a more conceptual video, and the other 
watched a more procedural video (n = 23 for each group).  At the beginning of class, the students 
were given an assessment about L’Hôpital’s Rule, with one question asking for a more 
conceptual explanation and the other asking for a more procedural explanation.  We then had the 
students form groups of 2–3 so that each group contained at least one student who had watched 
each video.  We videotaped the class session.  At the end of class, students were given the same 
assessment as before to help us see what changes in their understanding occurred due to their 
group discussions. 

Video data analysis is still ongoing.  However, preliminary analyses seem to indicate that 
students gained knowledge from watching the videos and were able to share that knowledge with 
other students.  We have completed scoring their responses to the pre/post assessment using 
rubrics like the one described above (0–2 scale).  The students’ average results can be found in 
Table 3.  Results indicate that students who watched the more conceptual video were able to 
answer the more conceptual question on the pre-class assessment, but were not able to answer 
the more procedural question.  The opposite was true for the students who had watched the 
procedural video. 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Percentages add up to more than 100% because students could choose more than one answer. 
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Table 3. 
Average Scores on L’Hôpital’s Rule Assessment 

 Conceptual Question Procedural Question 
Group Pre Post Pre Post 

Watched  
conceptual video 1.39 1.48 0.09 1.26 

Watched  
procedural video 0.04 1.35 1.74 1.57 

Significantly different? 
(p-value) 

Yes 
p < 0.001 

No 
p = 0.210 

Yes 
p < 0.001 

No (barely) 
p = 0.057 

 
 After working in groups, both groups of students were able to answer the conceptual and 
procedural questions.  No statistically significant differences were found in the two groups’ post-
class assessment average scores.  However, the difference in their post-assessment scores for the 
procedural question was just barely insignificant. 

Implications and Discussion 
 In reviewing the pre-class assessment results, we were not surprised by how well the 
students did on the question that related to the type of video they had viewed.  However, more 
than 80% of the students in the class had taken at least one calculus class before.  As such, we 
thought some students would be able to answer both questions successfully, which was not the 
case.  Also, we were surprised by how well both conceptual and procedural understanding was 
improved by the students working in groups.  Our results seem to indicate that students learned 
conceptual and procedural content from the videos and were able to share that knowledge. 

However, there still are some open questions from the data.  The post-class assessment 
scores on the procedural question were just barely insignificantly different and students felt the 
videos helped them more with conceptual knowledge than with learning procedures.  This means 
we need to take into consideration what content educators teach via video.  However, because of 
the small number of students in this study, more research needs to be done to determine if there 
is a statistically significant difference in learning gains from more procedural videos than more 
conceptual ones. 

Last, teachers thinking about using videos in their classes should know that students will 
get at least a basic understanding from videos, whether the videos be more conceptual or 
procedural.  Video lessons alone, however, are not enough; the content from the videos should be 
clarified and reinforced in class through discussion with peers.   

Open Questions 
• What balance of conceptual and procedural videos should be used to have the greatest 

impact on student-learning gains? 
• What effect does the use of video-recorded lessons have on specific populations of 

students (e.g., gender, course of study, non-traditional students, etc.)? 
• In what ways are students using the videos?  Are they actively engaging with the video 

lessons (instead of just passively listening like with a lecture)?  How can we make the 
videos more useful and productive for the students?!
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Student Interest in Calculus I 

Derek A. Williams 
North Carolina State University 

This reports on a secondary analysis of data collected by the Mathematical Association of 
America’s Characteristics of Successful Programs in College Calculus (2015). Survey data were 
collected from more than 700 instructors, and roughly 14,000 students making these data ideal 
for multiple level analysis techniques (Raudenbush & Bryk, 2002). Here, these data are used to 
analyze students’ interest in Calculus I. Results suggest that students with higher frequencies of 
presenting to their classmates, collaborating with peers, working individually, explaining their 
work, and taking Calculus I with an experienced instructor tend to be more interested in class. 

Key words: Student interest; College calculus; Multiple level modeling 

This report presents results from a secondary analysis of the data collected as part of the 
Characteristics of Successful Programs in College Calculus (CSPCC) project1 headed by the 
Mathematical Association of America ([MAA], 2015). Here, student interest in Calculus I is 
investigated and associations with different student-level and instructor-level predictors are 
analyzed using multiple level modeling techniques with SAS 9.4 (Raudenbush & Bryk, 2002). 

The CSPSS project administered surveys to Calculus I students, their instructors, and 
department heads from a nationwide stratified random sample. Roughly 14,000 students, 700 
instructors, and 212 institutions participated. Here, only 5,278 students and 378 instructors are 
analyzed due to the variables used in this analysis (described below).  

Methods 

This analysis aims to address two research questions: (1) What are the effects of components 
of classroom activity (described below) on student interest in Calculus I? (2) Do these effects 
depend on instructor experience with teaching Calculus I? 
Variables and Centering 

Participants took two surveys (pre- and post-semester) pertaining to their experiences as a 
student or instructor of Calculus I at the college level. One item on the student survey was, “My 
instructor makes class interesting.” Students were instructed to rank their beliefs of this item on a 
6 point scale, where 0 represents “Strongly disagree” and 5 corresponds to “Strongly agree.” 
Here, interest will serve as the dependent variable. Students were also asked to rank how often 
their instructors allowed them class time to collaborate with their peers, present solutions, 
explain their work, and work individually. Each of these items was also ranked on a 6 point 
scale, where 0 represents “Not at all” and 5 represents “Very often.” These classroom activities 
will be used as student-level predictor variables.  

Instructors were asked to indicate the number of terms they taught Calculus I during the 
previous five years. This item was reported with a scale of ranged values (e.g., 3-5 times), so a 
linearized variable was created using the central value from each range. This is the instructor-
level predictor variable used in this analysis. All predictor variables were grand-mean centered 
                                                 
1 This material is based upon work supported by the National Science Foundation under grant DRL REESE 
#0910240. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the 
author(s) and do not necessarily reflect the views of the National Science Foundation. 
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(Raudenbush & Bryk, 2002) to provide meaningful interpretations of results. 
Analysis 

To begin an unconditional model was conducted. This model is used to partition variation in 
interest between instructor-level (level 2) variation and student-level variation (level 1). This 
model is also used to establish a baseline of the overall variation in interest present in the sample.  

The second model conducted contains the four student-level classroom activity predictors, 
instructor experience, and all cross-level interaction variables. This model is constrained; 
meaning the variation around slopes was constrained to zero. When compared to similar models 
with unconstrained slopes, the constrained model was a better fit (Singer, 1998). 

Level 1: 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑗 = 𝛽0𝑖𝑗 + 𝛽1𝑖𝑗(𝐶𝑂𝐿𝐿𝐴𝐵) + 𝛽2𝑖𝑗(𝑃𝑆𝑁𝑇) + 𝛽3𝑖𝑗(𝐸𝑋𝑃𝑁) + 𝛽4𝑖𝑗(𝐼𝑁𝐷𝑉) + 𝑟𝑖𝑗  
Level 2: 𝛽0𝑖 = 𝛾00 + 𝛾01(𝐼𝐸𝑋𝑃) + 𝑢0𝑖  
 𝛽1𝑖 = 𝛾10 + 𝛾11(𝐼𝐸𝑋𝑃) 
 𝛽2𝑖 = 𝛾20 + 𝛾21(𝐼𝐸𝑋𝑃) 
 𝛽3𝑖 = 𝛾30 + 𝛾31(𝐼𝐸𝑋𝑃) 
 𝛽4𝑖 = 𝛾40 + 𝛾41(𝐼𝐸𝑋𝑃) 

Results and Discussion 

Results from the unconditional model indicate that 76% of the overall variation in student 
interest resides at the student-level and the remaining 24% at the instructor-level. Also, on 
average, students slightly agree that their instructors make class time interesting (𝛾00 = 3.26, 𝑡 =
74.23, 𝑝 < .001). Significant variation at level 2 suggests that further analysis is appropriate. 

Peer collaboration (𝛾10 = .06, 𝑡 = 4.45, 𝑝 < .001), opportunities to explain (𝛾30 = .35, 𝑡 =
28.20, 𝑝 < .001), and time for individual work in class (𝛾40 = .08, 𝑡 = 7.01. 𝑝 < .001) are all 
positively associated with students’ interest in Calculus I. Opportunities to present (𝛾20 =
.008, 𝑡 = .52, 𝑝 = .60) are not associated with student interest. Recent experience with teaching 
Calculus I is also associated with an increase in student interest (𝛾01 = .11, 𝑡 = 5.97, 𝑝 < .001). 

Additionally, the relationships between frequency of collaboration and interest (𝛾11 =
.01, 𝑡 = 2.46, 𝑝 = .014) and frequency of student explanations and interest (𝛾31 = −.01, 𝑡 =
−3.14, 𝑝 < .001) both depend on instructor experience, such that the effects are intensified in 
classes taught by instructors with low experience (more than one standard deviation below the 
sample mean). The relationship between frequency of presentations and interest depends on 
instructor experience (𝛾21 = −.01, 𝑡 = −2.61, 𝑝 = .009) such that frequent student presentations 
are detrimental to student interest in classes taught by instructors with high experiences (more 
than one standard deviation above the sample mean). However, the opposite occurs with frequent 
presentations in classes taught by instructors with low experience. The relationship between 
frequency of individual work and interest does not depend on instructor experience (𝛾41 =
−.005, 𝑡 = −1.25, 𝑝 = .21). This model explains 24% of student-level variation and 34% of 
instructor-level variation (Snijders & Bosker, 2011) in student interest in Calculus I. 

Conclusion 

Classroom activities such as student presentations, peer collaboration, student explanations, 
and time for individual work were all identified as factors of ambitious teaching  (Sonnert & 
Sadler, 2015). These results suggest that instructors, especially those with low experience, should 
attempt to implement elements of ambitious teaching, and departments should encourage 
instructors to teach Calculus I often in order to positively affect student interest.  
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There is evidence that students drop out at higher rates from online than face-to-face 
courses, yet it is not well understood which students are particularly at risk online.  In 
particular, online mathematics (and other STEM) courses have not been well-studied in the 
context of larger-scale analyses of online dropout. This study surveyed online and face-to-
face students from a large U.S. university system.  Results suggest that for online courses 
generally, student parents and native-born may be particularly vulnerable to poor online-
versus-face-to-face course outcomes.  The next stage of this research will be to analyze the 
factors that are relevant to online versus face-to-face retention in mathematics (and other 
STEM) courses specifically. 

Key words: online learning; retention; student characteristics 

As more and more courses move to online formats, higher education is undergoing a 
virtual transformation.  By 2013, over 40 million college students took online classes 
worldwide; by 2017, that number is expected to reach over 120 million post-secondary 
students globally (Atkins, 2013).  On the positive side, online courses may provide increased 
access to college, removing impediments to college progression by providing the flexibility 
that “non-traditional” students need.  However, because they often have higher attrition (the 
reasons for which have yet to be determined), online courses may also be detrimental to 
degree completion (Jaggars, 2011).   

Many questions remain about factors that impact course outcomes in online versus face-
to-face courses.  Further, the factors that impact course outcomes in the online versus face-to-
face medium may be different for mathematics courses than for courses in other subjects, yet 
almost no larger-scale studies have focused on online mathematics courses specifically.  In 
order for policies and advisement to be grounded in research evidence, mathematics 
education research must address the rapid growth in online learning and the need to focused 
research on factors impacting outcomes.   

 
 

Research questions 

This initial exploratory study seeks to determine the relationship between student 
characteristics and online course-taking in order to inform later research as to which factors 
may impact mathematics course retention and grades specifically: 

 
1. Which student characteristics make a student more likely to enroll in online than face-

to-face courses? 
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2. Which student characteristics exacerbate or mitigate differences in rates of online 
versus face-to-face course retention and successful course completion? 

3. Are there specific groups (e.g. women, racial/ethnic minorities, “non-traditional 
students”) that are particularly successful or particularly vulnerable when taking 
courses online? 

4. How do these patterns differ when comparing mathematics courses to other STEM or 
non-STEM courses? 
 

Theoretical framework and prior research 

Doubling from just under a decade ago, thirty-two percent of U.S. college students 
enrolled in online courses in 2011-2012 (U.S. Department of Education, Institute of 
Education Sciences, National Center for Education Statistics (NCES), 2008).  Further, since 
2010, online enrollment has increased 29% (Allen and Seaman 2010; 2013; CCRC 2013).   
Numerous studies, including a 200 study meta-analysis, found no significant difference in 
learning outcomes in online versus face-to-face courses (e.g.(Bernard et al., 2004; Bowen, 
Chingos, Lack, & Nygren, 2012).  Despite these findings, online course dropout in the U.S. 
ranges from 20-40%, and online attrition rates are reported as 7-20 percentage points higher 
than those for face-to-face courses (e.g. Hachey, Wladis & Conway, 2013; (Nora & Snyder, 
2009; Patterson & McFadden, 2009).  

Further, recent research suggests that the gap in attrition between the same courses 
offered online versus face-to-face can be larger for STEM than for non-STEM courses 
(Wladis, Hachey, & Conway, 2012).  There is also some research that suggests that this gap 
may be larger for mathematics than for English gatekeeper courses, although differences in 
the gap between subjects was not tested for statistical significance (Xu & Jaggars, 2011).  
This may mean that there are factors in the online environment which impact mathematics 
and other STEM courses differently or more strongly than courses in other subjects. 
However, previous findings on student characteristics cannot necessarily be generalized to 
mathematics and other STEM courses specifically.   In addition, there is currently little 
rigorous research on factors affecting retention in online STEM courses specifically. Given 
the rapid growth in online courses and the already high rates of dropout in many mathematics 
and STEM courses, it is essential to identify which students are at higher risk in online 
mathematics (and other STEM) courses, in order to target appropriate support services.   

Previous research has found that online learners are more likely to be female, older, 
married, active military or to have other responsibilities (such as full-time work and/or 
children) (Shea & Bidjerano, 2014; C. Wladis, Hachey, & Conway, 2015). Additional studies 
have also found that online students tend to have higher G.P.A.’s, to be white, native English 
speakers, and to have applied for or received financial aid (Conway, Wladis, & Hachey, n.d.; 
Jaggers & Xu, 2010; Xu & Jaggars, 2011). Further, online student are more likely to have 
other “non-traditional” characteristics (e.g. delayed college enrollment; no high school 
diploma; part-time enrollment; financially independent) (e.g. Shea & Bidjerano, 2014; C. 
Wladis et al., 2015), and to be first-generation college students (Athabasca University, 2006).  
And non-traditional characteristics have been shown to be more significant as predictors of 
online enrollment for STEM than for non-STEM students (Wladis, Hachey, & Conway, 
2015).   

However, research on demographic variables is conflicting (Jones, 2010) and it remains 
unclear how different characteristics interact with each other to affect retention in online 
courses. For instance, Bernard, Brauer, Abrami and Surkes (2004) found that self-direction 
and beliefs were significant positive predictors of online course grade, however, the evidence 
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showed that G.P.A. was a stronger predictor of online course outcomes. Waschull  (2005) 
reports that self-discipline/motivation was significantly correlated with online course grades, 
but these same factors may predict success in both online and face-to-face classes.  Aragon 
and Johnson (2008) found that online completers were more likely to be female, enrolled in 
more classes, and had a higher G.P.A., but unlike Abrami and Surkes (2004), they found no 
significant difference in academic readiness or self-directed learning.   

In a similar vein, other investigations of student characteristics have also been 
inconclusive.   Several studies investigating gender found no differences, whereas others 
report that females outperform males in terms of outcomes (for a review, see (Xu & Jaggars, 
2013)).  Angiello (2002) and Xu and Jaggars (2013) report differences in outcomes based on 
ethnicity while Welsh (2007), Aragon and Johnson (2008) and Wladis, Conway and Hachey 
(2015) found that ethnicity did not have an impact on online course outcomes.  G.P.A is cited 
as a significant factor impacting online course outcomes in some studies, (e.g. Xu & Jaggars, 
2013), but was found to be non-significant in others (e.g. Hachey, Wladis, & Conway, 2012).  
In one study on STEM courses specifically, older students did significantly better in online 
STEM courses, and women did significantly worse (although still no worse than men) online, 
than would be expected based on their outcomes in comparable face-to-face STEM courses, 
but there was no significant interaction between the online medium and ethnicity (C. Wladis 
et al., 2015). 

