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Preface

As part of its on-going activities to foster research in undergraduate mathematics education and the

dissemination of such research, the Special Interest Group of the Mathematical Association of America

on Research in Undergraduate Mathematics Education (SIGMAA on RUME) held its twentieth annual

Conference on Research in Undergraduate Mathematics Education in San Diego, California from February

23 - 25, 2017.

The conference is organized around the following themes: results of current research, contemporary theo-

retical perspectives and research paradigms, and innovative methodologies and analytic approaches as they

pertain to the study of undergraduate mathematics education.

The proceedings include several types of papers that represent current work in the field of undergraduate

mathematics education, each of which underwent a rigorous review by two or more reviewers:

– Conference Papers are elaborations of selected RUME Conference Reports

– Contributed Research Reports describe completed research studies

– Preliminary Research Reports describe ongoing research projects in early stages of analysis

– Theoretical Research Reports describe new theoretical perspectives for research

– Posters are 1-page summaries of work that was presented in poster format

The proceedings begin with the winner of the best paper award, the paper receiving honorable mention,

and the paper receiving meritorious citation; these awards are bestowed upon papers that make a substantial

contribution to the field in terms of raising new questions or providing significant or unique insights into

existing research programs. These papers are followed by the pre-journal award winner, which was selected

based on its potential to make a substantial contribution to the field; this award is limited to authorship teams

that only includes graduate students, recent PhDs (within 2 years of graduation), and/or mathematicians

who are transitioning to mathematics education research.

The conference was hosted by San Diego State Univerisity and the University of California San Diego.

Their faculty and students provided many hours of volunteer work that made the conference possible and

pleasurable, and we greatly thank them for their support.

Many members of the RUME community volunteered to review submissions before the conference and

during the review of the conference papers. We sincerely appreciate all of their hard work.

We wish to acknowledge the conference program committee for their substantial contributions to RUME

and our institutions. Without their support, the conference would not exist.

Last but not least, we would like to thank Tim Fukawa-Connelly, the previous conference organizer, for

his work setting up the 2017 conference and providing guidance throughout the process. His e�orts over the

past four years have significantly contributed to the growth of the conference and the strengthening of our

community.

Aaron Weinberg RUME Conference Organizer

Chris Rasmussen & Je�rey Rabin, RUME Conference Local Organizers

Megan Wawro, RUME Program Chair

Stacy Brown, RUME Coordinator
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Leveraging Real Analysis to Foster Pedagogical Practices 
 

Nicholas Wasserman Keith Weber William McGuffey 
Teachers College, Columbia 

University 
Rutgers University Teachers College, Columbia 

University 

Real analysis is frequently a required course for prospective secondary mathematics teachers. 
However, most teachers view real analysis as unnecessary and unrelated to the work of teaching 
secondary mathematics. The purposes of this paper are to (i) explore why real analysis, as it is 
conventionally taught, is not helpful to many teachers, (ii) present a new instructional model for 
how the course can be taught to increase its relevance, and (iii) present a case study in which 
our instructional model was implemented in a real analysis course and led to productive changes 
in teachers’ actual pedagogical practice. 

Key words: Real Analysis, Secondary Teacher Preparation, Advanced Mathematics, Pedagogical 
Practice 

1. Introduction 

In the United States and elsewhere, prospective teachers of secondary mathematics are 
required to complete extensive coursework in undergraduate mathematics. Such coursework 
usually includes advanced upper-level courses for mathematics majors (e.g. CBMS, 2012), with 
many institutions now requiring future teachers to complete the equivalent of an undergraduate 
degree in mathematics (Ferrini-Mundy & Findell, 2010). Consequently, prospective secondary 
mathematics teachers often complete more courses in advanced mathematics from a mathematics 
department than mathematics education courses that focus on teaching methods and secondary 
content. The key point is that prospective mathematics teachers’ experiences in their advanced 
mathematics courses are a significant part of their preparation for teaching mathematics. 

The requirement that prospective mathematics teachers complete advanced mathematics 
courses raises three important questions. First, if prospective teachers complete a course in 
advanced mathematics such as real analysis, are they better able to teach secondary 
mathematics? Second, given that experiences in advanced mathematics courses do not appear to 
be productive for secondary teacher preparation, is there a way to restructure advanced 
mathematics courses such as real analysis so that they better meet the needs of prospective 
teachers? Third, what evidence is there that an innovative instructional approach in an advanced 
mathematics course can influence teachers’ actual pedagogical practice in secondary classrooms? 

Our paper is centered around investigating these three questions. We answer the first research 
question in sections 2 and 3. In section 2, we synthesize the extant literature, which demonstrates 
that prospective teachers do not appear to benefit from taking advanced mathematics courses. 
We use existing theoretical frameworks regarding transfer (Lobato, 2012) to explain why this is 
the case in section 3. We address the second research question in section 4, where we present a 
transformative instructional model for teaching advanced mathematics to prospective 
mathematics teachers and describe theoretical reasons for why instruction based on this model 
can be beneficial to prospective teachers. We illustrate this instructional model with one example 
module in the beginning of Section 5. We address the third question in Section 5.3, showing that 
teachers who participated in this module in a real analysis course changed their pedagogical 
practice. At a minimum, this provides a theoretically-motivated existence proof that advanced 
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mathematics courses can potentially benefit teachers and influence their classroom practice if 
taught in a productive manner. 

 
2. Literature Review 

2.1. The Influence of Advanced Mathematics Courses on Subsequent Teaching 
Prospective secondary mathematics teachers are typically required to complete many courses 

in advanced mathematics. However, as several scholars have noted, there is little research on 
whether or how these courses influence prospective teachers’ future pedagogical practice (e.g., 
Deng, 2008; Moriera & David, 2007; Ticknor, 2012), which is fundamentally important for 
practice-based approaches to teacher knowledge and teacher education (e.g., Ball, Thames, & 
Phelps, 2008). Here, we discuss two findings that suggest that completing such courses have 
only a modest effect on prospective teachers’ pedagogical behavior. First, large-scale studies 
have found a weak relationship between the number of advanced mathematics courses that a 
teacher has completed and the achievement of that teacher’s students (Darling-Hammond, 2000; 
Monk, 1994). For instance, Monk (1994) wrote: 

[T]he use of alternative ‘cut-points’ revealed that the model performed best when the 
distinction was drawn between having five or fewer versus more than five undergraduate 
mathematics courses. The addition of courses beyond the fifth course has a smaller effect. 
In contrast to 1.2% increase in pupil performance reported earlier, the addition of a 
mathematics course beginning with the 6th course is associated with a 0.2% increase (p. 
130). 

Because most mathematics majors do not take advanced mathematics courses until after they 
have completed five courses, including a four-semester calculus sequence and a course in linear 
algebra, Monk’s analysis suggests that prospective teachers will reap only a small benefit from 
completing a subsequent advanced mathematics course. 

Second, when practicing secondary mathematics teachers have been asked how their 
experiences in advanced mathematics courses have influenced their teaching, many teachers 
claimed that their advanced coursework did not contribute to their development as teachers (e.g. 
Goulding, Hatch, & Rodd, 2000; Ticknor, 2012; Zazkis & Leikin, 2010). Few could cite specific 
instances of how their knowledge of advanced mathematics influenced their secondary teaching 
(Rhoads, 2014; Wasserman & Ham, 2013; Zazkis & Leikin, 2010). Wasserman et al. (2015) 
found that this occurred even when the teachers demonstrated an understanding of the advanced 
mathematics that they were taught. 

2.2. Postulated Reasons for why Advanced Mathematics does not benefit Prospective 
Teachers 

Researchers have proposed two reasons for why advanced mathematics courses might not 
benefit prospective mathematics teachers, even if the prospective teachers understood the content 
that they were studying. The first reason is that the representation systems used in advanced 
mathematics differ substantially from those used in secondary mathematics (Deng, 2008; 
Moreira & David, 2007). For instance, Moreira and David (2007) presented a theoretical analysis 
of how advanced mathematics courses framed concepts from the secondary curriculum. They 
noted that in advanced mathematics courses, concepts usually were introduced using a single 
canonical formal representation. For example, the familiar concept of fractions was defined as an 
equivalence class of ordered pairs in 𝒁	 × 	𝒁\{0} where (a, b) and (c, d) were equivalent if ad = 
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bc. However, Moreira and David argued that effective teaching of secondary mathematics often 
required the use of multiple representations, many of which were visual but not necessarily 
formal. For example, fractions might be represented both numerically and pictorially as pie 
charts.  

A second reason is that the goals of teachers of advanced mathematics and mathematics 
educators may not align with those of prospective teachers. Ticknor (2012) argued that many 
prospective teachers’ primary goal in their advanced mathematics courses is merely to pass the 
course, which is in part due to students being intimidated by the material and having a fear that 
they may fail (e.g., Ticknor, 2012; Pinto & Tall, 1999; Weber, 2008). Ticknor used this 
theoretical frame to account for her case studies of prospective teachers in an abstract algebra 
course learning the skills to earn passing grades on examinations but not reflecting on how the 
material might relate to solving equations in secondary algebra. The coping strategies that 
prospective teachers adapt to survive their advanced mathematics courses may bear little 
relationship to what they do in their classrooms. 

3. Theoretical Perspective 

3.1. A Trickle-Down Model 
From our point of view, the anticipated benefits of having prospective teachers complete a 

course in advanced mathematics can be exhibited by the “trickle-down” model presented in 
Figure 1 (Wasserman, et al., in press), which considers the relationships between i) advanced 
mathematics, ii) secondary mathematics, and iii) teaching secondary mathematics. This model 
highlights that most of the material covered in an advanced mathematics course consists of 
advanced mathematics, where little or no attention is paid to secondary mathematics or issues of 
teaching. However, the hope is that the advanced mathematics provides an opportunity for the 
prospective teacher to better understand certain aspects of the content of secondary mathematics. 
For instance, by learning the zero divisor property about rings in abstract algebra, the prospective 
teacher may develop a deeper understanding for why one can solve polynomial equations by 
factoring polynomials. Some instructors of advanced mathematics may be explicit about such 
connections between advanced mathematics and the content of secondary mathematics, but in 
many other cases, prospective teachers are asked to make these connections themselves. Next, 
the expectation is that prospective teacher’s better understanding of the secondary mathematics 
content will inform their future teaching of mathematics. In our experience, exactly how 
prospective teachers should teach differently is rarely discussed in advanced mathematics 
courses. Prospective teachers are expected to use their understanding of advanced and secondary 
mathematics to improve their teaching more or less on their own. 

 
Figure 1. Trickle-down model for teaching advanced mathematics to secondary teachers. 

3.2. An Issue of Transfer 
As Figure 1 illustrates, the justification for having prospective teachers complete advanced 

mathematics courses is based on the belief that a transfer of knowledge will occur. The 
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expectation is that prospective teachers’ experience in a source domain (as students in an 
advanced mathematics course) will lead to improved performance in a target domain (as teachers 
in secondary mathematics), even though the exact nature and mechanisms of this transfer are 
often unspecified (Wasserman et al., in press).  

Lobato (2012) has proposed two distinct lenses by which the issue of transfer can be studied: 
the mainstream cognitive perspective (MCP) on transfer and actor-oriented transfer (AOT). We 
believe both can offer insight into why the model in Figure 1 may not help prospective teachers 
with regard to their teaching. 

According to Lobato (2012), using the MCP, transfer occurs when an individual generalizes 
a desired abstract piece of knowledge from a source domain, recognizes this piece of knowledge 
as relevant in a future target domain, and then successfully adapts this piece of knowledge to 
respond to a situation in the target domain. The extent to which this will occur depends on (i) the 
type of behavioral change that is desired and (ii) similarities between the source domain and the 
target domain. Wagner (2010) noted that the disposition of many researchers in MCP is to treat 
judgments about (i) and (ii) as independent of the participant who is doing the transferring, “as if 
situational structure can be directly perceived in the world” (p. 364).  

For (i), transfer is more likely to occur between situations if the change in behavioral 
performance involves executing a previously learned procedure more quickly. Transfer is less 
likely to occur if the behavioral change relies on an abstract principle to change how one would 
approach the problem and there is no prompting that the abstract principle is relevant (Barnett & 
Ceci, 2002). The latter behavioral change is an instance of far transfer, which is widely accepted 
as difficult to achieve. Of course, it is exactly the type of change we are hoping to see in 
prospective teachers when they take an advanced mathematics course.  

For (ii), Barnett and Ceci (2002) described six ways in which the target situation may differ 
from the source situation: (a) knowledge domain, (b) physical context, (c) temporal context, (d) 
functional context (academic vs. play), (e) social context (individual vs. large group), and (f) 
modality (lecture vs. writing). For each aspect that Barnett and Ceci highlighted, there are 
substantial differences between the context in which prospective teachers learn advanced 
mathematics and the contexts in which they will be teaching. We elaborate each point: (a) 
prospective teachers learn about advanced mathematics as it is expressed with formal symbolic 
notation but when they teach secondary mathematics, they often use multiple informal 
representations (Moreira & David, 2007); (b) prospective teachers learn in university classrooms 
but teach in high schools; (c) the time gap between completing a real analysis course and 
teaching can be several semesters; (d) the goal of advanced mathematics involves establishing 
claims via proof while the goal of a secondary mathematics teacher involves enhancing student 
understanding; (e) the prospective teacher goes from being a student usually working 
individually (directed by the course instructor) to being a teacher (and leader) of many students; 
and (f) the teacher switches from writing homework solutions to lecturing, preparing lessons, and 
leading other instructional activities. Again, these descriptions indicate the goal of improving 
prospective teachers’ pedagogy by teaching them advanced mathematics is an instance of far 
transfer. Given the distance between the source and target domains, we would expect the 
influence of advanced mathematics on the teaching of secondary mathematics to be minimal. 

Lobato (2012) offered an alternative approach to the MCP that she labeled Actor Oriented 
Transfer (AOT). In AOT, the researcher seeks to account not by the similarities and differences 
that the researcher observes between source and target domains, but rather the similarities and 
differences that the individual doing the transferring finds relevant and salient. In this 
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perspective, the researcher is not so much interested in predicting or measuring whether 
normative transfer occurred, but rather aims to document any transfer that occurred (i.e., specify 
all the ways that an individual’s experience in a target domain affected subsequent performance 
in a source domain, including ways that the researcher might find unproductive) and account for 
this by the individual’s perceptions of the source and target domains. AOT offers an additional 
insight into why prospective teachers might not benefit from completing a course in advanced 
mathematics. Wasserman et al. (2015) interviewed 14 prospective and in-service teachers about 
their experiences in real analysis. Many participants found real analysis irrelevant for their 
teaching because the participants expected to use the proofs that were presented as explanations 
that they could provide to students in their secondary mathematics courses. Because the real 
analysis proofs were lengthy and used technical terminology (the concept of limit, epsilons and 
deltas), the participants found them useless for their teaching. Hence, when studying real 
analysis, these participants were not focusing on the relationships between concepts (as 
researchers often do) but what was salient to them was the literal proofs and explanations that 
were presented and whether or not they could be transported “as is” to their own classrooms. 

4. An Alternative Model for Teaching Advanced Mathematics to Secondary Teachers 

We present an alternative instructional model for how advanced mathematics can be taught 
to prospective teachers in Figure 2. In essence, we are “book-ending” the study of advanced 
mathematics by beginning and ending our lessons with a discussion of teaching secondary 
mathematics.  

 
Figure 2. Alternative model for teaching advanced mathematics to secondary teachers. 

The left side of the figure consists of building up from (teaching) practice. In this phase, we 
begin an instructional unit with a secondary teaching situation – oftentimes in the form of a 
comic strip using LessonSketch Software1 (Herbst et al., 2011). Teachers are asked to evaluate a 
teachers’ pedagogical action or to provide a pedagogical response to that situation (or both). 
These situations were chosen so that prospective teachers had to engage in the high-leverage 
teaching practices (HLPs) that Ball and her colleagues documented as central to the work of 
teaching (TeachingWorks, 2013). Such HLPs include explaining and modeling content, 
establishing productive classroom norms, eliciting and interpreting student thinking, and 
providing feedback to students. The right side of the figure is stepping down to (teaching) 
practice. After engaging with the advanced mathematics, such as studying definitions, theorems, 
and proofs, prospective teachers are asked to reconsider the secondary mathematics and 
pedagogical situations that they had previously discussed in light of the advanced content. Their 
homework consists of them doing traditional advanced mathematics exercises (i.e., writing 
proofs), answering questions about secondary mathematics, and providing responses to other 
pedagogical situations. 
                                                
1 This software is available at Patricio Herbt’s Lesson Sketch webpage: https://www.lessonsketch.org/ 

20th Annual Conference on Research in Undergraduate Mathematics Education 5



Our model (Wasserman, et al., in press) in Figure 2 has several theoretical benefits over the 
“trickle-down” model presented in Figure 1 that undergirds the way advanced mathematics is 
typically taught to prospective teachers. First, our learning goals include specific pedagogical 
behaviors that we would like prospective teachers to exhibit as a result of completing our 
module, goals that we are able to convey to our students and that we assess. As Barnett and Ceci 
(2002) argued, it is easier for individuals to transfer specific behavioral actions to a new domain 
than it is to transfer abstract principles. Second, in accord with our practice-based view of 
secondary mathematics teacher education, our lessons are situated within the context of teaching 
secondary mathematics. Hence, our modules are closer to the context of secondary teaching than 
is typical of a real analysis course. Prospective teachers are asked to act as the teacher when 
responding to pedagogical situations, including providing oral explanations to a hypothetical 
class of students, interpreting hypothetical students’ mathematical justifications, and providing 
oral and written feedback to student work, all of which should be accessible to a secondary 
student. Of course, there are differences between responding to our pedagogical situations and 
the actual craft of teaching (e.g., in our situations, teachers do not need to worry about time 
management or classroom management) and there are contextual differences between the two 
that cannot be addressed (e.g., there still is a time lapse and a change in physical location). 
Nonetheless, compared to the traditional model, the gap between learning real analysis and 
teaching secondary mathematics has been closed considerably, which Barnett and Ceci (2002) 
contended will increase the likelihood of successful transfer.  

Perhaps most importantly, our model will help prospective teachers notice the aspects of real 
analysis that we think are important for teaching. Previous research has demonstrated that 
teachers do not find advanced mathematics helpful for their teaching because they used 
unproductive coping strategies (e.g., rote memorization) to survive their courses with a passing 
grade (Ticknor, 2012) or that they take advanced mathematics courses with an eye toward 
learning proofs that they could share with their future students (Wasserman et al., 2015). Under 
our alternate instructional model, prospective teachers’ grades depend in part on their responses 
to pedagogical situations, which means they cannot simply ignore the pedagogical implications 
of the real analysis course. As successfully responding to pedagogical situations goes beyond 
reciting a proof that was learned in real analysis, prospective teachers are asked to broaden their 
views on how real analysis can be beneficial to them in their future professional work. 

5. An Illustration of our Model 

The goal of this section is threefold. First, we illustrate how we used our instructional model 
to design real analysis modules for prospective teachers. Second, we portray how this was 
implemented in a real analysis classroom and how prospective teachers interacted with one 
module. Third, we describe the results of a study in which we followed six teachers into their 
secondary classrooms and illustrate how their pedagogy changed as a result of completing our 
modules. This provides an existence proof that real analysis can be relevant for the teaching of 
secondary mathematics as well as an illustration that instruction based on our module has the 
potential to foster these changes. 

5.1. Overall Module Design 
To generate our modules, we engaged in the following process. Our research team examined 

the first six chapters of Fitzpatrick’s (2006) real analysis textbook, identifying any overlap 
between the concepts covered in Fitzpatrick and the Common Core State Standards in 
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Mathematics (CCSS-M, 2010). Once these topics were identified, we tried to generate 
pedagogical situations with the following attributes: (i) the pedagogical situations were authentic, 
(ii) the prospective teachers were asked to engage in a High Leverage Practice (TeachingWorks, 
2013) that is central for teaching, and (iii) successfully engaging in these High Leverage 
Practices required mathematical knowledge that could be informed by real analysis. We 
developed 12 modules based on this approach. 

5.2. One Module: Considering Derivative Proofs as “Attending to Scope” 
5.2.1. Research context and data collection. The data presented in this section is part of a 

larger corpus of data. We are currently in the second year of a three-year project using design 
research. We are engaged an iterative process in which we teach a real analysis course using the 
12 modules that we generated. The data presented here are from the first iteration of the course 
that was taught by the first author. The course had 31 prospective and in-service teachers who 
agreed to participate. In this paper we focus on the “Attending to Scope” module, which took 
place across two 100-minute sessions. All classes were videotaped and all teacher conversations 
were audio-taped, and all homework assignments and reflective journal entries were collected. 

5.2.2. Building up from (teaching) practice. In their professional work, teachers must explain 
content, practices, and strategies (e.g., TeachingWorks, 2013); for this particular module, we 
focus on a mathematical practice that mathematics teachers should engage in – attending to the 
scope to which an explanation, idea, or justification applies. For example, in trying to help 
elementary students understand subtraction, some teachers might state: “you cannot subtract a 
larger number from a smaller one.” This explanation has a limited scope – it is only accurate 
when one is considering positive numbers. Acknowledging the limitation of scope in 
explanations is an important component of teaching. As Leinhardt, Zaslavky, and Stein (1990) 
noted, “a primary feature of explanations is the use of well-constructed examples, examples that 
make the point but limit the generalization, examples that are balanced by non- or counter-cases” 
(p. 6). Real analysis, with its careful attention to stating explicitly the conditions for when a 
statement applies, is a domain that is well-suited for helping prospective teachers recognize the 
importance of being careful with their language, particularly as it relates to considering the 
mathematical scope to which statements or theorems apply. 

We began the module by presenting teachers with the cartoon in Figure 3, asking the teachers 
to evaluate the pedagogical quality of two of Mr. Ryan’s explanations – the exponent statement 
and the power rule statement. (Mr. Ryan was a fictitious comic teacher who appeared in many of 
our modules.) In addition to a variety of other pedagogical issues that might be of concern, both 
explanations that Mr. Ryan gave were limited in scope. During the module, all groups of teachers 
highlighted limitations of the explanations, but only two groups highlighted the limitation in 
scope of both explanations (e.g., the power rule statement doesn’t when you need the “chain 
rule”). Rather than the “mathematics of the explanation,” most teachers’ comments instead dealt 
with the “explanation of the mathematics” – for example, that students might misinterpret what 
Mr. Ryan had said (e.g., ‘repeated multiplication’ might mean “2x3x5x7”) or that Mr. Ryan’s 
explanations were too procedural. The next part of the module focused on the secondary 
mathematics, asking teachers to state the number sets (or objects) for which Mr. Ryan’s 
explanations would be valid. Therefore, this task prompted the groups that did not attend to 
scope previously to consider this facet of his explanations; all groups identified the limited scope 
to which these statements would apply during this portion of the module.  
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Figure 3. A classroom scenario. 

5.2.3. Real analysis. During the real analysis portion, we first presented a standard proof of 
the power rule for derivatives using the binomial theorem that appears in many secondary 
calculus textbooks. Teachers were asked to which number set each step in the proof applies (N, 
Z, Q, or R). All groups of teachers eventually recognized that the proof using the binomial 
theorem was only correct for the natural numbers, with many expressing surprise because they 
had always assumed that the proof that they read applied to all real numbers (as they knew that 
the power rule is valid for all real numbers). Afterwards, the instructor presented a sequence of 
proofs, each of which expanded the scope (Z, Q, R) to which the power rule for derivatives 
applied, which, along the way, involved proving other derivative rules like the product, quotient, 
chain, and inverse function rules. These derivative proofs are nearly ubiquitous in real analysis 
courses. What is critical is that the product, quotient, chain and inverse function rules were 
presented as lemmas for the goal of proving the general power rule. 

5.2.4. Stepping down to (teaching) practice. After the proofs were presented, we stepped 
back down to practice by asking the teachers to discuss, “When, if ever, would the statements 
made by the teacher be appropriate? Describe the specific context.” For their consideration, they 
were also given specific classroom contexts for each statement (graphing exponential functions 
for the exponent statement, and an end-of-year review for the power rule statement). During this 
time, all groups of teachers further examined the mathematical limitations of each statement, 
identifying more exact constraints around which each was true. In addition, the groups discussed 
various contextual factors. For example, one group mentioned “this only makes sense for little 
kids” (with regard to the exponent statement), and another group noted “they’re reviewing” as a 
reason that someone might make somewhat informal statements (with regard to the power rule 
statement). Some groups also discussed that the power rule statement would not ever be 
pedagogically appropriate unless the teacher was only intending to teach a procedure; other 
groups suggested “fixes” to the statements to make them more mathematically precise. What is 
important is that the teachers had meaningful discussions around the use of statements with 
limited scope in mathematics education; indeed, one student claimed, “I feel like I just 
discovered gold, math gold,” which we took to indicate that she found the discussion of the 
limitations of statements to be very valuable. 

5.2.5. Teacher performance on homework tasks. In addition to asking students to prove 
several real analysis theorems, teachers were presented with two statements: “The perimeter is 
just the sum of all side lengths” (perimeter statement) and “Remember, to multiply a number by 
ten, just add a 0 to the end” (add zero statement). The teachers were asked to, “Determine for 
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what set(s) of objects the statement is true. If there are any, provide an example of a set(s) of 
objects for which the statement is not true. Discuss in what mathematical contexts might the 
statement by the teacher be appropriate, if ever? When might it be in appropriate, if ever?” For 
both tasks, all 31 teachers identified at least one valid counterexample that revealed the 
limitations in scope. For instance, 29 of the 31 teachers noted that the statement about the 
perimeter would not apply to a curved figure and 29 of the 31 participants cited a rational 
number as an instance in which you cannot multiply by 10 by adding a zero at the end. 

The teachers were also asked to submit a reflective journal entry in which they described 
what, if anything, they learned from this week’s class. Of the 27 teachers who completed this 
assignment, 26 mentioned the importance of language and 17 cited the importance of attending 
to the scope of an explanation and letting students know if there were sets of objects to which the 
statement would not apply. For instance, the following response was representative: 

We tend to make general statements for the sake of time without even realizing we are 
doing it. This past week in class I learned that as teachers, we must think about the 
statements we make and the limitations we place on students learning moving forward… 
This statement made by the teacher does not hold for all cases, therefore this is not a 
mathematically precise statement. 

In summary, the teachers’ homework assignment provided some suggestive evidence that our 
module went well. The prospective teachers’ journal entries indicated that the majority of the 
prospective teachers indicated an increased appreciation for attending to the scope of the 
explanations that they provide, and, the prospective teachers could recognize the limitations of 
scope in mathematical explanations if they were prompted to do so. However, our primary 
concern was not teachers’ performance on these written assignments but whether completing this 
module would influence their actual pedagogical practice. 

5.3. Influence on Teachers’ Practice 
5.3.1. Data collection. The first iteration of our experimental real analysis course was in 

Spring 2016. For the 2016-2017 school year, six teachers volunteered to participate in a follow-
up study. Of the volunteers, five were in-service teachers with under seven years experience, and 
one was a pre-service teacher who obtained her first job (Ms. J, discussed below). Five 
participants taught in public schools and one taught in a private school; all schools were around a 
large urban metroplex. For the courses we observed of these teachers, two teachers taught 
geometry, two taught calculus, one taught Algebra II, and one taught pre-calculus. 

For each teacher, the first and third authors of the paper visited their classroom up to six days 
during the academic year. For each visit, we observed a one-period lesson that was 45 minutes or 
90 minutes in length. Lessons were audiotaped (from a microphone on the teacher) and the 
researcher kept field notes for each lesson, including transcribing all inscriptions on the 
whiteboard or projector. We videotaped the lessons as well when it was possible to do so (but 
school district regulations sometimes did not allow this). After each classroom visit, the teachers 
participated in a post-interview in which the interviewer recalled common occurrences or key 
events in their class and asked them to describe why they engaged in those specific behaviors 
during the lesson. We then asked them whether any of their classroom actions were influenced 
by their experience in our experimental real analysis course. 

We say a teaching unit displayed “attention to scope” when the following three conditions 
occurred: (i) during the lesson, the teacher paid explicit attention to the scope of a teacher or 
student-generated claim in their lesson; (ii) in the post-interview, they highlighted this excerpt as 
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an instance where their experience in real analysis influenced their teaching; and (iii) in the post-
interview, they explicitly mentioned how the real analysis course led them to be more mindful of 
the language that they used and/or the limitations in the claims that they made. 

5.3.2. Results. Across the six teachers, we made 31 observations. (Due to scheduling 
constraints by the school districts, we still have to make 4 observations for 3 of the teachers). In 
these 31 observations, the observed teaching unit displayed “attention to scope” on 17 occasions. 
That is, in the majority of our observations, we observed the teachers attending to scope in their 
explanations and citing their experiences in real analysis as a reason that they did so. We use two 
lessons to illustrate. 

In our first example, Ms. J, a first-year teacher, was teaching a pre-calculus course about 
polynomials. During her lesson, she covered the Remainder Theorem, the Factor Theorem (i.e., 
for a polynomial f(x), f(c) = 0 if and only if the factor (x-c) divides f(x)), synthetic division, and 
the Rational Zero Theorem. Throughout the lesson, Ms. J emphasized the limitations to the scope 
of statements that she gave. We illustrate two excerpts from the lesson in Figures 4 and 5. 

 
Mathematics Explanations and class dialogue (emphasis added) 
Remainder Theorem: If a polynomial 
𝑓(𝑥) is divided by 𝑥 − 𝑘, then the 
remainder is 𝑟 = 𝑓(𝑘). 
 
(Example. Find the remainder of 
𝑓(𝑥) = 2𝑥1 − 𝑥 + 12 when divided 
by 𝑥 + 3.) 
 
Proof. What’s the “r” of 𝑓(𝑥) when 
𝑓(𝑥) is divided by (𝑥 − 𝑘)? 
𝑓(𝑥) = (𝑥 − 𝑘)𝑞(𝑥) + 𝑟 
𝑓(𝑘) = (𝑘 − 𝑘)𝑞(𝑘) + 𝑟 
𝑓(𝑘) = 0 ∙ 𝑞(𝑘) + 𝑟 
𝑓(𝑘) = 𝑟 
 

Ms. J: So let’s think about that. I have some polynomial and I’m 
dividing by 𝑥 − 𝑘. Instead, I can take this k and evaluate my 
function at that value and that will be my reminder when I 
divide by it .. Do you want to see why this works? It’s pretty 
quick. And I think it's worth seeing so we have some 
understanding of how this ends up working…It cancels out 
because I have (𝑘 − 𝑘), so that’s zero times some 
polynomial. So then I get 𝑓(𝑘) = 𝑟. Kind of cool to actually 
see why that works. And then it feels a little less arbitrary. 
It’s just I plug it in and I know why because Ms. J told me 
to. (pause) Again, this only works when it’s (𝐱 − 𝐤) of 
degree one divisor, so keep that in mind. If it’s (𝐱𝟐 − 𝟓), 
we can’t do this. Kind of like synthetic division, remember 
synthetic division only worked when we had terms, divisors 
of “x plus or minus a number.”  

Figure 4. Ms. J’s classroom instruction around the Remainder Theorem. 

Mathematics Explanations and class dialogue (emphasis added) 
Example. 𝑓(𝑥) = 3𝑥; − 2𝑥1 + 𝑥 −
5 divided by 𝑥 − 1. 

 

         

So, 3𝑥1 + 1𝑥 + 2 + =;
>=?

. 
 
 

Ms. J: We’re saying 𝑓(𝑥) = 3𝑥; − 2𝑥1 + 𝑥 − 5 divided by 𝑥 −
1. Synthetic division is a tool we can use to divide 
polynomials when our divisor is a degree one polynomial, 
right? “x plus or minus a number.” That’s the only time 
we can use synthetic division. I can’t say that enough. 

… 
Student A: For both divisions, it’s only if it’s to the degree one? 
Ms. J: For both divisions, meaning what? 
Student A: (Long) Division and synthetic division 
Ms. J: Long division… Synthetic division is an algorithm that 

mathematicians figured out, when if it’s a specific case, it 
saves you time from long division. So that’s why it looks 
different because it’s an algorithm for a specific type of 
situation, type of division problem. The long division works 
for everything. 

1 3 −2 1 −5
↓ 3 1 2

3 1 2 −3
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Figure 5. Ms. J’s classroom instruction about synthetic division. 

In Figures 4 and 5, Ms. J explicitly noted a limitation in the scope of both the Remainder 
Theorem and synthetic division – namely, that the divisor must be a linear factor of degree one, 
of the form 𝑥 − 𝑘. At times, these were her explanations, and in other cases they were prompted 
by student questions – but in both situations, she was very explicit about the limitations in scope. 
Further, at a different point, one student asked her about other linear factors, such as 2𝑥 − 2. The 
guiding notion in her response was that synthetic division works for factors of the form, 𝑥 − 𝑘, 
and this explicit attention to scope helped her resolve how to respond to the student. In the post-
interview, Ms. J discussed why she insisted on clarifying the scope of many of her statements. 

Ms. J:  I think that there are common mistakes made as a student if you hear a rule. Like 
great, a rule, I can do synthetic division, especially if it looks like x plus or minus 
something. But they might think 𝑥1 plus or minus something, or just like it’s a trick,  
I’ll plug the last number in for the example of synthetic division. So knowing the 
common mistakes and trying to prevent them is one reason I think it’s important to 
say that […] I think that this reminds me of like the exponents lesson, where I make 
these vast like generalizations, like exponents, just like repeated multiplication. And 
it’s like, well, that’s true if, you know, it’s a positive integer and things like that. But 
the thing is if you don’t say them, it could get confusing later, I think for them. So 
like that one would have caused them to make mistakes, but it’s just explaining I’m 
simplifying this and here’s the restriction that I need to say to make this so. 

We wish to highlight two things in this excerpt. In the first italicized section, Ms. J shows 
how she was able to apply the theme of attending to scope flexibly in coordination with her other 
pedagogical knowledge – in this case, her knowledge of common student mistakes. She hoped 
that by highlighting limitations in scope, it would reduce the chance of student mistakes in the 
future. In the second italicized section, Ms. J references the exponents lesson (i.e., the module 
described previously) as part of the rationale for her justification of why teachers should avoid 
vast generalizations that could confuse students at a later time. Later in the post-interview, Ms. J 
again emphasized the importance of her experiences in the real analysis course. 

Ms. J:  I attribute that probably one of the biggest things, like one of the biggest take-aways I 
had from the analysis course because the exponents one really threw me off. Like I 
remember we had to do a problem—I think I even talked about this before, but I just 
really remember it. We had to do a problem for homework or something where it 
was, you know, what’s two squared? What’s two to the one-half? And then it was 
like, the last one was what’s like pi to pi? And I was like I have no idea how to be 
thinking about this right now. So it just made—it really stuck out to me how it’s 
important to (pause) really limit your – it’s trying to present a smaller view of the 
topic, but just set the situation so that when you’re presenting a smaller view, it’s an 
accurate view still. So very much so to analysis. 

The highlighted excerpts again illustrate how the exponents lesson (i.e., the module described 
previously) emphasized to Ms. J that she should be careful in her language and even when 
presenting a “smaller” view on a topic, she should still be mathematically accurate. 

In our second illustration, we highlight Ms. T, a teacher with six years experience, teaching 
an AP Calculus BC course. In this lesson, she covered the Extreme Value Theorem, Fermat’s 
Theorem, Rolle’s Theorem, and the Mean Value Theorem. When presenting the theorems, Ms. T 
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attended to the scope of the theorems in an interesting way. She first asked individual students to 
draw a graph of a function that satisfied the conditions of the theorem. When commenting on the 
graph, she explicitly checked and then emphasized that each condition was satisfied. We 
illustrate this in Figure 6. 

 
Mathematics Explanations and class dialogue (emphasis added) 
Rolle’s Theorem: Let 𝑓: [𝑎, 𝑏] → 𝑅 be a 

function that is continuous on the closed 
interval [𝑎, 𝑏], differentiable on the open 
interval (𝑎, 𝑏), and satisfies 𝑓(𝑎) =
𝑓(𝑏). Then, there exists at least one 𝑐 ∈
(𝑎, 𝑏) such that 𝑓J(𝑐) = 0. 

 
[Student-drawn example of graph that 

satisfies Rolle’s Theorem] 

 
… 
Mean Value Theorem: Let 𝑓: [𝑎, 𝑏] → 𝑅 be a 

function that is continuous on the closed 
interval [𝑎, 𝑏] and differentiable on the 
open interval (𝑎, 𝑏). Then, there exists at 
least one 𝑐 ∈ (𝑎, 𝑏) such that 𝑓J(𝑐) =
K(L)=K(M)

L=M
. 

 
[Student-drawn example of graph that 

satisfies Mean Value Theorem] 

 

Ms. T: We want an example. So, we want a sketch of a 
function that can be used to help interpret Rolle’s 
Theorem and the Mean Value Theorem. So, it might 
be easier to sketch something that you can easily see 
Rolle’s Theorem with. So, can I have a volunteer? 
Your what goes up must come down.  

… 
Ms. T:  So, let’s think about it. Is she continuous on a 

closed interval? Is she differentiable on the open? 
Does 𝑓(𝑎) = 𝑓(𝑏) somewhere? Is the derivative 
zero somewhere? So, did she satisfy Rolle’s? Okay. 

 
 
 
… 
Ms. T: I need a volunteer. And the volunteer just has to 

sketch a function where the Mean Value Theorem 
will work. You’re thinking of our two conditions. 
Continuous on the closed. Differentiable on the 
open. … So, the Mean Value Theorem has to work. 
You need continuity and differentiability. 

… 
Ms. T: Good. Is that continuous? It’s continuous. She 

gave us a closed interval. I’m just gonna highlight it. 
Is it differentiable? Yeah. 

 

Figure 6. Ms. T’s classroom instruction about Rolle’s Theorem and the Mean Value Theorem. 

In each italicized excerpt, Ms. T explicitly highlighted how each condition of the relevant 
theorems was satisfied. In other instances, Ms. T would use student-generated examples not only 
to illustrate the necessity of the conditions of a theorem, but also to explore the ways in which 
examples that did not fulfill the conditions resulted in the implication being invalid. Ms. T was 
able to apply the themes of the real analysis class on attending to scope in a flexible manner, in 
this case one that involved making students active in the construction of examples in her course. 
Later in the post-interview, Ms. T affirmed that she attended to scope because of her experience 
in the real analysis course. 

Interviewer:  Every time you brought up a theorem, you like specifically referenced the 
conditions for the theorem. 
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Ms. T:  Yeah. 
Interviewer:  So, what was your rationale for that? 
Ms. T:  Yeah. So, that’s still from the course, the Real Analysis course, because the 

specificity of language … so it was really being clear like when these things actually 
will occur, and that also inspired like, you know, draw a graph where it failed to meet 
a condition so you can see that it’s actually not always going to work out. 

Interviewer:  Okay. And so, would you say that—is that something that you normally do? 
Like would you normally mention it every single time you reference it on your own? 

Ms. T:  No. I think, now it’s just – my own better understanding is why I keep repeating it so 
that it’s kind of more ingrained to them under what conditions things can happen. 

In this section, we have documented that in the majority of the instances that we observed, 
the teachers attended to the scope of mathematical statements and verified in their post-interview 
that they did so because of their experience in the real analysis course. The excerpts that we 
presented showed how teachers were able to adapt this theme to their own style of teaching. 

6. Discussion and Conclusion 

The aim of our paper was to address three research questions. We synthesize our answers to 
these questions. First, we argue that advanced mathematics courses usually do not benefit 
prospective mathematics teachers due to the difficulty of the far transfer that we expect to occur 
and also because what is salient to the students in these classes may differ from what is important 
to the course instructor or mathematics education researchers. Second, we describe an alternative 
model for how students can be taught real analysis – one in which the lessons are situated in 
classroom practice. We first build up from classroom practice in order to motivate studying the 
real analysis content. We then step back down to classroom practice so students can practice 
applying the mathematics they have learned to the pedagogical situations. Third, we document 
that teachers who completed a module on attending to the scope of explanations in real analysis 
attended to scope in their subsequent instruction and attributed this pedagogical practice to what 
they learned in real analysis. 

To our knowledge, this paper is innovative in several respects. First, although several 
researchers have documented the limited impact that advanced mathematics courses have on 
teachers’ pedagogical practice (e.g., Goulding, Hatch, & Rodd, 2000; Moreira & David, 2007; 
Ticknor, 2012; Wasserman et al., 2015; Zazkis & Leikin, 2010), there have been few research-
based attempts to ameliorate the situation. In general, attempts to make the study of advanced 
mathematics courses relevant to secondary teachers have involved making connections to the 
content of school mathematics; in this study, we have attempted to be more explicit about 
connections to the teaching of school mathematics. Second, when attempts have been made to 
highlight the connections between advanced mathematical content and secondary teaching, they 
have occurred primarily in “capstone” or “connections” courses (e.g., Murray & Star, 2013) or in 
professional development programs. Our innovative instructional model, instead, alters the 
structure of an advanced mathematical course such as real analysis to specifically meet the needs 
of secondary teachers. Third, the standard by which we evaluated the efficacy of our course did 
not only rely on how prospective teachers did on our in-course assessments but also on the 
changes that were reported in their actual teaching practice. This is, of course, the ultimate 
measure of teacher development, but one that is not often used in evaluating the efficacy of 
advanced mathematics courses in secondary teacher education. 
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For the reasons above, we believe our model offers a potentially valuable alternative to the 
typical model in which advanced mathematics is taught with limited regard for changing 
prospective teachers’ pedagogical practice. By design, the real analysis content in our modules 
was both tightly connected to and framed by this pedagogical practice. To substantiate the value 
of our model, however, merits further research. In particular, what we have offered here is a 
proof of concept. Our model can be used to develop real analysis instruction that can improve 
teachers’ secondary teaching. However, we certainly do not have the data to generalize beyond 
that. For instance, we only explored one specific module in this paper. In the module discussed 
in this paper, for example, although one does not have to learn real analysis to be able to attend 
to the scope of secondary mathematics explanations, since a real analysis course already 
inherently models this idea in both the precision of statements and progression of proofs, it 
seems sensible to exploit this connection for teachers. We would want to know, at a minimum, 
the effectiveness of the other 11 modules – some of which paid more attention to specific 
theorems or proofs in real analysis, others of which had different kinds of connections to 
teaching. We are currently in the process of evaluating and refining these modules. Further work 
studying how best to mathematically prepare secondary teachers is needed, including the degree 
to which this particular model is productive and/or needs refinement, and could help guide 
improved design and implementation of advanced mathematics courses for secondary teachers. 
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In this paper, we present a comparative case study of two students with different epistemological 
frames watching the same real analysis lectures. We show that students with different 
epistemological frames can interpret the same lecture in different ways. These results illustrate 
how a student’s interpretation of a lecture is not inherently tied to the lecture, but rather depend 
on the student and her perspective on mathematics. Thus, improving student learning may 
depend on more than improving the quality of the lectures, but also changing student’s beliefs 
and orientations about mathematics and mathematics learning.  
 
Key words: epistemological frames, real analysis, student understanding of lecture 

1. Introduction 
In recent years, several researchers have explored the relationship between students’ 

epistemological beliefs and their learning of advanced mathematics. In particular, some scholars 
have claimed that some students struggle to learn mathematics because they lack the 
epistemological beliefs to support this learning (e.g., Alcock & Simpson, 2004; Bressoud, 2016; 
Dawkins & Weber, in press; Lew et al., 2016; Solomon, 2006). The primary aim of this paper is 
to extend this research. In particular, we adapt the notion of epistemological frames (e-frames), a 
construct from physics education (e.g., Redish, 2004), and illustrate how students who hold 
different e-frames can interpret the same advanced mathematical lecture in different ways. In 
particular, we first give an account of two students’ e-frames in an advanced mathematical 
setting; we then use these e-frames to give a fine-grained account for these students’ different 
interpretations of the same utterances by a lecturer. 

2. Theoretical perspective and related literature 
2. 1. Epistemic frames 

Goffman (1997) introduced the notion of frame to describe how individuals develop 
expectations to help them make sense of the complex social spaces that they inhabit. For 
instance, most adults in the Western world have a “restaurant frame” consisting of expectations 
that are activated when they enter a restaurant. When frequenting a restaurant, an individual 
likely would expect that the restaurant employees will prepare food for the individual, the 
individual will be obligated to pay for this food, and so on (Schank, 1990). Such restaurant 
frames are usually helpful; these frames allow individuals to act sensibly in restaurants that they 
have never visited before. However, frames can occasionally be counterproductive if two 
individuals frame the same situation in different ways. For instance, a European diner may 
offend a waiter in the United States if she was not aware of the United States custom to leave at 
least a 15% gratuity. 
 Physics educators have introduced the notion of an individual’s epistemic frame, or e-
frame, as consisting of their epistemological expectations about a pedagogical situation. These 
consist of an individual’s responses to questions such as “what do I expect to learn?” and “what 
counts as knowledge or an intellectual contribution in this environment?” (Redish, 2004). If a 
teacher and her students approach the same pedagogical activity with different e-frames, the 
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students likely will not learn what their teacher intends. For instance, Redish (2004) described a 
physics tutorial in which students were asked to form a hypothesis. The teacher’s aim of this 
activity was for students make qualitative predictions using their conceptual understanding of 
physics principles. Redish found that a student who viewed intellectual contributions in physics 
as consisting of numeric answers derived from textbook formulas responded to such tasks by 
engaging in computations, thereby avoiding the conceptual considerations the activity was 
designed to elicit. 
 We are not aware of any mathematics education research that has specifically used the 
notions of e-frames to account for students’ behaviors. However scholars have explored the 
relationship between students’ epistemological beliefs and their concomitant mathematical 
cognition. In many of these cases, the claims of these scholars can be expressed using the 
construct of e-frames.  For instance, Thompson (2013) presented a situation in which a teacher 
provided many conceptual explanations to her high school algebra class but these explanations 
were ignored by some students in the class who had a procedural orientation. We might interpret 
Thompson’s claim with e-frames as follows. In the students’ e-frames, an intellectual 
contribution in an algebra class consisted of using a procedure to solve a problem symbolically. 
The teacher viewed part of the intellectual contribution of her presentation as explaining the 
meaning of the procedure that she was implemented. Since students did not recognize this as a 
legitimate intellectual contribution in a mathematics, they simply ignored the conceptual 
explanations. 
 We can use similar reasoning to characterize other mathematical constructs. For instance, 
the didactical contract (Brousseau et al., 2014) includes expectations about what mathematical 
contributions the teacher is required to make, establishing sociomathematical norms (Yackel & 
Cobb, 1996) involves the negotiation of what an acceptable mathematical contribution is, and 
institutional meanings of proof (Recio & Godino, 2001) are expectations about what constraints 
a justification must satisfy in different contexts. In summary, while we are introducing the notion 
of e-frames to mathematics community, this work builds upon a rich tradition of scholarship 
examining the links between students’ epistemology and cognition. Our contribution is offering a 
more fine-grained account of how specific e-frames influence students’ interpretations of 
specific mathematical utterances in advanced mathematics. 
2. 2. Logical versus psychological understandings in advanced mathematics 
 In this paper, we distinguish between two ways of knowing a mathematical concept. An 
individual knows a concept psychologically if she believes the statement is true and feels that 
they understand why the statement is true. An individual knows a concept logically if she can 
provide a deductive justification demonstrating the statement is true from previous statements 
(usually definitions and axioms) that are assumed to be true. 
 We make three observations about this distinction. First, in many mathematical settings, 
psychological and logical knowing are inextricably intertwined. Mathematicians often believe a 
statement is true exactly when they see how it can be logically deduced from other things that are 
known or assumed to be true (e.g., Harel & Sowder, 2007). Second, psychological knowing and 
logical knowing are nonetheless distinct. Some mathematicians hold rational certainty in the 
veracity of unproven conjectures (e.g., Goldbach’s conjecture) and others retain some doubt in 
claims that have been proven (on the grounds that they cannot be certain that their proofs are 
correct) (c.f., Weber, Inglis, & Mejia-Ramos, 2014). This reflects the view that the acceptability 
of a proof is dependent upon a reference theory specifying what facts are allowed to be assumed 
(Mariotti, 2006). Third, in some cases, the purpose of proof is not to enhance one’s 
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psychological knowing, but to provide logical justification (c.f., Dawkins & Weber, in press). 
Mamona-Downs (2010) expressed this clearly when she wrote that “the point [of proof] is not so 
much about conviction, but how we can clarify the bases of the reasoning employed” (p. 2338). 
Arzarello (2007) expressed a similar sentiment, arguing that the purpose of proof is to give 
meaning to a statement by placing the statement into a network of mathematical knowledge in 
the form of logical consequence.  
2. 3. Systematization 
 In this paper, we focus on a particular type of activity that deVilliers (1990) has coined 
systematization. In this activity, mathematicians transform an existing theory—i.e., a 
constellation of concepts and related statements that are accepted as true—into a unified whole. 
Mathematicians do so by creating a system of axioms and definitions and then demonstrating 
that commonly accepted statements within the existing theory are deductive consequences from 
this system of axioms and definitions. As deVilliers (1990) noted, with systematization, “the 
main objective is clearly not to check whether statements are really true” (p. 21, emphasis was 
the author’s). In our interpretation, the purpose of systematization is not to enhance one’s 
psychological knowledge; the statements being justified are already accepted as true. Rather, the 
purpose is to create a system of axioms and definitions that lets us provide logical justifications 
for things that are accepted as true.  
 In this paper, we explore two students interpretation of the same real analysis lectures. In 
these lectures, the instructor is using the integers to define the systems of rational numbers and 
real numbers. He then derives some well-known consequences of these number systems. For 
instance, the professor defined the rational numbers as equivalence classes of pairs of integers, 
and addition on rational numbers as an operation on these equivalence class of ordered pairs. The 
professor then sketched a proof that addition on the rational numbers is a well-defined operation. 
We can thus say that the rational numbers are being re-presented to the students as we can 
assume that mathematics majors in a real analysis course have had extensive prior experience 
with rational numbers. In our view, the mathematical contribution being made is many facts that 
students already knew psychologically about rational numbers can now be seen as logical 
consequences of how the rational numbers were defined. In this paper, we analyze two different 
student views on what the purpose of this re-presentation is. 
2. 4. Students’ understanding of lectures in proof-oriented math courses 
 Most proof-oriented courses in advanced mathematics are taught via lectures (e.g., 
Fukawa-Connelly, Johnson, & Keller, 2016). Although there have been several studies on how 
these lectures are given (e.g., Gabel & Dreyfus, in press; Lew et al., 2016), there have been few 
studies on how students perceive these lectures. We describe one such study, and how e-frames 
can account for the results of this study below.   
 Lew et al. (2016) described a real analysis professor, Dr. A, who presented a proof to 
illustrate a heuristic that would be useful in proving other theorems. However, when Lew et al 
showed a videotape of this lecture to six students in the class, none of them recognized this 
heuristic as Dr. A’s reason for presenting this proof. In his commentary on Lew et al., Bressoud 
(2016) conjectured that students “understood the instructor’s intention as one of communicating 
that this is a valid result worthy of being noted and remembered” (paragraph 6) whereas the 
professor was trying to showcase a new approach that could be used to prove a new class of 
propositions. We can interpret Bressoud’s commentary in terms of e-frames as follows: The 
professor in Lew et al’s study believed the intellectual contribution of his proof presentation was 
describing an important proving heuristic. In the students’ e-frame, the intellectual contribution 
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of a lecture proof was communicating a valid result that was worthy of being remembered. 
Hence, the main points that the professor was trying to convey were thought of as tangential by 
the students. 

3. Methods 
3. 1. Rationale 
 The goal of this study was to understand how a student’s e-frames can shape how that 
student interprets a real analysis lecture. To accomplish this, we interviewed two students as they 
watched a publicly available video-recording of a pair of real analysis lectures. This 
methodology had the advantage that students could act as if they were attending an actual 
lecture, yet the interviewer or student could pause the video to discuss their in-the-moment 
impressions of what was being discussed. In this study, we viewed a student’s answer to one of 
the following two questions as one of her e-frames: 

• What counts as a legitimate mathematical contribution?  
• By what standards should the mathematical contribution be evaluated? 

3. 2. Participants 
 Two participants, Alice and Brittany (pseudonyms), agreed to participate in this study. 
Both participants were mathematics majors at a large state university in the northeast United 
States. At the time of the study, both students had completed a transition-to-proof course in the 
previous semester, which the university requires as a prerequisite for a real analysis course. 
However, neither student was taking real analysis in the semester when this study occurred. 
Alice and Brittany were instead taking other proof-oriented courses and planned to take real 
analysis in a future semester. Thus, both students could potentially have enrolled in a real 
analysis course, but had not done so. 

Alice and Brittany both claimed that they enjoyed their transition-to-proof course. Both 
students evinced a deductive proof scheme (Harel & Sowder, 2007) and exhibited competence at 
writing and understanding proofs. While watching the lectures, both students actively tried to 
make sense of the material. 

Alice was an honors sophomore mathematics major who was intending to pursue 
certification to teach secondary mathematics, who earned an A in her transition-to-proof class. 
Brittany was a junior mathematics major who earned a B in her transition-to-proof class. To 
avoid misinterpretation, our aim is not to compare the productivity of Alice’s and Brittany’s 
frame or to evaluate the quality of Alice or Brittany’s interpretation of the lectures that they 
observed. We do not make claims about who is the better mathematics student. Instead our aim 
in this paper is to show that Alice and Brittany’s different interpretation of the same lecture can 
be attributed to the different e-frames that they hold. 
3. 3. The lecture 
 The lecture studied in this paper consisted of the first two class videos from a real 
analysis course.1 Each class video lasted between 60 and 70 minutes. The instructor of the course 
was Professor Francis Su, who won two major national teaching awards from the Mathematical 
Association of America. The lectures consisted of Professor Su beginning the real analysis 
course by constructing the rational numbers and then the real numbers from the integers. 
3. 4. Procedure 

Prior to conducting the study, the research team studied the lecture and parsed the lecture 
into five to ten minute segments in which coherent mathematical content was being presented. In 

																																																								
1 The lectures are available at analysisyawp.blogspot.com 
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each clip we identified any important ideas that we felt were being conveyed. We used this 
parsing to create an interview protocol. After each segment of the lecture was played, 
participants were asked, “what, if anything, was valuable to you?” and “what did you take away 
from this?” as well as specific questions pertaining to the mathematical content that Su presented 
in that clip. 
 Each participant met individually with the first author of the paper once a week for four 
video-recorded clinical interviews (Hunting, 1997). Interview 1 was a one-hour interview in 
which the participant discussed their experience in their transition-to-proof course to provide the 
interviewer with a sense of the participants’ understanding of the content of the course 
(particularly with number theory, functions, and proof) as well as their learning strategies and 
dispositions.  

Interviews 2, 3, and 4 were two-hour interviews in which the research team attempted to 
explore the e-frames, ways of knowing, and any associated mental schemes that each participant 
used to interpret the mathematical lectures. During each interview, the participant watched 
Professor Su’s lecture and was instructed to stop the video whenever they observed something 
that was important, interesting, confusing, or otherwise noteworthy. The interviewer would also 
stop the tape to probe the participant’s thinking when the professor had stated something that the 
research team had identified as important or at the end of a segment, as we described above. 

Between the interviews, the members of the research team engaged in concurrent data 
analysis. After each interview, each member of the research team listened to recordings of the 
interview and formed initial hypotheses about the e-frames that the participants were using to 
interpret the lectures. The research team would meet to synthesize these initial hypotheses and 
develop questions that would allow us to test the viability of these hypotheses. The next 
interview began with the interviewer asking the participants these questions, which was then 
followed by them resuming watching the lecture videos. After all four interviewers were 
conducted, we transcribed each interview. 
3. 5. Retrospective analysis 

Our retrospective analysis had two main purposes: 
(i) we first aimed to analyze broad characteristics of Alice and Brittany’s behavior 

in our interview to give an account of the e-frames that they are using; 
(ii) we then analyzed specific interpretations that they gave to Professor Su’s 

lectures and used their e-frames to give an account for these interpretations 
(c.f., Mason, 2002). 

We first gave an account of Alice and Brittany’s e-frames as follows: for each segment of the 
lecture, we summarized Alice and Brittany’s comments. We focused on any instance in which 
Alice or Brittany described or evaluated what they felt was the mathematical contribution that 
Professor Su made or was intending to make. Because we regularly asked Alice and Brittany 
what they thought Professor Su was trying to convey and what, if anything, was valuable, our 
data contained many comments from Alice and Brittany about Professor Su’s mathematical 
contributions. By analyzing commonalities in each participant’s responses across the interviews, 
we revised the hypotheses developed during concurrent analysis and, as needed, developed new 
hypotheses about their e-frames. 

We then engaged in the following iterative process to refine our hypotheses: For each 
hypothesis about a participant’s e-frame, each member of the research team read the transcripts 
in their entirety, identifying all instances that either supported or contradicted the hypothesis. We 
evaluated a specific hypothesis as not viable if one of the three conditions occurred: (i) we found 
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few instances supporting the hypothesis; (ii) we found many instances that were inconsistent 
with the hypothesis; or (iii) we found a single significant instance that strongly contradicted our 
hypothesis. If a hypothesis was evaluated as unviable, we would often refine our hypothesis and 
repeat this process. Other times, we would judge the hypothesis as fundamentally inaccurate and 
discard it. After this iterative process, we had a set of e-frames for each participant that were 
highly grounded in the data for each participant. 

We then used these e-frames to give an account for students’ interpretations of lectures as 
follows: We identified excerpts in which Alice and Brittany had different interpretations of what 
Professor Su said in a segment of the lecture, which was a common occurrence. We chose 
differences that we felt were representative of the data set. With those differences, we described 
the difference between Alice and Brittany’s interpretations in terms of how they framed and 
evaluated the mathematical contribution that they felt that Professor Su was making. Through an 
interpretive analysis, we accounted for Alice and Brittany’s different interpretations using the e-
frames that we posited. 

4. Results 
4. 1. Alice’s e-frames  

4. 1. 1. One needed to define a concept to be able to reason about it.  
E-frame 1: Making claims and providing justifications about a concept requires a precise 
definition of the concept. 
E-frame 2: A precise definition of a concept is a mathematical contribution.  

E-frame 1 provided Alice with a criterion on which she judged whether a mathematical 
justification was a legitimate contribution. E-frame 1 warranted e-frame 2, that providing a 
precise definition of a concept was a legitimate contribution. 

There were multiple instances that indicated Alice held these e-frames throughout the 
interviews. For example, in the first interview, the interviewer asked Alice what the real numbers 
were. Alice’s response was revealing: “That’s an excellent question. [long pause] I don’t know. I 
don’t know the formal definition of a real number”. This was representative of Alice’s tendency 
to express an epistemic need to see concepts defined, which she displayed throughout the 
interviews. For instance, in Interview 1, Alice was asked if the fractions 9/15 and 12/20 were 
“the same thing”. She responded: 

“You need to assign a definition. ‘Same thing’ does not tell me anything[…]So if I have 
two of the same shirt, are they the same shirt? No, if I'm wearing one, then one is being 
worn and one’s not. But in terms of just shirts yeah, they're the same shirt. So based on 
how we want to define ‘the same thing’, they may or may not be”. 

In Interview 4, Alice reiterated this point, stressing, “we need very well-defined definitions so 
that we can get very clear implications”. At four other points in our interviews, Alice objected to 
questions about concepts that were not explicitly defined, saying she found them ambiguous and 
unanswerable because terms in the concepts were not defined. The importance that Alice 
assigned to concepts being defined led her to continually seek out definitions when she watched 
the lectures. 

4. 1. 2. When constructing a system, you need to distinguish between what you know 
through experience and what you are allowed to know within the system.  

E-frame 3: Justifications contributing to logical knowing are legitimate mathematical 
contributions. 
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E-frame 4: When providing a logical justification, you can only employ claims that are a 
priori or have been previously logically justified. You cannot employ claims that you 
know psychologically. 

E-frame 3 specifies that logical justifications are contributions while e-frame 4 delineates criteria 
on which they should be evaluated. 
 As Professor Su constructed the rational numbers, Alice continually distinguished 
between what she knew psychologically (i.e., what she knew based on her previous experience 
with the rationals) and what had been justified logically (i.e., axioms, definitions, and statements 
proven in the classroom context). At 14 different points, Alice stressed the need to differentiate 
between the two, reminding herself and the interviewer that “we only assumed that we have 
knowledge about the integers”2 and “we don’t know anything about what [rational numbers] do 
or look like if they are not an integer”. Alice was careful to only use definitions and propositions 
that were proven in class when justifying claims about the rationals.  

4. 1. 3. The mathematical contribution of these lectures.   
E-frame 5: The intellectual contribution of these lectures was providing a framework so 
we can know statements about the rational numbers logically. 
E-frame 6: Systematization is valuable when you characterize a more complicated system 
in terms of a simpler system. 

We believe that E-Frame 5 was evoked by Alice in these lectures as a consequence of the prior e-
frames that we discussed. Alice desired logical justifications for claims, which is only possible if 
these claims are defined precisely. E-frame 6 is a criterion that Alice used to judge the 
significance of the particular systematization that she observed, which we illustrate below. When 
Alice was asked why Professor Su was constructing the rational numbers, she responded as 
follows:  

Alice: One thing that I have always seen in both physics and math is that, if we can, we 
always want to go with something more elementary. [In math] I know first we start with 
our natural numbers. Then we say, what the natural numbers are, a representation of the 
empty set, and recursive sets of the empty set, ... so 0 was the empty set, 1 was the set of 
the empty set, and 2 was the set of the set of the set of the empty set, something like that. 
I feel like there is a search to get even more elementary.  

At several other points, Alice became reflective on the nuanced relationship between what she 
knew psychologically and what she knew logically about the rationals. For instance, in the 
conclusion of the last lecture, the interviewer asked Alice “how do you understand the 
rationals?”. Her response was as follows:  

Alice: [I understand the rationals] on a very simplified level. [The rationals] are just 
fractions of an integer, numerator and denominator, and I’ve been working with those 
types of fractions all my life. So I know exactly what they make, what they look like, 
how to treat them on a very simplistic level. But on a construction level, we are trying to 
build them. It’s like I want to already know this but the attitude is that it is newly 
explored material which is a little ironic. It’s the attitude that you kind of have to have. 

In this excerpt, Alice distinguishes between what she knows on a “simplified level” (what we 
call knowing in a psychological sense) and at the “construction level” (knowing in a logical 
sense), noting that you are trying to construct what you already know simplistically (justifying 
logically what you know psychologically).  
																																																								
2 Professor Su began his lectures by quoting Kronecker, who said, “God made the integers. All else is the work of 
man,” and did not define the set of integers or operations upon them. 
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4. 2. Brittany 
4. 2. 1. Definitions were used to enhance understanding.  
E-Frame 1: The mathematical contribution of a definition is to help Brittany 
psychologically know a concept.  

E-frame 1 describes a criterion by which the significance of the contribution of a definition 
should be judged. E-frame 1 was evidenced by Brittany in multiple ways. First, at six points 
Brittany recognized that Professor Su’s characterization of the rational numbers (as equivalence 
classes of ordered pairs) differed from her understanding of fractions, stating at the end of the 
lectures that she “wouldn’t do it [constructing the rationals as equivalence classes] that way” and 
that rationals were “basically just a fraction of one integer on top of another one”. She assumed 
that the purpose of these alternative characterizations was to provide her with an alternative way 
to think about the rational numbers. For instance, when asked what she thought the purpose of 
this presentation was, she responded that she learned “a new way of thinking about the 
rationals”.  

Brittany also did not see merit in Professor Su defining aspects of the rational numbers, 
saying “it’s too obvious”, because presumably the entire class already understood fractions.  Our 
interpretation is that from Brittany’s perspective, such definitions could not enhance her 
understanding (e.g. “but it’s [the definition of positive rationals] not valuable for clarification of 
anything because we already know”), because she already psychologically understood the 
concepts being defined. 

4. 2. 2. Good definitions are comprehensible.  
E-frame 2: Good mathematical definitions are comprehensible 

E-frame 2 also provides a criterion on which the quality of a definition should be judged. 
While Brittany never explicitly described what she thought was a “good definition”, at five 
points she complimented Professor Su’s definitions because of their clarity and simplicity. For 
instance, Professor Su’s definition of order on the rationals (i.e., how you define a < b when a 
and b are rational numbers) was “pretty good” because “it’s simple and understandable”.  

4. 2. 2. You could use what you knew about the rationals to answer the questions that 
Professor Su discussed.  

E-frame 3: When justifying a mathematical statement, it is permissible and desirable to 
use one’s psychological understanding. 

E-frame 3 provides a criterion by which mathematical justifications can be evaluated. Brittany 
rarely expressed a distinction between what she knew logically and what she knew 
psychologically. Only twice during our four interviews did Brittany question what she was 
allowed to assume. At 18 other points, she invoked facts about the rational numbers that had not 
been stated in the lectures to answer questions about the rational numbers. To elaborate on this 
further, we consider how Brittany reacts to Professor Su’s justifications of statements about the 
rational numbers, which proceeded logically from the definitions that he produced (definitions 
that Brittany thought were “a new way of thinking about the rationals”). For instance, Professor 
Su illustrated how each integer z could be represented as the equivalence class of ordered pairs 
[(z, 1)], Brittany was able to explain why this made sense, but then remarked, “it’s just simple to 
think of it as Z is a subset of Q. I think that would be a simpler way of saying it”3. Brittany often 
expressed frustration at these justifications, which she felt were needlessly complicated.  

																																																								
3 In our interviews, Brittany was able to explain how the equivalence classes of integers that Professor Su introduced 
in his lectures represented the integers, which we do not include in this paper for brevity. We only note here that 
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4. 2. 4. The mathematical contribution of these lectures  
E-frame 4: The goal of the lectures was to enhance her psychological knowledge of the 
rational numbers. 

We believe that Brittany evoked this e-frame as a consequence of the earlier e-frames. Each of 
the earlier e-frames indicated that mathematical contributions of this lecture—that is, Professor 
Su’s definitions and proofs about rational numbers—were presented to enhance Brittany’s 
understanding of the rational numbers and therefore should be easy to comprehend. One way that 
Brittany evinced e-frame 4 was when she viewed the purpose of the entirety of the lectures as to 
provide a review about the rational numbers. This failed to satisfy the criterion in e-frame 4 
because she felt that she already psychologically knew the relevant statements about the rational 
numbers introduced by Professor Su. 

When asked about the main purpose of the lectures, Brittany cited the construction of the 
rational numbers and remarked that this “was important to take away.” When asked what it 
meant to construct the rationals, Brittany responded, “I think he was just going over properties of 
it—order, addition, multiplication, what it means putting them all on the number line”. In 
general, Brittany was frustrated because she wanted to learn new material and did not find value 
in what she perceived as an extended review, as illustrated in the following exchange: 

Interviewer: So what I'm hearing you say is it’s more interesting to talk about things you 
don't know than things you do know, to answer some questions that you might not really 
know that are interesting? 
Brittany: Yeah, I think that’s like true for everything. 

4. 3. Different interpretations of the same lecture 
 In this sub-section, we present clips from Professor Su’s lectures and describe Alice’s and 
Brittany’s reactions. Our aim is to illustrate how Alice’s and Brittany’s different e-frames led 
them to interpret these clips in different ways and then to make the broader point that a professor 
effectively conveying the material depends on the e-frame of the student observing the lecture.  

4. 3. 1. Motivating questions. Early in lecture 1, Professor Su presented motivating 
questions on a PowerPoint slide. These questions included, “What does it mean for a series of 
numbers to converge? What is a limit? Are there ‘enough’ numbers to capture all 
limits?[...]What does it even mean for a sequence of numbers to converge when you're not 
referencing a limit? There’s a question. Some really tough questions.” Alice interpreted these 
questions as follows: 

Alice: I started realizing that these were questions that were probably going to be 
addressed throughout the course so then I understood why he was asking them. It was 
kind of a mindset I need to be in. I wasn't trying to answer these questions whenever he 
asked them, but really trying to get myself into the mindset of questioning certain 
definitions. It prompted me to get in what I think would be a good mindset in this class. 
Interviewer: I was going to ask you if you tried answering any of these questions, and 
you said that you didn’t. 
Alice: I briefly thought about them but then I realized that I really didn't have the 
grounds. I didn't know the definitions. I thought about each question. I understood that 
really I haven't questioned these at all and that I accepted many of them. That allowed me 
to get into a mindset of, ‘I can’t just accept these facts anymore. I have to bring these 
questions back and this is the attitude you have to face in this class’. 

																																																																																																																																																																																			
Brittany’s understanding was beside the point. She did not see the need for a complicated explanation for why Z was 
represented in Q because clearly the integers were a subset of the rationals. 
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In this excerpt, Alice discussed how the questions prompted her to consider the definitions of the 
concepts involved in the questions and motivated the lectures in the early part of the course, 
which consisted of defining the terms in the questions in terms of the integers. We account for 
this with Alice’s e-frame 1: that making and justifying claims about concepts requires a 
definition of that concept. Alice’s desire for these definitions can be accounted for by her e-
frame 2: that providing precise definitions of concepts is a mathematical contribution. Finally, 
Alice described Professor Su’s concepts as invoking an “attitude” and “mindset” that one cannot 
simply rely on their prior understanding (what we refer to as Alice’s psychological knowing) 
which aligns with Alice’s e-frame 3 and e-frame 4 calling for Alice to distinguish between her 
psychological and logical knowledge of the rationals.   
 When Brittany was asked what she was thinking about when she saw the questions, she 
said she found the questions “interesting” and “I was visualizing a number line in my head”. 
Hence, Professor Su’s questions were also motivating for Brittany, but they prompted her to use 
her intuition to think about what the answers to these questions might be and how they might 
relate to her mental models for understanding the real numbers. Hence, Professor Su’s questions 
also evoked an e-frame for Brittany, but it was a different one than Alice. It was Brittany’s e-
frame 4, that the goal of these lectures was to enhance her psychological knowledge of rational 
and real numbers. 

4. 3. 2. Well-defined operations. In lecture 2, Professor Su defined addition on the 
rational numbers (<(a, b)> + <(c, d)> = <(ad+bc, bd)>). He then wanted to show that this binary 
operation was well-defined. To illustrate what he meant by well-defined, Professor Su presented 
two other candidates for addition, one of which was well-defined but useless (a binary operation 
whose output is always <(0, 1)>) and another that was not well-defined  (<(a, b)> + <(c, d)> = 
<(a+c, b+d)>). Alice claimed she understood what Professor Su meant by the term well-defined, 
saying “we can put in different elements of the same equivalence class, and we should still 
expect the same result”. Nonetheless she objected, “when he says this definition is well-defined, 
the specific definition requirements for something being well-defined was not gone over. The 
term well-defined was actually not well-defined”. Finally, Alice noted that if she were actually 
taking this class, she would look up the definition of well-defined outside of class. Our 
interpretation was that Alice understood the concept of a well-defined operation psychologically, 
but without a formal definition, she could not understand the concept logically. This is because 
of e-frame 1 that logical reasoning about the concept requires precise definitions. Therefore, she 
found Professor Su’s presentation inadequate. 
 Brittany viewed Professor Su’s definition of well-defined favorably:  

Brittany: I like the definition of well-defined. It was really clear and understandable 
because well-defined is a word we use a lot.  

Our interpretation is that Brittany found Professor Su’s examples as adequate to get a good sense 
(or psychological understanding) of what the concept of well-defined meant. We account for 
Brittany’s comments with Brittany’s e-frame 2: that good definitions are comprehensible. 
Because Brittany psychologically understood Professor Su’s definition, she valued it. 

4. 3. 3. The definition of addition. In lecture 2, Professor Su defined addition by <(a,b)> + 
<(c,d)> = <(ad+bc, bd)>. When Alice was asked what Professor Su was trying to convey, Alice 
responded that providing this definition was necessary. 

Alice: [Without the definition], we wouldn’t know what addition is. We want to keep that 
mentality that the whole thing that we are doing is we are defining that construction, so 
we need to make these definitions. 
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We account for Alice’s comment with her e-frame 1 and e-frame 2. One could not reason about 
addition without defining it so it was a necessary contribution. 

Alice: Half of me wants how we get to that exact definition[...]As we have seen, there are 
well-defined functions that [we don’t want...]Assume we don’t have any knowledge of 
the rationals, why this and not the others? 

Alice proposed one such criterion for evaluating a definition for addition was verifying that the 
definition implied that <(a, 1)> + <(b, 1)> = <(a+b, 1)>.  

We account for Alice’s comments with e-frame 4, that one could not use their previous 
knowledge about the rationals in justifying claims about the rationals. Alice desired a 
justification for the adequacy and choice of that particular well-defined definition independently 
of what Alice knew psychologically. As the following excerpt reveals, Alice knew Professor 
Su’s definition of addition would “work”, but for now, we must “assume we don’t have any 
knowledge of the rationals”: 

Alice: The other half of me, well I know how to get to this. Do I really want to see him 
lay it out or do we just accept this definition? I know why cause it works and that’s just 
what I’m told[…]I feel like a lot of this would be considered valuable but I wouldn’t say 
its significant and new. It’s hard because it’s like we are discovering something we 
already know.  

Our interpretation of this excerpt is that although Alice appreciates the need to justify that 
Professor Su’s definition of addition is an adequate one (it “would be considered valuable”), a 
part of her does not want to see this justified because, based on her experience, she knows it is 
going to work, even though e-frame 4 requires logical knowledge to justify Professor Su’s 
choice. 
 When Brittany was asked about the definition, she thought the definition that Professor 
Su provided was adequate, saying, “I liked the definition because it’s true. I can see how he got 
it. I thought it was going to be that. It proves I know what’s going on”. However, later in the 
interview, Brittany also complained that she saw little value in the lecture in its entirety, saying, 
“it’s not that useful because I already know what addition is, know what rational numbers are, 
and what fractions are”.  

We account for Brittany’s comments as follows. Brittany thought the definition provided 
by Professor Su was comprehensible, satisfying the criteria specified in e-frame 2. However, 
Brittany did not think that Professor Su’s description of addition enhanced her understanding 
since she already knew how to add rational numbers. Therefore, the definition did not satisfy the 
criterion for a mathematical contribution specified in Brittany’s e-frame 1. 

4. 3. 4. An alternative proof. Professor Su would often state well-known facts about the 
rational numbers as theorems and then prove these theorems. In Interviews 2 and 3, Alice said 
these proofs were useful because they reminded the class that they needed to have the attitude 
that they knew nothing about the rational numbers. Thus, due to her e-frame 4, Alice believed 
that even obvious claims needed to be justified from basic principles about the integers. In 
contrast, Brittany was unsure why Professor Su was justifying things that were obviously true 
and sometimes remarked that the notation that he was using was unnecessarily cumbersome. We 
conjectured that Brittany’s frustration was due to the fact that she felt that she already 
(psychologically) knew how to justify claims about fractions based on her experiences as an 
elementary and secondary student. Thus Brittany’s e-frame 3 suggests that using psychological 
knowledge in reasoning is desirable. To explore this hypothesis, we started Interview 4 by 
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presenting Alice and Brittany with the following proof of the addition of any two rational 
numbers and asking the participant if it would be useful for Professor Su to use:  

 
Alice immediately rejected the proof as inadequate. 

Alice: So here [the second line of the proof] what we did is we multiplied by 1 
essentially, by multiplying by d over d but we have to know how to multiply rationals to 
do that. We have to know that 1 times a certain rational does not change the 
amount[...]But then here [the last step] we have to assume that we also know how to add 
rational numbers with like denominator. But that was also not really part of how we 
constructed or defined the rationals. Or at least not in the last class. (italics were our 
emphases). 

In the two italicized excerpts, we see Alice’s recognition that one cannot use common 
(psychological) knowledge about the rationals to justify properties when you are constructing the 
rationals. We account for this with Alice’s e-frame 4, that justifications cannot import facts that 
are known psychologically if they have not been established logically. 

In contrast, Brittany thought the proof was adequate, saying several times, “I guess it 
would be a good proof”. Her only concern was that the proof would be too simple, saying, “it 
just seems so obvious, like everyone knows, so I don’t think it would be necessary”. Hence, this 
proof would be a permissible mathematical contribution, although perhaps not a useful one. We 
account for this with Brittany’s e-frames as follows. Brittany’s e-frame 3 specifies that it is 
acceptable and desirable to use one’s psychological knowledge when writing a proof. The proof 
that she evaluated did so and Brittany saw no problems with this. However, Brittany’s e-frame 4 
specified that the purpose of these lectures were to enhance her psychological understanding. 
Since the reasoning in the proof was obvious to her, the proof failed to satisfy that criterion. 

5. Discussion 
5. 1. Summary of main results 
 The purpose of this paper was to illustrate the phenomena that students with different e-
frames may interpret the same mathematics lecture in different ways. Alice distinguished 
between logical and psychological ways of knowing mathematics and she viewed the intellectual 
contribution of Professor Su’s lectures as providing a logical basis for her psychological 
understanding of the rational numbers. Providing this logical basis involved supplying 
definitions and justifying facts using only what had been explicitly defined by Professor Su until 
that point. Although Alice sometimes did not find this to be interesting, she understood why it 
was necessary (section 4.3.3). Brittany perceived the contribution of the lecture to be to enhance 
her psychological understanding of the rational numbers. Since she already felt that she had a 
robust psychological understanding of the rationals, she did not see much value in the lectures.  
 In this paper, we focus on a lecture of the systematization of the rational numbers. 
However, we use the comparative case study to illustrate what we believe is a more general 
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phenomenon: students’ e-frames about what is a mathematical contribution act as an interpretive 
filter to the mathematics that they observe. 
5. 2. Limitations  
 Having Alice and Brittany view videotaped lectures allowed us to understand their 
perceptions of lectures as they occurred, but was inauthentic in several respects. For instance, 
Alice and Brittany were not enrolled in the course, their task during the study was not to master 
the material, and they did not work on real analysis outside of our interviews. The students might 
have behaved differently if they were attending actual lectures and had a strong motivation to 
learn the material. Further, we deliberately chose to take a non-evaluative stance in evaluating 
Alice’s and Brittany’s e-frames or the quality of their interpretation of Professor Su’s lectures. 
We recommend future research in more authentic contexts and in other content domains that 
explicitly explore the link between students’ e-frames and their understanding of the 
mathematics that they study. 
5. 3. Implications for lecturing 
 A key takeaway from this paper is that even if a mathematics professor clearly explains 
the ideas that she wishes to convey, students may not grasp the point of the lecture if they do not 
hold e-frames that allow them to perceive the mathematical contribution that the lecturer is 
making. This implies that a lecturer not only needs to provide students with the opportunities to 
internalize the mathematical contributions that she is making but she must also help students 
develop the e-frames that enable them recognize the mathematical contributions and capitalize 
on these opportunities. We concur with Solomon (2006) that if advanced mathematics courses 
are to be effective, epistemology cannot be ignored. 
 We observe an interesting pedagogical challenge in using a lecture as an impetus for 
students to adjust their e-frames. In section 4.3.1, Professor Su’s motivating questions prior to 
defining the rational numbers evoked e-frames in both Alice and Brittany, but the e-frames these 
questions evoked were different. To Alice, these questions evoked a mindset to seek out the 
definitions of the concepts of these questions. To Brittany, this led her to seek out 
comprehensible answers to the questions that Professor Su posed. In our opinion, both 
interpretations of Professor Su’s comments were sensible. This illustrates an important point. 
The e-frames that a professor’s comments invokes in a student are likely related to the e-frames 
that the student already holds. 
 The preceding analysis suggests one reason that collaborative inquiry-based learning may 
be an attractive alternative to lecturing. What counts as a mathematical contribution in a 
classroom is a sociomathematical norm. The analysis of Yackel and Cobb (1996) illustrates how 
sociomathematical norms can be established with negotiation between the teacher and students 
as the students are engaged in authentic mathematical activity. Having students engaged in 
activities such as systematization with feedback from their teacher and classmates may provide 
students with a better sense of what the mathematical contributions of these activities are than 
simply having a professor explain this to the students in lecture. 
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A Case Study in Constructing Set-based Meanings for Conditional Truth  
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We present a case study of Hugo’s construction of Euler diagrams to develop set-based 
meanings for mathematical conditionals. This episode arose in a teaching experiment guiding 
students to reinvent mathematical logic from their reasoning about meaningful mathematical 
statements. We intended for Hugo to develop a subset meaning for conditional truth. Hugo 
successfully identified and used this condition, but he also introduced another formally 
equivalent meaning for conditional truth. We discuss the shifts in his thinking necessary for 
developing set-based reasoning and how this case influenced our goals for logic learning.  
 
Keywords: logic, Euler diagrams, conditionals, teaching experiment 

 
Though the modern formalizations of mathematical logic and language are relatively young 

(Frege, 1879; Russell, 1903), these accounts have become integral to the normative 
understanding of the language of proof-oriented mathematics. Azzouni (2006) argues that the 
essential novelty was developing a formal language in which meaning and truth are defined in 
purely syntactic ways. Because students must abide by these formal conventions of language to 
some degree, many transition to proof courses teach mathematical logic (Selden, 2012). 
However, the existing literature provides relatively little insight about logic instruction and the 
meanings that students must develop from that instruction (exceptions include Antonini, 2001; 
Bardelle, 2013; Barnard, 1995; Durand-Guerrier, 2003; Hawthorne & Rasmussen, 2014).  

Regarding instruction, logic can be taught using everyday statements (e.g. Epp, 2003), formal 
syntax (e.g. Hawthorne & Rasmussen, 2014), or mathematical statements (e.g. Dubinsky & 
Yiparaki, 2000). Regarding student learning, there are various ways in which a student may 
affirm a conditional such as “If an integer x is a multiple of 6, then x is a multiple of 3”:  

1. as an empirical generalization inducted from a series of examples, 
2. based on properties such as the spacing of these multiples on the number line, 
3. as the result of a proof (maybe implicitly) using the theorem “if a|b and b|c, then a|c,”  
4. as a subset relation between the set of multiples of 6 and the set of multiples of 3, or 
5. as not false because there is no multiple of 6 that is not a multiple of 3. 

