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Preface

As part of its on-going activities to foster research in undergraduate mathematics education and the
dissemination of such research, the Special Interest Group of the Mathematical Association of America
on Research in Undergraduate Mathematics Education (SIGMAA on RUME) held its twentieth annual
Conference on Research in Undergraduate Mathematics Education in San Diego, California from February
23 - 25, 2017.

The conference is organized around the following themes: results of current research, contemporary theo-
retical perspectives and research paradigms, and innovative methodologies and analytic approaches as they
pertain to the study of undergraduate mathematics education.

The proceedings include several types of papers that represent current work in the field of undergraduate
mathematics education, each of which underwent a rigorous review by two or more reviewers:

Conference Papers are elaborations of selected RUME Conference Reports

— Contributed Research Reports describe completed research studies

Preliminary Research Reports describe ongoing research projects in early stages of analysis

Theoretical Research Reports describe new theoretical perspectives for research

— Posters are 1-page summaries of work that was presented in poster format

The proceedings begin with the winner of the best paper award, the paper receiving honorable mention,
and the paper receiving meritorious citation; these awards are bestowed upon papers that make a substantial
contribution to the field in terms of raising new questions or providing significant or unique insights into
existing research programs. These papers are followed by the pre-journal award winner, which was selected
based on its potential to make a substantial contribution to the field; this award is limited to authorship teams
that only includes graduate students, recent PhDs (within 2 years of graduation), and/or mathematicians
who are transitioning to mathematics education research.

The conference was hosted by San Diego State Univerisity and the University of California San Diego.
Their faculty and students provided many hours of volunteer work that made the conference possible and
pleasurable, and we greatly thank them for their support.

Many members of the RUME community volunteered to review submissions before the conference and
during the review of the conference papers. We sincerely appreciate all of their hard work.

We wish to acknowledge the conference program committee for their substantial contributions to RUME
and our institutions. Without their support, the conference would not exist.

Last but not least, we would like to thank Tim Fukawa-Connelly, the previous conference organizer, for
his work setting up the 2017 conference and providing guidance throughout the process. His efforts over the
past four years have significantly contributed to the growth of the conference and the strengthening of our
community.

Aaron Weinberg RUME Conference Organizer

Chris Rasmussen & Jeffrey Rabin, RUME Conference Local Organizers
Megan Wawro, RUME Program Chair

Stacy Brown, RUME Coordinator
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Leveraging Real Analysis to Foster Pedagogical Practices

Nicholas Wasserman Keith Weber William McGuffey
Teachers College, Columbia Rutgers University Teachers College, Columbia
University University

Real analysis is frequently a required course for prospective secondary mathematics teachers.
However, most teachers view real analysis as unnecessary and unrelated to the work of teaching
secondary mathematics. The purposes of this paper are to (i) explore why real analysis, as it is
conventionally taught, is not helpful to many teachers, (ii) present a new instructional model for
how the course can be taught to increase its relevance, and (iii) present a case study in which
our instructional model was implemented in a real analysis course and led to productive changes
in teachers’ actual pedagogical practice.

Key words: Real Analysis, Secondary Teacher Preparation, Advanced Mathematics, Pedagogical
Practice

1. Introduction

In the United States and elsewhere, prospective teachers of secondary mathematics are
required to complete extensive coursework in undergraduate mathematics. Such coursework
usually includes advanced upper-level courses for mathematics majors (e.g. CBMS, 2012), with
many institutions now requiring future teachers to complete the equivalent of an undergraduate
degree in mathematics (Ferrini-Mundy & Findell, 2010). Consequently, prospective secondary
mathematics teachers often complete more courses in advanced mathematics from a mathematics
department than mathematics education courses that focus on teaching methods and secondary
content. The key point is that prospective mathematics teachers’ experiences in their advanced
mathematics courses are a significant part of their preparation for teaching mathematics.

The requirement that prospective mathematics teachers complete advanced mathematics
courses raises three important questions. First, if prospective teachers complete a course in
advanced mathematics such as real analysis, are they better able to teach secondary
mathematics? Second, given that experiences in advanced mathematics courses do not appear to
be productive for secondary teacher preparation, is there a way to restructure advanced
mathematics courses such as real analysis so that they better meet the needs of prospective
teachers? Third, what evidence is there that an innovative instructional approach in an advanced
mathematics course can influence teachers’ actual pedagogical practice in secondary classrooms?

Our paper is centered around investigating these three questions. We answer the first research
question in sections 2 and 3. In section 2, we synthesize the extant literature, which demonstrates
that prospective teachers do not appear to benefit from taking advanced mathematics courses.
We use existing theoretical frameworks regarding transfer (Lobato, 2012) to explain why this is
the case in section 3. We address the second research question in section 4, where we present a
transformative instructional model for teaching advanced mathematics to prospective
mathematics teachers and describe theoretical reasons for why instruction based on this model
can be beneficial to prospective teachers. We illustrate this instructional model with one example
module in the beginning of Section 5. We address the third question in Section 5.3, showing that
teachers who participated in this module in a real analysis course changed their pedagogical
practice. At a minimum, this provides a theoretically-motivated existence proof that advanced
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mathematics courses can potentially benefit teachers and influence their classroom practice if
taught in a productive manner.

2. Literature Review

2.1. The Influence of Advanced Mathematics Courses on Subsequent Teaching

Prospective secondary mathematics teachers are typically required to complete many courses
in advanced mathematics. However, as several scholars have noted, there is little research on
whether or how these courses influence prospective teachers’ future pedagogical practice (e.g.,
Deng, 2008; Moriera & David, 2007; Ticknor, 2012), which is fundamentally important for
practice-based approaches to teacher knowledge and teacher education (e.g., Ball, Thames, &
Phelps, 2008). Here, we discuss two findings that suggest that completing such courses have
only a modest effect on prospective teachers’ pedagogical behavior. First, large-scale studies
have found a weak relationship between the number of advanced mathematics courses that a
teacher has completed and the achievement of that teacher’s students (Darling-Hammond, 2000;
Monk, 1994). For instance, Monk (1994) wrote:

[T]he use of alternative ‘cut-points’ revealed that the model performed best when the
distinction was drawn between having five or fewer versus more than five undergraduate
mathematics courses. The addition of courses beyond the fifth course has a smaller effect.
In contrast to 1.2% increase in pupil performance reported earlier, the addition of a
mathematics course beginning with the 6 course is associated with a 0.2% increase (p.
130).

Because most mathematics majors do not take advanced mathematics courses until after they
have completed five courses, including a four-semester calculus sequence and a course in linear
algebra, Monk’s analysis suggests that prospective teachers will reap only a small benefit from
completing a subsequent advanced mathematics course.

Second, when practicing secondary mathematics teachers have been asked how their
experiences in advanced mathematics courses have influenced their teaching, many teachers
claimed that their advanced coursework did not contribute to their development as teachers (e.g.
Goulding, Hatch, & Rodd, 2000; Ticknor, 2012; Zazkis & Leikin, 2010). Few could cite specific
instances of how their knowledge of advanced mathematics influenced their secondary teaching
(Rhoads, 2014; Wasserman & Ham, 2013; Zazkis & Leikin, 2010). Wasserman et al. (2015)
found that this occurred even when the teachers demonstrated an understanding of the advanced
mathematics that they were taught.

2.2. Postulated Reasons for why Advanced Mathematics does not benefit Prospective
Teachers

Researchers have proposed two reasons for why advanced mathematics courses might not
benefit prospective mathematics teachers, even if the prospective teachers understood the content
that they were studying. The first reason is that the representation systems used in advanced
mathematics differ substantially from those used in secondary mathematics (Deng, 2008;
Moreira & David, 2007). For instance, Moreira and David (2007) presented a theoretical analysis
of how advanced mathematics courses framed concepts from the secondary curriculum. They
noted that in advanced mathematics courses, concepts usually were introduced using a single
canonical formal representation. For example, the familiar concept of fractions was defined as an
equivalence class of ordered pairs in Z X Z\{0} where (a, b) and (¢, d) were equivalent if ad =
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bc. However, Moreira and David argued that effective teaching of secondary mathematics often
required the use of multiple representations, many of which were visual but not necessarily
formal. For example, fractions might be represented both numerically and pictorially as pie
charts.

A second reason is that the goals of teachers of advanced mathematics and mathematics
educators may not align with those of prospective teachers. Ticknor (2012) argued that many
prospective teachers’ primary goal in their advanced mathematics courses is merely to pass the
course, which is in part due to students being intimidated by the material and having a fear that
they may fail (e.g., Ticknor, 2012; Pinto & Tall, 1999; Weber, 2008). Ticknor used this
theoretical frame to account for her case studies of prospective teachers in an abstract algebra
course learning the skills to earn passing grades on examinations but not reflecting on how the
material might relate to solving equations in secondary algebra. The coping strategies that
prospective teachers adapt to survive their advanced mathematics courses may bear little
relationship to what they do in their classrooms.

3. Theoretical Perspective

3.1. A Trickle-Down Model

From our point of view, the anticipated benefits of having prospective teachers complete a
course in advanced mathematics can be exhibited by the “trickle-down” model presented in
Figure 1 (Wasserman, et al., in press), which considers the relationships between i) advanced
mathematics, 11) secondary mathematics, and iii) feaching secondary mathematics. This model
highlights that most of the material covered in an advanced mathematics course consists of
advanced mathematics, where little or no attention is paid to secondary mathematics or issues of
teaching. However, the hope is that the advanced mathematics provides an opportunity for the
prospective teacher to better understand certain aspects of the content of secondary mathematics.
For instance, by learning the zero divisor property about rings in abstract algebra, the prospective
teacher may develop a deeper understanding for why one can solve polynomial equations by
factoring polynomials. Some instructors of advanced mathematics may be explicit about such
connections between advanced mathematics and the content of secondary mathematics, but in
many other cases, prospective teachers are asked to make these connections themselves. Next,
the expectation is that prospective teacher’s better understanding of the secondary mathematics
content will inform their future teaching of mathematics. In our experience, exactly how
prospective teachers should teach differently is rarely discussed in advanced mathematics
courses. Prospective teachers are expected to use their understanding of advanced and secondary
mathematics to improve their teaching more or less on their own.

Course Emphasis

‘ Secondary Mathematics ‘ """"

‘ Teaching Secondary Mathematics ‘

Figure 1. Trickle-down model for teaching advanced mathematics to secondary teachers.

3.2. An Issue of Transfer
As Figure 1 illustrates, the justification for having prospective teachers complete advanced
mathematics courses is based on the belief that a transfer of knowledge will occur. The
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expectation is that prospective teachers’ experience in a source domain (as students in an
advanced mathematics course) will lead to improved performance in a target domain (as teachers
in secondary mathematics), even though the exact nature and mechanisms of this transfer are
often unspecified (Wasserman et al., in press).

Lobato (2012) has proposed two distinct lenses by which the issue of transfer can be studied:
the mainstream cognitive perspective (MCP) on transfer and actor-oriented transfer (AOT). We
believe both can offer insight into why the model in Figure 1 may not help prospective teachers
with regard to their teaching.

According to Lobato (2012), using the MCP, transfer occurs when an individual generalizes
a desired abstract piece of knowledge from a source domain, recognizes this piece of knowledge
as relevant in a future target domain, and then successfully adapts this piece of knowledge to
respond to a situation in the target domain. The extent to which this will occur depends on (i) the
type of behavioral change that is desired and (ii) similarities between the source domain and the
target domain. Wagner (2010) noted that the disposition of many researchers in MCP is to treat
judgments about (i) and (ii) as independent of the participant who is doing the transferring, “as if
situational structure can be directly perceived in the world” (p. 364).

For (i), transfer is more likely to occur between situations if the change in behavioral
performance involves executing a previously learned procedure more quickly. Transfer is less
likely to occur if the behavioral change relies on an abstract principle to change how one would
approach the problem and there is no prompting that the abstract principle is relevant (Barnett &
Ceci, 2002). The latter behavioral change is an instance of far transfer, which is widely accepted
as difficult to achieve. Of course, it is exactly the type of change we are hoping to see in
prospective teachers when they take an advanced mathematics course.

For (ii), Barnett and Ceci (2002) described six ways in which the target situation may differ
from the source situation: (a) knowledge domain, (b) physical context, (c) temporal context, (d)
functional context (academic vs. play), (e) social context (individual vs. large group), and (f)
modality (lecture vs. writing). For each aspect that Barnett and Ceci highlighted, there are
substantial differences between the context in which prospective teachers learn advanced
mathematics and the contexts in which they will be teaching. We elaborate each point: (a)
prospective teachers learn about advanced mathematics as it is expressed with formal symbolic
notation but when they teach secondary mathematics, they often use multiple informal
representations (Moreira & David, 2007); (b) prospective teachers learn in university classrooms
but teach in high schools; (c) the time gap between completing a real analysis course and
teaching can be several semesters; (d) the goal of advanced mathematics involves establishing
claims via proof while the goal of a secondary mathematics teacher involves enhancing student
understanding; (e) the prospective teacher goes from being a student usually working
individually (directed by the course instructor) to being a teacher (and leader) of many students;
and (f) the teacher switches from writing homework solutions to lecturing, preparing lessons, and
leading other instructional activities. Again, these descriptions indicate the goal of improving
prospective teachers’ pedagogy by teaching them advanced mathematics is an instance of far
transfer. Given the distance between the source and target domains, we would expect the
influence of advanced mathematics on the teaching of secondary mathematics to be minimal.

Lobato (2012) offered an alternative approach to the MCP that she labeled Actor Oriented
Transfer (AOT). In AOT, the researcher seeks to account not by the similarities and differences
that the researcher observes between source and target domains, but rather the similarities and
differences that the individual doing the transferring finds relevant and salient. In this
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perspective, the researcher is not so much interested in predicting or measuring whether
normative transfer occurred, but rather aims to document any transfer that occurred (i.e., specify
all the ways that an individual’s experience in a target domain affected subsequent performance
in a source domain, including ways that the researcher might find unproductive) and account for
this by the individual’s perceptions of the source and target domains. AOT offers an additional
insight into why prospective teachers might not benefit from completing a course in advanced
mathematics. Wasserman et al. (2015) interviewed 14 prospective and in-service teachers about
their experiences in real analysis. Many participants found real analysis irrelevant for their
teaching because the participants expected to use the proofs that were presented as explanations
that they could provide to students in their secondary mathematics courses. Because the real
analysis proofs were lengthy and used technical terminology (the concept of limit, epsilons and
deltas), the participants found them useless for their teaching. Hence, when studying real
analysis, these participants were not focusing on the relationships between concepts (as
researchers often do) but what was salient to them was the literal proofs and explanations that
were presented and whether or not they could be transported “as is” to their own classrooms.

4. An Alternative Model for Teaching Advanced Mathematics to Secondary Teachers

We present an alternative instructional model for how advanced mathematics can be taught
to prospective teachers in Figure 2. In essence, we are “book-ending” the study of advanced
mathematics by beginning and ending our lessons with a discussion of teaching secondary
mathematics.

Course Emphasis
P

/" Advanced Mathematics

K—" Secondary Mathematics \
‘ R ; ‘

Figure 2. Alternative model for teaching advanced mathematics to secondary teachers.

The left side of the figure consists of building up from (teaching) practice. In this phase, we
begin an instructional unit with a secondary teaching situation — oftentimes in the form of a
comic strip using LessonSketch Software! (Herbst et al., 2011). Teachers are asked to evaluate a
teachers’ pedagogical action or to provide a pedagogical response to that situation (or both).
These situations were chosen so that prospective teachers had to engage in the high-leverage
teaching practices (HLPs) that Ball and her colleagues documented as central to the work of
teaching (TeachingWorks, 2013). Such HLPs include explaining and modeling content,
establishing productive classroom norms, eliciting and interpreting student thinking, and
providing feedback to students. The right side of the figure is stepping down to (teaching)
practice. After engaging with the advanced mathematics, such as studying definitions, theorems,
and proofs, prospective teachers are asked to reconsider the secondary mathematics and
pedagogical situations that they had previously discussed in light of the advanced content. Their
homework consists of them doing traditional advanced mathematics exercises (i.e., writing
proofs), answering questions about secondary mathematics, and providing responses to other
pedagogical situations.

" This software is available at Patricio Herbt’s Lesson Sketch webpage: https://www.lessonsketch.org/
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Our model (Wasserman, et al., in press) in Figure 2 has several theoretical benefits over the
“trickle-down” model presented in Figure 1 that undergirds the way advanced mathematics is
typically taught to prospective teachers. First, our learning goals include specific pedagogical
behaviors that we would like prospective teachers to exhibit as a result of completing our
module, goals that we are able to convey to our students and that we assess. As Barnett and Ceci
(2002) argued, it is easier for individuals to transfer specific behavioral actions to a new domain
than it is to transfer abstract principles. Second, in accord with our practice-based view of
secondary mathematics teacher education, our lessons are situated within the context of teaching
secondary mathematics. Hence, our modules are closer to the context of secondary teaching than
is typical of a real analysis course. Prospective teachers are asked to act as the teacher when
responding to pedagogical situations, including providing oral explanations to a hypothetical
class of students, interpreting hypothetical students’ mathematical justifications, and providing
oral and written feedback to student work, all of which should be accessible to a secondary
student. Of course, there are differences between responding to our pedagogical situations and
the actual craft of teaching (e.g., in our situations, teachers do not need to worry about time
management or classroom management) and there are contextual differences between the two
that cannot be addressed (e.g., there still is a time lapse and a change in physical location).
Nonetheless, compared to the traditional model, the gap between learning real analysis and
teaching secondary mathematics has been closed considerably, which Barnett and Ceci (2002)
contended will increase the likelihood of successful transfer.

Perhaps most importantly, our model will help prospective teachers notice the aspects of real
analysis that we think are important for teaching. Previous research has demonstrated that
teachers do not find advanced mathematics helpful for their teaching because they used
unproductive coping strategies (e.g., rote memorization) to survive their courses with a passing
grade (Ticknor, 2012) or that they take advanced mathematics courses with an eye toward
learning proofs that they could share with their future students (Wasserman et al., 2015). Under
our alternate instructional model, prospective teachers’ grades depend in part on their responses
to pedagogical situations, which means they cannot simply ignore the pedagogical implications
of the real analysis course. As successfully responding to pedagogical situations goes beyond
reciting a proof that was learned in real analysis, prospective teachers are asked to broaden their
views on how real analysis can be beneficial to them in their future professional work.

5. An lustration of our Model

The goal of this section is threefold. First, we illustrate how we used our instructional model
to design real analysis modules for prospective teachers. Second, we portray how this was
implemented in a real analysis classroom and how prospective teachers interacted with one
module. Third, we describe the results of a study in which we followed six teachers into their
secondary classrooms and illustrate how their pedagogy changed as a result of completing our
modules. This provides an existence proof that real analysis can be relevant for the teaching of
secondary mathematics as well as an illustration that instruction based on our module has the
potential to foster these changes.

5.1. Overall Module Design

To generate our modules, we engaged in the following process. Our research team examined
the first six chapters of Fitzpatrick’s (2006) real analysis textbook, identifying any overlap
between the concepts covered in Fitzpatrick and the Common Core State Standards in
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Mathematics (CCSS-M, 2010). Once these topics were identified, we tried to generate
pedagogical situations with the following attributes: (i) the pedagogical situations were authentic,
(11) the prospective teachers were asked to engage in a High Leverage Practice (TeachingWorks,
2013) that is central for teaching, and (iii) successfully engaging in these High Leverage
Practices required mathematical knowledge that could be informed by real analysis. We
developed 12 modules based on this approach.

5.2. One Module: Considering Derivative Proofs as “Attending to Scope”

5.2.1. Research context and data collection. The data presented in this section is part of a
larger corpus of data. We are currently in the second year of a three-year project using design
research. We are engaged an iterative process in which we teach a real analysis course using the
12 modules that we generated. The data presented here are from the first iteration of the course
that was taught by the first author. The course had 31 prospective and in-service teachers who
agreed to participate. In this paper we focus on the “Attending to Scope” module, which took
place across two 100-minute sessions. All classes were videotaped and all teacher conversations
were audio-taped, and all homework assignments and reflective journal entries were collected.

5.2.2. Building up from (teaching) practice. In their professional work, teachers must explain
content, practices, and strategies (e.g., TeachingWorks, 2013); for this particular module, we
focus on a mathematical practice that mathematics teachers should engage in — attending to the
scope to which an explanation, idea, or justification applies. For example, in trying to help
elementary students understand subtraction, some teachers might state: “you cannot subtract a
larger number from a smaller one.” This explanation has a limited scope — it is only accurate
when one is considering positive numbers. Acknowledging the limitation of scope in
explanations is an important component of teaching. As Leinhardt, Zaslavky, and Stein (1990)
noted, “a primary feature of explanations is the use of well-constructed examples, examples that
make the point but limit the generalization, examples that are balanced by non- or counter-cases”
(p. 6). Real analysis, with its careful attention to stating explicitly the conditions for when a
statement applies, is a domain that is well-suited for helping prospective teachers recognize the
importance of being careful with their language, particularly as it relates to considering the
mathematical scope to which statements or theorems apply.

We began the module by presenting teachers with the cartoon in Figure 3, asking the teachers
to evaluate the pedagogical quality of two of Mr. Ryan’s explanations — the exponent statement
and the power rule statement. (Mr. Ryan was a fictitious comic teacher who appeared in many of
our modules.) In addition to a variety of other pedagogical issues that might be of concern, both
explanations that Mr. Ryan gave were limited in scope. During the module, all groups of teachers
highlighted limitations of the explanations, but only two groups highlighted the limitation in
scope of both explanations (e.g., the power rule statement doesn’t when you need the ‘“chain
rule”). Rather than the “mathematics of the explanation,” most teachers’ comments instead dealt
with the “explanation of the mathematics” — for example, that students might misinterpret what
Mr. Ryan had said (e.g., ‘repeated multiplication’ might mean “2x3x5x7”’) or that Mr. Ryan’s
explanations were too procedural. The next part of the module focused on the secondary
mathematics, asking teachers to state the number sets (or objects) for which Mr. Ryan’s
explanations would be valid. Therefore, this task prompted the groups that did not attend to
scope previously to consider this facet of his explanations; all groups identified the limited scope
to which these statements would apply during this portion of the module.
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Classroom Scenario: Mr. Ryan teaches everything from Pre-Algebra to Calculus. The following
scenes are snapshots from his classes at different times during the year.
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Figure 3. A classroom scenario.

5.2.3. Real analysis. During the real analysis portion, we first presented a standard proof of
the power rule for derivatives using the binomial theorem that appears in many secondary
calculus textbooks. Teachers were asked to which number set each step in the proof applies (V,
Z, Q, or R). All groups of teachers eventually recognized that the proof using the binomial
theorem was only correct for the natural numbers, with many expressing surprise because they
had always assumed that the proof that they read applied to all real numbers (as they knew that
the power rule is valid for all real numbers). Afterwards, the instructor presented a sequence of
proofs, each of which expanded the scope (Z, Q, R) to which the power rule for derivatives
applied, which, along the way, involved proving other derivative rules like the product, quotient,
chain, and inverse function rules. These derivative proofs are nearly ubiquitous in real analysis
courses. What is critical is that the product, quotient, chain and inverse function rules were
presented as lemmas for the goal of proving the general power rule.