Studies focused on online mathematics courses specifically have tended to compare 
student outcomes across mediums, without attempting to assess which factors predict or 
contribute to those outcomes (see e.g. Ashby, Sadera, & McNary, 2011; Bowen & Lack, 
2012), or they have tended to explore factors that predict successful outcomes in online 
mathematics classes, without comparing them to face-to-face courses, so that it is impossible 
to determine whether the factors studied are relevant to learning mathematics online or just to 
learning mathematics more generally (see e.g. Kim, Park, & Cozart, 2014).   

To accurately assess whether a factor puts a student at greater risk in the online 
environment, it is critical to analyze the interaction between that factor and course medium, 
while simultaneously controlling for self-selection into online courses.  This is the only way 
in which it is possible to determine the extent to which particular factors are important in the 
online medium specifically, and not simply predictors of academic outcomes more generally.  
This study addresses an important gap in the literature by doing just that.  It is an initial step 
in determining which factors may need to be explored as impacting outcomes in online 
mathematics courses specifically.   

 
Methodology 

Data source and sample 
This study uses a sample of 9,663 students with 37,442 course records from the 18 two- 

and four-year colleges in the City University of New York (CUNY) system in the U.S.  
Students were selected if they were enrolled in a course in the sample frame, which consisted 
of all online and comparable face-to-face courses offered during the 2014 fall semester at one 
of the CUNY colleges.  Of the courses that determined the sample frame, roughly 25% were 
STEM courses and roughly 10% were mathematics courses.  At the end of the semester, 
students in the sample were invited to participate in an online survey.   

 
Measures 

Two measures of student outcomes were utilized: course retention, defined as whether a 
student dropped a course (officially or unofficially); and successful course completion, 
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defined as whether the student successfully completed a course with a C- or higher (chosen 
because it is the typical standard to receive major or transfer credit).    

The main independent variable (IV), course medium, was dichotomized to face-to-face or 
fully online, based on Sloan Consortium definitions (Allen & Seaman, 2010); fully online 
courses have 80% or more of the course content online, and face-to-face courses have 33% or 
less of the content online. Previous studies contend that students who take hybrid courses 
(33-80% online content) are similar to students who take face-to-face courses and further, 
that their outcomes are similar (Xu & Jaggars, 2011).   

The other IVs investigated were chosen because there is evidence that they may: 1) 
predict online course enrollment; 2) be related to course outcomes more generally 3) be 
related to face-to-face mathematics and STEM course outcomes specifically; or 4) be 
significant predictors of outcomes in the online medium.  Covariates included in the study 
are: whether the student had a child (and age of youngest child); gender; race/ethnicity; age; 
work hours; income; parental education; developmental mathematics, English, and ESL 
course placement; marital/cohabitation status; immigration generational status; native speaker 
status; college level (two-year, four-year, or graduate); G.P.A; and number of credits/classes 
taken that semester.  During preliminary analyses, different non-linear versions of variables 
were explored (e.g. converting credits to part-time/full-time status, squaring age), but these 
did not produce significantly different results.  Also included in the study survey are scales 
measuring: motivation to complete the course; course enjoyment/engagement; academic 
integration (i.e. interaction with faculty/students outside class); self-directed learning skills; 
time management skills; preference for autonomy; and grit (i.e. perseverance and passion for 
long-term goals).  As much as possible, these scales were based on previous instruments that 
had already been tested for reliability and validity (Duckworth, Peterson, Matthews, & Kelly, 
2007; Macan, Shahani, Dipboye, & Phillips, 1990; Pintrich & de Groot, 1990; U.S. 
Department of Education, Institute of Education Sciences, National Center for Education 
Statistics, 2009; Vallerand et al., 1992). However, they were shortened and modified for use 
in this study.  Confirmatory factor analysis using structural equation modeling (SEM) was 
used on the full dataset to model items for each scale as predictors of a single latent construct.  
Error covariance terms were added between some individual items based on theory, prior to 
estimation.  Some items from the motivation and grit scales were eliminated because of poor 
performance during SEM.  For the final scales, average variance extracted (AVE) was 0.50 or 
greater, indicating convergent validity, and composite reliability (CR) ranged from 0.77 to 
0.89, indicating good reliability (Hair, Anderson, Tatham, & Black, 1998); SRMR ranged 
from 0.000 to 0.059, supporting the operationalization of each scale as a single factor 
structure (Hu & Bentler, 1999). 
 
Analytical Approaches 

Courses for which valid grades did not exist (e.g. not submitted by instructor, course was 
audited) were dropped. Multivariate multiple imputation by chained equations was used to 
impute values for survey questions with missing responses, using all IVs chosen for 
subsequent analyses.  Binomial, ordered, or multinomial logit models, or predictive mean 
matching on three nearest neighbors was used for imputation depending on variable type.  A 
median of 2.6% of data were missing in each imputed variable in the dataset. After 
preliminary tests for stability of model estimates, 35 imputations were used.   

Propensity scores, indicating the probability of online enrollment, were generated using 
logistic regression and included all of the IVs used in the subsequent analyses. The scores 
were averaged across imputed datasets.  Because this approach yielded the best balance on 
covariates based on the standardized bias for each imputed variable averaged across 
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imputations, matched datasets were generated using single nearest-neighbor matching with 
replacement.  The median standardized bias across variables was 2.6%, showing a good 
balance on all covariates based on Rubin’s (2001) rule of thumb.  Distribution of propensity 
scores was evaluated both before and after matching, and there was significant overlap in the 
region of common support.   

The imputed dataset was used to run multilevel mixed-effects logistic regression models 
with course as the first-level and student as the second-level factors, in order to control for 
unobserved heterogeneity between students. The KHB decomposition method (Kohler, 
Karlson, & Holm, 2011) was used to calculate direct and indirect effects, in order to explore 
the relationship between online course outcomes, student characteristics, and subsequent 
college persistence.  Standard errors during KHB decomposition were computed using 
clustering by course, to account for the multi-level data structure.   
 
Results 

Initial models were run on the whole dataset, including mathematics and non-
mathematics courses, in order to look for baseline patterns.  Both unmatched and matched 
datasets were analyzed.  For the full dataset consisting of non-STEM, STEM non-
mathematics, and mathematics courses, the most consistent predictor of both course retention 
and successful course completion was being foreign-born.  Native-born students were at 
greater relative risk online compared to foreign-born students, and this was particularly true 
for native-born students for whom both parents were also native-born.  Native-born students 
with one or no native-born parents were also at increased relative risk online, but the 
difference was less pronounced.  Having a child under six years old was associated with 
higher risk of unsuccessful course completion or dropout online.  No other factors tested were 
consistently significantly correlated with differential online-versus-face-to-face course 
retention or successful course completion across different models of the dataset.   

The next step in this research project is to repeat these analyses with non-STEM courses, 
STEM courses, and mathematics courses specifically, to see if different patterns emerge for 
each group.  If there are differences in the patterns observed between groups, then these 
differences will be tested for significance in an attempt to determine the extent to which 
different factors are relevant for online STEM and mathematics courses specifically.   Further 
surveys and interviews of online mathematics and STEM students are also being conducted 
to explore other factors that may be relevant to online mathematics course-taking.  Another 
round of data has recently been collected that explores the following additional constructions: 
computer and internet self-efficacy (Eastin & La Rose, 2000; Torkzadeh, Chang, & 
Demirhan, 2006); ethnic/gender identity and stigma consciousness (Picho & Brown, 2011); 
mathematics (and other STEM subject) self-efficacy and domain identification (May, 2009; 
Picho & Brown, 2011); sense of belonging (Osterman, 2000); and achievement orientation, 
e.g. fixed/growth mindset (Dweck, 2006).  Interviews are also being conducted with online 
students; roughly 45 students have been interviewed so far.   

 
Implications 

The results of this study will have strong practical applications.  If specific factors can be 
identified that make students particularly at risk of dropout or failure when they take an 
online mathematics or STEM course, then these students could be targeted for additional 
interventions (e.g. tutoring, advising, technical assistance) when they enroll in an online 
mathematics or STEM course.  Future research could test the efficacy of various 
interventions in improving course outcomes for these at-risk groups.   
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Questions 

There are several questions that we see as important as we move this research forward.  
Specifically: 

x Are there particular factors that might be relevant to outcomes in online versus 
face-to-face STEM and mathematics courses specifically that we have not yet 
considered? 

x We plan to run parallel analyses on non-STEM courses; STEM courses; and 
mathematics courses.  But are there other analyses relevant to mathematics 
courses specifically that may not be parallel to analyses that would make sense in 
the context of non-mathematics courses? 

x Is there anything else that we have overlooked in our choice of variables and 
analytical approaches, or in our overall study design, that has not yet been 
addressed?  
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Abstract: In this report, we describe the results of analyzing data collected from 502 Calculus 
I students at a large research university in the U.S. Students were enrolled in one of five 
different versions of Calculus I offered at the university. We are interested in (i) whether the 
different characteristics of each version of the course affect students’ attitudes toward 
mathematics and (ii) how each course might affect students’ intentions of pursuing science, 
technology, engineering and mathematics (STEM) degrees. We examine data related to these 
two issues gathered from students via surveys during one semester in Calculus I.  
 
Key words: Calculus, Persistence, Attitudes, Enjoyment  
 

Introduction 
 

There is an urgent need for science, technology, engineering, and mathematics (STEM) 
graduates (PCAST, 2012), yet studies show that many STEM intending students are dropping 
out from their majors (Seymour & Hewitt, 1997; Ellis, Kelton & Rasmussen, 2014). In the US, 
Calculus I is the first college mathematics class many STEM major students must take for their 
degree program. Results from a recent national study showed that student experiences in 
Calculus I have significant effects on decisions about pursuing a STEM major as well as their 
attitudes toward mathematics (Bressoud, Carlson, Mesa & Rasmussen, 2013).  

Within our institution, we offer five different versions of Calculus I: a slower paced two-
semester course with precalculus (1A/B), an engineering-focused course (E), a non-
engineering course (NE), a course for honors students (H), and an Emerging Scholars Program 
(ESP) course. The courses are offered in different formats as described in Table 1.  

 
Table 1 
Course formats for five versions of Calculus I 

Calculus I 
Version Weekly Course Format Weekly 

Contact Hours 
1A/B Three days of lecture, one day of lab  4 

E Three days of lecture, two days of recitation 6 
NE Three days of lecture, two days of recitation 5 
H Four days of lecture 4 

ESP Three days of two-hour inquiry-based learning sessions 6 
 

Theoretical perspective 
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Tinto (2004) states that “interaction across academic and social geography of a campus shape 

the educational opportunity structure … and … both student learning and persistence” (p. 92). 
According to Tinto’s framework of persistence (1975), a satisfaction in the integration of social 
and academic life on a campus has a significant impact on persistence. We hypothesize that 
Calculus I experiences of students will significantly change their attitudes toward mathematics 
and decisions in continuing in a STEM major.  

 
Methodology 

 
We collected data using the same surveys administered by Bressoud et al. (2013) to 

specifically investigate student enjoyment of mathematics, desire for more mathematics, self-
confidence and plans for pursuing more mathematics. Students received a survey between 
second and third week of the beginning of a fall semester and a follow up survey two weeks 
before the end of the semester. Extra credit for the completion of the surveys was given to the 
participating students differently for each course as determined by the coordinator of each 
version of the course.  

 
Results 

 
We observe a positive shift in students’ confidence in 1A/B, E & NE while there is almost no 

change in attitudes for those in H & ESP. T-tests show that the positive shifts in E and NE are 
statistically significant, but not in 1A/B. Moreover, we see a negative change in students’ 
enjoyment in the same three classes, 1A/B, E and NE, and again almost no change in ESP & 
H, possibly due to a small number of responses. The t-tests show that the changes are 
statistically significant in E and NE (both with 𝑝 < .0001). Furthermore, we see a decrease in 
desire for more mathematics in 1A/B, E, ESP and H, but an increase in NE. The t-tests show 
that the changes in E (𝑝 = .0065) and NE (𝑝 < .0001) are statistically significant. We also see 
changes with respect to students’ intentions of persisting in a STEM field as in Table 2. 
Specifically, the contribution to STEM intending from undecided, respectively, in 1A/B, NE, 
and E is: 18, 3, 15; the contribution to non-STEM intending from undecided respectively in 
1A/B, NE, and E is: 12, 16, 3.  

 
Table 2  
Changes in Student’s STEM Intentions 

 1A/B NE E ESP H 
Pre Post Pre Post Pre Post Pre Post Pre Post 

STEM 
Intending 

85 91 67 55 232 232 2 2 5 5 

Non-STEM  
Intending 

14 32 17 44 4 16 0 0 0 0 

Undecided 34 10 24 9 18 6 0 0 0 0 
 

Conclusions 
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Results indicate that student experiences in several versions of Calculus I at our institution 
have an effect on both their attitudes toward mathematics and in their plans for continuing to 
pursue (or not) a STEM degree. Specifically, we see attitude shifts in the engineering, non-
engineering and slower paced two-semester student populations, though not as much in the 
honors or ESP versions. These findings provide baseline data needed to document and analyze 
change in these factors as the courses pursue interventions to retain talented STEM majors. 
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Abstract  

Researchers at two universities implemented an iterative lesson study process with ten graduate 
student instructors (GSIs), five from each university’s mathematics department. Over the span of 
two weeks, each group of GSIs met with a facilitator to collaboratively plan an undergraduate 
mathematics lesson, implement the lesson, revise their lesson plan, reteach the lesson to another 
class of students, and complete a final reflection. Using a multiple case study qualitative 
methodology, we thematically coded GSI consistencies and revisions to lesson planning during 
the iterative process according to the Principles to Actions national mathematical teaching 
practices. At both universities there were specific teaching practices that GSIs used throughout 
the iterative lesson study and specific teaching practices that GSIs revised. Identifying these 
teaching practices offers insight into the utility and value of iterative lesson study with graduate 
student instructors.  
 
Keywords: Lesson Study, Graduate Student Instructors, Multiple Case Study, Measurable Goals, 
Classroom Tasks 
 
 Given that graduate student instructors (GSIs) serve as instructors of record for hundreds 
of thousands of undergraduate mathematics students each semester (Belnap & Allred, 2009; 
Lutzer, Rodi, Kirkman, & Maxwell, 2007), they can significantly impact the quality of 
mathematics instruction for freshmen and sophomores. Although many mathematics departments 
acknowledge the need to support mathematics GSIs’ learning to teach (Belnap & Allred, 2009; 
Latulippe, 2009; Speer, Gutmann, & Murphy, 2005; Speer & Murphy, 2009), research on 
classroom practices of GSIs is severely limited (Speer, Smith III, & Horvath, 2010), and there 
are only a few studies that examine GSIs’ classroom practices (e.g., Gutmann, 2009; Rogers & 
Steele, in press; Speer, 2008).  
 Lesson study is a well-established Japanese systematic inquiry into teaching practices 
where teachers collaboratively create, teach, revise, and reteach lessons to continually grow as 
educators (Fernandez, 2002). In the last decade, collegiate instructors have begun implementing 
lesson study (Cerbin & Kopp, 2011; Kaplan, Cervello, & Corcoran, 2009), noting its 
collaborative format helps instructors develop rich lesson plans and reflect on teaching practices 
with others. To aid GSIs in developing similarly valued teaching practices at the collegiate level, 
this study implemented an iterative lesson study with novice1 GSIs where GSIs had to revise and 
reflect on their teaching. We posit that the reflections and revisions will actively engage GSIs 
with teaching theories, offering GSIs an experiential and collaborative foundation for 
understanding how to address pedagogical concerns that arise during teaching. To bolster current 
research in GSI pedagogy, this study identifies mathematical teaching practices (NCTM, 2014) 
                                                           
1 In this paper, we reference novice to mean first-year graduate student instructor. 
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that GSIs noticed and changed when revising their lesson during the iterative lesson study 
process. Thus this research addresses the following question: During the iterative lesson study 
process, how did novice GSIs revise their lesson design and what mathematical teaching 
practices did they use?  