We know little about students’ meanings (Thompson, Carlson, Byerley, & Hatfield, 2013) for 
conditional truth, how they develop, and which should be privileged by logic instruction. We 
find it useful to distinguish between those meanings for conditional truth that intrinsically rely on 
the mathematical content of the sentence (examples 1-3) and those that rely on generalizable 
criteria (examples 3-5). We place 3 in both categories because the theorem used to prove is 
mathematically specific, but one can generalize the criterion that a conditional is true if there is a 
proof of the conclusions from the hypotheses (Weber & Alcock’s, 2005, warranted conditional). 
How and when is it important for students to develop generalizable meanings for conditional 
truth and even to become reflectively aware of such meanings?  

The Current Investigation 
In this report, we lay some foundation for investigating these questions through a detailed 

case study of one students’ learning about conditional truth and contrapositive equivalence. By 
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documenting particular students’ pathways of learning, we can discern important challenges and 
opportunities for instruction. This case comes from a series of teaching experiments attempting 
to guide undergraduate students to reinvent mathematical logic (Dawkins & Cook, 2015, in 
press). We taught logic by presenting students with meaningful mathematical statements all of 
the same logical form (disjunctions, conditionals, then multiply quantified). By letting students 
assign truth-values, reflect on their strategies, and construct negations, we intended for students 
to reinvent truth-functional logic as a formalization of their own reasoning and languaging.  

We frame our findings in terms of student meanings, which Thompson et al. (2013) define as 
the set of inferences available to a student as a result of understanding something in a particular 
way. To illustrate this in our context, consider the tools available to a student for interpreting a 
mathematical statement and deciding its truth-value. While our participants exhibited various 
strategies for interpreting general statements, many times their reasoning focused either on 
examples, properties, or sets (which correspond respectively to examples 1, 2-3, and 4 above). 
By interpreting the sentence in terms of examples or properties, varying truth conditions and 
insights became available to students, which are parts of the meaning of the sentence for that 
student. We will thus discuss example-based, property-based, or set-based meanings. While 
students assigned statements their normative truth-values using all three, we found that reasoning 
with sets often afforded students the most fruitful strategies (Dawkins & Cook, 2016). Thus, in 
the experiment featured in this paper we attempted to guide students toward set-based truth 
conditions, which for conditional statements can be stated: The conditional “If for ! ∈ !,! ! , 
then ! ! ” is true if and only if ! ∈ ! ! ! ⊂ ! ∈ ! ! ! .” We call this the subset meaning 
for conditional truth (or subset meaning for brevity). The primary contributions of this study are 
1) documenting this student’s resources and challenges in developing the subset meaning and 2) 
documenting the novel meaning he created to affirm the contrapositive of a true conditional.  

Conceptual analysis of conditional truth 
We value Euler diagrams as a means of representing set relations relative to compound 

statements. The student featured in this report was familiar with similar diagrams from previous 
instruction (likely Venn diagrams), but he did not have fully normative meanings for how the 
diagram referred to mathematical objects. Dawkins and Cook (2015) point out at least one 
important meaning for understanding such diagrams as mathematicians do: the negation of a 
property corresponds to the complement of the set with the original property. Dawkins and Cook 
(2015) demonstrate that not all students associate the negation of a property with the complement 
set of examples, but such an understanding seems necessary for understanding why 
contrapositive conditionals have the same truth value (Figure 1).  

Original conditional Contrapositive conditional 

“If for ! ∈ ! !(!), then 
!(!).” 

 
is true whenever 

 
! ∈ ! ! !
⊂ ! ∈ ! ! !  

 “If for ! ∈ ! not !(!), 
then not !(!).” 

 
is true whenever 

 
! ∈ ! ~! !
⊂ ! ∈ ! ~! !  

 

Figure 1: Euler diagrams demonstrating why contrapositives have the same truth-value. 
Rather, students may associate the negation of a property with a proper subset of the complement 
– e.g. “not acute” means “obtuse,” or “not even” means “odd” – or they may associate the 

!(!) 

!(!) 

~!(!) 

~!(!) 
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negation with an overlapping property – e.g. “not a rectangle” means “is a parallelogram.” Such 
semantic substitutions (Dawkins & Cook, 2016) do not afford the set structure that we intend for 
students to develop. Students’ choices of semantic substitutes demonstrate a strong preference 
for familiar categories precluding the Euler diagram’s novel partitions. 

Background and Study Design 
This study investigates Hugo’s learning during the time he and his partner, Elya, worked on 

the set of conditional statements provided by the teacher/researcher (the second author). These 
students were recruited from a Calculus 3 class at a mid-sized university in the United States, but 
the experiment took place in one-hour sessions outside of class. The task progression for each 
type of statement – disjunction, conditional, and multiply-quantified – included: 1) assigning 
truth-values to all of the provided statements, 2) look for patterns in how they determined 
whether the statements were true or false, 3) consider the sets of examples that made each 
statement true and the sets that made them false, and 4) constructing negations. Hugo and Elya 
spent 2.5 sessions studying mathematical disjunctions prior to working on conditionals. This 
paper focuses on the subsequent 2.5 sessions they spent studying conditionals, especially the 
second such session from which Elya happened to be absent. Table 1 presents some conditionals 
they studied. After the students assigned truth-values and looked for patterns, the interviewer 
asked Hugo and Elya to “Think about the set of all things that satisfy the if part and the set of all 
things that satisfy the then part. And tell me about the relationship between those two.” This was 
particularly intended to prompt students to formulate the subset meaning for conditional truth.  

1. If a number is a multiple of 3, then it is a multiple of 4. 
2. If a number is a multiple of 3, then it is a multiple of 6.  
3. If a number is a multiple of 6, then it is a multiple of 3.  
4. If a number is not a multiple of 6, then it is not a multiple of 3.  
5. If a number is not a multiple of 3, then it is not a multiple of 6. 
6. If a triangle is not acute, then it is obtuse.  
7. If a triangle is obtuse, then it is not acute.  
8. If a triangle is not acute, then it is not equilateral.  
9. If a quadrilateral is a rectangle, then it is a square.  
10. If a quadrilateral is a rectangle, then it is a parallelogram.  
11. If a quadrilateral is not a rhombus, then it is not a rectangle.  

Table 1: Sample conditionals that Hugo and Elya studied.  
Consistent with teaching experiment methodology (Steffe & Thompson, 2000), the 

teacher/researcher consistently formed second-order models of student understanding and tested 
those models through subsequent questioning. These models were informed by findings from 
previous studies (Dawkins & Cook, 2015, 2016), as were the learning goals articulated earlier in 
the paper. The data analysis consisted of iterative analysis throughout the experiment and 
retrospective analysis of the video recordings and artifacts of student work afterward. The 
analysis presented in this paper focused particularly on the pair’s construction of set-based 
meanings for conditionals, especially as facilitated by Euler diagrams. Retrospective analysis 
similarly consisted of developing second-order models of Hugo’s understanding by forming and 
testing hypotheses using the corpus of his mathematical activity. Dawkins and Cook (2015, 
2016) present more thorough accounts of the teaching and data analysis methodologies.  

Results 
On Hugo and Elya’s first pass through the set of conditionals, they assigned to each the 

normative truth-value. They quickly recognized that an example that satisfied the if part and not 
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the then part was a counterexample (their counterexample criterion). Based on their work with 
disjunctions, they understood that a single counterexample made a general statement false and 
they could articulate general conditions for declaring statements false. For instance, after the first 
five statements Hugo explained, “If we can come up with a case that fits the first [antecedent] but 
does not fit the second [consequent], then it [conditional] has to be false. We only need one 
case.” Even in the case of positive statements, Hugo focused on examples by populating Elya’s 
set-based explanations with particular examples. When she explained, “[Statement] Five would 
be true, because every multiple of 3—every multiple of 6 is a multiple of 3. So if it’s not a 
multiple of 3 it can’t be a multiple of 6,” Hugo elaborated, “Like 17, is not multiple of 3 but it is 
also not a multiple of 6.” Elya inferred statement 5 from statement 3, which we call a 
contrapositive inference, but her later work suggests that she did not understand contrapositive 
equivalence as a general property of conditionals. We hypothesize that her understanding of 
multiples supported her inference rather than reasoning about abstract logic or set relations. In 
addition to focusing on examples, Hugo also affirmed some conditionals using property 
relations. Regarding statement eight, he said, “Not acute would mean either a right triangle or an 
obtuse triangle. Neither of those can be equilateral so that would be true.”  

After Elya and Hugo assessed all the provided conditionals, the interviewer asked them to 
look for patterns in the statements and why they were true or false. The pair noticed that many 
statements contained the same properties and identified the relationships commonly referred to 
as inverse (e.g. #3,4) and converse (e.g. #6,7) conditionals. After some discussion and 
conjectures about the truth-values of these related statements, the interviewer asked the pair to 
consider the sets related to each part of the statements. The conversation proceeded:  
H(1): I’d say, if the statement is true then the set for the first part—I’m sorry the set of the 

second part will be included in the set of the first part. 
I(2): Okay. Why do you say that? 
H(3): Um, because if we said that it’s true then when we pick—something that’s true for the 

first part, then it has to be included in the second part for the whole statement to be true. 
I(4): So its sounds to me like you’re saying there’s two possibilities. One is to say that the 

set—the if set can be sort of inside of—or contained in the then set. Or you can say the 
then set is contained in the if set. Which one do you—are claiming? So you’re saying, if 
the statement is true then what was the relationship here? 

H(5): Then the—then will be inside if. 
I(6): Okay. What do you think [Elya]? 
E(7): I think the if has to be in the then but then doesn’t have to be in the if. ‘Cause there—

when we looked at 3 there’s all the multiples of 6 are contained in multiples of 3 but all 
multiples of 3 are not contained in multiples of 6.  

I(8): Do you agree with that, [Hugo]?  
H(9): Yeah I think I’m good with that […] 
I(10): What are thinking about in a particular example? 
H(11): Uh, you wanna talk about [statement] 3. Um in like a circle, and multiples of 3—3,6,9,12. 

Um, multiples of 6 will be included in that circle. Like 6 and 12 are multiples of 6. So 
there’s an additional circle inside that includes some numbers but does not include others. 

I(12): Okay, but sort of which are you calling the if part and which circle are you calling the 
then? 

H(13): The then part would be the bigger one. The inside would be then—sorry other way 
around. Then is on the outside. If is in. 
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This appeared to be the first time Hugo reasoned about conditionals using sets, and, from the 
researcher perspective, his general explanation (turn 5) was inconsistent with his earlier semantic 
reasoning about the given statements. Once the interviewer pushed Hugo to explain his reasoning 
in a particular semantic context (turn 10), he recognized the subset meaning for conditional truth 
(turn 13) but even after this episode he sometimes returned to his intuition that the then set is 
contained in the if set. We conjecture that this intuition may be supported by the relationship 
between the properties in true conditionals. For instance, statement three is true because being a 
multiple of 6 means being a multiple of 2 and a multiple of 3, meaning the if property entails the 
then property. This explanation seems consistent with Hugo’s use of the word included in turns 1 
and 3. Hugo’s population of the Euler diagram with numbers (Figure 2) appeared to serve as a 
bridge between his example-based meanings and the set reasoning the interviewer invited.  

 
Figure 2: Hugo’s Euler diagram for statement 6. 

Hugo and Elya began to use these Euler diagrams to explore the truth of the various 
conditionals provided. By the end of the first session on conditionals, Elya was able to produce 
an explanation for why two contrapositive statements were both true as portrayed in Figure 1, but 
Hugo showed little evidence of understanding her reasoning. The next session afforded Hugo 
opportunity to independently develop his understanding of conditional truth because Elya 
happened to be absent. To encourage rediscovery of contrapositive equivalence, the interviewer 
invited Hugo to explore multiple related statements – original, inverse, converse, and 
contrapositive – with the same Euler diagram. The dialogue proceeded: 
I(14):  So look at [statements] 2 through 5 then. ‘Cause 2 through 5 are gonna be—again—its a 

bunch of the same options but the same kinds of parts. 
H(15): Two—the number is a multiple of 3. We got a circle—they’re all multiples of 3—3, 6, 9, 

12. Then it is a multiple of 6. [draws a circle around the 6 and 12].  
I(16):  Okay so is this true or false? So if it’s a multiple of 3, then it’s a multiple of 6.  
H(17):  We said it was false because our set was this circle of multiples of 3, and then if you only 

want multiples of 6—you have this but you still have the 3 and the 9 which aren’t 
included in the little circle. 

In turn 15, Hugo produced the diagram shown in Figure 3, labeling the outer circle “if 3x” and 
the inner circle “then 6x.” In turn 17, Hugo did not rely on his counterexample meaning, but 
rather declared statement 2 false because the sets failed to satisfy the subset condition (“aren’t 
included in the little circle”). When the interviewer asked him to consider statement 3 (the 
converse), he expected Hugo to refer to the same diagram. Instead Hugo began modifying the 
position of the circles around the example numbers. This suggested that Hugo’s meaning for the 
diagram did not merely reflect the invariant relationship between the multiples of 3 and 6. 
Instead, Hugo tied the circles’ meaning to the statement structure – if and then – such that 
shifting to the converse altered the diagram. The interviewer recreated the original diagram and 
encouraged Hugo to interpret statements 3-5 using the same diagram: 
I(18):  Okay, so we can sort of stick with the circles. But now what’s—so in the second 

statement, or now actually it’s number 3, what is it we’re saying? 
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H(19):  If is a multiple of 6, we put the if here [switches if/then labels]. Then it’s a multiple of 3. 
So if we only talk about this, this set of numbers, does that included inside of 3x? Yes. 

I(20):  Yea, all the multiples of 6 here are multiples of 3. Okay, right. I agree, so this one is true.  
H(21):  So again, if the if is encased, enclosed, inside the bigger then circle, then it’s true. […] 
I(22):  I want you to try to use the same picture to talk about 4 and 5. 
H(23): If it is not a multiple of 6, so—if its not in this circle, so we’re talking about outside the 

little circle. […] Does that make sense?—If not multiple of 6 then it is not a multiple of 3. 
So we’re talking about anything outside of that. Well 9 is still a multiple of 3, 15 is still 
multiple of 3. So that would be false. 

I(24):  Okay, where are the non-multiples of 3?  
H(25): Non-multiples of 3 would be outside the little circle infinitely, so that would be—oh non 

multiples of 3. That would be—[marks diagram]—So if it is not a multiple of 6. So we 
said it’s outside the little circle. Then it is not multiple of 3, not multiple of 3 would be 
outside the bigger circle. So our set of numbers is inside the big circle and outside of this, 
but also outside the big circle. 

I(26):  Right, so what numbers are outside the big circle? Just give me a few examples. 
H(27): 7, 11 […] 
I(28):  If it’s a non multiple of 6 then it is a non-multiple of 3.  
H(29): It’s not a multiple of 6, like 3, 3 is multiple of 3 though.  
I(30):  Yea, so your counter-examples, like you said are these. ‘Cause they’re non-multiples of 6 

that in fact are multiples of 3. Which, so I agree. [Statement] 4 is false for that reason. 3 
is a counter-example. […]  

H(31): So we have a ton of numbers that prove it yes but we have all the counterexamples would 
be inside the big circle and outside the little circle. [Reads statement 5] So if we’re only 
talking about number that are not multiples of 3. So if anything outside the big circle—
well our multiples of 6 are inside the circle, so if we talk about anything outside of the 
circle, obviously we’re not going to contain multiples of 6. So if our set of numbers are 
outside the big circle, then yeah, none of those are multiples of 6. So that would be true. 

 
Figure 3: Hugo’s diagram at turns 17 and 25 

Once Hugo recognized that he could use the same diagram to assess the converse (turn 19), he 
explicitly cited the subset meaning to affirm statement 3 (turn 21). The interviewer’s prompt to 
use the same diagram for statements 4 and 5 required Hugo to attend to the negation/complement 
relationship. In turn 23 he associated the complement of the inner circle with the non-multiples 
of 6, but he avoided coordinating the complement of both sets by identifying a counterexample 
(the criterion he used the previous day). In turns 25 and 31, Hugo recognized that his 
counterexamples exemplified a class of numbers represented by the space between the inner and 
outer circles. Thus while his identification of a counterexample built upon his previous day’s 
work, he now displayed a set-based meaning for counterexamples afforded by the Euler diagram.  
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When Hugo considered statement 5, he associated the first condition with the complement of 
the outer circle. However, instead of affirming this statement by the subset meaning as portrayed 
in Figure 1, Hugo argued that non-multiples of 3 (numbers outside the outer circle) could not be 
multiples of 6 (inside the inner circle). Stated another way, the intersection between the non-
multiples of 3 and the multiples of 6 was empty. This empty intersection meaning for conditional 
truth again allowed Hugo to avoid coordinating two negations by parsing statement 5 as “if a 
numbers is a non-multiple of 3, then it is not a multiple of 6.”  

The interviewer invited Hugo to consider the relationships among statements 2-5 in terms of 
converses and inverses. With interviewer prompting, Hugo acknowledged that since #4 was the 
inverse of #3 and #5 was the converse of #4, one could go from #3 to #5 by taking both the 
converse and inverse. Hugo said, “But if we have an if-then statement that’s true, we take the 
inverse and the switch [their term for converse]—we switch it and take the inverse, then—so far 
we’ve proved that it would be true. […] I’m observing [this pattern] but I’m trying to articulate 
why that is.” Thus, he observed that these statements shared the same truth-value and 
conjectured that this pattern might hold generally, but he was unable to justify why this occurred.  

Discussion 
Our initial goals in this section of the teaching experiment were for Hugo and Elya to 

develop the subset meaning for conditional truth and to use that meaning to justify contrapositive 
equivalence. Elya used set-based meanings spontaneously while Hugo needed to develop tools to 
move beyond his example and property-based meanings. We claim that Hugo’s Euler diagram, 
initially produced to record his example-based reasoning, served as a transformational record 
(Rasmussen & Marrongelle, 2006). It both allowed him to generalize his example-based meaning 
for counterexample and later allowed him to relate inverses, converses, and contrapositives.  

Unlike prior study participants who struggled to associate negative properties with 
complement sets (Dawkins & Cook, 2015), Hugo developed this relationship in his interpretation 
of the diagram. However, he avoided coordinating two complements simultaneously for 
statements 4 and 5, as would be required by the subset meaning. He instead used counterexample 
and empty intersection meanings. While we could view this negatively as it falls short of 
adopting a purely syntactic and content general understanding of conditional truth – as one might 
desire in teaching formal logic – Hugo’s empty intersection meaning is logically equivalent to 
the subset meaning. Furthermore, he showed flexibility in parsing and interpreting the given 
statements, which could be fruitful in proof-oriented mathematical activity. We appreciate how 
the Euler diagram afforded Hugo valid mathematical inferences even if he could not justify those 
inferences, much as Elya’s semantic understanding supported contrapositive inferences. Hugo 
alternatively drew upon semantic information (about multiples or geometric shapes), linguistic 
competencies (parsing negative statements), and logical criteria (the subset meaning) to interpret 
the various statements provided, which we anticipate to be more consistent with proof-oriented 
reasoning than purely syntactic operations in a formal language.  

This paper contributes to our understanding of students’ construction of logical structure in 
semantically rich settings and reveals hurdles and opportunities in students’ development of set-
based meanings for compound statements. As was portrayed in the introduction, we prioritize 
students like Hugo and Elya developing generalizable meanings for mathematical truth. 
However, based on cases like Hugo’s we also value the flexibility to affirm the same statement 
in multiple, formally equivalent ways. Further study should continue to shed light on viable 
pathways for students to abstract their semantic reasoning into generalizable, syntactic tools and 
how these tools can be harnessed in students’ subsequent proof-oriented activity.  
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A New Methodological Approach for Examining Mathematical Knowledge for Teaching at 
the Undergraduate Level: Utilizing Task Unfolding and Cognitive Demand 

Erica R. Miller 
University of Nebraska-Lincoln 

In 2010, Charalambous published an article that examined the relationship between 
mathematical knowledge for teaching and task unfolding at the elementary level. As a result of 
this study, Charalambous evidence to support the claim that there is a positive relationship 
between a teacher’s MKT and the cognitive level of enacted task. Drawing upon this finding, the 
purpose of this study is to propose a new methodological approach examining mathematical 
knowledge for teaching at the undergraduate level. While this approach draws upon results 
concerning MKT at the K-12 level, it primarily focuses on examining undergraduate instruction 
through the lens of task unfolding and cognitive demand. To illustrate how this methodology can 
be used, the paper concludes by presenting two case studies that demonstrate how the 
methodology can be used to examine mathematical knowledge for teaching undergraduate 
Precalculus courses. 

 Keywords: Mathematical Knowledge for Teaching, Cognitive Demand, Task Unfolding, 
Undergraduate Instruction 

The combination of low pass rates in first-year undergraduate mathematics courses (Saxe & 
Braddy, 2015) with low percentages of students who persist on to complete STEM majors (Ellis, 
Kelton, & Rasmussen, 2014) has brought attention to the need to improve mathematics 
instruction at the undergraduate level. Commonly, undergraduate instructors are viewed as 
qualified teachers because they are considered experts in the content area they are expected to 
teach. However, Bass (1997) points out that “knowing something for oneself or for 
communication to an expert colleague is not the same as knowing it for explanation to a student” 
(p. 19). Even though they may spend half of their professional live teaching, professors often 
receive little to no professional preparation or development as teachers. In order to better 
understand how we can prepare teachers at all levels, it is important to understand the knowledge 
that is entailed in teaching. Just as accountants, engineers, and economists rely on specific 
mathematical knowledge, mathematics teachers rely on their own special domain of 
mathematical knowledge. 

Clearly a teacher must know the math that they expect their students to learn, but what other 
mathematical knowledge is part of this domain? To answer this question and better define this 
domain, educational researchers have begun to focus on mathematical knowledge for teaching 
(MKT). Mathematical knowledge for teaching has been defined as “the mathematical knowledge 
needed to perform the recurrent tasks of teaching mathematics to students” (Ball, Thames, & 
Phelps, 2008, p. 399). At the K-12 level, MKT has been studied extensively, but few studies 
exist at the undergraduate level. While researchers have studied MKT in various ways, this study 
focuses on examining MKT at the undergraduate level by observing and interviewing 
experienced instructors. Examining teaching by examining the actual practice of teaching will 
not only bring to light the knowledge that instructors use in the classroom, but also provides a 
more accurate description than one could take from hypothetical reasoning, personal reflection, 
or third-party insight. 
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Mathematical Knowledge for Teaching 

Studies have shown that content knowledge is not a predictor of teaching quality and student 
outcomes (Begle, 1972; Greenwald, Hedges, & Laine, 1996; Hanushek, 1981, 1996). However, 
Lee Shulman proposed in 1986 that there is content knowledge that matters for teaching. The key 
difference that Shulman identified was that teacher content knowledge must be connected to 
domain-specific pedagogical knowledge. Shulman formalized the idea of pedagogical knowledge 
for teaching, “which goes beyond knowledge of subject matter per se to the dimension of subject 
matter knowledge for teaching” (p. 9). In 1987, Shulman called for researchers and practitioners 
to pay more attention to the professional knowledge of teaching, including pedagogical content 
knowledge. 

Existing Research on MKT 
Several frameworks have been developed to describe the professional mathematical 

knowledge that teachers use (e.g., Rowland, Huckstep, & Thwaites, 2005; McCrory, Floden, 
Ferrini-Mundy, Reckase, & Senk, 2012; Baumert & Kunter, 2013) including Ball et al.’s (2008) 
framework for mathematical knowledge for teaching. Ball and her colleagues built off of 
Shulman's (1987) idea of pedagogical content knowledge and found that there was content 
knowledge that mattered for teaching and that a focus on this content benefited teaching and 
learning. Hill, Rowan, and Ball (2005) showed that at the elementary level that “teacher's content 
knowledge for teaching mathematics [emphasis added] was a significant predictor of student 
gains” (p. 396). While content knowledge for teaching does require general content knowledge, 
it also includes content knowledge that is usually not taught in undergraduate or graduate 
mathematics courses (i.e., common unproductive ways of thinking and developmentally 
appropriate definitions). Therefore, the content knowledge that undergraduate instructors have 
gained through their formal education may not be the same as content knowledge they need to 
know for teaching. 

More recently, research on MKT has been conducted at all levels of K-12 (McCrory et al., 
2012; Krauss, Baumert, & Blum, 2008); however, there still are relatively few studies that study 
MKT at the undergraduate level. Speer, Smith, and Horvath (2010) conducted a literature review 
to search for empirical research on the practices of collegiate teachers of mathematics. As a 
result, the authors found that they only were able to identify five articles in their search. While 
some may argue that this gap exists because MKT frameworks developed at the K-12 level can 
be extended to the collegiate level, the authors point out that “there are important differences 
between college and pre-college teachers and teaching” (p. 100), such as level and depth of 
content and pedagogy knowledge. In another article, Speer, King, and Howell (2014) focus on 
the problems that result from assuming that research on MKT at the K-12 level can be extended 
to MKT at the collegiate level. The authors claim that “relatively little attention has been paid to 
the ways in which MKT theory is or is not applicable to teachers at secondary and post-
secondary levels” (p. 106) and challenge researchers to explore “the types of knowledge entailed 
in the work of [collegiate] teaching...through the same kinds of careful study of the mathematical 
demands of teaching that sparked the early work on mathematical knowledge for teaching (Ball 
and Bass 2000)” (p. 119). 

Studying MKT at the Undergraduate Level 
To address this gap in the research, the purpose of this study is to draw upon previous 

research in order to propose a methodological approach to examining MKT at the undergraduate 
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level from the perspective of practice. In particular, the methodological approach used in this 
study was inspired by Charalambous’ (2010) study that found a positive relationship between 
teachers’ MKT and the cognitive demand of tasks enacted in the classroom. Studies have shown 
that the cognitive demand of a task is related to student learning (Boaler & Staples, 2008; 
Hiebert & Wearne, 1993; Stein & Lane, 1996), but enacting tasks at a high level of cognitive 
demand is difficult for teachers to do (Stein, Grover, & Henningsen, 1996; Hiebert & Stigler, 
2004). Building upon these findings, Charalambous (2010) hypothesized that there was a 
connection between teachers’ MKT and their ability to enact tasks at a high level of cognitive 
demand. To test this hypothesis, he utilized the Learning Mathematics for Teaching (LMT) 
assessment to measure teachers’ MKT and analyze the cognitive demand of enacted tasks. What 
he found was that teachers’ scores on the LMT were positively associated with their ability to 
enact tasks at a high level of cognitive demand. While it would be desirable to replicate this 
study to look for similar results at the undergraduate level, no comparable measure of MKT 
exists. However, I propose that it is possible to use the combination of task unfolding and 
cognitive demand as a lens to examine MKT at the undergraduate level. 

Task Unfolding and Cognitive Demand 

Before I explain the details of the new methodological approach I propose for studying MKT 
at the undergraduate level, I first want to further develop the underlying theoretical frameworks 
that this methodological approach builds upon: task unfolding and the Task Analysis Guide 
(Smith & Stein, 1998). In the third subsection, I connect these frameworks by presenting 
Charalambous’ (2010) characterization of task unfolding by the cognitive demand.  

Task Unfolding 
Stein et al. (1996) defined a mathematical task as “a classroom activity, the purpose of which 

is to focus students’ attention on a particular mathematical idea” (p. 460). They also describe the 
phases involved in the unfolding of a mathematical task and the factors that influence this 
unfolding. In 2007, Stein, Remillard, and Smith generalized task unfolding to apply to 
curriculum unfolding more generally, but the underlying process remained the same. In Figure 1, 
the rectangle boxes represent the three phases of task unfolding. The written task describes how 
the mathematical task is represented in the written curriculum or instructional materials. The 
intended task describes the teacher’s plan for implementing the task during instruction. Finally, 
the enacted task captures how the mathematical task is actually implemented during instruction. 
While each phase has an impact on student learning (represented by the triangle in Figure 1), 
studies have shown that the enacted task has the greatest impact (Carpenter & Fenemma, 1988). 
The bottom oval identifies some factors that influence how teachers plan out a task for 
implementation in the classroom and how the task is actually implemented in the classroom. 
Finally, it is important to note that the return arrows from the enacted task and student learning 
represent the impact that these will have on future teaching actions. 

Cognitive Demand of Tasks 
In order to differentiate between tasks of different types, Smith and Stein (1998) also 

considered the cognitive demand of a task. They defined lower-level demand tasks as “tasks that 
ask students to perform a memorized procedure in a routine manner” and higher-level demand 
tasks as “tasks that require students to think conceptually and that stimulate students to make 
connections” (p. 269). Each of these categories was then broken down into two subcategories: 
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memorization, procedures without connections, procedures with connections, and doing 
mathematics. Smith and Stein (1998) differentiated procedures with and without connections as 
representing differing levels of cognitive demand. They separated these two types of tasks in 
order to categorize mathematical tasks that “use procedures, but in a way that builds connections 
to the mathematical meaning” of the underlying concept as a higher-level demand task. Doing 
mathematics tasks are categorized as higher-level demand tasks that require “students to explore 
and understand the nature of relationships” (p. 347). To aid in differentiating between the 
different types of tasks, Smith and Stein developed the Task Analysis Guide, which lists 
characteristics of the four types of mathematical tasks. Later, when utilizing the Task Analysis 
Guide to code the third phase of task unfolding, Stein et al. (1996) added a third type of lower-
level demand task called unsystematic exploration. This type of task, which applies to only the 
third phase of task unfolding, describes declines in cognitive demand that are characterized by 
“motivated student engagement, well-intentioned teacher goals for complex work, and well-
managed work” but “the cognitive activity…was not at a high enough level to be characterized 
as engagement in complex mathematical thinking and reasoning” (p. 478). 

Categorizing Task Unfolding Using Cognitive Demand 
In their 1996 study, Stein et al. utilized the Task Analysis Guide to analyze a sample of 144 

tasks that were implemented in reform-oriented classrooms. They focused on the transition from 
the second to the third phase of task unfolding and found that the majority of the tasks were 
coded as maintaining or declining in cognitive demand. They also found that “the higher the 
cognitive demands of tasks at the set-up phase, the lower the percentage of tasks that actually 
remained that way during implementation” (p. 476). This finding provides confirming evidence 
for the claim that tasks with high cognitive demand are difficult to enact (NCTM, 2014, p. 17). 
In 2010, Charalambous conducted a similar case study, but explicitly categorized task unfolding 

 
Figure 1. The phases and factors influencing task unfolding. 
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by the type of path they follow  (Figure 2). In his categorization, Charalambous utilized the Task 
Analysis Guide to code cognitive demand as high or low at each phase in task unfolding, which 
resulted in eight possible types that a task unfolding could follow. It is worth noting that 
Charalambous only observed five of the eight possible task unfolding (Types 1, 5, 6, 7, & 8 in 
Figure 2) in the cases he studied and I added in the type numberings for ease of reference. 

Studying MKT at the Undergraduate Level 

Using these frameworks, I propose that it is possible to use the combination of task unfolding 
and cognitive demand as a lens to examine MKT at the undergraduate level. This methodological 
approach to studying MKT at the undergraduate level theoretically makes sense for several 
reasons. First, tasks are central elements of teaching due to the fact that they focus on the work 
that students do in the classroom. In particular, Doyle (1983) argues that tasks are central to 
students’ learning because their enactment focuses students’ attention on mathematical ideas and 
defines students’ ideas of what it means to do math. Second, there is a growing body of research 
that supports the view that instruction should focus on engaging students in mathematical rich 
tasks. “Principles to Actions” (NCTM, 2014) synthesizes the research on mathematical tasks as 
resulting in three major findings: (1) not all tasks are equal in terms of the opportunities they 
provide for student thinking and learning, (2) student learning is greatest in classrooms where 
tasks are consistently enacted at a high level of cognitive demand, and (3) tasks with high 
cognitive demand are the most difficult to enact (p. 17). Third, it is important to note that 

 
Figure 2. Categorization of possible types of task unfolding. 
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cognitive demand is not an invariable feature of a task. Factors that can influence the cognitive 
demand of enacted tasks include students’ understanding of the task objectives, teachers’ 
interpretation and setup of the task, and teachers’ content knowledge (Stein et al., 1996; 
Charalambous, 2010). The final reason why I believe that this methodological approach is 
defensible is due to the fact that studies have found a positive relationship between teachers’ 
MKT and enacting cognitively demanding tasks (Charalambous, 2010; Baumert et al., 2010). 

In the new methodological approach that I describe below, there are two stages of analysis: 
one that focuses on categorizing the unfolding of the task by considering the cognitive demand 
and another that examines the mathematical knowledge for teaching that influenced the 
unfolding of the task. After explaining each stage of analysis, I provide the reader with two case 
studies of what it looks like to apply this methodological approach in practice. 

Stage 1: Categorizing Task Unfolding by Cognitive Demand 
Data. In order to characterize task unfolding by cognitive demand, data should be collected 

for each phase in the task unfolding process. To capture the written task, any formal curriculum 
materials, such as textbooks and teacher guides, or informal instructional materials, such as 
activities developed by the teacher, should be collected. To capture the intended task, data 
corresponding to how the teacher intends to implement the task during instruction, such as the 
teacher’s lesson plan, should be collected. Finally, to capture the enacted class, data 
corresponding to the actual implementation of the task in the classroom, such as a video 
observation, should be collected. To aid in capturing the enacted task, the researcher may find it 
helpful to refer to the observation protocol used by Rogers & Steele (2016). 

Process. Once the data has been collected, the cognitive demand of the written, intended, and 
enacted tasks should be analyzed using the Task Analysis Guide (Smith & Stein, 1998). In each 
phase of unfolding, the task should be coded as memorization, procedures without connections, 
procedures with connections, doing mathematics, or unsystematic exploration. Recall that 
unsystematic exploration should only be used to categorize the final enactment phase of task 
unfolding. Also, the Task Analysis Guide contains detailed descriptors of these tasks that should 
aid the researcher in assigning codes. While Smith and Stein have not published any formal 
training on how to use the Task Analysis Guide, Charalambous (2010) describes how he trained 
his coders. One thing that is important to note is that the rest of the analysis only depends on the 
level of cognitive demand and not the finer-grained analysis of whether or not a high-level task is 
coded as procedures with connections or doing mathematics. However, utilizing the Task 
Analysis Guide will aid in making the distinction between high- and low-level tasks more clear. 

Product. Once the cognitive demand at each phase in the task unfolding has been analyzed 
using the Task Analysis Framework, the researcher can categorize the task unfolding using the 
path types (Figure 2). One could examine MKT without first categorizing the task unfolding, 
Charalambous’ finding that MKT and the cognitive demand of task enactment are positively 
related suggests that examining tasks that are enacted at a high-level of cognitive demand will 
provide more opportunities to examine MKT. For this reason, the researcher should ideally 
identify paths of Types 1, 2, 3, or 4 and utilize these in the second stage of analysis. 

Stage 2: Examining MKT 
Data. To examine MKT, the researcher needs to look at the factors that influence the 

transformation of task between phases. To capture how the written task is interpreted by the 
teacher and transformed into the intended task, the researcher should conduct a semi-structured 
interview with the teacher before the observation. To capture how the interpreted task is 
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transformed into the enacted task during instruction, the researcher should conduct another semi-
structured interview with the teacher after the observation. To aid in the development of the pre- 
and post-observation interview protocol, refer to Appendix B from Rogers and Steele (2016) and 
Appendix A of this paper. To allow for an in-depth analysis, it may be beneficial to choose only 
one or two of the tasks that were enacted at a high-level of cognitive demand to probe into during 
the post-observation interview. Also, since the intent of this methodology is to study MKT at the 
undergraduate level from the perspective of practice, stimulated-recall (Bloom, 1953) should be 
used during the post-observation interview in an attempt to get at the mathematical knowledge 
that the teacher used in the moment during instruction, as opposed to purely reflective thoughts. 

Process. Once the data has been collected, the researcher can begin to analyze the transition 
between phases of task unfolding in order to examine MKT. Since the purpose of this analysis is 
to examine MKT at the undergraduate level, the researcher is essentially building a theory for 
undergraduate MKT. For that reason, the pre- and post-observation interview responses should 
be analyzed using grounded theory (Strauss & Corbin, 1994). To do this type of analysis, the 
researcher begins with open coding of the data. As the researcher begins to identify categories 
that emerge during open coding, they should utilize the constant comparison method (Glaser & 
Strauss, 1999) to organize the codes into categories and subcategories. To fully develop a theory, 
the researcher must reach saturation, which is the point “when no new information seems to 
emerge during coding” (Strauss & Corbin, 1998, p. 136). It is important to note that if the 
researcher’s purpose is to only better understand how some aspect of the world works, as 
opposed to create a formal theory that explains this aspect, they may conclude their study before 
reaching theoretical saturation. 

Product. Depending upon whether or not the grounded theory analysis was taken all the way 
through theoretical saturation, the results of the second stage of analysis will differ.  If the 
researcher’s purpose is to better understand MKT at the undergraduate level looks like, then 
completing this analysis will give us a partial description. Although this partial description may 
fall short of a formal theory, it would still contribute much to the field, since there are currently 
so few studies that examine MKT at the undergraduate level. However, eventually, I believe that 
our goal should be to develop a formal theory for MKT at the undergraduate level. By 
developing a complete picture of MKT at the undergraduate level, we will have a more complete 
picture of what knowledge is required when teaching at the undergraduate level. Also, 
developing a theory from the ground up for MKT at the undergraduate level will allow us to see 
how it is similar to and different from MKT at the K-12 level. 

Case Studies 
To demonstrate how to use this methodological approach to study MKT at the undergraduate 

level, I have included two case studies below. The data used in these case studies were collected 
during the Fall 2015 semester at a mid-size research university in the Midwest. The instructors 
were selected primarily due to their experience teaching these courses and because they had been 
identified within the department as strong teachers.  At the time of data collection, Greg was a 
fifth-year graduate student who was teaching Trigonometry for the third time. He had also 
earned his M.S. in pure mathematics and was nearing the end of his doctoral work. Kelly was a 
third-year graduate student who was teaching College Algebra + Trigonometry for the third time. 
After earning her Masters in Engineering, Kelly earned her M.S. in pure math and was just 
beginning her doctoral work. The data I collected for analysis included the written lesson guides 
(which are provided by the department), the instructor’s intended lesson plans, pre-observation 
interviews, video observations of enacted lesson, and post-observation interviews. For the pre- 
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and post-observation interviews, I utilized the protocols in Appendix A. For this case study, I 
will focus on one task that each instructor enacted at a high-level of cognitive demand. 

Greg. The task that I analyzed for Greg focused on demonstrating how to use the law of sines 
to find a side length in a non-right triangle (Figure 3). Since this task called for the specific 
procedure that was to be used, required limited cognitive demand for completion, was not 
connected to the concept underlying the procedure, focused on producing a correct mathematical 
answer, and required no explanation, it was categorized as a procedures without connections 
task. In his lesson plan, Greg decided to remove the goal statement from the task so that students 
would have to recognize which procedure to use. Since this task was situated in the lesson right 
after the law of sines and cosines had been discussed, I still categorized it as procedures without 
connections because the procedure was evident from prior instruction and the placement of the 
task. However, when this task was enacted, it took on another form. 

 
When Greg introduced this task during class, a student immediately suggested that they use 

the law of sines to solve for x. However, when Greg asked, “What does the law of sines tell us in 
this case?”, a student responded by saying, “Break this into two triangles.” Greg recognized that 
the student was attempting to follow the procedure that they had used previously when deriving 
the law of sines. Greg affirmed that the student’s idea would work, but then focused on 
explaining why we don’t have to follow the steps of the derivation and instead can just use the 
final result. During this enactment of the task, the focus shifted from producing a correct answer 
to developing a deeper understanding of the mathematical process of derivation. For this reason, 
I coded the enacted task as procedures with connections. By doing this first stage of analysis, I 
was able to identify Greg’s task as a Type 3 task unfolding. 

During the second stage of analysis, several aspects of Greg’s MKT were brought to the 
surface. In analyzing how Greg transformed the written task in his lesson plan, Greg depended 
on his previous experience teaching this course to identify areas where students might struggle 
with this problem. During the pre-observation interview, Greg said that he knew that students 
often struggle to figure out what procedure will help them solve a problem. For that reason, Greg 
removed the goal statement in order to give students an opportunity to learn how to identify what 
procedure is appropriate. When Greg enacted the intended task during class, he shifted his 
attention from identifying the procedure to unpacking the mathematical process of derivation. To 
do this, Greg had to interpret the mathematical statements made by his students. This involved 
both assessing whether or not the student’s idea was mathematically sound and what they did 
and did not understand about the process of derivation. Finally, Greg had to determine an 
appropriate way to explain the process of derivation and connect it back to the original task. 

Kelly. The task that I analyzed for Kelly focused on introducing the short-run behavior of 
polynomials and reviewing the concept of long-run behavior (Figure 4). Instead of introducing 
and reviewing these ideas generally, the task provided a concrete example to work with. 

 

Figure 3. Greg’s written task. 
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However, since the task required limited cognitive demand for completion, was not connected to 
the concept underlying the procedure, focused on producing a correct mathematical answer, and 
required no explanation, I coded it as a procedures without connections task. In her lesson plan, 
Kelly modified the task by graphing the polynomial at the beginning, asking students to identify 
relationship between the graph’s behavior around zeros and the multiplicities of the zeros (as 
opposed to just telling them), connecting short-run behavior to the simple power functions x, x2, 
and x3, relating the multiplicities and number of zeros to the degree, and considering how long-
term behavior would change if the leading coefficient was negative. Because her intended task 
now required students to explore and understand the mathematical concept of short-run behavior, 
access relevant knowledge and make appropriate use of it when working through the task, 
analyze the task and actively examine constraints, and put forth considerable cognitive effort, I 
coded it as doing mathematics. When Kelly enacted this task in the classroom, the only thing that 
she modified was when she graphed the function. Instead of graphing the polynomial first, they 
utilized the function to identify the zeros, talked about the multiplicities, and briefly explored the 
general idea of short-run behavior and how it is connected to the multiplicities before graphing 
p(x). The enacted task added the complexity of requiring students to think generally about short-
run behavior instead of relying on a graphical representation and did not remove any complexity 
of the problem. Therefore, I still coded it as doing mathematics. By doing this first stage of 
analysis, I was able to identify Kelly’s task as a Type 2 task unfolding. 

During the second stage of analysis, several aspects of Kelly’s MKT were brought to the 
surface. In analyzing how Kelly transformed the written task in her lesson plan, Kelly 
intentionally highlighted mathematical connections and patterns instead of focusing on providing 
definitions. To help students make connect the idea of multiplicities with short run behavior, 
Kelli utilized “anchor” examples (x, x2, and x3) that captured the complexity of the relationship, 
but through simplified and easily accessible representations. One way that Kelly attended to 
complexity was by ensuring that the task provided enough variety (such as multiple zeros with 
both even and odd multiplicities) that students could recognize patterns and waiting to consider 
additional complexity (such as a negative leading coefficient) at the end. When Kelly enacted the 
intended task during class, her decision to wait and graph and polynomial after talking generally 
about short-run behavior required her to critically analyze the mathematical ability of her 
students. Forming mental representations of graphs and using these to identify graph features is a 
complex task for students. However, Kelly determined that her students were able to handle this 
challenge and successfully implemented this modification during the task enactment. 

Discussion 

As these cases illustrate, utilizing the frameworks of task unfolding and cognitive demand 
can help reveal MKT by focusing the analysis on the mathematical knowledge entailed in 
transforming written task into a classroom activity. The cases presented provide a glimpse into 
what MKT at the undergraduate level looks like, but are far from providing a complete picture. 
In particular, the analysis done here is really only representative of the first phase of grounded 
theory of open coding. To develop categories and subcategories or potentially even a general 
theory for MKT at the undergraduate level, further analysis must be done. As I mentioned 
previously, these two cases were selected from a larger data set that contains many more cases 
that can be analyzed. In the Fall 2016, I observed 39 instances of task unfolding in Precalculus 
classrooms. This semester (Spring 2016), I’m observing six Precalculus instructors three times 
each, so I anticipate that my complete data set will include around 90 instances of task unfolding.  
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There are several limitations to both the case studies I presented and the general 
methodological approach I suggested. For sake of continuity, I will address the limitations of the 
case studies first and then consider the methodology. One limitation of the cases presented here 
is that the instructors were graduate students and not faculty members. This distinction may 
impact the MKT I uncover, since graduate students are generally less-experienced teachers than 
faculty members and are still learning how to teach. However, studies have shown that 
experience is actually not a predictor of MKT (Ball, Lubienski, & Mewborn, 2001). It is also 

 

Figure 4. Kelly’s written task. 
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important to note that at many doctoral-granting universities, graduate students primarily teach 
first-year courses, so my sample is representative of the population. Also, my case study is 
limited in that it considers instructors who have taught a course 3 or more times as experienced. 
If utilizing a more-traditional K-12 definition of experienced teachers, these instructors would 
still be considered novices. However, relative to the total population of graduate instructors 
teaching Precalculus courses, my instructors would be considered experienced. 

There are two main limitations that I have identified in the methodological approach I 
suggest for studying MKT at the undergraduate level. First, one must consider how to handle 
intended tasks that are not from a written curriculum, intended tasks that are not enacted, and 
enacted tasks that are not included in the intended lesson plan. Of the 39 instances of task 
unfolding that I observed last fall, 19 fit into one of these categories. However, I believe that this 
limitation does not trivialize the analysis. In these cases, the Stage 1 and 2 analyses can still be 
done if data was collected for at least two of the phases. A second limitation of the methodology 
is that it is designed under the assumption that MKT only influences the transition between 
phases. While research does support the fact that it is involved in these transitions (Brophy, 
1991, 2001; Stein, Baxter, & Leinhardt, 1990), it is worth considering whether or not any 
opportunities to examine MKT may be lost by limiting the analysis in this way. Finally, by 
restricting the unit of analysis to mathematical tasks, the methodology does not consider how 
MKT might be related to other aspects of teaching, such as designing and providing feedback on 
assessments. However, if one considers the 19 high-leverage practices (TeachingWorks, 2017)  
that Ball and colleagues identified as the basic-fundamentals of teaching, task unfolding captures 
the majority of these practices. 

Even with its limitations, the methodological approach I proposed for examining MKT has 
many strengths. First, the methodology itself is independent of the content and level of 
instruction. Therefore, it can be used to study MKT K-12 courses, other undergraduate courses 
besides Precalculus, or even graduate courses. Second, the methodology is flexible in that it can 
be used to generate formalized theories of MKT or less-formal descriptions and 
characterizations. Third, utilizing the frameworks for task unfolding and cognitive demand 
focuses the analysis on specific teaching actions. This is beneficial examining teaching 
holistically can easily overwhelm a researcher and make it difficult to focus on MKT. However, 
by utilizing the frameworks of task unfolding and cognitive demand, this methodology provides 
a structure that begins to reveal the mathematical knowledge involved in the complex work of 
teaching. Finally, the primary strength of this methodology is that it provides a way to study 
MKT at the undergraduate level through careful study of the practice of teaching. Instead of 
utilizing existing frameworks for MKT that were developed at the K-12, it examines MKT at the 
undergraduate level independently. However, it still draws upon the research and findings at the 
K-12 level, but in a careful and systematic way that still attends to the unique characteristics of 
undergraduate instruction. 
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Appendix A 

Pre-Observation Interview Protocol 
1. Have you previously used this task in a class before? 
2. Where did this task come from? 
3. Did you make any changes to this task? 
4. What is the mathematics that you intend students to learn through this task? 

a. Why did you want your students to learn this mathematics? 
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b. What about this task made you believe it is an appropriate way to learn this 
mathematics? 

Post-Observation Interview Protocol 
1. Did you get to all of the tasks that were in your lesson plan? 

a. Why or why not? 
2. Did you change any of the tasks that were in your lesson plan? 

a. Why or why not? 
3. During the pre-observation interview, you said that the intended learning outcome for this 

task was     . Was that learning outcome the same during class? 
a. Why or why not? 
b. Do you believe that the intended learning outcome was achieved? 

4. During this part of the task, it seemed like you were unpacking the mathematics to make it 
comprehensible for your students. 
a. What exactly were you trying to unpack? 
b. Why did you decide to unpack this? 
c. How did you determine a way to unpack this? 

5. During this part of the task, it seemed like you were making mathematical connections 
across topics, assignments, representation, or domain. 
a. What exactly were you trying to connect? 
b. Why did you want to connect these things? 
c. How did you make these connections? 

6. During this part of the task, it seemed like you removed some mathematical complexity to 
make it more comprehensible for your students? 
a. What exactly did you remove? 
b. Why did you decide to remove that? 
c. How did you maintain the mathematical integrity of the task? 

7. During this part of the task, it seemed like you added some mathematical complexity to 
make it more challenging for your students? 
a. What exactly did you add? 
b. Why did you decide to add that? 
c. How did you maintain the mathematical integrity of the task? 

8. During this part of the task, you elicited and interpreted student thinking. 
a. What response(s) did you anticipate? 
b. Why did you elicit student thinking here? 
c. How did you interpret what the student said mathematically? 

9. During this part of the task, you used the following mathematical representation(s). 
a. What exactly were you trying to represent? 
b. Why did you use this (these) representation(s)? 
c. How did you use this (these) representation(s)?  
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Mathematical Actions, Mathematical Objects, and Mathematical Induction 
 

 Rachel Arnold   Anderson Norton 
      Virginia Tech                           Virginia Tech

 
Proof by mathematical induction is arguably the most difficult proof technique for 

students to master. We explain this difficulty within an action-object framework. Specifically, we 
report on results from clinical interviews with two mathematics majors in which the first author 
administered tasks designed to elucidate each student’s understanding of logical implications as 
mental objects. We found that the framework explains much of the difficulty inherent in proof by 
induction, even the students’ struggles with hidden quantifiers. 

 
Keywords: Action-object theory, Logical implication, Mathematical induction, Proof 

 
Beyond the difficulties students experience with proof in general (Weber & Alcock, 

2004; Mariotti, 2006; Stylianideas, 2007), mathematical induction poses particular challenges 
(Baker, 1996; Harel, 2002; Michaelson, 2008; Movshovitz-Hadar, 1993; Stylianides, Stylianides, 
& Philippou, 2007). Proof by induction involves the implication that if a proposition holds for 
some integer k, then the proposition holds for the integer k+1. Students often conflate this 
inductive assumption with the assumption that the proof holds for any k (Avital & Libeskind, 
1978; Ron & Dreyfus, 2004). Using the notation P(k) to represent the proposition applied to k, 
there needs to be a distinction between the implication P(k) → P(k+1) and P(k) itself.  

For example, consider the proposition, P(n): The sum of the first n odd natural numbers is 
n2. The proposition holds for n=1, and assuming it holds for some natural number k, we can 
show that it also holds for k+1. Suppose that 1 + 3 + ··· + (2k-1) = k2; then adding 2k+1 (the next 
odd number) to both sides of the equation, we get the sum of the first k+1 natural numbers on the 
left side of the equation, and on the right side of the equation, we get k2 + 2k+1 = (k+1)2. Thus, 
we have proven that the proposition holds for n=1 and that, if P(k) is true, then P(k+1) is also 
true. Therefore, P(n) is true for all natural numbers. 

The purpose of this paper is to investigate the cognitive origins of students’ difficulties in 
mastering proofs by induction. More specifically, we apply an action-object theory to the logical 
implication P(k) → P(k+1) in order to study how a complete understanding of induction might 
develop. Most mathematics majors can prove logical implications (Harel & Sowder, 2007), but 
proof by induction imposes an additional requirement: the inductive implication, P(k) → P(k+1), 
must be taken as a single object rather than a relation between two objects, P(k) and P(k+1) 
(Dubinsky, 1986). Our study contributes empirical results to support this claim within a revised 
action-object framework. 

We begin our report with a review of literature on students’ difficulties in understanding 
proof in general and proof by induction. Then we introduce our action-object framework for 
investigating such difficulties. Next, we describe the tasks we used to investigate students’ 
understandings within that framework. Finally, we report on results that answer the following 
four questions. 
 

1. How do college mathematics majors understand logical implications? 
2. Are action-object distinctions useful in modeling these understandings? 
3. How do these understandings contribute to their mastery of proof by induction? 
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4. What other factors contribute to, or detract from, mastery of proof by induction? 
 

Research on Students’ Difficulties with Proofs and Proving 
 

Harel and Sowder (2007) defined a conjecture as “an assertion made by an individual 
who is uncertain of its truth” (p. 808). Correspondingly, they defined proving as the process of 
removing doubts about such assertions. Recognizing the reciprocal role that conjecturing plays in 
proving, Boero, Lemut, and Mariotti (1996) referred to a cognitive unity between these two 
activities, and several researchers have described ways in which students switch back and forth 
between conjecturing and proving as they attempt to construct proofs (Arzarello, Andriano, 
Olivero, & Robutti, 1998; Herbst, 2006; Saenz-Ludlow, 1997; Weber & Alcock, 2004). For 
example, Cifarelli (1997) found that, “[students’] self-generated hypotheses went hand-in-hand 
with their conception of carrying out of purposive activity designed to test the viability of their 
hypotheses” (p. 20).  

Harel and Sowder (2007) referred to a second kind of switching, between ascertaining 
and persuading. The role of persuasion in proof emphasizes its social dimension and subjective 
nature. In learning to make convincing arguments, students need to do more than ascertain truth 
for themselves; they must also find ways to convince others. Mathematical communities (such as 
mathematics classrooms) can specify criteria for convincing arguments. de Villiers (1999) 
specified six purposes these arguments might serve: verification, explanation, systemization, 
discovery, communication, and intellectual challenge. Additionally, mathematicians often place 
value on the aesthetic qualities of a proof (Sinclair, 2006). 

 To classify ways that students might attempt to ascertain and persuade, Harel and 
Sowder (2007) identified three broad proof schemes: external, empirical, and deductive. 
Generally, mathematics educators aspire for their students to progress toward deductive proofs 
because: (1) unlike external proof schemes, they include personal meaning that relates to 
ascertaining; and (2) unlike empirical proof schemes, they provide persuasive power via logical 
explanation (NCTM, 1989). Table 1 summarizes the three broad proof schemes, along with their 
subcategories. 

In contrast to our aspirations, students generally rely on empirical or external proof 
schemes (Harel & Sowder, 2007), and poor performance in proving persists in college, even 
among mathematics majors (Selden & Selden, 2003; Weber, 2001). Proofs by mathematical 
induction pose particular challenges for mathematics students (and teachers), from high school 
through college (Avital & Libeskind, 1978; Baker, 1996; Ron & Dreyfus, 2004; Stylianides, 
Sylianides, & Philippou, 2007). In a conceptual analysis, Ernest (1984) speculated several 
possible reasons for students’ difficulty, including their understandings of logical implication in 
general. Several empirical studies have followed, elucidating the role of such factors. 
In a study of elementary and secondary school preservice teachers, Stylianides, Stylianides, and 
Philippou (2007) identified three specific difficulties underlying students’ poor performance with 
proofs by mathematical induction: (1) understanding the necessity of establishing a base case 
(usually n=1); (2) interpreting the meaning of the inductive step, P(k) implies P(k+1); and (3) 
accepting that the proposition might hold beyond the cases covered by induction. In discussing 
the first two difficulties, the researchers cited prior work by Dubinsky (1986) suggesting that, in 
order to develop a mature understanding of proof by mathematical induction, students need to 
understand logical implication as an object: “Similar to what we found, many sophomores in 
Dubinsky’s study tried to prove P(k+1) rather than P(k) → P(k+1)” (p. 162).  
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Table 1. Harel and Sowder’s (2007) Proof Schemes 
Class Sub-category Description 
External Proof Schemes   
 Authoritarian Relies on external authority, such as 

a text or teacher 
 Ritual Focuses on format (such as two-

column proof) over substance 
 Non-referential symbolic Focuses on symbol manipulation 

rather than underlying concepts 
Empirical Proof Schemes   
 Inductive Relies on measurements from 

specific examples 
 Perceptual Relies on perceptions of specific 

examples 
Deductive Proof Schemes   
 Transformational Based on operational thinking and 

logical inference that generalizes 
across an entire class  

 Axiomatic A transformational proof scheme 
that begins from axioms. 

 
We return to Dubinsky’s work in the next section as part of a more general discussion of 

action-object theory. Here, we note that the conflation of the proposition P(k) with the 
implication P(k) → P(k+1) can lead students to conflate proofs by induction with the fallacy of 
assuming what is to be proved (Movshovitz-Hadar, 1993). Further, even successful mathematics 
students have difficulty accepting the truth of the implication without knowing the truth of the 
proposition itself: “How can you establish the truth of P(k+1) if you don’t even know if P(k) is 
true?” (Avital & Libeskind, 1978, p. 430).  

Harel (2002) explicitly connected students’ poor performance in mathematical induction 
to their proof schemes, as characterized by Harel and Sowder (2007; see Table 1). In a study of 
preservice secondary school teachers enrolled in a college number theory course, Harel (2002) 
found that students’ proof schemes largely fell into the empirical and external categories, 
particularly the authoritative and non-referential symbolic subcategories of the external proof 
scheme. Furthermore, he found that students’ proof schemes strongly influenced the ways they 
understood the method of mathematical induction. He argued that students rely on authoritative 
schemes because they are introduced to the method before they have an intellectual need for it. 
He suggested a need-driven instructional approach that could build from students’ empirical 
proof schemes toward transformational proof schemes that would support a complete 
understanding of the method. 

The instructional approach utilizes pattern generalization, which is in the purview of the 
empirical proof scheme. However, the approach emphasizes patterns in the process rather than 
patterns in the results of that process, supporting a form of reasoning that Harel (2002) calls 
quasi-induction. In the previously shared example of summing odd integers, instruction that 
supports quasi-induction might involve drawing students’ attention to the way one perfect square 
follows from the previous one, rather than the pattern of perfect squares itself. For instance, 
(4+1)2 – 42 = (2·4+1), and this pattern holds across any pair of consecutive perfect squares so that 
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(k+1)2 – k2 = (2k+1). Because quasi-induction and its process pattern generalizations focus on 
students’ own mental actions rather than empirical observations, it is transformational in the 
Piagetian sense (Piaget, 1970), and Harel (2002) refers to it as a manifestation of the 
transformational proof scheme.  

 
Action-Object Framework 

 
 Action-object theories of mathematical development derive from Piaget’s (1970) genetic 
epistemology, in which mathematics is understood as a product of psychology: Mathematical 
objects arise as coordinations of mental actions through a process called reflective abstraction. 
Within that framework, the enterprise of mathematics education is to specify the mental actions 
that underlie mathematical objects and how they might be coordinated--composed and reversed--
with one another to construct those objects. For example, mathematics education researchers 
have described how whole numbers, like 5, arise as objects for children through coordinated 
activities of unitizing, iterating, partitioning, and disembedding (Piaget, 1942; Steffe & Cobb, 
1988; Ulrich, 2015).  
 Dubinsky (1986) adopted a Piagetian perspective to extend action-object theories to 
advanced mathematics. He developed the APOS framework to explain students’ mathematical 
development through processes of interiorizing actions as processes, then encapsulating those 
processes as objects that can be acted upon; schema organize processes and objects so that 
students can make sense of mathematical situations. Similarly, Sfard (1991) described the 
reification of actions as objects, thus distinguishing objects from pseudo-objects. Unlike 
mathematical objects, pseudo-objects are merely figures or symbols, with no basis in action, so 
they cannot be de-encapsulated. For example, high school students learn rules for manipulating 
expressions within algebraic equations, but for many students, the expressions themselves have 
no reference to underlying actions (Sfard & Linchevski, 1994). 
 Action-object theories point to two essential features of logico-mathematical 
development—that students begin to construct new mathematical objects by coordinating their 
available mental actions and that new mental actions become available for acting on those 
objects. For example, students can construct the cube as a mathematical object by coordinating 
mental rotations, and once they have constructed the cube, they can consider new actions, like 
reflecting the cube about a plane through its center. The double arrow in Figure 1 represents 
these two essential features.  
 

 
Figure 1. Actions and objects. 

 
In the domain of proof and proving, we might consider logical implication as a mental 

action that transforms one assertion into another. In formal logic, this transformation is referred 
to as modus ponens (P implies Q, and P is true, therefore Q is true). It has three kinds of reverse 
actions: negation (P is true and Q is false); inversion, which relies on the converse of the 
implication (Q implies P); and modus tollens (P implies Q, and Q is false, therefore P is false), 
which relies on the contrapositive of the implication (not Q implies not P). Whereas the 
contrapositive of the implication is logically equivalent to the original implication, its converse is 
not. 
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“Performance on logical inferences involving modus ponens is usually reasonably good, 
but performance on those tasks involving modus tollens is weak, as is a full understanding of 
inferences involving if-then statements” (Harel & Sowder, 2007, p. 826). From a Piagetian 
perspective, these latter two findings go hand-in-hand. A full understanding of any mathematical 
object relies on the ability to reason reversibly (Piaget, 1970), so students will not have a full 
understanding of inferences involving if-then statements until they can reason with modus tollens 
as well as modus ponens. In other words, a logical implication would arise as a mathematical 
object for students only after they begin to coordinate modus ponens and modus tollens as 
reverse actions.  

In referring to quasi-induction, Harel (2002) was making an action-object distinction in 
the development of mathematical induction. The logical implication P(k) → P(k+1) begins as an 
action wherein students have to carry out the transformation from the kth case to then (k+1)st 
case. True induction arises from the objectification of this action (see Figure 2). “In quasi-
induction one views the inference, P(n-1) → P(n), just as one of the inference steps—the last 
step—in a sequence of inferences that leads to P(n). In mathematical induction on the other hand, 
one views the inference, P(n-1) → P(n), as a variable inference form, a placeholder for the entire 
sequence of inferences” (Harel, 2002, p. 26). Based on this action-object framework, our study 
focuses on the actions and objects of mathematical induction, including the two sides of the 
implication, the implication itself, and three ways of reversing it: converse, contrapositive, and 
negation. 
 

 

Figure 2. The actions and objects of logical implication. 

 
Methods 

 
 To investigate the actions and objects of mathematical induction, the first author 
conducted clinical interviews with each of two college students, Trevor and Laura, who had 
completed an Introduction to Proofs course, which included instruction on mathematical 
induction. One student, Trevor, earned an A in the course, and the other student, Laura struggled 
in the course, earning a grade of C. In this paper, we share results from our analysis of the 
interview with the higher performing student, Trevor. 
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The one-hour interview was video-recorded and consisted of tasks designed to elicit the 
actions and objects those students had available for reasoning with proofs by mathematical 
induction. In the remainder of this section, we describe those tasks and our video analysis of the 
interview with Trevor.  
 
Tasks 
 

Interview tasks included three types (see Table 2). Type A tasks were designed to assess 
student understanding of logical implication. We included questions in both a familiar context 
(number theory) and an unfamiliar context (homology). In both contexts, students were given a 
statement and asked to provide truth values for its converse, its contrapositive, and its negation. 

Type B tasks assessed student understanding of the components of mathematical 
induction (e.g., P(1) and P(k)) and how they might support an inductive proof. Type C tasks 
assessed student ability to construct a formal proof, both in general and by induction. Sample 
tasks are listed in Table 2. 
 
Table 2. Sample interview tasks. 

Task Type Sample Task 
A: Logical 
implication 

Suppose the statement S is true. Evaluate whether the statements (a)-(c) 
are true, false, or uncertain. 

1. S:  If two topological spaces are homeomorphic, their homology 
groups are isomorphic. 

a. If two topological spaces have isomorphic homology groups, 
the spaces are homeomorphic.  

b. If the homology groups of two topological spaces are not 
all isomorphic, the spaces are not homeomorphic. 

c.  There is a pair of homeomorphic topological spaces whose 
homology groups are not all isomorphic.  

2. S: Every even natural number can be written as the sum of two 
prime numbers. 

a. If a number is not the sum of two primes, it is odd. 
b. There is an even number that is not the sum of two primes. 
c.  If a number is odd, it is not the sum of two primes. 

B: Induction 
components 

Each of the following scenarios relates to a proposition P(n), where n is a 
positive integer. Decide whether: (a) the given information is enough to 
prove P(n) without induction (i.e., induction is not necessary); (b) the 
given information is enough to prove P(n) with induction; or (c) or the 
given information is not enough to prove the proposition. 

1. P(1) is true; there is an integer k≥1 such that P(k) is true. 
2. P(1) is true; there is an integer k≥1 such that P(k) → P(k+1). 
3. P(1) is true; for all integers k≥1, P(k) → P(k+1). 

C: Non-inductive 
formal proof 

Let k be an integer. Prove that if 36 divides k, then 81 divides k2. 

D: Inductive 
formal proof 

Prove that beginning with zero, every third even number is divisible by 6. 
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During each interview, the first author posed tasks to the student one at a time by handing 
the student a slip of paper. The student was given paper to write notes and was provided 
opportunities to ask clarifying questions. After the student’s response to each task, the 
interviewer would ask follow-up questions, probing the student’s reasoning. For example, for 
Type B tasks (see Table 2), the interviewer might asked the student what additional information 
(s)he would need in order to show that the proposition would hold for all positive integers.  
 
Video Analysis 
 

Each researcher independently engaged in video analysis through an action-object lens. 
In this initial analysis, we focused on collecting facts about student understanding from each task 
type, without consideration of how performance on tasks of one type predicted performance on 
tasks of another type. We analyzed the students’ spoken explanations for the Type A tasks to 
assess if they understood logical implication as an object, or if they instead viewed implication as 
an action between two objects, the hypothesis and the conclusion. For Type B tasks, we inferred 
which components of mathematical induction the students objectified and what actions they 
could perform on those objects. Finally, for Type C tasks, we evaluated the students’ success in 
proving statements with and without mathematical induction. 

In a second iteration of analysis, the researchers jointly considered how well the action-
object framework explained student responses and how the students’ performance on tasks of 
one type predicted their performance on later tasks.  In particular, we looked for connections 
between the students’ conceptualization of logical implication and their success in proof by 
mathematical induction. More specifically, we examined how the students’ performance on Type 
A tasks predicted their objectification of the components of induction and the subsequent actions 
the student could perform on these components in Type B tasks. We considered whether 
students’ objectification of logical implication and the components of mathematical induction 
(Type A and Type B tasks) explained additional challenges they experienced in proof by 
mathematical induction when compared to proof without induction (Type C tasks). In light of 
previous research, we considered explanations alternative to action-object theory for these 
differences. For example, what challenges did students experience in the components of 
mathematical induction because of hidden quantifiers (Shipman, 2016)? Selected transcription 
was used to support our analyses. 
 

Results 
 

We focus on the results of our video analysis of the interview with the higher-performing 
student, Trevor. Trevor seemed to treat logical implication as an action on two objects (P and Q), 
rather than a single object itself (P → Q). This was evidenced throughout the interview, but 
particularly when he explained his reasoning for his responses to Type A tasks.  

As we outline below, we infer from Trevor’s spoken and written reasoning that he 
conceptualizes the negation, converse, and contrapositive of the implications in Task A via 
transformations on the objects of the implication, the hypothesis and conclusion. The more 
complicated the transformation process became, the more Trevor struggled with assessing the 
validity of the new statement. 

The easiest transformation for him was by far the negation. In Task A1c, Trevor was 
asked to state the negation of the implication P →!Q as a follow up to his response that the 
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statement was false. Trevor replied, “the negation is P implies not Q … if you’ve already 
violated your assumption by saying that P is false then it doesn’t really matter what happens to Q 
because you don’t really care because P isn’t true.” He also wrote “P → ~Q” on his interview 
paper. Trevor’s explanation of why he believes the negation is P → ~Q seems to indicate the 
following thought process. To negate the implication, he first considers negating P and Q 
individually. We infer that Trevor is considering whether ~P → ~Q could be the negation.  He 
concludes that P should not be negated, misusing the fact that an implication is vacuously true 
when P is false. Thus, he arrives at his conclusion that the negation should be P → ~Q. In 
considering the negation of the hypothesis and conclusion separately, Trevor treated implication 
as an action on objects, rather than an object itself. And, because Trevor believed the negation 
was P → ~Q, he needed only to construct ~Q as an object to assess the truth value of the entire 
statement. 

Determining the truth value of the converse statements in Task A was slightly trickier for 
Trevor because it involved a reverse transformation of the implication. When considering the 
converse in Task A1a, Trevor began by writing out and separating the two statements in the 
implication (see Figure 3). He then claimed that the statement was uncertain, using the following 
justification: “Just because you know that the forward direction is true, there’s nothing implying 
that the reverse direction is true, in this case.” Prompted for a term to describe the statement in 
question, Trevor correctly labeled it as the converse statement. These responses indicate that 
Trevor treated the original statement in two parts, with implication as an transformation between 
them--a transformation that he could reverse. His representation of the original statement seemed 
to support his reasoning in comparing the reverse (converse) statement to the original. 

 
 

 

Figure 3. Trevor’s representation of the original implication in Task 1a. 
 
In response to Task A2c, Trevor paused for about 12 seconds, looking at the statement in 

question. Finally, he responded as follows: 
 

That one I’m going to say ‘uncertain’ because this one [pointing to the original statement] 
just says that if you have a naturally even number then you can express it as the sum of 
two primes. But it doesn’t [flips right hand over] flip the… Inverse statement isn’t true 
necessarily, saying that, if a number is odd, it’s not the sum of two primes. But… I feel 
like I’m drawing outside information into saying this next part, but being a prime 
number, you can’t be an even number…  

 
Trevor went on to explain (based on his assumption that all primes are odd) that the sum of two 
primes will always be even. Thus, he justified the truth of the converse statement based on the 
context of the task. He knew that, in general, the converse would not necessarily follow from the 
original implication. However, once again, determining the relationship between the original 
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statement and its converse required Trevor to perform a “flip” wherein he treated the two sides of 
the implication as separate objects.  

While Trevor seemed to recognize the statements in tasks A1a and A2c as the converse 
of each implication relatively quickly, Trevor did not recognize the contrapositive statements in 
both tasks of Type A without significant prompting. In fact, the most challenging Type A tasks 
for Trevor were the contrapositive statements because they appeared to require him to combine 
two transformations, reversal and negation, on the objects of the implication. We note that this 
additional transformation, as compared to his handling of the converse, created substantially 
more struggle for Trevor. This is evidenced by Trevor’s responses to the Task A1b, where the 
mathematical context was unfamiliar. After several minutes of little progress and after the first 
author prompting him to see the relationship between the statement S and its contrapositive, 
Trevor stated, “It’s the negation of the reverse order, which is true in general. I do remember 
that… I don’t remember the word but, ‘If P then Q is true’, then ‘not Q implies not P’ is 
generally true.” Trevor’s explanation indicates the two transformations, reversal and negation, he 
performs to obtain the contrapositive from S. Further, like in Task 1Ac, Trevor uses the term 
“negation” to mean the negation of each individual statement P and Q. If he was indeed referring 
to the “negation of the reverse order,” he would have ~(Q → P) and hence Q and ~P, which is 
not the contrapositive of P → Q.  

In Task A2a, Trevor had to again determine the truth value of the contrapositive of 
statement S in the familiar setting. Despite having just solved Task A1b, he still did not 
recognize the statement as the contrapositive and struggled to determine its validity. This 
supports our previously mentioned inference that the additional transformations necessary for 
Trevor to mentally construct the contrapositive are enough to blur his connection of the truth 
value of S to its contrapositive. Further, Trevor relied on his knowledge of primes to reason 
through his answer, ignoring the logical equivalence connection altogether. Rather than viewing 
the entire implication as an object that could be manipulated, he focused on the meaning of the 
hypothesis and conclusion separately. Consequently, we infer that Trevor’s reliance on 
mathematical context demonstrated that he was not viewing the logical implication as a single 
object, rather an action on objects.  

Contrasting Trevor’s performance on Type A tasks in the unfamiliar versus familiar 
mathematical setting reveals the mental actions and objects that Trevor seemed to have available. 
First, because the hypothesis and conclusion of statement S in the unfamiliar setting (Task A1) 
did not carry mathematical meaning for Trevor, he seemed to conceptualize them rather quickly 
as pseudo-objects (Sfard, 1991). He did not devote time to framing the statements as objects with 
mathematical meaning. Therefore, he was more able to perform his transformations on S that 
were necessary for him to construct each new statement in Tasks A1a-c. However, in the familiar 
setting, Trevor got stuck trying to first construct the pieces of the implication as mental objects 
because they carried mathematical meaning that he believed he could unpack. As a result, he was 
delayed in the process of carrying out his transformations. This was particularly evidenced in 
Trevor’s performance on Task A2a when he struggled to execute his two step action sequence of 
transforming the implication S into its contrapositive. 

Next, Trevor’s responses to the Type B tasks indicated that he understood how to 
combine components of an inductive proof, but he seemed to rely heavily on a procedure learned 
in class. In this way, he seemed to rely on an authoritarian proof scheme (Harel & Sowder, 2007, 
see Table 1). In particular, he treated induction as a sequence of objects: a base case, an inductive 
assumption, and an inductive step. Like his treatment of logical implication in the Type A tasks, 
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Trevor separated the inductive implication into two objects—the assumption and the step. This 
reasoning was evidenced in his response to Task B2 in Table 2 where he was given P(1) and the 
existence of an integer k for which P(k) implies P(k+1). 
 

We have everything we need to do induction on this case because we have a base case 
that P(1) is true. And then can lump P(k) into our inductive assumption and then use P(k) 
implying P(k+1) to form our inductive step and follow that all the way through to all of 
the natural numbers. 

 
These criteria helped him successfully distinguish which scenarios could generate a proof by 
induction, but a conceptual limitation became apparent. Specifically, it was clear that Trevor 
viewed induction as a connected sequence of three objects as follows. Trevor first checked for a 
base case, object one. He then linked the base case to his second object, the inductive 
assumption, by checking that k began at 1 for the remaining information. Once he was satisfied 
that this connection existed, he was able to consider the final object, the inductive step. Because 
of this ordered thought process, Trevor did not seem to notice that the inductive implication was 
missing from Task B1. In what follows, Trevor was concerned with making sure that k began at 
1. He argued that if k were 3, he would still have a kind of inductive step but that the step size 
would be 2 instead of 1.  
 

We can say that P(k) is true for this given integer, but we don’t really know where k is, so 
I don’t think we can construct an inductive argument because we don’t know where k is 
relative to 1. But if k is 3, for example, we don’t know what happens at 2, and so we 
haven’t proved it for all of the natural numbers. So even if we were to say like skip two 
steps, then we leave out all of the evens, for example. 
 

We contrast this to Trevor’s performance on Task B2 where he was given P(1) and that there 
exists an integer k≥1 such that P(k) implies P(k+1). Here, overlooking the existential 
quantification of k (which we address below), Trevor was satisfied with his initial action of 
joining the base case to the inductive assumption and completed his object sequence as follows. 
 

We have everything we need to do induction on this case because we have a base case 
that P(1) is true. And then can lump P(k) into our inductive assumption and then use P(k) 
implying P(k+1) to form our inductive step and follow that all the way through to all of 
the natural numbers. 

 
Trevor’s above response to Task B2 also surfaced a new issue in successful proof by induction: a 
student’s ability to recognize the role of quantification in the inductive implication. Initially, 
Trevor overlooked the quantification of k in Tasks B1 and B2. His sequencing of inductive 
objects led to a correct conclusion (but for the wrong reason) that Task B1 did not have enough 
information, and an incorrect conclusion that Task B2 had enough information for proof by 
induction. However, upon seeing Task B3—which gave P(1) and that for all integers k≥1, P(k) 
implies P(k+1)—and after much prompting from the interviewer, Trevor exposed the role of 
quantification. He then went back to Task B2 and said there was not enough information to use 
induction.  

While Trevor’s object sequence may not lead to a mastery understanding of induction, it 
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did allow for him to systematically outline the necessary components in a proof by induction. For 
the Type C task shown in Table 2, Trevor had no trouble establishing base cases, and he seemed 
to understand the purpose of induction.  
 

We can establish as many base cases as we want… 0 can be represented as something 
times 6; 6 can be represented as something times 6; so can 12; 18; all the way up. So 
you’re going to have to use induction because you can’t really prove every number, 
without sitting here and writing them all out. So you know that the inductive assumption 
is going to say that, assume for all numbers, k, greater than or equal to 0, but… 
 
He struggled in establishing an inductive step and consequently completing the proof of 

the inductive implication: “I know what argument I want to make, but I’m not sure how to make 
it.” His difficulty stemmed from an inability to formulate a useful representation of every third 
even integer. However, when prompted about what P(k+1) meant in this case, Trevor clearly 
understood, and also confirmed, that “k+1” did not literally mean add 1 to k. He proposed that 
“k+1” really meant k+6 in this case, and when asked why, he replied “because [k] is just an 
arbitrary number and you want to prove that the next one [is true].” So, Trevor did seem to 
understand how the inductive step should work, and arguably he could have been successful in 
his proof without this formulation issue. 
 

Conclusions and Implications 
 
 Prior research identified several potential hurdles in students’ mastery of proof by 
induction. Among these, Stylianides, Stylianides, and Philippou (2007) highlighted 
understanding the necessity of establishing a base case and interpreting the meaning of the 
inductive step. Neither student in our study demonstrated any difficulty in understanding the 
necessity of the base case. In fact, Trevor consistently included the base case as a critical 
component for inductive proofs. However, both students misconstrued the meaning of the 
inductive step, and the action-object framework was especially helpful in explaining why. 
Additionally, we uncovered a new issue not captured by prior research: students’ struggles with 
the role of quantification in proofs by induction. We believe that our action-object framework 
can also be used to explain this struggle. 

In line with research on proof in general (Harel & Sowder, 2007; Selden & Selden, 2003; 
Weber, 2001), the two students in our study relied on external proof schemes to make inductive 
arguments. Still, a student’s ability to follow a procedural sequence of objects (base case, then 
inductive assumption, followed by inductive step) without a mastery of induction can allow for 
successful proof by induction. Separating the inductive implication into two objects, P(k) and 
P(k + 1), makes the process more accessible to the typical student because the typical student 
already handles implications in pieces (Avital & Libeskind, 1978; Dubinsky, 1986; Movshovitz-
Hadar, 1993). Thus, students who have not constructed logical implications as objects can write 
successful proofs. However, they do not have a complete understanding for how the process 
works. When the inductive proof calls for some modification to the standard format (as arose in 
Trevor’s struggles to formulate P(k + 1)) students can become confused about how to proceed. 
  Our results support findings from prior studies indicating that treatment of logical 
implications is a major mediator in students’ understandings of proof by induction (Ernest, 1984; 
Dubinsky, 1986). Our study also affirms limitations on students’ treatment of logical 
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implications–even among high performing students like Trevor (Harel & Sowder, 2007). We 
consider some ways to address these limitations using our action-object framework, but first we 
consider the unanticipated limitation regarding students’ treatment of hidden quantifiers. 
  Both of the students we interviewed struggled to recognize quantifiers in the statements 
of Type B tasks. When Trevor was asked whether there was a difference between Tasks B2 and 
B3 (see Table 1), he replied that they were the same. When asked if he was sure, he noticed that 
one sentence had the words “such that” and again overlooked the quantifiers. Other researchers 
have noticed students’ difficulty in accounting for hidden quantifiers in proving mathematical 
statements (Seldon & Seldon, 1995; Shipman, 2016). In particular, Barbara Shipman discussed 
just how prevalent this issue of hidden quantifiers is among students and how it leads to errors in 
logic in proof by contradiction. The inductive implication P(k) → P(k + 1) is an implication with 
hidden quantifiers. P(k) and P(k + 1) are open statements that have no truth value until k is 
quantified. What we really mean when we write P(k) → P(k + 1) is “for all k ≥ 1,  
P(k) → P(k + 1).” Students often suppress the significance of the hidden quantification of k in 
the inductive implication, and consequently in their conceptualization of proof by induction. 
  In proof by contradiction, Shipman (2016) noted that failure to recognize hidden 
quantifiers can lead to correct conclusions for the wrong reason, or incorrect conclusions about 
the validity of a statement. She also noted that oftentimes students’ mistreatment of quantifiers 
leads to the erroneous proof of a “for all” statement by example. In our study, we found that 
Shipman’s observations also appear to hold true in the context of proof by induction. In Task B1, 
Trevor came to the correct conclusion that more information was needed but for the wrong 
reason. He bypassed the hidden quantification of k and focused on whether P(k + 1) was true. In 
Task B2, Trevor’s oversight of the quantification of k led to an erroneous induction proof by 
example. Trevor conflated showing the inductive implication was true for one k with showing 
the implication was true for all k. We conclude that students might be able to complete the proof 
of the unquantified inductive implication P(k) → P(k + 1) by breaking it down into procedural 
steps. However, in the absence of a memorized, quantified inductive assumption, their proofs by 
induction are not quite logically complete. 
  Students’ struggles with the role of the quantification of the inductive implication in 
creating a logically complete proof by induction may be related to their construction of 
implication as a mental object. In particular, dissecting quantified statements in the context of 
mathematical induction places an increased cognitive demand on students that is less easily 
navigated if a student conceptualizes an implication as an action on objects. Because a student 
must work with additional objects when they are unable to mentally construct the implication as 
a single object, the student’s cognitive resources available for addressing quantification are 
reduced. Our claim is supported by Trevor’s performance on problems in his introduction to 
proofs course where the sole focus was quantification. For example, on the first exam, Trevor 
was given the following two statements and asked to label them as true or false and justify his 
answer. 
 

1. There exists a real number x such that for all real numbers y, 2x - 3y + 7 = 14 - 6y. 
2. There exists a real number x such that for all real numbers y, xy + 3x = 2y + 6. 