5.2.4. Stepping down to (teaching) practice. After the proofs were presented, we stepped
back down to practice by asking the teachers to discuss, “When, if ever, would the statements
made by the teacher be appropriate? Describe the specific context.” For their consideration, they
were also given specific classroom contexts for each statement (graphing exponential functions
for the exponent statement, and an end-of-year review for the power rule statement). During this
time, all groups of teachers further examined the mathematical limitations of each statement,
identifying more exact constraints around which each was true. In addition, the groups discussed
various contextual factors. For example, one group mentioned “this only makes sense for little
kids” (with regard to the exponent statement), and another group noted “they’re reviewing” as a
reason that someone might make somewhat informal statements (with regard to the power rule
statement). Some groups also discussed that the power rule statement would not ever be
pedagogically appropriate unless the teacher was only intending to teach a procedure; other
groups suggested “fixes” to the statements to make them more mathematically precise. What is
important is that the teachers had meaningful discussions around the use of statements with
limited scope in mathematics education; indeed, one student claimed, “I feel like I just
discovered gold, math gold,” which we took to indicate that she found the discussion of the
limitations of statements to be very valuable.

5.2.5. Teacher performance on homework tasks. In addition to asking students to prove
several real analysis theorems, teachers were presented with two statements: “The perimeter is
just the sum of all side lengths” (perimeter statement) and “Remember, to multiply a number by
ten, just add a 0 to the end” (add zero statement). The teachers were asked to, “Determine for
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what set(s) of objects the statement is true. If there are any, provide an example of a set(s) of
objects for which the statement is not true. Discuss in what mathematical contexts might the
statement by the teacher be appropriate, if ever? When might it be in appropriate, if ever?” For
both tasks, all 31 teachers identified at least one valid counterexample that revealed the
limitations in scope. For instance, 29 of the 31 teachers noted that the statement about the
perimeter would not apply to a curved figure and 29 of the 31 participants cited a rational
number as an instance in which you cannot multiply by 10 by adding a zero at the end.

The teachers were also asked to submit a reflective journal entry in which they described
what, if anything, they learned from this week’s class. Of the 27 teachers who completed this
assignment, 26 mentioned the importance of language and 17 cited the importance of attending
to the scope of an explanation and letting students know if there were sets of objects to which the
statement would not apply. For instance, the following response was representative:

We tend to make general statements for the sake of time without even realizing we are
doing it. This past week in class I learned that as teachers, we must think about the
statements we make and the limitations we place on students learning moving forward...
This statement made by the teacher does not hold for all cases, therefore this is not a
mathematically precise statement.

In summary, the teachers’ homework assignment provided some suggestive evidence that our
module went well. The prospective teachers’ journal entries indicated that the majority of the
prospective teachers indicated an increased appreciation for attending to the scope of the
explanations that they provide, and, the prospective teachers could recognize the limitations of
scope in mathematical explanations if they were prompted to do so. However, our primary
concern was not teachers’ performance on these written assignments but whether completing this
module would influence their actual pedagogical practice.

5.3. Influence on Teachers’ Practice

5.3.1. Data collection. The first iteration of our experimental real analysis course was in
Spring 2016. For the 2016-2017 school year, six teachers volunteered to participate in a follow-
up study. Of the volunteers, five were in-service teachers with under seven years experience, and
one was a pre-service teacher who obtained her first job (Ms. J, discussed below). Five
participants taught in public schools and one taught in a private school; all schools were around a
large urban metroplex. For the courses we observed of these teachers, two teachers taught
geometry, two taught calculus, one taught Algebra II, and one taught pre-calculus.

For each teacher, the first and third authors of the paper visited their classroom up to six days
during the academic year. For each visit, we observed a one-period lesson that was 45 minutes or
90 minutes in length. Lessons were audiotaped (from a microphone on the teacher) and the
researcher kept field notes for each lesson, including transcribing all inscriptions on the
whiteboard or projector. We videotaped the lessons as well when it was possible to do so (but
school district regulations sometimes did not allow this). After each classroom visit, the teachers
participated in a post-interview in which the interviewer recalled common occurrences or key
events in their class and asked them to describe why they engaged in those specific behaviors
during the lesson. We then asked them whether any of their classroom actions were influenced
by their experience in our experimental real analysis course.

We say a teaching unit displayed “attention to scope” when the following three conditions
occurred: (i) during the lesson, the teacher paid explicit attention to the scope of a teacher or
student-generated claim in their lesson; (ii) in the post-interview, they highlighted this excerpt as
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an instance where their experience in real analysis influenced their teaching; and (iii) in the post-
interview, they explicitly mentioned how the real analysis course led them to be more mindful of
the language that they used and/or the limitations in the claims that they made.

5.3.2. Results. Across the six teachers, we made 31 observations. (Due to scheduling
constraints by the school districts, we still have to make 4 observations for 3 of the teachers). In
these 31 observations, the observed teaching unit displayed “attention to scope” on 17 occasions.
That is, in the majority of our observations, we observed the teachers attending to scope in their
explanations and citing their experiences in real analysis as a reason that they did so. We use two
lessons to illustrate.

In our first example, Ms. J, a first-year teacher, was teaching a pre-calculus course about
polynomials. During her lesson, she covered the Remainder Theorem, the Factor Theorem (i.e.,
for a polynomial f{x), f(c) = 0 if and only if the factor (x-c) divides f(x)), synthetic division, and
the Rational Zero Theorem. Throughout the lesson, Ms. J emphasized the limitations to the scope
of statements that she gave. We illustrate two excerpts from the lesson in Figures 4 and 5.

Mathematics Explanations and class dialogue (emphasis added)

Remainder Theorem: If a polynomial | Ms. J: So let’s think about that. I have some polynomial and I'm

f(x) is divided by x — k, then the
remainder is v = f (k).

(Example. Find the remainder of
f(x) = 2x? — x + 12 when divided
by x + 3.)

Proof. What’s the “7” of f(x) when
f(x) is divided by (x — k)?
fx)=&-k)qkx) +r

fk) =(k—k)qlk) +
f)=0-q(k) +r

dividing by x — k. Instead, I can take this k£ and evaluate my
function at that value and that will be my reminder when I
divide by it .. Do you want to see why this works? It’s pretty
quick. And I think it's worth seeing so we have some
understanding of how this ends up working...It cancels out
because I have (k — k), so that’s zero times some
polynomial. So then I get f (k) = r. Kind of cool to actually
see why that works. And then it feels a little less arbitrary.
It’s just I plug it in and I know why because Ms. J told me
to. (pause) Again, this only works when it’s (x — k) of
degree one divisor, so keep that in mind. If it’s (x? — 5),
we can’t do this. Kind of like synthetic division, remember

fk)=r synthetic division only worked when we had terms, divisors
of “x plus or minus a number.”
Figure 4. Ms. J’s classroom instruction around the Remainder Theorem.
Mathematics Explanations and class dialogue (emphasis added)

Example. f(x) = 3x3 — 2x% + x —
5 divided by x — 1.

13—21—5
I 31 2
312 -3

Ms. J: We're saying f(x) = 3x3 — 2x? + x — 5 divided by x —

1. Synthetic division is a tool we can use to divide
polynomials when our divisor is a degree one polynomial,
right? “x plus or minus a number.” That’s the only time
we can use synthetic division. I can’t say that enough.

Student A: For both divisions, it’s only if it’s to the degree one?

Ms. J: For both divisions, meaning what?

Student A: (Long) Division and synthetic division

Ms. J: Long division... Synthetic division is an algorithm that
mathematicians figured out, when if it’s a specific case, it
saves you time from long division. So that’s why it looks
different because it’s an algorithm for a specific type of
situation, type of division problem. The long division works
for everything.

So,3x2 + 1x + 2 + —.
x—1
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Figure 5. Ms. J’s classroom instruction about synthetic division.

In Figures 4 and 5, Ms. J explicitly noted a limitation in the scope of both the Remainder
Theorem and synthetic division — namely, that the divisor must be a linear factor of degree one,
of the form x — k. At times, these were her explanations, and in other cases they were prompted
by student questions — but in both situations, she was very explicit about the limitations in scope.
Further, at a different point, one student asked her about other linear factors, such as 2x — 2. The
guiding notion in her response was that synthetic division works for factors of the form, x — k,
and this explicit attention to scope helped her resolve how to respond to the student. In the post-
interview, Ms. J discussed why she insisted on clarifying the scope of many of her statements.

Ms. J: I think that there are common mistakes made as a student if you hear a rule. Like
great, a rule, I can do synthetic division, especially if it looks like x plus or minus
something. But they might think x? plus or minus something, or just like it’s a trick,
I’ll plug the last number in for the example of synthetic division. So knowing the
common mistakes and trying to prevent them is one reason [ think it’s important to
say that [...] I think that this reminds me of like the exponents lesson, where I make
these vast like generalizations, like exponents, just like repeated multiplication. And
it’s like, well, that’s true if, you know, it’s a positive integer and things like that. But
the thing is if you don’t say them, it could get confusing later, I think for them. So
like that one would have caused them to make mistakes, but it’s just explaining I’'m
simplifying this and here’s the restriction that I need to say to make this so.

We wish to highlight two things in this excerpt. In the first italicized section, Ms. J shows
how she was able to apply the theme of attending to scope flexibly in coordination with her other
pedagogical knowledge — in this case, her knowledge of common student mistakes. She hoped
that by highlighting limitations in scope, it would reduce the chance of student mistakes in the
future. In the second italicized section, Ms. J references the exponents lesson (i.e., the module
described previously) as part of the rationale for her justification of why teachers should avoid
vast generalizations that could confuse students at a later time. Later in the post-interview, Ms. J
again emphasized the importance of her experiences in the real analysis course.

Ms. J: I attribute that probably one of the biggest things, like one of the biggest take-aways |
had from the analysis course because the exponents one really threw me off. Like 1
remember we had to do a problem—I think I even talked about this before, but I just
really remember it. We had to do a problem for homework or something where it
was, you know, what’s two squared? What’s two to the one-half? And then it was
like, the last one was what’s like pi to pi? And I was like I have no idea how to be
thinking about this right now. So it just made—it really stuck out to me how it’s
important to (pause) really limit your — it’s trying to present a smaller view of the
topic, but just set the situation so that when you 're presenting a smaller view, it’s an
accurate view still. So very much so to analysis.

The highlighted excerpts again illustrate how the exponents lesson (i.e., the module described
previously) emphasized to Ms. J that she should be careful in her language and even when
presenting a “smaller” view on a topic, she should still be mathematically accurate.

In our second illustration, we highlight Ms. T, a teacher with six years experience, teaching
an AP Calculus BC course. In this lesson, she covered the Extreme Value Theorem, Fermat’s
Theorem, Rolle’s Theorem, and the Mean Value Theorem. When presenting the theorems, Ms. T
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attended to the scope of the theorems in an interesting way. She first asked individual students to
draw a graph of a function that satisfied the conditions of the theorem. When commenting on the
graph, she explicitly checked and then emphasized that each condition was satisfied. We
illustrate this in Figure 6.

Mathematics Explanations and class dialogue (emphasis added)

Rolle’s Theorem: Let f: [a,b] - Rbe a Ms. T: We want an example. So, we want a sketch of a
function that is continuous on the closed function that can be used to help interpret Rolle’s
interval [a, b], differentiable on the open Theorem and the Mean Value Theorem. So, it might
interval (a, b), and satisfies f(a) = be easier to sketch something that you can easily see
f(b). Then, there exists at least one ¢ € Rolle’s Theorem with. So, can I have a volunteer?
(a, b) such that f'(c) = 0. Your what goes up must come down.
[Student-drawn example of graph that Ms. T: So, let’s think about it. Is she continuous on a

satisfies Rolle’s Theorem] closed interval? Is she differentiable on the open?

Does f(a) = f(b) somewhere? Is the derivative
zero somewhere? So, did she satisfy Rolle’s? Okay.

2

Mean Value Theorem: Let f: [a,b] = Rbea | Mg T: Ineed a volunteer. And the volunteer just has to

function that is continuous on the closed sketch a function where the Mean Value Theorem
interval [a, b] and differentiable on the will work. You’re thinking of our two conditions.
open interval (a, b). Then, there exists at Continuous on the closed. Differentiable on the
least one ¢ € (a, b) such that f'(c) = open. ... So, the Mean Value Theorem has to work.
W, You need continuity and differentiability.

Ms. T: Good. Is that continuous? It’s continuous. She
gave us a closed interval. I'm just gonna highlight it.
Is it differentiable? Yeah.

[Student-drawn example of graph that
satisfies Mean Value Theorem]

Figure 6. Ms. T’s classroom instruction about Rolle’s Theorem and the Mean Value Theorem.

In each italicized excerpt, Ms. T explicitly highlighted how each condition of the relevant
theorems was satisfied. In other instances, Ms. T would use student-generated examples not only
to illustrate the necessity of the conditions of a theorem, but also to explore the ways in which
examples that did not fulfill the conditions resulted in the implication being invalid. Ms. T was
able to apply the themes of the real analysis class on attending to scope in a flexible manner, in
this case one that involved making students active in the construction of examples in her course.
Later in the post-interview, Ms. T affirmed that she attended to scope because of her experience
in the real analysis course.

Interviewer: Every time you brought up a theorem, you like specifically referenced the
conditions for the theorem.
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Ms. T: Yeah.

Interviewer: So, what was your rationale for that?

Ms. T: Yeah. So, that’s still from the course, the Real Analysis course, because the
specificity of language ... so it was really being clear like when these things actually
will occur, and that also inspired like, you know, draw a graph where it failed to meet
a condition so you can see that it’s actually not always going to work out.

Interviewer: Okay. And so, would you say that—is that something that you normally do?
Like would you normally mention it every single time you reference it on your own?

Ms. T: No. I think, now it’s just — my own better understanding is why I keep repeating it so
that it’s kind of more ingrained to them under what conditions things can happen.

In this section, we have documented that in the majority of the instances that we observed,
the teachers attended to the scope of mathematical statements and verified in their post-interview
that they did so because of their experience in the real analysis course. The excerpts that we
presented showed how teachers were able to adapt this theme to their own style of teaching.

6. Discussion and Conclusion

The aim of our paper was to address three research questions. We synthesize our answers to
these questions. First, we argue that advanced mathematics courses usually do not benefit
prospective mathematics teachers due to the difficulty of the far transfer that we expect to occur
and also because what is salient to the students in these classes may differ from what is important
to the course instructor or mathematics education researchers. Second, we describe an alternative
model for how students can be taught real analysis — one in which the lessons are situated in
classroom practice. We first build up from classroom practice in order to motivate studying the
real analysis content. We then step back down to classroom practice so students can practice
applying the mathematics they have learned to the pedagogical situations. Third, we document
that teachers who completed a module on attending to the scope of explanations in real analysis
attended to scope in their subsequent instruction and attributed this pedagogical practice to what
they learned in real analysis.

To our knowledge, this paper is innovative in several respects. First, although several
researchers have documented the limited impact that advanced mathematics courses have on
teachers’ pedagogical practice (e.g., Goulding, Hatch, & Rodd, 2000; Moreira & David, 2007;
Ticknor, 2012; Wasserman et al., 2015; Zazkis & Leikin, 2010), there have been few research-
based attempts to ameliorate the situation. In general, attempts to make the study of advanced
mathematics courses relevant to secondary teachers have involved making connections to the
content of school mathematics; in this study, we have attempted to be more explicit about
connections to the teaching of school mathematics. Second, when attempts have been made to
highlight the connections between advanced mathematical content and secondary teaching, they
have occurred primarily in “capstone” or “connections” courses (e.g., Murray & Star, 2013) or in
professional development programs. Our innovative instructional model, instead, alters the
structure of an advanced mathematical course such as real analysis to specifically meet the needs
of secondary teachers. Third, the standard by which we evaluated the efficacy of our course did
not only rely on how prospective teachers did on our in-course assessments but also on the
changes that were reported in their actual teaching practice. This is, of course, the ultimate
measure of teacher development, but one that is not often used in evaluating the efficacy of
advanced mathematics courses in secondary teacher education.
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For the reasons above, we believe our model offers a potentially valuable alternative to the
typical model in which advanced mathematics is taught with limited regard for changing
prospective teachers’ pedagogical practice. By design, the real analysis content in our modules
was both tightly connected to and framed by this pedagogical practice. To substantiate the value
of our model, however, merits further research. In particular, what we have offered here is a
proof of concept. Our model can be used to develop real analysis instruction that can improve
teachers’ secondary teaching. However, we certainly do not have the data to generalize beyond
that. For instance, we only explored one specific module in this paper. In the module discussed
in this paper, for example, although one does not have to learn real analysis to be able to attend
to the scope of secondary mathematics explanations, since a real analysis course already
inherently models this idea in both the precision of statements and progression of proofs, it
seems sensible to exploit this connection for teachers. We would want to know, at a minimum,
the effectiveness of the other 11 modules — some of which paid more attention to specific
theorems or proofs in real analysis, others of which had different kinds of connections to
teaching. We are currently in the process of evaluating and refining these modules. Further work
studying how best to mathematically prepare secondary teachers is needed, including the degree
to which this particular model is productive and/or needs refinement, and could help guide
improved design and implementation of advanced mathematics courses for secondary teachers.
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Students’ Epistemological Frames and Their Interpretation of Lectures in Advanced

Mathematics
Victoria Krupnik Keith Weber Timothy Fukawa-Connelly
Rutgers University Rutgers University Temple University

In this paper, we present a comparative case study of two students with different epistemological
frames watching the same real analysis lectures. We show that students with different
epistemological frames can interpret the same lecture in different ways. These results illustrate
how a student’s interpretation of a lecture is not inherently tied to the lecture, but rather depend
on the student and her perspective on mathematics. Thus, improving student learning may
depend on more than improving the quality of the lectures, but also changing student’s beliefs
and orientations about mathematics and mathematics learning.

Key words: epistemological frames, real analysis, student understanding of lecture

1. Introduction

In recent years, several researchers have explored the relationship between students’
epistemological beliefs and their learning of advanced mathematics. In particular, some scholars
have claimed that some students struggle to learn mathematics because they lack the
epistemological beliefs to support this learning (e.g., Alcock & Simpson, 2004; Bressoud, 2016;
Dawkins & Weber, in press; Lew et al., 2016; Solomon, 2006). The primary aim of this paper is
to extend this research. In particular, we adapt the notion of epistemological frames (e-frames), a
construct from physics education (e.g., Redish, 2004), and illustrate how students who hold
different e-frames can interpret the same advanced mathematical lecture in different ways. In
particular, we first give an account of two students’ e-frames in an advanced mathematical
setting; we then use these e-frames to give a fine-grained account for these students’ different
interpretations of the same utterances by a lecturer.

2. Theoretical perspective and related literature
2. 1. Epistemic frames

Goffman (1997) introduced the notion of frame to describe how individuals develop
expectations to help them make sense of the complex social spaces that they inhabit. For
instance, most adults in the Western world have a “restaurant frame” consisting of expectations
that are activated when they enter a restaurant. When frequenting a restaurant, an individual
likely would expect that the restaurant employees will prepare food for the individual, the
individual will be obligated to pay for this food, and so on (Schank, 1990). Such restaurant
frames are usually helpful; these frames allow individuals to act sensibly in restaurants that they
have never visited before. However, frames can occasionally be counterproductive if two
individuals frame the same situation in different ways. For instance, a European diner may
offend a waiter in the United States if she was not aware of the United States custom to leave at
least a 15% gratuity.

Physics educators have introduced the notion of an individual’s epistemic frame, or e-
frame, as consisting of their epistemological expectations about a pedagogical situation. These
consist of an individual’s responses to questions such as “what do I expect to learn?”” and “what
counts as knowledge or an intellectual contribution in this environment?”” (Redish, 2004). If a
teacher and her students approach the same pedagogical activity with different e-frames, the
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students likely will not learn what their teacher intends. For instance, Redish (2004) described a
physics tutorial in which students were asked to form a hypothesis. The teacher’s aim of this
activity was for students make qualitative predictions using their conceptual understanding of
physics principles. Redish found that a student who viewed intellectual contributions in physics
as consisting of numeric answers derived from textbook formulas responded to such tasks by
engaging in computations, thereby avoiding the conceptual considerations the activity was
designed to elicit.

We are not aware of any mathematics education research that has specifically used the
notions of e-frames to account for students’ behaviors. However scholars have explored the
relationship between students’ epistemological beliefs and their concomitant mathematical
cognition. In many of these cases, the claims of these scholars can be expressed using the
construct of e-frames. For instance, Thompson (2013) presented a situation in which a teacher
provided many conceptual explanations to her high school algebra class but these explanations
were ignored by some students in the class who had a procedural orientation. We might interpret
Thompson’s claim with e-frames as follows. In the students’ e-frames, an intellectual
contribution in an algebra class consisted of using a procedure to solve a problem symbolically.
The teacher viewed part of the intellectual contribution of her presentation as explaining the
meaning of the procedure that she was implemented. Since students did not recognize this as a
legitimate intellectual contribution in a mathematics, they simply ignored the conceptual
explanations.

We can use similar reasoning to characterize other mathematical constructs. For instance,
the didactical contract (Brousseau et al., 2014) includes expectations about what mathematical
contributions the teacher is required to make, establishing sociomathematical norms (Yackel &
Cobb, 1996) involves the negotiation of what an acceptable mathematical contribution is, and
institutional meanings of proof (Recio & Godino, 2001) are expectations about what constraints
a justification must satisfy in different contexts. In summary, while we are introducing the notion
of e-frames to mathematics community, this work builds upon a rich tradition of scholarship
examining the links between students’ epistemology and cognition. Our contribution is offering a
more fine-grained account of how specific e-frames influence students’ interpretations of
specific mathematical utterances in advanced mathematics.

2. 2. Logical versus psychological understandings in advanced mathematics

In this paper, we distinguish between two ways of knowing a mathematical concept. An
individual knows a concept psychologically if she believes the statement is true and feels that
they understand why the statement is true. An individual knows a concept logically if she can
provide a deductive justification demonstrating the statement is true from previous statements
(usually definitions and axioms) that are assumed to be true.

We make three observations about this distinction. First, in many mathematical settings,
psychological and logical knowing are inextricably intertwined. Mathematicians often believe a
statement is true exactly when they see how it can be logically deduced from other things that are
known or assumed to be true (e.g., Harel & Sowder, 2007). Second, psychological knowing and
logical knowing are nonetheless distinct. Some mathematicians hold rational certainty in the
veracity of unproven conjectures (e.g., Goldbach’s conjecture) and others retain some doubt in
claims that have been proven (on the grounds that they cannot be certain that their proofs are
correct) (c.f., Weber, Inglis, & Mejia-Ramos, 2014). This reflects the view that the acceptability
of a proof is dependent upon a reference theory specifying what facts are allowed to be assumed
(Mariotti, 2006). Third, in some cases, the purpose of proof is not to enhance one’s
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psychological knowing, but to provide logical justification (c.f., Dawkins & Weber, in press).
Mamona-Downs (2010) expressed this clearly when she wrote that “the point [of proof] is not so
much about conviction, but how we can clarify the bases of the reasoning employed” (p. 2338).
Arzarello (2007) expressed a similar sentiment, arguing that the purpose of proof is to give
meaning to a statement by placing the statement into a network of mathematical knowledge in
the form of logical consequence.