Framework 
Lesson Study Logistics 
 Lesson study encourages teachers to methodically examine and improve their 
effectiveness in the classroom (Fernandez, 2002). To this end, a group of teachers will 
collaboratively create a lesson plan, teach the lesson plan while collecting observable data from 
the class, and discuss and revise the lesson plan from the observations. These lessons typically 
focus on instruction (curricular and classroom management issues), students (prior knowledge, 
student engagement, and anticipatory reasoning), goals (measurable long and short term goals), 
and content (key concepts and tasks; Stepanek et al., 2007). Usually one member of the group 
will teach the class, while the rest observe; the group is encouraged to iterate this cycle. 

A crucial difficulty associated with implementing lesson study stems from the group 
logistic dynamics: necessitating a common space and time to collaborate, a common time and 
setting to teach and observe the lesson, and an asynchronous lesson to allow for iterations 
(Stepanek et al., 2007). Typically, preservice secondary teachers cannot iterate the process due to 
logistical issues (Fernandez, 2002; Perry & Lewis, 2009). Working with mathematics GSIs helps 
alleviate these logistic difficulties because (1) they teach and learn on the same campus, (2) their 
availability is more predictable (many first-year GSIs take similar mathematics classes), and (3) 
mathematics educators facilitating lesson study can reserve a space and time for GSIs to meet. 
Thus lesson study is a viable professional development option for GSIs. 
Lesson Study Collaboration 
 Lesson study also has the potential to develop GSIs’ collaborative teaching practices. 
That is, researchers have shown that, after participating in a lesson study process, prospective 
and practicing secondary mathematics teachers were more likely to collaborate in the future 
concerning pedagogical issues (McMahon & Hines, 2008). Lesson study allows cooperation and 
collaboration to become part of the teaching process, which opens up avenues to creating a 
community of practice amongst teachers (Stepanek et al., 2007). This is a valuable tool for GSIs 
because often their learning of mathematics is evaluated by individual homework, course exams, 
and qualifying/comprehensive exams. Helping GSIs understand that their teaching can be more 
collaborative than assessments of their learning in their graduate mathematics courses can help 
develop a community of practice (Hart, Alston, & Murata, 2011) in mathematics departments. 
Lesson Study with Graduate Students 

Despite lesson study being initially adapted for K-12 classrooms, recent studies have 
included lesson study in many STEM graduate programs. In natural science labs, for example, 
the use of lesson study processes developed biology GSIs’ inquiry-based teaching practices 
(Miller, Brickman, & Oliver, 2014) and chemistry GSIs’ pedagogical content knowledge (Barry 
& Dotger, 2011). Using lesson study had a positive impact on undergraduate mathematics 
education by giving mathematics GSIs experience similar to a teaching practicum (Alvine, 
Judson, Schein, & Yoshida, 2014) and allowing GSIs to critically reflect on teaching (Deshler, 
2015). However, in these studies, the lesson study process stopped without iterating the teaching 
process—without a revise and reteach opportunity. To address this significant lack of 
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opportunity in the literature, this study offers the field a lesson study design (Table 1) that 
includes the iterative process to focus on GSIs’ revisions as a means to improve pedagogy. 
Lesson Study Measurable Goals  
 The use of clear instructional objectives is an important feature of the lesson study 
process and one that the facilitators emphasized because GSIs are asked to collaboratively plan a 
lesson when they often have little experience planning or teaching college mathematics. First-
year mathematics graduate students also typically have limited prior experiences taking 
pedagogical courses (Speer, Gutmann, & Murphy, 2005). Hiebert, Morris, and Glass (2003) 
emphasize learning to teach by treating lessons as experiments, suggesting novice teachers need 
to have clear and measurable goals. A primary feature of this lesson study process revolved 
around GSIs defining goals they would observe and measure during their lesson to require GSIs 
to actively engage with student learning and not focus solely on their teaching presentation.  

Method 
Mathematics educators from two universities designed and facilitated this lesson study 

process, implementing the same process and analysis for both of the cases.  
Participants 
 Ten GSIs from two different universities volunteered to participate. These GSIs formed 
two groups of five, and all participants and names for the groups are pseudonyms. From one 
university, five novice mathematics graduate students, who were also recitation instructors, 
volunteered to participate to help guide their transition to instructors of record the following 
semester. This group is called the Calc lesson study group. 

The other group consisted of five novice mathematics and statistics graduate students 
from another university who participated as part of a mathematics pedagogy course. Although 
the completion of the lesson study process was required for course credit, participation in the 
research study was voluntary, and all graduate students participated. These GSIs were preparing 
to be instructors of record in the following semester and formed the Stats lesson study group.  
Lesson study process 

Researchers followed the same lesson study design (Table 1) using identical handouts for 
each session and framework to collect GSI data. Data sources included video, audio, and 
(undergraduate and graduate) student work. Through regular meetings over the span of two 
weeks, GSIs met with the facilitator to go through the lesson study process, implement the 
lesson, revise the lesson plan, reteach the lesson, and complete a final reflection (Table 1).  
Table 1 
Lesson Study Process with Graduate Student Instructors 

 
Session 

Time 
(hrs) 

 
Description 

 
Outcome of Session 

Introduction 1 Introduce lesson study process (Stepanek et al., 2007), 
sign consent forms, & discuss logistics for teaching. 

GSIs determined the course & section for the lesson. 

Goal Writing 3 GSIs learn about conceptual and procedural goals, identify 
measurable goals for their lesson, determine how they will 
measure those goals, & identify how they will collect data 

to see if each goal is achieved. 

GSIs stated goals, metric for each goal, & data 
collection methods written clearly. 

Mathematical Task 3 Identify high and low level mathematical tasks  (Smith & 
Stein, 1998), create appropriate tasks for each lesson goal, 

& integrate measurements for goals with tasks. 
Task(s) created and aligned with learning goals, 

metrics for each goal refined in light of mathematical 
task, & sketched lesson design. 

Lesson Plan 2 Integrate goals and tasks with lesson design using four-
column technique (Matthews, Hlas, & Finken, 2009). 

Four-column lesson plan with activities, anticipated 
student responses, anticipated teacher responses, & 

alignment with goals. 
Initial Teaching of 

Lesson 
1 Video recorded and observed by other GSIs. GSIs also 

walk around and take notes of student work. 
GSI notes on lesson & measures of goals via 

observation form. 
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Revision 2 Discuss what went well, reviewed sections of initial lesson 

looking for changes, & identify what goals were met, why 
or why not, making necessary changes. 

Identify if goals were met by measurable data. 
Modified lesson plan intended to meet all desired 

goals for second iteration. 
Second Teaching 

of Lesson 
1 Video recorded and observed by other GSIs. GSIs also 

walk around and take notes of student work. 
GSI notes on lesson & measures of goals via 

observation form. 
Reflection 1 Discuss what went well, what goals were met, & if 

changes were effective or not and why. Also, some 
reflection on the entire process. 

Identify if goals were met by measurable data. Reflect 
on the value of the lesson study and what was learned 

through the process. 
Both universities used the same lesson study sessions, handouts, and observation forms to 

compare GSIs’ lesson-plan revisions and mathematical teaching practices. To focus on the 
research question, researchers kept track of how GSIs changed the lesson plan according to 
pedagogical issues through the iterative lesson study, as follows: Using a multiple case study 
qualitative methodology and naturalistic inquiry (Lincoln & Guba, 1985), researchers themed 
GSI revisions relative to their goals and tasks. When theming revisions, researchers referenced 
the eight mathematical teaching practices (MTPs) as described in the Principles to Actions 
(NCTM, 2014) because these nationally recognized practices are designed to “provide a 
framework for strengthening the teaching and learning of mathematics” (p. 9). 

Results 
For structure, each case study includes a brief description of the teaching setting, a table 

summarizing the lesson goals, revisions, and observations, and a description of each group’s 
maintenances and  changes in mathematics teaching practices. A commonality across both 
groups is that they did not change their goal statements, but modified the lesson design and 
planned questions to try to better meet their objectives. 
Calc Case Study 

Teaching Setting. Due to scheduling demands, Calc decided to teach a lesson on area 
between curves to students in Calculus I because 60% of the GSIs would be running recitation 
for this content in two weeks. First, Alfonzo taught the lesson to a lecture-sized class of 64, using 
group work with 16 groups of four. Second, Aaron taught the revised lesson to his recitation 
class of 32 students. Table 2 describes the three goals related to mathematical tasks the GSIs 
designed their lesson to measure. 

Thematic Revisions. Calc decided that to observe and measure students’ work during 
class, a group structure would be the most efficient. After the initial lesson, Calc chose not to 
modify the goals or group structure, only the examples and tasks, to address two pedagogical 
issues. Abe stated, “In the second example, Alfonzo gave them the intersection point which 
limited their understanding of how to find an intersection.” Anna agreed saying, “If he hadn’t 
given them the intersection points, they would have struggled in a good way.” Since students 
struggled when finding intersection points, they ran out of time to evaluate their integral to find 
the area between the two curves (Goal 3).  
Table 2 
Calc Lesson Goals, Revisions, and Observations 

Measureable Goal Did GSIs Conclude the Goal was Met 
After the Initial Lesson? 

How did they know? 
Revisions Did GSIs Conclude that the Goal 

was Met After Second Lesson? 
How did they know? 

Goal 1: Students will 
identify intersection 
points and determine 
which function is on 

“top” versus “bottom.” 
 

Partially. 
In a task, a majority of students were able to 

identify and discuss “top” and “bottom” 
functions, but were not able to identify 

intersection points because the intersection 
points of the two curves were given as the 

endpoints of the interval. 

The endpoints for the tasks’ 
intervals changed. One task 

became an open-ended question 
where students had to determine 

the endpoints and  the 
intersection points of the 

functions. 

Yes. 
The open-ended question forced 

every group discussions on how to 
determine intersection points of 
graphs which lead to meaningful 

group conversations about 
determining intersections. 
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Goal 2: Students will 
be able to switch the 
“top” and “bottom” 

functions to set up the 
region of integration. 

Partially. 
Polling after a task, a majority of students 

understood the need to switch the “top” and 
“bottom,” but to set up the integral, they had 
to know the points of intersection (Goal 1) 

Modified the instruction to 
illustrate how to more clearly 
identify intersection points of 

graphs algebraically. 

Partially. 
Polling indicated half the students 

still struggled with multiple integrals 
and multiple points of intersection. 

Goal 3: Students will 
be able to evaluate the 
desired integral to find 

the area between 
curves. 

Inconclusive. 
Limited time had many groups of students 
not get to the last part of a task addressing 
this goal; results could not be determined. 

More time given for the open-
ended task and time was 

removed from the task with the 
modifications to the endpoints 

(Goal 1) 

Yes. 
Seven of the eight groups evaluated 
the integral they created in the first 
task appropriately using the power 

rule.  
To resolve these issues, Calc chose to make the first task an open-ended question to provoke 
meaningful discussions about what interval was appropriate to find the area between curves and 
how to identify intersection points of curves. Aaron hypothesized this change would better 
develop students’ understanding of when and how to set equations equal to determine 
intersection points of curves. Aaron’s hypothesis was proven true when all eight groups were 
heard discussing how to find the intersection points. As a result, Aaron’s students spent more 
time on the first task, but then applied their understanding of intersections to move more quickly 
through the remaining tasks, accomplishing Goals 1 and 3. 

Calc held to their measurable goals, the use of mathematical tasks, and observational data 
to measure their goals throughout the entire lesson study process. Thus Calc maintained 
established mathematical goals to focus learning (MTP1), implemented tasks that promote 
reasoning and problem solving (MTP2), and elicited evidence of student thinking (MTP8). 
Calc’s main revisions stemmed from their observations of student work on tasks. Thematically, 
their revisions modified the first task to be an open-ended question and more cognitively 
demanding. The modified task promoted small-group discussion and GSIs saw how 
modifications of tasks can facilitate meaningful mathematical discourse (MTP4), which helped 
efficiently facilitate other tasks and goals by building procedural fluency from the conceptual 
understanding (MTP6) of how to find intersection points of two curves. Although difficult at 
first, the revised tasks encouraged productive struggles in learning mathematics (MTP7).  
Stats Case Study 

Lesson Setting. Due to logistics and timing, Stats taught an introductory statistics lesson 
on linear correlation. Sam was the instructor for the first lesson (50mins with 20 undergraduates) 
and Steve taught the second lesson (50mins with 21 undergraduates). Their study lesson included 
four goals and one mathematical task that incorporated four main activities (Table 3). 

Thematic Revisions. Stats had students work in a variety of group structures: in pairs, in 
groups of four (by pairing the pairs together), and as a whole class so students could  make sense 
of content with their classmates and Stat could observe and measure students’ work during class. 
After Sam’s teaching, Stats also did not change the goals or overall structure of the lesson (Table 
3). They focused, instead, on modifying the lesson plan to address two pedagogical issues: 
student misconceptions and pacing of the lesson. First, Stats realized that students expressed an 
unanticipated misconception: Sarah observed that “a couple of people were confused that . . . it 
doesn’t matter what the slope is. Students’ reason for a graph with r = 0 was ‘because it’s a 
horizontal line’ . . . not because the points were really spread out.” Other Stats members agreed 
that students considered r-values as the slope of the line of best fit rather than the descriptor for 
the strength of the correlation, leading to confusion about how to tell the strength of correlation 
in a scatterplot (Goal 3). To address this unanticipated misconception, Stats discussed how “it 
could have been explained better” (Sam). Suzie suggested incorporating an example during the 
introduction of the activity for Goal 3 where you have “two lines of best fit, both with the same 
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slope but with different r-values, and see that the r-value is higher for the one with the points 
closer to the line.” Steve incorporated this suggestion in the revised lesson and students seemed 
to follow along with this explanation. However, Stats did not modify the associated task, nor 
their way of measuring if Goal 3 was met. Thus students still needed clarification to more 
thoroughly understand the differences between r = -0.42 and r = -0.72.  

Second, Stats recognized a number of places where “the big thing for the lesson is . . . 
time management” (Suzie) because Sam’s discussions took longer than anticipated, leaving 
insufficient time for the closure activity (Goal 4); thus, they revised the lesson plan to address the 
pacing of the lesson (e.g., explicitly announcing when groups needed to wrap up part of the 
activity, grouping students up to make certain transitions smoother, and polling the class to 
indicate if it was OK to move on). Steve incorporated many of the group’s suggestions (e.g., 
explicitly pairing and then grouping up students), which encouraged students to interact with 
their classmates and ask additional questions during the second iteration of teaching. Although 
pacing of the second study lesson improved, students still had less time than planned (~4mins) 
for the closure. Realizing they were running behind, Steve modified the participatory structure of 
the closure on the spot, encouraging students to work with their partner, thereby shortening the 
final activity in hopes of still addressing the final goal.  
Table 3 
Stats Lesson Goals, Revisions, and Observations 

Measureable Goal Did GSIs Conclude that the Goal 
was Met After Initial Lesson? 

How did they know? 
Revisions Did GSIs Conclude that the Goal 

was Met After Second Lesson? 
How did they know? 

Goal 1: Students will 
be able to explain that 

correlation is not 
causation. 

Partially. 
Correct responses elicited, but only 

from a handful of students 
(volunteered or called on). GSIs 
unsure if a majority of the class 

understood confounding variables 
and appropriate conclusions. 

Additions to lesson plan for 
instructor: (1) ask students to 
explain their reasoning during 

whole-class discussion, and (2) poll 
the class to ask everyone to indicate 
(thumb up or down) agreement with 

conclusions or reasoning shared. 

Partially. 
Discussion involved a wider variety 

of participants; students asked 
clarifying & contextual questions. 

Instructor pressed students for more 
examples, but felt pressed for time 

forgetting to use the polling strategy. 
More data needed to conclude how a 

majority of the class understood. 
Goal 2: Students should 

recognize the 
correlation must be 
linear to calculate r. 

Yes. 
Instructor called on each group, and 

each group shared at least one 
answer and all answers were 

correct. 

Managing group dynamics: have 
instructor explicitly group pairs of 

students (from earlier in lesson) into 
groups of four to facilitate group 

work time. 

Yes. 
The transition into groups of four 

went more smoothly, and responses 
from each group as they were called 

on were correct. 
Goal 3: Students will 
be able to associate 

r-values with 
scatterplots 

Partially. 
Groups mostly provided correct 

answers during class discussion, but 
expressed confusion about how 

strongly correlated the graph was 
and how to tell. 