  
Trevor earned a perfect score on this problem, showing no problems with understanding 
quantifiers, even when mixed. Thus, his struggles with quantification during his clinical 
interview were unexpected. We speculate that Trevor’s treatment of logical implication as an 
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action on objects was an inhibiting factor. 
  Our study indicates that constructing logical implications as objects and identifying 
hidden quantifiers are prerequisite knowledge for developing transformational proof schemes for 
mathematical induction. Thus, similar to Harel (2002), we consider instructional activities that 
should be included in Proofs courses, leading into formal instruction on mathematical induction. 
Harel had suggested introducing quasi-induction as a means of focusing students’ attention on 
the logical implication that related the inductive assumption to the inductive step, by explicitly 
relating P(k) to P(k + 1) for specific values of k. Results from our study attest to the value of that 
approach, assuming it supports the objectification of the implication, in general.  

Tasks of Type A (see Table 1), in addition to their value in assessing whether students 
have constructed logical implications as objects, might also support that construction as students 
are challenged to transform a given logical implication into other forms (negation, converse, and 
contrapositive). Furthermore, our study suggests that instructors should give attention to how 
students handle hidden quantifiers, and tasks of Type B might reinforce the role of hidden 
quantifiers in proofs by induction. We recommend further study to test the efficacy of these 
different task types in supporting students’ development of transformational schemes for proof 
by induction.  
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This study examines students’ reasoning about eigenvalues and eigenvectors as evidenced by 
their written responses to two open-ended response questions.  This analysis draws on data 
taken from 126 students whose instructors received a set of supports to implement a particular 
inquiry-oriented instructional approach and 129 comparable students whose instructors did 
not use this instructional approach.  In this chapter, we offer examples of student responses 
that provide insight into students’ reasoning and summarize broad trends observed in our 
quantitative analysis.  In general, students in both groups performed better on the procedurally 
oriented question than on the conceptually oriented question. The group of students whose 
instructors received support to implement the inquiry-oriented approach outperformed the 
other group of students on the conceptually oriented question and performed equally well on 
the procedurally oriented question.  
 

Key words: eigenvalues, eigenvectors, linear algebra, inquiry-oriented, student thinking 
Linear algebra is a mandatory course for many science, technology, engineering, and 

mathematics (STEM) students. The theoretical nature of linear algebra makes it a difficult course 
for many students because it may be their first time to deal with abstract and conceptual content 
(Carlson, 1993). Carlson (1993) also posited that this difficulty arises from the prevalence of 
procedural and computational emphases in students’ coursework prior to linear algebra, and that it 
might therefore be difficult for students to connect new linear algebra topics and their previous 
knowledge. To address this issue, researchers have developed instructional materials for Inquiry-
Oriented Linear Algebra (IOLA; http://iola.math.vt.edu/) and strategies to help students develop 
more robust, conceptual ways of reasoning about core topics in introductory linear algebra (e.g. 
Wawro, Rasmussen, Zandieh, & Larson, 2013; Zandieh, Wawro, & Rasmusen, 2016; Andrews-
Larson, Wawro, & Zandieh, 2017).   

Instructors who were not involved in the development of these kinds of research-based, 
inquiry-oriented instructional materials have been shown to encounter challenges when 
implementing such materials (Johnson, Caughman, Fredericks, & Gibson, 2013).  Under an NSF-
supported project Teaching Inquiry-Oriented Mathematics: Establishing Supports (TIMES), 
Johnson, Keene, & Andrews-Larson (2015) designed and implemented a system of instructional 
supports based on research in instructional change in undergraduate mathematics education and 
teacher learning and professional development in settings ranging from K-20 (e.g. Henderson, 
Beach, & Finkelstein, 2011).  These supports included sequences of student activities with 
implementation notes, a three-day summer workshop, and weekly online workgroups during the 
semester instructors implemented the materials in their teaching. This chapter examines 
differences in performance and reasoning of students whose instructors received these supports 
through the TIMES project (TIMES students) as compared to students whose instructors did not 
receive these supports (Non-TIMES students).  In particular, we examine assessment data to 
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identify differences in student performance and reasoning about eigenvectors and eigenvalues.  
In this work, we draw on data from an assessment that was developed to align with four 

core introductory linear algebra concepts addressed in the IOLA instructional materials: linear 
independence and span; systems of linear equations; linear transformations; and eigenvalues and 
eigenvectors (Haider et al., 2016). In the assessment, there were two questions that addressed 
eigenvalues and eigenvectors: question 8 and 9. Question 8 was a procedurally oriented question 
related to the eigenvalue of a given matrix and question 9 focused on conceptual understanding of 
the eigenvectors. The research questions for this analysis are: 

!! How does the performance of students whose instructors received TIMES instructional 
supports for teaching linear algebra compare to the performance of other students?   

!! How did students reason about eigenvectors and eigenvalues in the context of questions 
designed to assess aspects of student’s procedural and conceptual understanding?  How 
did reasoning differ for students of TIMES versus Non-TIMES instructors? 
 

Literature   
Linear algebra is a course in which students struggle to develop conceptual understanding 

(Carlson, 1993; Dorier & Sierpenska, 2001; Dorier, Robers, Robinet & Rogalski, 2000).  Across 
the literature on the teaching and learning of eigenvalues and eigenvectors, procedural thought 
processes feature prominently. For example, Stewart and Thomas (2006) pointed to ways in 
which students often learn about eigenvalues and eigenvectors, where a formal definition  is often 
linked to a symbolic presentation and its manipulation.  For the purpose of this paper, we will 
draw on the following formal definition for eigenvectors and eigenvalues: 

Suppose ! is an nxn real-valued matrix and x is a non-zero vector in ℝ#.  We say the 
vector x is an eigenvector of the matrix ! if there is some scalar $ such that%!& = $&.  
Further, in this case, we say that $ is the eigenvalue associated with the eigenvector x. 

Thomas & Stewart (2011) highlighted a difficulty students find when faced with formal 
definitions for eigenvalues and eigenvectors: these definitions contain an embedded symbolic 
form (!& = $&), and instructors often move quickly into symbolic manipulations of algebraic and 
matrix representations such as transforming !& = %$& to ! − $) & = 0.  Their findings that 
students struggle to make sense of formal definitions, struggle to make use of geometric 
representations of eigenvectors, and exhibit procedural orientations toward eigenvectors suggest 
that such treatments might not provide sufficient opportunities for students to make sense of the 
reasons behind these symbolic shifts (Thomas & Stewart, 2011).   

Schoenfeld (1995) used eigenpictures in the 2x2 case (“stroboscopic” pictures) to show & 
and !& at the same time by using multiple line segments on the x-y-axis. He observed that 
graphical representations of eigenvalues and eigenvectors got little attention in the literature and 
that a picture may benefit more than algebraic presentations. It is also documented more generally 
in linear algebra that students struggle to coordinate algebraic with geometric interpretations (e.g. 
Stewart & Thomas, 2010; Larson & Zandieh, 2013) and the students’ understanding of 
eigenvectors is not always well connected to concepts of other topics of linear algebra (Lapp, 
Nyman, & Berry, 2010).  

To support students in developing a better understanding of the formal definition and 
associated interpretations of the eigenvalues and eigenvectors, researchers have developed a 
variety of instructional interventions (e.g. Tabaghi & Sinclair, 2013; Zandieh, Wawro, & 
Rasmusen, 2016). This paper examines student learning outcomes associated with the 
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geometrically motived instructional approach detailed in Zandieh, Wawro, & Rasmussen (2016) 
when paired with TIMES instructional supports; the approach will be described in Data Sources 
& Study Context. 

   
Theoretical Framing 

Researchers often make reference to conceptual understanding and procedural 
understanding when discussing students’ reasoning  about mathematical concepts (Hiebert, 1986). 
Hiebert and Lefevre (1986) defined conceptual knowledge as a “knowledge that is rich in 
relationships. It can be thought of as a connected web of knowledge, a network in which the 
linking relatonships are as prominent as the discrete pieces of information” (pp. 3-4). According 
to Hiebert and Lefevre (1986) students have procedural knowledge if they can combine the formal 
language and symbol representation systems with algorithms or rules in order to complete 
mathematical tasks.  

In this paper, we also draw on Larson and Zandieh’s (2013) framework for students’ 
mathematical thinking about matrix equations of the form !& = +.% This framework details three 
important interpretations, relationships between geometric and symbolic representations within 
each interpretation, and the complexity entailed in shifting among interpretations. The 
interpretations are: (1) a linear combination interpretation, in which + is viewed as a linear 
combination of the column vectors of ! with & functioning as the set of weights on the column 
vectors of !, (2) a system of equations interpretation in which & is viewed as a solution and ! is 
seen as a set of coefficients, and (3) a linear transformation interpretation in which%& is viewed as 
an input vector, + as an output vector, and ! as the matrix that transforms x into +. 

We argue these interpretations are helpful for making sense of students’ reasoning, but 
that the framework may need to be modified or expanded to more fully account for student 
reasoning in the context of eigenvalues and eigenvectors.  In the context of eigenvectors and 
eigenvalues, students need to coordinate a transformation interpretation with the equation !& =
$&, where the matrix A transforms the vector x by stretching, shrinking, and/or reversing the 
direction of vector x. Additionally, students need to shift to a systems interpretation and consider 
when the equivalent system ! − $) & = 0 has a non-trivial solution in order to make sense of 
standard procedures for computing eigenvalues and eigenvectors.  
 

Data Sources & Study Context 
In previous work, we have developed an assessment aligned with the inquiry-oriented 

linear algebra (IOLA) instructional materials used in the TIMES project  (Haider et al. 2016). This 
paper-and-pencil assessment consists of 9 items, most of which include an open-ended response 
component. The assessment was administered at the end of the semester, and students were 
allocated one hour to complete the assessment.  

In this analysis, we examine assessment data from 126 students across six TIMES 
instructors and 129 students across three Non-TIMES instructors from different institutions in the 
US. Non-TIMES linear algebra instructors were selected from either the same institutions as 
TIMES instructors or a similar institution (e.g. preferably one from a similar geographic area, 
with similar size of student population, with similar acceptance rate) to collect assessment data for 
comparison of TIMES and Non-TIMES students.  In this study, we focused on an in-depth 
analysis of students’ reasoning on the assessment questions related to eigenvalues and 
eigenvectors. Both items are shown in Figure 1. 
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Figure 1. Assessment items related to eigenvectors and eigenvalues1  
 
The inquiry-oriented approach to learn eigenvalues and eigenvectors associated with this 

study is characterized in detail elsewhere (Zandieh, Wawro & Rasmussen, 2016).  
 

Methods of Analysis 
To answer our research questions, our analysis has two main components.  The first 

component of our analysis is quantitative in nature, as we aim to compare learning outcomes of 
students whose instructors received TIMES instructional supports to those who did not.  The 
second component of our analysis is qualitative in nature, as we work to identify students’ ways 
of reasoning on both the more procedurally oriented assessment item (Q8) and the more 
conceptually oriented item (Q9). We follow Kwon, Rasmussen & Keene’s (2005) approach for 
distinguishing assessment items that are conceptually oriented from those that are procedurally 
oriented. In particular we consider Q8 to be more procedurally oriented in that there is a 
commonly taught procedure that students can directly invoke (with some interpretations) to 
produce a correct answer to the question.  There is no such standard procedure for Q9, so we 
consider it to be more conceptually oriented. In our qualitative analysis, we also look for 
similarities and differences that emerge from considering the two groups. 

To facilitate our quantitative analysis, we needed to score students’ responses to the two 
assessment items.  Specifically, we needed to develop a uniform system for assigning a number of 
points to students’ responses that provide an overall assessment of the quality of their response 
and the understanding reflected in that response. Question 9a required students to select which 
subset of 6 possible options were appropriate responses, so 1 point was awarded to each of the 
possible options for correctly selecting or not selecting that option. Both Question 8 and Question 
9b were open ended response questions, and both of these were scored on a scale of 0 to 3 points. 
The condensed version of the grading scheme for assigning points to open ended response 
questions can be found in Appendix A.  Additionally, Appendix A includes some explanation of 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!Question 9 was retrieved from http://mathquest.carroll.edu and developed as part of an NSF-
supported project entitled Project MathVote: Teaching Mathematics with Classroom Voting.  For 
related research, see Cline, Zullo, Duncan, Stewart, & Snipes (2013).!
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how this grading scheme aligns with our coding categories for how students reasoned, which are 
described in greater detail below. Student work exemplifying common ways of reasoning with 
explanation of points awarded are provided in the findings section. 

To ensure agreement regarding points assigned to each response, two researchers looked at 
every student’s attempt and assigned a score independently before comparing with each other. If 
the two researchers assigned a different score to a particular student, they then discussed 
according to the codebook and agreed on a common score for that student. If both researchers 
disagreed about a particular score, then a third researcher was consulted to reach a consensus.  

Once scores had been assigned to all student responses, descriptive statistics were generated to 
examine the overall performance of students on the eigenvalue and eigenvector questions and to 
compare TIMES students with Non-TIMES students for both questions. We were unable to 
control for factors such as students’ mathematical background, major, and instructor’s teaching 
experience, so this is an unavoidable limitation for our statistical analysis. However, we tried our 
best to choose TIMES and Non-TIMES students either from same school or from similar schools. 
This helps us establish similarity of students in TIMES and non-TIMES classrooms. Hence, we 
compared the mean scores of TIMES and Non-TIMES students using two-tailed t-tests to identify 
when differences of means were statistically significant.! 

In order to facilitate our qualitative analysis of students’ reasoning, we examined student 
responses to the open-ended portions of question 8 and question 9. After examining the data 
several times and refining the categories of the students’ reasoning about item 8, we sorted 
students’ responses into 5 broad categories: (1) reasoning about the determinant, (2) reasoning 
about ! − $) without computing a determinant, (3) other, (4) students who explicitly indicated 
they did not know, and (5) who left the item blank. Details about the categories are in Table 2. 

In examining students’ responses to question 9, we found it helpful to distinguish 
responses that were conceptually aligned with the formal definition for eigenvectors and 
eigenvalues from those that were not. We were specifically interested in student reasoning that 
appropriately coordinated interpretations of !, &, and%$ in the context of the matrix equation !& =
$&.  In particular, we say a student response “uses the eigen-concept” when there is evidence a 
student is coordinating%1, &, and%$ in at least one of the following ways: 

•! Algebraically: The matrix 1 is a fixed matrix that transforms the (nonzero) eigenvector & 
in a particular way, namely such that the resulting vector !& is a scalar multiple ($) of &.  

•! Geometrically: this can be interpreted to mean that multiplying & by ! has the effect of  
o! stretching & in the same direction or opposite direction, or  
o! causing the resultant vector to lie along the same line as the vector &. 

If a student drew on a transformation interpretation to make sense of !& but did not coordinate 
this appropriately with $& in one of the ways mentioned above, we did not say that the student’s 
response used the eigen-concept. 

We grouped students’ responses to question 9 into five categories: (1) responses that used 
the eigen-concept, (2) responses that focused on the role of the matrix 1 in a way that did not use 
the eigen-concept, (3) other, (4) responses in which the student explicitly indicated he or she did 
not know, and (5) responses that were left blank. Details about the categories are in Table 3. 
 After coding students’ responses to Q8 and Q9, we aggregated these responses into tables, 
organized by the category assigned to each response and number of points awarded. We also 
separated TIMES from Non-TIMES students in counting the number of responses in these 
discrete categories.  This allowed us to look for patterns in which approaches were conceptually 
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oriented, which approaches lent themselves to arriving at correct answers, and differences in 
approaches taken by TIMES and Non-TIMES students.  
 

Findings 
In order to answer our research question about how TIMES students compared to Non-

TIMES students, we first present our quantitative analysis of students’ performance on questions 
(Q8) and (Q9), separating students of TIMES instructors from students of Non-TIMES 
instructors.  We then summarize findings from our coding of students’ approaches to these same 
questions, providing examples of responses that highlight important trends in student reasoning. 
Overview of differences in student performance 

We highlight three central trends from our quantitative analysis.  First, TIMES students 
outperformed Non-TIMES on both items, with a strongly significant difference of means on the 
conceptual item.  Second, both TIMES and Non-TIMES students did better on the procedurally 
oriented item than on the conceptually oriented item.  Third, correlations between students’ 
performance on both the conceptual and procedural items were weak for students in both groups, 
suggesting that the two items assessed relatively different aspects of student understanding. Note 
that the last trend is not part of answering our research questions, it is more of a side observation 
that emerged from our quantitative analysis and what we take it to mean.!

To compare the performance of TIMES students with Non-TIMES students, we first 
computed the mean and standard deviation for question 8, question 9a  and 9b. To make a 
‘cleaner’ comparison, we have separately included the mean and standard deviation of part a and 
part b of question 9. We also compared question 8 with question 9b as they are naturally 
comparable items.    

The data presented in Table 1 showed that on the procedurally oriented question (Q8) the 
mean score of TIMES students was greater than that of Non-TIMES students, but this difference 
of means was not statistically significant with the available sample size. Similarly, there was not a 
statistically significant difference in means on question 9a. However, in comparing the 
performance of students in both groups on question 9b, we noticed that TIMES students 
performed significantly better than the Non-TIMES students. The results of t-test indicated that 
this difference of means was statistically meaningful. In this way, TIMES students outperformed 
Non-TIMES students on the conceptually oriented question.!

!
Question All Students TIMES 

Students 
Non-TIMES 

Students 
p-value (two-

tailed) 
Q 8  
3 Points  

Mean: 1.85 
SD: 1.31 

Mean: 1.98 
SD: 1.24 

Mean: 1.71 
SD: 1.37 

t(125) = 1.73  
p = .08 > .05 

Q 9 (part a only)!
6 Points 

Mean: 3.73!
SD: 1.68 

Mean: 3.74!
SD: 1.76 

Mean: 3.71!
SD: 1.61 

t(249) = 0.56!
p = .88 > .05 

Q 9 (part b only)  
3 Points 

Mean: 0.79 
SD: 1.03 

Mean: 1.05 
SD: 1.12 

Mean: 0.54 
SD: 0.86 

t(125) = 4.29 
p < 0.001 

Table 1: Summary of results of quantitative analysis 
 

Overall, students performed better on the procedurally oriented question (Q8) than the 
conceptually oriented question (Q9). We compared Q8 to Q9b and found that the difference of 
means for all students between Q8  and Q9b was also statistically meaningful with p-value (two-
tailed) less than 0.001.  
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Since both problems we investigated in this study were related to eigenvectors and 
eigenvalues, one might think that students’ performance on the two items should be correlated. 
However, quantitative analysis revealed a positive but weak correlation between students’ 
performance on the two questions, the Pearson correlation coefficient r = 0.30 for all students. 
Recall that a correlation coefficient measures the degree of relationship between two variables and 
ranges from -1 to 1, where the sign indicates the direction of the relationship and the distance 
from zero indicates the strength of the relationship (e.g. 1 means the two variables are highly 
correlated and 0 means there is very little or no correlation between the two variables).  For 
TIMES students, the correlation between the two items was r = 0.36 as compared to the 
correlation for Non-TIMES which was r = 0.22. This suggests two things: first, that the two items 
measure different aspects of student understanding of eigenvalues and eigenvectors.  Second, it 
shows that performance on the procedurally and conceptually oriented questions was more highly 
correlated for TIMES students.   
 
Trends in student reasoning on procedurally oriented question (Q8) 

In this section, we provide our qualitative analysis of question 8. In particular, we 
highlight two common approaches to this problem: approaches that involve reasoning about the 
determinant, and approaches that involve reasoning about ! − %$) without computing a 
determinant. The majority of students who reasoned about the determinant responded correctly. 
Reasoning about ! − %$) was a less common approach but more frequently observed among 
TIMES students. Further, we argue that students who reasoned about ! − %$) showed more 
evidence of conceptual understanding.  A summary of our coding and scoring of student 
responses is shown in Table 2.   

Reasoning about the determinant was the most common approach observed in students’ 
responses to question 8, and students who used this kind of approach tended to do so without 
making conceptual errors;2 146 out of 255 students (57% of all students). We note two interesting 
trends within those who used this approach distinguishing TIMES from Non-TIMES students.  
First, more TIMES students using this approach made computational errors (usually when 
factoring the characteristic polynomial) than did Non-TIMES students – such errors are evidenced 
by 2 point responses in our coding.  On the other hand, fewer TIMES students using this approach 
made conceptual errors than did Non-TIMES students – such errors are evidenced by 1 point 
responses in our coding.  In the TIMES instructional approach (previously described under study 
context), the standard algorithm for finding eigenvalues and eigenvectors is intended to emerge in 
relation to student-invented strategies on the third of fourth day of instruction in the unit, so we 
conjecture Non-TIMES students may have spent more time practicing this procedure in 
comparison to TIMES students. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2!We align our conceptions of conceptual and procedural errors with our definitions for conceptual 
and procedural understanding.  We refer to an error as conceptual when there is evidence that a 
student does not understand an important underlying idea or relationship. We refer to an error as 
procedural when a student incorrectly performs a step in a mathematical process that is not central 
to the idea being assessed (e.g. an error in computation or algebraic manipulation).  Examples of 
conceptual errors include incorrectly interpreting the value of the determinant to decide if 
something is an eigenvalue, or computing the determinant of A rather than the determinant of ! −
%$).  Examples of procedural errors include incorrectly factoring the characteristic polynomial or 
making an error when row reducing ! − %$).!
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A less common approach to solve problem 8 was by reasoning about ! − %$) without 
computing a determinant. Overall, 48 out of 255 students (19%) used such determinant-free 
approach to solve the problem. This approach was more common among TIMES than Non-
TIMES students, and far more TIMES students successfully responded to the problem in this way 
with no or few conceptual errors.  Indeed, 70% (19 out of 27) of TIMES students and only 38% (8 
out of 21) Non-TIMES students who used this approach did so with minimal conceptual errors.  

 

Table 2:  Summary of Students’ Approaches and Scores on Q8  
 

Students whose responses were categorized as “other” showed little or no evidence of 
understanding related to the definition or computation of eigenvectors and eigenvalues. We 
noticed that twice as many Non-TIMES students as TIMES students gave a response categorized 
as ‘other.’ However, TIMES and Non-TIMES students left the item blank at similar rates, but a 
larger number of Non-TIMES students explicitly mentioned that they “don’t know”. 
 
Examples of student reasoning about Q8 

In this section, we examine examples of common approaches identified in our analysis of 
students’ responses to question 8. We provide one example response coded as ‘reasoning about 
the determinant.’ and one example responses coded as ‘reasoning about ! − $) without using the 
determinant.’ We highlight the use of multiple representations in these responses, and connections 
between these representations and the formal definition of eigenvectors and eigenvalues.  

Response 2.a. was awarded full points because the student correctly found the roots of the 
characteristic polynomial, noted that 2 was not one of those roots, and concluded that 2 is not an 
eigenvalue.   

We note that in response 2.b., the student began with the equation !& = $&, rewrote this  
as !& − $& = 0, and then factored this to write ! − $) & = 0.  The student then computed the 

  TIMES, n = 126 Non-TIMES, n = 129 
Category  3 pts 2 pts 1 pts 0 pts 3 pts 2 pts 1 pts 0 pts 
Reasoning about 
the determinant 
 
Total: 146 (57%) 
TIMES: 75 (60%) 
Non-TIMES: 71 (55%) 

Solving the Characteristic 
Equation  

43 12 4 0 49 
 

4 4 
 

4 

Plugging 2 into the 
Characteristic Equation 

3 1 0 0 3 
 

0 0 0 

Finding  
det%(! − 2)) ≠ 0 

10 2 0 0 5 
 

2 0 0 

Reasoning about 
! − $) 
 
Total: 48 (19%) 
TIMES: 27 (21%) 
Non-TIMES: 21 (16%) 

Solving the system ! −
2) &

8 = 0 or !9 = 29 
9   2 2           1 5 

 
1 2 

 
0 

Considering linear 
dependence of the set of 
column vectors of ! −
2) ≅ 1 0

0 −2   

2 0 1        0 0 
 

2 1 1 

Noting <<=> ! − 2)  does 
not have a free variable 

3  3 4 
 

0 0 
 

0 6 
 

3 

Other 
 

0 0 1 7 0 0 0 16 

Student indicated he/she did not know 
 

0 0 0 5 0 0 0 9 

Item left blank 
 

0 0 0 11 0 0 0 10 
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2.a. Response awarded three points 2.b. Response awarded three points   

Figure 2: Responses to Q8 coded as “reasoning about the determinant” 
 
entries of the matrix ! − 2), rewrote this as a homogeneous matrix equation which he or she 
translated into a system of equations, correctly solved, and correctly concluded that because the 
solution is the zero vector that 2 is not an eigenvalue of the given matrix.    
Trends in student reasoning on conceptually oriented question (Q9b) 

We now focus on responses to question 9.  Overall, students’ responses to this item were 
split relatively evenly among responses that used the eigen-concept, responses that focused on the 
role of the matrix 1 without using the eigen-concept, and students who wrote that they did not 
know or left the answer blank.  However, TIMES students’ responses used the eigen-concept at 
much higher rates than Non-TIMES students, and with greater success. See Table 3.  
 The most commonly observed response to Q9 involved using the eigen-concept, with 99 
out of 255 (39%) total responses coded in this way. This approach was more common among 
TIMES students than Non-TIMES students (61/126 vs 38/129).  Further, TIMES students who 
used this approach gave correct responses to the question at higher rate than Non-TIMES 
students; the ratio of TIMES students who used the eigen-concept in fully or mostly correct ways 
to those who used the eigen-concept in mostly incorrect ways was 44:17 whereas that ratio for 
Non-TIMES students is 18:20.  

The second most commonly observed trend on Q9 involved responses that focused on the 
role of the matrix M without using the eigen-concept. We noted that students using this approach 
tended to be mostly or completely incorrect, and that more Non-TIMES students than TIMES 
students used this approach (29/126 TIMES as compared to 40/129 Non-TIMES students).  We 
noticed that 14/29 (48%) of the TIMES students and 12/40 (30%) Non-TIMES students used this 
approach did so with some conceptual understanding but not using the eigen-concept. We argue 
these responses indicated some conceptual understanding because they drew on appropriate 
transformation interpretation of a matrix times a vector.  However, the understanding reflected in 
these responses was incomplete in that the interpretation did not explicitly use the eigen-concept 
by coordinating that interpretation with the result of that multiplication also corresponding to a 
scalar times that same vector.  

 
  TIMES, n =  126 Non-TIMES, n = 129 
  3 pts 2 pts 1 pts 0 pts 3 pts 2 pts 1 pts 0 pts 
Responses using 
the eigen-
concept 
 
Times: 61 
Non-Times: 38 

1& = $& with explanations 9 
 

14 4 0 5 3 2 0 

•! Stretching  
•! Same direction 
•! Scalar multiple 
•! Same line as & 

10 
 

11 12 1 2 
 
 

8 16 2 
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Responses 
focusing on the 
role of the matrix 
1 without using 
the eigen-
concept 
 
Times: 29 
Non-Times: 40 

Specific entries are suggested 
for matrix 1 that would yield 
different outputs 

0 0 12 8 0 0 11 15 

Descriptions are given about 
how the matrix 1 transforms 
the input vector to yield 
different outputs (without 
suggesting specific entries of 
1) 

0  0 2 7 0 0 1 13 

Others  0 0 0 11 0 0 0 15 

I don’t know  0 0 0 10 0 0 0 11 
Blank  0 0 0 17 0 0 0 25 

Table 3: Summary of Students’ Approaches and Scores on Item 9 
 
There was little difference between TIMES and Non-TIMES Students who used 

approaches classified as ‘other.’ In this category, we saw no evidence of using the eigen-concept. 
TIMES and Non-TIMES students said they “Don’t know” at similar rates, but more Non-TIMES 
students left the item blank than TIMES students.  
 
Examples of student reasoning about Q9 

We provide examples of common approaches identified in our analysis of students’ 
responses to question 9. Specifically, we provide two example of responses coded as “using the 
eigen-concept” and two example responses coded as “focus on the role of the matrix 1 without 
using the eigen-oncept.” Response 4.a. used the eigen-concept by writing the equation 1& = $& 
and suggesting values of $ (e.g. 1,-1,0) that corresponded appropriately to possible outputs. It was 
awarded full credit because the student linked this reasoning to all three possible outputs. 
Responses 4.b. used the eigen-concept in a slightly different way than the previous example.  
Rather than writing 1& = $& and suggesting appropriate values of $, this student justified 
selections of correct output vectors by describing the role of M as stretching the vector x by a 
factor or in its direction. It was awarded just 2 points due to the omission of the 0 vector. Many 
students in our study who used the eigen-concept omitted the 0 vector as a possible eigenvector. 

 

  
4.a. Response awarded three points 4.b. Responses awarded two points 

Figure 4: Responses to Q9 coded as using the eigen-concept 
 

The next two examples presented in Figure 5 responses focus on the role of the matrix 1 
as a transformation that can transform the vector & in many ways (not limiting to outputs that 
must lie along the same line as &). Student 5.a.’s response suggests that the student sees the matrix 
M not as a fixed matrix that transforms the eigenvector in a particular way; the student suggested 
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different matrices that correctly produced the output vectors he/she selected – he/she considered 
1 as the identity matrix ) to produce &, −) to produce ? and the zero matrix to produce the zero 
vector. In addition, a matrix 1 with generic entries also was suggested as a transformation that 
can transform & into the other two incorrect vectors @ and 9.   

 

  

5.a. Response awarded one point 5.b. Response awarded one point 
Figure 5: Responses to Q9 focused on the role of M without using the eigen-concept 

 
Response 5.b. similarly focuses on the role of the matrix 1, arguing it could rotate x to produce @ 
or 9, “stretch reflect” to produce ?, and that it could be the identity matrix to “give back” &.  This 
combination of what the student believes the matrix could be indicates that the student did not use 
the eigen-concept.  Responses 5.a. and 5.b. were both awarded 1 point because both were 
interpreting the matrix M as a transformation and making some true statements, though in ways 
that did not use the eigen-concept.   
 

Discussion 
We see this paper contributing to the literature in three primary ways.  First, we document 

the effectiveness of a particular instructional approach that is detailed in the literature (see 
Zandieh, Wawro, and Rasmussen, 2016; Plaxco, Wawro, & Zandieh, this volume).  Second, we 
document aspects of students’ reasoning about eigenvectors and eigenvalues (including how 
students draw on a transformation interpretation in ways that do and do not use the eigen- 
concept).  Finally, we consider and discuss links between conceptual and procedural 
understandings of eigenvectors and eigenvalues documented in our study. 

Our findings presented above are consistent with findings of previous studies examining 
student learning outcomes in inquiry-oriented instructional settings at the undergraduate level 
(e.g., Kwon, Rasmussen, & Allen, 2005), though we are excited that this study was conducted on 
a larger scale involving instructors not involved in the development of the curricular materials.  
These findings also are consistent with a broader body of literature documenting the benefits of 
student-centered approaches to learning in undergraduate mathematics (Freeman et al., 2014).  
We conclude our paper with a discussion of the kinds of conceptual understandings observed in 
our analysis, and the insights these offer into what is entailed in a conceptual understanding of 
eigenvectors and eigenvalues. 

As mentioned in our theoretical framework, conceptual understanding has been broadly 
defined by some in terms of the richness of connections among ideas (Vinner, 1997; Hiebert & 
Lafevre, 1986).  More recently, Star (2005) has argued that conceptions of conceptual and 
procedural knowledge in mathematics education are under-articulated in a way that promotes 
ideological rather than empirical examination, and relationships between conceptual and 
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procedural understandings merit greater examination.  With this in mind, we now reflect on the 
kinds of conceptual understandings observed in our analysis, and discuss three different kinds of 
connections we consider to be important aspects of students’ conceptual understanding of 
eigenvectors and eigenvalues.   

First, we consider the use of appropriate interpretations of a matrix times a vector to be an 
important aspect of students’ understanding of eigenvalues and eigenvectors.  On the conceptually 
oriented question (Q9), this involved drawing on a transformation interpretation as characterized 
by Larson & Zandieh (2013).  In our data, many students showed evidence of interpreting 1&, the 
product of a matrix 1 and its eigenvector &, in ways that use the eigen-concept.  A smaller 
number of students interpreted 1& with a transformation lens, but in a way that did not use the 
eigen-concept.  

This leads to our second aspect of students’ understanding of eigenvalues and 
eigenvectors: using the eigen-concept in the context of finding eigenvalues. Relatively few 
showed evidence of using the eigen-concept on the procedurally oriented question by reasoning 
about ! − $) without taking the determinant. We argue this approach provided more evidence of 
conceptual understanding: providing and converting between multiple representations (e.g. !& =
$& and ! − $) & = 0, written as matrix equations and systems of equations), linking those 
representations to the eigen-concept, and offering reasons for their conclusion in terms of a matrix 
equation or system of equations in their response. It is possible that a student who used the 
standard procedure to determine if 2 is an eigenvalue on this problem also had a deep conceptual 
understanding of how and why that procedure works; it is also possible that a student who used 
the standard procedure knew this procedure only as a sequence of steps to be executed without 
knowing how or why the procedure worked.  Further work is needed to tease out this distinction. 

This leads to the final aspect of conceptual understanding of eigenvectors and eigenvalues 
relevant to our analysis, which includes coordinating with the Invertible Matrix Theorem (IMT).  
A standard procedure for finding eigenvalues and eigenvectors draws on the argument that !& =
$& has a non-trivial solution & for some scalar $ if and only if ! − $) & = 0; one can argue 
through the IMT that this happens when det ! − $) = 0.  Among students who did not use the 
determinant in their response to the procedurally oriented question, there was a need to draw on 
equivalent ideas from the invertible matrix theorem.  In these responses, we observed students 
noting and leveraging the following relationships: 

$! ! − $)  is invertible if and only if ! − $) & = 0 has a trivial solution. If ! − $) & = 0 
has only the trivial solution, then $ is not an eigenvalue of the matrix !. 

$! If the columns of ! − $) are linearly dependent or one column is a scalar multiple of the 
other (in the case of a 2x2 matrix), then ! − $) & = 0 has nontrivial solution so $ is an 
eigenvalue of the matrix !.  

$! If <<=>(! − $)) has no free variable then ! − $) & = 0 has only the trivial solution, 
which means $ is not an eigenvalue of the matrix !. 

We argue that these kinds of responses from students who did not use the previously mentioned 
standard procedure offer insight into conceptual connections that are both important and 
potentially natural for students to make as they come to make sense of standard algorithms.  
 Overall, students in our study correctly solved a procedural question related to eigenvalues 
(as in Q8) at about twice the rate they offered an appropriate conceptual understanding of !& =
$& (as in Q9).! !This suggests there is a disconnect between students’ understanding of standard 
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procedures for finding eigenvalues and the formal definition of an eigenvector and eigenvalue, 
and that students are more able to execute the standard procedure than draw a conceptual 
understanding aligned with the formal definition. This points to a need to push students to think 
more about core understandings as they connect to procedures rather than just assess students’ 
ability to execute standard procedures.  Indeed, many connections are needed to explain why a 
standard procedure for finding eigenvalues and eigenvectors works and how it connects to the 
formal definition of eigenvalues and eigenvectors.  However, we argue that there is little value in 
being able to compute eigenvectors and eigenvalues without being able to appropriately interpret 
the meaning of the result of such computations.  The inquiry-oriented approach of the IOLA 
instructional materials taken up by instructors who received TIMES instructional supports appears 
to be a promising way of beginning to address this issue, but more work is needed to better 
understand the ways in which students come to develop and coordinate the interpretations needed 
for a robust understanding of eigenvectors and eigenvalues.  
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Appendix A: Grading scheme for assigning points to open-ended response questions 8 and 9b 
 
Q # Points Awarded and Criteria 
8 3 points:  

Method 1: Full points were awarded to students who reasoned about the determinant to arrive at the correct 
conclusion without making computational or conceptual errors.  Examples of this kind of reasoning are 
shown below. 

i)! det ! − $) = 0 implies $ − 1 $ − 4 = 0 implies $ = 1 or $ = 4 implies $ = 2 is not an 
eigenvalue for the matrix !. 

ii)! det ! − 2) = −2 ≠ 0 implies $ = 2 is not an eigenvalue for the matrix !. 
iii)! det ! − $) = 3 − $ 2

1 2 − $ = 3 − $ 2 − $ − 2 = $C − 5$ + 4. Substituting 2 in the 
characteristic equation gives 4 − 10 + 4 = −2 implies $ = 2 is not an eigenvalue for the 
matrix !. 

Method 2: Full points were awarded to students who reasoned about ! − $) without using the determinant 
to arrive at the correct conclusion without making any computational or conceptual errors.  Examples are 
shown below. 

i)! ! − 2) &
8 = 0 implies & = 0 and 8 = 0 which is the trivial solution, so $ = 2 is not an 

eigenvector for the matrix !. 
ii)! ! − 2) ≅ 1 0

0 −2 , and the column vectors of this matrix are not linearly dependent, so $ =
2 is not an eigenvalue.  

iii)! <<=> ! − 2)  does not have a free variable, so $ = 2 is not an eigenvalue 
iv)! The first column of (! − 2)) is not a scalar multiple of the second column 

2 points: Two points were awarded to students to students who take a conceptually correct approach (either 
by reasoning about the determinant or by reasoning about  ! − $) without using the determinant) but either 

•! made a computational error (e.g. factoring the characteristic polynomial incorrectly) or  
•! did not offer a clear conclusion about whether 2 is an eigenvalue or not, or  
•! arrived at the correct conclusion without a full explanation of why 

1 point: One point was awarded to students whose response included some evidence of conceptual 
understanding, but who made a conceptual error (which might be accompanied by a computational error).  
0 points: No points were awarded to students who left the page blank, or whose response: (i) gave no 
evidence of conceptual understanding, or (ii) said something like “I don’t know.” Example of responses we 
considered to include no evidence of conceptual understanding are “Yes, because A=PDP-1” and “I say it 
is… because… there are 2’s in the problem.” 

9b 3 points: Three points were awarded to students whose response appropriately coordinated with the eigen-
concept, referenced (either by directly naming or by explicitly referring to their work shown in 9a) all three 
correct vectors and provided a correct rationale for this selection. 
2 points: Two points were awarded to students whose response provided at least two correct explanations 
(e.g. 1& = $& is written and student writes that “an eigenvector tells you the direction of stretching”) but 
did not identify and explicitly describe what happens to all three correct vectors. 
1 point:  One point was awarded to students who either 

i)! Provided one correct explanation (e.g. by either writing “1& = $&” or “an eigenvector tells 
you the direction of stretching”) and explicitly connected this explanation to at most one 
correctly selected vector 

ii)! Suggested components of 1 that would transform x into one of the given choices, such as 
1 = ), −), F<%0.  

0 point: No points were awarded to responses that do not coordinate with the eigen-concept, do not suggest 
components of 1 that would transform x into one of the given choices, says I don’t know, or leaves the 
page blank. An example of student response to question 9 which was awarded 0 point was “all are the 
same size.” 
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Hypothesis testing is a key concept included in many introductory statistics courses. Yet, due to 
common misunderstandings of both scientists and students, the use of hypothesis testing to 
interpret experimental data has received criticism. With statistics education on the rise as well as 
an increasing number of students enrolling in introductory statistics courses each year, there is a 
need for research that investigates students’ understanding and curriculum effectiveness of 
hypothesis testing. This paper describes results obtained from a larger study designed to explore 
introductory statistics students’ understanding of one sample hypothesis testing. In particular, this 
paper explores students’ understanding of test statistic as a component of hypothesis testing. APOS 
Theory is used as a guiding theoretical framework. This paper focuses on three students’ 
understandings of test statistic when performing hypothesis tests on real world data.  

Key Words: Hypothesis Testing, Statistics, Test Statistic  

Introduction 

The use of statistics is crucial for numerous fields, such as business, medicine, education, and 
psychology. Due to its importance, according to the Guidelines for Assessment and Instruction in 
Statistics Education College Report, more students are studying statistics, and at an increasingly 
younger age (GAISE College Report ASA Revision Committee, 2016). In the United States today, 
the Common Core State Standards for Mathematics calls for students to “understand statistics as 
a process for making inferences about population parameters based on a random sample from that 
population” (National Governors Association Center for Best Practices & Council of Chief State 
School Officers, 2010, p. 81). More recently, the GAISE College Report calls for nine goals for 
students in introductory statistics courses, including “Students should demonstrate an 
understanding of, and ability to use, basic ideas of statistical inference, both hypothesis tests and 
interval estimation, in a variety of settings” (GAISE College Report ASA Revision Committee, 
2016, p. 8). In other words, in an introductory statistics course, students should understand and be 
able to apply hypothesis testing in various situations. 

Hypothesis testing is an important tool of statistical inference (Krishnan & Idris, 2015). 
However, the use of hypothesis testing to interpret experimental data has received criticism 
(Nickerson, 2000; Nuzzo, 2014) due to the common misunderstandings of both scientists and 
students when using this method (Batanero, 2000; Dolor & Noll, 2015; Vallecillos, 2000). Rather 
than abandon the inference method entirely, researchers have called for improving the education 
and understanding of hypothesis testing. For example, LeMire (2010) developed a framework to 
revise and improve instructional content on hypothesis testing. Even still, there are few studies on 
student understanding of hypothesis testing as a whole (Smith, 2008). Our larger research goal is 
to supplement these efforts by first analyzing how students come to understand hypothesis testing 
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and then develop instructional materials to cultivate this understanding. What follows is a brief 
summary of the literature on student understanding of hypothesis testing. 

 
Literature Review  

 
Research suggests that although students are able to perform the procedures surrounding 

hypothesis testing, students lack a strong understanding of the concepts and their use (Smith, 
2008). It is suggested that hypothesis testing and the area of inferences “is probably the most 
misunderstood, confused and abused of all statistical topics” (Batanero et al., 1994, p. 541). 
Textbooks and instructors often give a specific step-by-step script to follow when performing 
hypothesis testing, not connecting or allowing the students to see the idea as a whole. Link (2002) 
suggested this practice as a six-part procedure, which leads many students to look for key words 
and phrases as guides when solving hypothesis testing problems. He also found evidence that 
supports the belief that students can correctly substitute values into a formula selected from a 
formula sheet, yet they do not have a full understanding of hypothesis testing in its entirety.  

In an attempt to move away from a procedural approach, and due to the rise of statistical 
education, calls for reform have led to a shift from an emphasis on procedural understanding to 
conceptual understanding (GAISE College Report ASA Revision Committee, 2016; Krishnan & 
Idris, 2015). Ways to teach for conceptual understanding have been varied. For example, Hong & 
O’Neil (1992) suggested that to foster this conceptual understanding in hypothesis testing, 
conceptual instruction should be presented prior to the procedural instruction with emphasis on 
the use of diagrammatic problem representations. In contrast, Chandrakantha (2014) suggested 
that utilizing technology that allows students to visualize and work hands-on with data will 
enhance student understanding of concepts such as hypothesis testing. 

Other research focuses on identifying students’ misconceptions with various parts of 
hypothesis testing in order to improve conceptual understanding. Specifically in introductory 
statistics courses, students appear to experience a “symbol shock” (Schuyten, 1990), which 
provides an obstacle for students interpreting particular questions (Dolor & Noll, 2015; Lui & 
Thompson, 2005; Vallecillos, 2000). Vallecillos (2000) found that students have trouble with not 
only the symbols, but also with the formal language and meaning behind the concepts involved in 
hypothesis testing, including words such as ‘null’ and ‘alternative’ hypothesis. Students 
interviewed were not able to accurately describe what these terms mean and how they impact the 
decision to either accept or reject within the test (Vallecillos, 2000). Furthermore, Williams (1997) 
during two different interviews with 18 students, found that the term ‘significance’ was not well 
understood. Students gave vague and inadequate descriptions of what ‘significance’ means in the 
context of hypothesis testing. Even after the final exam, students continued to confuse terminology 
and still had a poor understanding of the concept. Mathematical symbolism presents challenges 
across all levels (Rubenstein, 2008), especially as most students’ school mathematics experiences 
give little or no attention to the idea of reading mathematics as a language (Adams, 2003).  

With statistics education reform on the rise, as well as an increasing number of students 
enrolling in introductory statistics courses each year, there is a need for research that investigates 
students’ understanding and curriculum effectiveness of hypothesis testing, a concept taught in 
almost every introductory statistics course (GAISE College Report ASA Revision Committee, 
2016; Krishnan & Idris, 2015). Literature in this area focuses on students’ lack of understanding 
of hypothesis testing, ways to teach for conceptual understanding of hypothesis testing, and 
misconceptions with various parts of hypothesis testing. Particular parts of hypothesis testing that 
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have received the most attention in literature are hypotheses and p-value. Test statistics contribute 
to understanding a p-value, but there is a lack of literature on this concept (Smith, 2008). Thus, we 
focus our attention on the following research question:  
 

What are students’ understandings of test statistic, as a component of hypothesis testing as a 
whole, in two distinguished real world situations?  

 
The next section will introduce test statistics within the scope of one-proportion hypothesis testing. 
 

Test Statistic  
 

A test statistic, according to the textbook Elementary Statistics Using Excel, is “a value used 
in making decisions about the null hypothesis,” (Triola, 2014, p. 415). While the definition 
provided is simplistic, the actual concept of test statistic in hypothesis testing is complex. 
Assuming the null hypothesis is true, a test statistic is found by converting a sample statistic, such 
as a sample proportion or a sample mean, to a standardized score. Although we discuss test statistic 
as one mathematical term or value, there is a distinction between test statistics calculated from 
sample proportions versus sample means. Specifically, in our study, the distinction is between the 
normal distribution and the Student’s t distribution.  

When calculating a test statistic for a sample representing a population mean or proportion, we 
are referring to a standardized value that represents the extremeness of a sample in regards to what 
is expected. For proportions, students use the normal distribution as an approximation to the 
binomial distribution, and thus calculate test statistics, which are z-scores. For means, students 
learn about test statistics in hypothesis testing using the normal distribution (z-scores) and the 
Student's t distribution (t-scores). Although these distributions appear similar, the distinction 
occurs depending on what we know about our sample. In particular, if we know the population 
standard deviation, then we know the center, shape, and spread of the data, and can use the normal 
distribution (z-scores). However, if the population standard deviation is unknown and we only 
have the sample standard deviation as an estimate, then we can use the Student’s t distribution to 
represent the center, shape and spread of the data. Because of the greater variability associated 
with smaller sample sizes, t-scores are greater than or equal to z-scores for the same value of n, 
but as n approaches infinity, the limiting value of the Student’s t distribution is the normal 
distribution (see Figure 1).  

 
Figure 1. Graphical Representation of Normal Distribution and Student’s t Distribution 

(Note: key represents 𝑡(𝑛), where 𝑛 is the sample size) 
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Theoretical Framework 

A theoretical framework is necessary in order to analyze and describe how students understand 
a particular concept. The guiding theoretical framework for our larger study is APOS Theory 
(Asiala et al., 1996). APOS Theory is a framework which models an individual’s mathematical 
conception using Actions, Processes, Objects, and Schema. An Action is an externally driven 
transformation of a mathematical object (or objects). An Action can be described as an individual 
needing an external cue to complete a task, such as a step-by-step example to follow. For our study, 
in the context of test statistic, an example of this would be a student calculates the test statistic by 
the correct formula (even with wrong distribution label), but cannot interpret the test statistic 
verbally or graphically. Another example, in the context of test statistic, would be a student who 
uses key words or phrases from the problem as external cues to decide which formula to use to 
calculate the test statistic. 

Once Actions are repeated and reflected on, an individual can start to interiorize them to 
become a Process. A Process no longer requires step-by-step external cues. An individual is now 
able to internally imagine the steps in a transformation, without having to actually perform them 
for specific examples. In the context of test statistic, an example would be a student calculates 
test statistic by using the correct formula (even with wrong distribution label) and describes their 
calculations in general terms. Although the student can calculate the test statistic, they do not 
have to perform the steps in order to describe the calculations. Another example would be a 
student who interprets the test statistic verbally or graphically by describing how it corresponds 
to 𝑝̂ or 𝑥̅ or the distance from the sample value to the expected value (𝑝̂ to 𝑝 or 𝑥̅ to 𝜇).  

When an individual is then able to see the Process as a totality, is aware that transformations 
can be applied to it, then the Process has been encapsulated into an Object. In the context of test 
statistic, several examples of this are as follows: a student describes the test statistic as an input 
of a function that determines the p-value; student interprets test statistic graphically as 
determining the edge of the region whose area is the p-value; or student describes the test 
statistic as large or small in comparison to a “usual” value of a test statistic (not just describing 
the number as large or small in general). As defined by the textbook, a “usual” value of a test 
statistic refers to z-scores between -2 and 2 (Triola, 2014). 

Schemas are “structures that contain the descriptions, organization, and exemplifications of 
the mental structures that an individual has constructed regarding a mathematical concept” 
(Arnon et al., 2014, p. 25). Schemas may also be included within another Schema. For example, 
the distribution schema plays a role in the development of the schema of test statistic. This report 
is devoted to providing examples of Action and Process conceptions of test statistic from a 
sample of student interviews conducted for a larger study. 

 
Methodology 

The focus of our study is on university students who are enrolled in an introductory statistics 
course based on the emporium model. The emporium model, originated at Virginia Tech, includes 
key components of “interactive computer software, personalized on-demand assistance, and 
mandatory student participation” (Twig, 2011, p. 26). For this particular institution, each week 
students were required to spend three academic hours in a computerized mathematics lab, as well 
as attend one academic hour class each week with an instructor. The time in the mathematics lab 
was spent actively learning using the mathematical software MyStatLab by Pearson. Students also 
read, viewed videos, and discussed material with peers, lab assistants, and instructors. 
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Relevant data was collected during Fall 2014 and Spring 2015. All students enrolled in six 
sections of an introductory statistics course (approximately 240 students) were invited to 
participate in a problem solving session and semi-structured interview pertaining to hypothesis 
testing. Twelve students volunteered to participate. During the problem solving sessions, each 
participant worked alone on two hypothesis test questions. They were allowed to use Excel when 
needed since the use of it was required as part of the class. The first question asked the student to 
conduct and interpret a hypothesis test for a single population proportion. The second question 
asked the student to conduct and interpret a hypothesis test for a single population mean. The 
questions were as follows: 

 
1. In a recent poll of 750 randomly selected adults, 588 said that it is morally wrong to not 

report all income on tax returns. Use a 0.05 significance level to test the claim that 70% of 
adults say that it is morally wrong to not report all income on tax returns. Use the P-value 
method. Use the normal distribution as an approximation of the binomial distribution.  

2. Assume that a simple random sample has been selected from a normally distributed 
population and test the given claim. In a manual on how to have a number one song, it is 
stated that a song must be no longer than 210 seconds. A simple random sample of 40 
current hit songs results in a mean length of 231.8 seconds and a standard deviation of 53.5 
seconds. Use a 0.05 significance level to test the claim that the sample is from a population 
of songs with a mean greater than 210 seconds.  
 

Students had seen these exact questions with variable parameters on their homework and 
quizzes when using the MyStatLab software. Students also engaged in active learning associated 
with these concepts both in the lab and in class. Thus, students were expected to know how to 
conduct and interpret hypothesis tests for both questions, and in particular, they were expected to 
know to use the normal distribution to find the test statistic for Question 1 and the Student’s t 
distribution to find the test statistic for Question 2. In other words, they were expected to know the 
procedure.  

Immediately following the problem solving sessions, the students participated in semi- 
structured interviews. There were ten interviews, eight with one participant each and two with two 
participants each (12 students in total). During the semi-structured interviews, participants were 
asked to elaborate on their answers and thought processes. The interviews were conducted and 
divided among multiple members of the research team. To standardize the interviews, an interview 
protocol was developed beforehand. The relevant data for this paper consists of participants’ 
written work, Microsoft Excel files, and transcribed discussion from the follow up interviews. 

Data analysis took place after all interviews were conducted. The recordings of the interviews 
were distributed and transcribed by each of the six members of the research team. After 
transcriptions were completed, analysis was organized in a way so that each transcript was 
reviewed by two different pairs of researchers. The data was coded and analyzed according to 
APOS Theory. After codes were developed and agreed upon by each pair of researchers, the team 
came together for discussion as a whole. Six concepts of hypothesis testing emerged in 
participants’ reasoning. This paper focuses on one of these six concepts, test statistic. The data and 
codes were then used to develop individual learning trajectories for each participant that merely 
served as a method to explore and organize the ways of understanding of each concept for this 
group of individuals. The focus of this paper will be on the individual learning trajectories for test 
statistic. 
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Results 
 

In this section, we illustrate examples from the data analysis that are most relevant and 
indicative of the Action and Process conceptions of test statistic according to APOS Theory. Our 
results will focus on three students: Haley, Lana, and Steve. Each student was representative of 
different subgroups of the twelve learning trajectories, and exhibited different conceptions of test 
statistic.  

Haley 
Haley demonstrated evidence of an Action conception of test statistic. For both questions, 

Haley looked for indicator phrases to identify which test statistic formula to use. She identified 
that a problem about proportions implies that the test statistic will be a z-score. Haley also 
mentioned that if in a problem she is not given the population standard deviation, this indicates 
when she would use a t-score.  
 

I:  Okay, and um is this a t-score or a z-score? 
H:  This is a z… yeah this is a z-score. 
I:  And how did you know that? 
H:  Because we’re using proportions so you just use z.  
I:  Okay, good. Um, and then when would you use a t-score? 
H:  When you don’t know the.. like when you don’t know the um… what is it? You don’t  

know… when you don’t know this [draws sigma on the paper]. 
I:  Okay! 
H:  But like you know it for a sample! [laughs] 
I:  So this is.. so.. I know that this is referring to the standard deviation right? 
H:  Yeah. 
I:  So and you said if you know the sample… so I’m assuming you’re saying this is not the  

sample standard deviation?  
H:  No, that’s the population. So if you don’t know the population standard deviation I 

should use t.  
 
Haley appeared to base her ideas of which test statistic to use off of key words found in the 
problems. When calculating the test statistic, Haley again looked for indicator phrases in the 
problem to identify the values to plug in. She also goes on later in the interview to state that she 
has memorized the formulas for test statistics. 
 

I:  Okay, then for the test statistic… how did you figure out all those numbers and stuff? 
H:  Well, I took the [yawn] I took x bar minus mu and then I divided it by the standard  

deviation divided by the square root of n. 
I:  Okay and did you just find that formula on the sheet or did you have that one 

memorized? 
H:  I had it memorized.  

 
As more evidence of a lack of full understanding of what a test statistic represents, for the second 
problem, she identified the given sample mean in addition to her test statistic in different places 
on her graph when in actuality the test statistic is representative of the sample mean. 
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Figure 2. Haley’s Graphical Representation of Question 2 

Her memorization of formulas and what appears to be dependency on key words in the problem 
to identify which test statistic to use and what values to plug in, with no verbal explanation of the 
reasoning behind this, suggests Haley illustrates an Action conception of test statistic. 
 
Lana 

Lana exhibited evidence of a Process conception of test statistic. Lana, for Question 1, used 
the normal distribution to find the test statistic based on the fact that the problem was about 
proportions. After recognizing which test statistic to use, she described in general how to calculate 
the test statistic using the formula and she double checked all her work in Excel.  
 

L:  And then I double checked by using the formula, the phat minus p over the square root of  
pq over n. I put that in Excel to double check and make sure that was right. 

 
Lana was then prompted to explain the test statistic. She described, in words, what she imagined.  
 

L:  I think that, I’m picturing the big curve, the bell curve, and I’m picturing the test statistic  
is where the point that falls on there … Okay, so this is the mean right in the middle, and 
the test statistic is one side of it, saying this is how far away from what they are saying is 
the mean, this is what the mean of this.  

 
By reflecting on her previous steps and calculations, Lana appeared to interiorize the action of 
calculating test statistics. She internally imagined calculating or finding test statistics in relation to 
the mean, without having to actually perform any calculations. This suggests Lana exhibited a 
Process conception of test statistic. After her explanation, she drew a picture to illustrate her 
thinking (Figure 2) of a graphical representation of the normal distribution. 
 

 
 
  
  
 

Figure 3. Lana’s Graphical Representation of the Normal Distribution 
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In her written work, Lana initially used the normal distribution to find the test statistic for 
Question 2.  During the interview she became worried when asked if the question was a z-test. She 
mentioned that she remembered from high school to use a t-score if the sample size is 30 or less. 
After prompting, she realized she should have used a t-score, however, she also immediately 
recognized that her z-score would “probably not” be very different from the t-score. She made the 
observation that 𝑡-scores and 𝑧-scores are “really close together”. This is evidence of the role that 
distribution Schema plays in the development of the Schema of test statistic.  

It appears that Lana illustrates a Process conception of test statistic because she pictured in her 
head a graphical interpretation of test statistic without relying on specific calculations, and also 
interpreted the test statistic as describing how far away the sample statistic is from the expected 
(population) value. It also appears that she possesses a distribution Schema that is in an early stage, 
as noted in her confusion between z-scores and t-scores. However, her understanding that a z-score 
and a t-score are “really close together” suggests that her distribution Schema is progressing and 
emerging.  

 
Steve 

Steve is included in the results as illustrative of a student whose analysis suggests discrepancies 
in his conceptual understanding of test statistic. For Question 1, Steve identified key words in the 
problem to recognize which test statistic to use. He explained, “I immediately thought of these two 
formulas, and at first I wasn’t sure which one to use, and then I was like, oh wait, there’s no x-bar 
or mu or standard deviation. So that makes it pretty easy.” He used a system of elimination to 
decide which formula not to use. Even though he correctly identified the test statistic, he went on 
to say that this is “just a formula that I’ve learned like any other” and that he “doesn’t understand 
why we use that formula, other than we just use it”. He concluded his explanation stating that 
Question 1 used a z-value because the problem was of proportions, what appears is likely a 
memorized rule applied to the problem.  

For Question 2, Steve mentioned that “it’s basically the same problem”, other than now being 
a question of means. Steve identified the distribution as normal based on the language in the 
problem, “a simple random sample has been selected from a ‘normally distributed’ population”. 
He further explained that he would not know how to deal with a non-normally distributed 
population, that he could not recall learning anything other than a normal distribution, and that he 
did not know much about a Student’s t distribution. Ironically, later in the interview, when asked 
if his answer was a z-value or t-value, he responded that it is “a t-value because you’re testing 
means”.   

The excerpts above are suggestive of Action conception of test statistic. Steve appeared to rely 
on external cues based on key words identified in the problem and what appeared to be memorized 
rules of when to use a particular formula. However, when prompted by the interviewer to explain 
what a test statistic is, Steve elaborated as follows, “And also your test statistic is very large. I’m 
not totally sure what a test stat is, but it reminds me of z-scores, and I remember when you have a 
z-score that gets above 3. It starts to get pretty, pretty crazy. So 5 is huge, which is also the reason 
that you’re getting a bunch of zeros or very close to 1 [for the p-value].” Although Steve’s 
interpretation of z-scores seems fairly advanced in comparison to other students, it is not clear 
from his description whether he considers a z-score to be an example of the concept of test statistic 
or a similar concept that is distinct from the test statistic. The former would be suggestive of a 
Process conception of test statistic, while the latter would be suggestive of an Action conception 
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of test statistic. Since these discrepancies exist, we suggest that Steve is emerging from the Action 
conception to the Process conception of understanding of test statistic.  

 
Discussion and Concluding Remarks 

Our results provide evidence of three students’ understanding of test statistic, one who appears 
to exhibit an Action conception of test statistic, one who appears to exhibit a Process conception 
of test statistic, and one who appears to be emerging from an Action conception to a Process 
conception of test statistic. Consistent with Link (2002), many students used a procedural approach 
to hypothesis testing which included students plugging in correct values for a formula. In reference 
to test statistic, Haley looked for indicator phrases and key words in the problem to decide which 
test statistic formula to use and to decide which values to plug in, yet she did not have a full 
conceptual understanding of hypothesis testing. According to APOS Theory, she is illustrative of 
an Action conception of test statistic.   

Another student, Lana, reflected on her calculations and appeared to interiorize the action of 
calculating test statistics by describing the test statistic in relation to the mean. However, for 
Question 2, Lana initially used the normal distribution to find the test statistic, rather than the 
Student’s t distribution. In our study, we did not initially consider the role that the stage of 
distribution Schema would have in the development of the concept of test statistic. However, our 
results suggest that an individual can possess a Process conception of test statistic, while 
possessing only an early stage of Schema for distribution. Further research is suggested to explore 
the extent to which an individual’s distribution Schema has in the development of the concept of 
test statistic.  

Lastly, discrepancies in data analysis suggest Steve is emerging from an Action conception of 
test statistic to a Process conception of test statistic. Excerpts are suggestive that he was relying on 
key words and memorized formulas to decide which test statistic to use, evidence of Action 
conception of test statistic. However, Steve did verbally elaborate about z-scores, indicative of a 
possible Process conception. Nevertheless, inconsistency exists in the fact that Steve did not equate 
z-scores to the test statistic and instead suggested they remind him of each other. If Steve had a 
Process conception of test statistic, we would have expected him to note that test statistics are 
standardized values, which in this case z-scores are an example representative of test statistic as a 
whole.  

As hypothesis testing is a key concept included in the majority of introductory statistics courses 
(Krishnan & Idris, 2015), and is arguably one of the most misunderstood statistical topics 
(Bantanero, 1994), it is important to continue research that investigates students’ understanding 
and curriculum effectiveness of hypothesis testing. This paper, specifically focused on test statistic, 
a component of hypothesis testing, revealed students’ understanding in two distinguished real 
world situations. By analyzing data according to APOS Theory, we have illustrated examples of 
Action conception, Process conception, and an example of a student who is emerging from Action 
conception to Process conception of test statistic. This knowledge can then be used to describe 
how students may develop an understanding of test statistic – an important concept within 
hypothesis testing and one that has not received much attention within the research community. 
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The Role of Visual Reasoning in Evaluating Statements about Real-Valued Functions:  
A Comparison of Two Advanced Calculus Students   

 
Erika J. David Kyeong Hah Roh Morgan E. Sellers 

Arizona State University Arizona State University Arizona State University 

The purpose of this study is to examine the characteristics of students’ visual reasoning in the 
context of evaluating statements about real-valued functions. We conducted clinical interviews 
with nine undergraduate students in which we asked them to evaluate several mathematical 
statements using graphs to explain their reasoning. In this paper, we focus on two Advanced 
Calculus students and the differences in their visual reasoning in these tasks. Our findings indicate 
that students’ visual reasoning accounts for key differences in their understandings of 
mathematical statements. In this paper, we introduce a visual reasoning framework which 
emerged from our data. We also provide examples from the two students to highlight the use of the 
framework to characterize students’ visual reasoning as value-thinking or location-thinking.  

Key words: Visual Reasoning, Empirical Study, Graphical Interpretations, Undergraduate 
Students, Intermediate Value Theorem 

Undergraduate Calculus courses, from elementary through advanced Calculus, are comprised 
of many definitions and theorems about real-valued functions. Often, these statements are 
accompanied by visual representations in the form of graphs of relevant functions. For example, 
the Intermediate Value Theorem (IVT) is one such statement commonly associated with a visual 
representation. The IVT can be stated as follows: “Suppose that f is a continuous function on [a, 
b] with f(a)¹f(b). Then, for all real numbers N between f(a) and f(b), there exists a real number c 
in (a, b) such that f(c)=N.” This theorem is often shown in Calculus textbooks with graphs to 
accompany the statement (e.g., Briggs, Cochran, & Gillett, 2011). For instance, a graph of a 
continuous function such as the one in Figure 1 (left) may be used to illustrate the IVT in the 
case of a monotone function. Additionally, a graph like Figure 1 (right) may be shown to 
demonstrate that for a given N value, the corresponding value of c need not be unique.   

 
Figure 1. Possible graphical illustrations of the Intermediate Value Theorem (IVT) 

Visual representations, such as the ones provided in Figure 1, are often included in textbooks 
to support students in understanding the given statement or theorem (e.g., Stewart, 2012). While 
research has called for the inclusion of such visual representations (Arcavi, 2003; Davis, 1993), 
few empirical studies have been conducted to look at students’ visual reasoning about graphs of 
real-valued functions. Although several studies have looked at students’ understanding of graphs 
as a whole (Monk, 1992; Moore & Thompson, 2015; Moore, 2016), it is not widely known what 
meanings students have for various aspects of graphs, such as the input, output, and points on 
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graphs. While it is hoped that students focus on the details of graphs that highlight the intended 
concept, some students may construe other properties of a given graph rather than the intended 
ones. For instance, a student looking at Figure 1 may presume that the IVT refers to a single 
value of N, or that N can be selected from the entire range of the function. Thus, students’ 
interpretations of the IVT, based on the information they perceived from the provided graphs, 
might hinder their subsequent mathematical activities, such as rigorous proofs.  

The purpose of this study is to investigate the role of students’ visual reasoning in 
understanding and evaluating mathematical statements from Calculus. In particular, this study 
focuses on the IVT and statements similar to the IVT. Through analyzing two advanced Calculus 
students’ evaluations and interpretations of these statements, we address the following research 
questions:	What are characteristics of undergraduate students’ visual reasoning about graphs 
related to statements from Calculus contexts? Specifically, 	

a. How do students interpret outputs of a function on a graph, points on a graph, and a 
graph as a whole? 

b. How do students’ visual reasoning affect their understanding and evaluation of the 
Intermediate Value Theorem and similar statements?	
 

Literature Review 
 

Mathematics education research has included numerous studies and discussions of the role of 
visualization throughout mathematics teaching and learning (e.g., Arcavi, 2003; Bishop, 1980; 
Davis, 1993). Studies have both suggested and reported the success of various instructional 
interventions that utilize visualization in undergraduate mathematics contexts in various levels of 
Calculus (e.g., Tall, 2010; Thompson, Byerly, & Hatfield, 2013). Researchers have also 
examined students’ understanding of mathematical concepts using visualization tools, including 
their understanding of graphs of functions (Kidron & Tall, 2015; Monk, 1992; Pinto & Tall, 
2002). These studies provide evidence that visualization can be a powerful tool for students 
learning concepts in advanced mathematics.  
 
Instructional Interventions Using Visualization  

There have been calls throughout the literature to encourage and promote visual reasoning in 
mathematics instruction, as an essential part of mathematical activity (Arcavi, 2003; Davis, 
1993). Several researchers have developed visual reasoning tasks that instructors can use to 
support students in understanding formal definitions of concepts in undergraduate mathematics 
(Kidron & Tall, 2015; Roh, 2010; Tall, 2010). Proposed instructional interventions, such as the 
ones noted above, show promise in supporting students’ understanding (e.g., Cory & Garofalo, 
2011; Kidron & Tall, 2015; Roh & Lee, 2017). However, visual representations and 
interventions that rely on them are not without limitations. Students may over-generalize from a 
single visual representation they view as “prototypical” (Harel & Sowder, 1998), focus on 
irrelevant details of them (Presmeg, 1986), or rely too heavily on self-generated visual 
representations (Alcock & Simpson, 2004).  Arcavi (2003) accounts for some differences in what 
students gather from images, claiming that an individual’s perceptions are “conceptually driven” 
(p. 234). Because visual representations may be interpreted differently by different onlookers or 
in different contexts, it is imperative to investigate what sense students make of visual 
representations of concepts that are commonly provided.  
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Students’ Visual Reasoning about Graphs and Points 
Several studies in mathematics and science education have documented students’ creation, 

interpretation, and use of graphs (e.g., Padillo, McKenzie, & Shaw, 1986; Pinto & Tall, 2002). 
Some studies have classified students’ conceptions of graphs as a whole, while others suggested 
models of students’ understanding of points on a graph (Lakoff & Nunez, 2000; Moore & 
Thompson, 2015; Moore, 2016; Thompson & Carlson, 2017). 

Moore and Thompson (2015) highlight a distinction in students’ visual reasoning about 
graphs as a whole. In their study, some students whom they classified as engaged in static shape-
thinking reasoned about graphs as though the graph itself was an object, such as a wire. In 
contrast, they describe students who engage in emergent shape-thinking as conceiving of a graph 
as a trace which emerges from the coordination of two varying quantities. Extending this work, 
Moore (2016) claims that students may attend to both visual properties of graphs and the 
relationships of the quantities represented, but one of the two will guide students’ reasoning.  

While most literature on students’ visual reasoning focused on students’ conception of graphs 
in their entirety, other researchers have attended to students’ conception of points on a graph. 
Thompson and Carlson (2017) use the term multiplicative object to characterize student thinking 
about points as representing two values or quantities simultaneously in the form of a single 
object. Lakoff and Nunez (2000) offer a cognitive model for how individuals come to understand 
numbers as points on a number line, claiming this requires the use of what they call a conceptual 
metaphor, “an inference preserving cross-domain mapping” (p. 6). The idea of mapping 
numerical values to physical locations on a line preserves properties of values such as ordering. 
In two-dimensions, then, the conception of plotting a point relies on using this conceptual 
metaphor for each value of the pair represented, which may explain students’ difficulties with 
interpreting points on graphs. 

While these theoretical discussions can help distinguish certain aspects of student visual 
reasoning, we seek to investigate the ways students understand outputs and points on a graph at a 
more fine-grained level. In our effort to delve deeper into students’ meanings for relevant aspects 
of graphs, we define the constructs value-thinking and location-thinking, as explained in the 
following theoretical framework section. 

Theoretical Perspective and Visual Reasoning Framework 
 

This study is grounded in a constructivist perspective. We adopt von Glasersfeld’s (1995) 
view that students’ knowledge consists of a set of action schemes that are increasingly viable 
given their experience. This perspective implies that we, as researchers, do not have direct access 
to students’ knowledge and can only model their visual reasoning based upon what we can 
observe. Thus, our analysis reflects our best attempt at creating a hypothetical model of student 
visual reasoning grounded in evidence found in their words, gestures, and markings on graphs.  

We adopt components of Arcavi’s (2003) definition of visualization for this study: 
 
 The ability, the process, and the product of creation, interpretation, use of and 
reflection upon pictures, images, diagrams, in our minds, on paper, or with technological 
tools, with the purpose of depicting and communicating information, thinking about and 
developing previously unknown ideas and advancing understandings (p. 217).  

 
Arcavi (ibid) argues that visualization has a natural role in mathematics, and gives examples 

of visual representations such as graphs, or diagrams. While Arcavi’s description of visualization 
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is broad, in this study, we use the term visual reasoning to refer specifically to how students 
interpret, use, and reason about graphs of real-valued functions. We also use the terms “thinking” 
and “reasoning” interchangeably to describe students’ mathematical activity in the context of 
graphs. In particular, we focus on how students perceive the elements that constitute graphs.   

 
Our Visual Reasoning Framework 

In this section, we describe the framework that we developed and employed to categorize 
students’ visual reasoning. In particular, this framework is rooted in distinguishing students’ 
visual reasoning about aspects of points on graphs.  

Points in a two-dimensional Cartesian system are intended to represent the concurrence of 
the values of two quantities, conventionally notated as an ordered pair (x, y). This coordination of 
values x and y also has a spatial location in the Cartesian plane due to the geometric nature of a 
point in a plane as a coordination of two signed distances. To graph a point (x, y) in the Cartesian 
plane, one marks the spatial location that is a distance of x units from the origin along the x-axis 
(conventionally left or right) and a distance of y units from the origin along the y-axis 
(conventionally up or down). Thus, we see a point on a graph as dual-natured, simultaneously 
representing a pair of values, as well as a specified location in the space of the Cartesian plane.  

These two properties of points in a Cartesian coordinate system, values and locations, are 
possible foci of a student’s attention while reasoning about graphs. Accordingly, we developed 
our visual reasoning framework in terms of value-thinking and location-thinking. Students who 
primarily focus on the values represented by the coordinates of a point are said to engage in 
value-thinking. In contrast, location-thinking refers to reasoning that primarily attends to the 
spatial location of the point. We detail characteristics of both categories of visual reasoning in 
Table 1 by listing the meanings for three aspects of the graph for each category and observable 
behaviors indicative of these meanings. The three aspects of graphs in this framework are named 
from our perspective as researchers, whereas the meanings explicated under each type of visual 
reasoning are from the perspective of the student. To be clear, the distinction between these two 
ways of reasoning lies in the place of the student’s attention when reasoning about graphs.  

  
Table 1 
 Comparison of Characteristics of Value-Thinking and Location-Thinking 

 

Value-Thinking Location-Thinking 
Visual Reasoning Evidence Visual Reasoning Evidence 

A
sp

ec
ts

 o
f a

 G
ra

ph
 

Output of 
Function 

The resulting value from 
inputting a value in the 
function 

▪ Labels output 
values on output 
axis 
▪ Speaks about 
output values 

The resulting location 
in the Cartesian plane 
from inputting a value 
in the function 

▪ Labels output 
on the graph  
▪ Labels point as 
output 
▪ Speaks about 
points as a 
result of an 
input into the 
function (e.g., 
“an input maps 
to a point on the 
graph”) 

Point on 
Graph 

The coordinated values 
of the input and output 
represented together 

▪ Labels points 
as ordered pairs 
▪ Speaks about 
points as the 
result of 
coordinating an 
input and output 
value 

A specified spatial 
location in the 
Cartesian plane 

Graph as a 
Whole 

A collection of 
coordinated values of the 
input and output 

A collection of spatial 
locations in the 
Cartesian plane 
associated with input 
values 
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Value-thinking. By value-thinking, we mean visual reasoning that relies on the values 
represented by the coordinates of a given point on a graph. Value-thinkers, then, refer to those 
who engage in value-thinking. One of the key characteristics of value-thinking is distinguishing 
the output of a function from the corresponding point on a graph. Students who engage in value-
thinking label points as ordered pairs (e.g., (a, f(a))) and speak about points as representing both 
input and output values simultaneously. When considering the output of a function, value-
thinkers attend to the resulting value of the function from a given input value. Students focusing 
on values tend to label relevant output values on the output axis of graphs, and specifically speak 
about values. These actions are due to the student’s attention to the corresponding values 
represented by a given point on a graph, which they consider to be a coordination of both an 
input and output value. Value-thinkers, then, treat graphs as a collection of ordered pairs that 
relate corresponding input and output values.  

Location-thinking. By location-thinking, we mean visual reasoning that relies on the spatial 
locations of the points in the Cartesian plane. Location-thinkers, then, refer to those who engage 
in location-thinking. Location-thinkers focus on the location of the point, while the values of the 
coordinates are either in the background of their reasoning or absent from it. In contrast with 
value-thinking, one of the key characteristics of location-thinking is treating the output of the 
function as the location of the point on the graph of the function. Accordingly, location-thinkers 
often label points on the graph as outputs (e.g., f(a)) rather than ordered pairs and speak about 
points in terms of their location in the coordinate plane. While value-thinkers label outputs on the 
output axis, location-thinkers place the output label (e.g., f(a)) at the location of the point on the 
graph. Instead of speaking about output values, location-thinkers speak about points on the graph 
as the result of a value inputted to the function. Location-thinkers, then, treat graphs as a 
collection of locations in space associated with input values.  

 
Use of Framework 

The intent of our framework is to characterize students’ visual reasoning with graphs of 
functions. In Figure 2, the two sets of labels on the same graph illustrate distinctive 
characteristics of value-thinking (left) and location-thinking (right), respectively. 

 
Figure 2. Sample labeling activity of a value thinker (left) vs. a location thinker (right) 

In Figure 2 (left), input values are labeled on the input axis, and output values are labeled on 
the output axis. Furthermore, points on this graph are labeled as ordered pairs. In Figure 2 (right), 
while the input values are labeled on the input axis, the output values are not labeled on the 
output axis. In contrast to Figure 2 (left), points on the graph in Figure 2 (right) are labeled with 
only output notation, rather than as ordered pairs. Additionally, the placement of output labels 

20th Annual Conference on Research in Undergraduate Mathematics Education 9720th Annual Conference on Research in Undergraduate Mathematics Education 97



 

differs between the two figures. For example, in Figure 2 (left), f(c) is a label of a value on the 
output axis, whereas in Figure 2 (right), f(c) is a label of a point at a particular spatial location.  

This framework is intended to model students’ visual reasoning through evidence found in 
the student’s (repeated) actions, rather than their abilities to think in various ways. Thus, the 
classification of a student as a location-thinker does not imply that the student is unable to 
consider values of the output. On the contrary, it is likely that students may be classified as 
location-thinkers and may still at times refer to or find specific values of the output. Rather, 
location-thinkers focus on the location of the relevant points in their reasoning, as revealed 
through their words and actions. Accordingly, no single piece of evidence (e.g., one labeled 
point, one gesture) is viewed as enough to categorize a student’s visual reasoning. We also 
recognize that the same student presented with different contexts may engage in value-thinking 
or location-thinking, depending on what he or she focuses on. We thus emphasize that the 
distinction between value-thinking and location-thinking is one of the placement of students’ 
attention, rather than an exclusive way of thinking. 
 
Visual Reasoning Framework in the IVT Context  

In the context of the IVT and related statements, location-thinkers and value-thinkers likely 
interpret the phrase “N between f(a) and f(b)” differently. Due to the differences in their 
meanings for outputs and points on a graph, value-thinkers interpret “N between f(a) and f(b)” as 
referring to output values between the values of f(a) and f(b). This meaning stems from a 
conception of a point as a coordination of input and output values. In contrast, location-thinkers 
interpret “N between f(a) and f(b)” as referring to locations between the locations of f(a) (at (a, 
f(a))) and f(b) (at (b, f(b))), an interpretation rooted in a conception of the location of points 
themselves as outputs of a function. Whether a student chooses to focus on the values or the 
locations of points in a graph influences how that student will interpret this phrase. 

Methods 
 

As part of a larger study, we conducted two-hour clinical interviews (Clement, 2000) with 
nine undergraduate students from a public southwestern university. We selected three 
undergraduates who had just completed one of the following three mathematical courses that 
may use the theorem: Calculus I, Introduction to Proof (also known as Transition-to-Proof), and 
Advanced Calculus. During each interview, one of the four members of our research team served 
as the interviewer with the other three acting as witnesses. All four researchers utilized laptops, 
whose screens the participant could not see, to communicate their current models of the 
participant’s thinking and offer clarifying questions in real-time via group chat.  
 
Interview Tasks 

During the interview, the interviewer asked students to evaluate each of the four 
mathematical statements in Table 2 and to provide their justification. The second statement, the 
Intermediate Value Theorem (IVT), was the only true statement we presented. The remaining 
three statements (1, 3, and 4), all of which are false, were variations on the IVT with the 
quantifiers (for all, there exists) reordered or the variables (N, c) reversed. Table 2 contains the 
statements in the order presented to the students. 
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Table 2 
Statements Presented to Participants, in Order 

Statement 1 Suppose that f is a continuous function on [a, b] such that f(a)¹f(b). Then, for all real 
numbers c in (a, b), there exists a real number N between f(a) and f(b) such that f(c)=N. 

Statement 2 (IVT) Suppose that f is a continuous function on [a, b] such that f(a)¹f(b). Then, for all real 
numbers N between f(a) and f(b), there exists a real number c in (a, b) such that f(c)=N. 

Statement 3 Suppose that f is a continuous function on [a, b] such that f(a)¹f(b). Then, there exists a real 
number N between f(a) and f(b), such that for all real numbers c in (a, b), f(c)=N. 

Statement 4 Suppose that f is a continuous function on [a, b] such that f(a)¹f(b). Then, there exists a real 
number c in (a, b), such that for all real numbers N between f(a) and f(b), f(c)=N. 

 
The interviewer later asked students to re-examine each statement along with six graphs we 

created, with the chance of changing their evaluation. The graphs, shown in Figure 3, were 
intended to represent a spectrum of possible functions and relevant counterexamples and 
included: a polynomial with extrema beyond the endpoints of the displayed function (Graph 1), a 
vertical line segment (Graph 2), a continuous sinusoidal function (Graph 3), a monotone 
increasing function (Graph 4), a constant function (Graph 5), and a function that is discontinuous 
on [a, b] (Graph 6). Graphs 1, 3, and 4 were chosen to represent three cases of continuous 
functions where f(a)¹f(b). Graphs 2, 5, and 6 were chosen to represent graphs each of which does 
not meet one of the conditions of the four statements. 

 

 
Figure 3. The six graphs we presented to the participants 

The participants were also asked to explain how they interpreted various aspects of these 
graphs and to label relevant points and values on each graph where appropriate. As each 
participant explained his or her interpretations of the graphs, all four researchers developed 
models of the student’s thinking in the moment. Where necessary, researchers proposed 
additional questions to confirm the current model of the student’s thinking. If a student’s 
responses to these questions did not confirm the model, the model was changed or refined to 
accommodate the student’s response. 

 
Data Analysis 

Our data analysis was consistent with Corbin and Strauss’ (2014) description of grounded 
theory, in which categories of student visual reasoning emerged from the data analysis. We 
began preliminary analysis during and immediately following each interview to note relevant 
findings. After all the interviews were conducted, we employed open coding (Corbin & Strauss, 
2014), through which students’ interpretation of the phrase “N between f(a) and f(b)” emerged as 
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highly relevant to their reasoning about graphs and subsequent evaluations of the given 
statements. We developed two codes, value-thinking and location-thinking, to broadly 
characterize our participants’ visual reasoning about graphs. Finally, we refined these categories 
and re-coded the video interview data using axial coding (Corbin & Strauss, ibid). Through this 
process, we developed the theoretical framework described in the previous section (see Table 1) 
which emerged in our analysis. In the next section, we share our findings from this data analysis.  
 

Results 
 

The purpose of this study is to characterize students’ visual reasoning with graphs related to 
statements from Calculus contexts. In particular, we examined students’ interpretations of 
various aspects of graphs, as well as the effects of these interpretations on their understanding 
and evaluation of the IVT and three similar statements (see Table 2). We categorized the visual 
reasoning of each of the nine students we interviewed according to the theoretical framework 
(see Table 1) which emerged in the process of data analysis as previously described. In this 
paper, we report the cases of Nate and Jay, Advanced Calculus students from each category, in 
order to highlight the defining characteristics of each category of visual reasoning. We provide 
gestures, labeling on graphs, and verbal explanations of their interpretation of the graphs to 
describe details of each student’s visual reasoning in terms of our theoretical framework (see 
Table 1).  
 