2. 3. Systematization

In this paper, we focus on a particular type of activity that deVilliers (1990) has coined
systematization. In this activity, mathematicians transform an existing theory—i.e., a
constellation of concepts and related statements that are accepted as true—into a unified whole.
Mathematicians do so by creating a system of axioms and definitions and then demonstrating
that commonly accepted statements within the existing theory are deductive consequences from
this system of axioms and definitions. As deVilliers (1990) noted, with systematization, “the
main objective is clearly not to check whether statements are really true” (p. 21, emphasis was
the author’s). In our interpretation, the purpose of systematization is not to enhance one’s
psychological knowledge; the statements being justified are already accepted as true. Rather, the
purpose is to create a system of axioms and definitions that lets us provide logical justifications
for things that are accepted as true.

In this paper, we explore two students interpretation of the same real analysis lectures. In
these lectures, the instructor is using the integers to define the systems of rational numbers and
real numbers. He then derives some well-known consequences of these number systems. For
instance, the professor defined the rational numbers as equivalence classes of pairs of integers,
and addition on rational numbers as an operation on these equivalence class of ordered pairs. The
professor then sketched a proof that addition on the rational numbers is a well-defined operation.
We can thus say that the rational numbers are being re-presented to the students as we can
assume that mathematics majors in a real analysis course have had extensive prior experience
with rational numbers. In our view, the mathematical contribution being made is many facts that
students already knew psychologically about rational numbers can now be seen as logical
consequences of how the rational numbers were defined. In this paper, we analyze two different
student views on what the purpose of this re-presentation is.

2. 4. Students’ understanding of lectures in proof-oriented math courses

Most proof-oriented courses in advanced mathematics are taught via lectures (e.g.,
Fukawa-Connelly, Johnson, & Keller, 2016). Although there have been several studies on how
these lectures are given (e.g., Gabel & Dreyfus, in press; Lew et al., 2016), there have been few
studies on how students perceive these lectures. We describe one such study, and how e-frames
can account for the results of this study below.

Lew et al. (2016) described a real analysis professor, Dr. A, who presented a proof to
illustrate a heuristic that would be useful in proving other theorems. However, when Lew et al
showed a videotape of this lecture to six students in the class, none of them recognized this
heuristic as Dr. A’s reason for presenting this proof. In his commentary on Lew et al., Bressoud
(2016) conjectured that students “understood the instructor’s intention as one of communicating
that this is a valid result worthy of being noted and remembered” (paragraph 6) whereas the
professor was trying to showcase a new approach that could be used to prove a new class of
propositions. We can interpret Bressoud’s commentary in terms of e-frames as follows: The
professor in Lew et al’s study believed the intellectual contribution of his proof presentation was
describing an important proving heuristic. In the students’ e-frame, the intellectual contribution
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of a lecture proof was communicating a valid result that was worthy of being remembered.
Hence, the main points that the professor was trying to convey were thought of as tangential by
the students.

3. Methods
3. 1. Rationale

The goal of this study was to understand how a student’s e-frames can shape how that
student interprets a real analysis lecture. To accomplish this, we interviewed two students as they
watched a publicly available video-recording of a pair of real analysis lectures. This
methodology had the advantage that students could act as if they were attending an actual
lecture, yet the interviewer or student could pause the video to discuss their in-the-moment
impressions of what was being discussed. In this study, we viewed a student’s answer to one of
the following two questions as one of her e-frames:

*  What counts as a legitimate mathematical contribution?
* By what standards should the mathematical contribution be evaluated?
3. 2. Participants

Two participants, Alice and Brittany (pseudonyms), agreed to participate in this study.
Both participants were mathematics majors at a large state university in the northeast United
States. At the time of the study, both students had completed a transition-to-proof course in the
previous semester, which the university requires as a prerequisite for a real analysis course.
However, neither student was taking real analysis in the semester when this study occurred.
Alice and Brittany were instead taking other proof-oriented courses and planned to take real
analysis in a future semester. Thus, both students could potentially have enrolled in a real
analysis course, but had not done so.

Alice and Brittany both claimed that they enjoyed their transition-to-proof course. Both
students evinced a deductive proof scheme (Harel & Sowder, 2007) and exhibited competence at
writing and understanding proofs. While watching the lectures, both students actively tried to
make sense of the material.

Alice was an honors sophomore mathematics major who was intending to pursue
certification to teach secondary mathematics, who earned an A in her transition-to-proof class.
Brittany was a junior mathematics major who earned a B in her transition-to-proof class. To
avoid misinterpretation, our aim is not to compare the productivity of Alice’s and Brittany’s
frame or to evaluate the quality of Alice or Brittany’s interpretation of the lectures that they
observed. We do not make claims about who is the better mathematics student. Instead our aim
in this paper is to show that Alice and Brittany’s different interpretation of the same lecture can
be attributed to the different e-frames that they hold.

3. 3. The lecture

The lecture studied in this paper consisted of the first two class videos from a real
analysis course.' Each class video lasted between 60 and 70 minutes. The instructor of the course
was Professor Francis Su, who won two major national teaching awards from the Mathematical
Association of America. The lectures consisted of Professor Su beginning the real analysis
course by constructing the rational numbers and then the real numbers from the integers.

3. 4. Procedure

Prior to conducting the study, the research team studied the lecture and parsed the lecture

into five to ten minute segments in which coherent mathematical content was being presented. In

! The lectures are available at analysisyawp.blogspot.com
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each clip we identified any important ideas that we felt were being conveyed. We used this
parsing to create an interview protocol. After each segment of the lecture was played,
participants were asked, “what, if anything, was valuable to you?” and “what did you take away
from this?” as well as specific questions pertaining to the mathematical content that Su presented
in that clip.

Each participant met individually with the first author of the paper once a week for four
video-recorded clinical interviews (Hunting, 1997). Interview 1 was a one-hour interview in
which the participant discussed their experience in their transition-to-proof course to provide the
interviewer with a sense of the participants’ understanding of the content of the course
(particularly with number theory, functions, and proof) as well as their learning strategies and
dispositions.

Interviews 2, 3, and 4 were two-hour interviews in which the research team attempted to
explore the e-frames, ways of knowing, and any associated mental schemes that each participant
used to interpret the mathematical lectures. During each interview, the participant watched
Professor Su’s lecture and was instructed to stop the video whenever they observed something
that was important, interesting, confusing, or otherwise noteworthy. The interviewer would also
stop the tape to probe the participant’s thinking when the professor had stated something that the
research team had identified as important or at the end of a segment, as we described above.

Between the interviews, the members of the research team engaged in concurrent data
analysis. After each interview, each member of the research team listened to recordings of the
interview and formed initial hypotheses about the e-frames that the participants were using to
interpret the lectures. The research team would meet to synthesize these initial hypotheses and
develop questions that would allow us to test the viability of these hypotheses. The next
interview began with the interviewer asking the participants these questions, which was then
followed by them resuming watching the lecture videos. After all four interviewers were
conducted, we transcribed each interview.

3. 5. Retrospective analysis
Our retrospective analysis had two main purposes:

(1) we first aimed to analyze broad characteristics of Alice and Brittany’s behavior
in our interview to give an account of the e-frames that they are using;
(11) we then analyzed specific interpretations that they gave to Professor Su’s

lectures and used their e-frames to give an account for these interpretations

(c.f., Mason, 2002).
We first gave an account of Alice and Brittany’s e-frames as follows: for each segment of the
lecture, we summarized Alice and Brittany’s comments. We focused on any instance in which
Alice or Brittany described or evaluated what they felt was the mathematical contribution that
Professor Su made or was intending to make. Because we regularly asked Alice and Brittany
what they thought Professor Su was trying to convey and what, if anything, was valuable, our
data contained many comments from Alice and Brittany about Professor Su’s mathematical
contributions. By analyzing commonalities in each participant’s responses across the interviews,
we revised the hypotheses developed during concurrent analysis and, as needed, developed new
hypotheses about their e-frames.

We then engaged in the following iterative process to refine our hypotheses: For each
hypothesis about a participant’s e-frame, each member of the research team read the transcripts
in their entirety, identifying all instances that either supported or contradicted the hypothesis. We
evaluated a specific hypothesis as not viable if one of the three conditions occurred: (i) we found
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few instances supporting the hypothesis; (ii) we found many instances that were inconsistent
with the hypothesis; or (iii) we found a single significant instance that strongly contradicted our
hypothesis. If a hypothesis was evaluated as unviable, we would often refine our hypothesis and
repeat this process. Other times, we would judge the hypothesis as fundamentally inaccurate and
discard it. After this iterative process, we had a set of e-frames for each participant that were
highly grounded in the data for each participant.

We then used these e-frames to give an account for students’ interpretations of lectures as
follows: We identified excerpts in which Alice and Brittany had different interpretations of what
Professor Su said in a segment of the lecture, which was a common occurrence. We chose
differences that we felt were representative of the data set. With those differences, we described
the difference between Alice and Brittany’s interpretations in terms of how they framed and
evaluated the mathematical contribution that they felt that Professor Su was making. Through an
interpretive analysis, we accounted for Alice and Brittany’s different interpretations using the e-
frames that we posited.

4. Results
4. 1. Alice’s e-frames

4. 1. 1. One needed to define a concept to be able to reason about it.

E-frame 1: Making claims and providing justifications about a concept requires a precise

definition of the concept.

E-frame 2: A precise definition of a concept is a mathematical contribution.

E-frame 1 provided Alice with a criterion on which she judged whether a mathematical
justification was a legitimate contribution. E-frame 1 warranted e-frame 2, that providing a
precise definition of a concept was a legitimate contribution.

There were multiple instances that indicated Alice held these e-frames throughout the
interviews. For example, in the first interview, the interviewer asked Alice what the real numbers
were. Alice’s response was revealing: “That’s an excellent question. [long pause] I don’t know. I
don’t know the formal definition of a real number”. This was representative of Alice’s tendency
to express an epistemic need to see concepts defined, which she displayed throughout the
interviews. For instance, in Interview 1, Alice was asked if the fractions 9/15 and 12/20 were
“the same thing”. She responded:

“You need to assign a definition. ‘Same thing’ does not tell me anything[...]So if I have

two of the same shirt, are they the same shirt? No, if I'm wearing one, then one is being

worn and one’s not. But in terms of just shirts yeah, they're the same shirt. So based on

how we want to define ‘the same thing’, they may or may not be”.
In Interview 4, Alice reiterated this point, stressing, “we need very well-defined definitions so
that we can get very clear implications”. At four other points in our interviews, Alice objected to
questions about concepts that were not explicitly defined, saying she found them ambiguous and
unanswerable because terms in the concepts were not defined. The importance that Alice
assigned to concepts being defined led her to continually seek out definitions when she watched
the lectures.

4. 1. 2. When constructing a system, you need to distinguish between what you know
through experience and what you are allowed to know within the system.

E-frame 3: Justifications contributing to logical knowing are legitimate mathematical

contributions.
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E-frame 4: When providing a logical justification, you can only employ claims that are a
priori or have been previously logically justified. You cannot employ claims that you
know psychologically.
E-frame 3 specifies that logical justifications are contributions while e-frame 4 delineates criteria
on which they should be evaluated.

As Professor Su constructed the rational numbers, Alice continually distinguished
between what she knew psychologically (i.e., what she knew based on her previous experience
with the rationals) and what had been justified logically (i.e., axioms, definitions, and statements
proven in the classroom context). At 14 different points, Alice stressed the need to differentiate
between the two, reminding herself and the interviewer that “we only assumed that we have
knowledge about the integers™ and “we don’t know anything about what [rational numbers] do
or look like if they are not an integer”. Alice was careful to only use definitions and propositions
that were proven in class when justifying claims about the rationals.

4. 1. 3. The mathematical contribution of these lectures.

E-frame 5: The intellectual contribution of these lectures was providing a framework so

we can know statements about the rational numbers logically.

E-frame 6: Systematization is valuable when you characterize a more complicated system

in terms of a simpler system.

We believe that E-Frame 5 was evoked by Alice in these lectures as a consequence of the prior e-
frames that we discussed. Alice desired logical justifications for claims, which is only possible if
these claims are defined precisely. E-frame 6 is a criterion that Alice used to judge the
significance of the particular systematization that she observed, which we illustrate below. When
Alice was asked why Professor Su was constructing the rational numbers, she responded as
follows:

Alice: One thing that I have always seen in both physics and math is that, if we can, we

always want to go with something more elementary. [In math] I know first we start with

our natural numbers. Then we say, what the natural numbers are, a representation of the
empty set, and recursive sets of the empty set, ... so 0 was the empty set, 1 was the set of
the empty set, and 2 was the set of the set of the set of the empty set, something like that.

I feel like there is a search to get even more elementary.

At several other points, Alice became reflective on the nuanced relationship between what she
knew psychologically and what she knew logically about the rationals. For instance, in the
conclusion of the last lecture, the interviewer asked Alice “how do you understand the
rationals?”. Her response was as follows:

Alice: [I understand the rationals] on a very simplified level. [The rationals] are just

fractions of an integer, numerator and denominator, and I’ve been working with those

types of fractions all my life. So I know exactly what they make, what they look like,

how to treat them on a very simplistic level. But on a construction level, we are trying to

build them. It’s like I want to already know this but the attitude is that it is newly

explored material which is a little ironic. It’s the attitude that you kind of have to have.
In this excerpt, Alice distinguishes between what she knows on a “simplified level” (what we
call knowing in a psychological sense) and at the “construction level” (knowing in a logical
sense), noting that you are trying to construct what you already know simplistically (justifying
logically what you know psychologically).

? Professor Su began his lectures by quoting Kronecker, who said, “God made the integers. All else is the work of
man,” and did not define the set of integers or operations upon them.
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4. 2. Brittany

4. 2. 1. Definitions were used to enhance understanding.

E-Frame 1: The mathematical contribution of a definition is to help Brittany

psychologically know a concept.

E-frame 1 describes a criterion by which the significance of the contribution of a definition
should be judged. E-frame 1 was evidenced by Brittany in multiple ways. First, at six points
Brittany recognized that Professor Su’s characterization of the rational numbers (as equivalence
classes of ordered pairs) differed from her understanding of fractions, stating at the end of the
lectures that she “wouldn’t do it [constructing the rationals as equivalence classes] that way” and
that rationals were “basically just a fraction of one integer on top of another one”. She assumed
that the purpose of these alternative characterizations was to provide her with an alternative way
to think about the rational numbers. For instance, when asked what she thought the purpose of
this presentation was, she responded that she learned “a new way of thinking about the
rationals”.

Brittany also did not see merit in Professor Su defining aspects of the rational numbers,
saying “it’s too obvious”, because presumably the entire class already understood fractions. Our
interpretation is that from Brittany’s perspective, such definitions could not enhance her
understanding (e.g. “but it’s [the definition of positive rationals] not valuable for clarification of
anything because we already know”), because she already psychologically understood the
concepts being defined.

4. 2. 2. Good definitions are comprehensible.

E-frame 2: Good mathematical definitions are comprehensible
E-frame 2 also provides a criterion on which the quality of a definition should be judged.

While Brittany never explicitly described what she thought was a “good definition”, at five
points she complimented Professor Su’s definitions because of their clarity and simplicity. For
instance, Professor Su’s definition of order on the rationals (i.e., how you define a <b when a
and b are rational numbers) was “pretty good” because “it’s simple and understandable”.

4. 2. 2. You could use what you knew about the rationals to answer the questions that
Professor Su discussed.

E-frame 3: When justifying a mathematical statement, it is permissible and desirable to

use one’s psychological understanding.

E-frame 3 provides a criterion by which mathematical justifications can be evaluated. Brittany
rarely expressed a distinction between what she knew logically and what she knew
psychologically. Only twice during our four interviews did Brittany question what she was
allowed to assume. At 18 other points, she invoked facts about the rational numbers that had not
been stated in the lectures to answer questions about the rational numbers. To elaborate on this
further, we consider how Brittany reacts to Professor Su’s justifications of statements about the
rational numbers, which proceeded logically from the definitions that he produced (definitions
that Brittany thought were “a new way of thinking about the rationals”). For instance, Professor
Su illustrated how each integer z could be represented as the equivalence class of ordered pairs
[(z, 1)], Brittany was able to explain why this made sense, but then remarked, “it’s just simple to
think of it as Z is a subset of Q. I think that would be a simpler way of saying it”’. Brittany often
expressed frustration at these justifications, which she felt were needlessly complicated.

3 In our interviews, Brittany was able to explain how the equivalence classes of integers that Professor Su introduced
in his lectures represented the integers, which we do not include in this paper for brevity. We only note here that
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4. 2. 4. The mathematical contribution of these lectures

E-frame 4: The goal of the lectures was to enhance her psychological knowledge of the

rational numbers.

We believe that Brittany evoked this e-frame as a consequence of the earlier e-frames. Each of
the earlier e-frames indicated that mathematical contributions of this lecture—that is, Professor
Su’s definitions and proofs about rational numbers—were presented to enhance Brittany’s
understanding of the rational numbers and therefore should be easy to comprehend. One way that
Brittany evinced e-frame 4 was when she viewed the purpose of the entirety of the lectures as to
provide a review about the rational numbers. This failed to satisfy the criterion in e-frame 4
because she felt that she already psychologically knew the relevant statements about the rational
numbers introduced by Professor Su.

When asked about the main purpose of the lectures, Brittany cited the construction of the
rational numbers and remarked that this “was important to take away.” When asked what it
meant to construct the rationals, Brittany responded, “I think he was just going over properties of
it—order, addition, multiplication, what it means putting them all on the number line”. In
general, Brittany was frustrated because she wanted to learn new material and did not find value
in what she perceived as an extended review, as illustrated in the following exchange:

Interviewer: So what I'm hearing you say is it’s more interesting to talk about things you

don't know than things you do know, to answer some questions that you might not really

know that are interesting?

Brittany: Yeah, I think that’s like true for everything.

4. 3. Different interpretations of the same lecture

In this sub-section, we present clips from Professor Su’s lectures and describe Alice’s and
Brittany’s reactions. Our aim is to illustrate how Alice’s and Brittany’s different e-frames led
them to interpret these clips in different ways and then to make the broader point that a professor
effectively conveying the material depends on the e-frame of the student observing the lecture.

4. 3. 1. Motivating questions. Early in lecture 1, Professor Su presented motivating
questions on a PowerPoint slide. These questions included, “What does it mean for a series of
numbers to converge? What is a limit? Are there ‘enough’ numbers to capture all
limits?[...]What does it even mean for a sequence of numbers to converge when you're not
referencing a limit? There’s a question. Some really tough questions.” Alice interpreted these
questions as follows:

Alice: I started realizing that these were questions that were probably going to be

addressed throughout the course so then I understood why he was asking them. It was

kind of a mindset I need to be in. [ wasn't trying to answer these questions whenever he
asked them, but really trying to get myself into the mindset of questioning certain
definitions. It prompted me to get in what I think would be a good mindset in this class.

Interviewer: I was going to ask you if you tried answering any of these questions, and

you said that you didn’t.

Alice: I briefly thought about them but then I realized that I really didn't have the

grounds. I didn't know the definitions. I thought about each question. I understood that

really I haven't questioned these at all and that I accepted many of them. That allowed me
to get into a mindset of, ‘I can’t just accept these facts anymore. I have to bring these
questions back and this is the attitude you have to face in this class’.

Brittany’s understanding was beside the point. She did not see the need for a complicated explanation for why Z was
represented in Q because clearly the integers were a subset of the rationals.
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In this excerpt, Alice discussed how the questions prompted her to consider the definitions of the
concepts involved in the questions and motivated the lectures in the early part of the course,
which consisted of defining the terms in the questions in terms of the integers. We account for
this with Alice’s e-frame 1: that making and justifying claims about concepts requires a
definition of that concept. Alice’s desire for these definitions can be accounted for by her e-
frame 2: that providing precise definitions of concepts is a mathematical contribution. Finally,
Alice described Professor Su’s concepts as invoking an “attitude” and “mindset” that one cannot
simply rely on their prior understanding (what we refer to as Alice’s psychological knowing)
which aligns with Alice’s e-frame 3 and e-frame 4 calling for Alice to distinguish between her
psychological and logical knowledge of the rationals.

When Brittany was asked what she was thinking about when she saw the questions, she
said she found the questions “interesting” and “I was visualizing a number line in my head”.
Hence, Professor Su’s questions were also motivating for Brittany, but they prompted her to use
her intuition to think about what the answers to these questions might be and how they might
relate to her mental models for understanding the real numbers. Hence, Professor Su’s questions
also evoked an e-frame for Brittany, but it was a different one than Alice. It was Brittany’s e-
frame 4, that the goal of these lectures was to enhance her psychological knowledge of rational
and real numbers.

4. 3. 2. Well-defined operations. In lecture 2, Professor Su defined addition on the
rational numbers (<(a, b)> + <(c¢, d)> = <(ad+bc, bd)>). He then wanted to show that this binary
operation was well-defined. To illustrate what he meant by well-defined, Professor Su presented
two other candidates for addition, one of which was well-defined but useless (a binary operation
whose output is always <(0, 1)>) and another that was not well-defined (<(a, b)> + <(c, d)> =
<(atc, b+d)>). Alice claimed she understood what Professor Su meant by the term well-defined,
saying “we can put in different elements of the same equivalence class, and we should still
expect the same result”. Nonetheless she objected, “when he says this definition is well-defined,
the specific definition requirements for something being well-defined was not gone over. The
term well-defined was actually not well-defined”. Finally, Alice noted that if she were actually
taking this class, she would look up the definition of well-defined outside of class. Our
interpretation was that Alice understood the concept of a well-defined operation psychologically,
but without a formal definition, she could not understand the concept logically. This is because
of e-frame 1 that logical reasoning about the concept requires precise definitions. Therefore, she
found Professor Su’s presentation inadequate.

Brittany viewed Professor Su’s definition of well-defined favorably:

Brittany: I like the definition of well-defined. It was really clear and understandable

because well-defined is a word we use a lot.

Our interpretation is that Brittany found Professor Su’s examples as adequate to get a good sense
(or psychological understanding) of what the concept of well-defined meant. We account for
Brittany’s comments with Brittany’s e-frame 2: that good definitions are comprehensible.
Because Brittany psychologically understood Professor Su’s definition, she valued it.

4. 3. 3. The definition of addition. In lecture 2, Professor Su defined addition by <(a,b)> +
<(c¢,d)> = <(ad+bc, bd)>. When Alice was asked what Professor Su was trying to convey, Alice
responded that providing this definition was necessary.

Alice: [Without the definition], we wouldn’t know what addition is. We want to keep that

mentality that the whole thing that we are doing is we are defining that construction, so

we need to make these definitions.
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We account for Alice’s comment with her e-frame 1 and e-frame 2. One could not reason about
addition without defining it so it was a necessary contribution.

Alice: Half of me wants how we get to that exact definition[...]As we have seen, there are

well-defined functions that [we don’t want...]Assume we don’t have any knowledge of

the rationals, why this and not the others?
Alice proposed one such criterion for evaluating a definition for addition was verifying that the
definition implied that <(a, 1)> + <(b, 1)> = <(atb, 1)>.