Amended lesson plan to include 
more explicit instruction about 

slope of a line being different from 
the r-value before students worked 

on this question to address the 
students’ apparent source of 

confusion 

Partially. 
The added explanation seemed to 

help guide the activity more clearly, 
and most answers from groups were 

correct values. Some confusion 
remained as to how to determine if a 

given scatterplot had an r-value 
closer to -0.42 or -0.72, for example. 

Goal 4: Using provided 
technology (excel or 
statcrunch), students 

will be able to calculate 
r from two lists of 

numbers. 

Inconclusive. 
Groups ran out of time and many 

only calculated some of the r-
values. Many groups did not attempt 
to answer the questions about what 

conclusions could be drawn. 

Timing recommendations: stressed 
areas where instructor could give 

students explicit instructions about 
how much time was left to move 
earlier parts of the lesson along 

faster. 

Inconclusive. 
Time was still a factor so instructor 

encouraged students to work in pairs 
(fewer r-values to calculate), working 
through the open-ended closure more 

quickly. Insufficient data about a 
majority of students’ understanding. 

As was also observed for Calc, Stats maintained established mathematical goals to focus 
learning (MTP1), implemented tasks that promote reasoning and problem solving (MTP2), and 
elicited evidence of student thinking (MTP8). Stats’ revisions stemmed primarily from their need 
to address an unanticipated misconception and desire to build in enough time to provide 
opportunities for students to generate their own understanding of relevant content relevant. The 
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need to elicit and use evidence of student thinking (MTP8) was further reinforced by the fact that 
it was only through observing students’ responses during Sam’s teaching that the group was 
aware of the slope vs. r-value misconception. During Steve’s teaching, his incorporation of 
specific examples pertaining to that misconception further reinforced the need for the group to 
elicit more evidence of students’ thinking (MTP8) than what they planned to determine if this 
change helped address their goal. Through the modifications for the pacing of the lesson, Stats 
observed how modifications in student participatory structures could support meaningful 
mathematical discourse (MTP4) because students interacted with their group members more 
during Steve’s lesson and raised additional questions about the material (Table 3, Goal 1, 
Column 4). Finally, it is important to note that Steve recognized the need to modify the closure 
activity on the spot because the group stressed the importance of making more time for the 
closure to help address Goal 4. Steve modified the closure activity in a way to encourage 
productive struggles in learning mathematics (MTP7) by maintaining the open-ended, 
cognitively demanding features of the activity, but encouraging students to talk with one 
classmate (instead of three) to make sense of the statistical ideas. 

Discussion 
By comparing two universities’ iterative lesson study process, this study (1) identified 

mathematical teaching practices (NCTM, 2014) GSIs used consistently and revised, and (2) 
demonstrated the utility of collaboratively reteaching and revising lessons as a GSI professional 
development tool. The revisions and second teaching iterations have rarely been examined in 
lesson study literature. This iterative process provided an opportunity for both groups to 
implement the changes they deemed necessary to more clearly address their goals. Table 4 states 
the mathematical teaching practices GSIs used and revised during this iterative lesson study 
process. In Table 4, after each mathematical teaching practice, there is a reference to the GSI 
choices in Tables 2 and 3 that justify the coding. 
Table 4 
Iterative Lesson Study’s Mathematics Teaching Practices Thematic Revisions 
 Calc Lesson Study Stats Lesson Study 
MTPs with GSIs 
Throughout Both 
Lessons 

(MTP1) Establish mathematics goals to focus learning 
(MTP2) Implement tasks that promote reasoning and 

problem solving 
(MTP8) Elicit and use evidence of student thinking 

(MTP1) Establish mathematics goals to focus learning 
(MTP2) Implement tasks that promote reasoning and 

problem solving 
(MTP8) Elicit and use evidence of student thinking 

MTPs that Changed 
with Revisions 

(MTP4) Facilitate meaningful discourse, Table 2, Goal 1 
Revisions 

(MTP6) Build procedural fluency from conceptual fluency, 
Table 2, Goal 3 Revisions 

(MTP7) Support productive struggle in learning 
mathematics, Table 2, Goal 1 Revisions  

(MTP4) Facilitate meaningful discourse, Table 3, Goal 1, 
Column 4 

(MTP7) Support productive struggle in learning 
mathematics, Table 3, Goal 4, Revisions & 
Column 4 

(MTP8) Elicit and use evidence of student thinking, 
Table 3, Goal 3, Revisions & Column 4 

To answer our research question, these results demonstrate this iterative lesson study 
process encouraged GSIs at both universities to consistently (1) establish mathematical goals to 
focus learning (MTP1), (2) implement tasks that promote reasoning and problem solving 
(MTP2), and (3) elicit evidence of student thinking (MTP8). At both universities, GSIs revised 
their lessons to facilitate meaningful discourse (MTP4) and support productive struggle in 
learning mathematics (MTP7). Useful future research could more specifically examine how the 
use of measurable goals, highly cognitive tasks, and the iterative process lead to similar 
mathematical teaching practices at both universities.  

The results of this study indicate how revisions with the iterative lesson study lead to 
specific teaching practices being addressed. Thus, GSI educators can use a lesson study process 
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to actively involve GSIs in learning about pedagogical concerns in undergraduate mathematics 
education prior to, or in conjunction with, GSIs learning about specific pedagogical topics and 
theories; thereby reinforcing or supporting GSIs’ understanding of collegiate mathematics 
pedagogy. This study provides GSI educators with a format for iterative lesson study for GSIs as 
well as specific teaching practices that GSIs can gain via this teaching practicum.  
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Students’ Experiences and Perceptions of an Inquiry-Based Model of Supplemental 
Instruction for Calculus 
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The Inquiry-Based Instructional Support (IBIS) workshop model is part of an innovative degree 
program designed to prepare elementary mathematics teachers.  The reason behind IBIS 
workshops was to support students enrolled in “historically difficult” mathematics courses, such 
as Calculus I and Calculus II.  The design of IBIS workshop was framed and guided by Peer-Led 
Team Learning (PLTL) (Gosser & Roth, 1998) and Complex Instruction (Cohen, 1994).  During 
workshop, students work in small groups and engage in “groupworthy” mathematical tasks that 
promote their conceptual understanding of Calculus topics (Cohen, 1994).  A pilot study was 
conducted to evaluate the workshop structure and these tasks.  In order to assess students’ 
workshop experiences, follow-up interviews were conducted.  Students’ responses indicated that 
their workshop experiences helped to promote the development of their problem solving skills 
and highlighted the critical roles of thinking and reasoning in learning Calculus with 
understanding. 
 
Keywords:  [Inquiry-based learning, groupwork, Peer-Led Team Learning, Complex Instruction, 
Calculus] 
 
 Noyce @ Montclair is an innovative degree program designed to provide outstanding 
preparation for prospective elementary mathematics teachers.  One of the enhancing components 
of this degree program is a series of Inquiry-Based Instructional Support (IBIS) workshops for 
students enrolled in “historically difficult” mathematics courses, such as Calculus I and Calculus 
II.  Two existing models of academic support, Peer-Led Team Learning (PLTL) and Complex 
Instruction (CI), informed the development of IBIS.  A pilot study was conducted in the fall of 
2014 to examine what students learned from their participation in IBIS workshops. 

Theoretical Framework 
Peer-Led Team Learning (PLTL) 

PLTL is an education intervention that included the use of well-trained peer leaders to 
facilitate small study groups into a part of the course structure (Gafney & Varma-Nelson, 
2007).  PLTL consists of six critical components: (1) workshop is integrated part of the course; 
therefore attendance is mandatory; (2) course faculties are closely involved in workshop 
organization and peer leader training; (3) all peer leaders are selected, well trained, and 
supervised; (4) workshop materials, also called modules, are challenging and appropriate; (5) 
workshops are designed for small groups of six to eight students; and (6) department and 
institution support, encourage, and acknowledge contemporary learning and teaching (Varma-
Nelson, Cracolice, & Grosser, 2004).    
Complex Instruction (CI) 
 CI is an instructional approach that utilizes cooperative groupwork for effective teaching 
in diverse classrooms.  Complex Instruction emphasizes the value of groupworthy tasks, which 
are designed to facilitate the development of students’ conceptual understanding.  Initially, group 
members engage in training activities to begin to develop proper groupwork skills.  Inside of a 
CI classroom, student interactions are viewed as a learning resource (Cohen, 1994). 
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Groupworthy Tasks 
 Buell, Greenstein, and Wilstein (to appear) proposed five considerations for designing 
problems and tasks that are groupworthy.  The first consideration focuses on the high cognitive 
demand nature of tasks.  This requires students to look beyond procedures and examine the 
underlying conceptual ideas.  The second consideration refers to tasks with multiple entry points 
that allow students with different levels of understandings to get access of the tasks.  With the 
third consideration, tasks should “open up the space” to allow for multiple pathways reach 
possible solutions.  The fourth consideration suggests for tasks to be thought-revealing in order 
to promote discussions and collaboration among students.  With the last consideration, tasks 
should be realistics to the students so the contexts are meaningful to them (Buell, Greenstein, & 
Wilstein, to appear).  In order to develop workshop modules that focus on the development of 
students’ conceptual understanding of Calculus, these five considerations were used to guide the 
development of our workshop modules.  

Methods 
Participants 
 There were nine students that attended IBIS workshops.  These students were enrolled in 
Calculus I.  Out of these nine students, four participated in the follow-up focus group interviews 
conducted at the end of the semester. 
Data Collection 
 During the pilot study, each workshop session was videotaped and students’ work on the 
workshop module was collected at the end of each workshop session.  The follow-up focus group 
interviews conducted at the end of the semester were also videotaped.  The purpose of this 
interview was to gain a better understanding of how student experienced and perceived IBIS 
workshops.   
Data Analysis 
 The video interviews were transcribed.  The interview transcripts were first individually 
coded by four researchers.  The codes were then shared and discussed amongst the researchers to 
achieve consensus.  The researchers took turns to interpret the codes and each interpretation was 
justified and explained.   

Results 
 Instead of focusing on the correctness of the solutions, students were encouraged to think 
and reason about their approaches to the module problems.  This experience is evident in the 
result of the interviews, as students’ responses indicated that during IBIS workshop opportunities 
were provided for them to promoted the development of their problem solving skills, which is 
something that they found lacking in their Calculus classes.  Students acknowledged that IBIS 
provided an environment that promoted, engaged, and focused on the development of their 
conceptual knowledge.  Further, students identified that they need to think and reason in order to 
understand and learn Calculus. They also expressed that in IBIS, they are encouraged to be 
persistent to overcome obstacles and challenges. This resulted from students’ interactions with 
their group members and the modules.  Students were always encouraged to help each other 
while working on modules that have high cognitive demands. 

Conclusion 
 The purpose of this study was to investigate what students learned from participation in 
IBIS workshops.  The results suggest that workshop experiences helped to promote students’ 
problem solving skills, conceptual understanding, and perseverance on solving challenging 
mathematical problems.  Further research is required to examine the possible impacts that IBIS 
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has on both workshop students and peer leaders with a larger population.  This is our first step to 
building a sustain inquiry-based support system for students to success in the Calculus 
sequence.   
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Service-learning in a precalculus class: Tutoring improves the course performance of 
the tutor. 

 
Ekaterina Yurasovskaya 

Seattle University 

We have introduced an experiment: as part of a Precalculus class, university students have 
been tutoring algebra prerequisites to students from the community via an academic service-
learning program. The goal of the experiment was to improve university students’ mastery of 
basic algebra and to quantitatively describe benefits of service-learning to students’ 
performance in mathematics. At the end of the experiment, we observed 59% decrease of 
basic algebraic errors between experimental and control sections.  The setup and analysis of 
the study have been informed by the theoretical research on service-learning and peer 
learning, both grounded in the constructivist theory of John Dewey. 

Key words: Precalculus, design experiment, service-learning 

Introduction and Research Questions 
Academic service-learning consists of two integral components: a useful service to the 

community, and a meaningful learning opportunity to the students, which is relevant to the 
material covered in the course (Hadlock, 2013). Astin, Vogelsang, Lori, Ikeda, and Yee 
(2000) found that service-learning shows positive effects on academic performance (GPA, 
writing and critical thinking skills) and values of participating students. Service-learning in 
mathematics courses has recently been gaining prominence (Hadlock, 2005), and our present 
study was motivated in part by the need for a quantitative analysis of the benefits of service-
learning to students’ mathematical performance.  

Our second motivation was the ever-present need to improve student success and 
retention in Calculus (Bressoud, Mesa & Rasmussen, 2015). Edge and Friedberg (1984) show 
that solid algebra skills are one of the main factors determining success in Calculus. Success 
of the service-learning project raises students’ fluency in algebra and leads to a stronger 
chance of their mastering Calculus, and staying within their chosen technical field. 

Our study explored the following research questions: 
 
Question 1: Will students who engage in tutoring algebra pre-requisites to middle-school 

and returning students demonstrate fewer ‘fundamental’ mistakes than students from the 
control section without the tutoring experience? By ‘fundamental’ mistakes we mean the 
following: 

1. Mistakes that result from misunderstanding the addition/subtraction algorithm of 
a. numerical fractions 
b. rational expressions 

2. Cancellation mistakes in 
a. numerical fraction arithmetic 
b. rational expressions 

3. Mistakes in operations on radicals 
4. Mistakes in operations with exponents. 
5. Mistakes in basic factoring using formulas. 
6. Other – may be added after consultations with other mathematics faculty, or after 

marking the final exam. 
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Question 2: What will be the reaction of students to the service-learning experience 
introduced in a scientific course that has not traditionally been associated with community 
work at this and other institutions? 
 
Theoretical Perspective 

Our framework for the present study follows a standard pseudo-experimental setup  as 
described by McKnight, Magid, Murphy, and McKnight (2000): baseline performance for 
experimental and control sections is determined via a diagnostic test; the two sections receive 
equivalent instruction for the duration of the course, except for the difference in the tutoring 
service-learning component. The two sections are given identical final exam, and their 
performance is analyzed via a rubric. Qualitative data is also compared. To our knowledge 
ours is the first study that quantitatively analyses benefit to mathematical performance of 
service-learning students engaged in tutoring. 

Our idea to use tutoring as a means to help student-tutors learn mathematics is rooted in 
the long-standing theory that underlies Peer Learning in general. From a well-known saying 
‘I hear and I forget. I see and I remember. I do and I understand’, to the theoretical work of 
Allen and Feldman (1976), tutoring has been shown to benefit the tutor, as well as the tutee.   

When designing and implementing the service-learning structure, we closely followed the 
suggestions and project design outlined in the Special Issue on Service-Learning in 
Mathematics, PRIMUS: Problems, Resources, and Issues in Mathematics Undergraduate 
Studies (2013), particularly Schulteis’ (2013) experience of building a course with university 
students’ satisfying the tutoring needs of local institutions and non-profit organizations.  

In order to fully benefit from the service-learning experience, students must have an 
opportunity to engage in structured reflection and connect for themselves the tutoring 
experience with the content of the course (Bringle & Hatcher, 1999). In building the 
theoretical foundations of service-learning on the basis of the experimentalism of John 
Dewey, Giles and Eyler (1994) name reflection as the means of converting experience into 
knowledge. An integral part of the experimental service-learning section was a weekly 
guided reflective diary of tutoring experiences, helping students analyze mathematical, as 
well as social and pedagogical, aspects of their work with the students from the community. 

 
Methodology 

Our work took place at Seattle University: a medium-sized urban Catholic university in 
the heart of Seattle, WA, with a long tradition of incorporating service-learning and 
community work into students’ coursework and extra-curricular education. The setting for 
our study was two sections of a standard Precalculus course that served as a pre-requisite for 
the science and engineering track Calculus sequence. The course focused on advanced 
algebra material and served as a mathematics refresher for students whose ACT and SAT 
scores would not allow them to be placed directly into a Calculus I course. Both sections 
numbered 21 students each. The experimental section of the Precalculus course involved a 
service-learning component, while the other section served as control and consisted of 
standard in-class instruction only.  

 The students in the experimental section took part in the established university Service 
Learning program. They spent 2-3 hours per week tutoring basic algebra and sometimes 
arithmetic to middle school students, students at immigrant assistance centers, as well as 
adults returning to complete their education at a local community college. The students put in 
a total of 18-21 hours of tutoring work during the 12-week duration of the quarter.  