Jay: A Value-Thinker 

In this section, we describe characteristics of value-thinking in terms of Jay’s meanings for 
outputs, points, and the phrase “N between f(a) and f(b)” through examples from his visual 
reasoning. We present his verbal explanations along with his labeled graphs from two episodes 
of his interview to illustrate value-thinking.  

Even before the interviewer provided him with graphs, Jay engaged in visual reasoning by 
creating his own graphical representations to explain his understanding of the statements. For 
instance, when the interviewer asked Jay to evaluate Statement 2 (IVT), he responded by saying 
that the statement was true, and drew a graph to explain his reasoning. Figure 4 shows Jay’s 
hand-drawn graph. 

 
Figure 4. Jay’s hand-drawn graph explaining why the IVT is true1 

                                                
1 Jay intended that c be placed at the intersection of the graph of the function and the horizontal 
line y=N. 
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In creating his graph in Figure 4, Jay first plotted two points to represent endpoints of a 
graph of a function, which he labeled as the ordered pairs, (a, f(a)) and (b, f(b)), respectively. 
Then, Jay drew a horizontal line, which he labeled ‘N,’ to represent a value of N between f(a) 
and f(b). Jay explained that, from his perspective, Statement 2 must be true because any graph of 
a continuous function that he could draw from (a, f(a)) to (b, f(b)) must cross the horizontal line 
(y=N) that he labeled N. He then labeled c on the x-axis and explained that if the function crossed 
the line y=N at the value c, then f(c) equals N. Jay then drew a graph from (a, f(a)) to (b, f(b)) as 
an example of a continuous function that he was speaking of.  

Outputs as values. Jay consistently treated outputs of the function as values. For instance, Jay 
drew a graph of a horizontal line y=N and claimed that where the function “cross[es] this line” is 
“where f(c) is N.” Jay’s purpose in drawing this horizontal line was to identify a particular output 
value of the function, namely, N. We take both Jay’s graph of the horizontal line y=N, and the 
way he used this line in his explanation as evidence that he was attending the value of outputs 
(similar to Figure 2 left). Confirming that he attended to the value of outputs of the function, Jay 
later explained that Statement 2 meant to him that continuous functions do not “skip over any 
values between f(a) and f(b).” We thus take Jay’s language and labeling on the graph as evidence 
of his consideration of outputs of the function as values, a characteristic of value-thinking as 
described in our visual reasoning framework (see Table 1). 

Points as ordered pairs. Jay also labeled the endpoints of the graph as ordered pairs: (a, f(a)) 
and (b, f(b)). Additionally, he referred to the intersection point of a continuous function, f, and a 
horizontal line, y=N, as an ordered pair, (c, f(c)). Jay’s labeling and description of points as 
ordered pairs indicate that he attended to both the values of the input and output represented at 
each point. We thus take Jay’s consistent treatment of points as ordered pairs as evidence of 
value-thinking, as noted in Table 1.  

In addition to considering outputs as values and points as ordered pairs, Jay’s interpretation 
of the phrase “N between f(a) and f(b)” in the later portion of the interview provides further 
evidence of Jay’s value-thinking. We present a second episode from Jay’s interview to highlight 
his meaning for this phrase.  

Earlier in the interview, Jay had already evaluated all four statements correctly. Later, when 
the interviewer presented with graphs in Figure 3, Jay again explained his evaluation of the 
statements while looking at Graph 1. In particular, Jay used a curly brace along the y-axis to 
mark off what he took to be the relevant interval for possible N values between f(a) and f(b) (see 
Figure 5 for his work with Graph 1).  

 

Figure 5. Jay’s possible values of N on Graph 1 
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When explaining why he concluded that Statement 1was false, Jay referenced the interval for 
possible N values that he drew in Figure 5. In his explanation, he approximated this interval to be 
[0, 4] (Jay did not carefully attend to the scale of the y-axis), and explained that although 0 was 
an input value between a and b, i.e., in the interval (–3, 4) in Figure 5, its corresponding output 
f(0), or –7, was not between f(a) and f(b), i.e., in the interval [0, 4]. The transcript below provides 
Jay’s verbal explanation. 
 

Jay Statement 1 Graph 1 
Interviewer: Can you use this graph to explain why the statement is false? 
Jay: This [Statement 1] is false in this case because it would say that in the open interval (a, b) (points 
to a and b on x-axis), okay, so for all numbers between these two numbers,  –3 and 4, (gestures along 
x-axis between –3 and 4) there exists a real number between, and this is the important part, between 0 
and 4 or 0 and 3, so between these two values, (gestures on graph parallel to y-axis similar to interval 
he marked off above) such that when I evaluate the function here (gestures along x-axis between –3 
and 4), I get the value in here (gestures to indicate interval on y-axis from f(a) to f(b)). Okay…so if I 
am looking at f (0), right?  f(0) is –7 which is outside of the interval of [0, 4], which means that there is 
no N between 0 and 4 such that… –7 which is... f(c) is equal to N, that value between 0 and 4. 

 
N as a value “between f(a) and f(b).” As previously noted, Jay marked off what he took to be 

the interval of possible N values between f(a) and f(b) using a curly brace along the y-axis (see 
Figure 5). Using f(0) = –7 as an example in which the input value is between a and b, but the 
output value is not between f(a) and f(b), he determined Statement 1 to be false. We thus take 
Jay’s interval of possible N values between f(a) and f(b) in Figure 5 as further evidence that he 
engaged in value-thinking, as explained in our Theoretical Framework.  
 
Nate: A Location-Thinker 

Unlike Jay and the other students whom we classified as value-thinkers, some students did 
not consider outputs as values, points as ordered pairs, or N as values “between f(a) and f(b).” 
Instead, these students labeled outputs at locations on the graph rather than the y-axis, labeled 
points as outputs rather than ordered pairs, and considered N as a spatial location rather than a 
value. In this section, we present an illustrative episode from one such student, Nate, whose 
visual reasoning we categorized as location-thinking. To highlight the characteristics of location-
thinking, we present his verbal explanations along with his gestures and graph labels to illustrate 
defining characteristics of location-thinking in terms of his meanings for outputs, points, and the 
phrase “N between f(a) and f(b).”  

In one portion of the interview, Nate explained why he evaluated Statement 1 as true using 
Graph 1. In contrast with value-thinkers who considered outputs of the function to be values, 
Nate considered both outputs of functions and points on graphs to be locations on graphs. 
Specifically, Nate first labeled the endpoints of the graph as f(a) and f(b), respectively. Then, 
Nate highlighted the x-axis with his pen, and explained that for every c on this axis, he could find 
an N on the curve that it maps to. He labeled several c’s on the x-axis as he explained this. He 
also motioned from the x-axis vertically down to the graph when describing that c’s were 
mapped to N’s on the graph. Similarly, when describing N’s, he swept along the entire graph of 
the function from what he marked as f(a) to f(b). His transcript in this portion of the interview is 
provided below and his labels on Graph 1 are shown in Figure 6.  
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Nate Statement 1 Graph 1 
Nate: So for all these c’s (sweeps pen along x-axis between a and b) you can see that it mapped to a 
point on the curve. For every single c there is a point on the curve that it maps to…So after that c, N 
would be here (marks c around 1 on x-axis, N at ordered pair location of (c, f(c)). So it maps to that. 
And this c would be in here (marks c around 2 on x-axis). And this c would be like, N right here 
(marks corresponding N’s for each c on Graph 1). 

 

 
Figure 6. Nate’s labeling on Graph 1 when he explained why he evaluated Statement 1 as true	

Outputs as locations. Unlike the value-thinkers, who placed output labels on the y-axis, Nate, 
in Graph 1, used outputs, f(a), f(b), and N, to label points on the graph as shown in Figure 6. In 
fact, Nate consistently placed output labels at points on the graphs of the functions he worked 
with throughout the interview. His work on the graphs indicates that he considered these outputs 
to be locations on the graph, rather than values on the y-axis. Nate also spoke about inputs 
mapping to N’s which he labeled on the graph. Thus, for Nate, outputs of the function were 
locations on the graph. We thus take Nate’s gestures and graphical activity as evidence of his 
consideration of outputs of the function as locations, indicative of location-thinking as described 
in our visual reasoning framework (see Table 1). 

Points as locations. We also take the placement of Nate’s labels of f(a), f(b), and N at points 
as evidence that he attended to the different spatial locations of these points. Rather than label 
the points as an ordered pair of input and output values, Nate chose to label the endpoints as the 
output alone. For Nate, there was no difference between outputs of the function and points on the 
graph, as both referred to spatial locations on the graph. We thus conclude that Nate conceived of 
points as locations, an indication of location-thinking, as described in our framework.  

When Nate explained his meaning for the phrase “N between f(a) and f(b),”his visual 
reasoning in terms of location-thinking was most prominent. The following exchange between 
Nate and the interviewer more clearly reveals his location-thinking. Nate labeled possible N’s on 
the graph that were, from our perspective, not between f(a) and f(b), as the output values at these 
points were less than the value of f(b). Noticing Nate’s placement of N labels, the interviewer 
extended the graph to the right to further examine Nate’s meaning for the phrase “N between f(a) 
and f(b)” (see Figure 6).  The interviewer picked a point on the extended graph, with an output 
value between the values of f(a) and f(b) and asked Nate if this output was between f(a) and f(b). 
In response, Nate hesitated and explained that there were two possible interpretations of the 
phrase “N between f(a) and f(b).” The transcript below contains his explanation and Figure 6 
contains his corresponding labels on Graph 1. 
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Nate Statement 1 Graph 1 
Interviewer: …Okay. Let’s say we picked a point over here (points to a point beyond endpoints of the 
graph, on portion of extended graph, the rightmost marked point on Figure 6). Would we say that that 
output would be between f(a) and f(b)? 
Nate: I would not say it’s between f(a) and f(b). Even though the, yeah. This is the confusing part, 
where the actual numbers 2.5 and 0 (marks the points 2.5, 0, boxed on Figure 6). This would be, if you 
are looking at numbers 2.5, 0, this would be in between that interval. But it’s in between that number 
interval. But it’s not in between the functional interval in this case, so f(a). The interval refers to all 
these points between f(a) and f(b) (sweeps pen along the graph). All points of the function. That’s 
what I am interpreting. 

 
N as a location “between f(a) and f(b).” The interviewer’s prompt in the exchange above 

allowed Nate to consider more carefully his meaning for “N between f(a) and f(b).” While Nate 
said the point that the interviewer plotted was not between f(a) and f(b), he acknowledged that 
the point was “in the number interval” between 2.5 and 0 (the values of f(a) and f(b)). We take 
Nate’s number interval to be referencing the interval of output values between 0 and 2.5, which 
he labeled on the endpoints of the graph. He clarified that the point was not “in the function 
interval,” which we take as located on the graph of the function, since Nate swept along the 
graph as he described the function interval. Although Nate acknowledged the numerical interval, 
he considered his notion of the “function interval” as more relevant for interpreting the phrase “N 
between f(a) and f(b).” We thus take Nate’s interpretation of “between” in terms of the location 
of the points, rather than the values of the outputs, as indicative of location-thinking. 

 
Conclusion 

 
This study reveals that students’ interpretations of outputs, points, and graphs differ based on 

their visual reasoning. Like Jay, the students whom we categorized as value-thinkers considered 
outputs as values, points as coordinates of input and output values, and N as a value. They 
consistently labeled outputs on the y-axis and points as ordered pairs. Additionally, they referred 
to the y-axis when speaking about possible values of N in the various statements. These 
characteristics of their visual reasoning are consistent with the characteristics of value-thinking 
described in our visual reasoning framework in Table 1. On the other hand, students like Nate 
whom we categorized as location-thinkers considered both outputs and points as locations on the 
graph of the function, and, consequently, N as a location between the endpoints of the graph. 
They consistently labeled outputs at points on the graph rather than label outputs on the y-axis or 
label points as ordered pairs. Additionally, they referred to the whole graph when speaking about 
possible values of N in the various statements. These characteristics of their visual reasoning are 
consistent with the characteristics of location-thinking described in our visual reasoning 
framework in Table 1.  

Our analysis of the data in this study also reveals that students’ visual reasoning impacts their 
understanding and evaluation of the statements. Five students including Jay were identified as 
value-thinkers and four students including Nate were identified as location-thinkers. Among the 
five value-thinkers, three students evaluated all four statements correctly as FTFF. In contrast, no 
location-thinker evaluated all four statements correctly.  

The two students whose visual reasoning we reported in this paper share many similarities. 
Both Jay and Nate had recently completed Advanced Calculus and both showed evidence of 
having a proper understanding of multiple quantifiers and conditional structure. However, they 
evaluated Statement 1 differently. While Jay correctly evaluated this statement as false, Nate 
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evaluated it as true. The role of visual reasoning, then, becomes central in explaining Nate’s and 
Jay’s opposite evaluations of Statement 1, since both students understood the quantifiers and 
conditional structure of the statement in the same way while their visual reasoning differed. In 
short, the sole reason Nate evaluated Statement 1 incorrectly was due to his location-thinking. 
Unlike value-thinking, which seemed to support students, location-thinking did not support 
students’ understanding and evaluation of the statements.  
 

Discussion 
 

In summary, through probing students’ understanding and evaluation of the IVT and related 
statements, along with several graphs, we discovered a significant distinction in how students 
interpreted these graphs. Location-thinkers confounded the output of a function with the location 
of the coordinate point. They thus interpreted the IVT and related statements differently from 
value-thinkers, who distinguished between output values and points that coordinated both an 
input and output value. We hypothesize that the differences in value-thinkers’ and location-
thinkers’ visual reasoning may lead to differences in how these students understand other 
mathematical statements about real-valued functions. 

 
Significance of findings & relation to literature 

Through our analysis of student visual reasoning, we conclude that a subtle difference in 
place of a student’s focus when reasoning about a graph has significant implications on 
mathematical ideas. As illustrated through the cases of Jay and Nate, different methods of visual 
reasoning contributed to different evaluations and understandings of a complex mathematical 
statement about real-valued functions, of which there are many in undergraduate mathematics 
courses.  

Our results highlight and explain some important aspects of students’ graphical activity not 
previously accounted for by current theories and studies on visual reasoning (Moore & 
Thompson, 2015; Moore, 2016). We view our findings as complimentary to Moore’s (2016) 
work in classifying students’ graphical reasoning through the source of their attention. In terms 
of Moore’s (2016) constructs, students who were labeled as value-thinkers were seen as 
engaging in operative thought and emergent shape-thinking, as their visual perception of the 
graph was subordinate to their meanings for output value and they coordinated the values of the 
varying quantities. Location-thinkers, on the other hand, did not clearly fall into the alternate 
category of figurative thought, which Moore (2016) aligns with static shape-thinking. The visual 
cues from the graph did dominate their thinking in some aspects of the graph, such as the spatial 
location of the points, which informed their interpretation of “N between f(a) and f(b).” Although 
location-thinkers engaged in figurative thought in this way, they did not conceive of the graph 
statically. Instead, these students conceived of graphs as emerging from the coordination of input 
values with the corresponding spatial locations of the points on the graph. This conception of a 
graph is neither captured by the construct of static shape thinking (not conceiving of the graph as 
a wire) nor emergent shape thinking, (not imagining the values of both the input and output 
represented simultaneously) as described by Moore and Thompson (2015). In this way, we 
consider our constructs of value-thinking and location-thinking as contributing to the existing 
body of literature in describing students’ graphical activity. Thus, the use of our constructs of 
value-thinking and location-thinking could progress the depth of analysis in the field of student 
visual reasoning, especially with regard to ideas from Calculus.  
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Implications for curriculum and instruction  

Our findings in this study provide insight into distinctions in students’ visual reasoning, 
which instructors at both the high school and undergraduate level may find informative for 
understanding students’ mathematical activity. In teaching concepts involving graphical 
representations, instructors’ attention to the distinction between value-thinking and location-
thinking may in turn provide students with opportunities to reflect on their conception of points 
and graphs. In the classroom, it may also be beneficial for instructors to be aware of the various 
ways in which students may interpret information from a visual representation.  

While in our study, value-thinking helped students to understand the IVT and varied versions 
of the statement, in other contexts, such as Geometry, location-thinking may be preferable. 
Ideally, students should possess the ability to think in both ways, as well as the ability to discern 
when to use each. We also recognize that our findings indicate overcoming various perceptual 
cues found in graphs, beyond conceiving of the graph as a static shape, is a nontrivial 
achievement, even for advanced students. Teachers utilizing such representations may seek to 
support students in overcoming adherence to visual cues.  

Our findings also have implications for curriculum and textbook design. Curriculum 
developers may consider including tasks designed to highlight the distinction in the two modes 
of visual reasoning. In the context of the IVT specifically, we note that the examples provided in 
Figure 1 do not readily provide students with the opportunity to reflect on the meaning of the 
phrase “N between f(a) and f(b)” in the Calculus context as referring to values. Because the 
endpoints of the interval in Figure 1 coincide with the absolute minimum and maximum values 
of the function, students would arrive at the same conclusion, regardless of their mode of visual 
reasoning. Both curriculum developers and instructors may consider the use of graphs like our 
Graph 1, in which the function includes output values beyond the range of values between f(a) 
and f(b) to provide opportunities to distinguish students’ visual reasoning. We hope that our 
findings raise awareness of the subtle yet significant details of students’ visual reasoning and 
may thus inform decisions both in curriculum design and instruction. 
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The research community shares a concern for students’ conceptual understanding of calculus 
and commonly advocates for student-centered approaches as a way to promote it. In this study, 
we investigated the effect of different instructional approaches on 151 undergraduate students’ 
conceptual understanding of differential calculus in context-specific, natural settings. We 
collected data on the pre- and posttest of the Calculus Concept Inventory in three classes. In one 
class, most of the time was dedicated to conceptually oriented problem solving, another class 
implemented practice problems for students, and the third class was a traditional lecture class. 
The results showed that there was no difference in students’ conceptual understanding of 
differential calculus controlling for their initial understanding. Thus, our findings do not support 
the research that advocates for student-centered instruction suggesting that the approaches’ 
implementation and contextual differences may be sources of variation in their effectiveness.  

Key words: Calculus, Conceptual Understanding, Active Learning, Instruction, Concept 
Inventory 

Mastery of calculus, a desired and necessary student learning outcome (Sofronas et al., 
2011), needs to include not only mastery of procedures but mastery of concepts, as well (Zerr, 
2010). Multiple attempts have been made to identify instructional approaches that lead to greater 
conceptual understanding of STEM disciplines (Freeman et al., 2014; Prince, 2004) and 
specifically of calculus (Laursen, Hassi, Kogan, & Weston, 2014; Rasmussen, Kwon, Allen, 
Marrongelle, & Burtch, 2006), typically advocating for student-centered instruction. However, 
those calculus studies either used measures with limited evidence of validity and reliability or 
aggregated data across classrooms, potentially different in instruction implementation or 
contextual factors. With our ex post facto study, we aimed to overcome these limitations and 
investigate students’ conceptual understanding of differential calculus (measured by a validated 
instrument) in three calculus classes with distinct instructional approaches taking contextual 
factors into account.  
 

Literature Review 

The education research community has been working on identifying instructional approaches 
effective for students’ learning and specifically for their conceptual understanding of content for 
a long time (Prince, 2004). Many researchers have advocated for student-centered instruction as 
an effective one, typically contrasting it with the teacher-centered instruction. For example, in 
physics, one of the largest studies was conducted by Hake (1998) where he compared student 
conceptual understanding in interactive engagement classes and traditional classes. The results of 
that study suggested that students in the former classes had higher conceptual understanding than 
students in the latter.  

In undergraduate mathematics, several studies exist that explored the influence of student-
centered instruction - specifically inquiry-based learning (IBL) - on student conceptual 
understanding. One of such studies is a study of Laursen et al. (2014) where learning gains of 
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students in IBL mathematics classes were compared to those of students in non-IBL mathematics 
classes. The results showed that students’ cognitive gains in understanding and thinking, among 
others, were greater in IBL classes than in non-IBL. However, the measurement of learning gains 
in this study is important to note. The learning gains were self-reported by students, i.e., the 
gains were students’ subjective perceptions of their learning. Perceived learning, though it has its 
advantages, might not always be an accurate estimation of actual learning.  

Another relevant study was conducted by Rasmussen et al. (2006) where students conceptual 
understanding of differential equations was explored in IBL and  traditional classes. The results 
also supported the effectiveness of IBL. However, several notes need to be made about the 
measurement of conceptual understanding in this study, as well. First, the validity evidence for 
the instrument used was limited (Kwon, Allen, & Rasmussen, 2005). Second, the measure was 
administered only as a posttest assessment (without a pretest) and only to volunteers after the 
final exam.  

Both studies also used data that were aggregated across classrooms. While data aggregation 
has its pros in terms of increasing sample sizes and, therefore, increasing the power of statistical 
comparisons, it may have cons, as well. Our main concern is that by considering students from 
different classes as one sample, important class-level differences may be overlooked. These 
differences, may contribute to differences in learning outcomes between classes. Examples of 
such class-level differences may include different quality of teaching of different instructors or 
different implementation of the same teaching approach.  

Due to the limitations of the studies of Laursen et al. (2014) and Rasmussen et al. (2006) 
discussed above, we decided to explore the effects of student-centered instruction on student 
conceptual understanding using a validated content instrument, administered during class time at 
the beginning and end of the semester. We specifically focused on differential calculus as (1) it is 
one of the fundamental college mathematics courses, and (2) the content measure for this 
material was already developed and validated. We also decided to consider each class 
individually to explore the effects of instructional approaches holistically. In this study, we 
examined two different student-centered instruction types and one traditional instruction type. 
The decision to study two different student-centered instruction types instead of one is consistent 
with the suggestions drawn from the meta-analysis of Freeman et al. (2014). This meta-analysis 
encouraged further research to focus on “second-generation research,” which compares courses 
that differ in active learning implementation, rather than on “first-generation research,” which 
compares active learning courses with traditional ones. The three studied classes are described in 
the next section.  

 
Methods 

Context 
Course. The study was conducted in the three course sections of Calculus I, the first course in 

the calculus sequence. This mainstream course has the traditional material on limits, derivatives, 
the integral, and culminates in the fundamental theorem of calculus. All three sections met twice 
a week for a lecture with a professor (1 hour and 50 minutes each) and once a week for a 
recitation with a graduate teaching assistant (50 minutes). The study was conducted during the 
same academic year with the data collection in the first two classes done in the fall semester and 
in the third class in the spring semester.  

Lectures. The lecture portion of the first class was taught in an active learning classroom with 
most of the class time dedicated to conceptually oriented problem solving (COPS) and whole 
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class discussion (the COPS class).  The ALT classroom has 8 round tables with 9 seats at each 
table (a total room capacity is 72). The room also contains flat screen displays (one per table), 
and whiteboards that cover the walls. In the COPS class, class periods typically started with 
resolving any questions or problems that students encountered doing homework or that remained 
from the last class period. The professor would ask students to write their concerns on a 
whiteboard, and then have a whole class discussion to address the concerns. Then, the professor 
would lecture for a short period of time (10-20 minutes), followed by student active work that 
would take the majority of the class time. The active work typically included student group work 
on worksheets that consisted of conceptually oriented problem sets. The groups were self-
selected and included 4-5 students each. The students were also encouraged to work on 
whiteboards to show their solutions. During this part of the class, the professor and 
undergraduate learning assistants walked around the classroom and talked to students to monitor 
their progress and answer or pose questions. If a common question or misconception arose, the 
professor would often address it via a whole-class discussion. To wrap up the active work, the 
professor would ask students to do a gallery walk and/or would hold a whole class discussion. At 
the end of the class, students typically turned in their completed worksheets.  

The lecture portion of the second class was taught in a traditional lecture hall and 
implemented practice problems (PP) during lectures (the PP class). Similar to the COPS class, 
this class also started with the professor answering student questions. Then, the professor would 
present new material and work through an example problem. Next, students were asked to solve 
a similar problem in groups (i.e., their neighbors) or individually, as they preferred. During this 
part of the class, the professor and learning assistants circulated around the classroom to monitor 
student progress and answer questions. After most students finished, the professor would write 
down the solution suggested by the students and then discuss it with the whole class.  

The lecture portion of the third class was also taught in a lecture hall but utilized primarily 
direct instruction (DI), the DI class. This professor prepared handwritten notes of the material 
(typically, proofs) and projected them on the screen in class. He/she would talk through the 
projected notes and then show an example problem on the board. This professor also 
incorporated graded quizzes in class which usually consisted of true-false questions (typically 
conceptual) to check student understanding of the material. Answers to the quizzes were 
discussed during the following lecture. In this class, no group work was utilized.  

Recitations. Recitations for the COPS and DI classes were taught by the same teaching 
assistant in a primarily lecture style. This teaching assistant would typically answer student 
questions, if any, conduct quizzes if required by the professor, and then explain the material and 
show solutions for example problems. Recitations for the PP class were taught in an active style 
with most of the class time dedicated to answering students’ questions, addressing their 
concerns, and clarifying misconceptions. 
Participants 

The three professors who participated in the study were experienced mathematics faculty 
members with similar goals for Calculus I classes. All of them aimed for students to have a 
mastery of both concepts and procedures by the end of the course. In addition, all of them 
wanted students to be actively involved in class and ask questions. The teaching assistants – 
recitation instructors – were both graduate students studying mathematics. The recitation 
instructor for the PP class was an experienced teaching assistant; the recitation instructor for the  
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Table 1 
Sample Demographic Information 

Characteristic 
COPS (N=49) PP (N=64) DI (N=38) Overall (N=151) 

Frequency % Frequency % Frequency % Frequency % 
Student classification 

- Freshman 
- Sophomore 
- Junior 
- Senior 

N=47 
14 
21 
5 
7 

 
29.8% 
44.7% 
10.6% 
14.9% 

N=63 
43 
11 
5 
4 

 
68.3% 
17.5% 
7.9% 
6.3% 

N=37 
16 
14 
6 
1 

 
43.2% 
37.8% 
16.2% 
2.7% 

N=147 
73 
46 
16 
12 

 
49.7% 
31.3% 
10.9% 
8.2% 

GPA 
- 3.5 or better 
- 3.0 up to 3.5 
- 2.5 up to 3.0 
- 2.0 up to 2.5 

N=46 
15 
17 
11 
3 

 
32.6% 
37.0% 
23.9% 
6.5% 

N=56 
22 
23 
9 
2 

 
39.3% 
41.1% 
16.1% 
3.6% 

N=35 
6 

10 
11 
8 

 
17.1% 
28.6% 
31.4% 
22.9% 

N=137 
43 
50 
31 
13 

 
31.4% 
36.5% 
22.6% 
9.5% 

Gender 
- Male 
- Female 

N=45 
23 
22 

 
51.1% 
48.9% 

N=63 
40 
23 

 
63.5% 
36.5% 

N=37 
25 
12 

 
67.6% 
32.4% 

N=145 
88 
57 

 
60.7% 
39.3% 

Race/Ethnicity 
- White 
- African-

American 
- Hispanic 
- Asian 
- American Indian 

or Pacific 
Islander 

- Other/Mixed 

N=44 
23 
2 
 

4 
13 
0 
 
 

2 

 
52.3% 
4.5% 

 
9.1% 
29.5% 

0% 
 
 

4.5% 

N=62 
33 
4 
 

4 
16 
0 
 
 

5 

 
53.2% 
6.5% 

 
6.5% 

25.8% 
0% 

 
 

8.1% 

N=37 
18 
7 
 

2 
7 
1 
 
 

2 

 
48.6% 
18.9% 

 
5.4% 

18.9% 
2.7% 

 
 

5.4% 

N=143 
74 
13 

 
10 
36 
1 
 
 

9 

 
51.7% 
9.1% 

 
7.0% 

25.2% 
0.7% 

 
 

6.3% 
Age M=20.33 (SD=3.46); 

N=45 
M=19.02 (SD=2.06); 

N=61 
M=20.11 (SD=3.04); 

N=37 
M=19.71 (SD=2.87); 

N=143 
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COPS and DI classes was a new teaching assistant at the university where the study was 
conducted, though he/she had teaching experience at a different institution.   

A total of 151 undergraduate students participated in the study (49 in the COPS class, 64 in 
the PP class, and 38 in the DI class). The students were enrolled in the Calculus I course at a 
large, suburban public university located on the east coast of the U.S. Student demographic 
information is presented in Table 1. In the COPS class, most participants were sophomores; in  
the PP class, the majority were freshman; in the DI class, freshman and sophomore students were 
enrolled in about the same proportion. Students’ GPAs (self-reported) in all classes varied 
greatly. In terms of gender, in the COPS class, about a half of students were male, while in the 
PP and DI classes, the majority of students were male. Students also varied in race and ethnicity. 
In all classes, about a half of students were White and about a quarter were Asian. Notably, the 
DI class had more African-American students than the other two classes. Lastly, in the PP class, 
students were, on average, 19 years old; in the COPS and DI classes, they were, on average, 20 
years old.  
Procedure  

The Calculus Concept Inventory (CCI; Epstein, 2007), a measure of conceptual 
understanding of differential calculus, was administered in all three classes at the beginning and 
end of the semester during recitations. Additionally, at the end of the semester, students were 
also asked to complete a demographic form. Students received a small amount of  extra credit for 
participating in the study. They also received their individual scores on the inventory. The 
instructors received only class average scores. After the semester was over, the instructors also 
participated in interviews, during which they were asked mainly about their teaching practices in 
the classes in question and their teaching philosophies.  

 
Results 

Data Exploration 
We computed descriptive statistics of CCI scores for each class measured at each point of 

time (the beginning and end of the semester). The averages and standard deviations are presented 
in Table 2. First, we were interested in whether students in each class showed growth over time. 
To answer this research question, we conducted three dependent samples t-tests with a 
Bonferroni correction (α=0.017). The results revealed a significant effect of Time for the PP 
class, t(63)=3.303, p=0.002, but not for the COPS class, t(48)=2.165, p=0.035, or for the DI 
class, t(37)=2.371, p=0.023.  

Next, we wanted to know if students in the three classes differed in their conceptual 
understanding on the pre- and posttest. To answer this research question, we conducted two 
ANOVA tests with a Bonferroni correction (α=0.025). The results showed a significant effect of 
Class for both the pretest (F(2,148)=5.466, p=0.005) and the posttest (F(2,148)=5.700, p=0.004). 
Multiple comparisons – Tukey HSD tests – revealed a significant difference between the PP and 
COPS classes (p=0.013 for the pretest; p=0.012 for the posttest) and between the PP and DI 
classes on the pretest only (p=0.017). 

Table 2 
Descriptive Statistics for CCI 
 Mean (SD) 

COPS (N=49) PP (N=64) DI (N=38) Total (N=151) 
Pretest 6.43 (3.03) 8.06 (3.18) 6.37 (2.56) 7.11 (3.08) 
Posttest 7.33 (3.60) 9.28 (3.77) 7.37 (3.11) 8.17 (3.66) 
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Differences in Conceptual Understanding between Classes over Time 
To determine whether there was a difference in student conceptual understanding of 

differential calculus between classes over time, we conducted a mixed design ANOVA with 
Time as a within subjects factor and Class as a between subjects factor (see Figure 1). The results 
indicated a main effect of Time (F(1,148)=19.160, p=0.000), i.e., students’ conceptual 
understanding, averaged across classes, was higher at the end of the semester (M=7.11; 
SD=3.08) than at the beginning (M=8.17; SD=3.66). The results also showed a main effect of 
Class (F(2,148)=6.811, p=0.001). Multiple comparisons – Tukey HSD tests – revealed that 
students in the PP class had significantly higher conceptual understanding, averaged across time, 
than students in the COPS (p=0.005) or DI (p=0.009) classes. No interaction effect between 
Time and Class was found (F(2,148)=0.187, p=0.830). Thus, the changes in students’ conceptual 
understanding in all three classes were not significantly different from each other.  

 

 
Figure 1. Pretest and posttest means for each class 

 
Differences in Conceptual Understanding at the End of the Semester Controlling for Initial 
Understanding 

To determine whether students differed in their conceptual understanding of differential 
calculus at the end of the semester controlling for their initial understanding, we conducted an 
ANCOVA test (see Figure 2). The results showed no difference between the classes in students’ 
conceptual understanding at the end of the semester controlling for their initial understanding, 
F(2,147)=1.065, p=0.347. The adjusted means were as follows: 7.837 (SE=0.398) for the COPS 
class, 8.561 (SE=0.353) for the PP class, and 7.924 (SE=0.452) for the DI class. 
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Figure 2. Adjusted posttest means for each class 

 

Discussion 

Our findings suggest that students’ conceptual understanding of differential calculus is 
independent from the type of instruction when (1) conceptual understanding is measured by a 
validated, content instrument, and (2) the study is context-specific, i.e., when each class is 
considered individually instead of averaging across multiple classes. These nuances may explain 
why our results appeared to be different from the results of Laursen et al. (2014) and Rasmussen 
et al. (2006). In other words, implementation characteristics of a particular approach by a 
particular instructor in a particular course offering may lead to different levels of conceptual 
understanding and, therefore, need to be taken into account.  

Among advantages of the study, we consider its ex post facto design, as no intervention was 
made. We aimed to explore the effects of teaching approaches in the most natural environment 
possible, and, therefore, chose to investigate the effects of the approaches typical to the 
instructors. Thus, this design provides a comprehensive picture of instruction implementation, 
where all elements of the instructional approaches are considered together. At the same time, a 
comprehensive picture of instruction has the disadvantage of making those elements with the 
most influence on the outcome challenging to identify. Therefore, future research should explore 
more context specific variations in approaches’ implementation to determine potential 
commonalities between the effective ones. Another disadvantage of our ex post facto, context-
specific design is a possibility for confounding variables to occur, as no control over the 
approaches is used. For example, the direct instruction in the recitations of the COPS class may 
have cancelled out the effect of conceptually oriented problem solving in the lecture periods. 
Finally, our study design substantially limits the generalizability of the findings.  
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ABSTRACT: In the evaluation study presented in this paper, the authors compared the 
mathematical thinking of undergraduate students (as they responded to class work and 
interview prompts) who participated in an inquiry-based linear algebra course to a comparison 
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The Problem 

The literature on undergraduate mathematics shows that in traditional linear algebra classrooms 
students often memorize algorithmic methods that “work” even when not properly understood.  
Students develop understandings of matrix algebra and solving systems of linear equations 
using the Gaussian elimination, yet have problems with the more abstract notions of spanning 
set, linear independence and linear transformation (Stewart & Thomas, 2010).  In the language 
of Sierpinska’s modes of thinking (2000), the student dependent upon reducing a matrix to 
echelon form to determine whether vectors are linearly independent are thinking in arithmetic 
mode, whereas a student who is able to think more generally about objects as parts of a system, 
by applying a definition or theorem when appropriate, is thinking in structural mode.  
According to Bogomolny (2007), a notion of linear dependence as an object requires an 
understanding beyond the actual or intended procedures of row reduction toward an 
understanding of the structure of linear dependence relations as a set of vectors. While one 
mode of thinking is not given precedence over the other, and row-reduction and similar 
techniques are an important component of linear algebra, it is important for students to be able 
flexibly use an appropriate mode in a given context. According to Sierpinska (2000), despite a 
decade of innovations in the teaching of linear algebra “the students in our experiments could 
not understand the theory because they appeared to want to grasp it with a ‘practical’ rather than 
a ‘theoretical’ mind.” (p. 211). Dubinsky’s APOS theory (1994) has been used extensively since 
to characterize the ways in which students struggle with linear algebra concepts (eg. Stewart & 
Thomas 2010, 2009; Wawro, Rasmussen, Zandieh, Sweeney & Larson,	2012;).  An inquiry 
based learning (IBL) course in linear algebra was designed based on the notion of mathematics 
as “mathematizing” (Freudenthal, 1991) in order to circumvent a purely arithmetic 
understanding of linear algebra concepts. This study compared the thinking of linear algebra 
students that participated in the IBL course to a comparison group of students who participated 
in a traditional course. 
 

Theoretical Framework 

Our framework is adapted from Stewart & Thomas (2009, 2010). Tall’s three mathematical 
worlds (embodied, symbolic and formal) depict a progression in the development of 
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mathematical thinking (Tall, 2004)) and coincide with the modes of reasoning purported in 
Sierpinska (2000). The embodied world uses physical attributes to build conceptions. Similarly 
the synthetic-geometric mode of thinking is one that is intuitive, practical and is used as a 
heuristic tool to aid thinking in the analytic modes. Tall’s symbolic world is one in which 
symbolic representations of concepts are acted upon and manipulated. This corresponds to 
Sierpinska’s arithmetic mode in which the appropriate use of formulas and techniques that 
allow one to solve problem concerning vectors and matrices are developed. The symbolic world 
is where Dubinsky’s (1994) actions, processes and objects are constructed and symbolized.  
 
According to APOS theory an action occurs as an instance of problem solution by the student—
it is dependent upon a particular problem (Dubinsky & McDonald 2001). When this action is 
reflected upon, in such a way that the action can be imagined without being carried out, then the 
action has become a process. A process becomes an object when the student becomes aware of 
the totality of the process and is able to encapsulate it as a single entity or object. In Tall’s 
formal world the properties of objects become formalized into axioms. This corresponds to 
Sierpinska’s structural mode emphasizing connections between concepts and is concerned with 
vector spaces and linear transformations. The formal world with its emphasis on structural 
thinking is where objects become part of the learner’s schemata. To illustrate consider Figure 1 
below. 
 
 Embodied World- 

Visual-Geometric 
Thinking 

Symbolic World -
Arithmetic Thinking 

Formal World –
Structural Thinking 

Action Can add multiples of 
two given vectors in 
R2 or R3 to visually 
determine whether a 
third is a linear 
combination of the 
given vectors. 

Can test if a set of vectors is 
linear independent by 
constructing a matrix with 
the vectors as columns and 
row reducing it. 

 

Process Can generalize this 
visualization process 
to two arbitrary 
vectors v1, v2, v3 in 
R2 or R3. 

Can think about the action 
above without actually 
carrying it out.  

 

Object Can operate on this 
visualization of linear 
independent vectors 
(eg. transforming 
them via reflection, 
rotation, etc) 

Understands process as 
above and can operate on the 
resulting matrix (eg. knows 
that if matrix has a pivot in 
every column then the 
original set of vectors is 
linear independent. 

Shows set of given 
vectors is linear 
independent by 
definition by 
considering the 
vectors space that the 
vectors are in (eg. 
gives a dimensional 
argument) 

Figure 1. Framework Using Three Worlds and APOS With Illustrations of Linear 
Independence. 
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Inquiry Based Learning Course 

The IBL courses offered at this university are based on the premise that all of mathematics 
teaching and learning should consist of students mathematizing, as proposed in Realistic 
Mathematics Education (RME) (Freudenthal 1991, Gravemeijer, 1994, 1997). Within RME a 
learner comes to “know” by re-inventing mathematics, with the teacher as guide, as the learner 
responds to authentic problem contexts that are chosen to bring forth big ideas in mathematics 
(Schifter & Fosnot, 1993). Big ideas are the central, organizing ideas of mathematics—
principles that define mathematical order such as linear independence, basis and linear 
transformation. The emergence of big ideas in learners occurs as a certain shift in mathematical 
thinking often evidenced by changes in strategy and model use. When learners participate in 
this kind of mathematical inquiry they are said to be mathematizing. According to Treffers 
(1997) horizontal mathematizing involves students in developing mathematical tools that help 
them to organize and solve a problem located in an embodied context that they can then 
generalize to use in other embodied contexts. Vertical mathematizing involves the forming of 
conjectures while working on problems that encourage finding shortcuts and discovering 
connections between concepts and strategies and then applying these discoveries (Treffers, 
1987). Both types of mathematizing were incorporated into this course. 
 
Horizontal mathematizing influenced the choice of course materials (Wawro, Rasmussen, 
Zandieh, Sweeney & Larson 2012), whereas the vertical counterpart influenced the structure of 
the centerpiece assignment in the course – the course wiki. In lieu of a textbook, students 
worked from a scaffolded sequence of tasks (the course notes) and recorded their findings in the 
form of a whole-class wiki, which ultimately served as their reference text.  All of the Inquiry 
Oriented Linear Algebra task sequences were incorporated into the course notes (Inquiry-
Oriented Instructional Materials website, n.d.).  However, instead of presenting students with 
theorems, the students generated conjectures, which they recorded, revised and supported in the 
course wiki, which was intended to support student ownership of the material.  Students could 
support conjectures with examples or proofs and this support was revised throughout the 
semester.  These activities were intended to support students as they began to transition from 
embodied and symbolic thinking to structural thinking and participation in the formal world 
(Tall, 2004). Additionally, students build ``concept pages’’ in the wiki, which included i) the 
definition of the concept, ii) information on and hyperlinks to key examples that illustrate 
applications of the concept and iii) additional information that provides intuition for the 
concept, information on the importance of the concept or explains the origins of the concept, 
including hyperlinks to relevant section and concept pages.  All intended as opportunities for 
mathematizing. 
 

Methods 

During Fall 2014 data were collected from the linear algebra course as part of a larger research 
study to trace the efficacy of inquiry-based courses. Data were collected via examination 
questions and task-based interviews in order to compare the thinking of students in the inquiry 
and traditional classes. Two common final exam problems were given. Responses were 
collected and compared between student in the inquiry-based course (n=20) and a comparison 
group of student in the traditional course (n=20). Students in the comparison group were top 
course performers purposively sampled from those students who had expressed an interest in 
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taking the inquiry-based course but who had not fit that course into their schedule. These 
students were enrolled in a traditional course with an experienced instructor.  
 
Participants 

In addition to the student responses described above, four students in the inquiry group and four 
students in the traditional group agreed to participate in an interview. The interviews were 
conducted during week 10 of the quarter and took between 30 and 40 minutes each.  
 
Data  

Final examination questions. Two common problems (see Figure 2 below) were placed 
on the final in both classes. In order to ensure that the items were accessible to the traditional 
students, Professor 1 who was teaching the traditional course shared his exam with Professor 2, 
the instructor for inquiry-based course, 3 days before the final was to take place. Professor 2 
selected the two items from Professor 1’s exam. Responses to these items were obtained from 
the course instructors. The data were used to compare students' ways of thinking about linear 
algebra concepts.  
 
Problem 1a and b 

 
Problem 2 

 
Figure 2. Common Final Exam Problems. 

 
Task-based questions from interviews. Participants were asked to (1) describe their 

learning experiences in their linear algebra course, (2) express the big ideas in the linear algebra 
class, (3) talk about how they would solve two linear algebra problems that involved an 
understanding of span, linear independence, basis and linear transformation (figure 7 below).  
 
Analysis and Results 
 

Final exam question analysis. Student graded responses to final exam items and verbal 
and written/verbal responses to the task-based interview questions were coded in three ways: (1) 
Responses were categorized as correct/ incorrect; (2) Responses were open coded number based 
on the type of solution strategy used; (3) Strategies codes where grouped into themes using the 
framework in figure 1 as a guide. 
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Table 1. Comparison of Errors Between Groups 
 Inquiry- Based Group (n=20) Traditional Group (n=20) 
 # Computational 

errors 
# Conceptual 
errors 

# Computational 
errors 

# Conceptual 
errors 

Problem 1a 1 2 0 3 
Problem 1b 0 1 1 4 
Problem 2 3 3 6 3 

 
While the number of errors in the groups were quite similar (slightly favoring the inquiry group) 
very different solution methods between the groups for problem 1a and 1b were observed. In 
problem 1a, the inquiry group most often found the kernel or the solution set to the 
homogeneous system to show that there are infinitely many solutions (9/17 with correct 
answers), whereas the majority of the traditional groups stated, “there was a free variable” 
(13/17 with correct answers). 
 
Arithmetic 
thinking 
with 
connection 
to 
embodied 
world. 
 

 
Arithmetic 
Mode of 
Thinking  
 

 
Structural 
Thinking/ 
connection 
to 
embodied 
world. 

 
Figure 3. One of the Common Final Exam Problems 
 
The expectation in the inquiry-based class for the student to justify their answers may be 
responsible for this difference. For problem1b, most students across groups gave an example of 
a vector that made the non-homogeneous system inconsistent (comparison group 9/15, inquiry 
group 7/ 19), however 10 of the 19 inquiry based group for whom the problem was scored as 
correct and only 3 of the 14 in the comparison group gave an argument that took into 
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consideration the fact that they were working with the augmented matrix rather than the matrix 
itself.  

 
   Figure 5. IBL Student Thinking 
 
Using the framework to qualitatively classify student responses results indicate that in some 
instances 2 times as many students in the inquiry-based group were operating at both the 
arithmetic and structural modes (Exam question 1 part a: 7, 5) (Exam question 1 part b 10, 5 
respectively). The solution methods were quite different between the groups with the inquiry-
based group flexibly using two modes of reasoning--solving the system arithmetically followed 
by structural thinking to create the solution space while the traditional group used purely 
arithmetic modes of reasoning. 
 

	

Modes of Thinking IBL 
Students 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
 
	
	

Arithmetic-
Symbolic  
Thinking 

Structural  
Thinking 
	 	

	

	

	

Embodied Thinking 

	

Ollie 
9/17 

Ollie, Tessa, Nick 
12/19 

Tessa, Nick 
4/17 
 

Tim, 4/17 

Tim, 7/19 
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Figure 6. TRAD Student Thinking 
 
Interview Analysis 

In order to investigate students’ modes of thinking in more depth, we interviewed eight students 
(four traditional and four students in the inquiry-based course). Table 2 below shows these 
interview participant demographics. 
 
Table 2. Interview Participant Demographics 
 Physics Chemistry Computer 

Science/Engineering 
 Male Female Male Female Male Female 

4AI (n=4) 2 1 1    
4A (n=4) 1    2 1 

 
All participants were freshman, had comparable mathematics backgrounds and this course their 
first college math course. The purpose of the interviews was to further explore students’ 
thinking about the linear algebra topics they were learning—in particular to explore their 
concept image (Tall & Vinner, 1991) of spanning set, linear independence, basis and 
transformation and their perspectives on the big ideas in linear algebra. Analysis of students’ 
ideas about the big ideas in linear algebra is currently being analyzed to triangulate the findings 
from the common final items and the interview tasks. Table 3 below shows how these eight 
students’ thinking on the final exam its were categorized. 
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Table 3. Interview Participants’ Thinking on Final Exam Items. 
Name Part A Part B 
 Strategy  Type of Thinking Strategy  Type of 

Thinking 
Alex (TRAD) States free 

variable 
Arithmetic 
Thinking/Process 
conception 

Uses free 
variable 

Cannot 
determine 

John (TRAD) Uses 
dimension of 
the null space  

Structural reasoning Columns don’t 
span R3 

Structural 
reasoning 

Yvette 
(TRAD) 

States free 
variable 

Arithmetic 
Thinking/Process 
conception 

Uses free 
variable 

Cannot 
determine 

Valerie 
(TRAD) 

States free 
variable 

Arithmetic 
Thinking/Process 
conception 

Gives a vector 
that doesn’t 
have a solution 

Arithmetic 
thinking 

Nick (IBL) Solves and 
presents 
solution set as 
a line 

Geometric/Arithmetic Span of LI 
column vectors 
does not span 
all of R3 

Structural 
reasoning	

Ollie (IBL) Uses 
dimension of 
the kernel 

Structural reasoning Span of LI 
column vectors 
does not span 
all of R3 

Structural 
reasoning	

Tessa  (IBL) Solves and 
presents 
solution set as 
a line 

Geometric/Arithmetic Span of LI 
column vectors 
does not span 
all of R3 

Structural 
reasoning	

Tim (IBL) Uses columns 
are linearly 
independent 

Structural reasoning Gives a vector 
that doesn’t 
have a solution 

Arithmetic 
thinking 

 
Figure 7 below depicts the strategies used by students on interview tasks and illustrates how the 
interview responses were coded similarly to the common final items and according to the three 
modes of thinking (Sierpinska, 2000). The first interview item was given to see if students had 
made connections between linear independence and spanning set. It was also used to see 
whether students were able to instantiate formal definitions and use them to form logical 
arguments. All four of the inquiry-based and two of the traditional group were able to instantiate 
and act upon their understanding of the connection between span and linear dependence to solve 
the problem. These students had an object conception of span and linear dependence and were 
operating in the formal word. 
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Interview Problem 1 

 

IBL 
Group 
(n=4) 

TRAD 
Group 
(n=4) 

Structural Thinking. 
Acts upon the definition of span to argue structurally that since w is in the 
spanning set then by definition it is a linear combination of a subset of the vi and 
hence by definition of LI the set is not LI. 

3 (Tim, 
Tessa, 
Ollie) 

1 
(Valerie) 

Geometric Thinking 
Acts upon the definition of span and LI and thinks geometrically. When I think of 
span I think of where we can go if these v1, v2, ….vn are means of transport. Span 
is all of the possible regions you can reach with these linear combinations. So now 
w is a vector in V and so is already reached by this set of vs – it doesn’t really take 
me anywhere new so therefore the set is linearly dependent. 

1 
(Nick) 

 

Erroneous Structural Thinking 
Incorrectly acts upon the definition in the problem. Erroneously assumes that the 
space is n-dimensional and uses dimensional argument. 

 2 (Alex, 
John) 

Arithmetic Thinking 
Thinks arithmetically, bypasses notion of span and thinks of LI as a process. “Row 
reduce” homogenous matrix or set up an augmented matrix. 

 1 (Yvette) 

 

 
Geometric-Embodied/Structural Thinking. 
Recognizes that the image of T is a two-dimensional subspace of R3 hence not 
possible to find a basis for R3. 

Ollie, 
Tim 

John 

Arithmetic-Structural Thinking 
Starts to row reduce the matrix that defines the transformation to find the basis and 
concludes that no such basis can exist based on a dimensional argument. 

Nick  

Arithmetic Thinking 
Say that it is possible by mapping the standard basis in R2 via the transformation but 
does not complete the calculations. 

Tessa   

Arithmetic Thinking 
Says that the basis exists and the way to find it is by row reducing the matrix that 
defines the transformation.  

 Valerie 

Says it is possible but does not give reasoning.  Alex 
Doesn’t attempt the problem  Yvette 
Figure 7. Coding Examples of Interview Questions 
 
Even though this item was constructed to circumvent an approach that used matrix 
multiplication two of the traditional group demonstrated that they were dependent upon an 
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action concept of linear dependence by saying that they would set up the vectors as columns in 
an m x n matrix and row reduce to see if the RREF was the identity matrix. This type of solution 
is dependent upon being given actual numbers and hence these students were not able to solve 
the problem (see Yvette example in Figure 8 below).  
 

 
    Figure 8. Examples of Student Thinking on Interview Item 1. 
 
 The remaining two students from the traditional group erroneously assumed that V =Rn and 
incorrectly used the proposition proved in class that states there are at most n linearly 
independent vectors in a basis for Rn. These students appeared to be trying to operate in the 
formal world but possibly have not developed an object conception of linear dependence (see 
John example in Figure 8 above). 
           
The second item, depicted in Figure 9 below, was used to understand whether students had 
formed an object conception of basis. Two of the inquiry students and one of the traditional 
students combined geometric and structural thinking (see John example). One of the inquiry 
students showed an object conception of basis by operating between the arithmetic-structural 
modes by reducing the matrix that defines the transformation to RREF and concluding that a 
basis does not exist as the matrix has 2 linearly independent columns (see Nicks example). Two 
traditional students showed erroneous arithmetic thinking by stating that such a basis did exist 
by reducing the transformation matrix to echelon form. 
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Geometric 
Thinking  

“I would have to say that you cannot because you are starting with a 
two dimensional space and this just transforms it to a plane. A plane 
cannot represent the whole space.”  [John]	

Thinking 
structurally across 
worlds 

“It gives you a transformation and asks if it possible to find 3 vectors in 
R2 such that the transformation in R3 forms a basis for R3. So if these 
three are a basis in R3 then that means that they have to be independent. 
Now the transformations come from R2 over here so one thing we can 
do is just try to find a matrix for the transformation. So just using these 
components work, this has to be 3,1 this has to be 3, -1 and this has to 
be 2, 4. Now the transformation acts on these vectors in R2 we might 
have v1, v2 and v3 and we want to check that T(v1), T(v2), T(v3) are 
independent, right? 
 
If we get this to RREF, if we get the matrix associated with the 
transformation into RREF then that is going to end up being this matrix 
right here, because we only have 2 pivots because this…if you want to 
multiply a matrix and you are given three vectors here, v1, v2 and v3, 
let’s make them into a matrix V. Actually lets call it [x1, y1; x2, y2; x3, y3] 
that gives us a 2 by 3 matrix and if we want the columns of this matrix 
to be independent then we are going to have 3 pivots but this matrix has 
only 2 pivots and this matrix at the best can only have 2 pivots because 
the pivots can never exceed the number of rows and columns. In matrix 
multiplication all you are doing is looking at linear combinations of 
rows and columns you can never have more than 2 pivots in the answer 
so this is impossible. “ [Nick] 

 Figure 9. Example Student Responses From Interview Item 2. 
 
One student from the inquiry-based class started by applying the transformation to the standard 
basis in R2 to get a basis for R3. She convinced herself that this was a viable approach and that a 
basis did exist. One traditional student stated that such a basis could be found but did not give 
any rationale. The final traditional student did not attempt the problem.  
 

Significance 

Few studies have compared the understanding of students in inquiry-based versus traditional 
courses. We have presented data that suggests ways in which students in an inquiry-based linear 
algebra course have different understandings of concepts than students who have taken a 
traditional course. One reason that comparison studies are rare is due to the self-selection of 
students into non-traditional courses. This study circumvented the issue by forming the 
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comparison group with students who self-selected into the non-traditional course but who could 
not take it due to schedule conflicts. 
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Data Cleaning in Mathematics Education Research: The Overlooked Methodological Step 
 

Aleata Hubbard 
WestEd 

The results of educational research studies are only as accurate as the data used to produce 
them. Drawing on experiences conducting large-scale efficacy studies of classroom-based 
algebra interventions for community college and middle school students, I am developing 
practice-based data cleaning procedures to support scholars in conducting rigorous research. 
The poster identifies common sources of data errors in mathematics education research and 
offers a framework and related data cleaning process designed to address these errors. 

Key words: Research methodology, Efficacy studies, Algebra 

The results of educational research studies are only as accurate as the data used to produce 
them. Screening data for potential errors and ensuring anomalies do not influence analyses is an 
essential step of the research cycle (Wilkinson, 1999). Odom and Henson (2002) demonstrated 
how regression models of high school seniors’ mathematics achievement varied depending on 
the level of screening applied to the publicly available High School and Beyond National Survey 
data set. As another example, Whalley (2011) analyzed the Panel Study of Income Dynamics 
data set to show how the choice of trimming procedures (i.e., methods for removing outliers) 
effected estimates of the relationship between education and labor income volatility. Educators 
and policy makers rely on study results to make decisions that influence the lives of many. It is 
important that scholars understand and apply appropriate methods for ensuring high quality data. 

The process of identifying, resolving, and documenting data inconsistencies is called data 
cleaning (Rahm & Do, 2000). Despite the importance of data cleaning in rigorous research 
practice, most methodology courses only give cursory attention to the topic (Osborne, 2013). 
Therefore, scholars often acquire cleaning strategies heuristically, making it difficult for others to 
accurately judge or replicate studies (Leahey, Entwisle, & Einaudi, 2003). Furthermore, my 
conversations with scholars new to large-scale research suggest many underestimate the amount 
of time and resources required to properly clean data. Data collection and data preparation each 
can take about 20% of project time (Munson, 2012). Well-established standards for data cleaning 
could facilitate the integration of this topic into researcher training and support educational 
researchers in accurately planning their studies. 

Drawing on my experiences conducting statewide and nationwide efficacy studies of 
mathematics interventions, I am developing practice-based data cleaning processes to support 
research in classroom settings. While data cleaning can be applied to many forms of data (e.g., 
interviews, observations, documents), I focus on quantitative data gathered from surveys, 
questionnaires, assessments, and demographic records. Specifically, I ask: (1) What are the 
sources of data errors and challenges in educational research studies conducted in authentic 
mathematics learning environments? (2) How can a data cleaning process be designed to 
consistently produce accurate, reliable, confidential, and timely datasets? 

 
Methods 

Two large-scale efficacy studies inform the framework presented here. Study A was a three-
year, nationwide study of revisions to a popular mathematics curriculum involving over 10,000 
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middle school students and 180 mathematics teachers. Students completed between five and 
eight end-of-unit assessments on paper, two attitude surveys, and two mathematics assessments 
either on computers or on paper. Teachers completed weekly logs and two teaching knowledge 
assessments, all electronically. School districts provided demographic data and state test scores 
for participating students. Study B is a two-year statewide study of the use of a computerized 
interactive learning platform in community college elementary algebra courses. The first year of 
the college-level study involved approximately 400 students and 89 instructors across the state; 
the second year of the study is underway. In this study, all data is collected electronically. 
Students complete two mathematics assessments, a background questionnaire, an academic 
motivation questionnaire, and an end-of-semester survey. Log data of student interactions in a 
web-based activity and testing system are also collected. Instructors complete assessments of 
knowledge of technology in teaching and content knowledge for teaching, background 
questionnaires, and weekly logs. 

An initial data cleaning process was created for Study A based on prior experiences with 
small-scale research and evaluation projects. Across the three years of Study A, the data team 
documented their data related challenges and associated resolutions, revising the Study A data 
cleaning process as they went along. The revised process was also compared against rigorous 
research standards in the What Works Clearinghouse Procedures and Standards Handbook 
(2016), ethnical research guidelines around privacy and confidentiality (OHRP, 1993), general 
data modeling rules from the field of computer science, and data management practices used in 
educational survey research (e.g., Schleicher & Saito, 2005) and in statistics (e.g., de Jonge & 
van der Loo, 2013). The modified data cleaning process is being implemented in Study B. 

 
Researcher’s Role and Background 

Describing one’s background and one’s role in research allows readers to understand the 
perspective researchers bring to their work (Creswell, 2012). Drawing on my undergraduate 
training in computer science, I applied my knowledge of data modeling and databases to the 
framework described in this paper. My research training in learning sciences provided me with 
the domain knowledge needed to understand the contexts of Study A and Study B, to understand 
how data could be organized for useful analysis, and to identify anomalies that might signal 
problems at other stages of the research cycle. 

I was involved in multiple aspects of Study A including participant management, data 
collection, data cleaning, data analysis, instrument creation, classroom observations, meetings 
with the research team, and professional development workshops for participating teachers. This 
level of involvement gave me a chance to confront data issues directly at many points across the 
study. For example, answering participant phone calls about the study provided insights into the 
ways teachers implemented study data collection tasks, which sometimes conflicted with 
researcher expectations (e.g., administering student assessments across multiple days). Working 
with researchers to conduct item-response theory (IRT) analyses and teams to score constructed 
response items highlighted the importance of distinguishing the reasons for which data were 
sometimes missing. My involvement in Study B was constrained to data management, working 
with a team to clean data files, and interacting with the project staff to stay abreast of study 
developments. This narrower role allowed me to focus more on the refinement of the data 
cleaning process. 
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Results 

Data Errors and Challenges 
Despite standardized procedures for administering and gathering data, data collection in large 

scale educational studies often result in a host of data cleaning errors that are, to some extent, 
unavoidable. Errors can include duplicated records, illegal values, missing values, or 
misspellings (Rahm & Do, 2000). In the studies described here, errors in the gathered data 
created the need to make decisions about issues such as handling duplicate records, the validity 
of an assessment completed on an incorrect form, and how to link records in a hierarchical 
research design when participant identifiers changed. Challenges in study implementation 
hindered the timely collection and cleaning of study data. Common sources of error and 
challenges in data cleaning for both studies are described below. 

Variations in assessment administration. Schools and colleges differed in their schedules and 
access to computers. For example, many middle school class periods lasted 45 minutes while 
other schools operated on block schedules where class periods lasted 90 minutes. Some teachers 
with shorter class periods would administer paper-based assessments across two days, having 
students complete selected response items on the first day and constructed response items on the 
second day. The educational institutions within which Study A and Study B were conducted 
varied widely in their computer availability. Teachers with computers inside their classrooms 
easily administered online assessments for the study. However, teachers who had to reserve a 
computer lab often lost time in transitioning to the lab room or they held multiple administration 
sessions due to an insufficient number of computers for their students. A handful of teachers had 
no computer access and administered study assessments on paper. Lastly, some teachers 
requested Spanish versions of study assessments, which were only available on paper. 

Understandably, teachers were responding to the realities of their school environments. 
However, some administration choices led to students completing part of an assessment on the 
wrong form or completing the assessment more than once. Differences in administration also 
complicated data cleaning processes. An assessment completed on paper, where students could 
write what they wanted, required different cleaning checks than the same assessment completed 
online, where computer-based forms restricted the possible answers permitted. Also, it became 
more difficult to account for test completion, both at the student level and the class level, when 
some items were received on paper and others online. 

Participant mobility and late joiners. Some participants joined the studies after baseline data 
were collected and others changed institutions during the studies. This mobility was explained by 
various factors. First, families moved and in doing so placed their children into new school 
zones. Student mobility is common at the K-12 level in the U.S., particularly amongst students 
from urban areas, lower income families, or migrant, military, or immigrant families (Welsh, 
2016). Student mobility occurred in Study A, particularly in schools near the U.S. border with 
Mexico that served large numbers of migrant families. Second, many community college 
instructors work across multiple institutions. In California, the location of Study B, 36% of 
associate faculty (e.g., part-time or adjunct instructors) teach at more than one institution in order 
to make a livable wage (Smith, 2013). While instructor mobility was not a significant issue to 
data collection for Study B, one participant unexpectedly taught the study-target course at 
different colleges each semester of the study. Third, research teams in both studies were 
confronted with low enrollment numbers and participant dropouts. Recruitment and retention of 
study participants in large-scale educational studies is challenging because it requires a long-term 
commitment from teachers who already have busy schedules (Gallagher, Roschelle, & Feng, 
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2014). This issue required (a) additional rounds of recruitment to obtain participant counts that 
allowed for sufficiently powered statistical analyses and (b) an extension of administration 
windows to allow for greater data collection. Lastly, a teacher strike that occurred during Study 
A delayed data collection for one district containing several consented participants. 

Participant mobility resulted in some student participants in Study A moving between 
treatment and control groups and completing pre- and post-intervention assessments under 
different experimental conditions. In other instances, records at a given level of the study design 
appeared to be missing a link to records at the other levels of the study design. For example, 
when a teacher in Study B changed institutions, she was assigned a new participant identifier. 
During the cleaning process, data from students in her first semester course appeared 
unconnected to any teacher. Issues resulting from participant mobility introduced the need to (a) 
create new versions of data files that included late joiners and (b) make decisions about how to 
resolve participants linked to multiple classes, teachers, or schools. 

Multiple participant names. Some participants became associated with multiple names and e-
mail addresses and some had names that changed. In Study A, we often saw the name a student 
wrote on assessments differed from the name on the teacher’s roster, which differed from the 
name provided by districts when collecting demographic information. In Study B, students used 
both school-provided and personal email addresses when completing study tasks. At the teacher 
level, names occasionally changed when participants changed marital status during the study. 

As a consequence, participants sometimes appeared to have missing records because their 
data could not be matched to the legal name or school email address provided to the research 
team. Connecting individuals to the correct names and e-mails, a process called identity 
resolution in the field of computing, was time consuming and usually required direct 
communication with participants. Identity resolution was further complicated by the fact that 
some study participants had the same or similar names, sometimes within the same classroom. 

External Vendor Systems. Assessment vendors (e.g., a company that hosts a website through 
which participants complete a test) and school districts were external vendors who provided 
participant data and hosted instruments in both studies. Over 65 school districts across 22 states 
provided demographic information and state standardized test scores for middle school student 
participants in Study A. Assessment providers host copyrighted instruments on their own 
websites and had specific rules regarding how paper versions of their assessments could be 
administered. Study A and Study B both used assessments offered through the University of 
California at San Diego’s Mathematics Diagnostic Testing Project (MDTP).  

External vendors typically used varied and conflicting conventions for data values. For 
example, in Study A, the ethnicity definitions across elementary school districts were wide-
ranging. The category of Black or African American had values such as: 1, 4, Black/African 
American, Bl, and African Am. We decided to use standard categories provided by the National 
Center for Education Statistics1 and transformed data values into these conventions. 
Confidentiality was also an issue because external vendors needed to identify participants but 
could not be provided with the identifiers used by our research team. If external vendors saw our 
research identifiers, they could easily identify specific participants in our publicly released 
datasets. This necessitated an additional set of interim identifiers to allow our data cleaning team 
to map data received from external vendors with our own participant records. 
                                                 
1 Common Education Data Standards (CEDS) also provides a data dictionary for information related to pre-
school through post-secondary educational environments that can be used to establish conventions for an 
educational research study. 

20th Annual Conference on Research in Undergraduate Mathematics Education 13220th Annual Conference on Research in Undergraduate Mathematics Education 132



Data Cleaning Process 
My experiences with Study A highlighted the need to attend to data cleaning at all phases of 

the research cycle. I developed a list of tasks to accomplish during data planning, data collection, 
and data cleaning to minimize the issues likely to occur in educational data sets (see Table 1). 
My goal was not to eliminate issues from occurring, but rather, to create a reproducible process 
to improve the identification and handling of data errors in the cleaning process. Below I 
describe these tasks and their rationales. 
 
Table 1 
 
Data Cleaning Tasks 
Task 
Data Planning Phase 

Create visually distinct instrument forms 
Clarify data requirements and timeline with external vendors 
Set administration windows and a last enrollment date 
Determine decision rules for handling duplicate records 
Develop codebooks for each instrument to describe variables and their possible values 

Data Collection Phase 
De-identify study data as early as possible in the data collection process 
Collect details on how assessments were administered and any anomalies that occurred 
Create three sets of identifiers for participants: one used by data collectors, one used by 
researchers, and one used by external vendors 
Make sure identifiers do not depend on malleable participant characteristics 
Verify administration dates on completed study instruments are valid 

Data Cleaning Phase 
Use tools that allow you to log and retrace your data cleaning steps 
Establish a review process so data cleaning work can be checked by another person 
Make a copy of your raw data file and only work with the copy 
Check data files for missing and extra data columns 
Apply codes to indicate types of missing data (e.g., not completed, not administered, 
optional) 
Transform categorical values into pre-determined standard values 
Check identifier columns for duplicate values 
Flag records with errors 
Indicate administration format in final data sets (e.g., completed on paper or online) 

 
Data Planning Phase. In preparing to launch a study, research teams can facilitate future data 

cleaning by carefully planning the design of instrument forms, data collection timelines, decision 
rules for rejecting data, and instrument codebooks. Although these tasks are presented 
sequentially, in practice they can occur in any order and even concurrently. First, instrument 
forms should be visually distinct to help participants, administrators, and data collectors notice 
when an instrument was completed on the wrong form. This can be accomplished, for example, 
by using different colors, specifying instrument names and dates, and customizing templates to 
display the number of items and answer choices corresponding to the instrument form (see 
Figure 1). Second, research teams need to establish timelines for data collection and participant 
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enrollment. This will require working with external vendors to understand the time and 
information they need to set up instruments or gather data. During this phase, research teams 
should familiarize themselves with the school calendars of study participants. For example, it 
would be extremely difficult for a middle school teacher to administer a study assessment during 
the week of state testing. Lastly, research teams need to consider the structure of their data and 
rules for rejecting data when issues occur. This can be accomplished by creating codebooks for 
each study instrument. Decisions for rejecting data may need to be made on a case-by-case base, 
but during the data planning phase research teams can consider the following question:  

• When is it too late to accept data?  
• How much of an instrument needs to be completed to be included in the dataset?  
• How do we handle duplicate responses? 

 
Difficult to Distinguish Forms 

 

Easy to Distinguish Forms 

 
Figure 1. Sample Instrument Forms. 

 
Data Collection Phase. Once a study has started, research teams can implement processes 

that make it easier to track data and to share real-time information with external vendors. First, 
de-identify study data as early as possible. The rationale behind this task is that people closer to 
participants will find it easier to identify who completed an instrument. When using paper 
instruments, we send teachers a list of barcode stickers that they distribute to specific students 
who then place the barcodes on their own assessments. These barcodes contain the student’s 
study identifier and the instrument name which can be quickly entered into a tracking system 
using a barcode scanner. Second, research teams should collect information on instrument 
administration and any anomalies that occurred during administration. This can take the form of 
a feedback sheet administrators complete and send back with study data. When using online 
systems, this might require communicating with external vendors about any issues that appeared 
during administration (e.g., servers going down). Third, create unique identifiers for each study 
participant. Identifiers should not depend on characteristics that might change during a study. For 
example, a student identifier should not include the identifier of the student’s teacher, because 
the student may change teachers or schools during the study. Also, if working with external 
vendors or external analysts, then an additional set of identifiers should be created to share with 
these audiences. Figure 2 provides an example of a data file shared with external vendors and 
analysts. Lastly, data collectors should also check administration dates to make sure they are 
within acceptable ranges. This can help identify anomalous data (e.g., students entering 
birthdates). 
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Original Data File 

 
 

External Vendor Data File 

 
 

Analyst Data File 

 
 

Figure 2. Sample Data Files. 
 
Data Cleaning Phase. After data has been collected, it should undergo a series of validation 

checks to identify and repair anomalies. Prior to beginning this process, data cleaners should 
identify a tool that will log steps used to transform data files into their final format. This will 
make it easier to reproduce files and to retrace steps in case errors are identified later. Our teams 
have worked with R (https://www.r-project.org/) and OpenRefine (http://openrefine.org). 
Second, data cleaners should establish a review process so that their work can be verified by 
another person. When working with many data files, it is easy to make simple mistakes (e.g., 
assigning a string value like ‘treatment’ the wrong numeric value). We implement this review 
process in two ways. First, we have each data cleaning script reviewed by someone who did not 
author the script. Second, we ask our participant managers and researchers to compare our file 
counts against their records to identify missing or extra participant records. Next, data cleaners 
should create copies of their raw data files and only work with the copies. This allows you to 
return to the original version if needed. To distinguish these files, we add the suffix _raw to our 
original files. Once data cleaners have setup these processes, they can begin working on the data 
cleaning checks listed in Table 1. 

Figures 3 to 6 provide an example of data cleaning checks applied to a student questionnaire. 
First, the data file is compared against a codebook to identify any missing or extra data columns 
(Figure 3). Extra columns arise frequently in data files provided by external vendors or captured 
through online survey tools. Columns can go missing due to software failures or because they 
were simply overlooked. Second, missing data values are replaced with codes indicating the 
reason for their absence (Figure 4). I distinguish three types of missing data: data I expected to 
receive that was not provided, data I did not expect to receive, and data that were optional. Next, 
categorical values from an open-ended response item are transformed into a limited number of 
standard values (Figure 5). Demographic data often require mapping to standard values. Where 
possible, I use values common in educational work (e.g., NCES conventions) to support external 
researchers in comparing their own data against the data files I produce. Lastly, the unique 
identifier column is reviewed for duplicate values (Figure 6).  
 

20th Annual Conference on Research in Undergraduate Mathematics Education 13520th Annual Conference on Research in Undergraduate Mathematics Education 135



Check for missing and extra columns 
By comparing the data file against the codebook, we see Math Club is missing and School ID 
was added. We need to work with data collectors to retrieve the missing Math Club 
information. The School ID column can be deleted.  
 

 
 

Figure 3. Checking questionnaire data for missing and extra columns. 
 
Apply codes to indicate types of missing data 
The students in the first two rows are missing a Grade 10 GPA. Since they are in 9th grade, we 
expect their Grade 10 GPA values to be missing. We indicate missing values that are expected 
with 888888. The student in the last row is missing a value in the grade column, but we expect 
all students to have a grade level. We indicate missing values that are unexpected with 999999. 
Missing codes should stand out from other values in the same column. 
 
 

 
 

Figure 4. Applying missing codes to questionnaire data. 
 
Transform categorical values into standard values 
According to the codebook, the Elective column should only contain the values of STEM or 
Non-STEM. We map fields such as engineering to STEM and other fields to Non-STEM.  
 

 
 

Figure 5. Transforming categorical values in questionnaire data. 
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Check identifier columns for duplicate values 
The first two rows contain the same value in the Study ID column, but our codebook indicates 
this column should be unique. Looking back to our original data file, we see these students had 
different values in School ID. We would need to work with data collectors to identify if these 
records represent two different students. In the meantime, we add a column to flag that there is 
an error with these records. 
 

 
 

Figure 6. Checking questionnaire data for duplicate values. 
 
 
Communication Processes 

Given the large scopes of Study A and Study B, data cleaning was completed by several 
individuals and required working with staff involved in other aspects of the projects. In Study B, 
for example, staff were divided into (a) a participant team responsible for recruitment and 
participant management, (b) a data management team responsible for data collection and 
cleaning, (c) a research team responsible for study design and analysis, and (d) a management 
team responsible for project planning and coordination. Working within and across teams to 
accomplish data cleaning work was not straightforward nor free from error. 

As an example, several participating teachers were erroneously excluded from Study A data 
files because of differences between the participant team and the research team’s understanding 
of participant. For the participant team, a ‘participant’ was someone who started study tasks and 
had communicated with the project staff at some point. However, for the research team, a 
‘participant’ was any person who enrolled in the study and was randomized into a study 
condition, regardless of the number of study tasks completed. The error was uncovered when a 
research team member compared a data file record count against the randomization record count. 
As a bridge between participant teams and research teams, our data teams needed to navigate 
across different group norms and discourses to accomplish our work. Next, I briefly summarize 
the communication and collaboration processes I now use with other project staff to facilitate 
data cleaning tasks. 

Prior to the data cleaning phase, I meet with both the research team and the participant team 
to discuss their study plans. For the research team, I review their list of data sources and prepare 
a low-tech sketch of each data file that includes a file name, data columns, and sample values 
(see Figure 7). Reviewing this sketch with the research team provides confirmation on the data 
files to be produced, helps to identify if additional files are needed (e.g., a master data file 
combining information from multiple files), and establishes a shared terminology. With the 
participant team, I gather information on recruitment deadlines, administration windows they 
have shared with participants, and school calendars, which inform data validity checks and the 
data cleaning timeline. During these conversations, I also attend to the ways in which the 
research team and the participant team discuss their work, being vigilant for possibly 
confounding terminology. After I meet with both teams, I produce an accounting spreadsheet 
listing each data file to be created and an estimated due date (see Figure 8). 
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Once data cleaning begins, I meet regularly with members of the research and participant 
teams to stay abreast of study progress that might impact data cleaning. For example, the 
participant team may decide to extend the administration window for a background questionnaire 
because a new class of students joined the study later than expected. Or, the research team may 
decide to include additional items on an attitude survey before the second administration of that 
instrument. These frequent meetings help to identify study plan changes that other project staff 
may not realize impact data cleaning procedures. When such changes occur, I record them in an 
appropriate documentation source such as the data accounting spreadsheet. 

 

 
 

Figure 7. Low-tech sketch of a teacher (TE) assessment of teaching knowledge (TPACK). 
Teachers completed the assessment at the beginning (T0), middle (T1), and end (T2) of the 
school year. 

 
 

 
 

Figure 8. Data accounting spreadsheet. 
 

Discussion 

While the topic of data cleaning may seem tangential to research in undergraduate 
mathematics education, I hope I have highlighted the critical role data cleaning plays in our 
research practices. The messiness of environments within which educational research studies are 
conducted necessitate attention to how we collect and prepare study data. The work presented 
here demonstrates that processes can be put in place to facilitate the efficient production of 
quality data sets. The data cleaning process, list of common data error sources, and 
communication processes offered here provide a framework for other researchers to evaluate 
their current data management strategies and to provide more comprehensive methods training 
for researchers. 
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For readers implementing the framework or embarking on their own data cleaning projects, I 
offer two recommendations. First, it is important to acknowledge that a comprehensive data 
cleaning process cannot be created a priori. Studies evolve, participants change, and unexpected 
events occur. It is impossible to predict all of these variations before a study begins. 
Implementing an initial data cleaning process that is flexible can help you plan for common 
errors while giving you the space to adopt procedures as needed in the future. Second, 
documentation of decisions, processes, and data files is essential. Recording such information 
helps with accountability and communicating across teams during the data cleaning phase. 
Documentation also helps researchers recall their procedures and reproduce their work months 
(even years) after studies have finished and data cleaning decisions are distant memories.  

Lastly, some readers may wonder if the procedures presented here apply beyond large-scale, 
quantitative studies. I argue that all research data needs to undergo some level of cleaning before 
analysis. While the specific checks of the framework may not apply to all studies (e.g., duplicate 
records may not be an issue in a case study with one participant), its underlying ideas are 
relevant to other types of research. In the qualitative research I conduct, my data undergo 
condensation or “the process of selecting, focusing, simplifying, abstracting, and/or transforming 
the data that appear in the full corpus (body) of written-up field notes, interview transcripts, 
documents, and other empirical materials” (Miles & Huberman, 2013, p. 12). I still review my 
transformed qualitative data to ensure all records are accounted for and no erroneous values exist 
(e.g., a participant being mistakenly labeled as a teacher instead of a student). At the heart of data 
cleaning is the acknowledgement that data errors can occur in our studies and that rigorous 
research practices involve correcting them before analysis.  
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Mathematicians’ Evaluations of the Language of Mathematical Proof Writing at the 
Undergraduate Level in Three Different Pedagogical Contexts 
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This paper presents the findings from a survey used to investigate how mathematicians perceive 
the genre of mathematical proof writing at the undergraduate level. Mathematicians were asked 
whether proof excerpts were unconventional in three contexts: undergraduate textbooks, what 
instructors write on the blackboard in undergraduate courses, and how students write in these 
courses. There are four main findings. First, participants found some potential breaches 
unconventional regardless of the context in which they occur. Second, mathematicians perceived 
the linguistic conventions in blackboard proofs and student-produced proofs differently in some 
cases. Third, textbook authors are expected to adhere to stricter norms than instructors and 
students when writing proofs. Fourth, there were potential breaches that the literature suggests 
were unconventional, which were not evaluated as unconventional by the mathematicians.  

Key words: Mathematical language, Proof, Mathematics textbooks, Mathematics lectures 

Introduction 

Research has shown that undergraduate mathematics students have difficulties when 
constructing (Weber, 2001), reading (Conradie & Frith, 2000), and validating (Selden & Selden, 
2003) mathematical proofs. Among several reasons for why undergraduate students struggle with 
constructing mathematical proofs, Moore (1994) included unfamiliarity with the language of 
mathematical proof writing. However, there is a dearth of empirical research in the field of 
mathematics education on the language of mathematical proof writing at the undergraduate level.  
In particular, how undergraduate mathematics students and mathematicians understand and use 
the technical language of mathematical proof writing is largely unknown to the field. 

In Lew & Mejía-Ramos (2016), we conducted semi-structured clinical interviews with 
mathematicians and undergraduate students, asking them to identify and discuss potential 
breaches of mathematical language conventions in student-produced proofs. The findings of this 
study showed that mathematicians and undergraduate students disagreed on the extent to which 
one should attend to English grammar, the introduction of new mathematical objects, and the 
context in which the proof was constructed. While these interviews provided a clearer picture of 
how some mathematicians and undergraduate students perceived the language of proof writing at 
the undergraduate level, the present study investigated how a larger sample of mathematicians 
evaluated parts of the same proofs used in Lew & Mejía-Ramos (2016) via an online survey. 

This quantitative approach lends a different perspective on how mathematicians understand 
this technical language and further informs researchers’ and mathematics instructors’ 
understanding of mathematicians’ expectations regarding the presentation of proofs at the 
undergraduate level. In turn, such understandings could enable the design of interventions and 
curriculum to help undergraduate students in their transition to advanced mathematics courses. 

One of the main findings from Lew & Mejía-Ramos (2016) was that the participating 
mathematicians focused on the context in which the proof was written when evaluating the 
exposition of a mathematical proof. As such, this consideration of context frames the present 
study, which investigates the extent to which the findings from Lew & Mejía-Ramos (2016)  
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generalize to a larger sample. In particular, we investigate the following two questions:  
1. To what extent do mathematicians differentiate between the contexts of textbook proofs, 

blackboard proofs, and student-produced proofs when evaluating the exposition of a 
mathematical proof? 

2. To what extent do mathematicians agree among themselves on what the linguistic 
conventions of mathematical proof writing are in each one of these three contexts?	

Related Literature and Theoretical Perspective 

There is little systematic, empirical work on the language of mathematical proof writing. In 
one of the few systematic studies of published mathematical proofs, Konior (1993) studied over 
700 mathematical proofs written in academic textbooks and mathematical monographs. He 
identified a common structure that authors used to frame the arguments of a proof, which 
included highlighting the “plan of procedure” of the proof and using cues to direct the reader 
through the parts of a proof. In another study, Burton and Morgan (2000) analyzed the writing of 
mathematicians in 53 published research papers, and found that the norms discussed in 
professional writing guides (e.g. Gillman, 1987; Krantz, 1998) were often broken by 
mathematicians (e.g. using of the word “we” to include the reader and avoid the use of passive 
voice), especially by those who were highly regarded in the field. Selden and Selden (2014) 
described seven conjectured features of the style in which mathematicians write proofs (e.g., 
statements of entire definitions are not included within written proofs) and reported having 
interviewed an undisclosed number of mathematicians who identified these features in their own 
published papers. While these studies begin to further our understanding of proof writing at the 
professional level, research on the language of proof writing at the undergraduate level is scarce.  