We account for Alice’s comments with e-frame 4, that one could not use their previous
knowledge about the rationals in justifying claims about the rationals. Alice desired a
justification for the adequacy and choice of that particular well-defined definition independently
of what Alice knew psychologically. As the following excerpt reveals, Alice knew Professor
Su’s definition of addition would “work”, but for now, we must “assume we don’t have any
knowledge of the rationals”:

Alice: The other half of me, well I know how to get to this. Do I really want to see him

lay it out or do we just accept this definition? I know why cause it works and that’s just

what I’m told[...]I feel like a lot of this would be considered valuable but I wouldn’t say
its significant and new. It’s hard because it’s like we are discovering something we
already know.
Our interpretation of this excerpt is that although Alice appreciates the need to justify that
Professor Su’s definition of addition is an adequate one (it “would be considered valuable™), a
part of her does not want to see this justified because, based on her experience, she knows it is
going to work, even though e-frame 4 requires logical knowledge to justify Professor Su’s
choice.

When Brittany was asked about the definition, she thought the definition that Professor
Su provided was adequate, saying, “I liked the definition because it’s true. I can see how he got
it. I thought it was going to be that. It proves I know what’s going on”. However, later in the
interview, Brittany also complained that she saw little value in the lecture in its entirety, saying,
“it’s not that useful because I already know what addition is, know what rational numbers are,
and what fractions are”.

We account for Brittany’s comments as follows. Brittany thought the definition provided
by Professor Su was comprehensible, satisfying the criteria specified in e-frame 2. However,
Brittany did not think that Professor Su’s description of addition enhanced her understanding
since she already knew how to add rational numbers. Therefore, the definition did not satisfy the
criterion for a mathematical contribution specified in Brittany’s e-frame 1.

4. 3. 4. An alternative proof. Professor Su would often state well-known facts about the
rational numbers as theorems and then prove these theorems. In Interviews 2 and 3, Alice said
these proofs were useful because they reminded the class that they needed to have the attitude
that they knew nothing about the rational numbers. Thus, due to her e-frame 4, Alice believed
that even obvious claims needed to be justified from basic principles about the integers. In
contrast, Brittany was unsure why Professor Su was justifying things that were obviously true
and sometimes remarked that the notation that he was using was unnecessarily cumbersome. We
conjectured that Brittany’s frustration was due to the fact that she felt that she already
(psychologically) knew how to justify claims about fractions based on her experiences as an
elementary and secondary student. Thus Brittany’s e-frame 3 suggests that using psychological
knowledge in reasoning is desirable. To explore this hypothesis, we started Interview 4 by
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presenting Alice and Brittany with the following proof of the addition of any two rational
numbers and asking the participant if it would be useful for Professor Su to use:

Claim. Assume a,b,c, and d are integers and assume that b # 0 and
'Y g

5 . a c a ¢ _ ad+be
d # 0. For any rational numbers, § and §, § + § = “55°.
700
+
ad ¢ s a _ ad
b5+g((smcc ¢ = b;f()
a 3 . c _ be
51 + 15 (since § = §5)

= adtbe (since the two terms have like denominators).
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Alice immediately rejected the proof as inadequate.
Alice: So here [the second line of the proof] what we did is we multiplied by 1
essentially, by multiplying by d over d but we have to know how to multiply rationals to
do that. We have to know that 1 times a certain rational does not change the
amount][...]But then here [the last step] we have to assume that we also know how to add
rational numbers with like denominator. But that was also not really part of how we
constructed or defined the rationals. Or at least not in the last class. (italics were our
emphases).
In the two italicized excerpts, we see Alice’s recognition that one cannot use common
(psychological) knowledge about the rationals to justify properties when you are constructing the
rationals. We account for this with Alice’s e-frame 4, that justifications cannot import facts that
are known psychologically if they have not been established logically.

In contrast, Brittany thought the proof was adequate, saying several times, “I guess it
would be a good proof”. Her only concern was that the proof would be too simple, saying, “it
just seems so obvious, like everyone knows, so I don’t think it would be necessary”. Hence, this
proof would be a permissible mathematical contribution, although perhaps not a useful one. We
account for this with Brittany’s e-frames as follows. Brittany’s e-frame 3 specifies that it is
acceptable and desirable to use one’s psychological knowledge when writing a proof. The proof
that she evaluated did so and Brittany saw no problems with this. However, Brittany’s e-frame 4
specified that the purpose of these lectures were to enhance her psychological understanding.
Since the reasoning in the proof was obvious to her, the proof failed to satisfy that criterion.

5. Discussion
5. 1. Summary of main results

The purpose of this paper was to illustrate the phenomena that students with different e-
frames may interpret the same mathematics lecture in different ways. Alice distinguished
between logical and psychological ways of knowing mathematics and she viewed the intellectual
contribution of Professor Su’s lectures as providing a logical basis for her psychological
understanding of the rational numbers. Providing this logical basis involved supplying
definitions and justifying facts using only what had been explicitly defined by Professor Su until
that point. Although Alice sometimes did not find this to be interesting, she understood why it
was necessary (section 4.3.3). Brittany perceived the contribution of the lecture to be to enhance
her psychological understanding of the rational numbers. Since she already felt that she had a
robust psychological understanding of the rationals, she did not see much value in the lectures.

In this paper, we focus on a lecture of the systematization of the rational numbers.
However, we use the comparative case study to illustrate what we believe is a more general
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phenomenon: students’ e-frames about what is a mathematical contribution act as an interpretive
filter to the mathematics that they observe.
5. 2. Limitations

Having Alice and Brittany view videotaped lectures allowed us to understand their
perceptions of lectures as they occurred, but was inauthentic in several respects. For instance,
Alice and Brittany were not enrolled in the course, their task during the study was not to master
the material, and they did not work on real analysis outside of our interviews. The students might
have behaved differently if they were attending actual lectures and had a strong motivation to
learn the material. Further, we deliberately chose to take a non-evaluative stance in evaluating
Alice’s and Brittany’s e-frames or the quality of their interpretation of Professor Su’s lectures.
We recommend future research in more authentic contexts and in other content domains that
explicitly explore the link between students’ e-frames and their understanding of the
mathematics that they study.

5. 3. Implications for lecturing

A key takeaway from this paper is that even if a mathematics professor clearly explains
the ideas that she wishes to convey, students may not grasp the point of the lecture if they do not
hold e-frames that allow them to perceive the mathematical contribution that the lecturer is
making. This implies that a lecturer not only needs to provide students with the opportunities to
internalize the mathematical contributions that she is making but she must also help students
develop the e-frames that enable them recognize the mathematical contributions and capitalize
on these opportunities. We concur with Solomon (2006) that if advanced mathematics courses
are to be effective, epistemology cannot be ignored.

We observe an interesting pedagogical challenge in using a lecture as an impetus for
students to adjust their e-frames. In section 4.3.1, Professor Su’s motivating questions prior to
defining the rational numbers evoked e-frames in both Alice and Brittany, but the e-frames these
questions evoked were different. To Alice, these questions evoked a mindset to seek out the
definitions of the concepts of these questions. To Brittany, this led her to seek out
comprehensible answers to the questions that Professor Su posed. In our opinion, both
interpretations of Professor Su’s comments were sensible. This illustrates an important point.
The e-frames that a professor’s comments invokes in a student are likely related to the e-frames
that the student already holds.

The preceding analysis suggests one reason that collaborative inquiry-based learning may
be an attractive alternative to lecturing. What counts as a mathematical contribution in a
classroom is a sociomathematical norm. The analysis of Yackel and Cobb (1996) illustrates how
sociomathematical norms can be established with negotiation between the teacher and students
as the students are engaged in authentic mathematical activity. Having students engaged in
activities such as systematization with feedback from their teacher and classmates may provide
students with a better sense of what the mathematical contributions of these activities are than
simply having a professor explain this to the students in lecture.
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We present a case study of Hugo's construction of Euler diagrams to develop set-based
meanings for mathematical conditionals. This episode arose in a teaching experiment guiding
students to reinvent mathematical logic from their reasoning about meaningful mathematical
statements. We intended for Hugo to develop a subset meaning for conditional truth. Hugo
successfully identified and used this condition, but he also introduced another formally
equivalent meaning for conditional truth. We discuss the shifts in his thinking necessary for
developing set-based reasoning and how this case influenced our goals for logic learning.

Keywords: logic, Euler diagrams, conditionals, teaching experiment

Though the modern formalizations of mathematical logic and language are relatively young
(Frege, 1879; Russell, 1903), these accounts have become integral to the normative
understanding of the language of proof-oriented mathematics. Azzouni (2006) argues that the
essential novelty was developing a formal language in which meaning and truth are defined in
purely syntactic ways. Because students must abide by these formal conventions of language to
some degree, many transition to proof courses teach mathematical logic (Selden, 2012).
However, the existing literature provides relatively little insight about logic instruction and the
meanings that students must develop from that instruction (exceptions include Antonini, 2001;
Bardelle, 2013; Barnard, 1995; Durand-Guerrier, 2003; Hawthorne & Rasmussen, 2014).

Regarding instruction, logic can be taught using everyday statements (e.g. Epp, 2003), formal
syntax (e.g. Hawthorne & Rasmussen, 2014), or mathematical statements (e.g. Dubinsky &
Yiparaki, 2000). Regarding student learning, there are various ways in which a student may
affirm a conditional such as “If an integer x is a multiple of 6, then x is a multiple of 3”:

1. as an empirical generalization inducted from a series of examples,

2. based on properties such as the spacing of these multiples on the number line,

3. as the result of a proof (maybe implicitly) using the theorem “if a|b and b|c, then a|c,”

4. as a subset relation between the set of multiples of 6 and the set of multiples of 3, or

5. as not false because there is no multiple of 6 that is not a multiple of 3.

We know little about students’ meanings (Thompson, Carlson, Byerley, & Hatfield, 2013) for
conditional truth, how they develop, and which should be privileged by logic instruction. We
find it useful to distinguish between those meanings for conditional truth that intrinsically rely on
the mathematical content of the sentence (examples 1-3) and those that rely on generalizable
criteria (examples 3-5). We place 3 in both categories because the theorem used to prove is
mathematically specific, but one can generalize the criterion that a conditional is true if there is a
proof of the conclusions from the hypotheses (Weber & Alcock’s, 2005, warranted conditional).
How and when is it important for students to develop generalizable meanings for conditional
truth and even to become reflectively aware of such meanings?

The Current Investigation
In this report, we lay some foundation for investigating these questions through a detailed
case study of one students’ learning about conditional truth and contrapositive equivalence. By
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documenting particular students’ pathways of learning, we can discern important challenges and
opportunities for instruction. This case comes from a series of teaching experiments attempting
to guide undergraduate students to reinvent mathematical logic (Dawkins & Cook, 2015, in
press). We taught logic by presenting students with meaningful mathematical statements all of
the same logical form (disjunctions, conditionals, then multiply quantified). By letting students
assign truth-values, reflect on their strategies, and construct negations, we intended for students
to reinvent truth-functional logic as a formalization of their own reasoning and languaging.

We frame our findings in terms of student meanings, which Thompson et al. (2013) define as
the set of inferences available to a student as a result of understanding something in a particular
way. To illustrate this in our context, consider the tools available to a student for interpreting a
mathematical statement and deciding its truth-value. While our participants exhibited various
strategies for interpreting general statements, many times their reasoning focused either on
examples, properties, or sets (which correspond respectively to examples 1, 2-3, and 4 above).
By interpreting the sentence in terms of examples or properties, varying truth conditions and
insights became available to students, which are parts of the meaning of the sentence for that
student. We will thus discuss example-based, property-based, or set-based meanings. While
students assigned statements their normative truth-values using all three, we found that reasoning
with sets often afforded students the most fruitful strategies (Dawkins & Cook, 2016). Thus, in
the experiment featured in this paper we attempted to guide students toward set-based truth
conditions, which for conditional statements can be stated: The conditional “If for x € S, P(x),
then Q(x)” is true if and only if {x € S|P(x)} c {x € §|Q(x)}.” We call this the subset meaning
for conditional truth (or subset meaning for brevity). The primary contributions of this study are
1) documenting this student’s resources and challenges in developing the subset meaning and 2)
documenting the novel meaning he created to affirm the contrapositive of a true conditional.

Conceptual analysis of conditional truth

We value Euler diagrams as a means of representing set relations relative to compound
statements. The student featured in this report was familiar with similar diagrams from previous
instruction (likely Venn diagrams), but he did not have fully normative meanings for how the
diagram referred to mathematical objects. Dawkins and Cook (2015) point out at least one
important meaning for understanding such diagrams as mathematicians do: the negation of a
property corresponds to the complement of the set with the original property. Dawkins and Cook
(2015) demonstrate that not all students associate the negation of a property with the complement
set of examples, but such an understanding seems necessary for understanding why
contrapositive conditionals have the same truth value (Figure 1).

Original conditional Contrapositive conditional
“If for x € S P(x), then “If for x € S not Q(x),
Q(x).” then not P(x).” m
is true whenever is true whenever
{x € S|P(x)} {x € S|I~Q(x)}
< {x €5lQ()} Q(x) < {x € S|~P(x)} Lo

Figure 1: Euler diagrams demonstrating why contrapositives have the same truth-value.
Rather, students may associate the negation of a property with a proper subset of the complement
—e.g. “not acute” means “obtuse,” or “not even” means “odd” — or they may associate the
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negation with an overlapping property — e.g. “not a rectangle” means “is a parallelogram.” Such
semantic substitutions (Dawkins & Cook, 2016) do not afford the set structure that we intend for
students to develop. Students’ choices of semantic substitutes demonstrate a strong preference
for familiar categories precluding the Euler diagram’s novel partitions.

Background and Study Design

This study investigates Hugo’s learning during the time he and his partner, Elya, worked on
the set of conditional statements provided by the teacher/researcher (the second author). These
students were recruited from a Calculus 3 class at a mid-sized university in the United States, but
the experiment took place in one-hour sessions outside of class. The task progression for each
type of statement — disjunction, conditional, and multiply-quantified — included: 1) assigning
truth-values to all of the provided statements, 2) look for patterns in how they determined
whether the statements were true or false, 3) consider the sets of examples that made each
statement true and the sets that made them false, and 4) constructing negations. Hugo and Elya
spent 2.5 sessions studying mathematical disjunctions prior to working on conditionals. This
paper focuses on the subsequent 2.5 sessions they spent studying conditionals, especially the
second such session from which Elya happened to be absent. Table 1 presents some conditionals
they studied. After the students assigned truth-values and looked for patterns, the interviewer
asked Hugo and Elya to “Think about the set of all things that satisfy the if part and the set of all
things that satisfy the then part. And tell me about the relationship between those two.” This was
particularly intended to prompt students to formulate the subset meaning for conditional truth.

If a number is a multiple of 3, then it is a multiple of 4.

If a number is a multiple of 3, then it is a multiple of 6.

If a number is a multiple of 6, then it is a multiple of 3.

If a number is not a multiple of 6, then it is not a multiple of 3.
If a number is not a multiple of 3, then it is not a multiple of 6.
If a triangle is not acute, then it is obtuse.

If a triangle is obtuse, then it is not acute.

If a triangle is not acute, then it is not equilateral.

9. [If a quadrilateral is a rectangle, then it is a square.

10. If a quadrilateral is a rectangle, then it is a parallelogram.

11. If a quadrilateral is not a rhombus, then it is not a rectangle.

S Al B

Table 1: Sample conditionals that Hugo and Elya studied.

Consistent with teaching experiment methodology (Steffe & Thompson, 2000), the
teacher/researcher consistently formed second-order models of student understanding and tested
those models through subsequent questioning. These models were informed by findings from
previous studies (Dawkins & Cook, 2015, 2016), as were the learning goals articulated earlier in
the paper. The data analysis consisted of iterative analysis throughout the experiment and
retrospective analysis of the video recordings and artifacts of student work afterward. The
analysis presented in this paper focused particularly on the pair’s construction of set-based
meanings for conditionals, especially as facilitated by Euler diagrams. Retrospective analysis
similarly consisted of developing second-order models of Hugo’s understanding by forming and
testing hypotheses using the corpus of his mathematical activity. Dawkins and Cook (2015,
2016) present more thorough accounts of the teaching and data analysis methodologies.

Results
On Hugo and Elya’s first pass through the set of conditionals, they assigned to each the
normative truth-value. They quickly recognized that an example that satisfied the if part and not
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the then part was a counterexample (their counterexample criterion). Based on their work with

disjunctions, they understood that a single counterexample made a general statement false and

they could articulate general conditions for declaring statements false. For instance, after the first
five statements Hugo explained, “If we can come up with a case that fits the first [antecedent] but
does not fit the second [consequent], then it [conditional] has to be false. We only need one
case.” Even in the case of positive statements, Hugo focused on examples by populating Elya’s
set-based explanations with particular examples. When she explained, “[Statement] Five would

be true, because every multiple of 3—every multiple of 6 is a multiple of 3. So if it’s not a

multiple of 3 it can’t be a multiple of 6,” Hugo elaborated, “Like 17, is not multiple of 3 but it is

also not a multiple of 6.” Elya inferred statement 5 from statement 3, which we call a

contrapositive inference, but her later work suggests that she did not understand contrapositive

equivalence as a general property of conditionals. We hypothesize that her understanding of
multiples supported her inference rather than reasoning about abstract logic or set relations. In
addition to focusing on examples, Hugo also affirmed some conditionals using property
relations. Regarding statement eight, he said, “Not acute would mean either a right triangle or an
obtuse triangle. Neither of those can be equilateral so that would be true.”

After Elya and Hugo assessed all the provided conditionals, the interviewer asked them to
look for patterns in the statements and why they were true or false. The pair noticed that many
statements contained the same properties and identified the relationships commonly referred to
as inverse (e.g. #3,4) and converse (e.g. #6,7) conditionals. After some discussion and
conjectures about the truth-values of these related statements, the interviewer asked the pair to
consider the sets related to each part of the statements. The conversation proceeded:

H(1): I’d say, if the statement is true then the set for the first part—I’m sorry the set of the
second part will be included in the set of the first part.

I(2): Okay. Why do you say that?

H(3): Um, because if we said that it’s true then when we pick—something that’s true for the
first part, then it has to be included in the second part for the whole statement to be true.

I(4):  So its sounds to me like you’re saying there’s two possibilities. One is to say that the
set—the if set can be sort of inside of—or contained in the then set. Or you can say the
then set is contained in the if set. Which one do you—are claiming? So you’re saying, if
the statement is true then what was the relationship here?

H(5): Then the—then will be inside if.

I(6): Okay. What do you think [Elya]?

E(7): 1think the if'has to be in the then but then doesn’t have to be in the if. ‘Cause there—
when we looked at 3 there’s all the multiples of 6 are contained in multiples of 3 but all
multiples of 3 are not contained in multiples of 6.

I(8): Do you agree with that, [Hugo]?

H(9): Yeah I think I’'m good with that [...]

I(10): What are thinking about in a particular example?

H(11): Uh, you wanna talk about [statement] 3. Um in like a circle, and multiples of 3—3,6,9,12.
Um, multiples of 6 will be included in that circle. Like 6 and 12 are multiples of 6. So
there’s an additional circle inside that includes some numbers but does not include others.

I(12): Okay, but sort of which are you calling the if part and which circle are you calling the
then?

H(13): The then part would be the bigger one. The inside would be then—sorry other way
around. Then is on the outside. /fis in.
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This appeared to be the first time Hugo reasoned about conditionals using sets, and, from the
researcher perspective, his general explanation (turn 5) was inconsistent with his earlier semantic
reasoning about the given statements. Once the interviewer pushed Hugo to explain his reasoning
in a particular semantic context (turn 10), he recognized the subset meaning for conditional truth
(turn 13) but even after this episode he sometimes returned to his intuition that the then set is
contained in the if set. We conjecture that this intuition may be supported by the relationship
between the properties in true conditionals. For instance, statement three is true because being a
multiple of 6 means being a multiple of 2 and a multiple of 3, meaning the if property entails the
then property. This explanation seems consistent with Hugo’s use of the word included in turns 1
and 3. Hugo’s population of the Euler diagram with numbers (Figure 2) appeared to serve as a
bridge between his example-based meanings and the set reasoning the interviewer invited.

1. If a number is a multiple of 3, then it is a multiple of 4.

2. If a number is a multiple of 3, then it is a multiple of 6.

3. If a number is a multiple of 6, then it is a multiple of 3.

Figure 2: Hugo's Euler diagram for statement 6.

Hugo and Elya began to use these Euler diagrams to explore the truth of the various
conditionals provided. By the end of the first session on conditionals, Elya was able to produce
an explanation for why two contrapositive statements were both true as portrayed in Figure 1, but
Hugo showed little evidence of understanding her reasoning. The next session afforded Hugo
opportunity to independently develop his understanding of conditional truth because Elya
happened to be absent. To encourage rediscovery of contrapositive equivalence, the interviewer
invited Hugo to explore multiple related statements — original, inverse, converse, and
contrapositive — with the same Euler diagram. The dialogue proceeded:

I(14): So look at [statements] 2 through 5 then. ‘Cause 2 through 5 are gonna be—again—its a
bunch of the same options but the same kinds of parts.

H(15): Two—the number is a multiple of 3. We got a circle—they’re all multiples of 3—3, 6, 9,
12. Then it is a multiple of 6. [draws a circle around the 6 and 12].

I(16): Okay so is this true or false? So if it’s a multiple of 3, then it’s a multiple of 6.

H(17): We said it was false because our set was this circle of multiples of 3, and then if you only
want multiples of 6—you have this but you still have the 3 and the 9 which aren’t
included in the little circle.

In turn 15, Hugo produced the diagram shown in Figure 3, labeling the outer circle “if 3x” and

the inner circle “then 6x.” In turn 17, Hugo did not rely on his counterexample meaning, but

rather declared statement 2 false because the sets failed to satisfy the subset condition (“aren’t
included in the little circle””). When the interviewer asked him to consider statement 3 (the
converse), he expected Hugo to refer to the same diagram. Instead Hugo began modifying the
position of the circles around the example numbers. This suggested that Hugo’s meaning for the

diagram did not merely reflect the invariant relationship between the multiples of 3 and 6.

Instead, Hugo tied the circles’ meaning to the statement structure — if and then — such that

shifting to the converse altered the diagram. The interviewer recreated the original diagram and

encouraged Hugo to interpret statements 3-5 using the same diagram:

I(18): Okay, so we can sort of stick with the circles. But now what’s—so in the second
statement, or now actually it’s number 3, what is it we’re saying?
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H(19): If is a multiple of 6, we put the if here [switches if/then labels]. Then it’s a multiple of 3.
So if we only talk about this, this set of numbers, does that included inside of 3x? Yes.

I(20): Yea, all the multiples of 6 here are multiples of 3. Okay, right. I agree, so this one is true.

H(21): So again, if the if'is encased, enclosed, inside the bigger then circle, then it’s true. [...]

I(22): I want you to try to use the same picture to talk about 4 and 5.