The control section was identical to the service-learning section in every aspect of the 
course syllabus, such as the topics covered, the number of exams, attendance and make-up 
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policy, etc.  The only difference was the lack of the tutoring component in the control section, 
as well as a slight difference in grading weights assigned to exams and homework. The 
control section also received some amount of extra homework intended to balance the 
additional workload faced by experimental section.  

 
We established a baseline of the students’ prior knowledge and preparation by using a 

diagnostic pre-test. The pre-test was given to both sections on the first day of class and 
covered the pre-requisite material including arithmetic with fractions and radicals, basic 
factoring, and solving basic equations. In order to make sure the task was taken seriously, the 
students received a small amount of credit for completing the pre-test. 

To connect the tutoring experience to the algebra content, the students in the experimental 
section kept a weekly reflective diary which included mathematical and non-mathematical 
components. Mathematical reflection helped the students analyze the mathematical 
component of the tutoring experience and reflect on the following and similar questions: 

o What problem did you discuss with your student? What mathematical concept did 
you address? 

o What piece of knowledge was missing from the students’ understanding that 
prevented them from moving forward? 

o What method did you use to approach the solution and how did you explain the 
material? 

o Did you discover any gaps in your own mathematical knowledge?  What steps did 
you take to address them? 

o Did you discover any parallels between the topics you tutored and our 
mathematical lectures and problems from class? 

The free-form non-mathematical reflection was intended to help the students process the 
human aspect of their experience with service-learning and tutoring. The following guiding 
questions were suggested to the students: “What do you think is holding this student back and 
what can be done to help the student succeed? How was your tutoring week? What non-
mathematical problems did you encounter? Any thoughts on what you are seeing and 
experiencing while tutoring? Any questions you would like to ask me, or your fellow 
students, or the management of the organizations where you tutor?” 

In addition, the experimental section held two in-class reflection meetings, offering the 
participants an opportunity to discuss the pedagogical issues raised by the students 
themselves, through the diaries or in class. The students also had a chance to address practical 
matters of service-learning, such as transportation, time commitment, communication with 
the community partners. 

At the end of the course, the students submitted a typed anonymous reflection where they 
were free to comment on any aspect of their experience, to offer suggestions for 
improvement, and to voice any additional concerns regarding the course. 

At the end of the quarter, both sections took a standard final exam with identical 
questions. Relevant statistics were computed and compared for both sections. The number of 
fundamental mistakes (see Introduction) was determined via a special rubric.   

  
Results 

Our diagnostic pre-test indicated that the experimental and control sections were 
comparable in preparation and abilities and showed similar score distributions, with the 
experimental section showing a slightly better average, but the difference between the two 
sections not being statistically significant. 
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Research question 1 was answered affirmatively. We compared the number of 
fundamental mistakes in the final exams for both sections: there were only 13 fundamental 
mistakes made by the 21 students of the experimental section, while the 21 students of the 
control section made 32 fundamental mistakes. Thus, there were 59% fewer fundamental 
mistakes in the experimental section than in the control one. 

 
The course average for the experimental section was higher, due to the difference in the 

weights given to individual course components.  
Data from the reflective diaries and the end-of-term anonymous reflection indicate that 

the answer to the second research question was also positive: out of 21 submitted anonymous 
reflections, 20 were positive, reflecting a sense of accomplishment and a clear understanding 
of the privilege of university education, as well as the appreciation of new friendships. 
Similarly to Butler (2013), we observed a number of service-learning benefits that went far 
beyond the original goal of the project, including an increased level of confidence in oral 
communication skills mentioned by the international students. After the quarter ended, 
several students voluntarily continued their work with the community partners.                

In their diaries, the students enthusiastically pointed out multiple connections between the 
mathematical concepts covered in class and the topics they had explained in the tutoring 
sessions. Students rediscovered for themselves that the underlying concepts and definitions 
were in fact the same for the polynomial graphs and the radical equations covered in class, 
and the basic linear graphs and equations their tutees had studied in middle school.  As 
Roscoe and Chi (2007) point out, peer tutors manifest highest levels of tutor learning as a 
result of explaining conceptual rather than process-based questions to the tutees. In our case, 
reflection diaries worked as a tool to reinforce mathematical knowledge gains made by the 
tutor as a result of the tutoring session. 
 
Conclusions and Implications for Mathematics Education 

Our research statistically establishes a number of tangible benefits of service-learning to 
students’ mathematical performance in class. The non-mathematical benefits have been 
widely explored, and they are confirmed by our study. Our research opens venues to further 
exploration of the long-term academic and non-academic benefits of service-learning to the 
university students, as well as to students from the community. Service-learning requires 
commitment of time and sometimes additional funding: our findings may encourage 
Mathematics departments and university administration to promote service-learning in 
mathematics courses. 

 
For discussion 

We will be grateful for any comments and ideas regarding the following topics.  
o Please suggest additional theoretical frameworks for exploring the setup and 

results of the experiment. 
o Please suggest instruments and experiments to assess changes in students’ 

knowledge and academic performance in Calculus courses, following their 
service-learning experience in the Precalculus course. 
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Symbolizing and Brokering in an Inquiry Oriented Linear Algebra Classroom 
 

Michelle Zandieh 
Arizona State University 

Megan Wawro 
Virginia Tech 

Chris Rasmussen 
San Diego State University 

 
The purpose of this paper is to explore the role of symbolizing and brokering in fostering 
classroom inquiry. We characterize inquiry both as student inquiry into the mathematics and 
instructor’s inquiry into the students’ mathematics. Disciplinary practices of mathematics are 
the ways that mathematicians go about their profession and include practices such as 
conjecturing, defining, symbolizing, and algorithmatizing. In this paper we present examples of 
students and their instructor engaging in the practice of symbolizing in four ways. We integrate 
this analysis with details regarding how the instructor serves as a broker between the classroom 
community and the broader mathematical community.   

Key words: symbolizing, brokering, inquiry, linear algebra, disciplinary practices 

Creating and sustaining engaged classrooms in which students learn particular mathematics 
and develop positive mathematical dispositions that transcend course-specific concepts is a 
daunting and challenging endeavor. For instructors, these challenges include (a) creating or 
selecting tasks that afford opportunities for students to learn mathematics by doing mathematics, 
(b) leading and facilitating small group and whole class discussions in which student ideas are 
shared and valued, and (c) relating students’ intuitive, informal, or blossoming ideas to 
conventional and more formal mathematics. We refer to classrooms where these challenges are 
realized as “inquiry-oriented.” Prior research (e.g., Laursen, Hassi, Kogan, & Weston, 2014; 
Rasmussen, Kwon, Allen, Marrongelle, & Burtch, 2006) points to the power of engaging 
students in typical mathematical practices through inquiry in undergraduate mathematics. As 
such, the need exists to further investigate and understand the relationships between what 
students do, what the instructor does, and the role of tasks in these inquiry-oriented classrooms. 
This report, using symbolizing in an inquiry-oriented linear algebra classroom as a case study, 
makes a contribution toward this need. 

 
Literature and Theoretical Framing 

We operationalize the notion of inquiry, using the definition put forth by Rasmussen and 
Kwon (2007), both in terms of what students do and what instructors do in relation to student 
activity. On the one hand, students learn mathematics through inquiry as they work on 
challenging problems that engage them in typical mathematical practices, which we refer to as 
disciplinary practices. Disciplinary practices of mathematics are the ways that mathematicians go 
about their profession and include practices such as defining, theoremizing, symbolizing, and 
algorithmatizing (Rasmussen, Wawro, & Zandieh, 2015; Rasmussen, Zandieh, King, & Teppo; 
2005). On the other hand, instructors engage in inquiry by listening to student ideas, responding 
to student thinking, and using student thinking to advance the mathematical agenda of the 
classroom community (Rasmussen & Kwon, 2007). 
!
Brokering 

In addition to characterizing what constitutes disciplinary practices, over the years we have 
also developed and refined the work of instructors in leading inquiry-oriented classrooms (e.g., 
Rasmussen & Marrongelle, 2006; Rasmussen, Zandieh, & Wawro, 2009; Wawro, 2014; Zandieh 
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& Rasmussen, 2010). As part of this work, we adapted the idea of broker from the communities 
of practice literature (Lave & Wenger, 1991; Star & Griesemer, 1989; Wenger, 1998) to help 
make sense of the difficult work of inquiry-oriented instruction. By definition, a broker is 
someone who can facilitate communication and fluidity of practices between different 
communities and who has membership status in the different communities. Here we consider two 
different communities: the local classroom community and the broader mathematical 
community. Typically, the instructor has membership status in both communities. More 
importantly for us, brokers link practices (in our case defining, conjecturing, proving, etc.) 
between communities and are able to promote learning by introducing into the classroom 
community elements of practice from the broader mathematical community.   

In previous work, we examined the case of students reinventing a bifurcation diagram in a 
first course in differential equations and the role of the instructor in this process. This analysis 
revealed three different types of instructor brokering moves: creating a boundary encounter, 
bringing participants to the periphery, and interpreting between communities (Rasmussen et al., 
2009). In this paper we highlight the first and third of these brokering moves. 

Creating a boundary encounter refers when a broker (i.e., the instructor) sets up an indirect 
interface between the classroom community and the broader mathematical community. A 
boundary encounter involves a boundary object, typically a well-chosen task or sequence of 
tasks, that provides an opportunity for students to engage in one or more disciplinary practices. 
In the sections that follow we delineate features of such tasks in our case study that opened a 
space for students to engage in the disciplinary practice of symbolizing.  

Interpreting between communities is a brokering move in which the instructor coordinates 
students’ mathematics with the more conventional or formal mathematics of the broader 
mathematical community. This type of brokering move typically occurs when the instructor 
inserts notations, symbols, graphs, diagrams, or provides other information that enables students 
to transcend the idiosyncrasies of their local classroom community. Interpreting between 
communities is significant because it shows how the instructor can connect student thinking to 
the well-developed mathematical culture. Moreover, it facilitates the sense of ownership of ideas 
and belief that mathematics is something that can be reinvented and figured out. 

 
Symbolizing 

Not all classroom activity is characterized by participation in disciplinary practices, even in 
inquiry-oriented classrooms. For instance, classroom mathematical practices capture the 
emerging content-specific mathematical progress of a local classroom community (Cobb, 2000; 
Rasmussen et al., 2015), whereas disciplinary practices capture how that progress might reflect 
what professional mathematicians do that transcends specific content. Symbolizing is the 
disciplinary practice of creating and using symbols to communicate mathematical ideas. Symbols 
include graphs, diagrams, and analytic expressions such as letters, numbers, and vectors. By 
engaging in their own symbolizing, students act like mathematicians – notating processes and 
connections between ideas with shorthand expressions that allow for efficiency of processing.  

In this paper we highlight symbolizing of the following four types that we have found to be 
prevalent in inquiry-oriented classes: 

(S1) Notating steps in a calculation or process,  
(S2) Stating a relationship between two or more mathematical objects,  
(S3) Creating a connection across two different representations (notating in new symbolism 

what has already been explained or described in a different way), and  
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(S4) Creating a unifying inscription, a graphic or diagram that illustrates multiple 
relationships at once.   

In the results section, we call explicit attention to these four types of symbolizing in the context 
of students’ solving problems and communicating their reasoning.  

 
Research Setting and Methods 

Our research over the last decade in the teaching and learning of linear algebra has been 
grounded in the design-based research paradigm of classroom-based teaching experiments 
(Cobb, 2000). This involves a cyclical process of (a) investigating student reasoning about 
specific mathematical concepts and (b) designing and refining tasks that honor and leverage 
students’ mathematical ideas towards accomplishing the desired learning goals (Gravemeijer, 
1994; Wawro, Rasmussen, Zandieh, & Larson, 2013). One product of this design-based research 
is the Inquiry-Oriented Linear Algebra (IOLA) curricular materials, designed to be used for a 
first course in linear algebra at the university level. At present, three units comprise the IOLA 
materials: Unit 1: Linear Independence and Span (Wawro, Rasmussen, Zandieh, Sweeney, & 
Larson, 2012; Wawro et al., 2013); Unit 2: Matrices as Linear Transformations; and Unit 3: 
Change of Basis, Diagonalization, and Eigentheory. Many of the tasks in the IOLA materials are 
created to facilitate students engaging in experientially real task settings in such a way that their 
mathematical activity can serve as a basis from which more formal mathematics is developed.  

The data presented in this paper come from a classroom teaching experiment in a first course 
in linear algebra during Fall 2014 at a large public mid-Atlantic university. The data sources 
were classroom videos that capture small-group work and whole-class discussion, as well as 
students’ written work from class. In addition, the four walls of the physical classroom were 
almost entirely whiteboards, which the instructor took advantage of by encouraging students to 
work in their small groups together at the whiteboard; as such, another primary data source was 
photos of student and teacher work on classroom whiteboards.  

In this paper we focus on the class’s mathematical development through the first task of Unit 
3, “The Stretching Task” (see Figure 1). The first task builds from students' experience with 
linear transformations in ℝ! to introduce them to the idea of stretch factors and stretch directions 
and how these create a non-standard coordinate system for ℝ!. This is the beginning of a larger 
sequence in which students reinvent the diagonalization equation A = PDP-1. We analyzed the 
data to determine what types of symbolizing the students and the instructor were engaged in.  
These became our four types of symbolizing (S1) – (S4).  In addition we examined the data for 
instances of each of the three types of brokering moves (of which we found examples of two of 
the types).  Analysis of this data allows us to illustrate examples of students engaging in the 
practice of symbolizing, and we integrate this analysis with details regarding how the instructor 
serves as a broker between the classroom community and the broader mathematical community.   
!

Results 
In this section we provide examples of both student and teacher symbolizing activity. This 

symbolizing activity falls into the aforementioned four categories: (S1) - (S4). We begin with a 
description of the task itself as a boundary object and then follow with a description of student 
and teacher use of the four types of symbolizing as they occur. Symbolizing serves as a means 
for students to record and communicate their inquiry into the mathematics. Communicating 
through symbolizing also serves as a means for brokering within and across different groups of 
students in the classroom as well as for brokering between the classroom community and the 
mathematical community. 
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In Unit 3 Task 1 (referred to as “The Stretching Task”), students are asked to describe the 
result of a transformation given in terms of what the transformation does to two lines (See Figure 
1). One goal of the task is to create a means for students to engage with ideas that will facilitate 
their learning about stretch factors and stretch directions and the possibility of using these stretch 
directions as a grid for their work in the plane. Although the formal definitions of eigenvector 
and eigenvalue arise later (Task 3 of this unit) for students, we purposely use the terms stretch 
direction and stretch factor here to immerse students in the geometric interpretation of these 
terms. In choosing this task, the instructor serves as a broker by presenting the students with a 
task that can serve as a boundary object between the classroom community and the mathematical 
community. The task serves as a boundary object in that it provides an opportunity for students 
to engage in the disciplinary practice of symbolizing in ways that begin to align with how the 
mathematical community uses symbolizing in this context.!

 
The Stretching Task 
!
Imagine!a!linear!transformation!!:!ℝ! → ℝ!!that!has!the!following!properties:!!!
!

In!the!direction!along!the!line!! = −3!,!the!
transformation!stretches!all!points!by!a!factor!of!two.!!!
 
In!the!direction!along!the!line!! = !,!the!transformation!
keeps!all!points!fixed.!!
 

!
1. Use!the!space!on!the!right!to!sketch!what!should!happen!to!the!image!shown!on!the!left!when!it!is!stretched!

according!to!the!transformation!described!above.!!You!may!use!a!combination!of!intuition!or!calculations,!as!well!
as!any!additional!sketches!below!or!on!your!group’s!whiteboard.!

!

! ! !
!
2. Determine!what!will!happen!to! 20 !and!to!

−2
2 !under!this!transformation.!Use!an!initial!estimate!from!your!

sketch!in!problem!1.!Then!try!to!do!a!calculation!that!will!determine!these!locations!more!precisely.!
!
3. Determine!a!matrix!that!allows!you!to!calculate!what!happens!under!the!transformation!to!any!point!on!the!

plane.!Use!it!to!check!your!sketch!or!improve!its!accuracy.!
 