As referred above, a number of mathematicians (e.g. Gillman, 1987; Krantz, 1997) have 
written texts describing how to properly and effectively use the language of mathematics for 
professional purposes such as published journal articles, dissertations, and books. Common 
suggestions for proof writing included: (1) making the logical structure evident in the exposition 
of the proof, (2) avoiding statements using too many symbols and mathematical notation, (3) 
being consistent with respect to both notation and word choice, (4) aiming to be concise while 
still using full and correct sentences, 5) using correct grammar when considering symbols as 
words and mathematical expressions as phrases, and 6) avoiding using a passive voice. A 
number of mathematicians and a mathematics educator have written similar guides for 
undergraduate students, three of which (Vivaldi, 2014; Alcock, 2013; Houston, 2009) have 
sections addressing the language of mathematical proof writing specifically. While there is 
overlap in the suggestions given in writing guides for mathematicians and students, the 
suggestions for students focused on issues of mathematical grammar and clarity, including: 1) 
using correct words to describe mathematical objects, 2) using connecting words and phrases, 3) 
avoiding using unclear referents, 4) defining symbols and notation used in a proof, 5) using 
symbols and notation commonly used in practice, and 6) revising their mathematical writing.  

Since the suggestions provided in guides for mathematicians and students were written based 
on the authors’ own assumptions and personal experiences with mathematical writing, further 
work is necessary to investigate the extent to which these expectations of advanced mathematical 
proof writing are shared by mathematicians. This study serves as a first step toward this goal.  
Linguistic Conventions of Proof Writing in Different Contexts 

As a particular type of mathematical text, we see mathematical proof as a genre of 
mathematical writing. Mathematician Armand Borel (1983) equated mathematical proofs to the 
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genre of poetry in natural language, saying, “our poems are written in a highly specialized 
language, the mathematical language […], unfortunately, these poems can only be understood in 
the original” (p .15). Borel emphasized not only that the language of mathematics is distinct from 
the vernacular, but also that one must be knowledgeable in the language of mathematics in order 
to understand mathematical proofs. In this work, we assume that the genre of proof is defined by 
both the formal properties and linguistic structures of this type of mathematical text, as well as 
the communicative purposes of using these texts in particular contexts. This view of genre is 
consistent with the genre theory literature (Hyland, 2002). Our consideration of proofs in this 
light is in the pursuit of helping students to understand the linguistic conventions and other 
characteristics of the genre, as others have done in other genres and discourses (Hyon, 1996).  

In our study of mathematical proof writing, we sought to identify the different linguistic 
conventions of this genre. Understanding conventions as rationally justifiable customs of practice 
to which members of that practice are expected to conform to (Jackman, 1998), we take 
linguistic conventions to be rationally justifiable customs of linguistic communication. Existing 
literature (e.g. Gillman, 1987; Krantz, 1998) has suggested possible conventions of writing 
proofs for professional contexts, such as correctly situating notation within a sentence according 
to proper grammar and structuring the proof to guide a reader through the argument.  

Meanwhile, it is important to consider how the context of the proof might affect how these 
conventions are followed as suggested by the mathematicians in Lew & Mejía-Ramos’s (2016) 
study. In particular, we investigate how mathematicians believe conventions of proof writing 
vary in the contexts of undergraduate textbooks, and in two classroom contexts: the way proofs 
are written on the board in class and the ways in which proofs are written by students. The regard 
of this variation of context within the genre of proof allows this work to highlight similarities and 
differences in the contexts created by mathematical discourse, as Bondi (1999) identified in her 
study of research papers, textbooks, and newspaper articles in economic discourse.  

Researchers in higher education (Becher, 1987), linguistics (Hyland, 2004), and composition 
(Bizzell, 1982; Batholomae, 1985) have highlighted that different disciplines have characteristic 
discourse practices. Berkenkotter, Huckin, and Ackerman (1988) explained “students entering 
academic disciplines must learn the genres and conventions that members of the disciplinary 
community employ. Without this knowledge, [Bizzell and Batholomae] contend, students remain 
locked outside of the community’s discourse” (p. 10). We extend this necessity to acquire 
specialized literacy to undergraduate students of advanced mathematics, who—we argue—must 
understand the conventions of mathematical discourse, including the genre of proof in contexts 
that pervade their study. Given the fundamental role of proof in mathematical practice (e.g. 
Thurston, 1994) and Borel’s (1983) sentiment above, understanding the language in which 
proofs are written is of utmost importance for advanced undergraduate mathematics students.  

In the present study, we investigate the conventions of mathematical proof writing from the 
perspective of mathematicians—the most prevalent instructors and examiners of undergraduate 
students’ proof writing. This investigation was motivated by the mathematicians’ focus on the 
context in which the proof was constructed in Lew & Mejía-Ramos (2016). The mathematicians 
in that study discussed the importance of knowing in what course the student was enrolled, 
where the proof was written (in a textbook, on the board, in a graded assignment), and what type 
of assessment the proof was a part of (in a homework assignment, or a timed exam setting). As a 
result of these discussions with mathematicians in Lew & Mejía-Ramos (2016), the current study 
examines how three different proof contexts (textbook, blackboard, and student-produced) affect 
mathematicians’ evaluations of potential breaches of mathematical language.  
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Methods 

Following the methods of data collection employed by Inglis and Mejía-Ramos (2009), this 
study uses an online survey in order to maximize the sample size of mathematicians. Using an 
online survey to conduct research presents some practical difficulties including the possibility of 
individual participants submitting multiple responses. Meanwhile, using the steps described by 
Reips (2000), Gosling et al. (2004), and Krantz and Dalal (2000) showed that online studies can 
produce results consistent with more traditional methods of research. Moreover, mathematics 
education publications have used these methods of web-based research (see Inglis, Mejía-Ramos, 
Weber, & Alcock, 2013; Lai, Weber, & Mejía-Ramos, 2012; Mejía-Ramos & Weber, 2014). 
Participants 

Participants were recruited from 25 of the top mathematics departments in the United States 
through email solicitation through their department secretaries. In total, 128 mathematicians (75 
PhD students, 16 Postdoctoral fellows, and 37 faculty members) participated in the survey. 
Design of the Study 

The survey website included fourteen pages asking participants to make evaluations 
regarding the language used in partial proofs (that were truncated to discourage participants from 
focusing on the logical validity of the purported proof being evaluated, and to instead focus the 
evaluation on the use of mathematical language). For an example survey page, see the Appendix. 
The tasks of the survey were designed based on the design and analysis of Lew & Mejía-Ramos 
(2016). We chose four of the seven partial proofs from Lew & Mejía-Ramos (2016) to include in 
the survey as shown in Table 1. Partial proofs were chosen to maximize the number of types of 
potential breaches of mathematical language included and to include proof excerpts for which 
mathematicians and students disagreed in Lew & Mejía-Ramos (2016). Each of the proofs in the 
survey included three or four types of potential breaches of mathematical language.  
Potential breaches of the language of mathematical proof writing 

Each of the potential breaches of mathematical language included in the survey is briefly 
described in Table 1. The table includes the highlighted portions of the partial proofs for each of 
the potential breaches along with the verbatim explanations provided. The explanations are based 
on the mathematicians’ discussions of the same potential breaches and proofs in Lew & Mejía-
Ramos (2016). These potential breaches of mathematical proof writing are at the core of both 
this study and the study presented in Lew & Mejía-Ramos (2016). These breaches were 
identified as common, potentially unconventional uses of mathematical language found in 
student-produced proofs from 149 exams at the introduction to proof level (Lew & Mejía-
Ramos, 2015). The breaches were categorized based on suggestions from the mathematical 
writing guides discussed above, our personal experiences with undergraduate proof writing, and 
existing literature discussing the genre of mathematical proof writing (Selden & Selden, 2003). 

The fourteen potential breaches of the language of mathematical proof writing considered in 
this study are provided in Table 1. More specifically, Table 1 shows each of the four partial 
proofs marked for all of the potential breaches of the language of mathematical proof writing 
included in the survey. Below each of the partial proofs, proof excerpts are given with the 
marked potential breach and the explanation provided in the survey for why one might believe 
the potential breach is unconventional. In each page of the survey presenting a potential breach 
of the language of mathematical proof writing, the entire partial proof appeared marked with 
only one of the potential breaches (for an example, see the Appendix).  
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Marked Partial Proof 
Potential Breach and Corresponding 

Proof Excerpt 
Explanation for Potential Breach 
(A mathematician suggested this is 

unconventional mathematical writing 
because…) 

Pa
rt

ia
l P

ro
of

 1
 

 
 
 
 
 
Uses non-statement 
 

 

… the statement "suppose g°f" is 
incomplete/meaningless. 

Uses an unspecified variable 

 
… the variable z should be introduced prior to its 
use in the proof. 

Includes statements of definitions 

 
… complete statements of definitions should not 
be stated in proofs, rather they should be applied.  

Lacks punctuation and capitalization 
 

… proofs should be written in full sentences, 
which includes correct capitalization and 
punctuation. 

Pa
rt

ia
l P

ro
of

 2
 

 

 
 

 
 
 
 
Uses formal propositional language 

 
… entire statements of formal propositional logic 
are difficult to read. 

Uses unclear referent 

 
… this use of pronouns is imprecise and makes 
what the writer is discussing unclear. 

Overuses variable names 

 

… the variable b is used in two different ways, 
representing different values.  

Mixes mathematical notation and text 

 
… the equal symbol should not be used to connect 
a verbal statement and a number.  
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Pa
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l P
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of

 3
 

   

 
Fails to make the proof structure 
explicit 

 

… the writer should include a statement about the 
structure of the proof to indicate the flow of the 
argument to the reader. 

Uses mathematical symbols or notation 
as an incorrect part of speech 

 

… the symbol ø represents the phrase "empty set". 
So the first line reads "none of the sets are empty 
set", which is not a grammatically correct 
sentence.  

Uses informal language 

 

… the second sentence of the proof is 
insufficiently rigorous and formal. 

Pa
rt

ia
l P

ro
of

 4
 

 
 
 
 
 
 
 
 
 
 
 
 
Fails to state assumptions of 
hypotheses 

 

… the writer should include a statement about 
what is being assumed in the proof (in this case 
that S is a relation on A). 

Uses an unspecified variable with an 
existential quantifier 

 

… the introduction of the variable y should specify 
the set to which y belongs. 

Lacks verbal connectives 

 

… the writer should use verbal connectives 
(e.g. therefore, then, since) to indicate the flow of 
the argument to the reader. 

Table 1. Example potential breach and explanation presented in the survey by partial proof. 
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Survey Tasks 
For each of the potential breaches presented, participants were provided an explanation of 

why a colleague might believe the corresponding proof excerpt was written in an unconventional 
manner. Participants were asked if they agreed this proof excerpt was indeed unconventional for 
the stated reason, and to what extent it affected the quality of the proof. These questions were 
asked for the context of a textbook proof, and for both classroom contexts: a blackboard proof 
and a student-produced proof. Finally, mathematicians were asked if they would make a note or 
deduct points for this use of language in a homework assignment and an exam. An example 
survey page is provided in the Appendix. The four proofs were presented in a randomized order. 
Analysis 

The analysis for this study investigated how the mathematicians answered the various aspects 
of the survey–in particular, whether they agreed the potential breaches were unconventional in 
each of the three contexts (textbook proofs, blackboard profs, and student-produced proofs), 
whether they agreed on the extent to which these potential breaches affected the quality of the 
proof in each of the three contexts, whether they believed points would be deducted or a note 
would be made in a student-produced proof, and the extent to which participants viewed these 
contexts differently. The findings from the study are summarized in Tables 2, 3, and 4. 

Table 2 focuses on the mathematicians responses indicating if they agreed that the proof 
excerpt was unconventional for the reason provided in each context. In order to evaluate if the 
proportions of agreement that a potential breach was unconventional indicated a high level of 
agreement within the samples, we considered 75% of the sample to be the threshold. Similarly, 
we considered 25% of the sample to be the threshold of a high level of agreement that a potential 
breach was not unconventional within the samples. As such, we conducted Chi-squared tests for 
equality of proportions checking for proportions p=0.25 and 0.75 with a level of significance of 
α=0.05/42. The results of these Chi-squared tests are indicated with ++ and - - as described 
below Table 2. The proportions of agreement were categorized in the following ways: high 
agreement that the use is unconventional (significantly different from and greater than 75%), 
high agreement that the use is not unconventional (significantly different from and less than 
25%), or inconclusive (not shown to have high agreement within the sample).  

Table 3 provides pairwise comparisons of the responses across the three contexts. To 
investigate if the mathematicians evaluated the three different contexts differently when 
evaluating if the potential breaches were unconventional of mathematical language, we 
conducted pairwise Cochran Q tests comparing how the participants responded in the following 
contexts: textbook proofs vs. blackboard proofs, textbook proofs vs. student-produced proofs, 
and blackboard proofs vs. student-produced proofs. These tests were also evaluated with a level 
of significance of α=0.05/42 and are indicated in Table 3 with * as described below Table 3.  

Table 4 presents the mathematicians’ expectations of how a student-constructed proof would 
be assessed in classroom assignments. We conducted Stuart-Maxwell Tests with a level of 
significance α=0.05/28 to evaluate if the mathematicians evaluated the contexts of proofs written 
in homework assignments and proofs written in an in-class exam differently. Categories in which 
mathematicians graded the contexts differently are indicted in bold as described below Table 4. 

Results 

To what extent does context affect mathematicians’ evaluations of proof writing? 
As shown in Table 3, the pairwise Cochran Q tests indicate that context did play a role in 

participants’ evaluations of whether or not these potential breaches were unconventional for the 
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reasons provided. Indeed, for twelve of the fourteen potential breaches, mathematicians’ level of 
agreement differed significantly depending on the context of the evaluation. Overall, the 
comparison between participants’ level of agreement in the textbook context and the classroom 
contexts yielded a different outcome to the corresponding comparison between the two 
classroom contexts.  

 

 
++ Significantly different from and greater than 75% of the sample, -- Significantly different from and less than 25% of the sample (These tests 

were all evaluated with a level of significance α=0.05/42.) 
Table 2. Mathematicians’ responses indicating if they agree that the proof excerpt was 
unconventional for the reason provided in each context. 

 
* The sample’s responses for the two contexts were significantly different. (Evaluated with a level of significance α=0.05/42.) 
Table 3. Pairwise comparisons across contexts of the mathematicians’ responses indicating if 
they agree that the proof excerpt was unconventional for the reason provided. 
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* Bold rows show that mathematicians expected the proof to be graded differently in the two contexts by a level of significance α=0.05/14.  
Table 4.  Reponses by mathematicians of their expectations of how a student-constructed proof 
would be assessed in classroom assignments. 
The context of textbook proofs 

For twelve of the fourteen breaches presented in the survey, a significantly higher percentage 
of mathematicians agreed that the potential breach was unconventional in the context of textbook 
proofs than in either the context of blackboard proofs or student-produced proofs. In other words, 
a large majority of the potential breaches were more commonly judged to be unconventional in 
the context of textbooks than the classroom contexts. For instance, 85% of participants agreed 
that using an unspecified variable with an existential quantifier in the way shown in Partial Proof 
4 (which contains the line “∃" s.t. ($, ") ∈ ()* and (", $) ∈ (”) was unconventional in the 
textbook context, given that the introduction of the variable " should specify the set to 
which it belongs. However, only 55% and 54% of mathematicians agreed that this constituted an 
unconventional use of mathematical language (for the reason provided) in the contexts of 
blackboard proofs and student-produced proofs, respectively. 
Contexts of blackboard proofs and student-produced proofs 
In contrast to the prevalent differences in agreement levels between the textbook and classroom 
contexts, when comparing the contexts of blackboard proofs and student-produced proofs, the 
corresponding agreement levels were significantly different in only three of the fourteen 
potential breaches. In particular, the Cochran-Q tests indicated that the mathematicians judged 
the proof excerpts that lacked punctuation and capitalization, mixed mathematical notation and 
text, and lacked verbal connectives differently in the contexts of blackboard proofs and student-
produced proofs. Moreover, for each of these three potential breaches, a significantly larger 
percentage of mathematicians found the potential breach to be unconventional in the context of 
student-produced proofs than in the context of blackboard proofs. For instance, 28% of 
participants agreed that mixing mathematical notation and text in the way done in the last line of 
Partial Proof 2 (i.e. “Note that their greatest common divisor = 1.”) was unconventional in the 
blackboard context given that the equal symbol should not be used to connect a verbal statement 
and a number. However, 45% of mathematicians agreed this constituted an unconventional use 
of mathematical language (for the reason provided) in the context of student-produced proofs. 
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When the context of the proof may not matter 
The responses from mathematicians were not significantly different across contexts for two 

of the potential breaches: using non-statements and overusing variable names. Furthermore, 
mathematician widely agreed that these potential breaches were unconventional, with agreement 
levels between 93% and 100% across contexts. In other words, the only two potential breaches 
for which context did not make a difference were potential breaches that were widely considered 
to be unconventional. For instance, 100% of participants agreed that using non-statements in the 
way shown in the first line of Partial Proof 1 (i.e. “Suppose + is onto , and - ∘ +.”) was 
unconventional in the textbook and the blackboard contexts, given that "suppose - ∘ +" is an 
incomplete/meaningless statement. In the student-proof context, 98% of mathematicians 
evaluated this use of language as unconventional for the reason provided. 
Summary 

This analysis revealed that mathematicians evaluated a large majority of the potential 
breaches differently depending on the context, failing to differentiate between the three given 
contexts in only two of the fourteen potential breaches. These results are consistent with the 
findings from Lew & Mejía-Ramos’s (2016) interview study, in which mathematicians focused 
on the context in which the proof was written when evaluating the exposition of a mathematical 
proof. Furthermore, we found most of these differences were accounted by the fact that potential 
breaches were more commonly judged to be unconventional in the context of textbooks than in 
the classroom contexts, which makes sense given the extensive editorial work devoted to 
improving the presentation of mathematics (including proofs) in this context. Finally, we found 
that the only two potential breaches for which context did not make a difference, were potential 
breaches that were widely considered to be unconventional. Participants’ evaluations of these 
two types of potential breaches provide evidence of the existence of uses of mathematical 
language that are widely perceived to be unconventional, regardless of context. 
 In contrast to comparisons to the textbook context, comparisons between the evaluations in 
the contexts of blackboard proofs and student-produced proofs were not found to be significantly 
different in eleven of the fourteen potential breaches. Furthermore, for the three remaining 
breaches, a significantly larger percentage of mathematicians found the potential breach to be 
unconventional in the context of student-produced proofs than in the blackboard proofs. Taken 
together, these findings may suggest mathematicians generally do not see a difference between 
the contexts of blackboard proofs and student-produced proofs when it comes to the language of 
proof writing, but when they do differentiate between these contexts, mathematicians may hold 
students’ proofs to higher linguistic standards than the proofs they themselves write on the 
blackboard in class. This suggests, in certain respects, that the formality of a blackboard proof is 
less important to mathematicians than that of a student-produced proof. This is particularly 
interesting as mathematicians most often present proofs to their students on the blackboard. As 
such, these results suggest the most common way in which mathematicians present proofs to 
their students is less formal than the way they might expect their students to produce proofs.   
To what extent do mathematicians agree among themselves in these contexts? 

Figure 5 shows the percentage of mathematicians who agreed the potential breaches were 
unconventional for the reason provided in each context. Lines connect the agreement percentages 
for evaluation in the same context and the shaded sections indicate percentages significantly 
different and greater than 75% or significantly different and less than 25%. The un-shaded, 
center section of the graph presents the results of the participants’ surveys, which did not show 
high levels of agreement according to the Chi-squared tests for equality of proportions. In this 
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section, we first discuss the types of potential breaches for which the mathematicians’ responses 
showed high level of agreement. Then, we provide a post hoc analysis of the types of potential 
breaches for which responses did not show this high agreement.  
Types of potential breaches for which the mathematicians’ responses showed high agreement 

As shown on Figure 5, (significantly) more than 75% of mathematicians found eight of the 
fourteen types of potential breaches (using non-statements, overusing variable names, lacking 
punctuation and capitalization, mixing mathematical notation and text, lacking verbal 
connectives, using formal propositional language, using unclear referents, and using an 
unspecified variable with an existential quantifier) to be unconventional in the context of 
textbook proofs for the reasons presented in the survey. Moreover, there was a high level of 
agreement among mathematicians that the proof excerpts exhibiting the use of non-statements or 
overuse of variable names were also unconventional in each of the other two contexts. 

 
Figure 5.  The mathematicians’ agreement percentage of agreement for each potential breach in 
each of the three contexts.  

These findings indicate that these eight potential breaches of the conventions of mathematical 
language are indeed unconventional in the context of textbook proofs for the reasons provided in 
the survey and that overusing variable names and the use of non-statements are also 
unconventional in classroom contexts. Figure 5 also shows there was high agreement amongst 
the mathematicians that the inclusion of statements of definition was not unconventional in the 
context of a student-produced proof. Moreover, fewer than 42% of mathematicians agreed that 
the inclusion of statements of definitions was unconventional in any of the contexts considered. 
We note that this is in contrast to claims made by Selden and Selden (2014) that mathematicians 
do not include the statements of entire definitions within their written proofs. Thus, it may not be 
the case that the features of proof writing described by Selden and Selden (2014) extend to 
different contexts of proofs written by mathematicians (including textbook and blackboard 
proofs), or to the contexts of student-produced proofs. 
When the mathematicians’ responses did not show high agreement 

For 29 of the 42 judgments made by mathematicians (fourteen potential breaches in three 
contexts) the agreement percentages were inconclusive, i.e. percentages were not significantly 
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different from and higher that 75%, or significantly different from and lower than 25%. Figure 5 
further shows that for five of the potential breaches, there was no high agreement among 
mathematicians in any of the three contexts, and that when we restrict the analysis to only the 
classroom contexts, the results did not show high agreement for up to eleven of the fourteen 
types of potential breaches. Finally, Figure 5 further highlights that a number of these agreement 
percentages are close to 50%. In particular, eight of the 42 judgments had percentage agreements 
between 40% and 60%, including two judgments in the context of textbook proofs.  
Summary 

Mathematicians displayed a high level of agreement (as defined above) in 13 out of the 42 
evaluations they were asked to make in this survey (fourteen potential breaches in each of three 
contexts), with 8 of them about potential breaches in the textbook context. This provides 
evidence that the language used in some of the partial proofs they evaluated indeed breached the 
conventions of proof writing in those contexts. However, beyond failing to provide confirmation 
that the remaining 29 proof passages were indeed breaches of linguistic conventions in proof 
writing, these findings suggest that the disagreement among mathematicians may be higher in the 
classroom contexts, and that for some specific types of potential breaches the disagreement 
amongst mathematicians may be particularly extreme, even in the context of textbook proofs. 

These findings suggest a possible lack of clarity from the mathematicians of what a student-
produced proof should look like. If it were the case that mathematicians do not have a shared 
understanding of how mathematical language should be used in student-produced proofs, it 
would then be unsurprising if undergraduate students similarly lacked clear understandings of 
undergraduate proof writing. A lack of a shared understanding between mathematicians and 
students would indicate a need for a discussion among mathematicians and students on the 
expositional expectations of students’ proofs in introduction to proof courses.  

Conclusion 

This paper reported on the results of a survey asking mathematicians to agree or disagree that 
potential breaches of the language of mathematical proof writing in different contexts were 
unconventional for reasons provided in the survey. As such, this study identified breaches of 
linguistic conventions, in the sense of Jackman (1998), based on the participants’ assessments of 
rational justifications of potential linguistic customs in mathematics. There are four main 
findings from this survey: First, there are some potential breaches of mathematical language that 
are unconventional regardless of the context in which they occur. Second, while we only found a 
few instances in which mathematicians differentiated between the contexts of blackboard proofs 
and student-produced proofs, when they did mathematicians held students’ proofs to higher 
linguistic standards than the proofs they themselves write on the blackboard in class. Third, 
textbook authors are expected to adhere to stricter writing norms than mathematics instructors 
and undergraduate students when writing proofs. Fourth, the participants’ responses indicated 
there are some potential breaches of mathematical language that the literature (Selden & Selden, 
2003) might suggest are unconventional, which the participants agreed were not unconventional.  

The findings of this report highlight some potential breaches of mathematical language that 
mathematicians agree are unconventional in the context of published proofs and provide insight 
on how mathematicians consider the language of mathematical proof writing in the classroom 
context at the introduction to proof level. In particular, the results regarding the linguistic 
conventions of mathematical proof writing in classroom contexts suggest that it is unclear what a 
student-produced proof is expected to look like. The mathematicians’ responses did not indicate 
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significantly high levels of agreement for eleven of the fourteen types of potential breaches in the 
student context, which may indicate the possibility that there is no standard universal 
understanding or expectation among mathematicians of how students should write proofs.  

Moreover, despite findings indicating that mathematicians may not have a shared 
understanding of linguistic conventions of student-produced proofs, results do suggest the way 
mathematicians present proofs in their introduction to proof courses is less formal than the 
manner in which they may expect their students to produce proofs. However, research studies on 
note taking indicate that students are less likely to recall details of a lecture that were not 
included in their notes (Kiewra, 2002) and are more likely to record what is written on the 
blackboard (Johnstone & Su, 1994). Thus, one would expect students to model their proof 
writing based on how their professors write proofs in class. As a result, this paper’s finding that 
mathematicians may not present proofs in class in a manner that represents their linguistic 
expectations of their students’ proofs is certainly troubling.  

Discussions amongst mathematicians, especially those who teach introduction to proof 
courses, concerning their expectations for the writing of mathematical proofs by their students 
would be a useful step towards a shared understanding of linguistic conventions of proof writing 
in the context of student-produced proofs. Meanwhile, if there is not currently a consensus 
among mathematicians of how their students in introduction to proof courses should be writing 
their proofs, then a natural question is, how are the instructors of these courses presenting 
mathematical proof writing to their students?  

One possible avenue for future research entails considering mathematical proofs, which are 
written by mathematicians for their students to read outside of class time such as homework 
solutions, and how students perceive the differences between the exposition of the proofs they 
produced in their own homework and the exposition of their professor’s solution. 
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Despite concerted efforts on the part of educational policy makers, women are still 
underrepresented in the STEM fields. Researchers have shown that calculus plays a major role 
in this gender disparity since it requires spatial skills to success -- skills that women tend to 
utilize differently compared to men. However, previous studies have shown that spatial ability is 
malleable and spatial skills can be improved with training. This pilot study employed a form of 
spatial training in a third-term calculus course and measured the effects of this training on 
students’ calculus ability, spatial rotation ability, and cognitive style. Associations between 
cognitive style and task performance were also measured. Preliminary results indicate that 
spatial training did not significantly impact student performance on a calculus skills assessment 
or a test of mental rotations, but effects on students’ cognitive style were present.    

Key words: spatial training, calculus skills, cognitive learning style 

Introduction & Literature Review 
 

A concentrated effort is being made to achieve greater diversity in students graduating with 
bachelor’s degrees in Science, Technology, Engineering and Mathematics (STEM) (Stieff & 
Uttal, 2015). Unfortunately, the demographics of STEM graduates have been stagnant in recent 
years (Stieff & Uttal, 2015) and women are often underrepresented in STEM fields in North 
America and Europe (Nimmesgern, 2016; Schlenker, 2015). Indeed, those women who do 
undertake studies in the STEM fields seem to have a higher probability of not working in STEM 
occupations after graduation compared to men (OECD, 2012). 

While there are a number of psychosocial reasons for the underrepresentation of women in 
STEM fields (e.g., Nimmesgern, 2016; Saucerman & Vasquez, 2014; Skolnik, 2015), one often-
cited reason is that females may have less developed spatial abilities than males (as per Ferrini-
Mundy, 1987), and perform spatial tasks differently than males starting as young as four years of 
age (Levine et al., 1999; Voyer, Voyer, & Bryden, 1995). Gender has also been found to 
associate with the accuracy and organization of spatial learning (Gãrling et al., 1981; Kirasic, 
Allen, & Siegel, 1984) often (but not always) in favor of males (Acredolo, 1988; Brown et al., 
1998; Cutmore et al., 2000; Gifford, 2007; Lehnung et al., 2003; Ward et al., 1986; Webley & 
Whalley, 1987). Although a number of studies have found insignificant differences between the 
performances of men and women on various spatial tasks, these results seem to depend on the 
type of task and the age of the study (see Casey, 2013). However, in general, men have been 
found to consistently perform better than women on spatial perception and mental rotation tasks 
(Linn & Petersen, 1985).   

Although the body of literature on spatial ability indicates that this skill is an important facet 
of general intelligence (Johnson & Bouchard, 2005), and that spatial ability can be used as a key 
performance indicator for success in the STEM fields (National Science Board, 2010), more 
must be done to understand these relationships with respect to gender. Recently, the association 
between spatial ability and success in the STEM fields have been outlined in a landmark 
longitudinal study (titled ‘Project Talent’) following the lives of high school students from the 
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1950s to the present day (Wai, Lubinski, & Benbow, 2009). The study indicates that those who 
score highly on spatial tests are more likely to enjoy the STEM fields and gravitate toward 
STEM careers over and above the effects of mathematical and verbal ability (Wai, Lubinski, & 
Benbow, 2009). A previous study done by the same authors found that mathematically-talented 
participants who chose careers in math and science also excelled in object-based skills earlier in 
life (Lubinsky & Benbow, 2006).  

One way to approach closing the gender gap in the STEM fields is to utilize the encouraging 
evidence that one can train to improve spatial ability exists (Newcombe, 2010; Stieff & Uttal, 
2015; Uttal, 2009). Spatial training refers to the explicit teaching of spatial skills, often through 
the use of mental rotation tasks. At this time, the body of literature concerning the benefits of 
spatial training is not conclusive on whether an increase in spatial ability has a direct effect on 
performance in the STEM fields. Although studies done with students enrolled in engineering 
courses have found an association between spatial training and academic performance, as well as 
a closing of the gender gap (Sorby et al., 2013), few studies have been done to correlate spatial 
training and mathematics performance. One thirty-year old study by Ferrini-Mundy (1987) 
required undergraduate students to complete spatial training exercises during a calculus course 
but did not find significant increases in calculus performance (although female students were 
better able to visualize solids of revolution than male students post-training). Other research has 
found that while spatial training can reduce the gender gap in performance on spatial tasks, it 
fails to eliminate it (Uttal, 2009). Thus, a call has been made in the spatial cognition literature to 
extend this line of enquiry and test the potential for spatial training to close the gender gap in the 
STEM fields by investigating mediating variables and extending periods of spatial training 
(Casey, 2013).  

One correlate to spatial and mathematical ability may be the psychological construct of 
cognitive style. Cognitive style represents consistency in an individual’s manner of cognitive 
functioning (i.e., information acquisition and processing) (Harvard Mental Imagery and Human-
Computer Interaction Lab, 2013). Kozhevnikov, Kosslyn, and Shephard (2005) have investigated 
cognitive styles that describe individuals’ preferences to, or self-assessments of, the use of 
object, spatial, or verbal modes of information processing. Because the human visual system 
distinctly processes properties about objects (color, shape) and space (location and spatial 
relations), they used this neuropsychological evidence to propose the Object-Spatial-Verbal 
theoretical model of cognitive style. The model outlines three independent dimensions (object 
imagery, spatial imagery, and verbalization) to propose that object visualizers prefer to construct 
vivid, concrete, and detailed images of individual objects, while spatial imagers schematically 
represent spatial relations of objects and spatial transformations. Verbalizers prefer to process 
and represent information verbally and rely on non-visual strategies (Kozhevnikov, Kosslyn, & 
Shephard, 2005). In their examination of the three types of cognitive styles, Kozhevnikov, 
Kosslyn, and Shephard (2005) found that verbalizers performed at an intermediate level on 
imagery tasks (not at the low level one might expect), and that object visualizers “encode and 
process images holistically as a single perceptual unit, while spatial visualizers generate and 
process images analytically, part-by-part” (p. 710).  

It seems that individuals often prefer to use one style over another (Kozhevnikov et al., 2005) 
and that one’s preference for one of the three styles directly relates to performance on either 
mathematical, object imagery ability, or spatial ability tests (MM Virtual Design, 2016). 
Therefore, cognitive styles may assist math educators to tailor content, assignments, and 
visualization tools to students’ individual differences in cognitive style. Further, information 
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presented in ways that satisfy all cognitive styles could augment student engagement with 
information presented in the classroom and, perhaps, encourage students’ willingness to 
contribute and collaborate with others, regardless of gender. But, presumably, learning and 
performance based on visual information presented in a manner congruent to one’s cognitive 
style would be more consistent and effective and, perhaps, help close the gender gap in STEM.  

Women tend to report higher object imagery ratings (Blajenkova et al. 2006) and have a 
negligible advantage in verbal ability (Hyde & Linn, 1988). Casey (2013) pointed out that one 
reason why large gender differences are often found for mental rotation tasks is because verbal 
strategies are less effective in solving them than holistic mental rotation approaches used more 
often by men. Thus, measuring cognitive style in association with spatial ability and an 
understanding of calculus may afford information about whether those with predominant verbal 
cognitive styles are women, as well as whether their performance in calculus improves with 
spatial training. Since success in calculus often predicts success in STEM fields (and calculus 
involves spatial reasoning), it may be that congruence between cognitive style and material 
presented or assigned in calculus courses can increase learning and retention (as suggested by 
Blajenkova & Kozhevnikov, 2008) and, perhaps, increase confidence – a psychological factor 
that may also help to close the gender gap in STEM fields  
Study aims 

This pilot study aimed to augment the body of literature regarding the usefulness of spatial 
training in undergraduate mathematics and answer the following three research questions: (1) 
What are the impacts of spatial training on undergraduate students’ performance in a calculus 
course? (2) Are differences present in the effects of spatial training between male and female 
students? (3) What are the impacts of spatial training on students’ cognitive style and does 
cognitive style predict success in the course?  

Because academic success in at least one term of calculus is often required in undergraduate 
STEM programs, calculus courses can serve as “gatekeepers” for STEM fields (Bressoud et al., 
2009). If our study reveals that spatial training is beneficial to performance in a calculus course, 
math educators may have reason to recommend a spatial training module be added to courses 
that require students to think abstractly. Indeed, if results reveal this training to be particularly 
effective for female students, an argument may exist that spatial training be studied further with 
respect to gender differences. Finally, if cognitive styles change over the course of a term to be 
more spatial as students receive spatial training, or if one style predicts success in the course over 
another style, it may be reasonable to include an assessment of cognitive style at the start of 
STEM courses in order for instructors to tailor the delivery of information to students depending 
on the predominant style of the group (or to assist individual students with styles that are more or 
less likely to respond to spatial requirements of a course). Overall, connecting research on 
cognitive styles with spatial training methodology may help educators to diversify the pool of 
students studying STEM at the undergraduate level while bolstering the success of those who 
enter into the STEM fields with a non-spatial cognitive style. 
 

Methods 
Context 

The study took place in the summer quarter of 2016 (June to August) with student 
participants enrolled in TMATH 126 (Calculus with Analytic Geometry III) at a mid-sized state-
funded university in the United States. TMATH 126 covers calculus of sequences and series, 
vectors and parametric equations and properties of three-dimensional surfaces, as well as 
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integration techniques and approximation, applications of integration and differential equations. 
Because we assessed introductory-level calculus knowledge, students in TMATH 126 could be 
expected to understand items in the knowledge assessment we used in both studies. 
Participants  

Participants were undergraduate students who had already completed two quarters of 
calculus and, thus, had some prior knowledge of the subject. Seventeen students (8 males, 9 
females) attended class for both rounds of data collection but all but one took part in the study (n 
= 16; 8 males, 8 females, mean age = 21 years). Five students (31% of the sample) reported to be 
concurrently taking a differential equations course during the summer term, while 11 participants 
(69% of the sample) reported that they were not receiving other forms of math training at the 
time of the study). These students also reported that they expected to work an average of 12 
hours a week (SD = 5.00) on studying TMATH 126 course material.  
Materials 

The Calculus Concept Inventory. The Calculus Concept Inventory (CCI) was designed by 
Epstein (2013) to evaluate how students think about the fundamental concepts in calculus and 
was used in the present study to gather a baseline of students’ knowledge of calculus as well as 
to determine the effects of spatial training on conceptual knowledge of calculus at the end of the 
term. The CCI contains 22 questions about limits and differential calculus only, many of which 
are visual and require an interpretation of a graph. The use of the CCI was deliberate: we did not 
want to measure mastery of concepts learned in the current course but to measure instead 
whether spatial training could impact understanding of previously-learned visual topics. 

The Purdue Spatial Visualization Test: Rotations. To test students’ spatial ability, a 
shortened version (15 items) of the Purdue Spatial Visualization Test: Rotations (PSVT:R) 
(Guay, 1977) was also administered. The PSVT:R is a multiple choice test that, per shape, asks 
students to choose from 5 possibilities a shape that is equivalently rotated as a given shape. This 
test established each student’s baseline spatial ability to assess improvement throughout the 
quarter and to determine whether spatial training had any effect on students’ cognitive style.  

Object-Spatial Imagery and Verbal Questionnaire. The Object-Spatial Imagery and 
Verbal Questionnaire (OSIVQ) developed by Blazhenkova and Kozhevnikov (2009) (but 
copyrighted jointly by MM Virtual Design, LLC and Rutgers University) was administered to 
determine students’ predominant cognitive style. The OSIVQ is a “self-report questionnaire 
designed to distinguish between three different types of people: 1) object imagers who prefer to 
construct vivid, concrete and detailed images of individual objects (e.g., visual artists), 2) spatial 
imagers who prefer to use imagery to schematically represent spatial relations among objects and 
to perform complex spatial transformations (e.g., scientists), and 3) verbalizers who prefer to use 
verbal-analytical tools to solve cognitive tasks (e.g., philosophers and linguists)” (MM Virtual 
Design, 2016, paragraph 1). The OSIVQ consists of 45 questions (an equal number concerning 
object imagery, spatial imagery ability, and verbal ability) to assess object imagers, spatial 
imagers, and verbalizers and takes approximately 10 minutes. Each item asked on a 5-point 
Likert scale ranging from “totally disagree” (1) to “totally agree” (5). Four items (one spatial, 
three verbal) from the OSIVQ required reverse coding.  

Spatial training. All participants received spatial training during the term consisting of the 
administration and discussion of several tests of spatial ability, such as those described in Wai et 
al. (2009). In addition, exercises from a spatial training workbook developed by Sorby et al. 
(2013) was used with permission. Students completed an average of 15 minutes of spatial 
training during each day of class. Exercises in the workbook ranged from assessments of what a 
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given shape would look like when rotated around a given axis, to asking students to draw an 
object from different angles using different cross-sections, to showing a 2-D expression of an 
object when asking students to draw an analogous 3-D object. During spatial training, students 
were asked to discuss the exercises in small groups and come to a consensus on the correct 
answer before answers were discussed among the class at large.   
Procedure 

Participants completed all tasks in the assigned TMATH 126 classroom for both rounds of 
data collection. The four tasks were offered to participants in the following order: consent form; 
OSIVQ; Visualization and Rotation Purdue Spatial Visualization Test; Calculus Concept 
Inventory. Thus, the tasks were not completed simultaneously: only when a task was completed 
was the next task offered to a participant by one of the researchers. Each participant was asked to 
create a unique codename for him or herself to include on the front page of each task in order 
afford direct measurement of change in task performance over time. No calculators or other 
electronic devices were used during task completion. Each participant was dismissed from the 
classroom after he or she had completed all tasks.  
 

Results 
 

Data from the CCI was analyzed to determine students normalized gain on the assessment 
using the formula !	 = 	 $%&''(&')$*('(&'+,,)$*('(&'  . Calculating normalized gain was appropriate because it 
takes into account the amount of improvement possible for each student. This is important 
because students may have widely variable spatial abilities upon entry into the course. Each 
student’s score was tallied on both the pre-test and post-test and a paired-samples t-test was 
performed to determine significant improvements in calculus knowledge. No significant 
improvement was revealed over the term (p > .05). 

Although male participants’ average scores were higher on the CCI than women at the start of 
term (M = 9.63, SD = 4.47 and M = 7.75, SD = 7.75, respectively), they were not significantly 
higher (p > .05). This result was also borne out at the end of term whereby male students’ 
average scores on the CCI were insignificantly higher than female students’ scores (M = 10.25, 
SD = 2.09 and M = 8.25, SD = 1.40, respectively).  

To determine an association between students’ spatial ability and mathematical ability, a 
correlation coefficient for a student’s final grade in Calculus III and their final PSVT:R score 
was calculated. This correlation (r = 0.4283) was not significant (p > .05). Additionally, a paired-
samples t-test did not determine a significant improvement in students’ rotational ability during 
the term (p > .05). Consistent with previous studies (Levine et al., 1999; Voyer, Voyer, & 
Bryden, 1995), male participants’ average scores were higher on the PSVT:R than women at the 
start of term (M = 9.87, SD = 4.29 and M = 9.75, SD = 2.05, respectively), and at the end of the 
term (M = 10.5, SD = 1.45 and M = 9.25, SD = 1.24, respectively). However, these differences 
were not significant (p > .05).  And, similar to results pertaining to performance on the CCI, a 
paired-samples t-test did not determine a significant improvement in students’ rotation ability 
during the term (p > .05).  
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Table 1: 

 
 
Similar to scores on the CCI, male participants’ average scores were higher on the PSVT:R 

than women at the start of term (M = 9.87, SD = 4.29 and M = 9.75, SD = 2.05, respectively), and 
at the end of the term (M = 10.5, SD = 1.45 and M = 9.25, SD = 1.24, respectively). However, 
these differences were not significant (p > .05).  

On average, more students at the start of the term self-identified as object learners (M = 48.56, 
SD = 7.00) than they did as spatial learners (M = 47.94, SD = 8.69) or verbal learners (M = 
41.13, SD = 4.41). Indeed, scores on the object sub-scale were significantly higher than on the 
verbal sub-scale, t(15) = 3.97, p = .001. In addition, scores on the spatial sub-scale were 
significantly higher than those on the verbal sub-scale, t(15) = -2.98, p  < .01. No significant 
differences were found between scores on the spatial and object subscales (p > .05).  

After 10 weeks, the object style remained the predominant style for the class as a whole (M = 
50.81, SD = 7.87) and, similar to the start of term, the second-most common style among the 
class was spatial (M = 50.75, SD = 8.96), followed by verbal (M = 42.75, SD = 4.16). Similar to 
the start of the term, these differences were significant: students self-scored significantly higher 
on the object style sub-scale compared to the verbal style subscale, t(15) = 3.57, p < .01. They 
also self-scored significantly higher on the spatial sub-scale compared to the verbal subscale, 
t(15) = 3.55, p < .01. Again, no significant differences were found between scores on the spatial 
and object subscales (p > .05). 

Although mean scores on each of the three sub-scales increased over the term, paired-samples 
t-tests revealed only one significant difference between subscale scores over time. Students did 
not self-score significantly better or worse on the object or verbal subscales over time (all ps > 
.05). However, they did self-score significantly higher on the spatial sub-scale at the end of the 
term after receiving spatial training, t(15) = -2.59, p < .05. 

 13 

Table 1 
Descriptive Statistics for Test Variables Per Gender Type 
Variable     Gender   Mean  Standard Deviation
        Round 1  Round 1 
CCI (scored out of 22)    Male   9.63  4.47   
     Female   7.75  3.45 
PSVT:R (scored out of 15)   Male   9.88   4.29 
     Female   9.75  2.05 
OSIVQ: Spatial (scored out of 75)  Male   49.75  2.74 
     Female   46.13  3.44 
OSIVQ: Object (scored out of 75)  Male   47.00  2.67 
     Female   50.13  2.26 
OSIVQ: Verbal (scored out of 75)  Male   42.75  1.40   
     Female   39.50  1.58 
        Round 2  Round 2 
CCI (scored out of 22)    Male   10.25  2.09   
     Female   8.25  1.40 
PSVT:R (scored out of 15)   Male   10.5   1.45 
     Female   9.25  1.24 
OSIVQ: Spatial (scored out of 75)  Male   54.00  2.19 
     Female   47.50  3.70 
OSIVQ: Object (scored out of 75)  Male   52.38  3.42 
     Female   49.25  2.04 
OSIVQ: Verbal (scored out of 75)  Male   45.38  0.80   
     Female   40.13  1.42 
 

After the first round of data collection, independent samples t-tests revealed no 

significant differences between male and female participants’ scores on the three OSIVQ sub-

scales (all ps > .05). However, at the end of the term, a significant difference between men 

and women’s scores on the verbal sub-scale of the OSIVQ was revealed, t(14) = 3.22, p < 

.01.  

Finally, scores on the spatial sub-scale of the OSIVQ did not correlate significantly 

with high scores on the PSVT:R at the start of the term (p > .05) but did so at the end of term 

(r = .62, p =.01). No other significant correlations were revealed between scores on the 

PSVT:R and other sub-scales of the OSIVQ, nor were there any significant associations 

between scores on the OSIVQ sub-scales and the CCI at the start or end of the term. 

Discussion 
 

Will write after analyses. 
 
Limitations 
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At the start of the term, the men in the sample identified most, on average, as spatial learners 
(M = 49.75, SD = 2.74) and least as verbal learners (M = 42.75, SD = 1.40). This was also the 
case at the end of the term (see Table 1). In contrast, the highest average score among the three 
cognitive styles for women was on the object sub-scale (M = 50.13, SD = 2.26) while the lowest 
was on the verbal subscale (M = 39.50, SD = 1.58) and remained so at the end of term.  

Although participants’ general perceptions of dominant cognitive styles remained stable over 
10 weeks, each gender’s scores increased on each sub-scale except that women’s scores on the 
object style sub-scale decreased slightly (but insignificantly, p > .05) over time. 

After the first round of data collection, independent samples t-tests revealed no significant 
differences between male and female participants’ scores on the three OSIVQ sub-scales (all ps 
> .05). However, at the end of the term, a significant difference between men and women’s 
scores on the verbal sub-scale of the OSIVQ was revealed, t(14) = 3.22, p < .01.  

Finally, scores on the spatial sub-scale of the OSIVQ did not correlate significantly with high 
scores on the PSVT:R at the start of the term (p > .05) but did so at the end of term (r = .62, p 
=.01). No other significant correlations were revealed between scores on the PSVT:R and other 
sub-scales of the OSIVQ, nor were there any significant associations between scores on the 
OSIVQ sub-scales and the CCI at the start or end of the term. 
 

Discussion & Future Work 
 

This pilot study revealed that students who self-identified more as object or spatial learners 
than verbal learners did so significantly more so after spatial training. In particular, a strong 
identification as a spatial learner linearly associated with mental rotation ability after spatial 
training. However, spatial training alone did not significantly impact the calculus or mental 
rotation abilities of undergraduate students. The results of this research informed an adjustment 
to the methods when a second study was undertaken with a second-term calculus course in 2016. 
Since the present study was done during a summer term, only a total of 18 classes occurred, with 
approximately 15 minutes of spatial training done per class -- this may not have been sufficient 
for students to be influenced by the training because less than half of the items in the workbook 
were completed during the term.  

In general, the second study further explores our research questions in a Calculus II course (n 
= 14), as well as in a section of Calculus II that was not engaged in spatial training to serve as a 
control group (n = 9). The type of data collected was the same as the pilot study except that 
students were required in the second study to complete some spatial training modules 
independently and then bring their responses to the classroom to discuss with their peers in order 
to allow more time for an effect. Another difference between the present study and second 
iteration concerns the PSVT:R assessment. In the pilot study, 15 items were chosen ranging in 
difficulty from easy to medium. This range did not determine a reliable baseline in the pilot 
study because several students obtained a perfect score on this instrument pre- and post-spatial 
training. Therefore, in the second study, 15 items were chosen where 5 were categorized within 
the PSVT:R as “easy,” 5 as “medium,” and 5 as “difficult.” No participant in the second study 
scored perfectly on the pre-test of the PSVT:R. Other results from the second study are currently 
being analyzed.    

We believe that continuing this interdisciplinary line of enquiry is compelling for math 
educators and cognitive psychologists in better understanding how best to present calculus to 
students and assess their knowledge over time. Some evidence exists that object visualizers 
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experience difficulties in interpreting science graphs as abstract schematic representations 
because they interpret them more literally, as though it were a picture (e.g., Heagarty & 
Kozhevnikov, 1999; Kozhevnikov et al., 2002). Perhaps students with particular cognitive style 
preferences can be offered opportunities in the classroom to pair physical events (or words) with 
graphical representations moving in real time to explore connections between how they perceive 
the world, as Kozhevnikov & Thornton, 2006, suggest. We hope that understanding more about 
how cognitive styles associate with spatial training and success in mathematics courses will 
advance pedagogical principles and practices and, ultimately, help to close the gender gap in 
STEM fields.   
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Exploring Student Conceptions of Binary Operation 
 

Kathleen M. Melhuish Joshua B. Fagan 
Texas State University Texas State University 

Students’ conceptions about binary operations often reflect a lifetime of situated learning about 
concepts such as arithmetic operations and functions in their K-12 years. This prior knowledge 
base bleeds into their experience of binary operation in abstract algebra, leading students to 
have differing and incomplete notions of what constitutes a binary operation. We present a 
qualitative study in which we classify students’ conceptions of binary operation in terms of 
variation theory and concept image and definition. These frameworks helped us to focus on 
critical and noncritical aspects of binary operation found in student reasoning. Our results 
indicate that students’ enacted objects about binary operation fall into one of three domains (i.e. 
function meaning, arithmetic meaning, and structural meaning) and often depend on task 
context. Additionally, students’ reasoning reflected a set of critical aspects that diverge from the 
conventional critical aspects of binary operation. 

Key words: Abstract Algebra, Binary Operation, Conceptual Understanding 

Binary operations are woven into mathematics from early elementary school and throughout 
the K-20 spectrum. However, binary operation is not defined abstractly until advanced 
mathematics courses such as abstract algebra. Despite the role that operations play in both 
familiar structures such as our base ten number system, and non-routine and abstract settings of 
group, ring and field, little attention has been paid to binary operation directly. This is reflected 
both in its treatment in abstract algebra textbooks (e.g. Fraleigh, 2003, Gallian 2012), and the 
body of mathematics education literature (Melhuish, 2015). In fact, during a recent survey with 
abstract algebra instructors, binary operation was deemed one of the most important topics in 
introductory group theory, yet identified as one of the least difficult topics in the course 
(Melhuish & Fasteen, 2016). This divergent sentiment may account for the lack of specific 
attention to binary operations as an abstract concept. 

However, as part of a large study exploring student conceptions in introductory group theory, 
we found that student conceptions of binary operations had the potential to interfere with their 
performance on tasks related to a number of essential topics in group theory (Melhuish & 
Fasteen, 2016). We developed a survey centered on binary operation to empirically explore 
whether abstract algebra students have alternate or incomplete views on binary operation. In this 
paper, we report on student conceptions of binary operation through three lenses: function, 
arithmetic, and structure. We also leverage ideas from variation theory to dissect enacted objects 
of learning, specifically focusing our analysis on which critical aspects students appeared to 
attend to during their engagements in the tasks. We conclude with some discussion of how 
variations related to binary operation in typical classrooms may align with students’ 
understanding (or lack thereof) of binary operation. 

Theoretical Framing 

There are a number of ways to make sense of concept understanding in advanced 
mathematics. In this study, we merge the construct of concept image/concept definition (Tall & 
Vinner, 1981) with elements of the variation theory of learning (Marton & Booth, 1997). Our 
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underlying assumption is that a given theory of learning can meaningfully inform the analysis of 
student understanding at a point in time. The concept image and definition framework provides a 
parsing of concept understanding into definitions and surrounding cognitive structures associated 
with a given concept. A concept has a conventional definition in the mathematics community, 
but also personal definition for each student. Concept images capture both this personal 
definition, and all associations such as metaphors, examples, applications, and representations of 
a concept.  Tall and Vinner’s work is especially powerful in its ability to capture a lack of 
coherence that often exist between and within student concept images and definitions. 

Variation Theory (Marton & Booth, 1997; Watson & Mason, 2006) can provide one lens for 
making sense of concept images and definitions by both focusing on contrasting elements across 
a particular construct as well as bringing to light analogous features that may also exist (Watson, 
2017). This is done by leveraging the underlying assumption in variation theory that, “nothing is 
one thing only, and each thing has many features” (Lueng, 2017, p. 68). Variation frames aspects 
of an object as either critical aspects, features an object possesses that are shared across all 
instantiations (e.g. the sum the interior angles of an !-gon is (! − 2) ∗ 180 for all !-gons), while 
others features, permissible variations, may be unique to a specific instantiation or subclass of 
object when compared to others (e.g. the sum of the interior angles of a triangle is 180). For 
instance, variation theory could be used to explore how a child is taught about oranges in the 
context of apples. Through contrasting oranges and apples, students may attend to what aspects 
of orange are critical to “orange-ness” versus what aspects are shared amongst the two fruits. In 
this way, variation draws attention to critical aspects through contrast, that is by comparing 
examples and non-examples, students can attend to the features that are critical to the concept by 
seeing them vary in the non-examples.  

Beyond contrast, variation also allows generalizing via attending to sameness, or features that 
are shared with elements contained in a student’s prior knowledge. Gu (1994) identifies the use 
of examples, standard and non-standard, and non-examples as conceptual variation. To return to 
our orange example, by experiencing varying types of oranges such as common oranges and 
bitter oranges, students may apprehend commonalities such as texture and color to determine 
critical aspects of “orange-ness” and remove noncritical features such as a requirement for 
sweetness. Other metaphors have been aptly used to explain variation theory: seeing the forest 
through the trees (Leung, 2017, p. 68) in the sense of being able to separate features and have a 
holistic treatment of a topic, and putting a puzzle together (Marton & Booth, 1997) where 
essential features, or critical aspects are pieced together to build an accurate conception of the 
whole concept. 

In order to meaningfully leverage a theory of learning (variation), and theory of 
understanding (concept image and definition), we use variation theory’s construct of enacted 
object of learning (Marton & Pang, 2006). The enacted object refers to what is at the forefront of 
a student’s awareness when engaged in a task, including the critical aspects they attend to. 
Additionally, the lived object of learning refers to the critical aspects students are aware of after 
leaving a learning environment. In a survey situation, students enact an object of learning that 
reflects their lived object of learning. In this way, to make sense of snapshot understanding, we 
can identify what critical aspects appear to be part of the student’s concept image or object of 
learning. See Figure 1. A students’ concept image can be parsed in terms of critical and 
noncritical aspects brought to the forefront by students when engaged in survey tasks. We also 
adapt Bussey, Orgill, & Crippen’s (2013) view that a students’ lived object of learning is not just 
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a result of exposure to variation in class, but also combines with prior knowledge in order to 
develop their larger conception. 

 
Figure 1. The relationship between a students' concept image, the intended object and the 
enacted object of learning within the task space. 

Prior Research on Student Conceptions of Binary Operation 
Binary operation is often a key underlying component of educational studies in abstract 

algebra, although its role is often left implicit. Group, ring and field are defined via the way 
binary operation(s) provide structure on a relevant set. Binary operation played an essential role 
in Larsen's (2009) student-driven reinvention of the group structure (Larsen, 2009) and Simpson 
and Stehlíková's (2006) work having a student apprehend the structure of a commutative ring. 
Informally, a binary operation can be thought of as a rule for combining two elements of a set to 
produce a single element (from the same set). Addition is a binary operation on the set of 
integers because the sum of any two integers is another integer. Formally, binary operations are 
typically defined as: 

A binary operation ∗ on a set ! is a function mapping !×! into !. 
In this way, binary operation brings together two concepts that may have been seen as disjoint in 
prior situations: operations and functions. In the operation literature, functions may be treated as 
special cases of operation (e.g. Slavit, 1998), or alternately, binary operations may be treated as 
special cases of functions (e.g. Dubinsky, Dautermann, Leron, & Zazkis, 1994). 

A majority of the literature on operation falls into the former category with focus on 
arithmetic operations (with the occasional use of function as an operation example.) Slavit 
(1998) posits one such framework: operation sense. He discussed operation sense in a series of 
stages built around familiarity with standard arithmetic operations in terms of underlying models, 
symbolic notation, their relationships to other operations, properties they may possess, and their 
meaning independent of concrete inputs. However, this framework is built in terms of operations 
that are not arbitrarily defined but rather represent a standard process. For example, a process of 
combining groups underlies the operation of addition. One of the driving components behind 
operation sense is the operation’s duality as both a process and object. Gray and Tall (1994) use 
the construct of procept to explain the process and concept associated with a given operation 
symbol. For instance, an expression such as “3+ 2” represents both the process of adding 3 and 
2, as well as the resulting sum. This literature is emblematic of the larger field of research on 
operations in that it remains contextualized with specific examples of operations.  
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When attending to binary operations as a special case of functions, student conceptions 
around functions may play an additional role in their understanding. A large body of literature 
exists highlighting the many complexities of the function concept and students have been 
documented with many alternate and incomplete understandings through the K-20 spectrum 
(Oehrtman, Carlson, & Thompson, 2008). For example, students may prefer a certain 
representation such as a written, symbolic rule (Breidenbach, Dubsinky, Hawks, & Nicols, 1992; 
Vinner & Dreyfus, 1989). From a variation standpoint, this may reflect students overgeneralizing 
standard examples where a general rule is often an aspect. Additionally, students have frequently 
proceduralized functions such as evaluating !(! + !) as being equal to !(!)+ ! (Carlson, 
1998). This highlights the complexity involved in making sense of what constitutes the inputs 
and outputs of a function. The input and output language (and to an extent input/output machine 
metaphor) often provides the basis for conceptualizing function (Tall, McGowen, & DeMarois, 
2000). Frequently, much of the difficulty with functions is attributed to the process/object duality 
of functions (e.g. Dubinsky & Wilson, 2013). Functions can be conceptualized as the action of 
mapping individual inputs to outputs, the more general process of mapping from domain to 
range, or as an object itself to be operated and compared with other functions. As with operations 
research, function research generally does not breach binary operation specifically, but tends to 
remain in the more familiar K-12 context of inputs that are singular elements rather than two 
inputs (or equivalently ordered pairs of inputs). 

In terms of the abstract concept of binary operation, the literature does provide some 
framework options. Brown, DeVries, Dubinsky, and Thomas (1997) presented a genetic 
decomposition of binary operation where students may have an action conception (explicitly 
combining two inputs to arrive at an output), a process conception (a general process for 
combining inputs to arrive at outputs), or an object conception (seeing binary operations as 
things that can be acted on as objects themselves). Novotná, Stehliková, and Hoch (2006) 
provided a structure sense framework capturing the transition from familiar to unfamiliar 
operations. They divided understanding of binary operations into four levels: Recognise a binary 
operation in familiar structures; Recognise a binary operation in non-familiar structures; See 
elements of the set as objects to be manipulated, and understand the closure property; and See 
similarities and differences of the forms of defining the operations (formula, table, other). Rather 
than considering stages of mental constructions in terms of process/object reification, the focus 
was on apprehending structure. Ehmke, Peasonen, and Haapasalo (2001) presented a framework 
leveraging different representations to distinguish students with procedural and conceptual 
understandings. They identified students as having procedure-based understanding of binary 
operation if they could match binary operations if presented in different representations. The next 
level is procedure-oriented where students could also create different representations when 
prompted. The highest level is conceptual where students could not only move between 
representations, but also determine if a given relation was a binary operation. The variation 
theory-informed approach in this paper aims to complement these process frameworks with a 
more nuanced view of exactly what critical aspects/noncritical aspects of binary operation may 
be influencing student conceptions. 

Some of these attributes have been broached in the misconception literature in other subjects. 
Mevarech (1983) found statistics students overgeneralized properties (noncritical aspects) such 
as associativity onto binary operations. Zaslavsky and Peled (1996) had pre-service and in-
service teachers generate examples of binary operations resulting in a number of issues that can 
be attributed to critical aspects. For example, some of the participants defined a unary operation 

20th Annual Conference on Research in Undergraduate Mathematics Education 16920th Annual Conference on Research in Undergraduate Mathematics Education 169



which may indicate that an operation defined on two elements may not be a critical aspect of 
these students’ conceptions of binary operation. 

The study presented below serves a follow-up to initial results from the Group Theory 
Concept Assessment (GTCA), formerly, Group Concept Inventory (Melhuish & Fasteen, 2016). 
We conjectured that student conceptions of binary operation accounted for performance on 
questions targeting subgroups, the associative property, and groups themselves. Of 486 students 
asked if a binary operation could be defined on the set 1,2,4  in a way to form a group, only 
23% responded correctly that “an operation can be defined on any three element set to form a 
group.” We conjectured that the students were limiting their view of acceptable binary operation 
to those with a familiar symbolic name. In a question targeting subgroups, students were asked 
whether the set 1, 2, 3  forms a subgroup in ℤ! (adapted from Dubinsky, et al., 1994; Hazzan & 
Leron, 1996). A little over a third of the 429 students who responded, indicated that the set forms 
a subgroup by claiming that ℤ! is a group itself. Although ℤ !has a different operation, the 
students appeared unaware of this fact possibly owing to students possessing a view of binary 
operations that only allowed them to attend to the similarities in (+ mod 3) and (+ mod 6) (i.e. 
the additive structure) and unaware of the contrasting restrictions placed by the moduli. In a third 
question, students were asked if the binary operation defined as ! ⋄ ! = 1 2 ! + !  was 
associative. A sizable number of students (17% of 432) treated 1 2, !, and ! as the inputs 
claiming the operation was not associative because: 1 2 ! + ! ≠ 1 2! + !. These students 
appeared to have issues identifying what exactly was the binary operation as they attempted to 
attend to some sort of artificial structural feature that they felt was shared amongst all binary 
operators.. In each of these cases, conceptual issues with binary operations appeared to be a 
logical cause for the students’ reasoning. In this paper, we directly unpack conceptual 
understandings associated with binary operation in terms of meanings and critical aspects. 

Methods 

The surveys analyzed below were given to two introductory, undergraduate-level, modern 
algebra classes (n=12, n=8 respectively) at a large, public university. The surveys were created to 
cover a variety of binary operations in terms of standard examples, non-standard examples, and 
non-examples. We selected four activity domains that research has shown are tightly linked to 
understanding of mathematical concepts: 

1. Is or is not. Determining if a given instantiation is an example of a concept (e.g. Ehmke, 
Peasonen, and Happasalo, 2011) 

2. Same or different. Determining if two instantiations are mathematical the same (e.g. 
Novotná, Stehliková, and Hoch, 2006) 

3. Properties. Determining what properties an example may or may not have. (e.g. 
Dubinsky, et al., 1994) 

4. Generating. Creating an example meeting some criteria (e.g. Zazkis, & Leiken, 2007) 
The survey consisted of questions corresponding to each of the above categories. In each 

case, the student was also prompted to explain their reasoning. A set of sample tasks can be seen 
in Table 1. Additionally, four think aloud interviews were conducted in order to test the 
robustness of survey interpretations. The interviews were semi-structured to allow for the 
interviewer to follow the student reasoning in an organic manner. 
 
Table 1 
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Sample Survey Tasks 
Determine if the following define a binary operation on the given set. Explain why or why not. 

• Addition !"# 3 on the set 0, 1, 2  
• ⋄ ! = !!  on ℝ (the set of real numbers) 
• ⋄ ! = !! on ℝ 

Determine if the following binary operations are the same. Explain why or why not. 
• Op 1: Division on ℝ, Op 2: Multiplication on ℝ  

Consider the operation ⋄ on the set of real numbers defined as follows 

! ⋄ ! = 1
2 ! + !  

Is this operation associative? Why or Why not? 
Is it possible to define a binary operation on the set 1,2,4  such that the set and operation 
form a group? Why or why not? 

Analysis 
The surveys were analyzed through a content analysis heavily informed by 

phenomenographic methods. Phenomenographic studies attempt to study meaning through the 
interaction between an individual and a task (Trigwell, 2006). The assumption is that students 
experience different phenomena in a variety of ways. One use of this type of study is to 
“investigate the range of different ways that students experience technical concepts” (Reed, 
2006, p. 1). The focus is often on the range of ways students ascribe meaning to ideas. The 
analysis is not about classifying students into categories, but rather classifying their reasoning 
based on ways of experiencing binary operation in the given tasks. Similarly, the classification of 
student reasoning is not meant to ascribe hierarchical values to different forms of thinking, but to 
report the qualitatively different ways in which students thought about binary operations 
themselves. 

From this vantage point, the data was analyzed in two manners to attend to our focal aspects 
of concept image: (1) Global: overarching understanding of binary operation and (2) Local: 
properties treated as critical aspects of binary operations. In phenomographic tradition student 
responses were stripped from individual surveys and interviews to put attention on the reported 
reasoning in tasks rather than analyze an individuals’ responses as a whole. In the next section, 
we outline three ways of thinking about binary operation and various critical and noncritical 
aspects were found across surveys. 
 

Results and Discussion 
 

At the global level, we identified three meanings associated with binary operation: function 
meaning, arithmetic meaning, and structural meaning. We begin by explaining each type of 
meaning. We then explore the enacted objects of learning via looking at aspects of binary 
operation treated as critical throughout the range of tasks. At each point, we also reflect on the 
connections between these aspects and relevant meanings for binary operation. 

Function Meaning for Binary Operation 
We define a function meaning as one that leverages notions of function when attributing 

meaning and engaging in tasks related to binary operation. From the parent study (Melhuish, 
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2015), this type of definition has been articulated by a number of students both formally and 
informally. One undergraduate student described binary operation (on ℚ) as, “you have some 
operation that goes from ℚ×ℚ to ℚ” explicitly focusing on the ordered pair domain.  Other 
students provided more informal definitions such as, "[A binary operation] takes two elements as 
input and outputs a single element but it has to be defined on the entire... on all possible pairs in 
ℚ or in your group.” 

This type of definition aligns with what definition is found in standard undergraduate 
textbooks for introductory abstract algebra (e.g. Fraleigh, 2003, Gallian 2012). With a function 
treatment of binary operation, various properties associated with prior knowledge of function 
may be paired with the specific binary operation case such as those of being well-defined, range-
domains, or one-to-one. Similarly, function language such as “input” and “outputs” often 
become part of the vernacular around binary operation. 

Arithmetic Meaning for Binary Operation 
We define an arithmetic meaning for binary operation as a focus on a binary operation as a 

way to combine two elements to produce a third. For example, one student stated that an 
operation was, “a binary operation does something to two elements from a set and that what it 
does to those two at the very end is still in that set.” This meaning more prominently connects to 
prior knowledge of operations such as arithmetic operations. An operation such as addition is 
thought of as a way to sum two numbers to produce an third. Rather than conceptualizing adding 
the numbers 2 and 3 as inputs with an output of 5, students are likely to think of combining 2 
and 3 to arrive at 5. This language aligns with the literature where operation is often framed as 
often abstracting and formalizing some process to arrive at a result such as combining groups as 
the process behind addition. 

Structural Meaning for Binary Operation 
We define structural meaning for binary operation as meaning ascribed at a more global 

level where binary operation can be thought of a general pattern or way that elements interact 
without necessarily attending to the role of either input/output or combining two elements to 
arrive at a third. Structural meaning manifested in reasoning that looked holistically at operations 
often identifying familiar traits. This type of treatment tended to emerge in tasks prompting 
students to determine if two binary operations are the same. In fact, students applying a structural 
meaning may not even look at the inputs at all, but rather focus on the set of outputs or even the 
general utility of an operation.  The meaning language surrounding binary operation often 
contained “pattern” or that the tables “behave the same.” The term structural was selected 
because (1) students leveraging this type of meaning where generally not attending to individual 
element interactions, and (2) they may be leaning on prior class knowledge on “structural 
properties” and their intimate relationship to binary operations.  

At this point, we want to caution that these meanings a) are not always mutually exclusive in 
a given enacted object of learning, b) may internally have varying levels of sophistication, and c) 
are not necessarily consistent and coherent amongst individuals as they engage in tasks. In fact, 
of the interviewed students, most used all three meanings at different points when engaging in 
these tasks. In terms of sophistication, a number of frameworks exist to capture sophistication of 
function understanding. For example, if a student has a schema understanding (in the sense of 
Dubinsky & Wilson, 2013) of the binary operation function, they can likely approach majority of 
the tasks with high sophistication via treating a binary operation as a function object, process, or 
action at appropriate times. However, a robust understanding of binary operation using an 
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arithmetic approach can also allow for successful treatment of binary operation tasks. As we 
know from the Concept Image / Definition (Tall & Vinner, 1981) literature, students’ degree of 
sophistication with one meaning or definition may or may not align with other aspects. In this 
way, the purpose of the below analysis is to attend explicitly to critical aspects of binary 
operation appearing in students’ enacted object of learning throughout the survey tasks.  

In the next section we briefly outline the most prevalent aspects of binary operation found in 
the students’ reasoning amongst surveys. The aspects can be found in the Table 2. 
 
Table 2 
 
Critical Aspects in Students' Concept Images 
Aspect Description Critical/Noncritical 
Closure A binary operation is closed on the set Critical Aspect 
Two Elements A binary operation is defined on two elements Critical Aspect 
Defined Element-
wise 

A binary operation is determined by where each 
pair of elements map 

Critical Aspect 

General Rule A binary operation has a familiar, general name Noncritical Aspect 
Element-Operator-
Element 

A binary operation is of the form ! ∗ ! Noncritical Aspect 

Critical Aspects of Binary Operation 
We begin by exploring three critical aspects of binary operation reflected in students’ enacted 

objects of learning. These are aspects of binary operation that are generally part of the intended 
object of learning and reflect the conventional approach to binary operation. We share the degree 
to which they were found in students’ reasoning. 

Closure. The most commonly addressed critical aspect of binary operation enacted was 
closure. In fact, reasoning about closure emerged during the Is or Is Not questions almost 
universally. Only one survey was absent of reasoning about closure. For example, when asked if 
!! was a binary operation on the set of real numbers, a typical student response was: “yes, 
because any ! ∈ ℝ squared will still be in ℝ.” A number of tasks included functions that were 
not binary operations, but rather unary operations. These tasks may lead to students leveraging a 
function meaning focused on a single input and output to explore closure. For example, one 
student shared the following sentiment while exploring this prompt, “One input could only give 
you one unique output.” This language reflects a function meaning for binary operation. 

Two elements. The critical aspect of binary operation that was often not seen in the enacted 
objects of learning was that of an operation being defined on two elements, or on an ordered pair. 
This aspect was addressed only twice amongst the responses to !!  and !! being binary 
operations respectively. As seen in the closure section above, the focus was exclusively on 
returning to the same set without attention to the type of input (or equivalently the domain of the 
function). The students who did attend to this critical aspect used language reflecting an 
arithmetic meaning using “two things” rather than “ordered pair” or input/output language. 
During a follow-up interview, one student reflected, “Do we need two things? Probably, because 
the word binary…Initially I was thinking closure, then I was like, wait should there be two 
things?” This student originally attended only to closure, but revised his thinking in light of the 
intentional variation between unary and binary operations in the tasks. His enacted object of 

20th Annual Conference on Research in Undergraduate Mathematics Education 17320th Annual Conference on Research in Undergraduate Mathematics Education 173



learning was influenced by the particular tasks illustrating an example of a critical aspect moving 
from the background to forefront of his concept image.   

Defined element-wise. When students were asked to determine if two binary operations were 
the same, their reasoning often varied depending on the task. For example, when students were 
provided with a table of elements and a list of elements defined element-by-element (see Figure 
2), they were able to check each individual pair of inputs to determine if the outputs match. This 
approach likely reflects an arithmetic meaning for operation. 

 
Figure 2. Student identifying two operations as different based upon an element-wise conception 
of binary operation. 

However, when asked about the operations in the Cayley tables in Figure 3, different 
reasoning emerged reflecting a different enacted object. Student reasoning often included 
language like the “same pattern” or alternately they were the same type of operation, “addition.” 
The differing number of elements and differing outputs for the same inputs were not treated as 
problematic in much of the student reasoning. In this task, the students did not seem to attend to 
where the elements map as a critical aspect of binary operation.  This patterning approach aligns 
with a more structural meaning for binary operation. Rather than looking at combining individual 
elements, or thinking about the function mapping, the students looked holistically at the binary 
operations.  

	
Figure 3. ℤ! and ℤ! presented as Cayley Tables 

This also occurred when asked if multiplication and division on the real numbers were the 
same operation. This occurred validly (such as stating one is associative and the other is not) and 
invalidly such as explaining that the operations were the same because, “basically to undo 
division, you apply multiplication” or that division could be rewritten as multiplication: “Yes 
because ! ! is the same as ! ∗ 1 !.” This structural approach likely encapsulates a number of 
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ways of making sense of sameness in mathematics from identifying families (such as the 
operations in Figure 3 being types of “addition”) or related operations (such as multiplication and 
division which are inverses). We do not want to imply that addressing patterns holistically may 
limit approaching this family of tasks.  A high level of sophistication around this idea may be 
reflected in identifying structural or essential sameness in the sense of isomorphism (e.g. Weber 
& Alcock, 2004, Leron, Hazzan, & Zazkis, 1995). In fact, treating operation as a structure on 
sets is a fundamental goal in abstract algebra. To adopt APOS-language, seeing operations as 
structures rather than just processes or actions is necessary for an object conception. However, 
differing tasks illustrated a variety of student reasoning related to a structural meaning with both 
accurate and inaccurate approaches. 

Noncritical Aspects of Binary Operation 
        While students treated intended critical aspects of binary operation to varying degrees, 
students’ reasoning reflected a number of noncritical aspects as well. 

Element-operator-element. Student responses reflected a struggle with identifying the binary 
operation in a situation where the binary operation did not appear as “element operator element” 
(E-O-E). The treatment of E-O-E format emerged in a number of tasks. When asked if 
! ⋄ ! = 1 2 ! + !  is associative, many student responses contained: 1 2 ! + ! ≠
1 2! + !. In follow-up interviews, one student explained, “I don’t know what is the binary 

rule.” This particular student explained she lacked confidence in her response because she was 
not sure what the binary operation was. Her enacted binary object did not align with the object 
found in the task. Another student providing a similar response was asked to explain what this 
binary operation was and identified the “! + !” portion of the expression. In this sense, the 
student was focusing on the portion of the operation that appeared in E-O-E format. She had 
some cognitive dissonance when attempting to apply her definition of the associative property 
of: ! ∗ (! ∗ !) = (! ∗ !) ∗ ! to explore whether the midpoint binary operation in fact met this 
requirement. When the interviewer asked what operation the ∗ represented between the b and c, 
the student responded, “the plus sign.” The student responses to this prompt tended to link to the 
arithmetic meaning of binary operation, however, with perhaps a lower level of sophistication 
where the idea of combining two inputs is necessarily linked to a rule in the E-O-E format. This 
noncritical aspect was also seen in other tasks including the previously discussed task prompting 
students to determine if !! is a binary operation. Several student responses explained that !! 
could be written as “! ∗ !” and therefore was a binary operation. They converted from a non-E-
O-E form to an E-O-E form.  

  A general rule. In addition to binary operations typically represented in the E-O-E 
format, most binary operations have general names. When asked to generate a binary operation 
that forms a group on an atypical set 1,2,4 , a majority of students provided examples where 
they checked known operations such as modular arithmetic operations. The responses in this 
study were consistent with our previous finding (Melhuish & Fasteen, 2016), where students 
reasoned by checking a list of known operations. This desire for a general rule was further found 
in other tasks such as determining if the operation defined element-wise was a binary operation. 
A task of this sort was found in Figure 4. 

 
Figure 4. This task prompted students to determine if the operation defined element-wise was a 
binary operation. 
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This task was frequently left blank. When interviewing a student who did so, she explained, “I 
was just- I don’t know. What are they trying to get at?“ She explained she had not seen this 
binary operation and was attempting to define a general rule without success. She noted, “I guess 
because it didn’t specifically say mod something- it blew me away because of that.” A general 
rule appeared to be a critical aspect of her enacted object. This attention to a general rule reflects 
the similar desire for functions to have a general rule in the literature on student conceptions of 
function (Breidenbach, Dubsinky, Hawks, & Nicols, 1992). The interview subject primarily used 
language reflecting a structural meaning such as searching for a “pattern.” However, her enacted 
object may be linked to her function knowledge (that of a general rule being a critical aspect), 
her arithmetic knowledge (a set of named, general rules), or more generally a desire to reduce 
abstraction level (Hazzan, 1999) to familiar operations.  

Other properties. The list of critical aspects and permissible variations of binary operation 
does not present an exhaustive list of features attended to in students’ enacted objects. Rather, 
they provide an outline of some of the most prevalent aspects found in responses to the survey 
tasks. In Figure 5, we provide a list of additional aspects of binary operation that were found in 
student reasoning. In the blue are critical aspects explicitly found in definitions. In red are critical 
aspects implicit in the binary operation definition. In purple are noncritical aspects of binary 
operation found in student reasoning. Additional noncritical aspects are related to functions (one-
to-one), and groups (associative property, and group structure). Binary operations that impose a 
group structure are the typical examples in abstract algebra, and therefore their critical aspects 
may be adopted to the students' lived binary operation object. 

 
Figure 5. Critical and noncritical aspects of binary operation found in students' survey responses. 

A Reflection on Variation as Attended to By Students 
  As a final point of discussion, we connect the available student reasoning, student 

interview responses, and the intended curriculum. During the four interviews, the students 
reflected on their experiences in class indicating that these tasks were atypical. Furthermore, they 
shared the binary operations they knew which covered a set of standard examples: arithmetic 
operations, modular arithmetic, and function composition. These exemplars are unsurprising as 
they are leveraged heavily in abstract algebra curriculums (Melhuish, 2015). One student 
explained: 

The things that we were shown in modern algebra were pretty basic examples of what a 
binary operation does. It almost seems like we are going to explore this to the extent that 
helps us in other topics and just move on to more interesting topics. 

20th Annual Conference on Research in Undergraduate Mathematics Education 17620th Annual Conference on Research in Undergraduate Mathematics Education 176



In the case of each of these standard examples, most of the noncritical aspects (such as E-O-E, 
general rules) exist. In this sense, it is not surprising that students may not be delineating these 
aspects as non-essential. In both their class and their textbook (Gallian, 2012), the only type of 
non-examples addressed have two elements, and but lacked closure. These non-examples did not 
allow for contrast between unary and binary operations. The types of variation students are 
exposed to may prevent them from becoming focally aware of other aspects that can cause a 
given relation to not meet the requirements of binary operation (such as the need for two 
elements) or overgeneralize noncritical aspects (such as E-O-E format). 

All of the interviewed students also reflected that majority of their binary operation exposure 
was in the group context, i.e. one of the “more interesting topics” referenced above. In this sense, 
most binary operations examples are well-behaved, frequently with a general named rule, and 
often embodying additional properties such as the associative property. One student articulated 
the struggle to make sense of the relationship between binary operations and some properties 
explaining, “I know when it was introduced to me commutative and associative were very 
important. I didn’t really understand the connection between them.” He went on to share his 
uncertainty about whether they were required or optional properties of binary operation. Another 
student explicitly noted a noncritical aspect as always being part of the treatment of binary 
operation in her class. She explained that in their notes, binary operations always looked of the 
E-O-E form with the usage of “something like a star and circle” whenever discussing or 
introducing binary operations. This consistent feature was part of her lived object of learning, 
and was retained through her enacted object when approaching various binary operation-related 
tasks. 

  Two of the students, unprompted, expressed direct concerns about understanding what 
constituted a binary operation. One student reflected, “I don’t know what is and is not the fine 
details of [binary operation.]” She went on to explain that she felt they were supposed to 
apprehend the meaning of binary operation from examples, but was unsure of the point, 
struggling to sort critical aspects and noncritical aspects (our language). Furthermore, she 
explained, “You tend to focus on one little thing that stands out and you miss another one.” Her 
discussed metacognition on her learning process reflects the underlying premise of learning in 
variation theory: becoming aware of focal features through contrast and comparison. 

Conclusion 

 By addressing meaning and critical aspects of student conceptions of binary operation, we 
were able to illustrate some of the many complexities associated with a topic that is often 
considered straightforward. Students reasoning reflected different meanings, and leveraged 
different aspects of binary operation depending on task and student. The aspects and meanings 
used varied in a ways illustrating incoherence in students’ concept images. 

 The results complement earlier work looking at action, process, and object conceptions of 
binary operation. As illustrated in Zandieh’s (2000) work with derivatives, these conceptual 
levels do not necessarily map in a hierarchical way. In our study we found reasoning at the 
structural level often treated binary operations at the object or process level without attention to 
the element (or action level). However, without de-encapsulating, the responses to the tasks 
tended have mathematical inaccuracies. In terms of the structure sense approach to binary 
operation, many of the tasks corresponded to levels of recognizing familiar and unfamiliar 
operations, and working with properties. The levels of recognizing familiar and unfamiliar binary 
operations broadly addresses a complete conceptualization when many students may have partial 

20th Annual Conference on Research in Undergraduate Mathematics Education 17720th Annual Conference on Research in Undergraduate Mathematics Education 177



conceptualizations with some but not all critical components needed to address whether an 
instantiation is a binary operation. For example, students could attend to unfamiliar binary 
operations in terms of closure, but could not rule out non-examples that were unary and not 
binary. They could engage with tasks that presented unfamiliar binary operations when the form 
was E-O-E, but not always with differing presentations. We see our results as providing some 
nuance to more hierarchical frameworks by exploring a range of properties, representations, and 
example-types. 

 In order to situate these results in the larger sphere of variation, we may want to reflect on 
the examples and non-examples students are exposed to in their curriculum and classes. Studies 
have started looking at dimensions of variability available for students in abstract algebra classes 
in terms of groups and rings (Cook & Fukawa-Connelly, 2015; Fukawa-Connelly & Newton, 
2014). Pairing such studies with student responses can provide a powerful impetus towards 
consciously varying examples and non-examples to best bring attention to structural attributes. In 
terms of binary operation, majority of textbooks focus explicitly on certain features such as the 
critical aspect of closure, and the permissible variations such as the associative property 
commutative property. If students are never exposed to instantiations that are unary or ternary, 
they may not assimilate particular critical aspects of binary operation. Without an awareness of 
these features, students may have a weakened foundation for making sense of group theory 
where binary operation plays a universal and critical role. 