H(23): If it is not a multiple of 6, so—if its not in this circle, so we’re talking about outside the
little circle. [...] Does that make sense?—If not multiple of 6 then it is not a multiple of 3.
So we’re talking about anything outside of that. Well 9 is still a multiple of 3, 15 is still
multiple of 3. So that would be false.

I(24): Okay, where are the non-multiples of 3?

H(25): Non-multiples of 3 would be outside the little circle infinitely, so that would be—oh non
multiples of 3. That would be—[marks diagram]—So if it is not a multiple of 6. So we
said it’s outside the little circle. Then it is not multiple of 3, not multiple of 3 would be
outside the bigger circle. So our set of numbers is inside the big circle and outside of this,
but also outside the big circle.

1(26): Right, so what numbers are outside the big circle? Just give me a few examples.

H(27): 7, 11 [...]

[(28): Ifit’s a non multiple of 6 then it is a non-multiple of 3.

H(29): It’s not a multiple of 6, like 3, 3 is multiple of 3 though.

I(30): Yea, so your counter-examples, like you said are these. ‘Cause they’re non-multiples of 6
that in fact are multiples of 3. Which, so I agree. [Statement] 4 is false for that reason. 3
is a counter-example. [...]

H(31): So we have a ton of numbers that prove it yes but we have all the counterexamples would
be inside the big circle and outside the little circle. [Reads statement 5] So if we’re only
talking about number that are not multiples of 3. So if anything outside the big circle—
well our multiples of 6 are inside the circle, so if we talk about anything outside of the
circle, obviously we’re not going to contain multiples of 6. So if our set of numbers are
outside the big circle, then yeah, none of those are multiples of 6. So that would be true.

Figure 3: Hugo’s diagram at turns 17 and 25
Once Hugo recognized that he could use the same diagram to assess the converse (turn 19), he
explicitly cited the subset meaning to affirm statement 3 (turn 21). The interviewer’s prompt to
use the same diagram for statements 4 and 5 required Hugo to attend to the negation/complement
relationship. In turn 23 he associated the complement of the inner circle with the non-multiples
of 6, but he avoided coordinating the complement of both sets by identifying a counterexample
(the criterion he used the previous day). In turns 25 and 31, Hugo recognized that his
counterexamples exemplified a class of numbers represented by the space between the inner and
outer circles. Thus while his identification of a counterexample built upon his previous day’s
work, he now displayed a set-based meaning for counterexamples afforded by the Euler diagram.
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When Hugo considered statement 5, he associated the first condition with the complement of
the outer circle. However, instead of affirming this statement by the subset meaning as portrayed
in Figure 1, Hugo argued that non-multiples of 3 (numbers outside the outer circle) could not be
multiples of 6 (inside the inner circle). Stated another way, the intersection between the non-
multiples of 3 and the multiples of 6 was empty. This empty intersection meaning for conditional
truth again allowed Hugo to avoid coordinating two negations by parsing statement 5 as “if a
numbers is a non-multiple of 3, then it is not a multiple of 6.”

The interviewer invited Hugo to consider the relationships among statements 2-5 in terms of
converses and inverses. With interviewer prompting, Hugo acknowledged that since #4 was the
inverse of #3 and #5 was the converse of #4, one could go from #3 to #5 by taking both the
converse and inverse. Hugo said, “But if we have an if-then statement that’s true, we take the
inverse and the switch [their term for converse]—we switch it and take the inverse, then—so far
we’ve proved that it would be true. [...] I’'m observing [this pattern] but I’m trying to articulate
why that is.” Thus, he observed that these statements shared the same truth-value and
conjectured that this pattern might hold generally, but he was unable to justify why this occurred.

Discussion

Our initial goals in this section of the teaching experiment were for Hugo and Elya to
develop the subset meaning for conditional truth and to use that meaning to justify contrapositive
equivalence. Elya used set-based meanings spontaneously while Hugo needed to develop tools to
move beyond his example and property-based meanings. We claim that Hugo’s Euler diagram,
initially produced to record his example-based reasoning, served as a transformational record
(Rasmussen & Marrongelle, 2006). It both allowed him to generalize his example-based meaning
for counterexample and later allowed him to relate inverses, converses, and contrapositives.

Unlike prior study participants who struggled to associate negative properties with
complement sets (Dawkins & Cook, 2015), Hugo developed this relationship in his interpretation
of the diagram. However, he avoided coordinating two complements simultaneously for
statements 4 and 5, as would be required by the subset meaning. He instead used counterexample
and empty intersection meanings. While we could view this negatively as it falls short of
adopting a purely syntactic and content general understanding of conditional truth — as one might
desire in teaching formal logic — Hugo’s empty intersection meaning is logically equivalent to
the subset meaning. Furthermore, he showed flexibility in parsing and interpreting the given
statements, which could be fruitful in proof-oriented mathematical activity. We appreciate how
the Euler diagram afforded Hugo valid mathematical inferences even if he could not justify those
inferences, much as Elya’s semantic understanding supported contrapositive inferences. Hugo
alternatively drew upon semantic information (about multiples or geometric shapes), linguistic
competencies (parsing negative statements), and logical criteria (the subset meaning) to interpret
the various statements provided, which we anticipate to be more consistent with proof-oriented
reasoning than purely syntactic operations in a formal language.

This paper contributes to our understanding of students’ construction of logical structure in
semantically rich settings and reveals hurdles and opportunities in students’ development of set-
based meanings for compound statements. As was portrayed in the introduction, we prioritize
students like Hugo and Elya developing generalizable meanings for mathematical truth.
However, based on cases like Hugo’s we also value the flexibility to affirm the same statement
in multiple, formally equivalent ways. Further study should continue to shed light on viable
pathways for students to abstract their semantic reasoning into generalizable, syntactic tools and
how these tools can be harnessed in students’ subsequent proof-oriented activity.
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A New Methodological Approach for Examining Mathematical Knowledge for Teaching at
the Undergraduate Level: Utilizing Task Unfolding and Cognitive Demand

Erica R. Miller
University of Nebraska-Lincoln

In 2010, Charalambous published an article that examined the relationship between
mathematical knowledge for teaching and task unfolding at the elementary level. As a result of
this study, Charalambous evidence to support the claim that there is a positive relationship
between a teacher’s MKT and the cognitive level of enacted task. Drawing upon this finding, the
purpose of this study is to propose a new methodological approach examining mathematical
knowledge for teaching at the undergraduate level. While this approach draws upon results
concerning MKT at the K-12 level, it primarily focuses on examining undergraduate instruction
through the lens of task unfolding and cognitive demand. To illustrate how this methodology can
be used, the paper concludes by presenting two case studies that demonstrate how the
methodology can be used to examine mathematical knowledge for teaching undergraduate
Precalculus courses.

Keywords: Mathematical Knowledge for Teaching, Cognitive Demand, Task Unfolding,
Undergraduate Instruction

The combination of low pass rates in first-year undergraduate mathematics courses (Saxe &
Braddy, 2015) with low percentages of students who persist on to complete STEM majors (Ellis,
Kelton, & Rasmussen, 2014) has brought attention to the need to improve mathematics
instruction at the undergraduate level. Commonly, undergraduate instructors are viewed as
qualified teachers because they are considered experts in the content area they are expected to
teach. However, Bass (1997) points out that “knowing something for oneself or for
communication to an expert colleague is not the same as knowing it for explanation to a student”
(p. 19). Even though they may spend half of their professional live teaching, professors often
receive little to no professional preparation or development as teachers. In order to better
understand how we can prepare teachers at all levels, it is important to understand the knowledge
that is entailed in teaching. Just as accountants, engineers, and economists rely on specific
mathematical knowledge, mathematics teachers rely on their own special domain of
mathematical knowledge.

Clearly a teacher must know the math that they expect their students to learn, but what other
mathematical knowledge is part of this domain? To answer this question and better define this
domain, educational researchers have begun to focus on mathematical knowledge for teaching
(MKT). Mathematical knowledge for teaching has been defined as “the mathematical knowledge
needed to perform the recurrent tasks of teaching mathematics to students” (Ball, Thames, &
Phelps, 2008, p. 399). At the K-12 level, MKT has been studied extensively, but few studies
exist at the undergraduate level. While researchers have studied MKT in various ways, this study
focuses on examining MKT at the undergraduate level by observing and interviewing
experienced instructors. Examining teaching by examining the actual practice of teaching will
not only bring to light the knowledge that instructors use in the classroom, but also provides a
more accurate description than one could take from hypothetical reasoning, personal reflection,
or third-party insight.
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Mathematical Knowledge for Teaching

Studies have shown that content knowledge is not a predictor of teaching quality and student
outcomes (Begle, 1972; Greenwald, Hedges, & Laine, 1996; Hanushek, 1981, 1996). However,
Lee Shulman proposed in 1986 that there is content knowledge that matters for teaching. The key
difference that Shulman identified was that teacher content knowledge must be connected to
domain-specific pedagogical knowledge. Shulman formalized the idea of pedagogical knowledge
for teaching, “which goes beyond knowledge of subject matter per se to the dimension of subject
matter knowledge for teaching” (p. 9). In 1987, Shulman called for researchers and practitioners
to pay more attention to the professional knowledge of teaching, including pedagogical content
knowledge.

Existing Research on MKT

Several frameworks have been developed to describe the professional mathematical
knowledge that teachers use (e.g., Rowland, Huckstep, & Thwaites, 2005; McCrory, Floden,
Ferrini-Mundy, Reckase, & Senk, 2012; Baumert & Kunter, 2013) including Ball et al.’s (2008)
framework for mathematical knowledge for teaching. Ball and her colleagues built off of
Shulman's (1987) idea of pedagogical content knowledge and found that there was content
knowledge that mattered for teaching and that a focus on this content benefited teaching and
learning. Hill, Rowan, and Ball (2005) showed that at the elementary level that “teacher's content
knowledge for teaching mathematics [emphasis added] was a significant predictor of student
gains” (p. 396). While content knowledge for teaching does require general content knowledge,
it also includes content knowledge that is wusually not taught in undergraduate or graduate
mathematics courses (i.e., common unproductive ways of thinking and developmentally
appropriate definitions). Therefore, the content knowledge that undergraduate instructors have
gained through their formal education may not be the same as content knowledge they need to
know for teaching.

More recently, research on MKT has been conducted at all levels of K-12 (McCrory et al.,
2012; Krauss, Baumert, & Blum, 2008); however, there still are relatively few studies that study
MKT at the undergraduate level. Speer, Smith, and Horvath (2010) conducted a literature review
to search for empirical research on the practices of collegiate teachers of mathematics. As a
result, the authors found that they only were able to identify five articles in their search. While
some may argue that this gap exists because MKT frameworks developed at the K-12 level can
be extended to the collegiate level, the authors point out that “there are important differences
between college and pre-college teachers and teaching” (p. 100), such as level and depth of
content and pedagogy knowledge. In another article, Speer, King, and Howell (2014) focus on
the problems that result from assuming that research on MKT at the K-12 level can be extended
to MKT at the collegiate level. The authors claim that “relatively little attention has been paid to
the ways in which MKT theory is or is not applicable to teachers at secondary and post-
secondary levels” (p. 106) and challenge researchers to explore “the types of knowledge entailed
in the work of [collegiate] teaching...through the same kinds of careful study of the mathematical
demands of teaching that sparked the early work on mathematical knowledge for teaching (Ball
and Bass 2000)” (p. 119).

Studying MKT at the Undergraduate Level
To address this gap in the research, the purpose of this study is to draw upon previous
research in order to propose a methodological approach to examining MKT at the undergraduate
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level from the perspective of practice. In particular, the methodological approach used in this
study was inspired by Charalambous’ (2010) study that found a positive relationship between
teachers’ MKT and the cognitive demand of tasks enacted in the classroom. Studies have shown
that the cognitive demand of a task is related to student learning (Boaler & Staples, 2008;
Hiebert & Wearne, 1993; Stein & Lane, 1996), but enacting tasks at a high level of cognitive
demand is difficult for teachers to do (Stein, Grover, & Henningsen, 1996; Hiebert & Stigler,
2004). Building upon these findings, Charalambous (2010) hypothesized that there was a
connection between teachers” MKT and their ability to enact tasks at a high level of cognitive
demand. To test this hypothesis, he utilized the Learning Mathematics for Teaching (LMT)
assessment to measure teachers’ MKT and analyze the cognitive demand of enacted tasks. What
he found was that teachers’ scores on the LMT were positively associated with their ability to
enact tasks at a high level of cognitive demand. While it would be desirable to replicate this
study to look for similar results at the undergraduate level, no comparable measure of MKT
exists. However, I propose that it is possible to use the combination of task unfolding and
cognitive demand as a lens to examine MKT at the undergraduate level.

Task Unfolding and Cognitive Demand

Before I explain the details of the new methodological approach I propose for studying MKT
at the undergraduate level, I first want to further develop the underlying theoretical frameworks
that this methodological approach builds upon: task unfolding and the Task Analysis Guide
(Smith & Stein, 1998). In the third subsection, I connect these frameworks by presenting
Charalambous’ (2010) characterization of task unfolding by the cognitive demand.

Task Unfolding

Stein et al. (1996) defined a mathematical task as “a classroom activity, the purpose of which
is to focus students’ attention on a particular mathematical idea” (p. 460). They also describe the
phases involved in the unfolding of a mathematical task and the factors that influence this
unfolding. In 2007, Stein, Remillard, and Smith generalized task unfolding to apply to
curriculum unfolding more generally, but the underlying process remained the same. In Figure 1,
the rectangle boxes represent the three phases of task unfolding. The written task describes how
the mathematical task is represented in the written curriculum or instructional materials. The
intended task describes the teacher’s plan for implementing the task during instruction. Finally,
the enacted task captures how the mathematical task is actually implemented during instruction.
While each phase has an impact on student learning (represented by the triangle in Figure 1),
studies have shown that the enacted task has the greatest impact (Carpenter & Fenemma, 1988).
The bottom oval identifies some factors that influence how teachers plan out a task for
implementation in the classroom and how the task is actually implemented in the classroom.
Finally, it is important to note that the return arrows from the enacted task and student learning
represent the impact that these will have on future teaching actions.

Cognitive Demand of Tasks

In order to differentiate between tasks of different types, Smith and Stein (1998) also
considered the cognitive demand of a task. They defined lower-level demand tasks as “tasks that
ask students to perform a memorized procedure in a routine manner” and higher-level demand
tasks as “tasks that require students to think conceptually and that stimulate students to make
connections” (p. 269). Each of these categories was then broken down into two subcategories:
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Figure 1. The phases and factors influencing task unfolding.

memorization, procedures without connections, procedures with connections, and doing
mathematics. Smith and Stein (1998) differentiated procedures with and without connections as
representing differing levels of cognitive demand. They separated these two types of tasks in
order to categorize mathematical tasks that “use procedures, but in a way that builds connections
to the mathematical meaning” of the underlying concept as a higher-level demand task. Doing
mathematics tasks are categorized as higher-level demand tasks that require “students to explore
and understand the nature of relationships” (p. 347). To aid in differentiating between the
different types of tasks, Smith and Stein developed the Task Analysis Guide, which lists
characteristics of the four types of mathematical tasks. Later, when utilizing the Task Analysis
Guide to code the third phase of task unfolding, Stein et al. (1996) added a third type of lower-
level demand task called unsystematic exploration. This type of task, which applies to only the
third phase of task unfolding, describes declines in cognitive demand that are characterized by
“motivated student engagement, well-intentioned teacher goals for complex work, and well-
managed work™ but “the cognitive activity...was not at a high enough level to be characterized
as engagement in complex mathematical thinking and reasoning” (p. 478).

Categorizing Task Unfolding Using Cognitive Demand

In their 1996 study, Stein et al. utilized the Task Analysis Guide to analyze a sample of 144
tasks that were implemented in reform-oriented classrooms. They focused on the transition from
the second to the third phase of task unfolding and found that the majority of the tasks were
coded as maintaining or declining in cognitive demand. They also found that “the higher the
cognitive demands of tasks at the set-up phase, the lower the percentage of tasks that actually
remained that way during implementation™ (p. 476). This finding provides confirming evidence
for the claim that tasks with high cognitive demand are difficult to enact (NCTM, 2014, p. 17).
In 2010, Charalambous conducted a similar case study, but explicitly categorized task unfolding
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Figure 2. Categorization of possible types of task unfolding.

by the type of path they follow (Figure 2). In his categorization, Charalambous utilized the Task
Analysis Guide to code cognitive demand as high or low at each phase in task unfolding, which
resulted in eight possible types that a task unfolding could follow. It is worth noting that
Charalambous only observed five of the eight possible task unfolding (Types 1, 5, 6, 7, & 8 in
Figure 2) in the cases he studied and I added in the type numberings for ease of reference.

Studying MKT at the Undergraduate Level

Using these frameworks, I propose that it is possible to use the combination of task unfolding
and cognitive demand as a lens to examine MKT at the undergraduate level. This methodological
approach to studying MKT at the undergraduate level theoretically makes sense for several
reasons. First, tasks are central elements of teaching due to the fact that they focus on the work
that students do in the classroom. In particular, Doyle (1983) argues that tasks are central to
students’ learning because their enactment focuses students’ attention on mathematical ideas and
defines students’ ideas of what it means to do math. Second, there is a growing body of research
that supports the view that instruction should focus on engaging students in mathematical rich
tasks. “Principles to Actions” (NCTM, 2014) synthesizes the research on mathematical tasks as
resulting in three major findings: (1) not all tasks are equal in terms of the opportunities they
provide for student thinking and learning, (2) student learning is greatest in classrooms where
tasks are consistently enacted at a high level of cognitive demand, and (3) tasks with high
cognitive demand are the most difficult to enact (p. 17). Third, it is important to note that

20th Annual Conference on Research in Undergraduate Mathematics Education 43



cognitive demand is not an invariable feature of a task. Factors that can influence the cognitive
demand of enacted tasks include students’ understanding of the task objectives, teachers’
interpretation and setup of the task, and teachers’ content knowledge (Stein et al., 1996;
Charalambous, 2010). The final reason why I believe that this methodological approach is
defensible is due to the fact that studies have found a positive relationship between teachers’
MKT and enacting cognitively demanding tasks (Charalambous, 2010; Baumert et al., 2010).

In the new methodological approach that I describe below, there are two stages of analysis:
one that focuses on categorizing the unfolding of the task by considering the cognitive demand
and another that examines the mathematical knowledge for teaching that influenced the
unfolding of the task. After explaining each stage of analysis, I provide the reader with two case
studies of what it looks like to apply this methodological approach in practice.

Stage 1: Categorizing Task Unfolding by Cognitive Demand

Data. In order to characterize task unfolding by cognitive demand, data should be collected
for each phase in the task unfolding process. To capture the written task, any formal curriculum
materials, such as textbooks and teacher guides, or informal instructional materials, such as
activities developed by the teacher, should be collected. To capture the intended task, data
corresponding to how the teacher intends to implement the task during instruction, such as the
teacher’s lesson plan, should be collected. Finally, to capture the enacted class, data
corresponding to the actual implementation of the task in the classroom, such as a video
observation, should be collected. To aid in capturing the enacted task, the researcher may find it
helpful to refer to the observation protocol used by Rogers & Steele (2016).

Process. Once the data has been collected, the cognitive demand of the written, intended, and
enacted tasks should be analyzed using the Task Analysis Guide (Smith & Stein, 1998). In each
phase of unfolding, the task should be coded as memorization, procedures without connections,
procedures with connections, doing mathematics, or unsystematic exploration. Recall that
unsystematic exploration should only be used to categorize the final enactment phase of task
unfolding. Also, the Task Analysis Guide contains detailed descriptors of these tasks that should
aid the researcher in assigning codes. While Smith and Stein have not published any formal
training on how to use the Task Analysis Guide, Charalambous (2010) describes how he trained
his coders. One thing that is important to note is that the rest of the analysis only depends on the
level of cognitive demand and not the finer-grained analysis of whether or not a high-level task is
coded as procedures with connections or doing mathematics. However, utilizing the Task
Analysis Guide will aid in making the distinction between high- and low-level tasks more clear.

Product. Once the cognitive demand at each phase in the task unfolding has been analyzed
using the Task Analysis Framework, the researcher can categorize the task unfolding using the
path types (Figure 2). One could examine MKT without first categorizing the task unfolding,
Charalambous’ finding that MKT and the cognitive demand of task enactment are positively
related suggests that examining tasks that are enacted at a high-level of cognitive demand will
provide more opportunities to examine MKT. For this reason, the researcher should ideally
identify paths of Types 1, 2, 3, or 4 and utilize these in the second stage of analysis.

Stage 2: Examining MKT

Data. To examine MKT, the researcher needs to look at the factors that influence the
transformation of task between phases. To capture how the written task is interpreted by the
teacher and transformed into the intended task, the researcher should conduct a semi-structured
interview with the teacher before the observation. To capture how the interpreted task is
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transformed into the enacted task during instruction, the researcher should conduct another semi-
structured interview with the teacher after the observation. To aid in the development of the pre-
and post-observation interview protocol, refer to Appendix B from Rogers and Steele (2016) and
Appendix A of this paper. To allow for an in-depth analysis, it may be beneficial to choose only
one or two of the tasks that were enacted at a high-level of cognitive demand to probe into during
the post-observation interview. Also, since the intent of this methodology is to study MKT at the
undergraduate level from the perspective of practice, stimulated-recall (Bloom, 1953) should be
used during the post-observation interview in an attempt to get at the mathematical knowledge
that the teacher used in the moment during instruction, as opposed to purely reflective thoughts.

Process. Once the data has been collected, the researcher can begin to analyze the transition
between phases of task unfolding in order to examine MKT. Since the purpose of this analysis is
to examine MKT at the undergraduate level, the researcher is essentially building a theory for
undergraduate MKT. For that reason, the pre- and post-observation interview responses should
be analyzed using grounded theory (Strauss & Corbin, 1994). To do this type of analysis, the
researcher begins with open coding of the data. As the researcher begins to identify categories
that emerge during open coding, they should utilize the constant comparison method (Glaser &
Strauss, 1999) to organize the codes into categories and subcategories. To fully develop a theory,
the researcher must reach saturation, which is the point “when no new information seems to
emerge during coding” (Strauss & Corbin, 1998, p. 136). It is important to note that if the
researcher’s purpose is to only better understand how some aspect of the world works, as
opposed to create a formal theory that explains this aspect, they may conclude their study before
reaching theoretical saturation.

Product. Depending upon whether or not the grounded theory analysis was taken all the way
through theoretical saturation, the results of the second stage of analysis will differ. If the
researcher’s purpose is to better understand MKT at the undergraduate level looks like, then
completing this analysis will give us a partial description. Although this partial description may
fall short of a formal theory, it would still contribute much to the field, since there are currently
so few studies that examine MKT at the undergraduate level. However, eventually, I believe that
our goal should be to develop a formal theory for MKT at the undergraduate level. By
developing a complete picture of MKT at the undergraduate level, we will have a more complete
picture of what knowledge is required when teaching at the undergraduate level. Also,
developing a theory from the ground up for MKT at the undergraduate level will allow us to see
how it is similar to and different from MKT at the K-12 level.