Figure 1. Task 1: The Stretching Task. 
 

In what follows we present data from a particular classroom implementation of the materials 
in Fall 2014. Symbolizing of various types occurred during the parts of two class periods that 
students worked on Task 1. Student activity on Task 1 began with engagement within the 
graphical symbolization that they had been given in the introduction to the Stretching Task and 
in problem 1. This symbolizing is of types S1 and S2 in that students were notating steps in their 
graphing process and recognizing relationships that would help them create a transformation of 
the Z-box. Because this initial work occurred at the end of class, it was on the following class 
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day that students and the instructor made connections between this graphical work on the task 
and other symbolic notation to describe the transformation (symbolizing type S3). In addition, 
the instructor introduced a unifying graphic based on student work to aid students in working 
with the transformation (symbolizing type S4). These symbolizing examples and the role of the 
teacher as a broker in these examples are detailed in the next four sections. 
 
Within the graphical representation (S1 and S2)  

Students initially engaged in the task by symbolizing within the graphical and verbal 
description that they had been given at the beginning of Task 1 and in Problem 1. Many students 
began by notating the points that stay fixed and then estimating the images of the points that 
stretch. Figure 2a illustrates the work of Donald, who presented at the board to explain his 
graphical symbolizing process (S1):   
 So you know the points along y = x are the same and, like, that’d be these points along 

that line. So you know like you get two of the corners, you know these points and these 
points are gonna stay the same. And then you also know that this stretches along the y 
= -3x line, which is like any of these. But this can be moved, like, kind of like a linear 
combination of this, where like you start along this line. And it stretches like up that 
way. And this corner point happens to, like, coincide with this point here which you 
know stays the same. So that’s along the line y = -3x and then you just double it to get 
that point, which comes over here. And you do the same for down here [the lower right 
corner]. And then once you get the 4 corners, you can just like figure that everything 
else is gonna stretch kind of similarly. [See Figure 2a] 

From the video of that day of class we can reconstruct his explanation.  First, he explained 
that the points along the line y = x, in particular the corner points −2−2  and 22 , will “stay the 
same.” He continued by noting the lines parallel to y = -3x all stretch in the same way, away 
from their “start along this line,” i.e., starting from the y = x line. [See the line segments Donald 
drew in the left of Figure 2a]. Note also Donald’s use of the phrase “linear combination.” He did 
not explain the algebra of this phrase but symbolized this graphically as a stretch from the y = x 
line along a line parallel to y = -3x. Donald continued by discussing the specific case of the 
corner point, −22 . He described that the corner point “happens to coincide with this point,” i.e., 

the corner point −22  is on the same line segment as −1−1 . The line segment is one of those he 

drew parallel to y = -3x. Then “you just double it,” i.e., double the segment from −1−1  to −22 . In 

doing this he marks the point −35 , which is the result of the transformation on the upper left 

corner of the box [See the line from −1−1  to −35  in each part of Figure 2a.] 

!
                                     (a)                                                         (b) 

!Figure 2. (a) Donald’s work on Problem 1 and (b) The instructor’s record of Donald’s work. 
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Donald’s description exemplifies symbolizing in a graphical context to share steps in a 
process (S1) and show connections between pieces of graphical information (S2), i.e., how to 
combine the information that y = x stretches by one and y = -3x stretches by two. Clearly, 
verbalizations accompanied and were need to communicate his graphical approach. However, 
the focus remained on working within a graphically represented system of ideas. Next we discuss 
how other symbolizations allowed students to incorporate other ways of exploring this problem.  
 
A transition to vector notation (S3)  

On the next day of class, the instructor included a scanned copy of several examples of 
student work on this problem, including Donald’s work in Figure 2a (and the work in Figure 3a 
and 3b in the next section). As a follow up to Donald’s explanation, the instructor used a linear 
combination of vectors to record the student idea that −22  could be reached by going to −1−1  and 

then travelling −13  (see the first line of Figure 2b). The students’ idea that the vector −1−1  stays 

fixed but −13 !doubles under the transformation, T, is indicated by lines 2 though 4 of Figure 2b. 

Finally, the last line of Figure 2b indicates the fact that combining the fixed −1−1  with the 

doubled −13  (now −26 ) reaches the point −35 . The instructor’s choice of symbols helps 
interpret between the student ideas and the standard mathematical notation. In particular, the 
symbols for a linear combination of vectors and the distributive properties of a linear 
transformation were familiar to the students from earlier work in the course, but they had not 
previously seen the application of a linear combination in the sense of line 2 of Figure 2b.   

The symbolizing by the instructor connected the graphical reasoning of the student to a 
symbolic vector notation, creating a connection across representations (symbolizing type S3). In 
addition, the symbols written by the teacher served as what Rasmussen and Marrongelle (2006) 
define as a transformational record. Transformational records are “notations, diagrams, or other 
graphical representations that are initially used to record student thinking and that are later used 
by students to solve new problems” (Rasmussen & Marrongelle, 2006, p.389). In other words, 
they record student inquiry in a way that provides a symbolization for future inquiry.   
 

         
(a)                                   (b)                                   (c)   

Figure 3. (a), (b) Two student examples showing a gridding of the plane using stretch directions. 
and (c)  The instructor’s graph of gridding using the stretch directions. 

 
Creating a unifying graph (S4) 

The instructor also included in her presentation examples from two other students on 
Problem 1 (Figure 3a, 3b). These examples show students creating a grid when trying to 
determine how the Z-box transformed. Note that each of these examples has similar features to 
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Donald’s work, but more extensive gridding of the plane using lines parallel to y = -3x and y = x. 
Each also has points marked at −22  and at −35  indicating the doubling of a vector along that line 
to find the new corner point.  

The instructor emphasized the gridding in the student work and introduced the gridding of 
Figure 3c. In this way the instructor acted as a broker between the developing graphical 
symbolizing of the class and more sophisticated ideas from mathematics community.   

The graphical representation in Figure 3c illustrates two ways to grid the plane. One (in grey) 
is the standard familiar grid and the other (in blue) is based on lines parallel to the stretch lines 
described in Task 1. This gridding can be used as a way to more easily see the doubling along the 
lines parallel to y = -3x. This is how Donald explained that −22  stretches to −35 , but now, with 
the complete grid available, that graphical method is available for any point. In addition to this 
practical result that connects to student thinking, the grid sets the stage for the student 
exploration in Task 2 of more sophisticated ideas of change of basis and diagonalization as 
described below. The graphic of Figure 3c then is unifying of students’ current work and thus 
serves as an example of type S4 symbolizing. In addition, this graphic is key to the activity in 
Task 2 that leads to the creation of A = PDP-1.  

 
Conclusion!

In this paper we explored student and instructor inquiry in the context of the disciplinary 
practice of symbolizing. Student inquiry in Task 1 involved exploring a graphical situation, 
creating symbols that expressed their emerging ideas about the mathematical situation, and 
symbolizing their graphical activity using vectors and vector equations. The inquiry involved: (a) 
creating or choosing appropriate ways to symbolize mathematical processes (S1) and 
relationships (S2) within particular representations, (b) making connections between different 
symbolizations of mathematical content (S3), and (c) creating a unifying graphical representation 
(S4). Each of these reflects a facet of the disciplinary practice of symbolizing, characterized 
through types S1-S4. Student inquiry into the mathematics of this task created a necessity for 
mathematical symbolism that students used to express their emerging ideas about the 
mathematical situation as well as to create more powerful and efficient solutions. The vector 
representations, vector equations, and unifying graphic (Figure 3c) provided additional tools for 
inquiry that were further developed and used in the subsequent tasks of this unit. 

Instructor inquiry into students’ mathematical thinking involves them making sense of and 
leveraging student insights so that they can appropriately connect the mathematics being 
developed by students in the classroom with the mathematics of the mathematical community. 
This is the notion of brokering. For the instructor to truly serve as a broker between the two 
communities, the instructor must participate in, recognize, and understand how students are 
engaging in the mathematics. A broker is not someone who simply relays information from one 
community to another, like a messenger; rather, a broker negotiates mathematical meaning 
between two communities. Furthermore, what tasks are selected and how they are used also 
plays a part in the brokering process, as tasks provide an interface through which the classroom 
community will encounter situations that can serve as a basis from which the more formal 
notions of the broader mathematical community can be developed. With the help of the 
instructor as broker, and boundary objects carefully chosen by the instructor, students can begin 
to act as mathematicians do. They can progress in their ability to engage in disciplinary practices 
in ways helpful not only for learning particular mathematical ideas but also for applying in other 
settings. 
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Personification as a lens into relationships with mathematics 
 

Dov Zazkis Ami Mamolo 
Arizona State University University of Ontario Institute of Technology 

Personification is the attribution of human qualities to non-human entities (Inagaki & 
Hatano, 1987). Eliciting personification as a research method takes advantage of a naturally 
occurring means through which (some) people discuss the nuanced emotional relationships 
they have with those entities. In this paper, we introduce the eliciting personification method 
for exploring individuals’ images of mathematics, as well as discuss an initial set of 
approaches for analyzing the resulting data. Data from both pre-service teachers and 
research mathematicians are discussed in order to illustrate the method. 

Key words: [personification, relationship with mathematics, conceptual blending] 

The available research on people’s relationships with mathematics predominantly relies 
either on assessment instruments (e.g., Likert scale surveys, concept mapping, responses to 
vignettes or videotapes, and linguistic analyses) or case studies (see Philipp, 2007). Although 
these are reliable research tools, as we argue later in this manuscript, the results they generate 
are not conducive to empathizing with others’ mathematical experiences. The method 
presented in this article, eliciting personification, comes closer to this goal. We suggest this 
method complements existing approaches, adding new dimensions to our understanding of 
individuals’ perceptions of, and experiences with mathematics.  

 
Method and participants 

Although personification may occur naturally (e.g., Hill, 1930; Inagaki, & Hatano, 1987; 
Piaget, 2007), it is also possible to elicit personification data from participants. The 
personification data discussed in this work come from two sources. The first is an assignment 
given to 36 pre-service elementary/middle school teachers that invited participants to 
personify mathematics and describe this imaginary character and their relationship. The 
second is a series of interviews with a convenient sample of 9 research mathematicians that 
elicited similar data.  Below is the prompt given to the pre-service teachers:  

Your assignment is to personify Math. Write a paragraph about who Math is. This 
paragraph should address things such as: How long have you known each other? 
What is he/she/it look like? What does he/she/it act like? How has your relationship 
with Math changed over time? These questions are intended to help you get started. 
They should not constrain what you choose to write about. 
We present the story of our research in two parts: we begin with a consideration of 

specific data, which we use to frame our introduction of analytic methods appropriate for 
such an approach to research; we then analyze this data and that of research 
mathematicians; we conclude with a comparative discussion that attends to the benefits 
and possibilities of the eliciting personification method. 

 
Pre-service teachers’ personification of mathematics 

Below is an excerpt from one of the pre-service teacher participants, which we use as a 
launching point to discuss approaches to analyzing elicited personification data: 

Mathonious was a very sensible young boy from Athens, Greece. Not many people 
liked him but at age 6 he became the best of friends with a young girl named Kukla. 
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Every day they would hang out together and while Mathonious was a sensible young 
boy, Kukla began to notice that over the years he was becoming more and more 
complex. Kukla had noticed this and suggested that they see the oracle in order to 
find a solution. The oracle was known for simplifying and clarifying things for people 
in order to better their lives and though the oracle did great things, there were always 
consequences for those who do not listen to her advice. Mathonious met with the 
oracle and she told him that though he thought his complexity was a good thing it was 
confusing and hurting those closest to him; she warned him that if he did not revert to 
his more sensible simple self soon he would lose those closest to him and become a 
terrible beast; feared by many. He returned to Athens to tell Kukla his prophecy and 
when he did he was not very serious about it. In fact he did not seem to care about the 
oracles’ advice or warning at all. Because he did not simplify himself to those around 
him the consequences of the prophecy came true and a horrid exiled beast he did 
become. He was indeed feared by many. The people feared him so much that they 
dehumanized him and called him MATH, which stood for mental abuse to humans. 
Despite his awful new nature, Kukla wanted to try to understand him desperately so 
that maybe he could return to the boy he once was and they could be friends. 
However, every time she attempted he would cast her away.   
 
The above paragraph describes the relationship between Kukla, the character the author 

attributes to herself, and Mathonious, who is a personification of mathematics. It paints a rich 
picture of the author’s relationship with mathematics. However, since personification data is 
novel in mathematics education, there is no well-defined set of approaches for performing an 
analysis of a set of such elicited personification data.  

Analyzing data using character summaries 
The initial approach to analyzing personification discussed in this article is to use open 

coding (Strauss & Corbin, 1990) to summarize each participant’s Math-character. The 
compilation of a list of all characters produced by a particular group then serves to 
summarize the types of relationships with mathematics present in that group. For example, in 
the above excerpt, the writer describes Mathonious in terms of two characters. The first 
character is a young boy that Kukla befriends. However, this relationship deteriorates and 
Mathonious becomes a former friend with whom Kukla is trying to rekindle a friendship. The 
second character is a terrible beast, feared by many.  Both characterizations, the terrible beast 
and the former friend, concisely encapsulate the writer’s relationship with mathematics. 

After the pre-service teachers’ personification excerpts were sorted into similar character 
categories, three themes emerged from the scripts. The first and most common theme that 
emerged was that of a monster or other evil creature. The terrible beast from the excerpt was 
subsumed under this category along with other goblins ghouls, and nasty things. This theme 
depicts mathematics as a cruel, unattractive, and unforgiving entity that often takes pleasure 
from the suffering of others. The second common theme was that of a former friend. 
Mathematics was described as someone with whom the pre-service teacher once had a 
healthy and sometimes even happy relationship, but at some point the relationship had 
soured. This theme also occasionally involves descriptions of repeated attempts on the part of 
the pre-service teacher to mend the relationship, while mathematics ‘resists’. The last type of 
character, which only occurred once, involved a lover who is loathed by friends, family and 
even strangers. The lover character might resonate with readers who have encountered 
deleterious comments when discussing their profession (for a detailed discussion of the lover 
excerpt see Zazkis, 2015).  
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We interpreted the Kukla excerpt as drawing upon both the monster and former friend 
themes.  However, we sought a more detailed analysis of participants’ relationship with 
mathematics than that which is afforded simply by identifying common character themes. We 
develop such analysis below.  

Personification as a conceptual blend 
Conceptual blending involves taking the elements of two (internal or external) input 

spaces and blending them together to form new inferences which are said to exist in a newly 
formed (internal) output space (Turner & Fauconnier, 2002). It has been used to analyze a 
number of mathematics education related phenomena, including proof construction (Zandieh, 
Roh & Knapp, 2014), task design (Mamolo, Ruttenberg-Rozen, & Whiteley, 2015), and the 
concept of infinity (Núñez, 2005). Conceptual blending is a crucial way in which people 
make-sense of, and communicate, complicated and multi-faceted phenomena (Fauconnier & 
Turner, 2008). For example, in order to make sense of the statement, “My karma ran over my 
dogma,” one needs to blend a road-kill input space in which a car runs over a dog and a 
theology input space in which the words karma and dogma are defined. The resulting blend 
allows for the interpretation of the sentence’s meaning—my karma overcame my dogma. 

Personification can be conceptualized as a kind of conceptual blend (Fauconnier & 
Turner, 2008). In the case of eliciting personification of mathematics, a mathematics space 
and a human relationship space are blended to form a space that allows for the 
communication of one’s complex emotional relationship with mathematics.  The rich 
experiences and vocabulary associated with the human relationship space serve as a platform 
for participants to discuss emotional relationships with mathematics, and as a lens for the 
researcher to interpret the complexities of individuals’ affective experiences with 
mathematics. This relationship would otherwise be difficult to discuss or interpret with the 
same level of depth and detail since vocabulary and images associated with emotion are 
primarily housed in the human relationship space, not the mathematical space. 