 Overall, students appeared to draw on new learnings and variations, but also prior 
knowledge of functions and operations when approaching these prompts. Understanding binary 
operation requires a coordination of a new abstract notion of binary operation with the previous 
understanding of functions and familiar operations. The use of a meaning and critical aspects 
lens appeared to be a fruitful way to dissect student reasoning, concept image, and more 
particularly enacted objects of learning. Students provided a number of surprising responses such 
as seeing multiplication and division as the same operation or identifying a function like 
cuberoot as a binary operation. By dissecting various critical aspects, it became clear that even 
after the completion of an abstract algebra class, student concept images around binary operation 
may not be robust. This directly challenges the expert assertions that binary operation is a trivial 
topic (Melhuish & Fasteen, 2016). Furthermore, in our 2016 paper, we conjectured that students 
may have some underlying conceptual issues with binary operation that may account for 
performance on tasks aimed to explore their understanding of various topics such as subgroup 
and the associative property. This study confirmed that incomplete conceptions of binary 
operation not only exist amongst this population, but were prevalent across our sample. 
Additionally, the student responses in our small in-depth study were consistent with the 
responses in the larger, representative study. While, generalizability of these results is limited 
because of our sample size, we garner some strength of validity based on points of intersection 
with the prior study (e.g. Melhuish, 2105; Melhuish & Fasteen, 2016). As instructors and 
researchers in advanced mathematics, we caution overlooking binary operation conceptions and 
the essential role they play in any number of advanced classes.  
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Pass rates in US first-year undergraduate mathematics courses are abysmally low. However, 
recent studies have found that there are doctoral programs that have improved pass rates by 
focusing on improving instruction. In particular, these exemplary programs focus on 
interpreting student thinking and that this instructional shift creates a more positive 
experience for undergraduate students. To scale up this result, it is important to understand 
how instructors connect student thinking to teaching actions. The purpose of this case study 
is to examine how two graduate student teaching assistants developed the ability to connect 
student work to hypotheses about student thinking and then link these hypotheses to teaching 
actions. For this analysis, the researchers introduce a framework that has potential to help 
providers of professional development identify how to strengthen graduate students’ 
opportunities to learn from teaching, as well identify variations in graduate students’ use of 
undergraduate student thinking to inform teaching actions. 

Key words: Post-Secondary Professional Development, Graduate Teaching Assistants, 
Student Thinking, First-Year Course Instruction 

Future faculty members often have their first teaching experiences when they are graduate 
students. Assigning graduate teaching assistants (GTAs) to their first course as primary 
instructor – meaning, the GTA is the person most responsible for teaching the material – is 
something that mathematics departments should not take lightly. Many universities entrust 
mathematics departments with the responsibility of teaching a substantial number of 
freshman students and, in many cases, the first college mathematics course that 
undergraduate students take is taught by a graduate student. As the economy depends more 
and more on science, technology, engineering, and mathematics, mathematics departments 
must recognize that the courses they teach can be seen as ‘gatekeepers’ to economic 
opportunity (Kamii, 1990; Moses & Cobb, 2002). With this recognition, mathematics 
departments must acknowledge that GTA instruction is critically important at not just the 
departmental or university level, but also the national level. In light of this responsibility, one 
of the primary goals of mathematics departments should be to develop graduate students to 
provide high quality instruction. To meet this goal, an increasing number of mathematics 
departments are providing GTAs with professional development (Border, Speer, & Murphy, 
2009; Deshler, Hauk, Speer, 2015; Ellis, 2015). For this reason, it is necessary and important 
to study not only how to provide professional development to graduate students, but also the 
impact that professional development has on the development of GTAs as teachers. In this 
case study, the researchers examine how two GTAs leveraged their professional development 
experiences to use observations about undergraduate student work to inform teaching actions.  

Previous Literature on Professional Development  

While the researchers acknowledge that there are important differences between teaching 
at the K-12 and post-secondary level, there is also much that can be learned from K-12 
professional development (Deshler, Hauk, & Speer, 2015). Following this suggestion, this 
work draws on studies of effective characteristics of professional development for post-
secondary and K-12 teaching. 
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Opportunities to Learn From Reflection on Student Thinking and Teaching 
In 2009, Blank and de las Alas conducted an extensive meta-analysis of research reports 

between 1986 and 2007 to determine the key characteristics of effective K-12 professional 
development. They found that the greatest improvements in teaching could be attributed to 
the teacher experiencing intensive initial professional development in combination with 
multiple opportunities for sustained engagement, such as plan-teach-reflect cycles and 
reviewing student work. At the post-secondary level, similar results have been found to hold, 
especially when professional development opportunities allow GTAs to attend to student 
thinking (e.g., Kung & Speer, 2009). 

It is widely accepted that teachers can and should improve their teaching by reflecting on 
instruction and student thinking. In addition, reflection should occur within communities of 
teaching. Multiple national policy documents for K-12 teacher education cite such reflection 
as a critical component for improvement (e.g., InTASC, 2011; NSDC, 2015). Also, reflection 
certainly can be a key contributor to teachers’ ability to learn from their teaching experiences. 
However, simply providing time and a mandate for teachers to reflect on their instruction is 
no guarantee of improved instruction. For instance, teachers who catalogue good and bad 
moments without hypothesizing about factors that contribute to the quality of these moments 
are unlikely to increase the quality of their teaching. Also, teachers who characterize their 
students’ conceptions without attending to how instruction shapes students’ conceptions are 
unlikely to leverage their knowledge of student thinking. As Horn and colleagues have 
argued, it is not merely the presence of reflection in communities that is important, but rather 
the opportunities to learn that teachers create from these reflections (Hall & Horn, 2012; 
Horn, 2005; Horn & Kane, 2015; Horn, Kane, & Wilson, 2015).  

The critical insight that the researchers gleaned from Horn and colleagues’ work is the 
following theory: in teachers’ reflections, the more tightly linked the observations of 
instruction and students are to future teaching actions, the greater the opportunity to learn 
from reflection. In other words, it is not sufficient to just make observations, however astute, 
about previously experienced instruction and student thinking. It is also not sufficient to just 
make claims about what one might do in future teaching actions. Rather, the greatest 
opportunities to learn from reflection occur when observations about previously experienced 
instruction and student thinking inform future teaching actions. If the model from K-12 holds, 
then one would expect that GTAs’ opportunities to learn will also be more meaningful when 
their reflections link observations about instruction and student thinking to future teaching 
actions. 

Characterizing Opportunities to Learn From Reflection 
Several studies have examined variation in teachers’ opportunities to learn from reflection 

on teaching. Using an analysis of 17 hours of secondary teachers’ workgroup conversations 
across an entire year, Horn and Kane (2015) found that not only were opportunities to learn 
not equally distributed, they also represented a developmental story of “accumulated 
advantage” (p. 8). Where there were more opportunities to learn in the beginning, there were 
even more opportunities to learn later. In a comparison of two middle school teachers’ 
workgroups, Horn, Kane, and Wilson (2015) found that how teachers interpret data about 
students impacts their opportunities to learn from reflection on teaching and student thinking. 
One group focused on increasing proficiency rates by determining how to allocate resources 
to particular groups of students, and thus did not focus on students’ understandings. The other 
group attended to students’ understandings but was limited by pressure to go over as many of 
the instances where their students might improve, rather than to discuss any instructional 
implication deeply.  
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Horn and colleagues’ work on opportunities to learn contributes a frame for 
characterizing variation in opportunities to learn from reflection on teaching and student 
thinking. Namely, their work suggests that it may be beneficial to examine how well teachers 
are able to interpret data about student thinking in order to inform their future teaching.  

Lai, Smith, Wakefield, Miller, St. Goar, Groothius, & Wells (2016) used this frame to 
examine GTAs’ opportunities to learn from reflection on teaching and student thinking. To 
compare clarity of reflection, the authors modeled GTAs’ reflections as arguments about 
future teaching actions based on data about student thinking. The clarity was conceptualized 
as how specific and connected the logical argument was when connecting data to future 
teaching action. These authors used a modified version of Toulmin’s (1958) model to analyze 
the connections GTAs made between what they observed their students doing and their future 
plans for teaching. Lai et al. performed a qualitative analysis of 16 final papers written by 
mathematics GTAs and developed a coding scheme that categorized papers as low 
connectivity, medium connectivity, high connectivity with low coherence, and high 
connectivity. The authors concluded that even when GTAs are teaching the same course, 
participating in the same professional development, and completing the same task, the clarity 
of their reflections on the nature of student thinking varies widely.  

However, no attempt was made to look at the growth that the GTAs experienced. For 
example, while the authors found examples of GTAs with high connectivity in their final 
papers, there was no indication of what growth may have occurred over the course of the 
professional development program. An important question that resulted from this is whether 
these cases of high connectivity are representative cases of individuals who entered the 
professional development program with these skills. 

Study Description 

The purpose of this intrinsic case study (Stake, 1995) was to better understand the growth 
experienced by two mathematics GTAs over the course of their involvement in a professional 
development seminar. During the seminar, GTAs collectively reflected on their teaching each 
week, sometimes in the context of informal discussions on readings about learning and 
teaching and other times in more formal writing assignments. These two GTAs selected for 
this case study were identified because their mathematics department had recognized them as 
strong teachers and pedagogical leaders. In this paper, GTA growth is conceptualized as 
enhanced opportunities to learn from teaching through reflection on instruction and student 
thinking, over time, as described in Lai et al. (2016). The central question that is guiding our 
inquiry is: How did GTAs grow as learners of teaching over the course of involvement in a 
professional development seminar? The central question is decomposed as follows: 

1. How did the GTAs’ capacity to connect student thinking to future teaching actions in 
their formal reflections change over time? 

2. How did GTAs’ capacity to use resources from the professional development seminar 
in their formal reflections change over time?  

Using similar analytic methods as what Lai et al. (2016) used to analyze a set of papers 
collected from GTAs at the end of a professional development seminar, the researchers 
conducted this longitudinal case study to examine the growth of the GTAs over the course of 
the seminar. Although the context of this case study makes it hard to generalize, this analysis 
does help identify what GTA growth looks like and provide one possible frame from which 
providers of professional development can evaluate their programs.  
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Theoretical Frameworks 
In this paper, GTA growth (as learners of teaching) is viewed as the enhanced opportunity 

to learn from reflection about instruction and student thinking, where the strength of an 
opportunity to learn is conceptualized as the connectedness from observations of student 
thinking and prior instruction to proposals for future teaching actions. The researchers model 
teachers’ reflections as an argument about how observations of student thinking and 
instruction inform future teaching actions. They also examine the connections between 
student data, student thinking, hypothesis, and future teaching actions. These four 
components and the logical connections between them constitute our model, which is 
depicted in Figure 1. Our model is an adaptation of Toulmin’s (1958) argumentation model, 
which he developed for analyzing the grounds, claims, and warrants used in legal arguments. 
In Toulmin’s model, grounds are the evidence underlying a claim and a warrant justifies the 
relationship between the grounds and the claim. Recently, Toulmin’s argumentation model 
has been applied in other fields, such as mathematics education (Inglis et al., 2007). 

 
Figure 1. Framework for GTA arguments. 

Following Lai et al. (2016), data is defined to be the written student work collected by the 
instructor and any memory-recalled communication observed by the instructor and recorded 
in their writing. In their argument, the instructor may interpret this data in the form of student 
thinking. That is, student thinking is the instructor’s expression of how he or she believes the 
data should be interpreted in order to reflect the student’s work. Also, instructors may make a 
hypothesis about the likely reasons for a student to think in the way in which the instructor 
has interpreted. This hypothesis depends upon the underlying origin of student thinking. 
Finally, an instructor may plan a future teaching action based upon any or all of the previous 
elements. These four elements, and the connections between them, form the framework the 
researchers used to analyze GTA work. 

Using this framework, a GTA’s work can be characterized by the presence or absence of 
any of the four elements and the connections between them. When looking at connections, 
coding captures not just the presence or absence of a connection but also the plausibility of a 
connection. Plausibility refers to the strength of a connection. For instance, if the instructor 
interprets the student thinking in a way that is not supported by the data, this would be coded 
as an implausible or weak connection. Using this coding scheme, a GTA’s work is 
characterized as having low connectivity if explicit references to two or more of the four 
elements were missing, or the connections between these elements are not present or 
plausible. On the other hand, a GTA’s work is characterized as having high connectivity if the 
GTA clearly articulates all four elements and makes explicit and plausible links between 
these elements. The tag low coherence is added when the four elements are articulated, but 
weak, implausible, or implicit links are present. A final category of medium connectivity is 
used when at least three of the four elements are present and most, but not all, of the links are 
explicit and plausible. A visual representation as well as an explanatory key of these various 
types of connectivity can be found in Figure 2. 
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Figure 2.  Categories of connectivity of GTA arguments. 

Data and Methods 

Using the framework described, the researchers examined the growth of two particularly 
strong GTAs by studying the written work they submitted while enrolled in a pedagogy 
professional development seminar course taught in a mathematics department during the fall 
2015 semester.  

Data Collection 
Context. At the university in the study, every graduate student who is assigned to be the 

primary instructor of a course for their first time is required to enroll in a seminar on teaching 
and learning mathematics at the post-secondary level. A graduate student is a primary 
instructor if they have independent authority to make classroom decisions and assign grades. 

In the past few years, approximately 15 students have enrolled in this class each year. 
This seminar meets for two hours a week in the fall semester and one hour a week in the 
spring semester. The graduate students in this course read educational literature, including 
articles ranging from foundational pieces, such as Erlwanger’s (1973) discussion of Benny, to 
expository articles, such as Tsay and Hauk’s (2013) explanation of constructivism. 
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While enrolled in the seminar, the graduate students are assigned to teach either 
intermediate algebra or college algebra, which have a typical enrollment of 34 and 40 
students respectively. Small group discussions are a focus of these courses and the GTAs 
involved in the seminar make up the majority of the instructional team for these courses. 
While there are a few adjunct instructors who occasionally teach the courses, they do not 
participate in the seminar. The faculty member who leads the seminar may also teach one of 
these courses, including the term in which the data were collected for this report. 

Since the graduate students enrolled in the seminar are all teaching one of two courses, 
the seminar provides an opportunity to discuss shared challenges and experiences. The shared 
experience of teaching common courses and reading common articles provides the backbone 
of weekly discussions for the seminar. In these discussions, the graduate students are 
encouraged to reflect on their own teaching utilizing the vocabulary of mathematics 
education. 

Data. The data for this study were collected in the fall of 2015 and includes three 
assignments completed by the GTAs throughout the fall semester. The first assignment asked 
GTAs to work in teams of three and analyze student work on a quiz in order to identify an 
area of unproductive student thinking. In the group paper, the GTAs described the 
unproductive student thinking they had identified and planned an intervention for use in 
office hours or class to help students. Finally, the assignment called for a one-page summary 
explaining why the team believed the intervention would be successful. The second 
assignment had the same requirements, but this time the GTAs had to complete the 
assignment individually and analyze a different set of student work. The third assignment, 
which functioned as the final project for the course, followed a similar format. However, in 
this final assignment, the GTAs were explicitly asked, as opposed to implicitly asked, to 
theorize about the roots of the unproductive student thinking.  

Paper Summaries 
Susan. In the first group assignment, Susan analyzed a quiz question that asked students 

to explain how they know that a given table of data is exponential. Of the six samples of 
student work Susan included, three samples claimed that the data was exponential because 
the rate of change was not constant. Susan used the data to argue that students were thinking 
unproductively about exponential functions as nonlinear. As Susan reflected on possible roots 
of this unproductive student thinking, she referenced two hypotheses: (1) “in the semester we 
had spent most of our time on linear and exponential functions so they were fresh in our 
students’ mind” and (2) “in teaching exponential functions, we emphasized the fact that they 
are not linear and often compared them to linear models" (Page 2). Finally, the intervention 
that Susan’s group planned involved asking students to analyze four different functions in an 
attempt to demonstrate the plurality of families of functions. 

In her second paper, Susan analyzed a quiz problem where students were given the graph 
of a piecewise-linear function and asked to graph the function −1/2g(x)+2. Susan analyzed 
two samples of student work that had identical incorrect graphs, but different steps written 
down to describe how they got their graphs. One student listed steps that were not only 
incorrect (given the formula), but also did not match the graph they drew. The other student 
listed steps that were correct (given the formula), but also did not match the graph they drew. 
The unproductive student thinking that Susan identified was that the students did not 
recognize the connection between the graphical and analytical representations of 
transformations. She then hypothesized that the root of this unproductive thinking was that 
the students had survived on merely a mechanical understanding of the analytical steps to 
transform a function. Susan intervention was designed to help students discover a step-by-
step process for transforming graphs in order to tie their analytical understanding to the 
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graphical representation. The intervention directed students to identify "important" points on 
a piecewise-linear graph (i.e., corners and endpoints of the piecewise function), list the 
analytical steps involved in the transformation, transform the “important” points at each 
intermediate analytical step, and then use the transformed points to sketch the transformed 
graph. 

For the final assignment, Susan analyzed another transformation problem, but this time it 
came from an exam. In the problem, students were given the domain and range of f(x) and 
asked to find the domain and range of three different transformations of f(x). In analyzing the 
student work, Susan found that 53% of her students “used the wrong operation, the wrong 
order of operations, or some combination of the two” with the third transformation, which 
was f(2(x+3)). Drawing upon this data, Susan identified that students had unproductive 
thinking when trying to determine what order to apply the multiple horizontal 
transformations. Her hypothesis about the roots of this unproductive thinking was that 
students had attempted to memorize the order of horizontal transformations as a rule and did 
not understand why it worked. This caused problems when they attempted to apply the rule, 
because it contradicts their intuitive desire to follow the order of operations. To help students 
move towards a more productive way of thinking about the order of horizontal 
transformations, Susan developed a worksheet. The worksheet started by connecting 
transformations to function compositions, considered the transformation of a single point, 
asked the students to hypothesize about the order, and ended with a graphical application of 
transformations. 

Karen. For the first group assignment, Karen analyzed a team quiz problem that asked 
students to explain how many answers there were to a system of two linear equations. Karen 
analyzed two sets of student work. One had the correct answer (no solutions), but an incorrect 
explanation, while the other one provided an incorrect answer (exactly one) and an incorrect 
explanation. Karen identified that both students had unproductive thinking in the explanations 
they gave to support their answers. In particular, the first one claimed that if all of the 
variables cancel, then there are no solutions. On the other hand, the other one claimed that if 
the lines are not the same, then they must have exactly one solution. Karen hypothesized that 
“if either of these groups had a better understanding of the geometric interpretation of a linear 
system, then they would have been able to provide better explanations as well as come to the 
right conclusion” (p. 21). In order to address the underlying root of the unproductive 
thinking, Karen designed an intervention that starts with a linear system that has infinitely 
many solutions. She would let the students solve it their own way, with the hope that they 
would come to the erroneous conclusion that there are no solutions. To show them their error, 
they would graph the two equations. Finally, they would consider a system of equations that 
has no solutions and consider its graphical representation. 

For the second assignment, Karen analyzed a quiz problem on function notation. Overall, 
students did well on this problem, but there was one common mistake that was made. Given 
the function f(x)=x2+1, several students were able to correctly find f(2) and 2f(x), but 
incorrectly claimed that f(2x)=2x2+1. Karen identified that the students had unproductive 
thinking when working with function compositions. Karen hypothesized that due to the fact 
that function compositions had previously only been done with linear equations, students had 
erroneously generalized properties that are only true for linear function compositions. In 
order to address the root of the unproductive student thinking, Karen’s intervention focused 
on building connections between concrete and abstract algebraic operations. The intervention 
starts with some simple computations of f(2) and f(4). Then, students used their own method 
to find an equation for f(2x). To test whether or not they got the right equation, the 
intervention directed them to substitute x=1 and x=2 into their new equation and see if that 
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matches what they got for �(2) and �(4). Finally, the intervention ended with a discussion of 
how to find the correct formula for f(2x). 

In Karen’s final paper she analyzed a problem from a quiz on algebraic fractions. Karen 
focused on one type of cancellation mistake that was commonly made by her students. When 
attempting to simplify a rational expression, Karen found that many students followed the 
unproductive thinking that you can cancel out factors that are common to only the 
denominator and one of the addends in the numerator. At the root of this unproductive 
thinking, Karen hypothesized that students think in terms of rules instead of concepts. In 
particular, they are not thinking about the mathematical idea of fraction, multiplication, and 
division when simplifying rational expressions. In order to help students form a more 
productive way of thinking, Karen developed an intervention that began by exploring the 
arithmetic involved in simplifying fractions. They begin by exploring two fractions, one 
where the denominator shares a common factor with only one of the addends in the 
numerator, and the other where there is a common factor in the denominator and entire 
numerator. Then, Karen used this familiar context to explain why cancellation doesn't work 
in the original rational expression. 

Analysis 
For each of the two GTAs in this study all three papers were collected and coded 

following the coding scheme developed by Lai et al. (2016). GTA names were redacted to 
protect the privacy of individual GTAs. Coding was completed independently by two of the 
researchers who then met to reconcile codes. Upon analyzing the team project submitted by 
one of the students, one of the researchers became aware that she had been a member of the 
team who had submitted that paper. To overcome any potential bias caused by having been 
part of the group project, another researcher assisted with triangulation for this assignment. 
The researchers then compared notes and reconciled differences. It is worth nothing that this 
particular group paper provided the research team a unique opportunity to compare codes 
with what the writers had intended to communicate. Differences between the intention of the 
paper and the coder’s interpretation of the paper were taken into consideration and having a 
researcher reflect on her own work help strengthen triangulation. 

After initially coding using Lai et al. (2016) coding scheme, the researchers noticed that 
there seemed to be important details that the coding scheme failed to capture. In particular, 
the research team all agreed that Susan had grown in ways that were not captured by the 
initial coding. In order to address this unexpected finding, the research team decided that a 
second phase of analysis was needed. To accomplish this, the research team reread all the 
assignments and focus on how claims were made and supported. To do this, the research 
team identified which articles from the seminar the GTA had used to support their arguments 
and how these articles were used. The reason why the researchers chose to look at the 
references used was driven by the research questions. While our initial analysis addressed the 
first research question, the researchers realized that the second analysis was needed to address 
the second research question. 

Findings 
Over the course of the professional development seminar, Karen’s arguments changed 

from being characterized as having medium connectivity to high connectivity. Susan’s 
arguments, however, were consistently characterized as having medium connectivity (Figure 
3). 
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Figure 3. Classification of connectivity of Karen & Susan’s arguments. 

In Karen’s first paper, there were strong links between the data, problem, hypothesis, and 
intervention. However, it was somewhat difficult to tease the problem and hypothesis apart. 
At first, the researchers thought that the hypothesis was missing. However, after further 
examination, they were able to redefine the problem in a way that disentangled it from the 
hypothesis. However, since it was difficult to separate the two, they felt that Karen did not 
make a strong case for each one individually, and therefore unintentionally conflated them 
together. In the second paper, Karen made strong links between the data, problem, and 
hypothesis. However, the link between the hypothesis and the intervention was weakly 
supported. Finally, Karen was able to make strong links between all four components in her 
final paper. In each of Susan’s papers, there were strong links between the data, problem, and  
hypothesis, but the intervention seemed linked more to the problem than to the hypothesis. 

When considering the ways claims were made and supported, a different picture is 
formed. In her first group paper, Susan’s group did not use literature to support her claims, 
but instead referred to things like “well-known-facts” without supporting evidence. However, 
over the course of the term, Susan began to incorporate existing research into her discussions 
of students (Figure 4). Karen, on the other hand, did not begin directly citing existing 
research until the third paper. However, in her final paper, Karen synthesized multiple points 
of literature to support her arguments (Figure 5). It is important to note that on the rubric for 
the third paper, there is an item that does not appear on the previous rubrics: “Paper theorizes 
about the roots of the misconception drawing on literature to support the claim.” The 
previous assignments, on the other hand, stated no requirements for citing literature. This 
could explain Karen’s choice to use begin citing literature in her final paper. However, Karen 
chose to use existing literature not just for the hypothesis but also for the intervention. 
Furthermore, Karen did try to anchor her previous interventions in the language of 
constructivism. The exact effect that the change in the rubric had is unknown. 
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Figure 4. Susan’s use of literature in her arguments. 

Another factor that may have contributed to the increased use of literature by both Susan 
and Karen is the increase in the literature available to both GTAs. The professional 
development seminar can be roughly broken into four themes throughout the semester: 
setting the stage, discussing classroom dynamics, discussing assessment, and looking at who 
our students are. Within each section a series of articles are used to motivate discussion. As 
seen in Tables 1 and 2, Susan and Karen both incorporated literature from the professional 
development seminar into their arguments. Moreover, Susan and Karen referenced literature 
that spanned multiple themes, synthesizing ideas from the literature. Figure 6 provides a 
temporal bipartite graph showing how literature appeared in Susan and Karen’s writing. 

Discussion 

By taking a longitudinal approach, the researchers were able to examine how GTAs grow 
over the course of the professional development seminar. Using our original coding scheme, 
changes in the GTAs’ ability to clearly reflect on the nature of student thinking were 
characterized. However, the researchers found that this analysis did not capture the ways in 
which Susan had experienced growth or provide us with a clear answer to our second 
research question. To address that issue, the researchers conducted a second analysis that 
focused on GTAs’ capacity to use resources from the professional development seminar in 
their formal reflections by looking at how the GTAs’ claims were made and supported. Based 
upon the analysis done in the previous study that looked at all of the final papers (Lai et al., 
2016), the need for a second type of analysis was not anticipated. However, using our coding 
scheme as a way to analyze longitudinal data brought some of its weaknesses to the forefront. 
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Figure 5. Karen’s use of literature in her arguments. 

 
Figure 6. Temporal bipartite graph of Susan and Karen’s use of literature. 

While the original framework developed may not be able to capture every aspect of GTA 
growth, one strength that it does have is its adaptability. In particular, the researchers believe 
that our framework could be used as a way to analyze GTA growth in a variety of contexts. 
For example, there are several departments who integrate video case studies into their 
professional development seminars as a way to provide GTAs with the opportunity to reflect 
on and respond to classroom situations. Our framework would fit nicely with this type of 
activity, where the data is the video case study, the student thinking and hypothesis are the 
GTAs reflection on the video, and the future teaching actions are the GTAs plan for what 
they would do next. Another adaptation the researchers have considered is using this 
framework to analyze GTAs ability to reflect and plan future teaching actions when looking 
at student thinking in a way that does not focus on a deficit model. For example, GTAs could 
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analyze student data in an attempt to identify what the students do understand, hypothesize 
what contributed to the development of that understanding or how they could build upon that 
understanding, and plan future teaching actions. In this case, the researchers believe that the 
hypotheses would be intrinsically connected to the future teaching actions, which would 
strengthen the connectedness of the GTAs arguments. 

In this paper, the researchers have attempted to better understand the effects that this 
particular professional development program has on GTAs. Analyzing the two particular 
GTAs chosen has provided some insight into how GTAs might grow over the course of their 
involvement in a pedagogy professional development seminar course. Both GTAs did exhibit 
growth, but in different ways. Karen’s arguments evolved to show more connectivity between 
data, student thinking, hypothesis, and future teaching action. On the other hand, Susan began 
to utilize literature from the seminar in her reflections on student thinking. However, both 
GTAs adopted a more constructivist approach to teaching as evidenced through their 
arguments. A stated goal of this particular professional development program is to support 
GTAs as they become evidenced-based practitioners of mathematics education. For these two 
GTAs, this goal appears to have been met. 

Implications and Directions for Future Research 
This intrinsic case study provides evidence that the professional development program 

discussed may have some effect on the growth experienced by two mathematics GTAs over 
the course of their involvement in a professional development seminar. This suggests that 
mathematics Ph.D. students can benefit from reading mathematics education literature, 
analyzing student work, and planning future teaching actions. Future research might look at 
similar activities across a larger sample and, in particular, analyze how GTAs who might not 
be identified as strong teachers grow. Secondly, it would be interesting to rework the three 
papers assigned in the professional development seminar to remove the apparent deficit view 
of student thinking and then conduct similar research from a strength-based perspective. The 
growth of graduate student professional development in the mathematics community is 
exciting and should provide a rich ground for mathematics education researchers. 
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Learning to Notice and Use Student Thinking in Undergraduate Mathematics Courses 
 

Anna E. Pascoe        Shari L. Stockero 
Michigan Technological University  Michigan Technological University 

 This study evaluated the outcomes of an intervention focused on developing mathematics 
graduate teaching assistants’ (GTAs’) skills of noticing and effectively responding to instances of 
student mathematical thinking that have significant potential to further students’ learning. Four 
GTAs participated in a semester-long intervention that included individual analysis and group 
discussion of video of undergraduate mathematics lessons. The MOST Analytic Framework 
(Stockero, Peterson, Leatham, & Van Zoest, 2014) was introduced to aid in these activities. The 
GTAs also completed a pre- and post-interview to document their real time noticing and an 
assessment of common content knowledge. Results indicate that the intervention was successful 
in improving the GTAs’ noticing skills in a variety of ways and in their ability to propose 
student-centered responses. 

Key words: Graduate Teaching Assistant Training, Teacher Noticing 

Research has shown that student-centered instruction leads to more effective learning for 
people of all ages (National Research Council [NRC], 2005). Higher education has been slow or 
unsuccessful in implementing student-centered instruction (Barr & Tagg, 1995; Felder & Brent, 
1996), however, with transmissive instruction (i.e., lecturing) still prominent (Ramsden, 2003; 
Svinicki & McKeachie, 2014). Challenges for adopting student-centered instruction include 
student resistance, instructor comfort level, and the time needed to see results (Felder & Brent, 
1996; Seymour, 2002). Some researchers suggest promoting changes in higher education 
teaching methods through GTA training (e.g., Cano, Jones & Chism, 1991). Since effectiveness 
of GTAs typically affects undergraduate students in their early years of study, GTA training is 
also important in student retention (Cano et al., 1991; Speer, Gutmann, & Murphy, 2005). With a 
workforce shortage in science, technology, engineering, and mathematics (STEM) fields 
(President’s Council of Advisors on Science and Technology, 2012), student retention is crucial 
in university STEM departments (Seymour & Hewitt, 1997; Suchman, 2014).  

At the K-12 level, a teacher’s ability to notice aspects of instruction as it unfolds has been 
recognized as important in the implementation of student-centered instruction. Many studies 
have found that professional noticing of [students’] mathematical thinking—defined to include 
attending to, interpreting, and deciding how to respond to students’ strategies and understanding 
(Jacobs, Lamb, & Philipp, 2010)—can be learned and improved through teacher education (e.g., 
Jacobs et al., 2010; McDuffie et al., 2014; Sherin & van Es, 2009; Stockero, Rupnow, & Pascoe, 
2015, 2017). Although teacher noticing interventions are not widely practiced in higher 
education, the gains made with K-12 mathematics teachers suggest that similar results may be 
possible. 

Also foundational to effective mathematics teaching are the six domains of mathematical 
knowledge for teaching proposed by Ball, Thames, and Phelps (2008). Critical to this study is 
common content knowledge (CCK), the mathematical understanding and proficiency used in 
diverse contexts not exclusive to teaching. Without CCK, a teacher could not adequately guide 
students in building such knowledge. In addition, mathematics teachers would not likely be able 
to determine which instances of students’ mathematical thinking are important to notice without 
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a strong command of CCK. Because both noticing skills and CCK are important for effective 
mathematics teaching, it would be of interest to investigate if and how these factors are related.  

This work examines the outcomes of a GTA training intervention focused on analyzing 
undergraduate mathematics lesson videos with a teacher noticing framework as a means to 
support GTAs’ more effective noticing and use of student thinking, which has the potential to 
support their enactment of student-centered instruction in their classrooms. Of particular interest 
is measuring the effectiveness of the intervention in improving GTAs’ noticing of high-potential 
opportunities to build on student thinking (Leatham, Peterson, Stockero, & Van Zoest, 2015) and 
in supporting their ability to propose student-centered responses to such instances. This work 
seeks to answer the following research questions: (a) How effective is the intervention in 
improving GTAs’ noticing of MOSTs?; (b) How effective is the intervention in supporting the 
GTAs’ ability to propose in-the-moment student-centered responses to instances they identified 
in video?; and (c) What is the relationship between the GTAs’ CCK and their noticing skills? 

 
Theoretical Framework 

 
With the goal of improving GTAs’ use of student mathematical thinking in undergraduate 

mathematics classrooms, this study used the MOST Analytic Framework (Leatham et al., 2015) 
to characterize instances of student mathematical thinking that are not only important to notice, 
but also the most fruitful to discuss in a lesson because of their potential to support students’ 
mathematical learning. MOSTs—Mathematically Significant Pedagogical Opportunities to Build 
on Student Thinking—are defined as “instances of student thinking that have considerable 
potential at a given moment to become the object of rich discussion about important 
mathematical ideas” (p. 90). To be a MOST, a moment must satisfy three characteristics: student 
mathematical thinking, mathematically significant, and pedagogical opportunity. To satisfy these 
characteristics, the student mathematics must be inferable and related to a mathematical point, 
the mathematical point must be appropriate to the learning level of the students and a central goal 
for student learning, the student mathematics must create an intellectual need for students to 
understand the mathematical point, and it must be the right time to address the intellectual need 
at that moment.  

 
Methodology 

 
Participants and Intervention 

The participants were four mathematics GTAs from a Midwestern U.S. university. Three had 
completed their first year of graduate study and had one to two semesters of teaching experience, 
and one had completed two years of graduate study with six semesters of teaching experience. 
All four participants had previously completed training required by the mathematical sciences 
department: a one-week GTA orientation prior to their first semester of study, a course entitled 
Teaching College Mathematics in which the GTAs prepared and delivered lessons three times 
throughout a semester with feedback and support from peers and their instructor, and a six-week 
seminar during their first semester of teaching in which the GTAs read and met weekly with an 
instructor to discuss select chapters of Teaching Tips by Svinicki and McKeachie (2014). Their 
participation in the current study was voluntary. 

The GTAs engaged in a ten-week professional development intervention facilitated by the 
first author in the fall 2015 semester. The goal of the intervention was to improve the GTAs’ 
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skills in attending to, interpreting, and responding to MOSTs in a student-centered manner. The 
design of this study was adapted from Stockero and colleagues’ work with prospective secondary 
school mathematics teachers (Stockero, 2014; Stockero et al., 2015, 2017) focused on helping 
them learn to notice and respond to MOSTs that surface during a mathematics lesson. Both 
before and after the completion of the intervention, each GTA completed a one-on-one, video-
recorded interview with the researcher/facilitator; the purpose of this interview was to capture 
their in-the-moment noticing. During the two interviews, the GTA watched the same short video 
clip from an undergraduate mathematics lesson that was recorded at the same university in which 
the GTAs were enrolled. The GTA was prompted by the researcher to stop the video if they 
thought a mathematically important moment that the instructor should notice (MIM) occurred. A 
definition of these moments was not given to the GTA to establish baseline data. When a GTA 
stopped the video, the researcher asked them to describe the moment they noticed, why they 
chose it, and what they might do if such a moment happened in their own classroom. Using 
Studiocode video analysis software (SportsTec, 1997-2016), the instances chosen by the GTAs 
were marked on a video timeline for later analysis. 

In each week of the intervention, the GTAs and the researcher/facilitator individually 
analyzed a minimally edited video of a lesson from an undergraduate mathematics classroom 
that was recorded by the researcher at the university. This individual analysis was in preparation 
for a weekly group meeting held among the four GTAs and the facilitator to discuss the video 
collectively. One of the classroom videos was recorded in one of the GTAs’ classrooms during a 
previous semester, but otherwise the videos were not of the GTAs’ own classrooms. 

In the first three weeks of the intervention, the GTAs used the Studiocode video analysis 
software to tag MIMs and add text to describe what they noticed and why they chose each 
instance (i.e., why it was important to notice). Again, the definition of such moments was left 
open-ended to establish baseline data. The researcher, as an experienced user of the MOST 
Analytic Framework, used the Studiocode software to tag and document MOSTs—the types of 
instances that were the goal for GTA noticing—in the same videos. The researcher reconciled 
any instances of uncertainty with one of two other researchers experienced in the use of the 
MOST framework. Before the group meeting with the GTAs, the researcher examined the 
participants’ tagged video timelines and associated text and compared the instances chosen by 
the GTAs and the MOSTs identified by the researcher. Instances discussed at the group meeting 
were chosen with care by the researcher/facilitator, limiting the number of instances so that the 
meeting did not, on average, last more than one hour. Instances were selected for discussion for a 
variety of reasons. These included instances that one or more GTAs marked—both those that the 
researcher identified as MOSTs and that the researcher did not identify as MOSTs—as well as 
instances identified by the researcher as MOSTs that were not noticed by the GTAs.  

In the group meetings, the facilitator pushed the GTAs to articulate how each moment fit the 
early prompt of MIMs; that is, what the instructor had to notice in each moment and why it was 
mathematically important. Through discussion with peers and guidance from the facilitator, the 
GTAs worked toward building a definition of MIMs. This early phase of the intervention was 
intended as an introduction to the teacher noticing construct. That is, it got the GTAs to start 
thinking about what might be important for an instructor to notice during a lesson and to create a 
need for a more formal language and criteria with which to describe such important instances 
(i.e., the need for a framework). 

After three weeks of analyzing video and constructing a meaning for the early MIM prompt, 
the GTAs were introduced to the MOST Analytic Framework by being given a paper to read that 
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defined MOSTs (Stockero et al., 2014). In the week that they read the paper, the GTAs 
reexamined two of the videos they had already analyzed and picked out instances that they 
believed met the characteristics of a MOST. The group meeting discussion of the reexamined 
videos then revolved around whether instances fit all six criteria of a MOST.  

In the remaining six weeks of the intervention, the GTAs were prompted to tag MOSTs in 
the new classroom videos that they analyzed and to describe in text how each instance satisfied 
all six MOST criteria. The GTAs were provided a text template to prompt them to specifically 
address each MOST criterion in their written responses in the last five weeks of the intervention. 
In these weeks, the facilitator similarly chose with care which instances to discuss at the weekly 
group meetings, with the important moments now having a clear definition. The group meetings 
revolved around how each instance that was discussed fit or did not fit the definition of a MOST.  

During the group meeting discussion of the eighth of a total of nine videos, the facilitator 
prompted the GTAs to propose building moves in response to the MOSTs that were discussed—
a teacher move that engages students in collaboratively discussing the significant student 
mathematical thinking that is present in the classroom (Stockero et al., 2014). These building 
moves, if proposed and practiced effectively, would use student mathematical thinking to further 
the learning of all students, which aligns with effective student-centered mathematics instruction 
(National Council of Teachers of Mathematics [NCTM], 2014). The GTAs were then prompted 
to include proposed building moves as part of the text template in subsequent video analyses. 

Additionally, at the conclusion of the intervention the GTAs completed the Calculus Concept 
Inventory [CCI] (Epstein, 2013) to measure their knowledge of calculus content. The researcher 
also completed the CCI and reconciled the answers with a mathematics faculty member to create 
an answer key. The purpose of taking the CCI was to see whether there was a relation between 
GTA performance on the CCI (a measure of their CCK) and noticing of MOSTs. 
 
Data Collection and Analysis 

The data for this study included the CCI results and the video timelines that indicated the 
instances marked and described by the GTAs in the classroom videos during the interviews and 
the intervention. The CCI results were scored according to the answer key. The score of each 
GTA was compared to the rest of the group to see whether there were any obvious differences in 
scores that could potentially account for differences in noticing skills. 
 Categorizing Instances. Each instance marked and described by the GTAs in both the 
interview data and in the weekly timelines was coded and analyzed by the researcher in several 
different ways in order to examine changes in the GTAs’ noticing. First, like in the work of 
Stockero et al. (2015, 2017), each instance was coded according to agent (who or what was 
noticed) and mathematical specificity (the way in which the mathematics was discussed). 
Instances that had any type of student agent were also coded for focus (what about the student(s) 
was noticed). See Figure 3 for coding categories and code descriptions.  

Second, like the work done by Stockero and colleagues (2017), each instance was coded 
according to whether it was a MOST and whether the reasoning provided by the GTA was 
consistent with the MOST criteria. The MOSTs for each timeline were determined by the 
researcher’s coding since she was an experienced user of the MOST Analytic Framework. A 
GTA instance was coded as a MOST if it occurred at around the same time in a video as a 
MOST. In an instance coded as a consistent MOST, the GTA identified the characteristics of the 
instance that qualified the instance as a MOST according to the framework (student 
mathematical thinking, mathematical significance, and pedagogical opportunity). In an 
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inconsistent MOST, the GTA captured an instance related to a MOST, but was not focused on 
the student mathematical thinking or was focused on non-mathematical aspects of the instance, 
such as student participation or motivation. A GTA instance was coded as a non-MOST if it did 
not correspond time-wise with a MOST in the video. 

 
Coding 

Categories 
Category 

Description 
Codes Code Description 

Agent Who or what 
was noticed 

Teacher The teacher is the sole object of noticing 
Teacher/ 
Student 

Both the teacher and student(s) are noticed, 
with the teacher receiving more emphasis 

Student/ 
Teacher 

Both the teacher and student(s) are noticed, 
with the student receiving more emphasis 

Student Group A collection of students is the object of 
noticing 

Student 
Individual 

An individual student’s contribution is the 
object of noticing 

Math The mathematics itself, not a person or 
persons, is the object of noticing 

Mathematical 
Specificity 

Whether and 
how the 

mathematics 
was discussed 

Non-Math 

The mathematics is not discussed, usually 
because a non-mathematical aspect of the 
classroom is discussed instead, like classroom 
management or student engagement 

General Math The mathematics is referenced with little to no 
detail 

Specific Math 
The mathematics is clearly stated with enough 
detail to recognize the mathematical topic 
without having to watch the video 

Focus 

For instances 
with a student 
agent, what 
about the 

student(s) was 
attended to 

Affective 
Interaction 

A non-mathematical interaction between 
student(s) and teacher, usually focused on 
something like classroom management or 
student engagement 

General 
Understanding 

The nature of a student’s or students’ 
comprehension of a concept, problem, or 
answer 

Mathematical 
Interaction 

An interaction between students or between 
students and teacher that is mathematical in 
nature, usually focused on the process of 
working together for the purpose of learning 
mathematics 

Noting Student 
Mathematics 

A specific instance of student mathematical 
thinking is described, like a student statement 
or question 

Analyzing 
Student 

Mathematics 

Not only is a specific instance of student 
mathematical thinking referenced, but an 
attempt to interpret is made, like reasoning 
why a question was asked or a solution 
method was proposed 

Figure 3. Components of noticing coding scheme (adapted from Stockero et al., 2015, 2017). 
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 Response Coding. Because one of the goals of the intervention was for GTAs to propose 
student-centered responses, the pre- and post-interview instances were additionally coded 
according to whether the response to each instance proposed by the GTAs was student-centered 
or teacher-centered. A student-centered response was one in which the teacher would involve 
one or more students in responding to the instances, whereas a teacher-centered response would 
only involve the teacher. For example, in an instance where a student shared a solution step, a 
GTA proposed, “Maybe ask them, 'Why would you do that? What is the purpose of that? How 
does that help us going forward?'” This response was coded as student-centered since the student 
or students in the class would be the ones thinking about and addressing the mathematics of the 
instance rather than the teacher explaining the significance of what the student said. In another 
example, a student asked a question, and the GTA proposed, “I would quickly explain.” This 
response was coded as teacher-centered since the teacher would be the only one involved in 
reacting to the student question, rather than perhaps posing the question to the class. 
 Coding Analysis. After the coding was complete, the data were summarized to look for 
changes in the GTAs’ noticing week to week throughout the intervention. The analyses focused 
on the components of noticing (agent, mathematical specificity, and focus) and MOSTs. 
Comparisons of student-centered responses from pre- and post-interviews were also made to 
look for changes in how the GTAs might respond to the moments they selected.  

To provide a common unit of measure among all GTA coding, percentages were calculated 
for each code out of each GTA’s total number of marked instances in each video. These 
percentages were used to track changes in the GTAs’ noticing on an individual basis. Averages 
for all the GTAs’ coding per video were also calculated to reflect changes of the group as a 
whole. The intervention data was then split into three stages—early, middle and late in the 
intervention—and the data were summarized and average percentages were calculated for each 
stage of the intervention. In this analysis, baseline refers to Videos 1, 2, and 3, the first three 
videos of the intervention and before the introduction of the MOST framework. Middle refers to 
Videos 4, 5, and 6, the three videos immediately following the introduction of the MOST 
framework, and final refers to Videos 7, 8, and 9, the last three videos of the intervention when 
the GTAs should have had the best understanding of the framework. Data from the pre- and post-
interviews, including the response coding, were analyzed separately due to the difference in the 
nature of the interviews. Recall that in the interviews, the GTAs engaged in in-the-moment video 
analysis, whereas in the individual video analysis, repeated viewings and lengthy deliberation 
about instances were possible. 

 
Results 

 
Components of Noticing 

Agent. Because the goals of the intervention placed an emphasis on noticing students and 
their mathematical thinking, changes were examined in the GTAs’ noticing of instances in which 
students were the primary agent (i.e., Student/Teacher, Student Individual, and Student Group 
agents). Table 1 provides the percentages of such instances in each stage of the intervention and 
the pre- and post-interviews. In the table it can be seen that both individually and as a group the 
general trend was an increase in the GTAs’ noticing that had a primary student agent from 
baseline to middle to final. Impressively, the majority of GTAs averaged 100% and the group 
averaged 94% of primary student noticing in the final data. 
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Table 1 
Noticing of Primary Student Agent by Stage and Interview 

Participant Baseline Middle Final Pre Post 
GTA 1 41% 100% 100% 29% 100% 
GTA 2 50% 89% 100% 41% 100% 
GTA 3 63% 100% 100% 75% 100% 
GTA 4 28% 67% 75% 80% 100% 
Group 46% 89% 94% 56% 100% 

 
Table 1 also shows improvement in the GTAs’ noticing of instances with a primary student 

agent from pre- to post-interview. While GTAs 3 and 4 displayed a high level of noticing of 
students in the pre-interview (75% and 80%, respectively), GTAs 1 and 2 showed the most 
growth in this type of noticing. Most notably, 100% of the GTAs’ noticing in the post data was 
primarily on students. This indicates that the GTAs developed the ability to focus their noticing 
on students, rather than on the teacher or the mathematics itself, in their in-the-moment analysis 
of video. 
 Mathematical Specificity. With student mathematical thinking and mathematical 
significance being two of the three characteristics of a MOST, a possible indicator of 
improvement in noticing of MOSTs is the ability to speak about the mathematics of an instance 
in a detailed manner. Thus, changes were examined in the GTAs’ percentages of instances that 
were coded for mathematical specificity at the most detailed level, Specific Math. 

Table 2 shows that the baseline percentages for Specific Math were rather high for all GTAs 
with the exception of GTA 4, who only had 6% of their instances coded as such. The middle data 
showed an increase in mathematical specificity for all GTAs, with the most considerable increase 
being that of GTA 4, who had a 77% increase in instances coded as Specific Math. Perhaps most 
important is that all of the GTAs exhibited 100% Specific Math noticing in the final data.  

 
Table 2 
Specific Math Noticing by Stage and Interview 

Participant Baseline Middle Final Pre Post 
GTA 1 97% 100% 100% 100% 100% 
GTA 2 85% 100% 100% 59% 100% 
GTA 3 81% 100% 100% 75% 100% 
GTA 4 6% 83% 100% 40% 100% 
Group 67% 96% 100% 69% 100% 

  
Table 2 also indicates improvement for all of the GTAs in instances coded as Specific Math 

from pre- to post-interview. While GTA 1 already discussed the mathematics in a high level of 
detail in the pre-interview, it is worth noting that this level of mathematical specificity was 
maintained in the post-interview. GTA 4 showed the most improvement from 40% in the pre-
interview to 100% in the post-interview data. Like the final data, the post-interview data 
indicated 100% Specific Math coding for all participants, implying that the GTAs reached 100% 
Specific Math noticing not only when completing individual data analysis with time to reflect 
and write about each instance, but also when put on-the-spot in an interview setting for their 
video analysis. 
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 Focus. Recall that the focus codes were only assigned to instances with a student agent and 
describe what about the student(s) was attended to. The two focus codes that most aligned with 
the goals of the intervention, due to their focus on student mathematics, are Noting Student 
Mathematics and Analyzing Student Mathematics. Because of their relationship to the goals, 
changes were explored in the GTAs’ noticing with both of these focus codes. While the focus 
codes only apply to those instances with a student agent, the percentages calculated in the 
following results are out of the total instances identified by the GTAs to reflect an overall, and 
not a narrow, sense of their noticing. 

The first focus analysis examined both Noting and Analyzing Student Mathematics in sum to 
capture changes in the total percentage of instances in which the GTAs were focused on student 
mathematics. Table 3 shows widespread improvement for all GTAs in describing and/or 
interpreting the student mathematical thinking in an instance. Of particular importance is that, 
with the exception of GTA 4, the GTAs were Noting and/or Analyzing Student Mathematics 
100% of the time as soon as the middle data, immediately following the introduction of the 
MOST framework. While GTA 4 did not reach 100% for these noticing foci, substantial 
increases were still made throughout the intervention. 

 
Table 3 
Noting and/or Analyzing Student Mathematics by Stage and Interview 

Participant Baseline Middle Final Pre Post 
GTA 1 32% 100% 100% 29% 100% 
GTA 2 48% 100% 100% 19% 100% 
GTA 3 52% 100% 100% 13% 100% 
GTA 4 9% 50% 83% 20% 100% 
Group 35% 88% 96% 20% 100% 

 
The pre- and post-interview data also exhibit increases in Noting and/or Analyzing Student 

Mathematics for all GTAs, with all of the GTAs reaching 100% of instances with these focus 
codes. Thus, even for in-the-moment video analysis in an interview setting, all of the GTAs 
developed the ability to describe and/or interpret the student mathematical thinking in their 
noticing of classroom instances as a result of the intervention. 

The second focus code analysis investigated changes in just the Analyzing Student 
Mathematics code, where the GTAs made an attempt to interpret a specific instance of student 
mathematical thinking. This focus code was honed in on specifically since the MOST Analytic 
Framework requires not only a focus on student mathematical thinking, but also that an inference 
be made about the student mathematics. Therefore, changes in Analyzing Student Mathematics 
could be an indicator of growth in Jacobs and colleagues’ (2010) second noticing skill of 
interpreting [students’] understandings and in the analysis of MOSTs. 

The data in Table 4 indicates that Analyzing Student Mathematics was absent or low in the 
baseline videos, both individually and as a group. By the middle videos, substantial increases 
were made by all GTAs, with GTAs 1, 2, and 3 improving in this aspect of noticing from the 
baseline to middle data by a range of 72% to 84%; only GTA 3 reached 100% in the final data. 
While improvements were made overall throughout the intervention, there were small decreases 
observed for GTA 1 and GTA 2 from the middle to the final data. 
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Table 4 
Analyzing Student Mathematics by Stage and Interview 

Participant Baseline Middle Final Pre Post 
GTA 1 16% 100% 94% 14% 100% 
GTA 2 0% 72% 67% 0% 75% 
GTA 3 24% 96% 100% 13% 100% 
GTA 4 0% 33% 47% 0% 100% 
Group 10% 75% 77% 7% 94% 

 
The pre-interview and post-interview data exhibit remarkable growth for in-the-moment 

noticing that included Analyzing Student Mathematics. GTA 4 demonstrated the largest growth 
at 100% from pre- to post-interview, while increases for the other GTAs were also large, ranging 
between 75% to 87%. Interestingly, GTA 4’s final percentage for instances coded as Analyzing 
Student Mathematics in the individual analysis was still quite low at 47%, but reached 100% for 
this focus code in the post-interview video that was analyzed in-the-moment. A possible reason 
for this could be that GTA 4 more completely communicated what they noticed with spoken 
word in the interview as compared to written word in their text that accompanied the 
individually-analyzed video timelines. Another possible reason is that the shorter video used for 
the interview was more manageable to make sense of for GTA 4. In general, these results suggest 
that the intervention was successful in developing the GTAs’ abilities to focus on and interpret 
student mathematical thinking in an in-the-moment context. 
 
MOST Analysis 

While the data related to the noticing components of primary Student agent, Specific Math, 
and Noting and/or Analyzing Student Mathematics point to improvements in noticing aligned 
with the goals of the intervention, the main goal was to improve the GTAs’ noticing of MOSTs. 
Naturally, changes were examined in the GTAs’ noticing of these instances. Like the other 
analyses, the percentages reported are out of the total set of instances marked by the GTAs. 
 Inconsistent and Consistent MOSTs. The GTAs’ noticing of MOSTs, both inconsistent and 
consistent, was first investigated. Table 5 shows that all of the GTAs improved in their noticing 
of MOSTs during the three stages of the intervention. That is, the percentage of the instances 
marked by the GTAs that aligned with MOSTs increased from stage to stage, with the group’s 
average percentages increasing from a baseline of 19%, to 33% in the middle data, and finally to 
73% in the final data. This result indicates that the intervention improved the GTAs’ noticing of 
moments with significant potential to improve student mathematical learning, even if perhaps the 
GTAs were not focused on the student mathematics in those instances (making them inconsistent 
MOSTs). 

The pre- and post-interview data showed that all of the GTAs improved in their in-the-
moment noticing of MOSTs, with increases ranging from 29% to 60%. It is worth recalling that 
the prompt for both the pre- and post-interview was to identify MIMs, which may explain why 
there was not a higher percentage of instances that were MOSTs among those identified in the 
post-interview. An idea underlying the intervention was that the MOST Analytic Framework 
would provide a way to characterize mathematically important moments that the instructor 
should notice, but perhaps the connection between MIMs and MOSTs was not made by the 
GTAs, or was not internalized for in-the-moment analysis. Still, it is encouraging that 
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improvements were made in the noticing of important student thinking as a result of the 
intervention. 
 
Table 5 
Noticing of Inconsistent and Consistent MOSTs by Stage and Interview 

Participant Baseline Middle Final Pre Post 
GTA 1 32% 61% 87% 29% 60% 
GTA 2 19% 36% 76% 19% 50% 
GTA 3 25% 57% 78% 38% 67% 
GTA 4 19% 33% 53% 40% 100% 
Group 24% 47% 73% 31% 69% 

 
 Consistent MOSTs. The subset of MOSTs that were consistent MOSTs was then further 
examined; that is, those instances that both aligned with MOSTs time-wise in the video and were 
correctly characterized according to the MOST Analytic Framework. Table 6 shows 
improvement in the noticing of consistent MOSTs from stage to stage of the intervention. Of 
particular interest is that in comparison to the inconsistent and consistent MOST data in Table 5, 
the consistent MOST data have lower baseline percentages, but the middle and final data 
percentages match exactly in these two analyses. This signifies that all of the GTA-identified 
instances that aligned with MOSTs in the middle and final data were also instances that were 
correctly characterized according to the MOST Analytic Framework, which alludes to the 
framework being an important tool in not only recognizing the right moments (align with 
MOSTs) but also for the right reasons (consistent MOSTs). 

 
Table 6 
Noticing of Consistent MOSTs by Stage and Interview 

Participant Baseline Middle Final Pre Post 
GTA 1 24% 61% 87% 14% 40% 
GTA 2 19% 36% 76% 11% 50% 
GTA 3 25% 57% 78% 13% 67% 
GTA 4 8% 33% 53% 20% 100% 
Group 19% 47% 73% 14% 64% 

 
The pre-interview and post-interview data shows considerable increases in the GTAs’ in-the-

moment noticing of consistent MOSTs. As with the trends in the intervention data, the interview 
percentages for consistent MOSTs were lower in comparison to the combined inconsistent and 
consistent MOST percentages for the pre-interview, but were very similar in the post-interview 
(see Table 5 and Table 6). In fact, with the exception of GTA 1, the post-interview percentages 
for consistent MOSTs matched those of the combined inconsistent and consistent MOSTs. Like 
the intervention data, the interview data suggests that the intervention was successful in 
improving the GTAs’ ability to notice MOSTs and reason about them in accordance with the 
MOST Analytic Framework, even in an in-the-moment noticing context. 

 
Responses 

The other main goal of the intervention was to increase the number of student-centered 
responses that were proposed by the GTAs to instances that they identified in the video. Table 7 
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displays the percentage of instances in the interview data for which the GTAs provided a 
student-centered response to explain what they would do if the identified instance occurred in 
their classroom. It can be seen that substantial increases in the percentage of such responses were 
made from pre- to post-intervention. In fact, with the exception of GTA 4, 100% of the responses 
provided by the GTAs were student-centered in the post data. While GTA 4 did not reach 100%, 
the percentage of student-centered responses that they proposed still increased from pre- to post-
interview. These results suggest that the intervention was successful in improving the GTAs’ 
skills in proposing student-centered responses in an in-the-moment context. 

 
Table 7 
Student-centered Responses by Interview 

Participant Pre Post 
GTA 1 0% 100% 
GTA 2 57% 100% 
GTA 3 83% 100% 
GTA 4 33% 50% 
Group 43% 88% 

 
CCI Scores 

After the intervention, the GTAs took the CCI assessment to determine whether their CCK 
may have had an effect on their noticing. Table 8 shows the GTAs’ performances, both as a raw 
score and as a percentage. Overall, the GTAs’ performances on the CCI were quite similar, 
suggesting that all of the GTAs in the study had roughly the same aptitude for calculus concepts; 
therefore, there was no evidence to suggest that differences in CCK accounted for differences 
observed in their noticing. 

 
Table 8 
CCI Scores 

Participant Score out of 22 Percentage 
GTA 1 17 77% 
GTA 2 17 77% 
GTA 3 19 86% 
GTA 4 19 86% 
Group 18 82% 

 
Discussion 

 
This study sought to answer research questions related to the effectiveness of an intervention 

in improving GTAs’ noticing of mathematically significant pedagogical opportunities to build on 
student thinking (MOSTs), the effectiveness of the intervention in supporting the GTAs’ ability 
to propose in-the-moment student-centered responses, and the relationship between the GTAs’ 
common mathematical content knowledge and the development of their noticing skills during the 
intervention. Results showed that the intervention was successful in improving the GTAs’ 
noticing in a number of ways and in two different video analysis contexts. When analyzing video 
both individually and in an in-the-moment interview context, the GTAs greatly increased in their 
noticing of instances primarily focused on students, the percentage of instances in which they 
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discussed the mathematics of an instance in a specific manner, their focus on describing (Noting) 
and/or interpreting (Analyzing) the student mathematics of an instance, and their noticing of 
consistent MOSTs. These results add support to the successes already seen at the K-12 level of 
interventions that use video and a defined framework to improve the noticing skills of preservice 
and inservice mathematics teachers (Santagata, 2011; Schack et al., 2013; McDuffie et al., 2014; 
Stockero et al., 2015, 2017) and suggest that such interventions can be successful at the 
undergraduate level as well. 

The intervention was also successful in improving the GTAs’ skills in proposing student-
centered responses to instances they identified in video, the deciding how to respond skill of 
noticing (Jacobs et al., 2010). Specifically, these gains were documented from pre- to post-
interview in an in-the-moment context. This finding builds upon those of existing studies 
(Jacobs, Lamb, Philipp, & Schappelle, 2011; Jacobs et al., 2010; Schack et al., 2013) that suggest 
that professional development structured around noticing students’ mathematical thinking in 
video and/or classroom artifacts can develop teachers’ abilities in not only the noticing skills of 
attending to and interpreting [students’] strategies and understandings, but also the skill of 
deciding how to respond (Jacobs et al., 2010). 

While most of the GTAs showed similar improvements in their noticing skills and in the 
proposal of student-centered responses to instances in video, GTA 4’s improvements were not as 
consistent. This raises questions as to why. One explanation would be a difference in CCK, as 
measured in this study by the CCI. The CCI scores were very similar among the GTAs, however, 
providing no evidence to support the idea that differences in mathematical knowledge were 
related to differences in noticing skills. Recall also that GTA 4’s stronger post-interview results 
for Analyzing Student Mathematics suggested that perhaps they were better able to communicate 
in spoken word than in written text, another potential explanation for the lower percentages in 
the individual analysis data. While this participant had received the same previous departmental 
training as the other GTAs after admission to the university’s graduate program, GTA 4 was the 
only international student in the study, and thus had a different cultural and educational 
background from the other domestic GTAs. Perhaps, then, not having a similar educational 
background provided a challenge to GTA 4’s development in their noticing skills. This suggests 
that international GTAs may need additional support when engaging in a noticing intervention 
such as the one in this study. However, the data available from this study is limited to one 
international GTA, and thus further study is required. 

While the results of this study suggest that similar interventions could be successful in 
supporting GTAs in learning to notice student mathematical thinking, there are limitations to this 
study and further questions to investigate. This was one, isolated study with a small number of 
participants. The significance of the results, therefore, must not be overgeneralized. Future work 
could involve replicating this study with more GTAs, with GTAs of varying cultural 
backgrounds, at other universities, with another set of videos, and in other subject areas to see 
whether there are similar results. To expand on this study further, the following questions could 
also be investigated: How does such an intervention affect the GTAs’ classroom teaching? What 
role does the facilitator play in building the GTAs’ noticing skills during meetings? How does 
the set of videos used in the intervention affect the improvement of the GTAs’ noticing skills? 

Limitations aside, the intervention in this study was successful in improving the noticing skills 
of mathematics GTAs and in the proposal of student-centered responses, both steps in the right 
direction for advancing student-centered instruction in undergraduate mathematics courses. The 
development and improvement of these skills, while achieved in this study in the structure of a 
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professional development intervention, have the potential to improve the GTAs’ classroom 
instruction. Thus, an intervention such as this that targets mathematics GTAs could possibly 
influence the instructional methods used in higher education and improve the retention of first- 
and second-year undergraduate students (Cano et al., 1991; Speer et al., 2005). Completing 
professional development focused on noticing important student ideas could not only improve 
mathematics pedagogy in general, but provide opportunities to practice student-centered 
instructional methods, which are essential for effective teaching (NRC, 2005; NCTM, 2014). 
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In the exploratory study presented in this paper, the authors aim to construct a model for the 
processes by which students in a multivariable calculus class conceptualize solid regions in 
three dimensions. We designed and recorded student work from two tasks in which students must 
decode a description of a solid figure and answer questions assessing the strength of their con-
ception of the figure. Presented here are findings and common themes that emerged from the 
analysis of interviews and group work on two of these tasks, including five generalizable obser-
vations about how students process three-dimensional information. 

Key words: multivariable calculus, spatial reasoning, three-dimensional solid 

Introduction 
 

As motivation for our study, we consider the following problem, variations of which appear 
in many multivariable calculus textbooks.  

In anecdotal observations of student work, the authors found that students would attempt to 
solve this problem, apparently without attempting to conceptualize the solid figure E as a subset 
of ℝ𝟑. In particular, students would set up the triple integral using the given bounds without at-
tempting to form a visuospatial conception of the solid. While this observation calls into question 
the validity of such problems in building and assessing students’ understanding of volume, it also 
raised the question, through what process would students decode sets of inequalities such as 
those presented in Task 0 as a solid figure? More generally, when working with three-
dimensional spatial information, on what strategies do students rely, and what obstacles do they 
encounter? 

In the present study, we use data from 76 undergraduate multivariable calculus students col-
lected in individual interviews and recorded group work, to identify common strategies and ob-
stacles in decoding, processing, and communicating representations of solid figures. 
 

Theoretical Background 

There is a rich history of studying student conceptions of three-dimensional solids in the con-
text of spatial reasoning. Much of the work in this area relies on methodology in which subjects 
must interpret a two-dimensional drawing of a solid figure and then perform some spatial task 
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such as rotation (Bodner, Guay, 1997) or identification of cross-sections (Cohen, Hagerty, 2007). 
However in studies where a two-dimensional drawing is used, Gorgorió (1998) warns, “Individ-
uals’ demonstration of their spatial orientation ability depends also on their abilities for interpret-
ing and communicating spatial information.” Indeed it has been shown that misconceptions can 
lead to errors both during interpretation (Parzysz, 1988; Hallowell, et al, 2015), and communica-
tion (Ben-Chaim, Lappan, & Houang, 1989; Hershkowitz, 1990). Thus, building on the paradigm 
set forth by Parzysz (1991), we model student responses to the tasks as information that has 
passed through three phases: decoding, processing, and communication. 

The decoding phase encompasses interpretation of the given representation. The processing 
phase includes any mathematical or visuospatial treatments the subject performs, as well as con-
versions between registers. Finally, in the communication phase, subjects encode their responses 
to the task. Included in the communication phases are written work, drawings, conversation with 
other students, and building physical models. 

In a multivariable calculus class, students are asked to become fluent in interpreting descrip-
tions of figures in ℝ𝟑 which come in a variety of forms: written descriptions, equations or ine-
qualities in three variables, two-dimensional drawings, and combinations of these. Viewed from 
the theoretical framework of semiotic representation theory, this requires students to coordinate 
representations in several registers (Duval, 1993), and perform conversions from one register to 
another (Duval, 2006). Trigueros and Martínez-Planell (2010) investigate how students use this 
coordination of registers to perform tasks related to surfaces and equations in multivariable cal-
culus. Our study builds on this work by applying the same theoretical framework to solid figures 
in three dimensions. 

In particular, our study focuses on three-dimensional solid figures that are likely unfamiliar 
to students. Our rationale for working with such figures is threefold. First, by focusing on unfa-
miliar solids, we aimed to remove the possibility that students would use prior knowledge about 
the figures to answer questions. Responses to questions about the volume of a familiar solid, like 
a cone or sphere, we reasoned, would likely better reflect students’ knowledge of memorized 
formulae rather than their reasoning about the solid figure itself.  

Figure 1. Model for student responses. This figure illustrates the flow of 
information resulting from students’ response to a task. Errors or loss of 
information may occur in each phase. 

Initial Representation Response 

decoding communication 

processing 

Student Conception 
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Secondly, dealing with unfamiliar solids of the type described in Task 0 requires students to 
comprehend the combination and interaction of primitives like planes, lines, and parabolas, with 
which we assume that students are familiar. Here we borrow the term primitive from the field of 
computer graphics to mean a simple geometric figure out of which more complicated structures 
can be built. We aimed to create tasks for which the challenge would be to conceptualize the in-
teraction of simple parts rather than the conceptualization of the parts themselves. 

Finally, we hypothesized that the lack of close representations of solid figures in traditional 
instruction and assessment might mean that students’ framework for thinking about such figures 
may be entirely divorced from the three-dimensional nature of the figures themselves. Here we 
use the term close representation in the sense of Parzysz (1988) to mean that the abstract figure 
and its representation are in the same dimension. For three-dimensional solid figures, two-
dimensional drawings (like those in Figure 3) would be distant representations, and three-
dimensional models would be close representation. We use tasks involving close representations 
to force students to reckon with three-dimensional information directly. 

Methodology 
 

The present exposition is part of a larger study in which we seek to understand how students 
process three-dimensional information in the context of multivariable calculus. In this explorato-
ry phase, we designed several tasks meant to elicit responses that would give insight into the 
strategies students use and the obstacles they face in conceptualizing solid figures. We will dis-
cuss results from Tasks 1 and 2 below. 
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Rationale for Tasks 
Our design of these tasks was motivated by the model illustrated in Figure 1. Each of these 

tasks pairs a close representation of a solid figure with an algebraic one. Underlying the rationale 
behind this pairing is the assumption that students will face little difficulty in decoding the close 
representation, nor in communicating a robust enough conception of the figure into the medium 
of a clay model. Under this assumption, errors in student work on Task 1 could be attributed to 
misunderstandings or miscalculations related to the decoding and processing of the sets of ine-
qualities1. Likewise, in Task 2, we assume that the spatial information represented by the 3D 
printed models is easily decoded, and difficulties for part (a) will only arise in decoding the sets 
of inequalities, and the processing required for the matching task.  

The figures chosen for these tasks were carefully selected so that they would likely be unfa-
miliar to students, so that their defining inequalities were either linear or parabolic, and so that 
they would be sufficiently complex. The figure for Task 1, which is described by linear inequali-
ties only, has six planar faces corresponding to the six inequalities, of which only 𝑧 ≤ 𝑥 + 𝑦 in-
volves more than one variable. The two figures in Task 2 were chosen so as not to be easily dis-
tinguished by superficial characteristics of the figures and inequalities: each has five faces, four 
of which are planar, and one of which is a parabolic cylinder, and x, y, and z are all non-negative 
at every point in the figure. The two figures from Task 2 also satisfy Cavalieri’s Principle, in that 
the cross-sections of the two solids by planes of the form 𝑧 = 𝑧0 have the same area for every 
constant 𝑧0 and therefore the figures have the same volume. See Figure 2 for a photograph of the 
3D models used in Task 2, and Figure 3 for drawings of the abstract figures in the tasks.  

                                                 
1 This assumption was not entirely accurate since some students who demonstrated a robust conception of the solid 
made errors in the model the produced related to the relative scaling in the x, y, and z variables. 

Figure 2. Photograph of the 3D printed models E and F provided to 
students in Task 2. The coordinate axes were drawn onto the models. 
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Participants and Data Collection 
Data collection involved videotaping students working in groups on the tasks during nine 

class sections from two different instructors in the spring and summer of 2016. One of these sec-
tions was a designated honors class, specifically intended to emphasize conceptual understand-
ing, and in which students had previously interacted with 3D printed models. The rest were 
graduate student led discussion sections for lecture-based classes. Additionally, we conducted 
individual interviews with four students. In total, 76 students participated, and we grouped stu-
dents into 29 response groups. We also collected students’ written work and photographed the 
clay models produced by the students in Task 1. Because our study was exploratory and not 
comparative in nature, we favored variety and breadth in our data collection over rigorous con-
trol for confounding variables. 

Data Analysis 
We used a grounded theory approach (Glaser & Strauss, 1967) to learn what processes stu-

dents used to go from a subset of inequalities in ℝ𝟑 to a robust mental image. In our early passes 
through the data, we transcribed the video and focused on using coding to categorize response 
types for each task, and to identify and classify students’ task-specific strategies and difficulties. 
From this preliminary analysis emerged several “generalizable observations”—observations of 
student work that were common to both tasks, and which may be more generally applicable and 
observable in student work involving three-dimensional information. 

Results 

We organize the results of our analysis by first describing observations from each task indi-
vidually, and then explaining the generalizable observations that emerged from this preliminary 
analysis. 

Observations From Task 1 
We grouped students’ responses to Task 1—in the form of the clay models they built—into 

four categories of clay models emerged from the coding of student responses: rectangular prism 

E F G 

Figure 3. Isometric projections of the solid figures E, F, and G from 
Tasks 1 and 2. 
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(P), tetrahedron/pyramid (T), conflicted (C), and accurate (A); examples of each are shown in 
Figure 4 below. 

 

    
 

Figure 4. Examples of the four categories of responses. From left to right: rectan-
gular prism (P), tetrahedron/pyramid (T), conflicted (C), and accurate (A). 

The categories of (P) and (T) are self-explanatory. A clay model was classified as accurate 
(A) if it reflected all the correct faces and edges of figure described by the given inequalities; 
models in which the x, y, and z variables were scaled differently could still be considered accu-
rate. Models that fell into none of the other three categories were classified as conflicted (C); in 
all cases, these models were some hybrid between a tetrahedron/pyramid and an accurate model. 

From analysis of video and written work, we identified several distinct strategies that were 
used by students while completing the tasks. These are described below, along with examples of 
each. 

Maximum/Minimum. This strategy involved identifying the absolute maximum and minimum 
values for each variable; in Task 1, the only nontrivial identification is that 𝑧 ≤ 2. One student 
wrote, “The first two inequalities are the same, so we concluded that the base of the region is a 
square. The third inequality is dependent on x and y, and the largest value is 2, so the region can 
range from a rectangular prism to a 2d square.” 

Covariation. Many students invoked the observation of covariational dependence of two or 
more variables to explain features of the figure. In the videos, we observed students verbalizing 
the idea of covariation with accompanying gestures. For example, one student explained, “The z 
starts at zero and the origin corner at the square then goes to 2 at the (1,1) corner,” indicating that 
the change in z is linked to the change in x and y. 

Finding Vertices. Many students found it helpful to identify the extremal points of the figure, 
and then decide how these points would be connected. An example of a student’s work can been 
seen in Figure 5. 

Level Curves. Several students sketched level curves of the surface defined by 𝑧 = 𝑥 + 𝑦 in 
order to understand the top face of the figure. See Figure 5 for an example written work using 
this strategy. 

We organized strategies by response category, as shown in Table 1. The most notable trend is 
that response groups that produced an accurate model seemed to use a wider range of strategies 
than those that produced other models.  
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Applying our model for interpreting student responses from Figure 1, we can attempt to infer 
in which phase information was lost or mishandled from both the response type and the strate-
gies used. For example, we hypothesize that for students who responded model type (P), most of 
the information never made it past the decoding phase—that students did not correctly interpret 
the meaning of the inequalities taken as a set. For students who responded with model type (T), it 
seemed that some information was lost in the decoding phase, and that only minimal processing 
had taken place. For model type (C), a hybrid between (T) and (A), the mishandling of infor-
mation seemed to occur in the processing phase; these students had a conception of the figure in 
one representation register, but failed to accurately convert it to another. 

 
Table 1. Strategies used, organized by response category. Responses submitted by a group of 
students were treated as a single response. In many cases, groups reported using more than one 
strategy, which is reflected in the table. 

Student’s Strategies 
Rectangular 

Prism (P) 

Tetrahe-
dron/Pyramid 

(T) Conflicted (C) Accurate (A) 

Responses in this category 5 2 7 15 

Maximum/Minimum              5 (100%) 2 (100%) 4 (57%) 7 (47%) 

Covariation/Path                   1 (14%) 3 (20%) 

Finding Vertices 1 (20%) 1 (50%)  7 (47%) 

Level Curves   4 (57%) 5 (33%) 
 
Another observation from the videos that we do not include in the table above is what we 

will call the knife strategy 2. The knife strategy refers to a specific gesture we saw repeatedly on 
Task 1 in which students build a model of type (R) then gesture in a slicing motion, indicating a 

                                                 
2 The name derives from a video clip in which a student used a pocketknife to slice away part of his group’s model. 

Finding Vertices Level Curves 
Figure 5. Examples of Finding Vertices and Level Curves. 
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part of the figure that is to be removed. We did not include this as a strategy because it is unclear 
whether this gesture indicates a particular thought process, or if it serves primarily as a means of 
communication. 

Observations From Task 2 
In this task, all of the response groups eventually arrived at the correct conclusion that the 

left set of inequalities corresponds to Model E and that the right set of inequalities corresponds to 
Model F although many groups’ initial guesses were reversed. Below we list some of the com-
mon strategies we observed from video of student work. 

Association of primitives across registers. We observed students seeking to find a corre-
spondence between features of the inequalities to aspects of the models. For example, one stu-
dent, pointing to the face of Model E in the xz-plane, said, “So if you just look at it from this 
plane [positions Model E to demonstrate], you could kinda of see this triangle shape. And this 
line created is the line 1 − 𝑧 because it’s in the xz-plane,” referring to the inequality 𝑥 ≤ 1 − 𝑧. 
Another student explained, “You see this is the z [points to the point (1,0,1) on Model F], and so 
this is the 𝑧 + 1 [moving over 1-unit along the edge of Model F to the point (2,0,1)].” 

Covariation. Students identified covariations among variables in both the inequalities and 
along edges and faces of the models. In particular, they distinguished between quadratic and lin-
ear relationships in the inequalities, and associated these with parabolic and linear edges of the 
models. For example, the student in Figure 7 explained, “There is a quadratic relationship be-
tween the y-axis and z-axis, and we found that relationship is 𝑦 = 𝑧2 [positions Model E to show 
the face in the yz-plane] which fits with this first condition 𝑧2 to y to 1. And along the xz-plane… 
[positions Model E to face the xz-plane] If you look at it at the right angle, you get a line, which 
is the line 𝑧 = 1 − 𝑥 so then you get 𝑥 = 1 − 𝑧 as a boundary.” 

 

 
Figure 7. A student uses covariation between pairs of variables to associate fea-
tures of the model to features of the inequalities. 
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Projecting onto a plane. We observed students frequently orienting the models so that their 
view of the model would be an orthogonal projection onto a coordinate plane, as in Figure 8. 
Each of the inequalities in the descriptions of Models E and F involves at most two of the three 
coordinate variables, and so seemed to allow students to temporarily disregard one variable in 
their analysis. Similarly, one group of students attempted to sketch orthogonal projections start-
ing from the inequalities for comparison against the two models. This sort of thinking is also ev-
ident in the quotation above in the description of the covariation strategy. 

 

 
Figure 8. A student positions Model F to give himself a view of the figure or-
thogonally projected onto the yz-plane. 

Generalizable Observations 
Here we make five generalizations of the observations witnessed in the two tasks, especially 

those that were common between the two tasks, and which may be observable more generally in 
students’ approach to solving problems involving three-dimensional solid regions. 

Use knowledge from two dimensions. In both tasks, we observed students using knowledge 
about two-dimensional geometry to aid in their decoding and processing of the three-dimensional 
figures. Students identified covariational relationships between pairs of variables in the algebraic 
descriptions and in the three-dimensional models. A particularly common observation in Task 2 
was students’ identification of the parabolic curves on the models, and the quadratic covariations 
described by the inequalities. Students’ use of the projection strategy on Task 2 and the level 
curves strategy on Task 1 also fall into this category, as would the analysis of cross-sections 
more generally. 

Absolute bounds. The maximum/minimum strategy appears in both tasks. Establishing a 
bounding box for a three-dimensional figure was observed as the first step for many of the re-
sponse groups. In Task 1, for example, many of the groups that started by concluding that 𝑧 ≤
2 went on to employ other strategies as well (see Table 1). In Task 2, Figure 9 shows that used 
similar reasoning to conclude that the set of inequalities describing Model E implies an absolute 
bound of 𝑧 ≤ 1, and another group of students similarly concluded that 𝑥 ≤ 1, distinguishing the 
inequalities from Model F.  
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Figure 8. A student positions Model F to give himself a view of the figure or-
thogonally projected onto the yz-plane. 

Multimodal communication. Students frequently struggled to clearly and unambiguously ver-
bally communicate features of the figure. However, we observed extensive use of gesture and 
interaction with models, drawings, and algebraic statements. This mixed use of gestures and 
words creates what is referred to as a multimodal representation of mathematical objects (Mac-
Neill, 1998), and its use by high school geometry students was studied by Chen and Herbst 
(2013). We hypothesize that multimodal communication is especially important for students de-
scribing three-dimensional figures because they lack an established common language for de-
scribing objects in ℝ𝟑. The knife strategy from Task 1 is a particularly salient example of this 
kind of communication. 

Rigidity and reliance on norms. In several cases, we found that students struggled to adapt 
their thinking to figures and presentations that differed from examples seen in class. One student 
explained his difficulty with the inequalities in Task 2, “I’m just not used to seeing it in this for-
mat,” referring to the fact relationships between variables did not have the familiar 𝑧 = 𝑓(𝑥, 𝑦) 
form. Another group of students struggled to communicate with drawings while working on Task 
1 because one student insisted upon orienting his axes differently than his peers. 

Conversion of part-whole relationships across registers. In both tasks, we observed students 
seeking to associate particular inequalities with faces or other aspects of the models. This was 
communicated with multimodal phrases like, “This [points to parabolic cylinder face of E] 
comes from here [points to inequality 𝑧2 ≤ 𝑦].” Another student explained during Task 1, “Since 
x and y are both between 0 and 1, the base is obviously a square.” In each of these statements, 
students identify a familiar geometric primitive with some subset of the algebraic description. 
However, we observed several students who seemed to suffer from a cognitive overload from the 
three-dimensional spatial information being presented to them (Huk, 2006), with one student ini-
tially claiming, “I don’t know where to start.” Considering one primitive at a time may serve as a 
means of coping with the complexity of the entire figure. However, the frequency of the “con-
flicted” response type for Task 1, which is comprised of parts that are mostly correct, shows that 
converting one part of the figure at a time does not necessarily lead to a correct conversion of the 
whole. 

Implications 

For instructors of multivariable calculus, awareness of the types of strategies students employ 
to consider three-dimensional solids may be helpful in lesson design and in identifying and ad-
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dressing student difficulties. Our use of three-dimensional models in this study was, in part, 
meant to uncover a possible disconnect between multivariable calculus students’ procedural 
knowledge about things like volume, and their visuospatial conception of the underlying figures. 
There is evidence that multivariable calculus student perceive a benefit from the use of instruc-
tion that incorporates manipulation of three-dimensional models (McGee, Moore-Russo, Eber-
sole, Lomen, & Quintero, 2012; Wangberg & Johnson, 2013), perhaps because the models 
bridge this disconnect. In addition to providing context for instructional design, we hope that 
cognizance of our observations will aid in the design of appropriate assessment. 

While the scope of our study is limited to multivariable students’ conceptions of three-
dimensional solids, we have framed our generalizable observations from the previous section so 
that one could test our hypothesis that these strategies and difficulties will show up in student 
work with other objects in ℝ𝟑 from multivariable calculus, such as surfaces and space curves. 
While the particular solid regions chosen for analysis in this study are not especially interesting 
or useful, we believe that their complexity led to a wider variety of observations than a simpler 
or more symmetric figure would have. Also of interest would be the study of how students con-
ceptualize functions and vector fields defined on such objects. 

Finally, since the present study was largely exploratory—in the sense that we mostly wanted 
to see what kinds of observations we could make from administering these particular tasks—we 
believe there would be benefit to conducting controlled interviews with students to better under-
stand the process students go through in working through these sorts of tasks. 
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Student Mathematical Connections in an Introductory Linear Algebra Course 
 

Spencer Payton 
Washington State University 

In an introductory linear algebra course, students are expected to learn a plethora of new 
concepts as well as how these concepts are connected to one another. Learning these 
connections can be quite challenging for students due to the vast number of connections and 
student inexperience with mathematical logic. The study reported here consisted of an 
investigation into how inquiry-oriented teaching methods could be employed in an attempt to 
create opportunities for students to develop mathematical connections in an introductory linear 
algebra course. 