Case Studies

To demonstrate how to use this methodological approach to study MKT at the undergraduate
level, I have included two case studies below. The data used in these case studies were collected
during the Fall 2015 semester at a mid-size research university in the Midwest. The instructors
were selected primarily due to their experience teaching these courses and because they had been
identified within the department as strong teachers. At the time of data collection, Greg was a
fifth-year graduate student who was teaching Trigonometry for the third time. He had also
earned his M.S. in pure mathematics and was nearing the end of his doctoral work. Kelly was a
third-year graduate student who was teaching College Algebra + Trigonometry for the third time.
After earning her Masters in Engineering, Kelly earned her M.S. in pure math and was just
beginning her doctoral work. The data I collected for analysis included the written lesson guides
(which are provided by the department), the instructor’s intended lesson plans, pre-observation
interviews, video observations of enacted lesson, and post-observation interviews. For the pre-
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and post-observation interviews, I utilized the protocols in Appendix A. For this case study, |
will focus on one task that each instructor enacted at a high-level of cognitive demand.

Greg. The task that I analyzed for Greg focused on demonstrating how to use the law of sines
to find a side length in a non-right triangle (Figure 3). Since this task called for the specific
procedure that was to be used, required limited cognitive demand for completion, was not
connected to the concept underlying the procedure, focused on producing a correct mathematical
answer, and required no explanation, it was categorized as a procedures without connections
task. In his lesson plan, Greg decided to remove the goal statement from the task so that students
would have to recognize which procedure to use. Since this task was situated in the lesson right
after the law of sines and cosines had been discussed, I still categorized it as procedures without
connections because the procedure was evident from prior instruction and the placement of the
task. However, when this task was enacted, it took on another form.

Goal: To study how to use the law of sines to find the length of an unknown
side.
Exercise: Solve for z in the triangle below.

30° 45°

Figure 3. Greg’s written task.

When Greg introduced this task during class, a student immediately suggested that they use
the law of sines to solve for x. However, when Greg asked, “What does the law of sines tell us in
this case?”, a student responded by saying, “Break this into two triangles.” Greg recognized that
the student was attempting to follow the procedure that they had used previously when deriving
the law of sines. Greg affirmed that the student’s idea would work, but then focused on
explaining why we don’t have to follow the steps of the derivation and instead can just use the
final result. During this enactment of the task, the focus shifted from producing a correct answer
to developing a deeper understanding of the mathematical process of derivation. For this reason,
I coded the enacted task as procedures with connections. By doing this first stage of analysis, |
was able to identify Greg’s task as a Type 3 task unfolding.

During the second stage of analysis, several aspects of Greg’s MKT were brought to the
surface. In analyzing how Greg transformed the written task in his lesson plan, Greg depended
on his previous experience teaching this course to identify areas where students might struggle
with this problem. During the pre-observation interview, Greg said that he knew that students
often struggle to figure out what procedure will help them solve a problem. For that reason, Greg
removed the goal statement in order to give students an opportunity to learn how to identify what
procedure is appropriate. When Greg enacted the intended task during class, he shifted his
attention from identifying the procedure to unpacking the mathematical process of derivation. To
do this, Greg had to interpret the mathematical statements made by his students. This involved
both assessing whether or not the student’s idea was mathematically sound and what they did
and did not understand about the process of derivation. Finally, Greg had to determine an
appropriate way to explain the process of derivation and connect it back to the original task.

Kelly. The task that I analyzed for Kelly focused on introducing the short-run behavior of
polynomials and reviewing the concept of long-run behavior (Figure 4). Instead of introducing
and reviewing these ideas generally, the task provided a concrete example to work with.
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However, since the task required limited cognitive demand for completion, was not connected to
the concept underlying the procedure, focused on producing a correct mathematical answer, and
required no explanation, I coded it as a procedures without connections task. In her lesson plan,
Kelly modified the task by graphing the polynomial at the beginning, asking students to identify
relationship between the graph’s behavior around zeros and the multiplicities of the zeros (as
opposed to just telling them), connecting short-run behavior to the simple power functions x, x°,
and x°, relating the multiplicities and number of zeros to the degree, and considering how long-
term behavior would change if the leading coefficient was negative. Because her intended task
now required students to explore and understand the mathematical concept of short-run behavior,
access relevant knowledge and make appropriate use of it when working through the task,
analyze the task and actively examine constraints, and put forth considerable cognitive effort, I
coded it as doing mathematics. When Kelly enacted this task in the classroom, the only thing that
she modified was when she graphed the function. Instead of graphing the polynomial first, they
utilized the function to identify the zeros, talked about the multiplicities, and briefly explored the
general idea of short-run behavior and how it is connected to the multiplicities before graphing
p(x). The enacted task added the complexity of requiring students to think generally about short-
run behavior instead of relying on a graphical representation and did not remove any complexity
of the problem. Therefore, I still coded it as doing mathematics. By doing this first stage of
analysis, [ was able to identify Kelly’s task as a Type 2 task unfolding.

During the second stage of analysis, several aspects of Kelly’s MKT were brought to the
surface. In analyzing how Kelly transformed the written task in her lesson plan, Kelly
intentionally highlighted mathematical connections and patterns instead of focusing on providing
definitions. To help students make connect the idea of multiplicities with short run behavior,
Kelli utilized “anchor” examples (x, x°, and x°) that captured the complexity of the relationship,
but through simplified and easily accessible representations. One way that Kelly attended to
complexity was by ensuring that the task provided enough variety (such as multiple zeros with
both even and odd multiplicities) that students could recognize patterns and waiting to consider
additional complexity (such as a negative leading coefficient) at the end. When Kelly enacted the
intended task during class, her decision to wait and graph and polynomial after talking generally
about short-run behavior required her to critically analyze the mathematical ability of her
students. Forming mental representations of graphs and using these to identify graph features is a
complex task for students. However, Kelly determined that her students were able to handle this
challenge and successfully implemented this modification during the task enactment.

Discussion

As these cases illustrate, utilizing the frameworks of task unfolding and cognitive demand
can help reveal MKT by focusing the analysis on the mathematical knowledge entailed in
transforming written task into a classroom activity. The cases presented provide a glimpse into
what MKT at the undergraduate level looks like, but are far from providing a complete picture.
In particular, the analysis done here is really only representative of the first phase of grounded
theory of open coding. To develop categories and subcategories or potentially even a general
theory for MKT at the undergraduate level, further analysis must be done. As I mentioned
previously, these two cases were selected from a larger data set that contains many more cases
that can be analyzed. In the Fall 2016, I observed 39 instances of task unfolding in Precalculus
classrooms. This semester (Spring 2016), I’'m observing six Precalculus instructors three times
each, so I anticipate that my complete data set will include around 90 instances of task unfolding.
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Use the example p(z) = z2(z + 3)(z — 5)* to introduce vocabulary (“zeros” and “multiplicity”) and prepare
students for the upcoming activity. On the Board: (When drawing the graph of p(z), it may make sense to
demonstrate inputting the formula into your calculator and finding the graph that way. Display the graph
first in the standard window. Then point out that it’s hard to see behavior because the lines are too steep.
Adjust the window to have ymin=-500 and ymaz=500. Point out that we don’t need to spend more time
figuring out the zeros on the calculator because we already know these values from our previous work. Be
sure to label the zeros as ordered pairs on the graph to emphasize their meaning.)

Students may have trouble understanding that having a factor of # implies having 0 as a zero. To make this
clearer, write x%(z + 3)(z — 5)® = (z — 0)%(z + 3)(z — 5)*.

Ex. 1 Let p(z) = 2%(z + 3)(z — 5)>.

Find zeros and their multiplicities:

To find zeros, find when p(z) = 0.

Solve: 0 = z%(z + 3)(z — 5)*

Happens when 22 =0,z +3 =0, or (z —5)*=0
Happens when: x =0,z = -3, or =5

Hence,

Z€ero | multiplicity

0 2
-3 1
5 3

Expand: p(z) = 2% — 122° + 30z* + 1002> — 37522
Degree of p(z): 6

2000+

1000+

M

Long term behavior: Resembles y = 6
Short-run behavior:

Bounces off z-axis: at (0,0)

Crosses z-axis: at (—3,0) and (5,0)

Figure 4. Kelly’s written task.

There are several limitations to both the case studies I presented and the general
methodological approach I suggested. For sake of continuity, I will address the limitations of the
case studies first and then consider the methodology. One limitation of the cases presented here
is that the instructors were graduate students and not faculty members. This distinction may
impact the MKT I uncover, since graduate students are generally less-experienced teachers than
faculty members and are still learning how to teach. However, studies have shown that
experience is actually not a predictor of MKT (Ball, Lubienski, & Mewborn, 2001). It is also
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important to note that at many doctoral-granting universities, graduate students primarily teach
first-year courses, so my sample is representative of the population. Also, my case study is
limited in that it considers instructors who have taught a course 3 or more times as experienced.
If utilizing a more-traditional K-12 definition of experienced teachers, these instructors would
still be considered novices. However, relative to the total population of graduate instructors
teaching Precalculus courses, my instructors would be considered experienced.

There are two main limitations that I have identified in the methodological approach I
suggest for studying MKT at the undergraduate level. First, one must consider how to handle
intended tasks that are not from a written curriculum, intended tasks that are not enacted, and
enacted tasks that are not included in the intended lesson plan. Of the 39 instances of task
unfolding that I observed last fall, 19 fit into one of these categories. However, I believe that this
limitation does not trivialize the analysis. In these cases, the Stage 1 and 2 analyses can still be
done if data was collected for at least two of the phases. A second limitation of the methodology
is that it is designed under the assumption that MKT only influences the transition between
phases. While research does support the fact that it is involved in these transitions (Brophy,
1991, 2001; Stein, Baxter, & Leinhardt, 1990), it is worth considering whether or not any
opportunities to examine MKT may be lost by limiting the analysis in this way. Finally, by
restricting the unit of analysis to mathematical tasks, the methodology does not consider how
MKT might be related to other aspects of teaching, such as designing and providing feedback on
assessments. However, if one considers the 19 high-leverage practices (TeachingWorks, 2017)
that Ball and colleagues identified as the basic-fundamentals of teaching, task unfolding captures
the majority of these practices.

Even with its limitations, the methodological approach I proposed for examining MKT has
many strengths. First, the methodology itself is independent of the content and level of
instruction. Therefore, it can be used to study MKT K-12 courses, other undergraduate courses
besides Precalculus, or even graduate courses. Second, the methodology is flexible in that it can
be used to generate formalized theories of MKT or less-formal descriptions and
characterizations. Third, utilizing the frameworks for task unfolding and cognitive demand
focuses the analysis on specific teaching actions. This is beneficial examining teaching
holistically can easily overwhelm a researcher and make it difficult to focus on MKT. However,
by utilizing the frameworks of task unfolding and cognitive demand, this methodology provides
a structure that begins to reveal the mathematical knowledge involved in the complex work of
teaching. Finally, the primary strength of this methodology is that it provides a way to study
MKT at the undergraduate level through careful study of the practice of teaching. Instead of
utilizing existing frameworks for MKT that were developed at the K-12, it examines MKT at the
undergraduate level independently. However, it still draws upon the research and findings at the
K-12 level, but in a careful and systematic way that still attends to the unique characteristics of
undergraduate instruction.

References

Ball, D. L., Lubienski, S. T., & Mewborn, D. S. (2001). Research on teaching mathematics: The
unsolved problem of teachers’ mathematical knowledge. In V. Richardson & American
Educational Research Association (Eds.), Handbook of research on teaching (4th ed, pp.
433-456). Washington, D.C: American Educational Research Association.

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes
it special? Journal of Teacher Education, 59(5), 389—407.

20th Annual Conference on Research in Undergraduate Mathematics Education 49



Bass, H. (1997). Mathematicians as educators. Notices of the American Mathematical Society,
44(1), 18-23.

Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., ...,Tsai, Y.-M. (2010).
Teachers’ mathematical knowledge, cognitive activation in the classroom, and student
progress. American Educational Research Journal, 47(1), 133—180.

Begle, E. G. (1972). Teacher knowledge and student achievement in algebra, school
mathematics study group.: Reports number 9. Washington, D.C.: ERIC Clearinghouse.

Bloom, B. S. (1953). Thought-processes in lectures and discussions. The Journal of General
Education, 7(3), 160-169.

Boaler, J., & Staples, M. (2008). Creating mathematical futures through an equitable teaching
approach: The case of Railside School. Teachers College Record, 110(3), 608—645.

Brophy, J. (Ed.). (1991). Teachers’ knowledge of subject matter as it relates to their teaching
practice. Greenwich, CT.: JAI Press.

Brophy, J. E. (Ed.). (2001). Subject-specific instructional methods and activities (1st ed).
Amsterdam: New York : JAI Press.

Carpenter, T. P., & Fennema, E. (1991). Research and cognitively guided instruction. In E.
Fennema, T. P. Carpenter, & S. J. Lamon (Eds.), Integrating research on teaching and
learning mathematics (pp. 2—19). Albany, NY: State University of New York Press.

Charalambous, C. Y. (2010). Mathematical knowledge for teaching and task unfolding: An
exploratory study. The Elementary School Journal, 110, 247-278.

Doyle, W. (1983). Academic Work. Review of Educational Research, 53(2), 159-199.

Ellis, J., Kelton, M. L., & Rasmussen, C. (2014). Student perceptions of pedagogy and associated
persistence in calculus. ZDM, 46(4), 661-673.

Glaser, B. G., & Strauss, A. (1999). The Discovery of Grounded Theory: Strategies for
Qualitative Research. Chicago: Aldine Transaction.

Greenwald, R., Hedges, L. V., & Laine, R. D. (1996). The effect of school resources on student
achievement. Review of Educational Research, 66(3), 361-396.

Hanushek, E. A. (1981). Throwing money at schools. Journal of Policy Analysis and
Management, 1(1), 19-41.

Hanushek, E. A. (1996). A more complete picture of school resource policies. Review of
Educational Research, 66(3), 397—409.

Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for
teaching on student achievement. American Educational Research Journal, 42(2), 371-406.

Hiebert, J., & Stigler, J. W. (2004). Improving mathematics teaching. Educational Leadership,
61(5), 12-16.

Hiebert, J., & Wearne, D. (1993). Instructional tasks, classroom discourse, and students’ learning
in second-grade arithmetic. American Educational Research Journal, 30(2), 393-425.

Krauss, S., Baumert, J., & Blum, W. (2008). Secondary mathematics teachers’ pedagogical
content knowledge and content knowledge: Validation of the COACTIV constructs. ZDM,
40(5), 873-892.

McCrory, R., Floden, R., Ferrini-Mundy, J., Reckase, M. D., & Senk, S. L. (2012). Knowledge
of algebra for teaching: A framework of knowledge and practices. Journal for Research in
Mathematics Education, 43(5), 584—615.

NCTM. (2014). Principles to actions: Ensuring mathematical success for all. Reston, VA:
National Council of Teachers of Mathematics.

20th Annual Conference on Research in Undergraduate Mathematics Education 50



Rogers, K. C., & Steele, M. D. (2016). Graduate teaching assistants’ enactment of reasoning-
and-proving tasks in a content course for elementary teachers. Journal for Research in
Mathematics Education, 47(4), 372-419.

Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ mathematics subject
knowledge: The knowledge quartet and the case of Naomi. Journal of Mathematics Teacher
Education, 8(3), 255-281.

Saxe, K., & Braddy, L. (2016). 4 common vision for mathematical sciences programs in 2025.
Washington, DC: Mathematical Association of America.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational
Researcher, 15(2), 4—14.

Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard
Educational Review, 57(1), 1-22.

Smith, M. S., & Stein, M. K. (1998). Selecting and creating mathematical tasks: From research
to practice. Mathematics teaching in the middle school, 3, 344-350.

Speer, N. M., King, K. D., & Howell, H. (2014). Definitions of mathematical knowledge for
teaching: Using these constructs in research on secondary and college mathematics teachers.
Journal of Mathematics Teacher Education, 18(2), 105-122.

Speer, N. M., Smith III, J. P., & Horvath, A. (2010). Collegiate mathematics teaching: An
unexamined practice. The Journal of Mathematical Behavior, 29(2), 99—114.

Stein, M. K., Baxter, J. A., & Leinhardt, G. (1990). Subject-matter knowledge and elementary
instruction: A case from functions and graphing. American Educational Research Journal,
27(4), 639-663.

Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building student capacity for
mathematical thinking and reasoning: An analysis of mathematical tasks used in reform
classrooms. American Educational Research Journal, 33, 455-488.

Stein, M. K., & Lane, S. (1996). Instructional tasks and the development of student capacity to
think and reason: An analysis of the relationship between teaching and learning in a reform
mathematics project. Educational Research and Evaluation, 2(1), 50-80.

Stein, M. K., Remillard, J., & Smith, M. S. (2007). How curriculum influences student learning.
In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning: a
project of the National Council of Teachers of Mathematics (pp. 319-369). Charlotte, NC:
Information Age Pub.

Strauss, A., & Corbin, J. (1994). Grounded theory methodology: An overview. In N. K. Denzin
& Y. S. Lincoln (Eds.), Handbook of Qualitative Research (pp. 273—-284). Thousand Oaks:
SAGE Publications, Inc.

TeachingWorks. (2017). High-leverage practices. Retrieved from
http://www.teachingworks.org/work-of-teaching/high-leverage-practices

Appendix A

Pre-Observation Interview Protocol
1. Have you previously used this task in a class before?
2. Where did this task come from?
3. Did you make any changes to this task?
4. What is the mathematics that you intend students to learn through this task?
a. Why did you want your students to learn this mathematics?
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b. What about this task made you believe it is an appropriate way to learn this
mathematics?

Post-Observation Interview Protocol

1.

2.

Did you get to all of the tasks that were in your lesson plan?
a. Why or why not?
Did you change any of the tasks that were in your lesson plan?
a. Why or why not?
During the pre-observation interview, you said that the intended learning outcome for this
task was . Was that learning outcome the same during class?
a. Why or why not?
b. Do you believe that the intended learning outcome was achieved?
During this part of the task, it seemed like you were unpacking the mathematics to make it
comprehensible for your students.
a. What exactly were you trying to unpack?
b. Why did you decide to unpack this?
c. How did you determine a way to unpack this?
During this part of the task, it seemed like you were making mathematical connections
across topics, assignments, representation, or domain.
a. What exactly were you trying to connect?
b. Why did you want to connect these things?
c. How did you make these connections?
During this part of the task, it seemed like you removed some mathematical complexity to
make it more comprehensible for your students?
a. What exactly did you remove?
b. Why did you decide to remove that?
c. How did you maintain the mathematical integrity of the task?
During this part of the task, it seemed like you added some mathematical complexity to
make it more challenging for your students?
a. What exactly did you add?
b. Why did you decide to add that?
c. How did you maintain the mathematical integrity of the task?
During this part of the task, you elicited and interpreted student thinking.
a. What response(s) did you anticipate?
b. Why did you elicit student thinking here?
c. How did you interpret what the student said mathematically?
During this part of the task, you used the following mathematical representation(s).
a. What exactly were you trying to represent?
b. Why did you use this (these) representation(s)?
c. How did you use this (these) representation(s)?
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Mathematical Actions, Mathematical Objects, and Mathematical Induction

Rachel Arnold Anderson Norton
Virginia Tech Virginia Tech

Proof by mathematical induction is arguably the most difficult proof technique for
students to master. We explain this difficulty within an action-object framework. Specifically, we
report on results from clinical interviews with two mathematics majors in which the first author
administered tasks designed to elucidate each student’s understanding of logical implications as
mental objects. We found that the framework explains much of the difficulty inherent in proof by
induction, even the students’ struggles with hidden quantifiers.

Keywords: Action-object theory, Logical implication, Mathematical induction, Proof

Beyond the difficulties students experience with proof in general (Weber & Alcock,
2004; Mariotti, 2006; Stylianideas, 2007), mathematical induction poses particular challenges
(Baker, 1996; Harel, 2002; Michaelson, 2008; Movshovitz-Hadar, 1993; Stylianides, Stylianides,
& Philippou, 2007). Proof by induction involves the implication that if a proposition holds for
some integer k, then the proposition holds for the integer k+1. Students often conflate this
inductive assumption with the assumption that the proof holds for any k (Avital & Libeskind,
1978; Ron & Dreyfus, 2004). Using the notation P(k) to represent the proposition applied to k,
there needs to be a distinction between the implication P(k) — P(k+1) and P(k) itself.

For example, consider the proposition, P(n): The sum of the first n odd natural numbers is
n’. The proposition holds for n=1, and assuming it holds for some natural number k, we can
show that it also holds for k+1. Suppose that 1 + 3 + -+ + (2k-1) = k*; then adding 2k+1 (the next
odd number) to both sides of the equation, we get the sum of the first k+1 natural numbers on the
left side of the equation, and on the right side of the equation, we get k> + 2k+1 = (k+1)*. Thus,
we have proven that the proposition holds for n=1 and that, if P(k) is true, then P(k+1) is also
true. Therefore, P(n) is true for all natural numbers.

The purpose of this paper is to investigate the cognitive origins of students’ difficulties in
mastering proofs by induction. More specifically, we apply an action-object theory to the logical
implication P(k) — P(k+1) in order to study how a complete understanding of induction might
develop. Most mathematics majors can prove logical implications (Harel & Sowder, 2007), but
proof by induction imposes an additional requirement: the inductive implication, P(k) — P(k+1),
must be taken as a single object rather than a relation between two objects, P(k) and P(k+1)
(Dubinsky, 1986). Our study contributes empirical results to support this claim within a revised
action-object framework.

We begin our report with a review of literature on students’ difficulties in understanding
proof in general and proof by induction. Then we introduce our action-object framework for
investigating such difficulties. Next, we describe the tasks we used to investigate students’
understandings within that framework. Finally, we report on results that answer the following
four questions.

1. How do college mathematics majors understand logical implications?

2. Are action-object distinctions useful in modeling these understandings?
3. How do these understandings contribute to their mastery of proof by induction?
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4. What other factors contribute to, or detract from, mastery of proof by induction?
Research on Students’ Difficulties with Proofs and Proving

Harel and Sowder (2007) defined a conjecture as “an assertion made by an individual
who is uncertain of its truth” (p. 808). Correspondingly, they defined proving as the process of
removing doubts about such assertions. Recognizing the reciprocal role that conjecturing plays in
proving, Boero, Lemut, and Mariotti (1996) referred to a cognitive unity between these two
activities, and several researchers have described ways in which students switch back and forth
between conjecturing and proving as they attempt to construct proofs (Arzarello, Andriano,
Olivero, & Robutti, 1998; Herbst, 2006; Saenz-Ludlow, 1997; Weber & Alcock, 2004). For
example, Cifarelli (1997) found that, “[students’] self-generated hypotheses went hand-in-hand
with their conception of carrying out of purposive activity designed to test the viability of their
hypotheses” (p. 20).

Harel and Sowder (2007) referred to a second kind of switching, between ascertaining
and persuading. The role of persuasion in proof emphasizes its social dimension and subjective
nature. In learning to make convincing arguments, students need to do more than ascertain truth
for themselves; they must also find ways to convince others. Mathematical communities (such as
mathematics classrooms) can specify criteria for convincing arguments. de Villiers (1999)
specified six purposes these arguments might serve: verification, explanation, systemization,
discovery, communication, and intellectual challenge. Additionally, mathematicians often place
value on the aesthetic qualities of a proof (Sinclair, 2006).