Analyzing pre-service teachers’ elicited personification using conceptual blending  
As mentioned earlier, the Kukla excerpt describes mathematics as both a (former) best 

friend and a terrible beast. These two characterizations are quite different and coincide with 
different categories in the character summary analysis. So we use separate blending diagrams 
to describe each. First, the best friend: this characterization in the human relationship space 
maps to comfort with, and enjoyment of, mathematics in the mathematics space. A best 
friend characterization does not imbue the same level of passion for mathematics that a lover 
characterization would. However, it still portrays the author as someone who likes to spend 
time with mathematics and portrays mathematics as someone who likes to spend time with 
the author. This personification of mathematics provides a level of detail in regard to how 
much, and in what ways, the author enjoyed mathematics.  For example, a relationship with a 
lover would have a closer degree of intimacy, than that with a friend.  One would spend more 
time with the former, compromise differently for him or her, and feel more deeply emotions 
of elation, frustration, or despair.  

Some of the details about the best friend are also revealing. Mathonious the best friend is 
sensible, a human trait that can be interpreted to map to the logical coherence and 
understandability of mathematics, since a reasonable definition of sensible is “having sound 
judgment” and “readily perceived”. Additionally, Mathonious is presented as male, while 
Kukla is female. This is in line with research that points to mathematics being perceived as a 
male dominated discipline (e.g., Keller, 2001; Picker & Berry, 2000), and may also be 
indicative of perceived power structures between the author and her “friend”.  Lastly, there is 
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a timeline of Kukla’s relationship with Mathonious. This timeline can be assumed to coincide 
with the timeline of the writer’s relationship with mathematics – as Kukla learned more about 
Mathonious, he seemed to become more inaccessible, less friendly, hurtful and indifferent to 
his effect on his former friends.  Details of this blending analysis are summarized in Figure 1.  

 
Human Relationship Space

1) Best Friend

2) Sensible

3) Not liked by others

4) Mathonious is Male

Mathematics Space

1) Level of enjoyment

2) Level of understanding

3) Others’ enjoyment level

4) Gender roles in math

Relationship with math

1) Comfort with math

2) Understanding of math

3) Others’ dislike of math

4) Math is male dominated
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Figure 1. Best friend conceptual blending diagram. 

 
The excerpt describes Mathonious getting progressively more complex and confusing, 

causing Kukla and Mathonious to grow apart. Complexity and confusion can be assumed to 
be a part of the mathematics space that stands in opposition to the previously mentioned 
sensibility from the best friend part of the human relationship space. Complexity, a 
mathematical trait, is not generally associated with emotions. However, describing this 
complexity in association with a personification of mathematics allows the excerpt’s author 
to describe the complexity as “confusing and hurting.” Mathonious’ pride in his complexity 
(he refuses to follow the oracle’s advice, despite ‘consequences’), and his indifference 
towards its effects on others, are described as the root causes of the deterioration of Kukla’s 
relationship with Mathonious. 

After the falling-out, Mathonious is re-characterized as a terrible beast who exiles 
himself. This replaces the positive emotions associated with a best friend with the fear and 
repulsion associated with a beast. This characterization, much like the best friend 
characterization that preceded it, provides a level of detail in regard to the emotions involved. 
The excerpt’s author could have chosen to describe simply growing apart, which would entail 
a level of indifference toward mathematics. However, the author instead chose to use a 
“terrible exiled beast” and draw upon the fear and repulsion that this characterization entails. 

Interestingly, the excerpt’s author describes repeated attempts to rekindle the friendship 
with the ‘old’ Mathonious, which can be mapped onto attempts to return to a state of 
understanding mathematics. However, notice that Mathonious casts her away repeatedly, 
placing the blame for the poor relationship with mathematics on Mathonious, not Kukla. 
What this means in terms of the mathematics space, is that the excerpt’s author seems to 
attribute blame to mathematics, an abstract entity, for her lack of understanding and 
enjoyment of the subject. It is Mathonious who should, in the eyes of Kukla, return to his 
former “sensible” self, and it is only he who values his complexity (as the oracle identifies). 
Figure 2 summarizes this analysis.  
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Human Relationship Space

1) Terrible beast

2) Hurtfulness

3) Trying to mend friendship

4) He refused to change

Mathematics Space

1) Level of enjoyment

2) Complexity

3) Attempts to understand

4) Accessibility of math

Relationship with Math

1) Fear of math

2) Confusion with math

3) Tried to understand math

4) Too hard to understand
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Figure 2.  Terrible beast blending diagram. 

Mathematicians personification of mathematics 
We now turn to personification data of mathematicians. Unlike the 36 pre-service 

teachers whose character summaries fit into three categories, the 12 mathematicians we 
interviewed personified mathematics in more diverse ways. This included descriptions of 
mathematics in sexual-relationship terms as spouse, ex-spouse, forbidden lover or mistress. 
Additionally, some mathematicians described mathematics as a person with whom they do 
not have a personal relationship, but whom they seek to understand.  For example, one 
mathematician described mathematics as a virtuoso whom the mathematician aspired to be 
more like. Another mathematician described mathematics as a knowledgeable wandering Jew 
who points out the flaws in peoples thinking and in turn promotes societal progress.  We 
interpret this diversity in mathematicians’ descriptions of mathematics as a reflection of the 
different natures and experiences of mathematicians and pre-service teachers, respectively.  
The added complexities in the types of relationships forged with personified mathematics, as 
well as the varied details about the character of mathematics (e.g., religious, sexy, 
scandalous), are brought to light with our method and add insight into the varied complexities 
and characteristics that draw or deter career mathematicians. 

Analyzing mathematicians’ elicited personification using conceptual blending  
We now turn to an excerpt from one mathematician’s personification interview. As with 

the Kukla excerpt, we analyze this excerpt using conceptual blending.  
 
While I’m actually engaged in proving a theorem a lot of the time there is joy. 
However the time I’m actually proving theorems is very small. So my relationship 
with mathematics is not just my relationship with proving theorems. It’s also my 
relationship with grading papers, my relationship with going to committee meetings, 
my relationship with advising students, writing papers, which is kind of tedious and is 
very different from writing proofs. So all of this sort of comes along with a career in 
mathematics. So even though there maybe that child’s heart that I still have that takes 
joy in doing it when I do have an hour or two to sit down and do math. I have 
pleasure in that. But I recognize that that isn’t all of mathematics… Its like when you 
first take a lover and that intense rush you feel. That’s fantastic. But after a while you 
realize that that’s not the entirety of a relationship. It’s not just that physical rush. 
There is also a lot of other things that go along with that. So you may still have that 
feeling. But it’s only one piece of a much much large tapestry…. I love the wife, it’s 
not that I don’t love the wife. But there’s a lot of groceries to buy, and taking out the 
trash, and stuff like that…it’s not all proving theorems.  
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The excerpt describes mathematics as a lover that eventually becomes a wife. The 

mathematician’s love of proving theorems maps to his enjoyment of intimate moments with 
this lover/wife. This mapping provides a great level of detail with respect to how much this 
mathematician enjoys proving theorems – it provides a physical rush. However, as he points 
out there a lot of additional parts to his relationship with this wife; proving theorems is one 
piece of a much larger tapestry. In particular, for this mathematician, “mathematics” is no 
longer simply the discipline itself, but now carries with it all of the attributes of an academic 
career in the discipline. These necessary but not enjoyable parts of his relationship with this 
wife (e.g., buying groceries, taking out the trash) map to the less enjoyable parts of his (new 
and broader) relationship with mathematics (grading, meetings, advising students). This 
mapping provides detail regarding how he feels about other parts of his relationship with 
mathematics.  

 
Human Relationship Space

1) Wife

2) Intimate moments

3) Chores

Mathematics Space

1) Level of enjoyment

2) Proving theorems

3) Annoying parts of math
career

Relationship with Math

1) Multifaceted long-term
relationship with math

2) Good parts of relationship

3) Bad parts of relationship
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Figure 3.  Wife blending diagram. 

Advantages of personification data 
Let us compare the Kukla and wife excerpts above in relation to hypothetical responses to 

a Likert-scale item that asks for one’s level of agreement with the statement “Mathematics is 
enjoyable and stimulating to me”. This item is borrowed from Bessant’s (1995) factors 
influencing mathematics anxiety (FIMA) assessment. This is a fairly common instrument 
used to assess relationships with mathematics. The author of the Mathonious excerpt could 
have likely answered “strongly disagree”, given her horrible beast characterization, whereas 
the mathematician might have answered “strongly agree”, given his lover characterization.  
However, both responses provide only a snap shot – in the former example, the assessment is 
a current one, lacking the background illustrating how the relationship came to sour, in the 
latter example, the assessment is narrowly construed, extracted from the broader context in 
which the mathematician now engages with mathematics. This points to the Likert-scale 
question’s limitations for capturing the tangible emotions involved, and their connection to 
the broader experiences and history of the individual. Further, more nuanced details are 
captured in the picture of a lover who inspires a physical rush or a sensible friend who was 
once a favorite companion than are afforded by the Likert-scale item. Certainly, eliciting 
personification is not a replacement for survey methods, but it does have particular 
advantages in terms of detailing emotional relationships that add an important dimension to 
research on affect and mathematics education.  

We suggest one of these advantages is empathy. When reading both the discussed 
excerpts, one might notice similarities to his or her own experiences and feelings. The 
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experience of having a friendship turn sour in spite of repeated attempts to salvage it is 
common, eliciting empathy for the author. Similarly, settling into a long-term relationship is 
also a common human experience to which many of us not only relate but also strive for.  
However, one might also empathize with the personified mathematics – as a friend who has 
been shunned, a wife who feels neglected, or a ‘monster’ whom nobody understands. Most 
people have either undergone these experiences first hand or been exposed to someone who 
has. By relating these experiences to their relationships with mathematics, participants in this 
study helped us understand the nature of their relationship with mathematics and how it 
evolved. In short, the data provides an avenue for our original stated goal of allowing one to 
empathize with others’ relationships with mathematics, and it sheds new insight on what 
mathematics “looks like” from the eyes of our participants.  

We propose the eliciting personification method as an indirect way of examining 
someone’s relationship with mathematics, which can paint a particularly vivid image of this 
relationship and the characters involved. The conceptual blend of personified mathematics is 
certainly a dramatized version of participants’ relationship with mathematics itself due to the 
very nature of personification. However, we do not view this dramatization as a detriment. 
Rather, we view this dramatization as a useful means through which to foster empathy, as 
well as to elicit and distill the essence of individuals’ relationships with mathematics. 

Discussion 
In this article, we introduced eliciting personification as a method in which participants 

describe their relationship with mathematics by describing mathematics as if it were a person. 
Two personification excerpts, one from a pre-service elementary school teacher and one from 
a professional mathematician, were used to illustrate the lens into participants’ affect 
provided by the method. Several approaches to analyzing the data were also discussed. These 
approaches included using character summaries for summarizing the data, and conceptual 
blending, which was used for deeper analysis. The use of these techniques helped to distill a 
rich image of two participants’ dispositions toward mathematics and how their relationships 
had evolved over time. Interestingly, both excerpts highlighted the complexities of human 
relationships that are not necessarily accessible through quantitative approaches to data 
collection.  Both relationships involved issues of trust and caring (friend, loving wife), that 
grew overtime to include frustrations and even resentment (horrible monster, nagging wife). 
We note that conceptual blending and character summaries are by no means a complete list of 
appropriate, applicable approaches to personification analysis, and we encourage other 
researchers interested in using the eliciting personification method in their studies to 
experiment with other analysis approaches.  

The eliciting personification approach offers a particularly vivid window into study 
participants’ relationships with mathematics, and we view it as an important complement to 
the case study and assessment instrument methodologies used in the past. We suggest that our 
approach offers a novel lens through which to research mathematical disposition and the 
nuances involved in individuals’ affective experiences with the discipline.  Eliciting 
personification is proposed as an innovative research tool that affords participants creative 
ways to describe aspects of their relationship with mathematics that might otherwise remain 
tacit. Additionally, as discussed in Zazkis (2015), personification can be used in teacher 
education as a method for facilitating pre-service teachers’ self-reflection about their 
relationship with mathematics and for fostering empathy toward their future students. 
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ON SYMBOLS, RECIPROCALS, AND INVERSE FUNCTIONS 

Rina Zazkis 
Simon Fraser University 

Igor’ Kontorovich 
University of Auckland 

In mathematics the same symbol – superscript (-1) – is used to indicate an inverse of a 
function and a reciprocal of a rational number. Is there a reason for using the same symbol 
in both cases? We analyze the responses to this question of prospective secondary school 
teachers presented in a form of a dialogue between a teacher and a student. The data show 
that the majority of participants treat the symbol ☐!1 as a homonym, that is, the symbol is 
assigned different and unrelated meanings depending on a context. We exemplify how 
knowledge of advanced mathematics can guide instructional interaction  

Keywords: Scripting, inverse element, inverse function, reciprocal, homonymy, polysemy 

There is an ongoing conversation in mathematics education research on teacher knowledge 
and its various facets (e.g., Rowland & Ruthven, 2011). One important focus within this 
discussion is secondary teachers’ “advanced mathematical knowledge” (AMK), defined as 
knowledge acquired during tertiary education (Zazkis & Leikin, 2010). Is this knowledge 
essential, or even useful, in teaching? Research demonstrated that teachers’ opinions on the 
matter differ considerably, ranging from “irrelevant” to “extremely important” (ibid.) 
 However, even teachers who claim that AMK is essential for their teaching have 
difficulty in providing particular examples or recalling teaching scenarios where their AMK 
was utilized. Our study provides an example where a teacher’s knowledge of advanced 
mathematics can shape an instructional interaction.  

The Study 
Twenty two prospective secondary school mathematics teachers participated in the study. The 
participants held degrees in mathematics or science and at the time of data collection were 
enrolled in a problem-solving course, in the last term of their teacher education program. One 
of the goals of the course was to draw connections between undergraduate mathematics and 
school mathematics, and in doing so deepen their knowledge of school mathematics. 
 During the course the participants had several experiences with script writing 
assignments – assignments in which they are asked to compose an imagined conversation 
between a teacher and a student (or students), following a given prompt (e.g., Zazkis, 2014). 
Our data consists of participants’ responses to the Scripting Task, presented below. The task 
invites participants to write a dialogue for an imaginary interaction between a teacher and a 
student, related to the appearance of (-1) as a superscript, that is, symbol ☐!1.  
The Scripting Task 
 The Task is presented in Figure 1. In Part 1 of the Task, the participants were asked to 
extend the dialogue following the presented prompt. They were explicitly asked to imagine 
themselves in the teacher’s role. In Part 2 the participants were asked to explain their 
particular choices, which may not be evident from the scripts themselves. While Parts 1 and 2 
could be overshadowed by pedagogical considerations, in Part 3 of the assignment we sought 
the explanation for a “mathematically mature” colleague. This was aimed at liberating the 
participants from considering the mathematical constraints of the audience and enabling them 
to project their personal mathematical knowledge. We assumed that participants’ personal 
understanding of the situation and the chosen explanation for students could be different.  
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Task analysis 
In mathematics, a character followed by a subscripted (-1) – such as in f-1  and 5-1 – 
represents an inverse element in a group structure. That is, a group element (A-1) is 
considered to be an inverse of another group element (A), if a binary operation (*) involving 
the two element results in an identity element (I). Symbolically, this relationship is given as  
A * A-1 = A-1 * A = I 
 The two cases presented in the Scripting Task, that is, the cases of  f-1  and 5-1 ,  differ 
in terms of the set and the binary operation. For the set of (rational without zero) numbers, 
the implied binary operation is multiplication, and the multiplicative inverse of 5 is 5-1  , as 5 
× 5-1  = 5-1 ×  5 = 1, where 1 is a multiplicative identity.  For the set of bijective functions, an 
inverse function satisfies  ! ∘ !!! = !!!! ∘ ! = !"!, where the binary operation here is the 
composition of functions, and id(x)=x is the identity element.  
 

Scripting Task 
Part 1: You are given the beginning of an interaction between a teacher and a student and 
your task is to extend this imaginary interaction in a form of a dialogue between a teacher and 
a student (or several students). You may also wish to explain the setting, that is, the 
circumstances in which the particular interaction takes place.  

T:  So today we will continue our exploration of how to find an inverse function for a given 
function.  Consider for example f(x) = 2x+5  Yes, Dina? 

S:  So you said yesterday that f-1  stands for an inverse function 
T:  This is correct.  
S:  But we learned that this power (-1) means 1 over, that is,  5-1   =  !!  ,  right? 
T:  Right.  
S:  So is this the same symbol, or what?   