Key words: linear algebra, mathematical connections, inquiry-oriented teaching 

Introductory linear algebra courses have traditionally been quite challenging for students. 
There are several reasons for this, including the fact that students are introduced to a plethora of 
brand new concepts and terminology. Further, many of these concepts are connected to one 
another in various ways, and students are expected to learn these connections as well. While 
many researchers and teachers would agree that students should be able to make mathematical 
connections, the phrase “mathematical connection” is often loosely defined. This study considers 
two particular types of mathematical connection in an introductory linear algebra course: 
connections between symbolic representations of a linear system and logical implication 
connections. The symbolic representations of a linear system consist of the augmented matrix, 
the matrix equation, the vector equation, and the linear system itself; these representations are 
presented in Figure 1.  

Each of these mathematical objects is connected to the other three due to the fact that they are all 
representations of each other; as the augmented matrix is the tool through which many linear 
algebraic problems are solved, particularly at the introductory level, connections between 
symbolic representations of a linear system are some of the first connections many linear algebra 
students encounter.  

Relationships between various linear algebraic concepts are often summarized in theorems of 
logical equivalence such as the Invertible Matrix Theorem (IMT) (Lay, 2011). The statements in 
this theorem are all logically equivalent, meaning any statement in the theorem logically implies 
another (and vice versa). Thus, the logical implications present in the IMT could be described as 
logical implication connections. While the IMT provides a convenient presentation of logical 
implications in introductory linear algebra, it is somewhat restrictive due to the fact that it only 

 

 
Figure 1:  A linear system can be represented as an augmented matrix, a vector equation, and a 
matrix equation. 
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applies to square coefficient matrices (as only square matrices can be invertible). However, 
subsets of the logical implications inherent in the IMT could be applied to non-square matrices. 
The IMT could actually be divided into two “sub-theorems,” which will hereby be known as the 
First and Second Theorems of Logical Equivalence; these theorems are presented in Figure 2. 

As learning all of these mathematical connections can be challenging for students, it would be 
beneficial to improve the teaching of these connections. The study described in this report was 
part of a larger study that attempted to determine how inquiry-oriented teaching methods could 
be implemented in an introductory linear algebra course that, due to considerations such as large 
class size, limited amount of class time, and wide range of required material, would not lend 
itself to the traditional demands of inquiry-oriented teaching. In particular, the study explored 
how inquiry-oriented teaching could specifically be used toward the teaching of mathematical 
connections in a constrained environment. To that end, the goal of this study was to answer the 
following research questions: 

• What does it look like when a teacher attempts to incorporate inquiry-oriented teaching 
in an undergraduate introductory linear algebra class? 

• What mathematical connections do students appear to evoke within the context of an 
introductory linear algebra course that employs inquiry-oriented teaching? 

This report will primarily discuss the second research question; however, the classroom context 
and overall goals of the study had implications for the research methodology and results that 
were found. Thus, it is necessary to discuss the second research question within the context of 
the greater study to some extent.  
 

Literature Review 

There has been research into logical implication connections in linear algebra (Selinski, N. 
E., Rasmussen, C., Wawro, M., & Zandieh, M., 2014; Wawro, 2014); these studies primarily 
considered logical implication connections within the context of the IMT. In contrast, the study 
reported here focuses on logical implication connections within the broader context of the three 
theorems of logical equivalence previously described. That said, results of IMT-focused studies 
are applicable to this study. In particular, Selinski et al. (2014) describe a hub concept, which is a 
concept that a student frequently uses as an intermediary concept through which other logical 
implication connections are evoked and justified. In adapting this construct for this study, I will 
refer to a hub statement as a statement from one of the three theorems of logical equivalence that 

 

 
Figure 2:  Unlike the Invertible Matrix Theorem, these theorems of logical equivalence are not 
restricted only to the case of square matrices. 
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a student frequently uses as an intermediary in evoking and justifying logical implication 
connections.  

It is not uncommon for students to know that two linear algebraic concepts are connected but 
not understand why they are connected. This issue was well described by Harel: 

So if a student thinks of ‘linear independence’ to mean ‘the echelon matrix which results 
from elimination has no rows of zeros,’ without being able to mathematically justify this 
connection, then he or she does not understand the concept of linear independence. (Harel, 
1997, p. 111) 

This issue of the quality of student understanding has been previously discussed by Skemp 
(1987) in his description of instrumental and relational understanding. The understanding 
presented in Harel’s example is instrumental understanding; that is, knowing what to do but not 
why. According to Skemp, true understanding of a concept involves relational understanding, 
which is “knowing both what to do and why” (Skemp, 1987, p. 153). This characterization of the 
quality of understanding could be applied to mathematical connections. Thus, a student has made 
an instrumental connection if the student has formed a connection but does not understand why 
that connection exists; similarly, a student has made a relational connection if the student has 
formed a connection and understands why that connection exists. For example, a student could 
present relational understanding of a logical implication connection if he or she can form a chain 
of logical implications beginning with one statement in a theorem of logical equivalence and 
ending with another. Unfortunately, students at this level often struggle with mathematical logic, 
and in particular, many students struggle to form these chains of reasoning (Dorier & Sierpinska, 
2001).  

Regarding inquiry-oriented teaching, there is a wealth of literature on inquiry-oriented 
teaching of linear algebra, notably through the IOLA project (Larson, C., Wawro, M., Zandieh, 
M., Rasmussen, C., Plaxco, D., & Czeranko, K., 2014; Wawro, M., Rasmussen, C., Zandieh, M., 
Sweeney, G. F., & Larson, C., 2012; Wawro, M., Zandieh, M., Rasmussen, C., Larson, C., 
Plaxco, D., & Czeranko, K., 2014). However, as previously described, one goal of this study was 
to determine to what extent inquiry-oriented teaching could be developed and implemented 
within an introductory linear algebra course that faced constraints such as a large class size, 
limited class time, wide range of required material, and coordinated common sections. In light of 
this goal, I opted to start with a general definition of inquiry-oriented teaching and explore how 
that definition could be implemented in the aforementioned constrained class. There are several 
ways to define inquiry depending on the context or academic subject. Rasmussen and Kwon 
(2007) characterize student inquiry in a mathematics class through Richards’ (1991) definition of 
mathematical inquiry, which is the mathematics of mathematically literate adults. Thus, 
mathematical inquiry involves participating in mathematical discussion, solving new problems, 
listening to mathematical arguments, and proposing conjectures. Rasmussen and Kwon (2007) 
also highlight the role of teacher inquiry in their definition of inquiry-oriented teaching, which 
refers to a teacher inquiring into student thinking. In determining how I would specifically define 
inquiry-oriented teaching for the purpose of this study, I decided that the teaching constraints 
previously described were immediate obstacles to fostering student inquiry. As my ultimate goal 
was discovering how opportunities for student inquiry could be provided in a constrained 
teaching environment, I opted to define inquiry-oriented teaching as “a practice of creating 
opportunities for students to engage in mathematical inquiry.” While teacher inquiry is not 
explicitly referenced in this definition, this is not to say that teacher inquiry did not occur 
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throughout the course of this study. Researching teacher inquiry was simply not a specific goal 
of this research study, while researching attempts to foster student inquiry was.  
 

Setting and Methods of Analysis 
 
The research question focusing on the implementation of inquiry-oriented teaching in a 

constrained teaching environment was born out my own desire as a teacher to explore how I 
could implement inquiry-oriented teaching in a specific introductory linear algebra course. Thus, 
this research goal is a reflection of my goal to improve my own practice. Consequently, I opted 
to conduct this study through an action research methodology (Mertler, 2006). This action 
research study began with a pilot study in the summer semester of 2015 and continued into the 
fall semester of 2015 and spring semester of 2016. Each of these action research cycles consisted 
of research in an introductory linear algebra course that I had taught. While the results of the 
pilot study and fall 2015 research cycle informed the spring 2016 research cycle, this report will 
primarily focus on the spring 2016 cycle.  

In the spring of 2016, I taught an introductory linear algebra course at a large state university 
in the Pacific Northwest. The class consisted of sixty students; the majority of these students 
were engineering majors, while others were mainly math and computer science majors. The 
course was a two credit course, which placed considerable time constraints on the instructor. As 
a result of these constraints, inquiry-oriented teaching activities were largely reserved for 
concepts closely related to logical implication connections and connections between symbolic 
representations of a linear system. For example, several activities were provided as opportunities 
for students to have an active role in construction of the aforementioned theorems of logical 
equivalence; the activity presented in Figure 3 was the activity through which students developed 
the second theorem of logical equivalence. 

In this activity, students worked in small groups as they discussed the various relationships 
between linear algebraic concepts. I would then lead a whole class discussion in which I 
connected student suggestions to the formal mathematics by translating those student suggestions 

 

 
 
Figure 3: This activity was designed as an opportunity for students to have an active role in the 
construction of the second theorem of logical equivalence.    
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into statements in the theorem of logical equivalence. Students also worked on several activities 
that focused on concepts that play prominent roles in the theorems of logical equivalence. For 
example, students were offered opportunities to explore span and linear independence, as these 
concepts play parallel roles in the first two theorems of logical equivalence; two of these 
activities are presented in Figure 4. 

There were several goals inherent in the design of the span and linear independence activities. 
These activities were each implemented after span and linear independence had been formally 
defined in class. Thus, the task presented in each activity involves a question familiar to students: 
is the set of vectors a spanning set (or is the set linearly independent). However, each activity is 
presented with a specific instruction which asks the students to complete the activity without 
solving a linear system or using any elementary row operations. This instruction was included so 
that students would have to answer each question without the use of a familiar algorithm. Thus, 
this instruction is an attempt to take a task that would normally consist of a set of exercises and 
elevate that task to a set of small problems. Further, it was a goal of this activity that by forcing 
students to answer these questions through some alternative path, students would form and evoke 
logical implication connections involving span and linear independence that would assist them in 
their problem solving.  

Data on student mathematical connections was largely collected from interviews that I 
conducted with nine of my students from the aforementioned class. These interviews were 
conducted shortly after the Invertible Matrix Theorem had been covered in class. Each interview 
was approximately one hour in length and consisted of students finding the solution set of a 
linear system, a vector equation, and a matrix equation, which are presented in Figure 5. Each 
task lent itself to a different theorem of logical equivalence. For example, the coefficient matrix 
corresponding to the linear system had a pivot position in every row, thus making every 
statement from Theorem 1 true for that coefficient matrix. Similarly, the vector equation lent 
itself to Theorem 2, and the matrix equation lent itself to the IMT. After an interviewee 
completed one of the problems, the interviewee was asked to describe his or her work. I would 
then present the interviewee with a list of vocabulary terms that had been discussed in class. The 

 

 
Figure 4: Each of these activities were designed as opportunities for students for explore span 
and linear independence in ways that would allow them to develop logical implication 
connections involving span and linear independence.   
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interviewees were asked to discuss as many of the vocabulary terms as they could and how they 
relate to each problem. I would often ask for justification of particular claims that the interviewee 
had made and would sometimes directly ask the interviewee whether he or she could discuss a 
particular vocabulary term. This was all done in an attempt to determine what logical implication 
connections the interviewees could evoke that incorporated some of the familiar terms and 
concepts involved in the theorems of logical equivalence. 

In analyzing the interviews, I attempted to determine what mathematically correct logical 
implication connections corresponding to the three theorems of logical equivalence each 
interviewee evoked. Evidence of logical implication connections took several forms. Many 
logical implications involved words such as if, then, means, because, and so. For example, “The 
vectors, if a linear combination of those produce every single vector in that space, then they span 
that space” would be considered a logical implication connection. While many logical 
implications were evoked entirely by the interviewees, some logical implications were evoked as 
a result of an interviewee responding to a question that I had asked. After determining what 
logical implications the interviewees evoked, I then attempted to determine which of these 
connections were relational connections; this was largely accomplished by determining which 
logical implication connections a student was able to justify. 

To account for the logical implication connections that interviewees evoked, I utilized 
adjacency matrices, as described by Selinski et al. (2014). For each interviewee, I would 
construct six adjacency matrices: two for each theorem of logical equivalence. For a particular 
theorem, an interviewee would have one matrix consisting of evoked logical implication 
connections involving statements from that theorem; a second matrix would contain evoked 
logical implication connections involving negations of statements from that theorem. For 
example, consider one interviewee’s adjacency matrices for the IMT, presented in Figure 6. 

 

 
Figure 5: Interviewees were asked to find the solution set of a linear system, a vector equation, 
and a matrix equation.  

 

 
Figure 6: These adjacency matrices represent the logical implication connections 
corresponding to the IMT evoked by one interviewee.   
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Each of these adjacency matrices is a representation of a digraph; the digraph corresponding to 
the first adjacency matrix is presented in Figure 7: 

Note that the digraph does not capture (and would not do so easily) the frequency of evoked 
logical implication connections, whereas the adjacency matrices easily do. Thus, the adjacency 
matrices have organizational advantages over their corresponding digraphs, and consequently, 
the matrices provided an effective means of analyzing the many logical implication connections 
evoked throughout the study.  
 

Results 
 

In general, the interviewees tended to evoke more connections relevant to the second theorem 
of logical equivalence than they did the first. This is in itself not entirely surprising; the theorems 
presented in Figure 2 were the versions of the theorem discussed in class, and the second 
theorem contains more statements than the first. As the concept of invertibility and the IMT were 
still new to the interviewees, they tended to evoke relatively few connections exclusive to the 
IMT. Due to this, the results reported here will primarily focus on connections that are not 
exclusive to the IMT. 
 
Logical Implication Connections Relevant to the First Theorem of Logical Equivalence 

In evoking connections relevant to the first theorem of logical equivalence, the interviewees 
tended to reference span, pivot positions, and linear combinations. Interestingly, several 
interviewees presented interpretations of span that were likely consistent with the formal 
definition of span, but interviewees rarely explicitly referenced the formal definition. That is, 
several interviewees were able to provide geometric interpretations of span or were able to 
describe span via linear combinations without explicitly saying the phrase “linear combinations.” 
For example, consider Will’s explanation of why two particular vectors span ℝ": 

 

 

Figure 7: This digraph represents logical implication connections that a student evoked 
throughout the course of an interview. Vertices # through $ refer to statements from the first 
theorem of logical equivalence, while vertices % through & refer to statements from the second 
theorem. Vertices ' through ( refer to statements exclusive to the IMT.   
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Will: Because these two aren’t scalars of each other, they’re going in different directions. 
They each have their own )* and )" components. If they were the same, they’d just end up 
looking like that.  

Seth provided an explanation that incorporated both matrix and geometric interpretations of 
span: 

Seth: If you had a matrix, let’s take this one [Seth draws the 2×2 identity matrix], then this 
one would span all of ℝ" because no matter how you rearrange this, you can create – uh, I’ll 
expand it [Seth then changes his matrix to the 3×3 identity]. So uh, this one can create, 
because you can multiply this by infinitely many scalars outside for each row, you can create 
infinitely many planes, like, if you think about this geometrically, planes in any coordinate 
system.  

Jimmy appeared to allude to linear combinations, but also referenced a geometric interpretation 
of span: 

Jimmy: Well, for spanning, you want, uh. Every direction to be covered, every direction on 
the plane to be covered by some scale, er, some combination of those vectors, I think.  

Jason explained that three particular vectors span ℝ. because “they go in different directions. 
They’re not, uh, linear combinations of each other.” While Jason referenced linear combinations, 
it was not in reference to the formal definition of span, but rather, as a description of what must 
be true of a set of vectors in order to span an entire space. Bill heavily alluded to linear 
combinations but did not explicitly reference linear combinations: 

Bill: Span is having the ability to make any vector within a space. You can, like I said, 
manipulate any piece of the outcoming vector. You can change it by changing one of the 
more, one of the scalar multiples along there, not scalar multiple, scalar weights along the 
way you go. In this case we did at )*, )", ).. If you could change each of those to then 
manipulate one of the vectors in the overall value within the system, you could then change 
the outcome. That goes into the span. If you can do that then it does span ℝ., it does span ℝ 
whatever. It has the ability to reach any vector, any point within that space. 

Bill’s description of scalar weights and manipulating vector may provide evidence that he is 
describing linear combinations, although he does not explicitly reference linear combinations. 
Thus, Bill’s interpretation of span is likely consistent with the formal definition of span, even if 
he cannot provide the formal definition.  

It should be noted that while several students provided geometric descriptions of span, 
geometric interpretations were not heavily emphasized in class. They were briefly referenced 
from time to time, but concepts were never defined from a geometric perspective. Further, prior 
to span being defined, the class had discussed the problem of determining whether any vector in 

 

 
Figure 8: Will provided a geometric description of what it means for two vectors to span ℝ". The 
illustration on the left represents an example Will provided of two vectors that span ℝ", while the 
illustration on the right represents an example Will provided of two vectors that do not span ℝ". 
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an ℝ0 space can be expressed as a linear combination of a particular set of vectors. However, 
when span was formally defined, it was defined more generally as the set of all linear 
combinations of a set of vectors. Despite this, several interviewees appeared capable of 
determining whether a particular set of vectors spans an ℝ0 space by determining whether the 
vectors were linearly independent, linear combinations of each other, or go in different 
directions. Thus, it is likely that students developed these alternative, yet mathematically correct, 
interpretations of span as a result of the inquiry-oriented activity previously described.  

 
Logical Implication Connections Relevant to the Second Theorem of Logical Equivalence 

Many of the connections the interviewees evoked relevant to the second theorem of logical 
equivalence involved pivot positions, linear independence, and basic and free variables. The 
interviewees tended to refer to basic and free variables in their logical implications more than 
any other concept; this was particularly interesting, as the interviewees from the previous 
semester tended to refer to pivot positions more than any other concept. The interviewees also 
appeared to have understandings of the homogeneous equation inconsistent with the formal 
definition. For example, Fred seemed to believe that any homogeneous equation can only have 
the trivial solution:  

Interviewer: If I had given you zeroes here instead of 3 and 2, would that still have a 
solution? That homogeneous linear system? 
Fred: Yes, because homogeneous equation always have at least one solution, which is the 
trivial solution.  
Interviewer: And what was the trivial solution again? Can you remind me one more time, 
what was that? 
Fred: Trivial solution is #1 = 3, so zero is always the solution, for example 00 . 

Jason appeared to hold a similar view: 
Interviewer: Can you define homogeneous equation for me? What does that mean? 
Jason: It means there’s only one solution. I can’t remember what it was. 

Seth appeared to confound the trivial solution with the homogeneous equation: 
Interviewer: Do you remember what the trivial solution is? 
Seth: Uh, it’s when #1 = 3. 

Cecily, who was incredibly close to relational understanding of the connection between pivot 
positions and linear independence, made a similar mistake: 

Interviewer: Why is it that not having a pivot position in every column tells you that these 
columns cannot be linearly independent? 
Cecily: Because if there’s not a pivot position in every column, then it can have infinitely 
many solutions. And for it to be linearly independent, it can only have the trivial solution.  
Interviewer: Okay. So what can only have the trivial solution? 
Cecily: The matrix, the linear system. 
Interviewer: Okay. So what is the trivial solution? 
Cecily: That’s #1 = 3, right? 

I reminded Cecily that she was describing the homogeneous equation before asking her what the 
trivial solution is; she claimed she did not know. As these interviewees had understandings 
inconsistent with the formal definition of the homogeneous equation, it is likely that any 
connections evoked that involved the homogeneous equation could only be instrumental; further, 
it suggests that these several interviewees have misunderstandings of the formal vector algebraic 
definition of linear independence. Some interviewees adjusted for this by providing geometric 
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descriptions of linear independence; Bill, for example, claimed that a particular set of vectors 
was linearly independent “because they can all point in different directions.” Others essentially 
appeared to instead interpret linear independence through basic and free variables instead of the 
homogeneous equation. For example, consider Seth’s explanation of linear independence: 

Interviewer: How come if it has no free variables, that means it’s linearly independent?  
Seth: Well if it has no free variable, that means that there was a pivot in every column, which 
would mean that it would have no free variables, because there wouldn’t be, like, say a 2 out 
here. And, uh. This vector would always have a solution.  

Seth’s response was not unique. Several other interviewees tended to refer to basic and free 
variables often in their descriptions of linear independence, as did many students on one of the 
class exams.  

It should be noted that when we discussed the homogeneous equation in class, we did not do 
this through an inquiry-oriented activity; I believed that the concept did not warrant such an 
activity, as students in the pilot study and fall semester appeared to understand the homogeneous 
equation fairly well through a mixture of lecture and whole class discussion. Looking back at the 
day that we discussed the homogeneous equation in the spring semester, I noticed that we 
concluded our initial coverage of the homogeneous equation with the following discussion of a 
homogeneous matrix equation that only had the trivial solution: 

Instructor: So, could I have free variables? 
Student: No. 
Instructor: Kay. I can’t have any free variables. Why not? Why can’t I have free variables? 
Student: You’d have infinitely many solutions. 

As this was how we concluded our initial coverage of the homogeneous equation, it is possible 
that some students essentially replaced the concepts of trivial and nontrivial solutions with basic 
and free variables. That is, students made an instrumental connection between the homogeneous 
equation and basic and free variables, and as they did not quite understand what the 
homogeneous equation is and when it has nontrivial solutions, they instead considered when the 
homogeneous equation would have free variables. Then, when the formal definition of linear 
independence was provided in terms of the homogeneous equation, they tended to view linear 
independence in terms of basic and free variables instead of the homogeneous equation. Thus, 
many students in this semester relied on their instrumental connection between the homogeneous 
equation and free variables in order to compensate for their lack of understanding of the 
connection between the homogeneous equation and linear independence, thus interpreting linear 
independence largely through basic and free variables. This was likely exacerbated by the 
aforementioned linear independence activity, in which students could refer to the familiar 
concept of basic and free variables to determine whether the sets were linearly independent or 
not. Students who had not come to rely as heavily on free variables likely developed more 
geometric interpretations of linear independence as a result of the linear independence activity, 
as the sets in the activity were in ℝ" and ℝ., which can be easily visualized. Once these students 
had developed a more geometric interpretation of linear independence, they may have felt that 
the formal definition was no longer necessary for an understanding of linear independence.  
 
Chains of Logical Implication Connections 

While the unforeseen student difficulties with homogeneous equations and linear 
independence were disappointing, other trends appeared that suggested that students may have 
developed an ability to use, not just evoke, mathematical connections for the purpose of problem 
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solving. For example, on one exam question (offered after students had learned about the IMT 
and subspaces), students were asked to determine, if given an invertible matrix #, what dimNul# 
must equal. Jimmy’s response to this question is provided in Figure 9. 

Many students provided responses similar to Jimmy’s in that they consisted of mathematically 
correct chains of logical implication connections. Students who provided such responses 
demonstrated not only knowledge of a number of logical implication connections, but also an 
understanding of how these logical implication connections could be used and chained together 
in order to justify another logical implication. 
 
Connections Between Symbolic Representations of a Linear System 

Several interviewees appeared to have, at the very least, instrumental understanding of 
several connections between symbolic representations of a linear system. Interviewees often 
evoked relational understanding of connections by taking a specific representation and 
algebraically translating it into a different representation. For example, in explaining the 
connection between a matrix equation and a linear system, several students used the definition of 
the product of a matrix and a vector to rewrite a matrix equation as a linear system. 

Student understanding of the symbolic representations of a linear system appear to be 
influenced by their understanding of some concepts not exclusive to linear algebra. In particular, 
students’ understanding of the term “equation” may have played a role in how they thought 
about vector and matrix equations. For example, when asked to describe a vector equation, 
several interviewees attempted to describe parametric vector form, as seen in Figure 10. 

Interestingly, Cecily’s initial attempt to describe a vector equation did not contain an equality 
symbol, a necessary component of an equation. In a similar vein, several interviewees described 
a vector equation by providing a set of vectors corresponding to a particular coefficient matrix; 

 

 
Figure 9: Jimmy provided a chain of logical implication connections to explain why, if a square 
matrix # is invertible, then dimNul# = 0. 

 

 
Figure 10: Several interviewees initially referred to parametric vector form in their descriptions of 
vector equations. Presented here is Cecily’s initial example-based description of vector equations. 
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these descriptions also lacked an equality symbol despite the fact that these interviewees claimed 
that they were describing a vector equation. A similar trend was found in student understanding 
of the matrix equation. Cecily and Bobby both initially identified an augmented matrix as a 
matrix equation, despite the lack of any equality symbol. This was a surprisingly frequent trend 
outside of the interviews as well. Cecily and Bobby, in addition to several other students, 
identified an augmented matrix as a matrix equation on an exam problem in which they were 
asked to write a linear system as a vector equation and a matrix equation; Bobby’s work on this 
problem is presented in Figure 6. 

It should be noted that Bobby’s augmented matrix does contain a bar that demarcates the 
coefficient matrix from the augment column, and this bar corresponds to the equality symbols in 
the linear system. However, several students provided augmented matrices without the bar as 
examples of a matrix equation. In light of this trend, it appears that student conceptions of what 
exactly comprises an equation may have influenced their understanding of matrix and vector 
equations. Had they understood an equation to contain an equality symbol, they may have been 
less inclined to refer to mathematical entities that do not contain an equality symbol as equations.  
 
The Case of Will 

One interviewee, Will, evoked a plethora of connections that appeared to be of a relational 
level of understanding. It should be noted that Will’s apparent understanding was by no means 
representative of the rest of my students or even the rest of the interviewees. However, the 
connections he evoked and how he appeared to evoke those connections was particularly 
interesting and may shed light on how successful students understand the various connections in 
an introductory linear algebra course. Will evoked relational understanding of several 
connections between symbolic representations of a linear system, and he clearly understood that 
the representations of a linear system were indeed representations of each other: 

Interviewer: Okay. And then what about, so you already told me how you can write [the 
matrix equation] as a linear system. Can you explain why you can write this matrix equation 
as a vector equation? 
Will: Well I mean, if [the matrix equation] equals [the linear system] and this [the vector 
equation] equals [the linear system], then [the vector equation] would be the same as [the 
matrix equation]. 

 

 
Figure 11: Several students referred to an augmented matrix in their description of a matrix 
equation on this exam problem.  
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Interviewer: Okay, okay, fair enough. Yeah. So you’re saying that these are just all the same 
thing essentially?  
Will: Yeah. 

Essentially, Will appears to have formed an equivalence relation that could be described as is a 
representation of. Under this equivalence relation, Will has grouped the four representations of a 
linear system into an equivalence class. For example, Will appears to believe that the linear 
system and the matrix equation are equivalent because a matrix equation is a representation of a 
linear system. This of course is not to say that Will is consciously viewing this relationship as an 
equivalence relation; rather, this terminology simply provides a means to capture how Will may 
have organized his relational connections between symbolic representations of a linear system. 

In addition to Will’s representation connections, Will evoked many relational logical 
implication connections. Further, Will evoked connections containing versions of the statement 
“#1 = ; has at least one solution for every ; in ℝ<” more than any other interviewee. For 
example, consider the following exchange with Will, which occurred after Will had found the 
solution set of a particular vector equation: 

Interviewer: If I had given you a different vector besides 3 and 2, if I had given you any 
other vector, how would you know that that vector equation has a solution, no matter what 
vector I gave you? 
Will: Because it spans all of ℝ". So any vector in ℝ" is gonna be a linear combination of 
these three vectors. 

Essentially, I provided Will with a version of the statement “#1 = ; has at least one solution for 
every ; in ℝ<” and asked what statements Will could connect to it. Will easily provided two 
such statements involving span and linear combinations. This is by no means trivial. Notice that 
the theorem statement, which is the version formally presented in class, contains a matrix 
equation. However, the version I presented to Will contained a vector equation. It is possible that 
Will’s equivalence relation, “is a representation of,” allowed him to connect to this statement so 
easily. Will recognizes that the matrix equation and the vector equation are equivalent. Thus, 
when presented with information about a vector equation, Will was able to easily replace that 
vector equation with the corresponding matrix equation. From there, he is able to evoke logical 
implication connections consistent with those presented in the theorems of logical equivalence. 
This suggests that there may be an important relationship between a student’s understanding of 
the symbolic representations of a linear system and the logical implication connections that that 
student is capable of evoking.  
 

Conclusions and Discussion 
 
In light of the results from the interviews, it appears as though the inquiry-oriented activities 

that focused on span and linear independence were successful in creating opportunities for 
students to develop their own interpretations of span and linear independence. The role of 
geometric descriptions in the class was limited, yet several students developed interpretations of 
span that appeared to be more geometric in nature; further, these interpretations often heavily 
alluded to linear combinations while not explicitly referencing linear combinations in an 
algebraic sense. As many students struggled with the definition of the homogeneous equation, 
these students appeared to have essentially used the theorem statement “The corresponding linear 
system has only basic variables (has no free variables)” as a hub statement, as the concept of 
basic and free variables was far more accessible and easy to use. The linear independence 
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activity allowed students to reinforce the role of basic and free variables as a hub concept, 
particularly as the concept pertains to linear independence and dependence. Additionally, the 
linear independence activity also allowed students to develop geometric interpretations of linear 
independence that relied on the notion that linearly independent vectors are not linear 
combinations of each other.  

While the inquiry-oriented activities were successful in creating opportunities for students to 
form their own interpretations of span and linear independence and how they relate to other 
concepts, the implementation of these activities could be improved. Students appeared to replace 
their understanding of the formal definitions of span and linear independence with the 
understanding they developed as a result of the activities. This may have limited the students’ 
ability to evoke logical implication connections involving these concepts and their formal 
definition; that is, students may be more capable of clearly evoking logical implication 
connections if they can connect their understandings of these concepts to the formal definitions. 
As an instructor, I should have devoted time to exploring how these student developments relate 
to the formal definitions of span and liner independence. Investigating how the inquiry-oriented 
activities could be improved in this regard remains an avenue for future research. 

Throughout the semester, students appeared not only to form and evoke logical implication 
connections, but also to use these connections to evoke and justify other logical implications; this 
was evident in the many responses to an exam question that asked students to explain how 
invertible matrices and the dimension of the null space are connected. This is by no means 
trivial, as students often struggle to form chains of reasoning (Dorier & Sierpinska, 2001). It 
should be noted that, as an instructor, I would often emphasize to my class the importance of 
justification, particularly when providing responses to an exam question. This likely partially 
accounts for the numerous responses that contained a great amount of detail; however, this 
cannot fully account for the fact that most of these responses consisted of mathematically correct 
chains of logical implication connections. Thus, it is quite possible that the frequent 
opportunities to form, evoke, and justify logical implication connections through inquiry-
oriented activities allowed students to develop an ability to use connections as tools in justifying 
other logical implication connections. 

The results concerning student connections between symbolic representations of a linear 
system suggest that many linear algebra students may have conceptions of equations that do not 
contain the necessity of an equality symbol. This finding may help explain some sources of 
difficulty that many linear algebra students face. For example, Zandieh and Andrews-Larson 
(2015) describe how many linear algebra students find it easier to translate a linear system to an 
augmented matrix than they do an augmented matrix to a linear system. One reason for this 
difficulty is the reconstruction of 1, which refers to reintroducing the variables when translating 
from an augmented matrix to a linear system. The augmented matrix is the only representation of 
a linear system that does not explicitly contain reference to the variables of a linear system; it is 
also the only representation that does not explicitly contain an equality symbol. In light of the 
results of the study reported here, it is possible that students may struggle not only with the 
reconstruction of 1, but also with the reintroduction of the equality symbol.  

Finally, while Will is by no means representative of a typical linear algebra student, his 
apparent understanding of various mathematical connections suggests that there may be an 
important relationship between student understanding of symbolic representation connections 
and logical implication connections. There has been previous research into symbolic 
representation connections (Larson & Zandieh, 2013; Zandieh & Andrews-Larson, 2015) and 

20th Annual Conference on Research in Undergraduate Mathematics Education 23420th Annual Conference on Research in Undergraduate Mathematics Education 234



logical implication connections (Selinski et al., 2014; Wawro et al., 2012; Wawro et al., 2014); 
however, these two types of connection have been discussed largely independently of one 
another both within the literature and within the study reported here. Thus, a future research 
project emanating from this study will involve an exploration into how students use their 
understanding of symbolic representation connections to form and evoke logical implication 
connections. 
  

References 

Dorier, J.-L., & Sierpinska, A. (2001). Research into the teaching and learning of linear algebra. 
In D. Holton (Ed.), The teaching and learning of mathematics at university level: An ICMI 
study. Netherlands: Kluwer Academic Publishers. 

Harel, G. (1997). The Linear Algebra Curriculum Study Group Recommendations: Moving 
Beyond Concept Definition. In D. Carlson, C. R. Johnson, D. C. Lay, A. D. Porter, A. 
Watkins, & W. Watkins (Eds.), Resources for Teaching Linear Algebra (pp. 107–126). 

Larson, C., Wawro, M., Zandieh, M., Rasmussen, C., Plaxco, D., & Czeranko, K. (2014). 
Implementing inquiry-oriented instructional materials in undergraduate mathematics. In 
Proceedings of the 17th Annual Conference on Research in Undergraduate Mathematics 
Education. Denver, CO. 

Larson, C., & Zandieh, M. (2013). Three interpretations of the matrix equation Ax=b. For the 
Learning of Mathematics, 33(2), 11–17. 

Lay, D. C. (2011). Linear algebra and its applications (Fourth). Reading, Mass.: Addison-
Wesley. 

Mertler, C. A. (2006). Action research: Teachers as researchers in the classroom. Thousand 
Oaks, CA: Sage Publications, Inc. 

Rasmussen, C., & Kwon, O. N. (2007). An inquiry-oriented approach to undergraduate 
mathematics. Journal of Mathematical Behavior, 26, 189–194. 

Richards, J. (1991). Mathematical discussions. In E. von Glasersfeld (Ed.), Radical 
constructivism in mathematics education (pp. 13–51). Dordrecht, The Netherlands: Kluwer 
Academic Publishers. 

Selinski, N. E., Rasmussen, C., Wawro, M., & Zandieh, M. (2014). A method for using 
adjacency matrices to analyze the connections students make within and between concepts: 
The case of linear algebra. Journal for Research in Mathematics Education, 45(5), 550–583. 

Skemp, R. R. (1987). The psychology of learning mathematics (Expanded American edition). 
Hillsdale, N.J.: Lawrence Erlbaum Associates, Inc. 

Wawro, M. (2014). Student reasoning about the invertible matrix theorem in linear algebra. ZDM 
Mathematics Education, 46(3), 389–406. https://doi.org/10.1007/s11858-014-0579-x 

Wawro, M., Rasmussen, C., Zandieh, M., Sweeney, G. F., & Larson, C. (2012). An inquiry-
oriented approach to span and linear independence: The case of the Magic Carpet Ride 
sequence. PRIMUS, 22(7), 1–23. https://doi.org/10.1080/10511970.2012.667516 

Wawro, M., Zandieh, M., Rasmussen, C., Larson, C., Plaxco, D., & Czeranko, K. (2014). 
Developing inquiry oriented instructional materials for linear algebra (DIOIMLA): Overview 
of the research project. In Proceedings of the 17th Annual Conference on Research in 
Undergraduate Mathematics Education. Denver, CO. 

Zandieh, M., & Andrews-Larson, C. (2015). Solving linear systems: Augmented matrices and 
the reconstruction of X. Presented at the Conference on Research in Undergraduate 
Mathematics Education, Pittsburgh, PA. 

20th Annual Conference on Research in Undergraduate Mathematics Education 23520th Annual Conference on Research in Undergraduate Mathematics Education 235



The Effects of the Epsilon-N Relationship on Convergence of Functions

Zackery Reed
Oregon State University

Much work has been done in recent years to study students’ formulations of formal limiting
processes. One of the most common goals is to foster a productive understanding of the
relationship between the error bound epsilon and the domain of the convergence; what is called a
range-first perspective. My study examines an advanced calculus student’s understanding of the
relationships involved in convergence of functions, and how his prior experience with limits
influenced his understanding. I unpack his cognitive organization of the dependence relationships
between �, N , and x in functional convergence. This case study demonstrates the effects of a
persistent understanding that � depend on N in the convergence of sequences.

Key words: Sequences of Functions, Formal Definition of Convergent Sequences, Advanced
Calculus

Introduction

Mathematics students study convergent sequences throughout their college career.
Formalizing sequential convergence provides an important yet difficult stage in the development
of students’ reasoning about advanced mathematical processes. A vital component of formal
sequential convergence is the relationship between � (epsilon) and the critical index N . I call this
the epsilon-N dependence relationship, which mirrors the epsilon-delta dependence relationship
within formal limits of functions.

In advanced analysis courses, sequences take on forms beyond just real numbers. In particular,
advanced calculus students encounter sequences of continuous functions towards the end of their
instruction. The convergence of such functions is defined in a manner that is structurally similar
to the familiar convergence of real numbers, but it has the added complexity of also accounting
for variation within the domain of the functions in the sequence. Thus, the relationships between
�, N , and x become vitally important to understanding the different types of convergence.

While conducting a larger study involving student understanding of metric spaces, I
interviewed two students to examine their concept images and definitions (Tall & Vinner, 1981)
pertaining to convergence of function sequences. A case study of one student’s interview
demonstrates how reversal of the �-N relationship may persist beyond convergence of real
numbers to affect the convergence of functions. In this preliminary report, I discuss this case to
demonstrate the effect of this reversal on convergence of functions. I then go into detail about
some cognitive conflicts that seemed to arise within the student’s concept image. I seek to answer
the following research questions: 1) How does the addition of the domain value x into the
definition for functional convergence affect student understanding of convergence?, and 2) How
does a student’s understanding of real-number convergence affect their understanding of
functional convergence?

Literature Review

There is an abundance of research on student initial understanding of limits, the potential
difficulties that arise and initial interpretations of limit definitions (Bezuidenhout, 2001; Cornu,
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1991; Cottrill et al., 1996, Davis & Vinner, 1986; Roh, 2008; Roh, 2009; Tall, 1992; Tall &
Vinner, 1981; Williams, 1991). There have also been investigations into students’ intuitions about
the nature of limits (Oehrtman 2003; Oehrtman 2009). Many of these studies, however, pertain to
students’ intuition and reasoning with informal limits rather than formal understanding.

Targeted glimpses of student understanding of formal limit definitions began with Swinyard
(2011). In his teaching experiment, two students successfully reinvented the formal definition of
the limit of a function. This marked the first study in which students learned (reinvented) the
formal definition of a limit as opposed to studies examining student post-instructional
understanding. Swinyard’s reinvention study resulted multiple useful constructs for characterizing
students’ perspectives of the formal limit structure. Swinyard and Larsen (2012) followed up by
suggesting some strategies for fostering productive generation of formal limit definitions such as
a focus on the error bounds. This particular strategy is termed a range-first perspective and
contrasts an unproductive domain-first perspective. These perspectives will later be explored via
theoretical framing. Formal limit reinvention was later adapted to sequences by Oehrtman,
Swinyard and Martin (2014). Oehrtman et. al. also guided a pair of students through the
reinvention of formal sequential convergence. Their findings refined Swinyard and Larsen’s
(2012) domain/range-first perspectives further, and also examined the students’ progression of
approximation-based reasoning in the limit reinvention. These studies utilized reinvention
methodology to gain detailed glimpses into the understanding of formal limit definitions.

Other efforts have also been made to investigate student understanding of the formal
definition of limits with special attention paid to the relationships between the variables
controlling the limiting process (Adiredja, 2015; Adiredja, 2013; Adiredja & James 2013;
Adiredja & James 2014; Roh, 2009; Roh & Lee 2016; Roh & Lee, 2011; Dawkins & Roh 2016).
Specifically, Adiredja (2015) utilizes the Knowledge in Pieces (diSessa, 1993) framework to
make a case for equitable cognitive research in the context of formal limit quantification.
Adiredja offers a case study of a single female student (Amy) and outlines useful knowledge
resources she leveraged to develop a productive understanding of the temporal �� � order. One
useful distinction that came out of this is attention to statements of the ”error” between functions
versus utilizing an ”error bound”.

Roh (2011; 2016) along with Lee and Dawkins have utilized multiple interventions to foster
useful intuitions in analyzing the quantification of the limit definition. The ”Mayan Activity”
(2011) offers a narrative of continually refining approximations that fosters useful intuitions of
the limiting process. Similarly, the ”��strip activity” utilizes geometric visualizations of the �
error bound in sequential convergence. Both interventions target quantification in the formal limit
definitions, and highlight attention to the logical orderings of limits along the real line.

This study builds on the existing literature by venturing into student understanding of
functional convergence. Specifically, point-wise convergent sequences of functions follow a
structure identical to real number sequences, with the added complexity of accounting for
variation in the domain of the functions in the sequence. In this report I model a single student’s
understanding of functional convergence, and demonstrate how constructs mentioned above, such
as domain-first perspectives and the relationship between quantifiers, offer meaningful insights
into his understanding. This study also offers an initial glimpse at a student’s understanding of an
advanced mathematical concept that builds on previously studied concepts.
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Theoretical Perspectives

Concept Image and Concept Definition
As mathematicians, we classify mathematical objects and phenomena via formal definition

according to specific identified properties. Understanding such ideas, however, entails more
complicated cognitive structures built through various encounters with the mathematics. This
calls for a distinction to be made between the collection of cognitive objects that are brought to
bear upon recollection of a particular mathematical concept, and the words that compose the
definition of the concept. This is the distinction between a thinker’s concept image and concept
definition (Tall & Vinner, 1981).

Tall and Vinner define the concept image as the ”total cognitive structure that is associated
with the concept”. This includes examples, graphs, images, relationships, as well as the definition
of the concept. The formal language that the student uses to identify the concept is termed the
concept definition (p.2). The definitions students call upon may or may not agree with a definition
proposed by the mathematical community, calling for further distinction. A student’s concept
definition is personal when it is the ”form of words that the student uses for his own explanation
of his concept image” (p.2). This might contrast the definition proposed by the mathematical
community, which we call the formal concept definition (p. 2). It can be useful to note when a
student’s personal and formal concept definitions do not agree. In particular, differences between
the two statements can highlight informal understandings that might dominate a student’s
understanding of a concept.

Different activities may require a student to access different parts of her concept image.
Which parts are activated given certain promptings may highlight important features of the
student’s understanding. We therefore call the ”portion of the concept image which is activated at
a particular time” the evoked concept image (p. 2).

Given the complexity of students’ cognitive organizations, it is clearly feasible for a student’s
concept image to contain elements that might be at odds with each other. It is reasonable to
assume that such conflicting understandings can be held concurrently unless specifically
highlighted. In particular, unless simultaneously evoked, there is potentially no reason for the
student to see such an issue with holding both parts of her concept image. Such contradictory
parts of a student’s concept image are called ”conflict factors” (p. 3). A conflict factor is
”potential” if it is a part of the concept image at odds with another part, and is called ”cognitive”
if evoked to cause actual cognitive conflict (p. 3). Such a scenario may occur if both potential
factors are prompted to be simultaneously evoked. Tall and Vinner caution that potential conflict
factors ”can seriously impede the learning of a formal theory, for they cannot become actual
cognitive conflict factors unless the formal concept definition develops a concept image which
can then yield a cognitive conflict” (p.4).

Domain-First and Range First Perspectives
Previous limit studies have revealed the particularly useful constructs of domain/range-first

perspectives. These perspectives identify to where students assign control of the limiting process.
Standard limit notation typically manifests lim

n��
an or an � a to denote that a sequence an

converges to a. This is often informally stated to include a clause describing the behavior of the
index increasing to infinity. In accordance with this, there is potential for students transitioning
from informal to formal limit studies to assign control of the convergence to the index behavior.
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This is called a domain-first perspective. Swinyard and Larsen (2012) first defined this construct
as an x-first perspective to describe student understanding of limits in calculus contexts.

In an x-first perspective, the variation in the domain values x controlled the behavior of the
limit. This contrasts a range-first (y-first) perspective, where deviation from a limit candidate is
measured and controlled on specific domain regions. Swinyard and Oehrtman (2014) suggest that
focusing first on the behavior of the range values in limiting processes will foster useful
interpretations of the formal definition. The next section describes in detail the relationship
between the logical formulation of the formal definition and the underlying properties of the
limiting processes.

Mathematical Discussion
Mathematical insights are useful theoretical considerations. By exploring formal

constructions of the explored mathematics, we as mathematicians gain valuable perspectives on
the overall structure of the mathematical activity with which the students engage.

The convergence of function sequences is an advanced concept that students examine towards
the end of advanced calculus instruction. There are two such types of convergence, point-wise
and uniform. We will primarily engage with a student’s understanding of point-wise convergence.

Sequential convergence in real analysis contexts follows a standard approximation scheme.
Such a scheme is typically first introduced through convergence of real numbers. We will thus
begin this discussion by examining real number convergence; a familiar context within the
literature on limits. A sequence of real numbers (an) converges to a real number a if ��>0,
�N � N such that �n � N we have |an � a| <�. Attention to the logical structure of this
definition reveals the progression of activity used to verify convergence of such sequences. An
important consideration to make when reading these logical definitions is understanding what is
involved in verifying that a sequence meets its requirements. To do this, note that the ”for all”
symbol � at the onset of the definitions implies that verification begins by picking a specific
element from whatever set follows �. In this case, a positive real number �. Similarly, the ”there
exists” symbol � signifies that some element of the set in question must be found that satisfies
whatever conditions the definition sets. In this case, a natural number N that acts as a particular
index value for the sequence.

Thus, we begin with a positive real number �. � acts as a bound on the error between the
sequence entries an and the real number a to which the sequence converges. Thus, if for every
possible positive error bound �, we find some index N such that past N all sequence values differ
from a by less than �, then we say the sequence converges to a. This highlights that the critical
index N , necessary to bound the tail of the sequence, depends on the particular error bound �
chosen. This is succinctly explained by saying the critical index N depends on the error bound �.

Convergence of functions builds on this approximation scheme while accounting for variation
of the functions across their domain. This adds to the complexity of the convergence structure,
and also provides the primary difference between point-wise and uniform convergence. A
sequence of functions(fn) converges point-wise to a function f on a domain D if ��>0 and
�x � D �N � N such that |fn(x) � f(x)| <�. Once again, attention to the logical structure gives
insight into the behavior of such sequences. In particular, we reduce the convergence to that of
real numbers by letting the domain values vary before verifying the accuracy of the sequence
entries. Notice that once a domain value x is specified, fn(x) and f(x) are real numbers. Thus,
this sequence of functions converges if given a specific pair of values (�, x), representing a fixed
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Figure 1: Visualization of the sequence xn

error-bound and domain value respectively, a critical index N may be found so that past N the
difference between the real numbers fn(x) and f(x) is smaller than the error. This implies that
the sequence of functions converge on a domain D if evaluation across the domain creates
convergent sequences of real numbers.

Consider the prototypical example of a point-wise convergent sequence of functions defined
on the domain [0, 1], fn(x) = xn. A visualization of sequence values is given in Figure 1.

Notice that by selecting x = .4 results a decreasing sequence of real numbers .4n � 0. This is
similarly true for any value x = 0 � �<1. For x = 1, note that 1n = 1 and so we have a constant
sequence converging to 1. Thus, if we define f to be the piece-wise function f(x) = 0 for
x � [0, 1) and f(x) = 1 for x = 1, we have that fn(x) = xn converges to f(x) point-wise. A
rigorous proof of this verifies that for each �>0, �N � N such that for n � N , �n � �N<�.

Finally, we have a sequence of functions converges uniformly if variation across the domain
does not affect the approximation scheme. Formally, a sequence of functions {fn} converges
uniformly on a domain D to a function f if ��>0, �N � N such that for all n � N ,
|fn(x) � f(x)| <� �x � D. A potential point of confusion is that both point-wise and uniform
convergence of functions include the �x statement. Attention to the logical order in the
statements clarifies the distinction. In uniform convergence, the �x occurring at the end signifies
that once the error bound � is chosen and the critical index N is found, the resulting bounding
condition holds across all domain values. In other words, all sequences of real numbers created
by evaluation across the domain satisfy the same bound by the error �.

This definition is equivalent to the definition of convergence in the metric space of continuous
functions when D is compact. Here, a sequence of continuous functions converges to a
continuous function f if ��>0, �N � N such that �n � N , sup

x�D
|fn(x) � f(x)| <�. The structure

of this formulation is identical to convergence of real numbers, where the objects of convergence
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and metric function have changed. This follows because convergence in metric spaces have the
same definition despite the space and metric specified.

Methods

The episode reported on was part of a larger study exploring students’ reasoning about and
generalization in various metric spaces. This involved conducting teaching experiments (Steffe &
Thompson, 2000) with two students, each teaching experiment consisting of six hour-long
sessions with a single student.

The participant reported on was a junior mathematics and engineering major named Kyle
(pseudonym). Kyle had taken the introductory advanced calculus sequence at a large mid-western
university and was currently taking a course on advanced calculus in vector spaces.

In accordance with teaching experiment methodologies (Steffe & Thompson, 2000), the
students were prompted to engage in mathematical activity to facilitate the exploration of novel
concepts in metric spaces. During the sessions, their activity was observed and there were
frequent discussions between the researcher and student wherein the student described their
understanding of the specific mathematics. The sessions relevant to this report examined Kyle’s
understanding of functional convergence. The purpose of this examination was to motivate the
generation of a metric on the space of continuous functions through manipulation of the uniform
convergence structure. By observing Kyle’s exploration of function convergence, I built a detailed
model of his concept image.

Each interview was video recorded. The retrospective analysis (Steffe & Thompson, 2000)
consisted of reviewing the video records for statements of Kyle’s concept definitions as well as
statements and activity that suggested Kyle’s evoked concept images. Special attention was paid
to Kyle’s activity, definitions, statements, and examples so that a model of Kyle’s concept image
could be inferred. Within this model, I analyzed Kyle’s potential and cognitive conflict factors so
that I could identify factors contributing to his eventual shift in understanding.

Results

The goal of this interview was to explore Kyle’s concept images and definitions pertaining to
different types of convergent function sequences. We began by establishing Kyle’s concept
definition for point-wise convergence of functions. This type of convergence would have been
Kyle’s first exposure to functional convergence of any kind in the classroom. Kyle’s initial
concept definition is the first of many statements he made suggesting he had adopted a
domain-first perspective. Kyle wrote on the board ”A sequence of functions {fn} converges
pointwise to f if �x � D, lim

n��
fn(x) = f(x)”. I call this Kyle’s personal concept definition, as

the formal concept definition involves formalization of the limit lim
n��

fn(x) = f(x) as
demonstrated above. Note that Kyle’s statement, while technically informal, is still a correct
characterization of point-wise convergence. Along with the evidence given below, this statement
suggests that Kyle had adopted a domain-first perspectives of real-number convergence which he
now applies to point-wise convergence. In fact, Kyle unpacks this definition by saying:

Kyle: When you’re talking about point-wise convergence, depending on your x your sequence
of functions may converge to a different limit. So we have to say that for all x in D we have to
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choose our x first, because once we run through the limit, that x is going to change what our limit
function is.

This is in fact a productive distinction to make with point-wise convergence. He then
continues with:

Kyle: So basically ... in the � definition our � ends up being dependent on x for point-wise
convergence.

This statement of dependence is Kyle’s first evoking of a potential conflict factor, as the
logical structure of the ”� definition” suggests an independent relationship between � and x. I then
prompted him to write out the � definition (formal concept definition) and he produced the correct
formulation given in the Mathematical Discussion.

When asked to discuss what the definition means, he said:

Kyle: When we are trying to show point-wise convergence we are trying to find some � that
will always be greater than the difference between our sequence and our function, however
because we are selecting our � and then selecting our x then this � will actually be a function of x
and the N from the naturals.

As he said this he wrote out �(x, N). As we began to unpack the nature of the dependence of �
on N and x, he made the following statement:

Kyle: N will determine what your epsilon ends up being. ’Cause N plays the same role that it
always plays when we’re talking about convergence. It’s the last index such that every index past
this you’re going to have this property [|fn(x) � f(x)|] be true, so in so much as that � is pretty
much always dependent on that natural because you want to say that past this natural N , you
know this � is always going to be true.

The potential conflict comes from his understanding of universal quantification and basic
proof structures. For instance, he understood that �� and �x meant to ”pick an �” and ”pick an x”.
In fact, there were multiple moments in describing his proof strategies where the conflict factors
were almost simultaneously evoked. I will later describe the task that prompted these potential
conflict factors to become cognitive.

As we continued discussing the nature of the � dependence on N and x, we discussed some
typical examples of functions that converge in a point-wise manner such as xn, x/n, and even
sequences constant in x (or rather standard real-number sequences). In each of the following
examples, Kyle gave evidence that he had adopted a domain-first perspective.

For example, we first examined the sequence 1 + 1/n which converges to 1. Kyle justified the
convergence of this sequence by saying:

Kyle: As n goes to � it’s going to converge to 1 ... so let n increase without bound and as you
look at [1/n] as n gets closer and closer to � and [1/n] will just go to 0 and you’ll be left with 1.

Further, when examining xn, Kyle again productively assessed that evaluation of the sequence
at different x values would yield a different ”limit”.
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Kyle: Let x = 1 to begin with. Then as n increases without bound, your xn is going to equal 1
... If you look at x between 0 and 1, then your limit as n increases without bound of xn is always
0.

Notice that throughout these examples, Kyle is justifying convergence of the limits based on
the behavior of the index (domain) values n. This further suggests that Kyle had adopted a
domain-first perspective. The nature of his perspective fully came to bear when cognitive conflict
resulted from evaluating xn at x = 1/2. After isolating this x value, I asked Kyle to prove for me
why 1/2n converged to 0 using �. After writing the contents of Figure 2 on the board, he said the
following:

Kyle: The thing I’m confused about here is we need [.5n] to be less than �, � is any number
greater than 0, so we need [.5n] to converge towards 0, but it doesn’t converge for a finite n ... we
want n to increase without bound ... Without thinking of things as limiting functions I don’t know
what we’re trying to do. I’m so used to letting n increase without bound, well clearly if n
increases without bound that’s gonna be less than � ... because it’s getting arbitrarily small.

Figure 2: Kyle’s initial work with xn at x = 1/2

The above suggests that Kyle’s evoked concept image of real number convergence involved a
domain-first perspective, wherein the increasing index value controlled the behavior of the
sequence. What is intriguing is how Kyle accounted for the added complexity of incorporating
the domain of the function as well. As a first example of Kyle’s resulting concept image, we
examine Kyle’s description the following x-N-� relationship for the sequence of functions x/n:

Figure 3: Kyle’s work with x/n

Kyle: If you are thinking about 1/n as being less than �, then that means 2/n would imply
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that 1/n is less than �/2. So if you’re increasing the value of these x�s, your epsilon is going to
get smaller and smaller.

Consistent with his understanding that � was a function of x and n, Kyle’s concept image
included an � that was small enough to trap the arbitrarily increasing index n. Indeed, if (as
above) � satisfies the convergence of 1/n, then �/2 would satisfy the convergence of 2/n, and
similarly �/3 would satisfy 3/n and so on. This highlights the relationship between x and �,
namely that variation in x results variation in the � necessary to trap the sequence as n increases
arbitrarily. The following demonstrates Kyle’s geometric interpretation of this phenomena:

Figure 4: Changing � windows

Kyle: If you have some point, and you pick some x, it might have some window that’s ...
we’ll call it ��. But if you pick another x it’s possible that it has maybe a smaller window that’s
just like ���.

Kyle’s drawing of the � windows demonstrates that Kyle had constructed a mathematical
phenomenon that was logically consistent with his understanding of the �� x � N relationship.
He made use of the convention that variation in x potentially changes the limit of the resulting
real-number sequence to formulate a consistent mathematical limiting process. Surely if real
number convergence entails finding an � window to trap a sequence of arbitrarily increasing
index, then dependence of the sequence values on x implies that the � window may vary. Kyle’s
understanding that variation in the quantifiers affects the limiting process contributed to his
successful accommodation upon examining cognitive conflict factors.

Recall that evaluation of xn at x = 1/2 was a cognitive conflict factor for Kyle.

Figure 5: Kyle’s work on 1/2n

When he could not verify the convergence in the manner he wanted, I suggested using the fact
that 2n is greater than n for all n, and so then he tried bounding 1/2n by 1/n which could be
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bounded by �. Thus, if 1/n converges to 0 then 1/2n converges to 0. In showing that 1/n
converges to 0, Kyle attempted to call upon the Archimedian property. It was through examination
of the Archimedian property that Kyle resolved his cognitive conflict. I prompted Kyle to
examine the structure of the Archimedian property, and he realized that for a particular number �,
we can find an N such that 1/N<�. This then allowed him to complete the proof. Examination of
the other examples in light of the Archimedian property revealed to Kyle the actual relationship
between x, N , and �. Kyle concluded by realizing that ”N is doing most of the work”, and
re-stating the dependence to agree with the logical structure of the formal limit definition.

By resolving that the index N is found for a fixed �, he immediately restructured his
understanding of not only real number convergence, but also for all of his previous dependence
claims. This understanding resulted in Kyle adopting a range-first perspective for real number
convergence, which then transformed his understanding of point-wise convergence of functions.
Kyle demonstrated a robust understanding of how variation in x affected the convergence of the
function sequence. It was this understanding that was ultimately leveraged to result a fluency with
the structure of point-wise convergence.

Discussion and Further Directions

This episode provides an example of the complexity that accompanies understanding
advanced formal mathematical concepts. Point-wise convergence of functions utilizes the same
logical structure as convergence of real numbers, with the addition of accounting for variation
across the domain of the functions in the sequence. Kyle had clearly built a cognitive structure
that incorporated this complexity into his existing understanding of convergence. Note that Kyle’s
mathematical system was logically consistent with his understanding of the fundamental structure
of sequential convergence. This demonstrates Kyle’s mathematical maturity, and his ability to
adapt a productive understanding into his existing cognitive framework. From this case study we
see that students’ can develop complex and consistent mathematical systems even based on
”incorrect” understandings. This conclusion is made to the credit of students’ mathematical
abilities, and is consistent with the idea that mathematics developed by students can be the result
of productive thought despite deviation from normative understanding. At the same time, this
study warrants the caution that proficiency with advanced mathematical concepts does not imply
fully correct understanding of the ideas upon which they are built. This is in line with Tall and
Vinner’s (1981) warnings about potential cognitive factors.

Exploring the model of Kyle’s concept image for functional convergence reveals a natural
relationship between formal and informal knowledge when studying advanced mathematical
processes. Kyle could indeed produce the formal concept definition of functional convergence,
and yet his understanding of the mechanism for convergence was dominated by an informal
domain-first perspective. While Kyle’s concept image contained a robust understanding of how to
ascertain the limit functions for point-wise convergent sequences, his understanding was
primarily informal. This opens up a greater inquiry into the interplay between students’
leveraging of formal and informal knowledge when exploring advanced and formal concepts. It is
natural for this phenomena to occur in a real analysis setting, as students build informal
understandings of the material in calculus courses. This raises an interesting question, namely
when do students call upon their formal and informal knowledge when exploring advanced
formal mathematics? In this particular episode, Kyle mainly attended to formality when prompted
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to prove claims of convergence. The logical structure of the formal definition was not as
meaningful to Kyle as his informal knowledge until he was required to attend to formalism
through proof. Further investigation can explore advanced mathematics students’ attention to
formal and informal knowledge when working in formal mathematical settings.

This episode also demonstrates the importance of logical quantification in understanding
formal limit definitions, and the persistent effects of a domain-first perspective. It was evident that
Kyle’s domain-first perspective influenced his interpretation of the �� N relationship for real
number convergence. This was then compounded with the added complexity of domain variation
in the functions. Thus, Kyle’s interpretation of the logical structure of point-wise convergence
was heavily influenced by his understanding of real number convergence. This highlights the
importance of attending to logical quantification early in formal mathematics. While Kyle
understood the meaning of the quantifiers and could correctly apply them in a proof scheme, the
implications of such meanings came second to his informal understanding. As mathematicians,
we learn to communicate greater meaning through formal symbolism and logical structure.
Attending to the greater meaning of such symbolism early on may facilitate productive
understanding of formal mathematics. In light of the earlier discussion of formal versus informal
knowledge, further studies can investigate student’s informal understandings and uses of logical
quantifiers in real analytic statements.

This case study highlights the complex relationships that exist in understandings of formal
and advanced mathematical concepts. By investigating point-wise convergence of functions, we
were able to observe the progression of theoretical constructs developed for convergence of real
numbers, and explore the nuances of a single student’s understanding.
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Hypophora: Why Take the Derivative? (no pause) Because it is the Rate 
Kitty L. Roach 

University of Northern Colorado 
 

Abstract: Part of a larger study of the development of teaching among novice college 
mathematics instructors, this report focuses on one participant, Disha, and her use of a 
questioning technique called hypophora. At the beginning of the observations, 25% of her 
questions were hypophora. After video-case based activities during weekly coordination 
meetings, her use of hypophora decreased to about 10% of questions. Although Disha rejected 
the idea that her teaching had changed in any way, she acknowledged that she began “breaking 
things into smaller pieces” to help students understand. 
 
Keywords: questions, calculus, hypophora, professional development 
 

In college mathematics, from gateway classes for future teachers to advanced courses for 
future engineers, instructors learn about teaching almost entirely by trial and error (Kung & 
Speer, 2009). The result is reflected in pass rates below 50%, particularly in calculus and its 
prerequisite courses (Hastings, Gordon, Gordon, & Narayan, 2006; Herriott & Dunbar, 2009).  

Bressoud, Carlson, Mesa, and Rasmussen (2013) report that among students who enroll in 
college calculus ready for the course (i.e., meeting pre-requisites and placement requirements), at 
least 28% fail it. If we consider the fail rate reported by Bressoud and colleagues, approximately 
85,000 students will fail Calculus I each fall semester. In response to course surveys, students 
reported that the teaching of Calculus I was “ineffective and uninspiring… ‘over-stuffed’ with 
content and delivered at too fast a pace, assessments were poorly aligned with what was taught 
and the instructor lacked connection to students and the course” (Bressoud et al., 2013, p. 10). 
The national problem driving the research presented here is the ill-spent time, effort, and money 
resources when so many students arrive at college ready for calculus and fail the class.  

Research has found that when teachers have a better understanding of student thinking, it 
improves teaching (Ball, 1997; Carpenter & Fennema, 1992; Fennema et al., 1996). By learning 
how to ask students questions, an instructor can open up a dialog with students and learn about 
the student thinking in the room. The collegiate mathematics education literature points to a need 
for insight into how graduate student Teaching Assistants (TAs) learn about student thinking 
(Speer & King, 2009). The research needed includes exploration of how novice instructors learn 
from their own practice and through professional development (Speer & Hald, 2008). Included in 
the field’s identification of needed work is a call for research on the instructional practices that 
support learning to learn from the teaching process itself, such as the in-class use of questions 
(Deshler, Hauk, & Speer, 2015). 

This qualitative and descriptive statistical study focused on one possible way to improve 
college mathematics instruction: support instructors to understand what their students are 
thinking. I investigated how course coordination that included video case based activities might 
facilitate reflection on and asking of questions in the classroom. The research questions were: 

1. What is the nature of questions and change in question strategies within a 
semester during classroom discourse by the instructors? 

2. How does video case based professional development shape the 
perceptions and intentions about the role of questions in teaching held by TAs? 
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Theoretical Framework and Researcher Stance 
 

The conceptual framework for the work is built on the foundation of pedagogical content 
knowledge. Pedagogical content knowledge (PCK) is the collection of knowledge instructors 
have about the discipline-specific challenges students encounter, strategies for helping students, 
ways to listen to identify learners’ thinking processes, and skills for regulating practice (Ball & 
Bass, 2000; Shulman, 1986). Novice college mathematics instructors acquire PCK in many 
ways, such as grading, examining their own learning, observing and interacting with students, 
reflecting on and discussing practice (Kung, 2010; Kung & Speer, 2009; Speer & Wagner, 
2009). College mathematics PCK includes knowledge about formal and informal mathematical 
discourse, including teachers’ anticipations regarding their adult students’ thinking and how to 
turn teacher intentions into actions (Hauk, Toney, Jackson, Nair, & Tsay, 2013). These ideas 
were operationalized in this study by a focus on seeking and responding to student thinking 
through questions.  

The emerging consensus in faculty development is that it is clinical work: instructors must 
evaluate, diagnose, and prescribe, while also developing their practice (Hinds, 2002; Persellin & 
Goodrick, 2012). Great success in preparing clinicians in medicine, psychology, law, and 
education has come through case- or story-based study (Boud & Feletti, 1997). Improving 
college mathematics teaching can productively start with ways to build instructional self-
awareness through opportunities to compare and contrast to other people in a variety of contexts 
(Mason, 2010). This method has been making its way into college instructor preparation through 
case-based materials (Friedberg et al., 2001; 2011; Hauk, Speer, Kung, & Tsay, 2010; Hauk et 
al., 2013). 

My epistemological stance was constructivist, both social and radical. I held to the belief that 
people construct their own knowledge and that knowledge is influenced by their environment. 
This knowledge can be a shared knowledge within a group, as in social constructivism, or the 
knowledge can be individually constructed, as in radical constructivism (Schunk, 2004). 

 
Methods 

 
Participants taught Calculus for Biological Scientists at a doctoral granting public university, 

referred to here as BRU. There were five participants in the larger study. All five were novice 
instructors. Four were graduate TAs and one was a recently graduated PhD student. I refer to 
those who are instructor-of-record (both TAs and other non-graduate student instructors) as 
“instructors.” Only one of the instructors, Disha, will be reported on in this paper. 

Each instructor was observed and video recorded six times during the semester. Observations 
focused on the type of question asked, the depth of the question, and the discourse surrounding 
those questions. Instructors were interviewed prior to any observations, again after two 
observations, and had a final interview after final exams. Instructors participated in weekly video 
case based course coordination meetings which focused on student thinking about mathematics. 
Each video case based session included activities and prompts for discussion among the 
instructors.  

Starting with a framework I developed with colleagues (Roach, et al., 2010), four of the six 
original observations were coded in depth. These classes were viewed and partially transcribed 
as needed to provide thick, rich, descriptive detail (Merriam, 1998). After two rounds of 
observation I determined that an additional question category, hypophora, was needed to address 
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a technique used by the instructors in the study. A hypophora is a question that speakers pose and 
then immediately answers themselves. Table 1 defines the question categories of Roach et al. 
(2010) and includes the additional category, hypophora, used in the coding of the observations. 
Table 2 illustrates the depth of the questions as defined by Roach et al. (2010). 

   
Table 1: Question Categories 

Category Definition 

Comprehension Check To assess one or more students’ declarative understanding of a 
topic, procedure or task (e.g., What should we do next?, Does 
that make sense?) 

Content Check Used to push the mathematical focus or direction of the 
students’ attention (e.g., Should we try the chain rule?) 

Elicit Student 
Thinking 

To draw out what the students were thinking, including prompts 
for students to communicate their what they thought to other 
students or teacher (e.g., What do you first notice about this 
graph?) 

Probe Student 
Thinking 

Investigate reasoning behind or explanation for a given 
response or procedural work, including prompts to 
communicate why a person or group thought what they did (e.g., 
That’s correct, but why?) 

Hypophora A question that speakers pose and then immediately answer 
themselves (e.g., Why do we want to take the derivative? 
Because it is the rate.) 

 

 

Table 2: Relationships Among Categories and Depth of Questions 

 Comprehension 
Check 

Content 
Check 

Elicit 
Thinking 

Probe 
Thinking 

Depth 0 Calls for memorization or recall 

Depth 1 Goal is procedural, without connection to concepts 

Depth 2 Purpose is connection between solution and reason/sense-making 

Depth 3 Target is “doing math”: create, synthesize, make and justify conjectures 
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Disha 
 

At the time of the study, Disha was in her fifth semester of teaching (one class per semester). 
Disha was a doctoral student in mathematics. She grew up and went to school in India. She 
completed her undergraduate degree in mathematics from a major university in India. Disha saw 
the instructor’s responsibility as presenting knowledge to students and the students' responsibility 
was taking that knowledge and making sense of it on their own.  

In the semester of the study, Disha taught one section of Calculus for Biological Scientists 
with 30 students enrolled. Of these, 20 students (67%) regularly attended class meetings. Disha 
relied on lecture throughout the observed lessons. She indicated that she did not like group work 
because it seemed to her that inevitably “one person will end up doing all the work.” She 
believed that students learn mathematics best by working individually.  

Disha regularly spoke up in coordination meetings and stated in informal conversation with 
me, that she enjoyed coordination meetings. Her weekly logs indicated that she often used ideas 
from coordination with individual students, small groups of students, or in the classroom. 
Working with individual students, or small groups of students occurred during her office hours. 
She also indicated she felt that the ideas presented in coordination sometimes increased student 
confidence in mathematics, led to a deeper understanding of the mathematics, and helped 
increase student interest in mathematics.  

 

Results 
 

Disha’s most common question was a “do you understand” type of question. Her next most 
common question type was hypophora. Across the four focus classes, Disha posed an average of 
128 questions per 50-minute class period. Most of these (74%) were Comprehension Checks, the 
most common two questions being “Is that ok?” and “Do you understand what I am saying?”  

Table 3 shows Disha relied primarily on Comprehension Check questions during the 
observed lessons. Disha asked few Content Check and Elicit Thinking questions and rarely asked 
Probe Thinking questions.  

 
Table 3: Disha’s Question Category Percentage Per Class 
 Comprehension 

Check 
Content 
Check 

Elicit 
Thinking 

Probe 
Thinking 

 
Hypophora 

Classroom 
Management 

Obs A 67% 3% 5% 0% 25% 0% 
Obs B 75% 0% 1% 0% 11% 12% 
Obs C 76% 3% 7% 1% 12% 1% 
Obs D 77% 6% 0% 0% 10% 5% 
%Totala 74% 3% 4% 0% 14% 5% 
a Due to rounding, rows may not add to exactly 100%. 
 

However, the per-class distributions of these and other types of questions varied over time 
(see Figure1).  
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Figure 1. Relative frequencies of question codes in observations, for Disha. 

 
 

During Observation C, Disha had the greatest number of Elicit Thinking questions such as, 
“What would you think differential equations are?” and she asked Probe Thinking questions such 
as "Why not?" after students responded “No” to “Will this represent the given situation?” A 
change in hypophora was notable across the study. In the first observation, she used the greatest 
number of hypophora (25% of questions). During subsequent observations, it was less likely for 
Disha to answer the questions she posed. Instead, she waited for students to answer. In at least 
one situation she asked a question and stepped away from the board and waited 30 seconds for 
students to respond. In Interview 3, I asked about her choice of which questions to use and why 
wait longer for answers on some. Disha said, “those were the questions I thought of when I [as a 
student] learned the material and I thought the students should think about those questions as 
well. I thought it would help them learn the material better.” I did not gather information about 
how each of the instructors learned specific calculus concepts themselves. In this particular case, 
the questions Disha used were those she had when she was a student. I return to this, below, in 
discussion of what Disha valued as a “good” question. 

Disha most frequently asked, “Does that make sense?” “Is that ok?” or “Do you see what I 
am trying to say?” The next most common questions were depth 1 Comprehension Checks and 
hypophoras. Below is an example of her use of hypophora, with the hypophora underlined: 

Disha: “What do we have in stability criteria? [no pause] We start with dt/ds [“dee tee 
dee ess”], ok. We start with dt/ds, I’m not going to do a bunch of examples here, 
ok. Now if m is the measurement, then this is how the dt/ds is represented by 
[pointing to “f(m)” written on the board]. Right? [no pause] then we will figure 
out equilibrium point. Why? [no pause] Because we are trying to find the stability 
of the equilibrium points.” 
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This kind of reflective exchange was common for Disha during her first observation. It is 

important to note that Disha did not pause after asking a question and immediately continued 
with the answer to the question she posed. It is not clear that much cognitive demand is made of 
students during a chunk of hypophoric lecture. It appeared to have the same effect as a statement 
on the students. While it was unusual for students to attempt to answer these questions, I did 
observe at least one instance in which a female student attempted to answer a hypophoric 
question posed by Disha. Disha did not acknowledge the student in any visible way and 
continued with her own answer to the question.  

After video case based coordination Disha began to wait after asking questions. During 
Observation C, Disha wrote the problem ∫2𝑥𝑒𝑥2𝑑𝑥 on the board. She then asked the students 
what rules they had learned so far that might help with this problem. The students suggested the 
power rule and quickly realized that would not work because it was “weird looking.” Disha 
continued with the following.  

 
Disha: So we cannot apply the power rule when we have the weird looking function over 

there. So what else can we apply? What else do we know? 
Student: Integral of e to the x is e to the x. 
Disha: [nodding] Integral of e to the x or antiderivative of e to the x is e to the x. [Looks 

around the room (4 seconds)] Right? (no pause) Can we make use of this rule 
over there? [pointing to the original problem. She waits four seconds then a 
student responds.] 

Student: No. 
Disha: No, Why not? 
Student: Because that’s e to the x squared. 
Disha: [nodding] Because this is e to the x squared. Which function when differentiated 

would give me e to the x squared? [10 second pause while looking around the 
room] We don’t know that do we? We can’t make a guess out of that. Can we 
make a guess? [Students are quiet and then start to shake their heads no.] 

 
 

After this exchange, Disha smiled and continued, reviewing all the rules for antiderivatives 
they had learned until this point in the semester. She pointed out that none of the current rules 
they had would work for this problem. She then stated, “How do we solve this? We are going to 
solve this with a slick trick.” Then smiled, and began to discuss u-substitution. 

This interaction was a noteworthy change for Disha. In the first observation, if Disha asked a 
“why” question, she would answer it herself. However in later observations, after video case 
based coordination, Disha waited after asking questions and the students would often respond 
verbally. 

 
Discussion 

The most notable change in Disha’s questioning techniques was a change in her use of 
Hypophora, 25 (25%) in her first observation (before video case activities) and 12 (11%) in her 
final observation (after four video cases). Disha expressed during one of her interviews that she 
was impressed with the “wait time” of one of the instructors in the second video case shown 
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during coordination (Office Hours). She related this “wait time” to “breaking things into smaller 
pieces” or scaffolding the information. After this case, Disha, declared her intention to give more 
time for students to answer questions. I also saw Disha giving the students more time to answer 
questions. In Observation A, if Disha asked a question that could be considered an Elicit 
Thinking or Probing question, she would immediately answer, making the question a 
Hypophora. However, after course coordination efforts, she gave time for students to answer 
questions. She stated in her final interview how impressed she was with the instructor observed 
in the Office Hour video case and that she used his methods of “breaking things into smaller 
pieces” and waiting for an answer, while working with students during office hours. At the same 
time, she rejected the idea that this video case changed her classroom teaching in any way.  

Kung (2010) observed that one way TAs learned about student thinking was through 
interacting with students watching them work problems and listening to them discuss 
mathematical content, as one would during office hours. It is possible that Disha gained an 
understanding of student thinking while in office hours that translated to her classroom 
instruction. The influence of the video case may have been indirect: as a moderator of her 
perception of her own office hour experiences, which were in turn a moderator of her classroom 
practice. Disha also spent more time exploring incorrect answers with students and, in 
observations after video case activity began, asked questions of a greater depth. By exploring 
incorrect answers and asking deeper questions, it is likely that Disha was gaining further insight 
into student thinking (Ball, 1997; Carpenter & Fennema, 1992; Fennema et al., 1996).  

Disha did not appear to be aware of an increase in wait time after asking questions during 
classroom instruction. One possibility is that Disha was creating “think time” not “wait time.” 
She could have been leaving time after asking questions for the students to think about the 
question and organize their thoughts, not waiting for them to answer. It is possible that her intent 
was to answer the questions herself, but the students answered them while she was allowing time 
for them to think about the mathematics. If Disha was simply giving the students time to think 
about a question and not waiting for an answer, this could explain why Disha did not believe she 
had changed her teaching in any way. In a review of the literature, there did not seem to be any 
distinction between “wait time” and “think time.” Further research could address the differences 
of “think time” versus “wait time” and student perceptions of these constructs. 

Emerging from the qualitative analysis of Disha’s questions was what Disha valued as a 
“good” question. She related “good” questions as questions that would have occurred to her. In 
one observation, after a student asked about why a certain u was chosen for a u-substitution, 
Disha responded with “That is a good question because that is a question that I would have 
thought of.” In my second interview with Disha she said “I chose to ask those questions because 
those are the questions that I thought of when I was learning the topic.” This data suggests that 
what Disha valued when asking and answering questions, were questions that aligned with her 
own way of thinking. Data was not gathered on types of questions the instructor were asked 
when they were students learning calculus. Future studies could examine the teaching styles of 
mathematics professors and how closely the professors’ questioning techniques align with the 
instructors’ questioning techniques. 

Student perceptions of questions were not examined in this study. Future studies could 
examine the relationship of the types of questions instructors ask to the types of questions 
students ask--from the start of a semester until the end of the semester. Interviewing both the 
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students and instructors about the questions asked could provide valuable feedback about student 
thinking and instructor response to student thinking. This would further build on Speer’s (2001) 
work by investigating not only the instructor reason for asking questions, but also the students’ 
reasons for asking, answering, and not answering questions as well as student thoughts about 
questions. Such a study would possibly include video-clip based student focus group interviews--
where students watch and discuss a question-driven interaction--at least twice during a semester 
and a comparison of the students’ perception of questions to the instructor’s perception of 
questions. Learning more about how students think about questions could aid in identifying what 
types of questions can contribute to student learning. This, in turn, could shape the development 
of new video cases that focus on questioning. 

 Future studies could also compare the nature of student responses on a particular task to 
examine the correlation between instructional style and the nature of student understanding of a 
particular concept. This could be done for many concepts and one could compare the nature of 
student understanding from concept to concept. Such a study could inform researchers about 
instructional styles and how they many contribute to student learning. 

 
Conclusion 

Many questions remain. Are hypophora questions? Are hypophora useful to classroom 
instruction? Could hypophora be an important phase in teaching development for those who for 
whom English is a second language? 

Hypophora seem to be an illustration of an internal thought process of the instructor. During 
one of the weekly coordination meetings, Disha stated “those are the questions [the students] 
should be thinking” when discussing questions asked by the instructors in the video case. Disha 
seemed to be talking about an internal dialogue that “should” be happening with students. 
However, while hypophora might be helpful to the instructor in organizing information, I do not 
believe that hypophora allow the students the time needed to process and organize thoughts. By 
offering the students time to think and process questions, they can construct meaning of the 
mathematics. More research is needed to examine the effect hypophora have on students and 
how it may or may not be helpful to students.  
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Students’ Conceptions of Mappings in Abstract Algebra 
 

Rachel Rupnow 
Virginia Tech 

 
In an effort to understand ways students approach constructing homomorphisms and 
isomorphisms between groups, six undergraduate math and engineering students in a lecture-
based introductory abstract algebra course were interviewed. These students experienced varied 
success in creating isomorphisms and homomorphisms, which allowed both successful 
techniques for map creation and stumbling blocks to map creation to emerge from the data. 
Additionally, a genetic decomposition for homomorphism is outlined and students’ mental 
constructions of both homomorphism and isomorphism are discussed. Finally, students’ 
conceptual metaphors for homomorphic and isomorphic mappings are examined. Combining 
these three analyses paints a picture of the interaction between students’ knowledge of 
properties of groups and mappings and their flexibility in creating mental images while 
interpreting those properties. 
 
Key words: Abstract Algebra, Homomorphism, Isomorphism, APOS, Conceptual Metaphor  

 
Purpose and Background 

Experts have identified isomorphism and homomorphism as two of the most central topics to 
abstract algebra (Melhuish, 2015). Although some research has been done on how students 
approach isomorphism, including designing an inquiry-oriented curriculum that addresses 
isomorphism (Larsen, Johnson, & Bartlo, 2013), research explicitly on students’ understanding 
of homomorphism has been scarce. Thus, a purpose of this study is to examine students’ 
approaches to finding both isomorphisms and homomorphisms and what prevents students from 
finding appropriate mappings between groups. 

A homomorphism between groups is defined as follows: “Let (!,⋆) and (!,⊡) be groups. A 
map !: ! → ! such that !(! ⋆ !) = !(!)⊡ !(!) for all !,! ∈ ! is called a homomorphism” 
(Dummit & Foote, 2004). Thus a homomorphism is a map that preserves the structure of the 
original group in the domain of the second group. It does not require the groups to have the same 
cardinality; group ! may be larger or smaller than group !. There is always at least one 
homomorphism between groups; namely, the trivial homomorphism, in which every element of 
! is mapped to the identity in !. Further, an isomorphism between groups is defined as follows: 
“The map !: ! → ! is called an isomorphism and ! and ! are said to be isomorphic or of the 
same isomorphism type, written ! ≅ !, if ! is a homomorphism, and ! is a bijection” (Dummit 
& Foote, 2004). Thus isomorphisms are a specific type of homomorphism in which the 
cardinalities of both groups are the same and all elements of the first group are mapped to 
distinct elements of the second group. For example, !, the Klein four-group, is isomorphic to 
ℤ!× ℤ!. However, ℤ!× ℤ! is not isomorphic to ℤ! because the homomorphism property is not 
satisfied by any bijective map. While homomorphisms are mappings that preserve the structure 
of groups, isomorphisms are mappings that verify the two groups are essentially the same. 

Previous studies have examined isomorphism in different ways. Early studies mostly 
provided students with two Cayley tables or stated two groups and asked if they were isomorphic 
or how they could tell they were isomorphic. The Dubinsky, Dautermann, Leron, and Zazkis 
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(1994) study indicated that when students considered isomorphisms between groups, they 
considered the cardinality of each group, but not whether the homomorphism property was 
satisfied. Leron, Hazzan, and Zazkis (1995) also noted students’ tendency to check the 
cardinality of a group, but their students continued to test multiple other properties by finding the 
identity element (in Cayley tables), the orders of individual elements (the smallest positive 
integer m such that am is the identity for each element a), the number of elements of given orders 
in each group, whether a group is generated by a single element, and if it is commutative. 
Despite the many factors to check, students would still struggle if more than one way to 
construct an isomorphism existed, demonstrating a “craving for canonical procedures” (p. 168). 