To classify ways that students might attempt to ascertain and persuade, Harel and
Sowder (2007) identified three broad proof schemes: external, empirical, and deductive.
Generally, mathematics educators aspire for their students to progress toward deductive proofs
because: (1) unlike external proof schemes, they include personal meaning that relates to
ascertaining; and (2) unlike empirical proof schemes, they provide persuasive power via logical
explanation (NCTM, 1989). Table 1 summarizes the three broad proof schemes, along with their
subcategories.

In contrast to our aspirations, students generally rely on empirical or external proof
schemes (Harel & Sowder, 2007), and poor performance in proving persists in college, even
among mathematics majors (Selden & Selden, 2003; Weber, 2001). Proofs by mathematical
induction pose particular challenges for mathematics students (and teachers), from high school
through college (Avital & Libeskind, 1978; Baker, 1996; Ron & Dreyfus, 2004; Stylianides,
Sylianides, & Philippou, 2007). In a conceptual analysis, Ernest (1984) speculated several
possible reasons for students’ difficulty, including their understandings of logical implication in
general. Several empirical studies have followed, elucidating the role of such factors.

In a study of elementary and secondary school preservice teachers, Stylianides, Stylianides, and
Philippou (2007) identified three specific difficulties underlying students’ poor performance with
proofs by mathematical induction: (1) understanding the necessity of establishing a base case
(usually n=1); (2) interpreting the meaning of the inductive step, P(k) implies P(k+1); and (3)
accepting that the proposition might hold beyond the cases covered by induction. In discussing
the first two difficulties, the researchers cited prior work by Dubinsky (1986) suggesting that, in
order to develop a mature understanding of proof by mathematical induction, students need to
understand logical implication as an object: “Similar to what we found, many sophomores in
Dubinsky’s study tried to prove P(k+1) rather than P(k) — P(k+1)” (p. 162).
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Table 1. Harel and Sowder’s (2007) Proof Schemes

Class Sub-category Description

External Proof Schemes

Authoritarian Relies on external authority, such as
a text or teacher

Ritual Focuses on format (such as two-
column proof) over substance

Non-referential symbolic Focuses on symbol manipulation

rather than underlying concepts
Empirical Proof Schemes

Inductive Relies on measurements from
specific examples
Perceptual Relies on perceptions of specific
examples
Deductive Proof Schemes
Transformational Based on operational thinking and

logical inference that generalizes
across an entire class

Axiomatic A transformational proof scheme
that begins from axioms.

We return to Dubinsky’s work in the next section as part of a more general discussion of
action-object theory. Here, we note that the conflation of the proposition P(k) with the
implication P(k) — P(k+1) can lead students to conflate proofs by induction with the fallacy of
assuming what is to be proved (Movshovitz-Hadar, 1993). Further, even successful mathematics
students have difficulty accepting the truth of the implication without knowing the truth of the
proposition itself: “How can you establish the truth of P(k+1) if you don’t even know if P(k) is
true?” (Avital & Libeskind, 1978, p. 430).

Harel (2002) explicitly connected students’ poor performance in mathematical induction
to their proof schemes, as characterized by Harel and Sowder (2007; see Table 1). In a study of
preservice secondary school teachers enrolled in a college number theory course, Harel (2002)
found that students’ proof schemes largely fell into the empirical and external categories,
particularly the authoritative and non-referential symbolic subcategories of the external proof
scheme. Furthermore, he found that students’ proof schemes strongly influenced the ways they
understood the method of mathematical induction. He argued that students rely on authoritative
schemes because they are introduced to the method before they have an intellectual need for it.
He suggested a need-driven instructional approach that could build from students’ empirical
proof schemes toward transformational proof schemes that would support a complete
understanding of the method.

The instructional approach utilizes pattern generalization, which is in the purview of the
empirical proof scheme. However, the approach emphasizes patterns in the process rather than
patterns in the results of that process, supporting a form of reasoning that Harel (2002) calls
quasi-induction. In the previously shared example of summing odd integers, instruction that
supports quasi-induction might involve drawing students’ attention to the way one perfect square
follows from the previous one, rather than the pattern of perfect squares itself. For instance,
(4+1)* — 4> = (2:4+1), and this pattern holds across any pair of consecutive perfect squares so that
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(k+1)* — k* = (2k+1). Because quasi-induction and its process pattern generalizations focus on
students’ own mental actions rather than empirical observations, it is transformational in the
Piagetian sense (Piaget, 1970), and Harel (2002) refers to it as a manifestation of the
transformational proof scheme.

Action-Object Framework

Action-object theories of mathematical development derive from Piaget’s (1970) genetic
epistemology, in which mathematics is understood as a product of psychology: Mathematical
objects arise as coordinations of mental actions through a process called reflective abstraction.
Within that framework, the enterprise of mathematics education is to specify the mental actions
that underlie mathematical objects and how they might be coordinated--composed and reversed--
with one another to construct those objects. For example, mathematics education researchers
have described how whole numbers, like 5, arise as objects for children through coordinated
activities of unitizing, iterating, partitioning, and disembedding (Piaget, 1942; Steffe & Cobb,
1988; Ulrich, 2015).

Dubinsky (1986) adopted a Piagetian perspective to extend action-object theories to
advanced mathematics. He developed the APOS framework to explain students’ mathematical
development through processes of interiorizing actions as processes, then encapsulating those
processes as objects that can be acted upon; schema organize processes and objects so that
students can make sense of mathematical situations. Similarly, Sfard (1991) described the
reification of actions as objects, thus distinguishing objects from pseudo-objects. Unlike
mathematical objects, pseudo-objects are merely figures or symbols, with no basis in action, so
they cannot be de-encapsulated. For example, high school students learn rules for manipulating
expressions within algebraic equations, but for many students, the expressions themselves have
no reference to underlying actions (Sfard & Linchevski, 1994).

Action-object theories point to two essential features of logico-mathematical
development—that students begin to construct new mathematical objects by coordinating their
available mental actions and that new mental actions become available for acting on those
objects. For example, students can construct the cube as a mathematical object by coordinating
mental rotations, and once they have constructed the cube, they can consider new actions, like
reflecting the cube about a plane through its center. The double arrow in Figure 1 represents
these two essential features.

Actions = Objects

Figure 1. Actions and objects.

In the domain of proof and proving, we might consider logical implication as a mental
action that transforms one assertion into another. In formal logic, this transformation is referred
to as modus ponens (P implies Q, and P is true, therefore Q is true). It has three kinds of reverse
actions: negation (P is true and Q is false); inversion, which relies on the converse of the
implication (Q implies P); and modus tollens (P implies Q, and Q is false, therefore P is false),
which relies on the contrapositive of the implication (not Q implies not P). Whereas the
contrapositive of the implication is logically equivalent to the original implication, its converse is
not.
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“Performance on logical inferences involving modus ponens is usually reasonably good,
but performance on those tasks involving modus tollens is weak, as is a full understanding of
inferences involving if-then statements” (Harel & Sowder, 2007, p. 826). From a Piagetian
perspective, these latter two findings go hand-in-hand. A full understanding of any mathematical
object relies on the ability to reason reversibly (Piaget, 1970), so students will not have a full
understanding of inferences involving if-then statements until they can reason with modus tollens
as well as modus ponens. In other words, a logical implication would arise as a mathematical
object for students only after they begin to coordinate modus ponens and modus tollens as
reverse actions.

In referring to quasi-induction, Harel (2002) was making an action-object distinction in
the development of mathematical induction. The logical implication P(k) — P(k+1) begins as an
action wherein students have to carry out the transformation from the k™ case to then (k+1)™
case. True induction arises from the objectification of this action (see Figure 2). “In quasi-
induction one views the inference, P(n-1) — P(n), just as one of the inference steps—the last
step—in a sequence of inferences that leads to P(n). In mathematical induction on the other hand,
one views the inference, P(n-1) — P(n), as a variable inference form, a placeholder for the entire
sequence of inferences” (Harel, 2002, p. 26). Based on this action-object framework, our study
focuses on the actions and objects of mathematical induction, including the two sides of the
implication, the implication itself, and three ways of reversing it: converse, contrapositive, and

negation.
— = & —
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Figure 2. The actions and objects of logical implication.

Methods

To investigate the actions and objects of mathematical induction, the first author
conducted clinical interviews with each of two college students, Trevor and Laura, who had
completed an Introduction to Proofs course, which included instruction on mathematical
induction. One student, Trevor, earned an A in the course, and the other student, Laura struggled
in the course, earning a grade of C. In this paper, we share results from our analysis of the
interview with the higher performing student, Trevor.
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The one-hour interview was video-recorded and consisted of tasks designed to elicit the
actions and objects those students had available for reasoning with proofs by mathematical
induction. In the remainder of this section, we describe those tasks and our video analysis of the
interview with Trevor.

Tasks

Interview tasks included three types (see Table 2). Type A tasks were designed to assess
student understanding of logical implication. We included questions in both a familiar context
(number theory) and an unfamiliar context (homology). In both contexts, students were given a
statement and asked to provide truth values for its converse, its contrapositive, and its negation.

Type B tasks assessed student understanding of the components of mathematical
induction (e.g., P(1) and P(k)) and how they might support an inductive proof. Type C tasks
assessed student ability to construct a formal proof, both in general and by induction. Sample
tasks are listed in Table 2.

Table 2. Sample interview tasks.

Task Type Sample Task
A: Logical Suppose the statement S is true. Evaluate whether the statements (a)-(¢)
implication are true, false, or uncertain.

1. S: Iftwo topological spaces are homeomorphic, their homology
groups are isomorphic.
a. Iftwo topological spaces have isomorphic homology groups,
the spaces are homeomorphic.
b. If the homology groups of two topological spaces are not
all isomorphic, the spaces are not homeomorphic.
c. There is a pair of homeomorphic topological spaces whose
homology groups are not all isomorphic.
2. S: Every even natural number can be written as the sum of two
prime numbers.
a. If a number is not the sum of two primes, it is odd.
b. There is an even number that is not the sum of two primes.
c. Ifanumber is odd, it is not the sum of two primes.

B: Induction Each of the following scenarios relates to a proposition P(n), where n is a
components positive integer. Decide whether: (a) the given information is enough to
prove P(n) without induction (i.e., induction is not necessary); (b) the
given information is enough to prove P(n) with induction; or (c) or the
given information is not enough to prove the proposition.

1. P(1) is true; there is an integer k>1 such that P(k) is true.

2. P(1) is true; there is an integer k>1 such that P(k) — P(k+1).

3. P(1) is true; for all integers k>1, P(k) — P(k+1).

C: Non-inductive | Let k be an integer. Prove that if 36 divides k, then 81 divides k”.
formal proof

D: Inductive Prove that beginning with zero, every third even number is divisible by 6.
formal proof
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During each interview, the first author posed tasks to the student one at a time by handing
the student a slip of paper. The student was given paper to write notes and was provided
opportunities to ask clarifying questions. After the student’s response to each task, the
interviewer would ask follow-up questions, probing the student’s reasoning. For example, for
Type B tasks (see Table 2), the interviewer might asked the student what additional information
(s)he would need in order to show that the proposition would hold for all positive integers.

Video Analysis

Each researcher independently engaged in video analysis through an action-object lens.
In this initial analysis, we focused on collecting facts about student understanding from each task
type, without consideration of how performance on tasks of one type predicted performance on
tasks of another type. We analyzed the students’ spoken explanations for the Type A tasks to
assess if they understood logical implication as an object, or if they instead viewed implication as
an action between two objects, the hypothesis and the conclusion. For Type B tasks, we inferred
which components of mathematical induction the students objectified and what actions they
could perform on those objects. Finally, for Type C tasks, we evaluated the students’ success in
proving statements with and without mathematical induction.

In a second iteration of analysis, the researchers jointly considered how well the action-
object framework explained student responses and how the students’ performance on tasks of
one type predicted their performance on later tasks. In particular, we looked for connections
between the students’ conceptualization of logical implication and their success in proof by
mathematical induction. More specifically, we examined how the students’ performance on Type
A tasks predicted their objectification of the components of induction and the subsequent actions
the student could perform on these components in Type B tasks. We considered whether
students’ objectification of logical implication and the components of mathematical induction
(Type A and Type B tasks) explained additional challenges they experienced in proof by
mathematical induction when compared to proof without induction (Type C tasks). In light of
previous research, we considered explanations alternative to action-object theory for these
differences. For example, what challenges did students experience in the components of
mathematical induction because of hidden quantifiers (Shipman, 2016)? Selected transcription
was used to support our analyses.

Results

We focus on the results of our video analysis of the interview with the higher-performing
student, Trevor. Trevor seemed to treat logical implication as an action on two objects (P and Q),
rather than a single object itself (P — Q). This was evidenced throughout the interview, but
particularly when he explained his reasoning for his responses to Type A tasks.

As we outline below, we infer from Trevor’s spoken and written reasoning that he
conceptualizes the negation, converse, and contrapositive of the implications in Task A via
transformations on the objects of the implication, the hypothesis and conclusion. The more
complicated the transformation process became, the more Trevor struggled with assessing the
validity of the new statement.

The easiest transformation for him was by far the negation. In Task Alc, Trevor was
asked to state the negation of the implication P — Q as a follow up to his response that the
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statement was false. Trevor replied, “the negation is P implies not Q ... if you’ve already
violated your assumption by saying that P is false then it doesn’t really matter what happens to Q
because you don’t really care because P isn’t true.” He also wrote “P — ~Q” on his interview
paper. Trevor’s explanation of why he believes the negation is P — ~Q seems to indicate the
following thought process. To negate the implication, he first considers negating P and Q
individually. We infer that Trevor is considering whether ~P — ~Q could be the negation. He
concludes that P should not be negated, misusing the fact that an implication is vacuously true
when P is false. Thus, he arrives at his conclusion that the negation should be P — ~Q. In
considering the negation of the hypothesis and conclusion separately, Trevor treated implication
as an action on objects, rather than an object itself. And, because Trevor believed the negation
was P — ~Q, he needed only to construct ~Q as an object to assess the truth value of the entire
statement.

Determining the truth value of the converse statements in Task A was slightly trickier for
Trevor because it involved a reverse transformation of the implication. When considering the
converse in Task Ala, Trevor began by writing out and separating the two statements in the
implication (see Figure 3). He then claimed that the statement was uncertain, using the following
justification: “Just because you know that the forward direction is true, there’s nothing implying
that the reverse direction is true, in this case.” Prompted for a term to describe the statement in
question, Trevor correctly labeled it as the converse statement. These responses indicate that
Trevor treated the original statement in two parts, with implication as an transformation between
them--a transformation that he could reverse. His representation of the original statement seemed
to support his reasoning in comparing the reverse (converse) statement to the original.

s > Thm
7 Jops Wiy a~ hovies l’la'ub[,d?, 8;‘»,()5 Goy 24P

Figure 3. Trevor’s representation of the original implication in Task 1a.

In response to Task A2c, Trevor paused for about 12 seconds, looking at the statement in
question. Finally, he responded as follows:

That one I’m going to say ‘uncertain’ because this one [pointing to the original statement]
just says that if you have a naturally even number then you can express it as the sum of
two primes. But it doesn’t [flips right hand over] flip the... Inverse statement isn’t true
necessarily, saying that, if a number is odd, it’s not the sum of two primes. But... I feel
like I’'m drawing outside information into saying this next part, but being a prime
number, you can’t be an even number...

Trevor went on to explain (based on his assumption that all primes are odd) that the sum of two
primes will always be even. Thus, he justified the truth of the converse statement based on the
context of the task. He knew that, in general, the converse would not necessarily follow from the
original implication. However, once again, determining the relationship between the original
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statement and its converse required Trevor to perform a “flip” wherein he treated the two sides of
the implication as separate objects.

While Trevor seemed to recognize the statements in tasks Ala and A2c as the converse
of each implication relatively quickly, Trevor did not recognize the contrapositive statements in
both tasks of Type A without significant prompting. In fact, the most challenging Type A tasks
for Trevor were the contrapositive statements because they appeared to require him to combine
two transformations, reversal and negation, on the objects of the implication. We note that this
additional transformation, as compared to his handling of the converse, created substantially
more struggle for Trevor. This is evidenced by Trevor’s responses to the Task Alb, where the
mathematical context was unfamiliar. After several minutes of little progress and after the first
author prompting him to see the relationship between the statement S and its contrapositive,
Trevor stated, “It’s the negation of the reverse order, which is true in general. I do remember
that... I don’t remember the word but, ‘If P then Q is true’, then ‘not Q implies not P’ is
generally true.” Trevor’s explanation indicates the two transformations, reversal and negation, he
performs to obtain the contrapositive from S. Further, like in Task 1Ac, Trevor uses the term
“negation” to mean the negation of each individual statement P and Q. If he was indeed referring
to the “negation of the reverse order,” he would have ~(Q — P) and hence Q and ~P, which is
not the contrapositive of P — Q.

In Task A2a, Trevor had to again determine the truth value of the contrapositive of
statement S in the familiar setting. Despite having just solved Task Alb, he still did not
recognize the statement as the contrapositive and struggled to determine its validity. This
supports our previously mentioned inference that the additional transformations necessary for
Trevor to mentally construct the contrapositive are enough to blur his connection of the truth
value of S to its contrapositive. Further, Trevor relied on his knowledge of primes to reason
through his answer, ignoring the logical equivalence connection altogether. Rather than viewing
the entire implication as an object that could be manipulated, he focused on the meaning of the
hypothesis and conclusion separately. Consequently, we infer that Trevor’s reliance on
mathematical context demonstrated that he was not viewing the logical implication as a single
object, rather an action on objects.

Contrasting Trevor’s performance on Type A tasks in the unfamiliar versus familiar
mathematical setting reveals the mental actions and objects that Trevor seemed to have available.
First, because the hypothesis and conclusion of statement S in the unfamiliar setting (Task A1)
did not carry mathematical meaning for Trevor, he seemed to conceptualize them rather quickly
as pseudo-objects (Sfard, 1991). He did not devote time to framing the statements as objects with
mathematical meaning. Therefore, he was more able to perform his transformations on § that
were necessary for him to construct each new statement in Tasks Ala-c. However, in the familiar
setting, Trevor got stuck trying to first construct the pieces of the implication as mental objects
because they carried mathematical meaning that he believed he could unpack. As a result, he was
delayed in the process of carrying out his transformations. This was particularly evidenced in
Trevor’s performance on Task A2a when he struggled to execute his two step action sequence of
transforming the implication S into its contrapositive.

Next, Trevor’s responses to the Type B tasks indicated that he understood how to
combine components of an inductive proof, but he seemed to rely heavily on a procedure learned
in class. In this way, he seemed to rely on an authoritarian proof scheme (Harel & Sowder, 2007,
see Table 1). In particular, he treated induction as a sequence of objects: a base case, an inductive
assumption, and an inductive step. Like his treatment of logical implication in the Type A tasks,
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Trevor separated the inductive implication into two objects—the assumption and the step. This
reasoning was evidenced in his response to Task B2 in Table 2 where he was given P(1) and the
existence of an integer k for which P(k) implies P(k+1).

We have everything we need to do induction on this case because we have a base case
that P(1) is true. And then can lump P(k) into our inductive assumption and then use P(k)
implying P(k+1) to form our inductive step and follow that all the way through to all of
the natural numbers.

These criteria helped him successfully distinguish which scenarios could generate a proof by
induction, but a conceptual limitation became apparent. Specifically, it was clear that Trevor
viewed induction as a connected sequence of three objects as follows. Trevor first checked for a
base case, object one. He then linked the base case to his second object, the inductive
assumption, by checking that k began at 1 for the remaining information. Once he was satisfied
that this connection existed, he was able to consider the final object, the inductive step. Because
of this ordered thought process, Trevor did not seem to notice that the inductive implication was
missing from Task B1. In what follows, Trevor was concerned with making sure that k began at
1. He argued that if k were 3, he would still have a kind of inductive step but that the step size
would be 2 instead of 1.

We can say that P(k) is true for this given integer, but we don’t really know where k is, so
I don’t think we can construct an inductive argument because we don’t know where k is
relative to 1. But if k is 3, for example, we don’t know what happens at 2, and so we
haven’t proved it for all of the natural numbers. So even if we were to say like skip two
steps, then we leave out all of the evens, for example.

We contrast this to Trevor’s performance on Task B2 where he was given P(1) and that there
exists an integer k>1 such that P(k) implies P(k+1). Here, overlooking the existential
quantification of k (which we address below), Trevor was satisfied with his initial action of
joining the base case to the inductive assumption and completed his object sequence as follows.

We have everything we need to do induction on this case because we have a base case
that P(1) is true. And then can lump P(k) into our inductive assumption and then use P(k)
implying P(k+1) to form our inductive step and follow that all the way through to all of
the natural numbers.

Trevor’s above response to Task B2 also surfaced a new issue in successful proof by induction: a
student’s ability to recognize the role of quantification in the inductive implication. Initially,
Trevor overlooked the quantification of k in Tasks B1 and B2. His sequencing of inductive
objects led to a correct conclusion (but for the wrong reason) that Task B1 did not have enough
information, and an incorrect conclusion that Task B2 had enough information for proof by
induction. However, upon seeing Task B3—which gave P(1) and that for all integers k=1, P(k)
implies P(k+1)—and after much prompting from the interviewer, Trevor exposed the role of
quantification. He then went back to Task B2 and said there was not enough information to use
induction.

While Trevor’s object sequence may not lead to a mastery understanding of induction, it
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did allow for him to systematically outline the necessary components in a proof by induction. For
the Type C task shown in Table 2, Trevor had no trouble establishing base cases, and he seemed
to understand the purpose of induction.

We can establish as many base cases as we want... 0 can be represented as something
times 6; 6 can be represented as something times 6; so can 12; 18; all the way up. So
you’re going to have to use induction because you can’t really prove every number,
without sitting here and writing them all out. So you know that the inductive assumption
is going to say that, assume for all numbers, k, greater than or equal to 0, but...

He struggled in establishing an inductive step and consequently completing the proof of
the inductive implication: “I know what argument I want to make, but I’'m not sure how to make
it.” His difficulty stemmed from an inability to formulate a useful representation of every third
even integer. However, when prompted about what P(k+1) meant in this case, Trevor clearly
understood, and also confirmed, that “k+1"" did not literally mean add 1 to k. He proposed that
“k+1” really meant k+6 in this case, and when asked why, he replied “because [k] is just an
arbitrary number and you want to prove that the next one [is true].” So, Trevor did seem to
understand how the inductive step should work, and arguably he could have been successful in
his proof without this formulation issue.

Conclusions and Implications

Prior research identified several potential hurdles in students’ mastery of proof by
induction. Among these, Stylianides, Stylianides, and Philippou (2007) highlighted
understanding the necessity of establishing a base case and interpreting the meaning of the
inductive step. Neither student in our study demonstrated any difficulty in understanding the
necessity of the base case. In fact, Trevor consistently included the base case as a critical
component for inductive proofs. However, both students misconstrued the meaning of the
inductive step, and the action-object framework was especially helpful in explaining why.
Additionally, we uncovered a new issue not captured by prior research: students’ struggles with
the role of quantification in proofs by induction. We believe that our action-object framework
can also be used to explain this struggle.