 
Part 2: You are also asked to explain your choice of approach, that is, why did you choose a 
particular example, what student difficulties do you foresee, why do you find a particular 
explanation appropriate, etc.  
Part 3 (optional): The way you understand the idea yourself could be different from the way 
you explain it to a student. If this is the case, please indicate how you could clarify the issue 
for yourself, or for a “mathematically mature” colleague.   
 

Figure 1: Scripting Task 

Theoretical Constructs 
We rely on the theoretical construct focus of attention (Mason, 2010) and on the linguistic 
constructs of homonymy and polysemy (Durkin & Shire, 1991). In what follows we briefly 
introduce each construct and describe how it relates to the work of teachers.  
 According to Mason (2010) learning involves transformation of attention. In 
particular,  “learning has taken place when people discern details, recognize relationships and 
perceive properties not previously discerned, through attending in fresh or distinct ways, and 
when they have fresh possibilities for action from which to choose. Learning necessarily 
involves shifts in the form as well as the focus of attention” (p. 24, our italics). In line with 
this view, we claim that teachers’ work is geared towards focusing students’ attention in any 
given instructional interaction. This choice of focus is intended to draw students’ attention to 
similarities and differences, to stress some aspects of the mathematical concepts and 
procedures, necessarily ignoring other aspects. For example, in the case of the two 
appearances of superscript (-1), a teacher may choose to highlight the differences in the 
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procedures implied by the common symbol, or to focus on the unifying idea of ‘inverse’ 
element.  
 Among variously nuanced definitions for homonymy and polysemy, we follow the 
definitions of Durkin and Shire (1991). According to these authors, homonymy denotes the 
property of some words to share the same form but point to distinct meanings. Polysemy 
refers to the property of some words to have different but related meanings, and some shared 
sense. The context in which the words appear determine their intended meaning.  
 Durkin and Shire exemplified homonymy and polysemy between the mathematical 
register and the everyday register. For example, ‘volume’ is an example of homonymy, as it 
refers to distinct meanings: intensity of sound or a measure of a 3-dimentional object. 
‘Continuous’ is an example of polysemy, where the everyday meaning of “no breaks” is 
related to the mathematical definition, such as in “continuous functions”. Notably, polysemy 
may results in learners’ misinterpretations of mathematical concepts by assigning the 
everyday meaning of the related mathematical terms (e.g., Tall & Vinner, 1991, Pimm,1987).   
 Zazkis (1998) extended the idea of polysemy, relating it to the use of terms within the 
mathematical register (rather than between mathematical and everyday registers). Her 
example focused on the term ‘divisor’, that can mean a role of the number in a number 
sentence (in 12÷4 = ? 4 is the divisor and 12 is the dividend ; in  25÷4=? , 4 is the divisor 
and 25 is the dividend) or a number-theoretic relationship  (4 is a divisor of 12, 4 is not a 
divisor of 25). Mamolo (2010) further extended the idea of polysemy within the mathematics 
register to mathematical symbols. She discussed different but related meanings of the ‘+’ 
symbol denoting a binary operation among elements in different sets.  
 Of our interest here is another symbol, ☐!1, its meaning, as determined by different 
mathematical contexts, and its homonymous or polysemous interpretations by the participants 
in our study. We posed the following research question: In the two appearances of superscript 
(-1), what similarities and what differences do teachers identify and focus students’ attention?  

Data analysis 
In analyzing each script (Part 1 of the Task) we identified what is stressed and consequently 
what is ignored in considering the appearance of superscripts (-1) in the contexts of numbers 
and functions. In other words, we considered what similarities and what differences the 
participants identify in the two uses and how they chose to communicate these issues to their 
students. We confirmed our analysis of the scripts with participants declared pedagogical 
intentions outlined in their responses to Part 2 of the Task, and identified the intellectual 
needs of students that the script writers aimed to address. We further attended to Part 3 if it 
was included in the submission in an attempt to identify whether their choice of pedagogical 
approach differed from their personal mathematical understanding of the situation.  
 In the beginning of data analysis, following our mathematical analysis of the Task and 
some informal conversations with teachers, we considered two extremes:  

• A group theory approach, where ☐!1 stands for the same notion of inverse in a group 
structure and 5!1 and f!1 are particular instantiation of inverses in this structure 
(pointing to different sets of elements and different operation).  

• The common symbol ☐!1 is seen as a homonym, signaling different, context 
dependent, interpretations for numbers and for functions.  

The attempts to classify each response to the Task in terms of association with either these 
approaches resulted in adding the third abundant possibility, in which similarities beyond the 
common symbol are sought and exposed through different means. We explained these 
approaches in terms of polysemy, that is, signaling to different but related interpretations of 
the symbol ☐!1.  
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Results and Analysis 
In the data we identified the main focus of attention in each script. We first describe the 
approaches that resulted from considering ☐!1 as a homonymous symbol. We then turn to 
scripts in which ☐!1 was seen as pointing to related meanings, which we describe in terms of 
polysemy. No script adopted a group-theoretic approach, focusing on the mathematical 
meaning of “inverse element” with respect to an operation. Surprisingly, there were no 
noticeable differences between the approaches of students who majored in mathematics and 
those who majored in science. We exemplify participants’ responses via excerpts from their 
scripts and the accompanying explanations  
Focusing on homonymy  
Fourteen (out of 22) participants interpreted the appearance of superscript (-1) as a 
“homonymous symbol”, that is, the same symbol applied to different unrelated ideas, the 
meaning of which is determined by the context. For example, Alan (Excerpt 1) after attending 
to the terminology, focused on the “neighbor” of the (-1). 

Excerpt 1 (Alan): “depending on what it's beside” 
Teacher: It's important to recognize that constants and variables are different from functions. A 

function takes in a constant or variable and outputs something new based on certain 
rules. It's like a recipe book. When a function such as !(!) has a power -1 beside the 
!, it becomes the inverse function. If the power -1 is beside a constant or variable, it 
means reciprocal.  

Student: So even though it's the same little -1, depending on what it's beside, it can mean either 
a reciprocal or an inverse? 

Teacher: Exactly. 
 
Alan commented: 
“Yes, the two symbols are the same. They both look like exponents, but if you look to what the 
"exponent" is being applied, it will tell you the meaning of the -1. If the -1 is found above a 
variable or a constant, then it is understood as an exponent and means a reciprocal. When 
the -1 is found above a function, it is understood as an inverse function. 

 !!! ! - inverse  5!! - reciprocal 
 !"#!! !  – inverse   !!! – reciprocal   
It is important that students understand the difference between the cases” 

 
Alan’s explanation highlights the context in which the symbol appears in order to determine 
whether it refers to a reciprocal or to an inverse function. For a student, “what is beside” 
serves an indicator for determining the meaning intended by the mathematical context. In a 
similar way, highlighting the differences, another participant focused on the letters that 
determine the “neighbour”: 
 To help students cope with the perceived problematics in dealing with a homonymous 
symbol, eight participants appealed to analogies of other context-dependent notions. The goal 
of the analogies appears to convince students that context-dependency is a common 
phenomenon, which is not unique the superscript (-1). In Rob’s script a teacher draws an 
analogy between an inverse and the word ‘set’.   

Excerpt 2 (Rob): Analogy to ‘set’, “context changes its meaning” 
Student:  So is this the same symbol, or what?   
Teacher:  Yes, it’s the same symbol, but it doesn’t mean exactly the same thing. 
Student: That doesn’t make sense. 
Teacher: Think of it this way: (-1) means ‘inverse’ and your examples are different kinds of 

inverses. This symbol is used in both contexts, and the context changes its meaning. 
Student: That’s so confusing. 
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Teacher: I’m going to give you an example. Consider the word ‘set.’ I could say to you, “Dina, 
could you ‘set’ the table?” or I could say “Dina, did you see the sun ‘set’ last night?” 
Do you see the difference? 

Student: Yes… 
Teacher: The word ‘set’ is used in different contexts and those contexts show you which 

meaning I am using. It’s the same with the symbol for ‘inverse.’  
 

In this excerpt the teacher acknowledged that in both cases the symbol (-1) points to an 
inverse. In considering the different meanings of this word, the script-writer builds an 
analogy with a homonymous word ‘set’, a word that has different meanings in different 
contexts. We mentioned above that a majority of participants considered ☐!1  as a 
homonymous symbol. Here we see a homonymous word-symbol pair. That is, not only does 
the symbol get its meaning from the context, but so does the word ‘inverse’. 
Rob commented: 

“By relating the idea of mathematical language to language that the student is more 
comfortable with, I was able to show the importance of context and the flexibility of the 
notation we use.  

 
 We note that rather than considering the definition of the mathematical term inverse 
(that is, a binary operation performed on an element and its inverse results in the identity), 
Rob considers the English language word in its different uses in a mathematical situation. In 
the next section we examine the linguistic connection further – pointing to the interpretations 
assigned to the word by considering its synonyms.  
Focusing on Polysemy  
Seven (out of 22) scripts focused students’ attention on a common word, inverse, and the way 
it is interpreted. (This is in contrast with associating  the symbol ☐!1 with two different words, 
inverse and reciprocal.) These participants focused on similar features within the two 
appearances of ☐!1. To reiterate, the property of a word to point to different but related 
meanings is referred to as polysemy. As exemplified in Cathy’s response, the polysemy is 
seen in the implied action.  

Excerpt 3 (Cathy): Inverse as ‘switch’ 
Student:  So is this the same symbol, or what?   
Teacher: They are the same symbol.  Now let’s take a step back and investigate this.  Dina, can 

you grab the dictionary at the side of the room for me please and look up the word 
‘inverse’ in a non-mathematical setting 

[…] 
Student: Well, I read that inverse means opposite or reverse, so in a fraction would it mean that 

we are switching the top and bottom. 
Teacher: Yes, the inverse of a fraction is what we get when we switch the numerator and 

denominator.  Now let’s get back to what we are learning about today the inverse of 
functions.  When we are talking functions what are two parts do you think of? 

Student: Left side and right side 
Teacher: Let’s look at that what happens to the equation ! = 3! + 4 if we switch the left side 

with the right side we get 3! + 4 = ! what do you notice about these two equations? 
Student: They are exactly the same. 
Teacher: So if switching the left side and right side did not give us what we want, any other 

suggestions? 
Student2: What about switching the letters x, y? 
Teacher: That is correct; an inverse of the function ! = 3! + 4 would be ! = 3! + 4 now let’s 

look at this in more detail. 
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While the dictionary meaning is assigned to ‘inverse’ as a noun or an adjective, it is 
interpreted in case of a fraction as an action of switching between the numerator and 
denominator. Then the question becomes, what can be “switched” in a function. The first 
student suggestion – that is considered and consequently rejected – is switching between the 
left and right sides of an equation. The next suggestion – which is accepted and later 
examined in further detail is to switch x and y.  
Cathy wrote: 

 I choose this method in order to clarify this question to the students because there are 
a number of terms that are used in multiple ways in math.  If we are able to discover what 
the term actually means then the students may be able to see why the same term is used for 
both the things identified.  I think looking at the definition of inverse and looking at the 
parts of fractions and equations then the students will hopefully be able to see why the 
word inverse is used for both.”   

 
 Another action, that of “undoing”, is featured in the approach presented by Joe, 
Excerpt 4. In this approach an inverse is associated with an operation that cancels the 
previous operation and “returns to the starting point”. The approach is illustrated in the 
following excerpt.  

Excerpt 4 (Joe): “Get back to the starting point”  
Teacher:  Let’s say I pushed the wrong button on a calculator, and instead of multiplying by 3, I 

multiplied by 5. Can anyone give me suggestions to what should do next? Should I hit 
clear and start a long calculation from the beginning?  

Student:  No! You should just divide by 5.  
Teacher:  Yes Dina, good instincts. Would dividing by 5 return me to where I was just before I 

made the mistake? 
[The class confirms, with yes and nods.] 
Teacher:  But what is another way of writing dividing by 5? Yes, Dina. 
Student:  Putting 5 under 1, so !!? 

Teacher:  Exactly! So Dina, what do you think it means when I say that the inverse of 5 is !!? 
Student:  That if I multiplied by five and I want to get back to the starting point, I would multiply 

by !! because their multiplication cancels the effects of each other. 
[… the dialogue turns to an inverse of a function] 
Teacher:  So what do you think it means when I say to find the inverse of a function called !? 
Student:  It means you’re trying to find another function related to !, so that it would undo what 

! did. Return to the starting point. 
Teacher:  Good! Let’s try an example. […]  

 

Joe elaborated on his chosen approach in the following way: 
“I chose to explain the relations because I felt that trying to convince a student that the 
power (-1) means two different things was harder than explaining the real reason (that it 
simply means an inverse). Even though ideas like this might be complex, I think that 
students should understand that they aren’t nonsensical. The people who chose what 
symbols to use did so for specific reasons. I personally kept the idea of different rules 
applying to numbers and functions when dealing with inverses. It was not until university 
Mathematics did I reconcile the two ideas in one overarching idea of an inverse.” 

 
Joe acknowledged that he “kept the idea of different rules” when first introduced to the 
symbolic notation for a function inverse. However, his study of advanced mathematics helped 
him adopt a different perspective. Joe’s reference to the “overarching idea of an inverse“ 
points to a strong connection he sees in the two contexts of using the symbol.  
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Summary and Discussion 
We described each pedagogical approach in the scripts in terms of the chosen emphasis on 
the similarities and/or differences in the interpretations of ☐!1. We attempted to place each 
approach within the two extremes: common structure of inverses related to different sets and 
operations, or homonymous symbol referring to unrelated meanings in different contexts.  
 Participants who considered ☐!1  as a homonymous symbol amplified the differences 
by focusing on different context (fractions or functions), different terminology (reciprocal or 
inverse), and different procedures. Several participants appealed to students familiar 
experiences and linked different meanings of ☐!1  to other homonymous words and symbols. 
Though no participant attempted to connect the script to the mathematical meaning of the 
term ‘inverse’, expressing a group-theoretic perspective, several approaches identified 
polysemy, that is related meanings in the two interpretations of ☐!1. This was seen by 
focusing on a common word (inverse) and on a common action implied by the word (swap, 
undo).  
On contextualized knowledge 
As mentioned above, the Scripting Task was administered to the participants as part of their 
work in one of the final courses in their teacher education program. Following the completion 
of the Task different explanations for the “curious case of superscript (-1)” were discussed in 
class. Most participants readily recalled or accepted the connection via group theory, 
referring to the concept of inverse of an element with respect to a particular operation. 
However, only four participants mentioned the connection in the mathematical meaning of 
“inverse” in their responses to Part 3 of the Task. (Most participants have not addressed this 
part or noted that their explanation to students reflected their personal understanding.) 
 This discrepancy can be explained from the perspective of situated cognition (e.g., 
Greeno, 1998): Teachers’ knowledge is situated within the mathematics classroom and 
mathematics curricula. In school mathematics there is attention to procedures related to 
finding an inverse function or multiplicative inverses of fractions. Therefore, the majority of 
participants have chosen to focus on procedural knowledge expected from students, situating 
their scripts relative to school curricula, and possibly mimicking how they were taught in 
school.     
Same name to different things 
Henri Poincaré is often quoted in saying that “mathematics is the art of giving the same name 
to different things”. He further commented that “It is enough that these things, though 
differing in matter, should be similar in form, to permit of their being, so to speak, run in the 
same mold. When language has been well chosen, one is astonished to find that all 
demonstrations made for a known object apply immediately to many new objects: nothing 
requires to be changed, not even the terms, since the names have become the same.” 
(Poincaré, 1908) 
  In English, the multiplicative inverse is usually denoted as ‘reciprocal’. Echoing 
Poincaré, we recognize here “different names for the same thing”, which obscures the 
speakers of English ability to recognize the connection in their different views of ☐!1 . In 
several languages, where reciprocal for a fraction and inverse for a function are denoted by 
similar or close words the connection is easier detected.  
 We agree with Zaslavsky (2009) that “identification of similarities and differences 
between objects along several dimensions [...] is fundamental mathematical thinking”. The 
Scripting Task discussed in this paper helps highlight similarities and differences in 
terminology, in structure and in procedures. It provides an impetus for strengthening 
teachers’ personal mathematical knowledge by connecting the ideas of advanced mathematics 
to a classroom situation.  
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