In line with research on proof in general (Harel & Sowder, 2007; Selden & Selden, 2003;
Weber, 2001), the two students in our study relied on external proof schemes to make inductive
arguments. Still, a student’s ability to follow a procedural sequence of objects (base case, then
inductive assumption, followed by inductive step) without a mastery of induction can allow for
successful proof by induction. Separating the inductive implication into two objects, P(k) and
P(k + 1), makes the process more accessible to the typical student because the typical student
already handles implications in pieces (Avital & Libeskind, 1978; Dubinsky, 1986; Movshovitz-
Hadar, 1993). Thus, students who have not constructed logical implications as objects can write
successful proofs. However, they do not have a complete understanding for how the process
works. When the inductive proof calls for some modification to the standard format (as arose in
Trevor’s struggles to formulate P(k + 1)) students can become confused about how to proceed.

Our results support findings from prior studies indicating that treatment of logical
implications is a major mediator in students’ understandings of proof by induction (Ernest, 1984;
Dubinsky, 1986). Our study also affirms limitations on students’ treatment of logical
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implications—even among high performing students like Trevor (Harel & Sowder, 2007). We
consider some ways to address these limitations using our action-object framework, but first we
consider the unanticipated limitation regarding students’ treatment of hidden quantifiers.

Both of the students we interviewed struggled to recognize quantifiers in the statements
of Type B tasks. When Trevor was asked whether there was a difference between Tasks B2 and
B3 (see Table 1), he replied that they were the same. When asked if he was sure, he noticed that
one sentence had the words “such that” and again overlooked the quantifiers. Other researchers
have noticed students’ difficulty in accounting for hidden quantifiers in proving mathematical
statements (Seldon & Seldon, 1995; Shipman, 2016). In particular, Barbara Shipman discussed
just how prevalent this issue of hidden quantifiers is among students and how it leads to errors in
logic in proof by contradiction. The inductive implication P(k) — P(k + 1) is an implication with
hidden quantifiers. P(k) and P(k + 1) are open statements that have no truth value until k is
quantified. What we really mean when we write P(k) — P(k + 1) is “forall k> 1,

P(k) — P(k + 1).” Students often suppress the significance of the hidden quantification of k in
the inductive implication, and consequently in their conceptualization of proof by induction.

In proof by contradiction, Shipman (2016) noted that failure to recognize hidden
quantifiers can lead to correct conclusions for the wrong reason, or incorrect conclusions about
the validity of a statement. She also noted that oftentimes students’ mistreatment of quantifiers
leads to the erroneous proof of a “for all” statement by example. In our study, we found that
Shipman’s observations also appear to hold true in the context of proof by induction. In Task B1,
Trevor came to the correct conclusion that more information was needed but for the wrong
reason. He bypassed the hidden quantification of k and focused on whether P(k + 1) was true. In
Task B2, Trevor’s oversight of the quantification of k led to an erroneous induction proof by
example. Trevor conflated showing the inductive implication was true for one k with showing
the implication was true for all k. We conclude that students might be able to complete the proof
of the unquantified inductive implication P(k) — P(k + 1) by breaking it down into procedural
steps. However, in the absence of a memorized, quantified inductive assumption, their proofs by
induction are not quite logically complete.

Students’ struggles with the role of the quantification of the inductive implication in
creating a logically complete proof by induction may be related to their construction of
implication as a mental object. In particular, dissecting quantified statements in the context of
mathematical induction places an increased cognitive demand on students that is less easily
navigated if a student conceptualizes an implication as an action on objects. Because a student
must work with additional objects when they are unable to mentally construct the implication as
a single object, the student’s cognitive resources available for addressing quantification are
reduced. Our claim is supported by Trevor’s performance on problems in his introduction to
proofs course where the sole focus was quantification. For example, on the first exam, Trevor
was given the following two statements and asked to label them as true or false and justify his
answer.

1. There exists a real number x such that for all real numbers y, 2x - 3y +7 = 14 - 6y.
2. There exists a real number x such that for all real numbers y, xy + 3x =2y + 6.

Trevor earned a perfect score on this problem, showing no problems with understanding

quantifiers, even when mixed. Thus, his struggles with quantification during his clinical
interview were unexpected. We speculate that Trevor’s treatment of logical implication as an
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action on objects was an inhibiting factor.

Our study indicates that constructing logical implications as objects and identifying
hidden quantifiers are prerequisite knowledge for developing transformational proof schemes for
mathematical induction. Thus, similar to Harel (2002), we consider instructional activities that
should be included in Proofs courses, leading into formal instruction on mathematical induction.
Harel had suggested introducing quasi-induction as a means of focusing students’ attention on
the logical implication that related the inductive assumption to the inductive step, by explicitly
relating P(k) to P(k + 1) for specific values of k. Results from our study attest to the value of that
approach, assuming it supports the objectification of the implication, in general.

Tasks of Type A (see Table 1), in addition to their value in assessing whether students
have constructed logical implications as objects, might also support that construction as students
are challenged to transform a given logical implication into other forms (negation, converse, and
contrapositive). Furthermore, our study suggests that instructors should give attention to how
students handle hidden quantifiers, and tasks of Type B might reinforce the role of hidden
quantifiers in proofs by induction. We recommend further study to test the efficacy of these
different task types in supporting students’ development of transformational schemes for proof
by induction.
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Examining Students’ Procedural and Conceptual Understanding of Eigenvectors and
Eigenvalues in the Context of Inquiry-Oriented Instruction
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This study examines students’ reasoning about eigenvalues and eigenvectors as evidenced by
their written responses to two open-ended response questions. This analysis draws on data
taken from 126 students whose instructors received a set of supports to implement a particular
inquiry-oriented instructional approach and 129 comparable students whose instructors did
not use this instructional approach. In this chapter, we offer examples of student responses
that provide insight into students’ reasoning and summarize broad trends observed in our
quantitative analysis. In general, students in both groups performed better on the procedurally
oriented question than on the conceptually oriented question. The group of students whose
instructors received support to implement the inquiry-oriented approach outperformed the
other group of students on the conceptually oriented question and performed equally well on
the procedurally oriented question.

Key words: eigenvalues, eigenvectors, linear algebra, inquiry-oriented, student thinking

Linear algebra is a mandatory course for many science, technology, engineering, and
mathematics (STEM) students. The theoretical nature of linear algebra makes it a difficult course
for many students because it may be their first time to deal with abstract and conceptual content
(Carlson, 1993). Carlson (1993) also posited that this difficulty arises from the prevalence of
procedural and computational emphases in students’ coursework prior to linear algebra, and that it
might therefore be difficult for students to connect new linear algebra topics and their previous
knowledge. To address this issue, researchers have developed instructional materials for Inquiry-
Oriented Linear Algebra (IOLA; http://iola.math.vt.edu/) and strategies to help students develop
more robust, conceptual ways of reasoning about core topics in introductory linear algebra (e.g.
Wawro, Rasmussen, Zandieh, & Larson, 2013; Zandieh, Wawro, & Rasmusen, 2016; Andrews-
Larson, Wawro, & Zandieh, 2017).

Instructors who were not involved in the development of these kinds of research-based,
inquiry-oriented instructional materials have been shown to encounter challenges when
implementing such materials (Johnson, Caughman, Fredericks, & Gibson, 2013). Under an NSF-
supported project Teaching Inquiry-Oriented Mathematics: Establishing Supports (TIMES),
Johnson, Keene, & Andrews-Larson (2015) designed and implemented a system of instructional
supports based on research in instructional change in undergraduate mathematics education and
teacher learning and professional development in settings ranging from K-20 (e.g. Henderson,
Beach, & Finkelstein, 2011). These supports included sequences of student activities with
implementation notes, a three-day summer workshop, and weekly online workgroups during the
semester instructors implemented the materials in their teaching. This chapter examines
differences in performance and reasoning of students whose instructors received these supports
through the TIMES project (TIMES students) as compared to students whose instructors did not
receive these supports (Non-TIMES students). In particular, we examine assessment data to
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identify differences in student performance and reasoning about eigenvectors and eigenvalues.

In this work, we draw on data from an assessment that was developed to align with four
core introductory linear algebra concepts addressed in the IOLA instructional materials: linear
independence and span; systems of linear equations; linear transformations; and eigenvalues and
eigenvectors (Haider et al., 2016). In the assessment, there were two questions that addressed
eigenvalues and eigenvectors: question 8 and 9. Question 8 was a procedurally oriented question
related to the eigenvalue of a given matrix and question 9 focused on conceptual understanding of
the eigenvectors. The research questions for this analysis are:

= How does the performance of students whose instructors received TIMES instructional
supports for teaching linear algebra compare to the performance of other students?

* How did students reason about eigenvectors and eigenvalues in the context of questions
designed to assess aspects of student’s procedural and conceptual understanding? How

did reasoning differ for students of TIMES versus Non-TIMES instructors?

Literature

Linear algebra is a course in which students struggle to develop conceptual understanding
(Carlson, 1993; Dorier & Sierpenska, 2001; Dorier, Robers, Robinet & Rogalski, 2000). Across
the literature on the teaching and learning of eigenvalues and eigenvectors, procedural thought
processes feature prominently. For example, Stewart and Thomas (2006) pointed to ways in
which students often learn about eigenvalues and eigenvectors, where a formal definition is often
linked to a symbolic presentation and its manipulation. For the purpose of this paper, we will
draw on the following formal definition for eigenvectors and eigenvalues:

Suppose A is an nxn real-valued matrix and x is a non-zero vector in R™. We say the

vector x is an eigenvector of the matrix A if there is some scalar A such that Ax = Ax.

Further, in this case, we say that 4 is the eigenvalue associated with the eigenvector x.
Thomas & Stewart (2011) highlighted a difficulty students find when faced with formal
definitions for eigenvalues and eigenvectors: these definitions contain an embedded symbolic
form (Ax = Ax), and instructors often move quickly into symbolic manipulations of algebraic and
matrix representations such as transforming Ax = Ax to (A — Al)x = 0. Their findings that
students struggle to make sense of formal definitions, struggle to make use of geometric
representations of eigenvectors, and exhibit procedural orientations toward eigenvectors suggest
that such treatments might not provide sufficient opportunities for students to make sense of the
reasons behind these symbolic shifts (Thomas & Stewart, 2011).

Schoenfeld (1995) used eigenpictures in the 2x2 case (“stroboscopic” pictures) to show x
and Ax at the same time by using multiple line segments on the x-y-axis. He observed that
graphical representations of eigenvalues and eigenvectors got little attention in the literature and
that a picture may benefit more than algebraic presentations. It is also documented more generally
in linear algebra that students struggle to coordinate algebraic with geometric interpretations (e.g.
Stewart & Thomas, 2010; Larson & Zandieh, 2013) and the students’ understanding of
eigenvectors 1s not always well connected to concepts of other topics of linear algebra (Lapp,
Nyman, & Berry, 2010).

To support students in developing a better understanding of the formal definition and
associated interpretations of the eigenvalues and eigenvectors, researchers have developed a
variety of instructional interventions (e.g. Tabaghi & Sinclair, 2013; Zandieh, Wawro, &
Rasmusen, 2016). This paper examines student learning outcomes associated with the
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geometrically motived instructional approach detailed in Zandieh, Wawro, & Rasmussen (2016)
when paired with TIMES instructional supports; the approach will be described in Data Sources
& Study Context.

Theoretical Framing

Researchers often make reference to conceptual understanding and procedural
understanding when discussing students’ reasoning about mathematical concepts (Hiebert, 1986).
Hiebert and Lefevre (1986) defined conceptual knowledge as a “knowledge that is rich in
relationships. It can be thought of as a connected web of knowledge, a network in which the
linking relatonships are as prominent as the discrete pieces of information” (pp. 3-4). According
to Hiebert and Lefevre (1986) students have procedural knowledge if they can combine the formal
language and symbol representation systems with algorithms or rules in order to complete
mathematical tasks.

In this paper, we also draw on Larson and Zandieh’s (2013) framework for students’
mathematical thinking about matrix equations of the form Ax = b. This framework details three
important interpretations, relationships between geometric and symbolic representations within
each interpretation, and the complexity entailed in shifting among interpretations. The
interpretations are: (1) a linear combination interpretation, in which b is viewed as a linear
combination of the column vectors of A with x functioning as the set of weights on the column
vectors of A, (2) a system of equations interpretation in which x is viewed as a solution and 4 is
seen as a set of coefficients, and (3) a linear transformation interpretation in which x is viewed as
an input vector, b as an output vector, and A as the matrix that transforms x into b.

We argue these interpretations are helpful for making sense of students’ reasoning, but
that the framework may need to be modified or expanded to more fully account for student
reasoning in the context of eigenvalues and eigenvectors. In the context of eigenvectors and
eigenvalues, students need to coordinate a transformation interpretation with the equation Ax =
Ax, where the matrix A4 transforms the vector x by stretching, shrinking, and/or reversing the
direction of vector x. Additionally, students need to shift to a systems interpretation and consider
when the equivalent system (A — AI)x = 0 has a non-trivial solution in order to make sense of
standard procedures for computing eigenvalues and eigenvectors.

Data Sources & Study Context

In previous work, we have developed an assessment aligned with the inquiry-oriented
linear algebra (IOLA) instructional materials used in the TIMES project (Haider et al. 2016). This
paper-and-pencil assessment consists of 9 items, most of which include an open-ended response
component. The assessment was administered at the end of the semester, and students were
allocated one hour to complete the assessment.

In this analysis, we examine assessment data from 126 students across six TIMES
instructors and 129 students across three Non-TIMES instructors from different institutions in the
US. Non-TIMES linear algebra instructors were selected from either the same institutions as
TIMES instructors or a similar institution (e.g. preferably one from a similar geographic area,
with similar size of student population, with similar acceptance rate) to collect assessment data for
comparison of TIMES and Non-TIMES students. In this study, we focused on an in-depth
analysis of students’ reasoning on the assessment questions related to eigenvalues and
eigenvectors. Both items are shown in Figure 1.
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8. Is A = 2 an eigenvalue of [i g] ? Why or why not?

9. Suppose the vector x is a real-valued eigenvector of the matrix M and that the entries of
M are also real-valued.

a. What could be the result of the product Mx? (Check all that apply.)

u,

]

O i: Mx could be u O iv: Mx could be 0

O ii: Mx could be v O v: Mx could be x

O iii: Mx could be w O vi: None of the above

b. Explain your reasoning for your choice(s) in parta.

Figure 1. Assessment items related to eigenvectors and eigenvalues'

The inquiry-oriented approach to learn eigenvalues and eigenvectors associated with this
study is characterized in detail elsewhere (Zandieh, Wawro & Rasmussen, 2016).

Methods of Analysis

To answer our research questions, our analysis has two main components. The first
component of our analysis is quantitative in nature, as we aim to compare learning outcomes of
students whose instructors received TIMES instructional supports to those who did not. The
second component of our analysis is qualitative in nature, as we work to identify students’ ways
of reasoning on both the more procedurally oriented assessment item (Q8) and the more
conceptually oriented item (Q9). We follow Kwon, Rasmussen & Keene’s (2005) approach for
distinguishing assessment items that are conceptually oriented from those that are procedurally
oriented. In particular we consider Q8 to be more procedurally oriented in that there is a
commonly taught procedure that students can directly invoke (with some interpretations) to
produce a correct answer to the question. There is no such standard procedure for Q9, so we
consider it to be more conceptually oriented. In our qualitative analysis, we also look for
similarities and differences that emerge from considering the two groups.

To facilitate our quantitative analysis, we needed to score students’ responses to the two
assessment items. Specifically, we needed to develop a uniform system for assigning a number of
points to students’ responses that provide an overall assessment of the quality of their response
and the understanding reflected in that response. Question 9a required students to select which
subset of 6 possible options were appropriate responses, so 1 point was awarded to each of the
possible options for correctly selecting or not selecting that option. Both Question 8 and Question
9b were open ended response questions, and both of these were scored on a scale of 0 to 3 points.
The condensed version of the grading scheme for assigning points to open ended response
questions can be found in Appendix A. Additionally, Appendix A includes some explanation of

! Question 9 was retrieved from http://mathquest.carroll.edu and developed as part of an NSF-
supported project entitled Project MathVote: Teaching Mathematics with Classroom Voting. For
related research, see Cline, Zullo, Duncan, Stewart, & Snipes (2013).
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how this grading scheme aligns with our coding categories for #ow students reasoned, which are
described in greater detail below. Student work exemplifying common ways of reasoning with
explanation of points awarded are provided in the findings section.

To ensure agreement regarding points assigned to each response, two researchers looked at
every student’s attempt and assigned a score independently before comparing with each other. If
the two researchers assigned a different score to a particular student, they then discussed
according to the codebook and agreed on a common score for that student. If both researchers
disagreed about a particular score, then a third researcher was consulted to reach a consensus.

Once scores had been assigned to all student responses, descriptive statistics were generated to
examine the overall performance of students on the eigenvalue and eigenvector questions and to
compare TIMES students with Non-TIMES students for both questions. We were unable to
control for factors such as students’ mathematical background, major, and instructor’s teaching
experience, so this is an unavoidable limitation for our statistical analysis. However, we tried our
best to choose TIMES and Non-TIMES students either from same school or from similar schools.
This helps us establish similarity of students in TIMES and non-TIMES classrooms. Hence, we
compared the mean scores of TIMES and Non-TIMES students using two-tailed t-tests to identify
when differences of means were statistically significant.

In order to facilitate our qualitative analysis of students’ reasoning, we examined student
responses to the open-ended portions of question 8 and question 9. After examining the data
several times and refining the categories of the students’ reasoning about item 8, we sorted
students’ responses into 5 broad categories: (1) reasoning about the determinant, (2) reasoning
about A — Al without computing a determinant, (3) other, (4) students who explicitly indicated
they did not know, and (5) who left the item blank. Details about the categories are in Table 2.

In examining students’ responses to question 9, we found it helpful to distinguish
responses that were conceptually aligned with the formal definition for eigenvectors and
eigenvalues from those that were not. We were specifically interested in student reasoning that
appropriately coordinated interpretations of 4, x, and A in the context of the matrix equation Ax =
Ax. In particular, we say a student response “uses the eigen-concept” when there is evidence a
student is coordinating M, x, and A in at least one of the following ways:

e Algebraically: The matrix M is a fixed matrix that transforms the (nonzero) eigenvector x

in a particular way, namely such that the resulting vector Ax is a scalar multiple (1) of x.

e Geometrically: this can be interpreted to mean that multiplying x by A has the effect of

o stretching x in the same direction or opposite direction, or

o causing the resultant vector to lie along the same line as the vector x.
If a student drew on a transformation interpretation to make sense of Ax but did not coordinate
this appropriately with Ax in one of the ways mentioned above, we did not say that the student’s
response used the eigen-concept.

We grouped students’ responses to question 9 into five categories: (1) responses that used
the eigen-concept, (2) responses that focused on the role of the matrix M in a way that did not use
the eigen-concept, (3) other, (4) responses in which the student explicitly indicated he or she did
not know, and (5) responses that were left blank. Details about the categories are in Table 3.

After coding students’ responses to Q8 and Q9, we aggregated these responses into tables,
organized by the category assigned to each response and number of points awarded. We also
separated TIMES from Non-TIMES students in counting the number of responses in these
discrete categories. This allowed us to look for patterns in which approaches were conceptually
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oriented, which approaches lent themselves to arriving at correct answers, and differences in
approaches taken by TIMES and Non-TIMES students.

Findings

In order to answer our research question about how TIMES students compared to Non-
TIMES students, we first present our quantitative analysis of students’ performance on questions
(Q8) and (Q9), separating students of TIMES instructors from students of Non-TIMES
instructors. We then summarize findings from our coding of students’ approaches to these same
questions, providing examples of responses that highlight important trends in student reasoning.
Overview of differences in student performance

We highlight three central trends from our quantitative analysis. First, TIMES students
outperformed Non-TIMES on both items, with a strongly significant difference of means on the
conceptual item. Second, both TIMES and Non-TIMES students did better on the procedurally
oriented item than on the conceptually oriented item. Third, correlations between students’
performance on both the conceptual and procedural items were weak for students in both groups,
suggesting that the two items assessed relatively different aspects of student understanding. Note
that the last trend is not part of answering our research questions, it is more of a side observation
that emerged from our quantitative analysis and what we take it to mean.

To compare the performance of TIMES students with Non-TIMES students, we first
computed the mean and standard deviation for question 8, question 9a and 9b. To make a
‘cleaner’ comparison, we have separately included the mean and standard deviation of part a and
part b of question 9. We also compared question 8 with question 9b as they are naturally
comparable items.

The data presented in Table 1 showed that on the procedurally oriented question (Q8) the
mean score of TIMES students was greater than that of Non-TIMES students, but this difference
of means was not statistically significant with the available sample size. Similarly, there was not a
statistically significant difference in means on question 9a. However, in comparing the
performance of students in both groups on question 9b, we noticed that TIMES students
performed significantly better than the Non-TIMES students. The results of t-test indicated that
this difference of means was statistically meaningful. In this way, TIMES students outperformed
Non-TIMES students on the conceptually oriented question.

Question All Students TIMES Non-TIMES p-value (two-

Students Students tailed)

Q8 Mean: 1.85 Mean: 1.98 Mean: 1.71 t(125)=1.73

3 Points SD: 1.31 SD: 1.24 SD: 1.37 p=.08>.05

Q 9 (part a only) Mean: 3.73 Mean: 3.74 Mean: 3.71 t(249) = 0.56

6 Points SD: 1.68 SD: 1.76 SD: 1.61 p=.88>.05

Q9 (part b only) Mean: 0.79 Mean: 1.05 Mean: 0.54 t(125)=4.29

3 Points SD: 1.03 SD: 1.12 SD: 0.86 p <0.001

Table 1: Summary of results of quantitative analysis

Overall, students performed better on the procedurally oriented question (Q8) than the
conceptually oriented question (Q9). We compared Q8 to Q9b and found that the difference of
means for all students between Q8 and Q9b was also statistically meaningful with p-value (two-
tailed) less than 0.001.
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Since both problems we investigated in this study were related to eigenvectors and
eigenvalues, one might think that students’ performance on the two items should be correlated.
However, quantitative analysis revealed a positive but weak correlation between students’
performance on the two questions, the Pearson correlation coefficient r = 0.30 for all students.
Recall that a correlation coefficient measures the degree of relationship between two variables and
ranges from -1 to 1, where the sign indicates the direction of the relationship and the distance
from zero indicates the strength of the relationship (e.g. 1 means the two variables are highly
correlated and 0 means there is very little or no correlation between the two variables). For
TIMES students, the correlation between the two items was r = 0.36 as compared to the
correlation for Non-TIMES which was r = 0.22. This suggests two things: first, that the two items
measure different aspects of student understanding of eigenvalues and eigenvectors. Second, it
shows that performance on the procedurally and conceptually oriented questions was more highly
correlated for TIMES students.

Trends in student reasoning on procedurally oriented question (QS8)

In this section, we provide our qualitative analysis of question 8. In particular, we
highlight two common approaches to this problem: approaches that involve reasoning about the
determinant, and approaches that involve reasoning about A — Al without computing a
determinant. The majority of students who reasoned about th