Other studies have considered isomorphism in the context of proof. In related studies, Weber 
and Alcock (2004) and Weber (2002) asked undergraduate and doctoral students to prove a 
number of theorems related to isomorphism and to prove or disprove specific groups were 
isomorphic. While both doctoral and undergraduate students were able to prove the initial simple 
propositions, the doctoral students continued to be successful in proving the remaining five 
propositions, while collectively only two (of twenty) proofs of the remaining propositions given 
by undergraduates were successful. Much like in Dubinsky et al. (1994), these difficulties largely 
related to undergraduates’ tendency to form arbitrary mappings once they had ascertained that a 
bijection between groups could be formed. They would not apply other properties of the groups 
when trying to find or disprove the existence of an isomorphism. 

Recent studies on isomorphism have shifted the focus to how to develop local instructional 
theories that could be transformed into an inquiry-oriented curriculum that included topics such 
as isomorphism. In the process of examining how students used their existing ways of reasoning 
to engage with mathematically rich tasks, other student views of isomorphism have come to 
light. In 2009, Larsen recorded a teaching experiment in which participants were expected to 
generate a definition of isomorphism. In that study, participant Jessica noted that the definition of 
isomorphism should include bijection because “…it has to go both ways” (p. 133). Her statement 
brought to light another approach to isomorphism: reversible mapping. Later, Larsen et al. 
(2013) noted that the homomorphism property was more challenging for students to unpack than 
the bijection property. Additionally, Larsen (2013) noted, “students’ use of the homomorphism 
property is usually largely or completely implicit” (p. 722). Thus a number of tasks in his 
curriculum engage students in forming an explicit homomorphism in order to help students 
formulate the definition of homomorphism and, later, isomorphism. These studies highlight that 
students attend to the properties of the two groups, but that generating mappings between the 
groups was either ignored or very difficult for students. 

In these isomorphism studies, some research has been conducted on homomorphism in the 
process of researching isomorphism. However, a few studies have examined homomorphism 
more closely in the context of proof. Nardi (2000) noted students’ struggles in proving the First 
Isomorphism Theorem for Groups stemmed from three major sources: an inability to recall 
definitions or a lack of understanding of definitions, poor conceptions of mapping (such as 
thinking a homomorphism was an element of a group), and not realizing specifically what each 
part of the proof was proving. Weber (2001) observed that despite undergraduates’ ability to 
recall relevant theorems, they struggled to move past syntactic, “definition unpacking” 
techniques when trying to prove theorems related to isomorphism and homomorphism, such as 
proving a group was abelian given the map was a surjective (onto) homomorphism. He also 
noted doctoral students had a tendency to use conceptual knowledge to formulate proofs more 
strategically and experienced more success in proving.  
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Theoretical Perspectives 

APOS Theory 
Two different theoretical lenses are used for this study. The first is APOS theory, which 

decomposes students’ thinking into Action, Process, Object, and Schema level conceptions 
(Arnon et al., 2014). An action is an external transformation of objects; a process is an 
interiorized action; an object is an encapsulated process; and a schema coordinates objects and 
processes (Asiala, et al., 1996). For example, one genetic decomposition for function says a 
student with an action conception of function needs to take specific elements from a set and 
apply a rule to obtain an explicit output to make sense of a function. When students are able to 
internalize this procedure so they recognize elements of the domain are manipulated through a 
rule to produce outputs, and they can run through this procedure mentally, they are said to have a 
process conception. Eventually, a student will encapsulate this process into a static entity, 
allowing them to perform operations on functions; at this point a student has an object 
conception of function. Finally, indicators that a student has developed a schema conception of 
function are that the student can recognize whether a relationship represents a function and can 
determine the domain and range of a function (Arnon et al., 2014).  

Previously, Leron et al. (1995) created a genetic decomposition of isomorphism based on 
understanding groups, functions, and existential quantifiers. Specifically, a student with an action 
level conception of isomorphism would likely check that individual elements of two potentially 
isomorphic groups act in the same way by checking the orders of elements and the cardinalities 
of the groups. At the process level, when a student was able to apply quantification more 
broadly, he or she would need to check that the homomorphism property held under a mapping, 
allowing the elements of one group to be mapped to another. Finally, a student able to recognize 
that more than one mapping from one group to another might be possible, but that the existence 
of one such isomorphic map guaranteed the groups were isomorphic could be described as 
having an object conception of isomorphism. Although Leron et al.’s (1995) decomposition was 
based on constructing isomorphism in finite groups, students could also be asked to determine if 
infinite groups were isomorphic. In this context, I conjecture that students would also need at 
least a process level construction of infinity to be able to generate a correspondence between 
infinite sets of the same cardinality or to recognize two infinite sets had different cardinalities.  

While Leron et al. (1995) created a decomposition of isomorphism over twenty years ago, no 
one has offered a decomposition of homomorphism. This may stem from differing concept 
images (Tall & Vinner, 1981) of isomorphism and homomorphism. While it can be easy to 
describe isomorphism in a “naïve” way as “two groups (and their operations) [that are] the same” 
(Dubinsky et al., 1994, p. 280), it is difficult to find a similar naïve way to describe 
homomorphism. In fact, Leron et al. (1995) note that this might be due to the “directional (rather 
than symmetrical) nature” of homomorphisms, which are essentially functions (p. 172). 
However, to an extent we can think of homomorphisms in terms of collapsibility. 

Suppose ! is a homomorphism from ! to !′. Then the kernel of this homomorphism is a 
normal subgroup of !. (The kernel of a homomorphism is the elements that are mapped to the 
identity in !′.) We can think of a homomorphism as taking as its domain the elements of ! and 
producing an image within !′, potentially all of !′. Sometimes each element of ! is mapped to a 
distinct element of !′. In this case, no “collapsing” seems to occur because the kernel of ! is the 
identity of !. However, at other times, multiple elements of ! are mapped to some of the 
elements of !′. In this case, a number of elements are “collapsed” to each element of the image 
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because they act in a similar way in the related quotient group. (Note that not all elements of !′ 
are necessarily elements of the image of !, and that each element of ! can be mapped to at most 
one element of !′ because homomorphisms are functions.) 

Viewing homomorphisms as a collapsing relationship provides insights into a way in which 
the topic can be decomposed. Namely, constructing homomorphism at an object level requires 
constructing function as an object, because a homomorphism is a type of function. As part of 
this, a student would need an object conception of group to be able to determine if the domain 
and image of a mapping were in fact groups, as needed to be a homomorphism. Furthermore, 
students need to develop an object conception of coset in order to be able to determine which 
elements of the first group should collapse to each element in the image. In equivalence relation 
terms, students need to be able to determine that the elements within each coset of the kernel of 
the homomorphism act equivalently.  

Alternatively, one may conceive of a homomorphism as a special type of function. We can 
further delineate this decomposition according to how students would behave at different levels 
of homomorphism construction. When a student has an action conception of homomorphism, 
they could likely be characterized by only checking the orders of elements and the cardinalities 
of the “domain” group and of the desired codomain group. If the orders matched, they would 
likely create a mapping directly. Alternatively, they might conclude no homomorphism can be 
formed if the orders of elements in the two groups do not match. This is because such students 
would be focused on what each element is doing and how each element is being mapped 
according to the function form they were using. Like in Arnon et al.’s (2014) decomposition of 
function, students would focus on what specific elements are doing. Based on their isomorphism 
training, they would likely struggle in situations where the kernel of the homomorphism was not 
the identity. Like in the context of isomorphism, when addressing infinite groups, students would 
also struggle if they had not constructed a process conception of infinity.  

At a process conception of homomorphism, students would be more careful to check that the 
homomorphism property holds in a proposed mapping from one group to another. Like in Arnon 
et al.’s (2014) decomposition, they would be less focused on mapping each element and more 
focused on the set of elements that the elements of the first group would be mapped to in the 
second group. Additionally, they would likely check that the homomorphism property held for a 
number of pairings, though they may be satisfied they had produced a homomorphism before 
checking all pairs of elements in the first group. 

At an object conception of homomorphism, a student would finally grasp the “naïve” 
meaning of homomorphism; that is, a student could recognize a pattern exists between the 
number of elements of the kernel and the number of elements mapped to each image element. 
Like in Arnon et al.’s (2014) decomposition, students would be able to perform operations on the 
mapping, including being able to form different homomorphisms by manipulating which normal 
subgroup formed the kernel. Therefore, students would be able to construct (without prompting) 
homomorphic mappings with non-trivial kernels, such as the trivial homomorphism (in which all 
elements of the first group, !, are mapped to the identity in the second group, meaning the kernel 
of the homomorphism is !). Previous work on cosets, normality, and quotient groups by Asiala, 
Dubinsky, Mathews, Morics, & Oktac (1997) highlighted students’ difficulty in proving that the 
kernel of a homomorphism is a normal subgroup, noting that students commonly assumed that 
the kernel equaled the identity. As the focus of the question in their study was to look at 
students’ conceptions of normality, they simply noted this was “an issue that has to do with the 
concept of homomorphism” and moved on (p. 268). 
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Conceptual Metaphor 
The second theoretical lens is the conceptual metaphor construct (e.g. Lakoff & Núñez, 

2000). The properties and metaphorical expressions students used when describing 
homomorphic and isomorphic mappings were examined based on the characterization of 
students’ concept images in Zandieh, Ellis, and Rasmussen’s (2016) study on students’ 
explanations of function and linear transformations. When possible, students’ expressions were 
categorized within the five metaphorical clusters of Input/Output (InOut), Traveling (Tr), 
Morphing (Morph), Mapping (Map), and Machine (Mach) that were found in the Zandieh, et al. 
(2016) paper. A sixth cluster, Matching (Match), that did not appear in their paper emerged here. 

Statements that referred to properties of a map, such as being one-to-one or bijective, without 
unpacking the meaning of the property were classified as Properties and the property being 
referenced was noted. Students’ metaphorical expressions were classified as Input/Output if they 
implied a “putting in” and “taking out” relationship or a one directional relationship. The 
Traveling cluster is characterized by elements “moving”, “going to”, or “getting to” a specific 
place or element. The Morphing cluster involved “transforming” or “changing” an entity through 
a map. The Mapping cluster involved having a “correspondence” between groups. Although 
students used the verb “map” frequently, their utterance was only included in this category if 
there was not a reference to Traveling, Morphing, or Matching at the same time. The utterance 
also needed to go beyond the definition of a map to be categorized as a metaphorical expression 
and not a property. The Machine cluster included references to an entity that caused a change 
from the beginning to ending state, often with words like “produces”. The Matching cluster was 
especially used when students were describing isomorphisms. In this cluster, students would 
refer to a mapping as “preserving structure”, “behaving” the same, or “matching” elements. This 
cluster is distinct from the Mapping cluster because the Matching cluster emphasizes a quality of 
“sameness” whereas the Mapping cluster simply links beginning and ending sets of elements. 

By using these two perspectives as well as examining student work by general approach, I 
will provide a multifaceted analysis of student thinking and address three research questions. (1) 
What approaches did students take when asked to form isomorphisms and homomorphisms 
between groups? (2) How can we understand the student work using APOS theory? (3) What 
metaphors did students draw on when speaking about homomorphisms and isomorphisms? 
 

Methods 

The participants for this study were six sophomore or junior university students in a lecture-
based introductory abstract algebra course. Four were mathematics majors and two were 
engineering majors considering double majoring in math or transferring into the math program. 
Students’ college math backgrounds other than introductory calculus and a proof course varied 
but included courses in combinatorics, discrete math, vector geometry, linear algebra, 
multivariate calculus, differential equations, operational methods, and real analysis.  

Students were recruited from two instructors’ courses with one student coming from 
Instructor A’s section (denoted participant A1) and five from Instructor B’s section (denoted 
participants B1, B2, B3, B4, and B5). Instructor A had taught both group and ring isomorphisms 
and homomorphisms earlier in the semester and his students, including A1, had been tested on 
that material. Instructor B had just begun teaching about group homomorphisms and 
isomorphisms when his students were interviewed. Four of his students were interviewed after 
learning about isomorphisms but before learning about homomorphisms in class (B1-B4), and 
one student was interviewed after learning about both isomorphisms and homomorphisms (B5). 
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Participants were recruited in two ways. The author asked for an announcement to be sent to 
Instructor A’s students with interested students sending the author a message. In Instructor B’s 
section, the author visited the class and asked interested students to provide their email address in 
order to be contacted. Students were given their preference of $10 or an hour of tutoring to try to 
incentivize students with a range of abilities to participate.  

 
Figure 1. Interview protocol for semi-structured interviews. 

 
Each participant engaged in a semi-structured interview (Fylan, 2005) lasting approximately 

one hour. The interview questions were drawn from those in Figure 1, but time and students’ 
backgrounds prevented some students from seeing certain questions. However, all students 
answered questions 6, 10, 11, and 13. A listing of all questions answered by each student is given 
in Table 1. The interviews were all audio-recorded and five of the six were video-recorded. 
Participants’ written work was also collected. To analyze the data, the interviews were coded in 
multiple iterations. First, participants’ interviews were transcribed and open coded for students’ 
problem solving strategies regarding isomorphism and homomorphism. This coding generated 

1. What is a homomorphism? 
2. How do you determine if [a map or whatever used above] is a homomorphism? 
3. What is an example of a homomorphism? 
4. What is an isomorphism? 
5. How do you determine if [a map or whatever used above] is an isomorphism? 
6. What is an example of an isomorphism? 
7. Is the homomorphism example you gave also an isomorphism? 
8. Is the isomorphism example you gave also a homomorphism? 
9. Interpret the following definitions of homomorphism and isomorphism. 

Definition: Let (!,⋆) and (!,⊡) be groups. A map !: !  → ! such that !: (! ⋆ !) = !(!)⊡ !(!) 
for all !, ! ∈ ! is called a homomorphism.  
Definition: The map !: ! → ! is called an isomorphism and ! and ! are said to be isomorphic or of 
the same isomorphism type, written ! ≅ !, if  

              ! is a homomorphism, and ! is a bijection. 
For each of the following pairs of groups in 10-17, is it possible to form an isomorphism between them? 
Why or why not? Is it possible to form a homomorphism between them? Why or why not? 

 
10.  

 
 
 
 
 
 
 
 

 
11. ℤ! → 5ℤ 
12. ℤ! → ℤ/5ℤ 
13. ℤ! → ℤ! 
14. ℤ! → ℤ! 
15. ℤ! → ℤ! 
16. ℤ → 2ℤ 
17. 2ℤ → ℤ 
18. Does !"#(!): (ℝ,+) → (ℝ! ,×) where !"#(!) = !! represent a homomorphism? An 

isomorphism? Why or why not? 
19. Assume ℤ is the additive group of integers. Does !: ℤ → ℤ where !(!) = 8! represent a 

homomorphism? An isomorphism? Why or why not? 
20. Assume ℝ is the additive group of integers. Does !: ℝ → ℝ where !(!) = 8! represent a 

homomorphism? An isomorphism? Why or why not? 
 

∗ a b c d 

a a b c d 

b b a d c 

c c d a b 

d d c b a 

 

+ a b c d 

a b a d c 

b a b c d 

c d c a b 

d c d b a 
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themes, which were verified by utilizing multiple iterations of coding (Anfara, Brown, & 
Mangione, 2002). In this cyclic process, each task given to a student was analyzed for the 
problem solving strategy used. As new strategies emerged in later transcripts, early interviews 
were reviewed, making sure that strategies identified later in coding had not been overlooked in 
early interviews. After the open coding and theme generation were completed, the transcripts 
were reviewed again for classification according to APOS theory and for students’ use of 
conceptual metaphors. The APOS decomposition of homomorphism was created based on 
previous literature and the previous analysis of problem solving strategies. The conceptual 
metaphor construct was used to gain insight into students’ concept images of mappings. 
 
Table 1 
Questions Answered by Each Student 

Student Questions Answered 
A1 1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,17,18,19,20 
B1 3,6,7,9,10,11,12,13,14,15,16,17,18,19,20 
B2 4,5,6,9,10,11,13,14,15,16,17 
B3 4,5,6,9,10,11,13 
B4 4,6,9,10,11,12,13 
B5 1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18 

 
Results 

Because this study is viewed from multiple lenses, we begin with general problem solving 
approaches for isomorphisms and homomorphisms as well as stumbling blocks to finding maps. 
This is followed by students’ classification using the genetic decompositions for isomorphism 
and homomorphism. Finally, students’ use of conceptual metaphors is explored.  

Problem Solving Approaches 
Participants’ approaches to mappings fell into three major categories: successful methods of 

determining that a map was an isomorphism or whether such a map could be generated between 
groups; successful methods of determining that a map was a homomorphism or whether such a 
map could be generated between groups; and stumbling blocks to success. 

Isomorphisms. Students exhibited a variety of successful strategies when trying to determine 
whether two groups were isomorphic or whether a given map could be an isomorphism. Because 
a one-to-one and onto mapping must exist for a bijection to exist, groups must have the same 
cardinality to be isomorphic. Thus, one strategy students used was to check whether the groups 
were the same size. Four of the participants (A1, B2, B3, and B5) utilized this strategy at some 
point with three of them checking this characteristic first when faced with any of problems 11-
17. For example, in response to the isomorphism part of question 11 (ℤ! → 5ℤ), B2 answered, “I 
don’t think, um, I can form isomorphism between them because, um, I don’t think it is bijective, 
um, because I think this group [points to 5ℤ] is larger than this one [points to ℤ!].” 

Another successful strategy was to look for a reversible map between given groups or to note 
that a previously stated map was reversible. A1, B1, and B2 all utilized this strategy, with B1 
using this as her main approach. For example, consider this exchange when asked question 16.  

B1: I believe so. Like, to get from ℤ to 2ℤ, you just multiply by 2. To get from 2ℤ to ℤ, you 
just divide by 2.  
I: You said ℤ to 2ℤ, multiply by 2. Is that an isomorphism? Homomorphism?  
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B1: Well that in itself is, that’s only a one way mapping. Its inverse also exists so paired 
together, isomorphism, I’d say. 
When pressed on details of the “inverse” map, namely explaining why it was acceptable even 

though division was not the operation defined for ℤ and ½ was not an element of ℤ, she said it 
did not matter because “1 isn’t in 2ℤ. There is nothing that will get you to a non-integer. If it’s 
written as 2 times something, dividing by 2 just gets rid of that.” She realized that the maps she 
had defined would map to and from the same elements. In reference to the same problem, A1 
noted 2ℤ to ℤ was “the same one. Since they were isomorphic before, it works the other way.” 
He realized that when an isomorphism exists, the mapping between the groups can be inverted so 
each group is the domain of an isomorphic mapping to the other.   

B2 and B4 considered another potential strategy for determining whether groups were 
isomorphic: creating a Cayley table for each group. Additionally, B2 recognized this was only a 
feasible option for small groups. In question 5, when asked how to determine if a group was an 
isomorphism, he said he would like to make a Cayley table if possible, but if the group was too 
big, it would be challenging: “a Cayley table will be 16x16 and I cannot make it, but, you know, 
4x4, that would be fine, so kind of [a] small example.”  In the reverse situation, when presented 
with the Cayley tables in question 10, A1 and B1 also compared the orders of elements or 
mapped the identities of each group to each other without being prompted to do so.  

Homomorphisms. The most straightforward argument given for determining whether a 
mapping was a homomorphism stemmed from determining it was an isomorphism. Because all 
isomorphisms are homomorphisms, if a student determined an isomorphism could be formed 
between groups, a homomorphism could automatically be formed too. A1, B1, and B5 clearly 
recognized this property, making statements similar to what A1 said: “It’s part of the definition 
to be isomorphic: you have to have homomorphism in there.” The other three participants may 
have also recognized this concept based on their explanations of the definitions of isomorphism 
and homomorphism, but they never directly used this concept to answer other questions.  

Closure (associated with cardinality arguments) was a property students used to check 
whether a map they proposed could be a homomorphism. This idea was especially used to rule 
out maps they had created in response to questions 11 and 13.  Five of the students successfully 
used this strategy, with B4 making a typical response as shown in Figure 2. She used her work 
with Cayley tables that would not close (on the mid-right and bottom right of Figure 2) to 
conclude she could not map all elements in ℤ! (pictured on the mid-left) to distinct elements in 
5ℤ and have a closed group result. From this, she concluded she could not create an isomorphism 
or homomorphism. Although her conclusion that she could not form an isomorphism was valid, 
her conclusion that there was no possible homomorphism was flawed because the trivial 
homomorphism, !: ℤ! → 5ℤ such that ! ! = 0 ∀ ! ∈ ℤ!, would be possible. In fact, only A1 
recognized the trivial homomorphism would be a homomorphism without being prompted to 
consider it. He and other participants who successfully generated homomorphisms appeared to 
notice patterns in the orders of the groups, which allowed maps to be generated quickly. For 
example, when looking for a map from ℤ! to ℤ!, B1 noticed the 0’s should correspond and that 
{0,2,4} acted just like ℤ!. Similarly, B2, who had found a homomorphism from ℤ! → ℤ! before 
being asked about ℤ! and ℤ!, noted a non-trivial homomorphism could not be created between 
them because “3 divides 6 right? So, like, it should have something important about mapping….”  

Although most students attempted to use one of the strategies above first, they eventually 
resorted to trial and error to look for homomorphisms. Some students used pure trial and error 
techniques, such as B5, who attempted to map elements of ℤ! to ℤ! in seemingly random order 
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and then check if the homomorphism property was satisfied (i.e. mapping 0,3,4 → 0, 1,2 →
1, 5 → 2). Both he and B3, users of this “random” approach, said they thought these problems 
were “trick questions” because there was no obvious technique to use. Participants who had 
more success finding suitable maps and ruling out incorrect maps tended to use knowledge of the 
orders of the groups to narrow possible choices, such as in B1’s comparison of {0,2,4} to ℤ!.  

Stumbling blocks. A number of participants struggled to recall and utilize definitions 
effectively. Although most students defined an isomorphism as a bijective mapping or one-to-
one and onto mapping that had the property ! ! ∗ ! = ! ! !(!), some students struggled to 
unpack what “one-to-one” or “onto” meant. For example when B3 was asked what one-to-one 
meant, she first attempted to give the formal definition but could not recall it. When asked just to 
state what she thought about one-to-one and onto, she replied that in a one-to-one mapping “one 
[element] maps to one [element]” as she drew a set diagram illustrating a mapping. However, she 
still could not explain what onto meant, even in the context of her diagram. When asked to 
interpret the definition of homomorphism given in question 9, B2 claimed, “It should be 
abelian….Because you can switch these two, x and y, and then it just, isn’t it automatically 
saying if you say yx, it’ll just be y and x?” Additionally, students B2 and B5 attempted to map 
elements to multiple locations, thus violating the implicit function relationship in the definitions.  

Although all participants tried to use formal definitions at times, some struggled to interpret 
them. Consider the following exchange after B4 was asked to give the definition of isomorphism. 

B4: I don’t even know if this is right. [Writes ! ∘ ! = ! ∘ !.] I don’t know what the circles 
are, but it’s when it’s preserved under the same something—I know it but I can’t tell you. 

I: Ok, well I feel like you’re trying to give me the formal definition….Do you have just an 
intuitive sense of what it is?  

B4: It’s when two things are multiplied or something under a…say the mapping is !, if you 
do map of ! ⋅ ! is equal to map of ! ! ⋅ !(!) under, yeah, and it’s onto and one-to-one, 
I think. 

Figure 2. Work sample from B4 examining possible maps between ℤ! and 5ℤ. 
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I: Ok. So you’ve given me a nice definition. Do you have any sense of, like in practical 
terms, what that might look like? 

B4: No. 
I: Ok, so if I asked you for an example you would say… 
B4: Would probably give it to you in math terms. I don’t know a real example. Yeah. 
Some students also struggled to distinguish between the roles and the names of elements.  

This issue especially arose with the Cayley tables in question 10, when students often assumed 
they had to map element a to element a because it was the same letter rather than determining the 
identity of each group or using other techniques. This tendency to map elements with the same 
name to each other appeared in later problems too. For example, in question 13, every participant 
first tried to map 0 → 0,… , 4 → 4, and all but A1 and B5 concluded that there could not be any 
homomorphism between the groups because the map matching similarly named elements did not 
work. Even when presented with the trivial homomorphism as a possible solution to question 13, 
B3 struggled to accept the mapping because she did not know what to do with the other elements 
in ℤ! (i.e., 3+4=2 is mapped to 0, but 3+4 = 1 in ℤ! “isn’t going anywhere”). 

Even when students identified the roles of elements in different groups, they did not always 
know how to create a mapping from this information. For instance, B2, who in response to 
question 5 had stated that creating Cayley tables could be useful in determining if an 
isomorphism existed between groups, struggled when presented with the tables of question 10. 
He successfully located the identity element of each group, but he was unsure what to do with 
this information until being prompted to consider mapping the identity elements to each other. 

APOS Classification 
In this section, a picture of each student is given through the lens of action-object theory. 

Students’ perceived mental constructions are listed based on their problem solving approaches. 
A1 was the strongest student in this study. Of all of the questions posed to him, he only 

struggled with determining if a homomorphism was possible on the Cayley table problem. Later, 
he observed that the trivial homomorphism is always a possible mapping between groups. He 
made use of the cardinalities of groups and the orders of elements, but also attended to whether 
the homomorphism property was satisfied while mapping. Furthermore, he had no problems with 
mapping from finite to countably infinite groups or between countably infinite groups. He was 
never explicitly asked to look for multiple isomorphisms, so it is difficult to tell whether he had 
constructed object level conceptions of isomorphism. However, he possessed at least process 
level conceptions of isomorphism, including for groups of infinite order. Because he eventually 
constructed mappings with non-trivial kernels, including both the trivial homomorphism and a 
homomorphism from ℤ! → ℤ!, he may have object level conceptions of homomorphism. 

B1 was another strong student. She was comfortable working with countably infinite groups. 
She took the orders of groups into consideration when mapping, though she mostly based her 
isomorphism arguments on reversible or, as she said, “invertible” mappings. She generally 
would check the homomorphism property was satisfied whenever generating isomorphisms or 
homomorphisms, which allowed her to catch her own errors when her maps did not work. She 
was not asked to look for multiple isomorphisms, so it is only possible to say that she possessed 
at least a process conception of isomorphism. She possessed no greater than a process conception 
of homomorphism because she was unable to generate maps with non-trivial kernels. Although 
she quickly verified that the trivial homomorphism was a homomorphism when it was suggested, 
she did not create other non-trivial mappings, even in the ℤ! → ℤ! problem. 
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B5 checked multiple elements worked before concluding his mappings were isomorphisms 
or homomorphisms. However, he would not check all elements and would not always happen to 
check the cases that failed, so he would claim a map satisfied the homomorphism property when 
it did not. He also was not always able to check the orders of elements; specifically, he believed 
that the order of each element was found by multiplying each element of a row by the identity 
element, thereby deciding that elements of orders 1,2,3, and 4 appeared in one of the Cayley 
tables. He was able to work with infinite groups without difficulty, however. Putting everything 
together, he had at best process level conceptions of isomorphism and homomorphism. 

B4 did not make direct statements about the cardinalities of groups or elements in the context 
of isomorphism or homomorphism. However, she indirectly used cardinality by looking at the 
definition of one-to-one or by observing that the homomorphism property could not be satisfied 
when mapping similarly named elements to each other in groups of relatively prime order 
(ℤ! → ℤ!). She was always very attentive to definitions, though she did confuse the definitions 
of one-to-one and function. Because of her attention to definitions, she did not conclude 
isomorphisms and homomorphisms existed when they should not have. However, she struggled 
to get an intuitive sense of isomorphism and homomorphism, leading her to work very slowly. 
Because she was able to indirectly check cardinality and check the homomorphism property, she 
might have been at a process level; however, without more examples with equipotent groups that 
could not map easily based on the homomorphism property, it is difficult to tell if she possessed 
action or process conceptions of isomorphism and homomorphism. She never addressed any 
questions that addressed her conceptions of correspondences between infinite sets. 

B2 was able to address problems when shown an issue and did recognize that he should 
attend to the identities of groups when mapping, but he struggled to know what to do with this 
information. At times, he checked the homomorphism property, but he placed more emphasis on 
using all of the elements of both groups, which led him to create maps that were not functions 
from ℤ! → ℤ! and ℤ → 2ℤ. Additionally, he had not taken analysis yet and struggled when asked 
if an isomorphism between ℤ and 2ℤ could exist, as he assumed that ℤ was “larger” than 2ℤ. 
Overall, he appears to be at the action level for both homomorphism and isomorphism. 

B3 struggled the most in this study. She occasionally checked the orders of elements and 
began to check the cardinalities of groups after she was given an interpretation of “one-to-one 
and onto”. However, she struggled to recall and interpret definitions on her own and sometimes 
mapped elements at random. When looking for a homomorphism from ℤ! → 5ℤ she said, “I’m 
just mapping. I’m just picking” rather than checking whether her map would satisfy the property. 
At most, she displayed action conceptions of isomorphism and homomorphism. 

Conceptual Metaphor 
Students utilized a number of different metaphors and properties while defining and 

describing homomorphisms and isomorphisms. While all six metaphorical clusters were used by 
at least one person, the Mapping, Matching, and Traveling metaphors were used more commonly 
than the Machine, Input/Output, and Morphing clusters, both in terms of the number of 
participants using the clusters and the number of times each participant used the cluster. The 
metaphors and properties used by each student are given in Table 2 by map. Typical examples of 
each metaphor cluster are provided in Table 3. In addition to using metaphors, students also 
relied on certain properties that they either chose not to explain while using them or never 
explained in the interview. The properties used during explanations are also listed in Table 3.  

The most successful solvers, those at the process level and above for homomorphism and 
isomorphism according to APOS theory, typically used Traveling metaphors. The exception was 
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B3, who also made use of Traveling metaphors a few times near the end of the interview. 
However, the interviewer made use of Traveling metaphors in some earlier explanations, so she 
may have simply adopted the interviewer’s way of speaking. In addition, successful solvers 
typically integrated imagery and properties. A1, who had the most experience working with 
homomorphisms and isomorphisms, utilized three different metaphors while also making use of 
properties he had learned. The only time he struggled was when he failed to attend to properties 
and relied only on a Matching metaphor. Conversely, B4 struggled, especially early, when she 
focused almost exclusively on definitions and properties without interpretation as shown above. 

 
Table 2 
Students’ Properties and Metaphorical Clusters by Mapping 

Student Homomorphism Isomorphism 
A1 CMap, CMatch, CTr CMap, CMatch, CTr, PGp, P1-1, POnto, PHom, PCard  
B1 CMap, CMatch, CTr, CInOut, PImage CMap, CMatch, CTr, CMorph, PCard, PBij 
B2 CInOut, CMatch P1-1, POnto, PBij, PGp, CMatch, CMach 
B3 CMap, CTr P1-1, POnto, PBij, PHom, PGp, CMatch 
B4 CInOut, CMap CMatch, PGp, P1-1, POnto  
B5 CMatch, CTr CMatch, P1-1, POnto, PGp, PCard, CTr 
 
Table 3 
Examples of Statements in Each Metaphorical Cluster 
Name Illustrative Example 

 
Input/Output (InOut) B4: “You have an equation or anything and plug in the value !, it 

would output, er, that output would be !(!) so you plug in ! in the 
group ! into an equation or something of !.” 

Traveling (Tr) B3: “3 goes to 3 here, but 1+ 2 = 3 won’t go anywhere.” 
Morphing (Morph) B1: “Say you try to add these two elements [in ℤ!]. You will get this 

one. Say you try to transform them in some way. You would have to 
do it 4 → 5, 1 → 1 or something else like that where you just plain 
don’t get that when you add them [in ℤ!].” 

Mapping (Map) A1: “I don’t know what they map to is the issue.” 
Machine (Mach) B2: “I think my problem is I don’t know how this map goes if I 

choose these two numbers.” 
Matching (Match) B5: “The identities should be mapped onto each other.” 
Properties	 One-to-one (1-1), Onto, Bijection (Bij), Homomorphism (Hom), 

Group (Gp), Cardinality/Order (Card), Image 
 
B1 was striking in the variety of metaphors used. She utilized metaphors from five of the six 

clusters and was able to address most of the problems she was given effectively. Despite being 
unable to state the definition of homomorphism or isomorphism at the beginning of the study, 
when given the definitions, she immediately interpreted them using Mapping metaphors: “If you 
have any two elements, if you compose them before mapping, you get the same thing as if you 
compose…what their maps are for all of those elements. And here [in the isomorphism 
definition] it’s basically that, plus you can do it backwards.”  
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Additionally, while everyone used a Matching metaphor at some point, this image was not 
always helpful; in fact, it appeared to hinder some students’ development. B3 was very focused 
on superficial sameness as she looked at Cayley tables, saying that if the groups in the Cayley 
tables were isomorphic, both tables would be the same; that is both should say “d,c,b,a” in the 
bottom row. While isomorphic groups could be relabeled in such a way as to make this happen, 
observing two Cayley tables of groups do not look identical is insufficient to conclude that the 
groups are not isomorphic. Even A1, who used the phrase “preserves structure” repeatedly and 
was able to address all isomorphism questions successfully, was sometimes hampered in his 
homomorphism efforts by trying to maintain the Matching metaphor for homomorphisms. His 
main problem occurred when trying to determine if a homomorphism could be established 
between the groups represented by the Cayley tables. Although he rapidly ascertained that no 
isomorphism could be formed between the groups in the Cayley tables, he confused himself by 
trying to continue his metaphor of “preserving structure” in the context of homomorphism. This 
led him to go back and forth between saying a homomorphism should not preserve the structure 
because that was what isomorphisms did, to saying the groups should “behave the same way” 
under a homomorphism. (When answering this question, he had not yet recalled that the trivial 
homomorphism could always be formed between groups.) He was so focused on his metaphor 
that he did not go back to his definition of isomorphism, in which he said that an isomorphism is 
a “homomorphism plus it’s one-to-one and onto”. 
 

Discussion 

From the problem solving approach analysis, we can see that students were more comfortable 
working with the bijective property than the homomorphism property, much like in Larsen et al. 
(2013). This seems plausible given that because the cardinality of a group can be determined 
rapidly, determining if a bijection exists between two groups is most likely not as difficult as 
determining if the homomorphism property holds for all pairs of elements of a group. Although 
the homomorphism property allows specific maps to be tested quickly, students had to rely on 
trial and error (albeit strategic trial and error) to create reasonable maps to be tested. 

Additionally, students with limited concept images (Tall & Vinner, 1981) of one-to-one, 
onto, function, and homomorphism were at a disadvantage when creating homomorphisms and 
isomorphisms. Students A1 and B1, who had the most robust mental constructions of 
isomorphism and homomorphism, both utilized the concept of a mapping being reversible if it is 
an isomorphism and demonstrated the ability to use strategic trial and error to find 
homomorphisms quickly. These traits indicated a robust concept image of maps, much as the 
successful doctoral students utilized their knowledge of theorems strategically to write proofs 
(Weber, 2001). Like other studies, students considered the cardinalities of the groups to 
determine if they could be isomorphic (Dubinsky, et al., 1994; Leron, et al., 1995; Weber & 
Alcock, 2004; Weber, 2002). Despite literature indicating that comparing orders of elements of 
groups when trying to determine if a map is an isomorphism was a common technique (Leron, et 
al., 1995), only two participants utilized the technique in this study; however, this may be due to 
the limited number of questions in which both groups were finite and had the same cardinality. 

From the APOS analysis, it is reasonable that students struggled more when asked to find 
homomorphisms from one group to another than when asked to determine whether groups were 
isomorphic because students need to coordinate an extra construction, namely determining the 
image of the homomorphism. In this study, students struggled far more when they could not map 
elements in the first group to distinct elements in the second group. Additionally, the “naïve” 
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image of homomorphism is not as intuitive as the “sameness” associated with isomorphism. 
Because this image of homomorphism is tied to quotient groups, with which students famously 
struggle (Dubinsky, Dauterman, Leron, & Zazkis, 1997), students should not be expected to 
reach an object understanding of homomorphism until after quotient groups have been taught.  

From the conceptual metaphor analysis, we see that collectively students used a variety of 
metaphors to describe mappings, though the most common type of metaphor was Matching. 
While one of the most successful solvers, B1, used a wide variety of metaphors, a better 
indicator of success was integrating properties with metaphors. Students who relied too heavily 
on properties at the expense of imagery struggled to move past computations and what they had 
memorized. Students who relied too heavily on word pictures at the expense of definitions could 
impute too many properties to their mapping (like B3 with the “same” Cayley tables) or could 
highlight the wrong properties (like A1 saying only isomorphisms “preserve structure”). 

By combining analyses, we are able to gain a characterization of what successful and 
struggling students might look like in abstract algebra. Successful students were able to utilize 
properties and definitions fluidly while also being able to characterize what was happening in a 
more intuitive way. By using their varied images and properties strategically, they were able to 
approach more problems with success (Weber, 2001). Students with limited ways of picturing 
mappings, who were tied to definitions and property statements, were still struggling to 
understand how each element would be mapped and were not in a position to create mental 
images of what all elements would do or how isomorphisms or homomorphisms should behave.  

Future studies could use students more experienced with homomorphism and isomorphism to 
refine the genetic decomposition of homomorphism. Additionally, more questions with 
isomorphic groups should be explored to see if students utilize techniques like considering the 
orders of elements and creating reversible maps when faced with more groups of the same 
cardinality. Because of the dearth of studies on homomorphism, it would be illuminating to 
conduct teaching experiments examining how to enhance students’ concept images of these 
mappings both by developing metaphorical descriptions and by grounding statements in formal 
properties. This might help students consider mapping elements that look different to one another 
despite elements of similar appearance being present in the other group (e.g., map 1 → 2 instead 
of 1 → 1 when generating a homomorphism from ℤ! → ℤ!). This study continues the work done 
by Zandieh et al. (2017) in examining students’ conceptions of function in linear algebra by 
looking at students’ conceptions in abstract algebra. Future studies could compare and contrast 
how students create and use mappings in other content areas, such as graph theory or analysis, 
generating insights into the role of mappings throughout mathematics. 
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Emerging Insights from the Evolving Framework of Structural Abstraction  
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Only recently ‘abstraction from objects’ has attracted attention in the literature as a form of 
abstraction that has the potential to take account of the complexity of students’ knowing and 
learning processes compatible with their strategy of giving meaning. This paper draws 
attention to several emerging insights from the evolving framework of structural abstraction 
in students’ knowing and learning of the limit concept of a sequence. Particular ideas are 
accentuated that we need to understand from a theoretical point of view since they reveal a 
new way of understanding knowing and learning advanced mathematical concepts.  

Keywords: Limit Concept; Mathematical Cognition; Sense-Making; Structural Abstraction  

Introduction 

Theoretical and empirical research shows the existence of differences in knowing and 
learning concerning different kinds of knowledge (diSessa, 2002). A general framework on 
abstraction cannot encompass the whole complexity of knowing and learning processes in 
mathematics. Rather, in investigating the nature, form, and emergence of knowledge pieces, 
various local learning theories may be developed, which will be quite specific to particular 
mathematical concepts, individuals, and their respective sense-making strategies. As a 
consequence, the complexity of knowing and learning processes in mathematics cannot be 
described or explained by only one framework. Instead, we acknowledge that comprehensive 
understanding of cognition and learning in mathematics draws on a variety of theoretical 
frameworks on abstraction. 

The literature demonstrates significant theoretical and empirical advancement in 
understanding ‘abstraction-from-actions’ approaches, particularly the cognitive processes of 
forming a (structural) concept from an (operational) process (Dubinsky, 1991; Gray & Tall, 
1994; Sfard, 1991). Abstraction-from-actions approaches take account of a certain sense-
making strategy, namely what Pinto (1998) described as ‘extracting meaning’. However, only 
recently ‘abstraction from objects’ has attracted attention as a form of abstraction that 
provides a new way of seeing the complexity of knowing and learning processes compatible 
with students’ strategy of what Pinto (1998) described as ‘giving meaning’.   

The purpose of this paper is to provide deeper meaning to a recently evolving framework 
of a particular kind of ‘abstraction from objects’: structural abstraction. The structural 
abstraction framework is evolving in the sense that the framework functions both as a tool for 
research and as an object of research (Scheiner & Pinto, 2016b). In more detail, we use the 
structural abstraction framework retrospectively as a lens through which we reinterpret a set 
of findings on students’ knowing and learning of the limit concept of a sequence. This 
reinterpretation is an active one in the sense that the framework serves as a tool to analyze a 
set of data, while the framework is also refined and extended since the reinterpretation 
produces deeper insights about the framework itself. Especially, these more profound insights 
are what we need to understand from a theoretical point of view since they have relevance for 
significant issues in knowing and learning advanced mathematical concepts. Such a dynamic 
view that is aligned with an interpretative approach seems to be promising in responding to 
questions that evolve while the object of consideration is still under investigation.  

20th Annual Conference on Research in Undergraduate Mathematics Education 27420th Annual Conference on Research in Undergraduate Mathematics Education 274



We begin by providing an upshot of our synthesis of the literature on abstraction in 
knowing and learning mathematics. Our synthesis is to suggest an orientation toward the 
evolving framework of structural abstraction as an avenue to take account of an important 
area for consideration – that is, drawing attention to the complex knowing and learning 
processes compatible with students’ ‘giving meaning’ strategy. The structural abstraction 
framework constitutes the foundation of the second part of the paper providing emerging 
insights in knowing and learning the limit concept of a sequence. These insights offer 
theoretical advancement of the framework and deepen our understanding of knowing and 
learning advanced mathematics.  

 
Mapping the Terrain of Research on Abstraction in Mathematics Education 

Abstraction seems to have gained a bad reputation after been questioned by the situated 
cognition (or situated learning) paradigm, and, as a consequence, has almost disappeared 
from recent research discourse. This criticism rests primarily on traditional approaches on 
knowledge transfer through abstraction that led to an understanding of abstraction as a 
process of decontextualization and a confusion of abstraction with generalization. The recent 
contribution by Fuchs et al. (2003) shows that such classical approaches to abstraction still 
exist:  

“To abstract a principle is to identify a generic quality or pattern across instances of the 
principle. In formulating an abstraction, an individual deletes details across exemplars, 
which are irrelevant to the abstract category […]. These abstractions […] avoid 
contextual specificity so they can be applied to other instances or across situations.” (p. 
294) 

Though various images of abstraction in the mathematics education literature can be 
identified (see Scheiner & Pinto, 2016a), several scholars argued against the image of 
abstraction as decontextualization. Van Oers (1998, 2001), for instance, argued that removing 
context must impoverish a concept rather than enrich it. Several other scholars have 
reconsidered and advanced our understanding of abstraction in ways that account for the 
situated nature of knowing and learning in mathematics. Noss and Hoyles (1996) introduced 
the notion of situated abstraction to describe “how learners construct mathematical ideas by 
drawing on the webbing of a particular setting which, in turn, shapes the way the ideas are 
expressed” (p. 122). Webbing in this sense means “the presence of a structure that learners 
can draw up and reconstruct for support – in ways that they can choose as appropriate for 
their struggle to construct meaning for some mathematics (Noss & Hoyles, 1996, p. 108). 
Hershkowitz, Schwarz, and Dreyfus (2001) introduced the notion of abstraction in context 
that they presented as “an activity of vertically reorganizing previously constructed 
mathematics into new mathematical structure” (p. 202). They identify abstraction in context 
with what Treffers (1987) described as ‘vertical mathematization’ and propose entire 
mathematical activity as the unity of analysis. These contributions demonstrate that research 
on abstraction in knowing and learning mathematics has made significant progress in taking 
account of the context-sensitivity of knowledge.  

Several other contributions shape the territory in mathematics education research on 
abstraction. Mitchelmore and White (2004) indicate a distinction between abstraction in 
mathematics and abstraction in mathematics learning. They proposed to include a new 
meaning in the later, which seemed to be missing in the debate on the notion of abstraction, 
related to “formation of concepts by empirical abstraction from physical and social 
experience” (p. 329). Articulated to this understanding, Scheiner (2016) proposed a 
distinction between two forms of abstraction, namely abstraction from actions and 
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abstraction from objects. This distinction has been further refined in Scheiner and Pinto 
(2014) arguing that the focus of attention of each form of abstraction takes place on physical 
objects (referring to the real world) or mental objects (referring to the thought world) (see 
Fig. 1).  

abstraction on actions abstraction on objects

pseudo-empirical 
abstraction

empirical 
abstraction

reflective 
abstraction

m
ental 

objects 
physical 
objects 

structural 
abstraction

 
Fig. 1: A frame to capture various kinds of abstraction (reproduced from Scheiner & Pinto, 2014) 

We consider this distinction as being productive in trying to capture some of the variety of 
images of abstraction in mathematics education (for details see Scheiner & Pinto, 2016a). It 
acknowledges Piaget’s (1977/2001) three kinds of abstraction, including pseudo-empirical 
abstraction, empirical abstraction, and reflective abstraction, that served as critical points of 
departure in thinking about abstraction in learning mathematics. Research on abstraction in 
mathematics has long moved beyond classifying and categorizing approaches in cognition 
and learning, based on similarities of the individuals constructs. For instance, Mitchelmore 
and White (2007), in going beyond Piaget’s empirical abstraction and in drawing on Skemp’s 
(1986) conception of abstraction, described abstraction in learning elementary mathematics 
concerning seeing the underlying structure rather than the superficial characteristics. 
Abstraction in learning advanced mathematics, however, is almost always defined in terms of 
encapsulation (or reification) of processes into objects, originating in Piaget’s (1977/2001) 
idea of reflective abstraction. Reflective abstraction is an abstraction from the subject's 
actions on objects, particularly from the coordination between these actions. The particular 
function of reflective abstraction is abstracting properties of an individual's action 
coordination. That is, reflective abstraction is a mechanism for the isolation of specific 
properties of a mathematical structure that allows the individual to construct new pieces of 
knowledge. Taking Piaget’s reflective abstraction as a point of departure, Dubinsky and his 
colleagues (Dubinsky, 1991; Cottrill et al., 1996; Arnon et al., 2014) developed the APOS 
theory describing the construction of concepts through the encapsulation of processes. 
Similar to encapsulation is reification – the central tenet of Sfard’s (1991) framework 
emphasizing the cognitive process of forming a (structural) concept from an (operational) 
process. In the same way, Gray and Tall (1994) described this issue as an overall progression 
from procedural thinking to proceptual thinking, whereas proceptual thinking means the 
ability to flexibly manipulate a mathematical symbol as both a process and a concept. Gray 
and Tall (1994) termed symbols that may be regarded as being a pivot between a process to 
compute or manipulate and a concept that may be thought of as a manipulable entity as 
procepts. 

Scheiner (2016) revealed that the literature shows an unyielding bias toward 
abstraction from actions as the driving form of abstraction in knowing and learning advanced 
mathematics. This almost always exclusive view arises directly from the trajectory of our 
field’s history; originating in Piaget’s assumption that only reflective abstraction can be the 
source of any genuinely new construction of knowledge. While abstraction-on-actions 
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approaches have served many purposes quite well, they cannot track detail of students’ 
knowing and learning processes compatible with the strategy of giving meaning. The recently 
evolving framework of structural abstraction has attracted attention as a promising tool to 
shed light into the complexity of students’ knowing and learning processes compatible with 
their strategy of ‘giving meaning’.  
 

The Evolving Framework of Structural Abstraction 

The distinction between abstraction from actions and abstraction from objects reflects 
Tall’s (2013) distinction between operational abstraction and structural abstraction. In 
contrast to Piaget (1977/2001) who dichotomized these two forms of abstraction, Tall (2013) 
argued that mathematical thinking emerges in these two forms: operational abstraction 
focusing on actions on objects and structural abstraction focusing on the properties (or 
structures) of objects. For instance, the development of geometry in the conceptual embodied 
world focuses mainly on structural thinking, the operational symbolic world blends both 
operational and structural thinking as new forms of number are introduced as extensional 
blends in algebra (see Tall, 2013). Obviously, mathematics education researchers used the 
term ‘structural’ in diverse ways, referring, for instance, to structural mathematics of axioms 
and definitions or to the properties of the structure of objects. In the following discussion, we 
departure from Scheiner’s (2016) understanding of structural abstraction as focusing on “the 
richness of the particular [that] is embodied not in the concept as such but rather in the 
objects that falling under the concept […]. This view gives primacy of meaningful, richly 
contextualized forms of (mathematical) structure over formal (mathematical) structure” (p. 
175). Here we focus the attention to several core assumptions that orient the evolving 
framework of structural abstraction (see Scheiner, 2016; Scheiner & Pinto, 2016b):  
 
Concretizing through Contextualizing 

Structural abstraction takes place on mental objects that, in Frege’s (1892a) sense, fall 
under a particular concept. These objects may be either concrete or abstract. Concreteness 
and abstractness, however, are not considered as properties of an object but rather as 
properties of an individual’s relatedness to an object in the sense of the richness of a person's 
representations, interactions, and connections with the object (Wilensky, 1991). From this 
point of view, rather than moving from the concrete to the abstract, individuals, in fact, begin 
their understanding of (advanced) mathematical concepts with the abstract (Davydov, 
1972/1990). The ascending from the abstract to the concrete requires a concretizing process 
where the mathematical structure is particularized by looking at the object in relation with 
itself or with other objects that fall under the particular concept. The crucial aspect for 
concretizing is contextualizing, that is, setting the object(s) in different specific contexts. 
Different contexts may provide various senses (Frege, 1892b) of the concept of observation.  

  
Complementizing through Recontextualizing 

The central characteristic of the structural abstraction framework is that while, within the 
empiricist view, conceptual unity relies on the commonality of elements, it is the 
interrelatedness of diverse elements that creates unity within the approach of structural 
abstraction. The process of placing objects into different specific contexts allows specifying 
essential components. Structural abstraction, then, means attributing the particularized 
meaningful components of objects to the mathematical concept. Thus, the core of structural 
abstraction is complementarity rather than similarity. The meaning of advanced mathematical 
concepts is developed by complementizing diverse meaningful components of a variety of 
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specific objects that have been contextualized and recontextualized in multiple situations. 
This perspective agrees with van Oers’ (1998) view on abstraction as related to 
recontextualization instead of decontextualization.  

 
Complexifying through Complementizing  

The structural abstraction framework takes the view that knowledge is a complex system 
of many kinds of knowledge elements and structures. Complementizing implies a process of 
restructuring the system of knowledge pieces. These knowledge pieces have been constructed 
through the above-mentioned process or are already constructed elements coming from other 
concept images, which are essential for the new concept construction. The cognitive function 
of structural abstraction is to facilitate the assembly of more complex and compressed 
knowledge structures. Taking this perspective, we construe structural abstraction as moving 
from simple to complex knowledge structures, a movement with the aim to build coherent and 
compressed knowledge structures. In Thurston (1990)’s words, when the latter is achieved we 
“can file it away, recall it quickly and completely when you need it, and use it as just one step 
in some other mental process.” (p. 847). From the structural abstraction perspective, 
abstraction is acknowledged as a movement across levels of complexity (Scheiner and Pinto, 
2014).  

 Emerging Insights from the Structural Abstraction Framework 

In this section, we summarize emerging insights we gained so far by using the evolving 
framework of structural abstraction retrospectively as a lens through which findings on 
students’ (re-)construction of the limit concept of a sequence were reinterpreted. The study by 
Pinto (1998) provided the context in which she identified mathematics undergraduates’ 
sense-making strategies of formal mathematics. From a cross-sectional analysis of three pairs 
of students, two prototypical strategies of making sense could be identified, namely 
‘extracting meaning’ and ‘giving meaning’: 

“Extracting meaning involves working within the content, routinizing it, using it, and 
building its meaning as a formal construct. Giving meaning means taking one’s personal 
concept imagery as a starting point to build new knowledge.” (Pinto, 1998, pp. 298-299) 

The literature on abstraction from actions provides several accounts of how students 
construct a mathematical concept compatible with their strategy of ‘extracting meaning’. 

For instance, dynamic views of the limit of a sequence and the genetic decomposition of 
the limit concept of a sequence are intensively investigated by Arnon et al.’s (2014) APOS 
theory to respond to how students may construct the concept through the process of reflective 
abstraction. To mention a few recent investigations supported by the same theory, and 
compatible with the strategy of ‘extracting meaning’, Martinez-Planell, Gonzalez, DiCristina, 
and Acevedo (2012) focused on students’ understanding of series and investigated whether 
students saw series as a process without an end or as a sequence of partial sums, as stated by 
definition. They respond how students may construct the concept, by considering a 
distinction amongst their understandings of the concept of a sequence as a list of numbers or 
as a function defined in natural numbers (McDonald, Mathews, & Strobel, 2000), and 
concluded that even after formal training, students often think of sequences and series as an 
infinite, unending process. 

 However, there are almost no accounts of how students construct a concept compatible 
with their strategy of ‘giving meaning’, and the structural abstraction framework has shown 
to be enlightening with regard to this. Students who ‘give meaning’ seem to develop 
representations of the limit concept from their concept image and use them generically (see 
Yopp & Ely, 2016) for constructing and reconstructing the concept (see Pinto & Scheiner, 
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2016). This means, such representations are not always generic in the sense of Mason and 
Pimm (1984) though they are used as if they were of that nature. Moreover, such 
representations may be productive in some, though not all contexts, in which they are needed. 
In spite of the striking differences in the knowledge constructions in each case study, that are 
made explicit by the nature of the representations construed and their use, the three case 
studies presented in Pinto (1998) on students’ strategy of giving meaning have in common a 
cohesion in their sense-making and in learning the formal mathematics concept (Pinto & 
Scheiner, 2016; Scheiner & Pinto, 2014). Pinto and Scheiner (2016) concluded that 
coherence amongst students’ sense-making and their (re-)construction of the formal content 
had been proven to be a central characteristic of those students who ‘give meaning’. This 
does not mean that the reconstructions a student made are configured in a “satisfactory 
reconstruction or accommodation” scenario (Vinner, 1991, p. 70); rather, that apart of the 
learning scenario, a student’s sense making is coherent with her or his learning of a 
mathematical concept. 

It is important to note that the evolving framework of structural abstraction is problem 
driven, that is, addressing the need for bringing light into the complexity of students’ 
knowing and learning processes compatible with their strategy of ‘giving meaning’, rather 
than filling a theoretical gap just because it exists. The reinterpretation of empirical data on 
students’ strategies of giving meaning in the light of the theoretical framework of structural 
abstraction proved to be particularly fruitful – not only to provide deeper insights into the 
strategy of giving meaning but also as a way to deepen our understanding of the phenomenon 
of structural abstraction that revealed new theoretical developments (Pinto & Scheiner, 2016; 
Scheiner & Pinto, 2014). In the following sections, we highlight the main theoretical 
advancements.  

The idea of complementizing meaningful components underlying the structural 
abstraction framework reflects the idea that whether an individual has ‘grasped’ the meaning 
of a mathematical concept is situated in specific contexts where the objects falling under the 
specific mathematical concept have been placed in. In the case studies revisited, these 
contexts include the formal mathematics one, where mathematical objects are presented as 
formal definitions and their properties are deducted through formal proofs. Such a diversity 
of situated or contextualized meanings supports Skemp’s (1986) viewpoint that “the 
subjective nature of understanding […] is not […] an all-or-nothing state” (p. 43). The 
reanalysis of the data indicates that the object of researchers’ observation should be directed 
to students’ partial constructions of the limit concept. These partial constructions may be 
specific and productive to particular contexts but may remain not fully connected and may be 
unproductive in other contexts (for instance, in making sense of the formal definition). The 
empirical data show that, in the case of the students who give meaning, several meaningful 
elements and relations in understanding the limit concept of a sequence are involved, 
although a few elements are missing (or distorted). However, some students are able to (re-
)construct some meaningful components at need by making use of their partial constructions, 
while others are not able to do so.  

Our reanalysis indicates that some students have developed resources that enable them to 
(re-)construct the limit concept of a sequence at need. Scheiner and Pinto (2014) focused on a 
case where a student developed a generic representation of the limit concept of a sequence 
that operates well in several, although not all, contexts and situations. This particular 
representation, however, allows the student to (re-)construct the limit concept in other 
contexts and situations. The reinterpretation of the data sheds light on the phenomenon that 
individuals may not ‘have’ all relevant, meaningful components, but, rather, they may have 
resources to generate some meaningful components and make sense of the context at need. In 
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that sense, the ‘completeness’ of the complementizing process cannot ever be taken as 
absolute.   

Several researchers suggested exposing learners to multiple contexts and situations. An 
important insight from using the structural abstraction framework retrospectively is that 
exposure to multiple contexts is at least important for particularizing meaningful components: 
various objects falling under a particular mathematical concept have to be set into different 
specific contexts in order to make visible the meaningful components or mathematical 
structure of these objects. In so doing, the objects may be ‘exemplified’ through a variety of 
representations, in which each representation has the same reference (the mathematical 
object); however, different representations may express different senses depending on the 
selected representation system (see Fig. 2).  
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Fig. 2: Reference, sense, and idea  

The distinction between sense and reference has been specified by Frege (1892b) in his 
work Über Sinn und Bedeutung, indicating both the sense and the reference as semantic 
functions of an expression (a name, sign, or description). In short, the former is the way that 
an expression refers to an object, whereas the latter is the object to which the expression 
refers. According to Frege (1892b), to each representation correspondents a sense; the latter 
may be connected with an idea that can differ within individuals since people might associate 
different senses with a given representation. Though multiple contexts and situations are 
needed, a new context that does not provide a new sense will unlikely be productive for 
concept construction.  

Research also indicates that students may have difficulties with the relationships between 
the sense and the reference as well as difficulties in maintaining the reference as the sense 
changes (Duval, 1995, 2006). Thus, one might assume that these difficulties may (at least 
partly) be overcome by providing students a particular resource (such as a generic 
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representation of the mathematical concept) that serves as a guiding tool in complementizing 
the meaningful components indicated in the different senses. From this perspective, a 
‘representation for’ is a tool that provides theoretical structure in constructing the meaning of 
the concept of observation. It necessarily reflects essential aspects of a mathematical concept 
but can have different manifestations (Van den Heuvel-Panhuizen, 2003). Concerning the 
learning of the limit concept of a sequence, the reinterpretation of the data indicates that a 
slightly modified version of a student’s representation (see Fig. 3) may support the 
complementizing process when the limit concept is recontextualized. 

N

ԑ 
ԑ 

 
Fig. 3: A generic representation for learning the limit concept of a sequence  

Notice that this generic representation for learning the limit concept of a sequence takes 
account of several students’ common conceptions identified in the research literature, 
including those as (1) the limit is unreachable, (2) the limit has to be approached 
monotonically, and (3) the limit is a bound that cannot be crossed (see Cornu, 1991; Davis & 
Vinner, 1986; Przenioslo, 2004; Tall & Vinner, 1981; Williams, 1991). 

The reanalysis of the empirical data gained from Pinto’s (1998) study has shown that 
students who gave meaning built a representation of the concept and, at the same time, used it 
as a representation for recognizing and building up knowledge – the reconstruction of the 
formal concept definition, for instance. The analysis shows that these students consistently 
used representations of mathematical objects to create pieces of knowledge; or, in other 
words, the representations were actively taken as representations for emerging new 
knowledge and making sense of the context and situation. This shift from constituting a 
representation of the limit concept to using this representation as a representation for (re-
)constructing the limit concept in other contexts can be described in terms of shifting from a 
model of to a model for (Streefland, 1985) – a shift from an after-image of a piece of given 
reality to a pre-image for a piece of reality to be created. Adopting this view, we may indicate 
variations in knowledge structures related to the possible explanations that are considered. 
Models may involve acceptance of other hypothesis through deduction, causality or analogy.  

This mental shift from ‘after-image’ to ‘pre-image’ indicates a degree of awareness of the 
meaningful components and the complexity of knowledge structure that allows the transition 
from a ‘representation of’ as a result of various representations expressing specific objects set 
in different contexts to a ‘representation for’ constructing and reconstructing the limit 
concept, if inter alia, in formal mathematical reasoning. We suggest that a generic 
representation, as presented in Fig. 3, may provide an instructional tool that supports raising 
the awareness of meaningful components in learning the limit concept of a sequence. In other 
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words, such a generic representation may direct students’ perception of meaningful 
components although it does not enshrine mathematical knowledge. 
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A Comparison of Calculus, Transition-to-Proof, and Advanced Calculus Student 
Quantifications in Complex Mathematical Statements 

 
Morgan E. Sellers Kyeong Hah Roh Erika J. David 

Arizona State University Arizona State University Arizona State University 

Abstract: This study investigates Calculus, Transition-to-Proof, and Advanced Calculus 
students’ meanings for quantifiers in conditional statements involving multiple quantifiers. Three 
students from each course participated in clinical interviews. Students were presented with the 
Intermediate Value Theorem (IVT) and three other statements whose logical structure was 
similar to the IVT except for the order of both the quantifiers and their attached variables. The 
results reveal that Advanced Calculus and Transition-to-Proof students made distinctions 
between the different statements more often than Calculus students. Several student meanings for 
quantification were found to be necessary for making distinctions between each of the four 
statements. We also address student quantifications for hidden quantifiers in the statements. 

Key words: Quantifiers, Student Interpretations of Mathematical Statements, Intermediate Value 
Theorem (IVT), Comparative Analysis, Undergraduate Students 

The teaching and learning of Calculus is important for all STEM programs. Many studies 
have investigated STEM students’ meanings for important Calculus concepts such as limits, 
differentiation, and integration, and how these concepts are presented to students (Carlson, 
Jacobs, Coe, Larsen, & Hsu, 2002; Martin, 2013; Oehrtman, 2009; Orton, 1983; Thompson, 
1994; Vinner & Dreyfus, 1989; White & Mitchelmore, 1996; Zandieh, 2000). Many Calculus 
concepts like the ones listed above are described in mathematical statements with multiple 
quantifiers. However, little attention has been paid to students’ interpretations of the quantifiers 
used to express Calculus ideas.  

In this paper, we focus on students’ meanings for quantifiers in complex mathematical 
statements from Calculus. By complex mathematical statements, we mean statements that have 
both if-then structure and multiple quantifiers. The Intermediate Value Theorem (IVT) is one 
example of such a statement: “Suppose that f is continuous on the closed interval [a, b] and let N 
be any number between f(a) and f(b), where . Then, there exists a real number c in 
(a, b), such that f(c)=N” (Stewart, 2003, p. 131). Many Calculus definitions and theorems like the 
IVT can be classified as complex mathematical statements, even though the topic of 
quantification is not addressed in popular Calculus textbooks (Bittinger, 1996; Larson, 1998; 
Stewart, 2003).  

Although some studies have investigated students’ and teachers’ treatment of quantifiers, 
these studies have dealt with a single quantifier in mathematical contexts or multiple quantifiers 
outside of a mathematical context (Dubinsky & Yiparaki, 2000; Piatek-Jiminez, 2010; Tabach et 
al., 2010; Tsamir et al., 2009). On the other hand, studies that have dealt with multiple 
quantifiers in mathematical contexts have placed more emphasis on Transition-to-Proof and 
Advanced Calculus students rather than Calculus students (Dawkins & Roh, 2011; Dawkins & 
Roh, 2016; Roh & Lee, 2011, 2015; Selden & Selden, 1995). This study explores the following 
questions for students who have completed either Calculus, Transition-to-Proof, or Advanced 
Calculus:  

 
1. How do students evaluate complex mathematical statements from Calculus? 

f (a) ≠ f (b)
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2. What meanings do students at various mathematical levels have for quantifiers in 
complex mathematical statements from Calculus? 
	

Literature Review 

Previous studies about student understanding of statements involving quantifiers focused on 
three issues as follows: students’ understanding of statements with one quantifier, students’ 
understanding of statements involving more than one quantifier, and students’ understanding of 
statements in which quantifiers were not stated, but rather hidden.  

Student Understanding of Single Quantifiers. Research in mathematics education points out 
that students may interpret quantifier words such as “for all” (∀) , “there exists” (∃) , and “there 
exists a unique” (∃!)  differently than the mathematics community (Dawkins & Roh, 2016; 
Dubinsky & Yiparki, 2000; Epp, 1999, 2003). In turn, students’ understanding of quantifiers in a 
statement plays a crucial role in their justification of a statement involving a quantifier. In 
particular, previous studies show that some students tended to suggest that a few examples are 
sufficient to show that a statement involving a single universal quantifier, in the form ‘For all x, 
P(x),’ where P(x) is a statement about x, is true (Bell, 1976; Healy & Hoyles, 2000; Moore, 1994; 
Selden & Selden, 1995). Some students even wished to examine additional examples even after 
seeing a generic proof of such a statement (Fischbein, 1982). On the other hand, when disproving 
a statement of the form ‘For all x, P(x)’, students often believed that only one counterexample is 
insufficient to disprove the statement (Balacheff, 1986; Galbraith, 1981) or they thought the 
statement must be still true as they viewed the counterexamples as outliers (Zaslavsky & Ron, 
1998). In the case of a statement involving a single existential quantifier, in the form ‘there exists 
x such that P(x),’ students also rejected the notion that one example would suffice for proving 
such a statement (Selden & Selden, 1995). All of these issues may be rooted in the fact that 
students have different meanings for quantifiers other than the conventional mathematical uses of 
these quantifiers. Epp (2003) argues that some colloquial uses of quantifiers may influence 
students’ use of quantifiers in mathematics. For example, the phrase “for all” in an English 
sentence often implies the existence of at least one element in a set. Based on such a colloquial 
use of the phrase “for all,” students might interpret the universal quantifier in a mathematical 
statement as they interpret it in an English sentence whereas, in mathematics, a statement with a 
universal quantifier could be vacuously true. Shipman (2013) also found that students’ 
conception of the unique existence in mathematics was not compatible with its meaning in 
mathematics but rather consistent with its colloquial meaning; in fact, students thought “unique” 
would mean unequaled. 

Student Understanding of Multiple Quantifiers. Even if students appropriately interpret 
single quantifiers in mathematical contexts, they may not correctly interpret quantifiers if a 
statement involves multiple quantifiers. By multiple quantifiers we mean at least two quantifiers 
in a statement such as two quantifiers “for all N, there exists c” in the Intermediate Value 
Theorem. We refer to a statement of the form ∀x(∃yP(x, y)) as an  statement and a statement 
of the form ∃y(∀xP(x, y))  as an statement. Previous studies showed that many students did 
not distinguish difference between  statements and statements and more frequently 
misinterpreted statements as  statements (Dubinsky & Yiparaki, 2000; Piatek-Jiminez, 
2010). Other studies showed that some students switched the order of the variables attached to 
the quantifiers in a statement. For instance, in the case of the !-N definition of the limit of a 
sequence, which is an  statement, students often considered the variable N before considering 

∀∃
∃∀

∀∃ ∃∀
∃∀ ∀∃

∀∃
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the variable !, or determined the value of ! based on the value of N. In fact, these students did 
not necessitate the independence of the first variable ! and dependence of the second variable N 
in the statement (Dawkins & Roh, 2016; Roh & Lee, 2011, 2015).  

Student Understanding of Implicit Quantifiers. Implicit (or hidden) quantifiers refer to the 
quantifiers that are not explicitly stated through direct phrasing such as “for all” and “there 
exists” (Durand-Guerrier, 2003; Shipman, 2016). The IVT, as stated in this paper, also has an 
implicit universal quantifier because it is a generalized conditional. The IVT is a generalized 
statement, and thus, “Suppose that f is a continuous function” implies that the statement has a 
hidden universal quantifier. Thus, f is often understood in mathematics as representing not a 
single continuous function, but all continuous functions. However, since the implicit universal 
quantifier is not explicitly stated in the statement, students may not take into account the 
arbitrariness of f. In fact, Selden and Selden (1995) found that undergraduate students in 
Transition-to-Proof courses were rarely able to explicitly interpret implicit quantifiers in 
statements in Calculus contexts. Likewise, several studies reported students’ difficulties with 
reinterpreting a given statement with implicit quantifier into a statement including a statement 
that include explicit language for quantifiers, logical connectives, and structure (Durand-Gurrier, 
2003; Selden & Selden, 1995).  

 
Theoretical Perspective 

 
In this study, we are trying to model individual students’ meanings for quantifiers in 

mathematical statements. The discussion of meaning has permeated philosophy for centuries, 
particularly within the last century. Speaks (2014) discusses two major branches in theories of 
meaning: semantic theories and foundational theories. He claims that semantic theories specify 
“the meanings of the words and sentences of some symbol system” (p.2) and seek to answer the 
question, “What is the meaning of this or that expression?” (p.2) whereas foundational theories 
try “to explain what about some person or group gives the symbols of their language the 
meanings that they have” (p. 2). Foundational theories of meaning are more advantageous for our 
purposes than semantic theories in their recognition that meanings exist in the minds of students 
rather than on a page. However, foundational theories still do not address the need to analyze 
individual students who have had different individual experiences that led to their current 
meanings for quantifiers. In this study, we view thinking as a tool by which one constructs his 
meaning(s), and focus on meanings of individuals and not a collective group. Thus, we utilize a 
constructivist view of understanding and meaning throughout this paper (Glasersfeld, 1995; 
Thompson, 2013).  

We distinguish between understanding and meaning throughout the rest of this paper. 
Thompson, Carlson, Byerly, and Hatfield (2014) use understanding to describe a student’s 
assimilation to a scheme and a student’s meaning to describe the mental actions or schemes that 
are easily triggered as a result of the understanding (assimilation). As the purpose of this study is 
to describe our best perception of each student’s own meanings for quantifiers at different 
moments, we utilize the phrases meaning and student meaning throughout this paper the same 
way as Thompson et al. (ibid).  

We utilize the phrase student quantification to refer to the process by which students quantify 
variables. Even in one student’s quantification, different schemes of the student may be triggered 
by different tasks. Some student meanings may be stable, but other meanings may be 
“meaning(s) in the moment” (Thompson et al., 2014). Thompson et al. (2014) describe a 
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meaning in a moment as “the space of implications existing at the moment of understanding” (p. 
13), so students could be assimilating information in the moment and forming new meanings. A 
student’s thoughts may begin to emerge or different meanings may be elicited in different 
moments. Thus, we consider several different moments and “meanings in the moment” 
(Thompson et al., ibid) because different moments may result in different types of student 
quantification.  
 

Methods 
 

Two-hour long clinical interviews (Clement, 2000) were conducted with nine undergraduate 
students during the spring and summer of 2016 at a large southwestern university in the United 
States. Students were placed in a category based on the highest course they had already 
completed. These students had various STEM majors and completed these courses with a variety 
of different instructors. Three students were selected from each mathematical level: Calculus I, 
Transition-to-Proof, and Advanced Calculus. Four researchers served in various roles for the data 
collection (as either interviewer, camera operator, or witness). 

Interview Tasks. In the first half of the interview, students were asked to explain their 
understandings of the four statements shown in Table 1 and to evaluate the truth-values of each 
of the statements. (Only the statements in the left-hand column of Table 1 were presented to 
students.) The four statements in Table 1 exhaust all combinations for ordering explicit 
quantifiers and their attached variables. The symbolic representations of the explicit quantifiers 
found in the conclusion of each statement are also shown beside each statement in Table 1. Three 
of the statements are false. Statement 2 is the IVT and the only true statement. The variety of 
statements allowed us to analyze students’ comparisons and contrasts among the explicit 
quantifiers.  

 
Table 1 
Statements Presented in Clinical Interviews 
Statements Symbolic 

Representations 
Statement 1: Suppose that f is a continuous function on the closed interval 
[a, b], where f(a)≠ f(b).  Then, for all real numbers c in (a, b), there exists 
a real number N between f(a) and f(b), such that f(c)=N.  

such that	
	

Statement 2: Suppose that f is a continuous function on the closed interval 
[a, b] where f(a)≠ f(b).  Then, for all real numbers N between f(a) and 
f(b), there exists a real number c in (a, b), such that f(c)=N.  

such that 
	

Statement 3: Suppose that f is a continuous function on the closed interval 
[a, b], where f(a)≠ f(b).  Then, there exists a real number N between f(a) 
and f(b), such that for all real numbers c in (a, b), f(c)=N.  

such that 
	

Statement 4: Suppose that f is a continuous function on the closed interval 
[a, b] where f(a)≠ f(b).  Then, there exists a real number c in (a, b), such 
that for all real numbers N between f(a) and f(b), f(c)=N.   

such that 
	

 We presented students with graphs in the second half of the interview. Students were 
asked to re-examine the four statements along with each of the graphs shown in Figure 1. The 

∀c∃N
f (c) = N

∀N∃c
f (c) = N

∃N∀c
f (c) = N

∃c∀N
f (c) = N
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interviewer asked each student to explain why they a statement was true or false, in their opinion, 
by using these graphs. 

 
Figure 1. Graphs presented in second half of interview. 

 
These graphs were all strategically chosen based on their properties as an example, non-

example, or counterexample for each of the four statements. We used these graphs in the 
interview so that students could highlight the order in which they would select variables in a 
given statement and so that we could notice sweeping or pointing gestures that might indicate 
characteristics of their meanings for quantifiers. 

Data Analysis. Our analysis was conducted in the spirit of grounded theory (Strauss & 
Corbin, 1998) using videos of the student interviews as well as the students’ written work. 
Hence, the categories that describe students’ meanings for quantifiers in this paper emerged from 
our data and not from previously created categories. Each interview was analyzed moment-by-
moment to identify moments where distinctions could be made about a student’s meanings for 
the quantifiers. A new moment began when a student was presented with a new question or task, 
changed their evaluation of a statement, or the student provided a new description of the 
quantifiers in a given statement. We used moments as our unit of analysis rather than students 
because students could exhibit various meanings for quantifiers in different moments of the 
interview. For example, in the second part of the interview, students were asked to explain why 
their evaluation was true or false given particular graphs. When students were analyzing the 
statements with these graphs, they would often change their evaluations of the statements or 
question their previous arguments.  

We coded the data for characteristics of students’ meanings for quantifiers. Once the 
difference in explicit and implicit quantifications was noticed, codes were organized and 
separated into one of these two categories. Categories emerged for types of student meanings for 
explicit and implicit quantifiers. In the final stage of data analysis, each interview was re-coded 
moment-by-moment for reliability. We then counted the number of moments that occurred in 
each category amongst all students. Some moments may not be useful for answering a particular 
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research question. Other moments were found that lacked sufficient evidence for analysis. Thus, 
we only counted relevant moments in this study. By relevant moment, we mean any moment 
where sufficient evidence was available for answering a particular research question. Only 
relevant moments were considered in each phase of our analysis. For each research question, 
relevant moments were also tagged by the interviewee’s mathematical level so that we could 
make comparisons about student meanings of quantifiers for each group.  

 
Results 

In this section, we first report how students evaluated the four statements provided (see Table 
1 for the statements), and then further analyzed students’ meanings for quantifiers in these 
statements. We also provide our comparative analysis on student meanings for quantifiers in 
these statements based on three different mathematical levels: Calculus, Transition-to-Proof, and 
Advanced Calculus.  
Student Evaluations of Statements 

All three groups of students correctly evaluated Statement 2 (the IVT) for more than half of 
all relevant moments. However, all three groups of students also incorrectly evaluated Statement 
1 for more than half of all relevant moments, and Calculus students correctly evaluated 
Statements 3 & 4 (∃∀  statements) for less than a quarter of all relevant moments. Table 2 shows 
the percentage of relevant moments where students provided a truth-value for one of the 
statements. The unit of analysis was a moment, as detailed in the methods section. Only 
moments where students provided truth-values are shown in Table 2. Mathematically correct 
truth-values for each statement are shaded in Table 2. 

 
Table 2 
Student Evaluations for Statements 1-4 by Mathematical Level (by % of Relevant Moments) 

 Calculus Transition-to-Proof Advanced Calculus 
True False True/ 

False1 
True False True/  

False 
True False True/  

False 
Statement 1 
(S1):  

6/8 
(75%) 

1/8 
(12.5%) 

1/8 
(12.5%) 

5/8 
(62.5%) 

3/8 
(37.5%) 

0/8 
(0%) 

4/9 
(44.4%) 

4/9 
(44.4%) 

1/9 
(11.1%) 

Statement 2* 
(S2):  

6/9 
(66.7%) 

2/9 
(22.2%) 

1/9 
(11.1%) 

6/9 
(66.7%) 

3/9 
(33.3%) 

0/9 
(0%) 

8/9 
(88.9%) 

1/9 
(11.1%) 

0/9 
(0%) 

Statement 3 
(S3):  

6/9 
(67%) 

1/9 
(11.1%) 

2/9 
(22.2%) 

2/8 
(25%) 

6/8 
(75%) 

0/8 
(0%) 

0/8 
(0%) 

8/8 
(100%) 

0/8 
(0%) 

Statement 4 
(S4):  

8/11 
(72.7%) 

2/11 
(18.2%) 

1/11 
(9.1%) 

2/6 
(33.3%) 

3/6 
(50%) 

1/6 
(16.7%) 

0/8 
(0%) 

8/8 
(100%) 

0/8 
(0%) 

As shown in Table 2, while all three groups of students evaluated Statement 2 (IVT) 
correctly in more than 60% of relevant moments, this result does not imply that students 
understand the IVT properly because students’ evaluations of the other three statements were 
often incorrect. For instance, Calculus students and Transition-to-Proof students incorrectly 
evaluated Statement 1 as a true statement in more than 70% and 60% of relevant moments, 

                                                
1 True/False indicates that student responses were “Sometimes True” and “Sometimes False.” 
* Statement 2 is the Intermediate Value Theorem. 

∀c∃N

∀N∃c

∃N∀c

∃c∀N
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respectively. Even Advanced Calculus students incorrectly evaluated Statement 1 as a true 
statement in more than 40% of relevant moments. We cannot claim that undergraduate students 
comprehend the quantification in the IVT if they cannot correctly evaluate these other 
statements. Also, this result indicates that even if students correctly evaluate Statement 2, they 
could reach a correct conclusion for the wrong reasons. We will now explain why these students’ 
evaluations often differ from mathematical convention. 

   
Student Meanings for Explicit Quantifiers 

In order to understand why these students’ evaluations of Statements 1, 3 and 4 were often 
incorrect, we further analyzed students’ own interpretations of each of the four statements and 
compared whether they considered any of the four statements would have the same meaning. 
From this analysis process, we found that in all relevant moments throughout the interviews, 
Advanced Calculus students all concluded that none of the four statements have the same 
meaning. On the other hand, in some moments Transition-to-Proof and Calculus students said 
that some or all of the statements would have the same meaning. In particular, Calculus students 
often interpreted all four statements as Statement 1 although the order of quantifiers and the 
order of variables in each statement were all different from one another. We thus even further 
analyzed what meanings these students have for quantifiers in these statements. Three main 
factors emerged from this phase of data analysis that seemed to play a crucial role in and 
interpreting the four complex mathematical statements: (1) Having distinct meanings for single 
quantifiers, (2) having distinct meanings for the order of quantifiers, and (3) having distinct 
meanings for the order of variables attached to the quantifiers.  

Distinguishing Single Quantifiers “For all” and “There exists.” Some students exhibited 
distinct meanings that differed for each of the phrases “for all” and “there exists.”  Some 
moments involved student specification of the meanings of these phrases in their own words, 
such as describing “for all,” as “for each one of these,” or clarifying “there exists” as “I can find 
at least one.” Other student moments were characterized by an interchange or alteration of the 
meanings for these phrases. Even though the phrases “for all” and “there exists” were used in the 
statements, students’ explanations sometimes included using universal quantifier language such 
as “every,” and “all” for the variable attached to the existential quantifier. Likewise, during some 
moments, students used phrases such as “I can find an” or “there is a” for the variable attached to 
the universal quantifier. Such student utterances indicate that in these moments, students did not 
have distinguishable meanings for the singular universal and existential quantifiers.   

Hannah was a Calculus student who did not distinguish between “for all” and “there exists” 
in some moments. Hannah stated that Statement 4 ( ) had the same meaning as another 
previous statement. She also claimed in this moment, “anywhere you choose c to be, there is a 
value of N that's a real number because the function is continuous.” Hannah said we could 
choose c-values anywhere, which indicates that she was treating the existential quantifier as if it 
were a universal quantifier. She also said that we could find a value of N, even though the 
statement says that we need to find a c that works for all values of N. This dialogue indicates that 
in this moment she was also treating the universal quantifier as if it were an existential quantifier.  

Distinguishing Order of Quantifiers. Statement 1 ( ) and Statement 3 (∃N∀c ) both 
have “there exists” with N and “for all” with c, but the order of these quantifiers is different. 
Statement 2 ( ) and Statement 4 ( ) also reorder in a similar fashion. Some student 
moments included explanations of why each statement in these pairs had a distinct meaning. 
Other student moments were classified by student views that these pairs were equivalent in 

∃c∀N

∀c∃N

∀N∃c ∃c∀N
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meaning. Our findings are similar to those of Dubinsky and Yiparaki (2000), who showed that 
students may view reordering quantifiers, with variables attached, as inconsequential. Mike, a 
Transition-to-Proof student, explained why he thought Statement 1 and Statement 3 are similar: 

 
Mike: [Statement 3] and [Statement 1] are saying the same thing and [Statement 2] and 
[Statement 4] are saying the same thing. These two (Statements 1 and 3) are saying that 
there is only one output for all the inputs. But [for] Statement 1 and 3, I could assume 
this… for all real numbers c in the interval (a, b) I could assume that's true.  
 

Mike acknowledged that he believed Statement 1 and Statement 3 are equivalent in meaning and 
Statement 2 and Statement 4 are equivalent in meaning. His classification insinuates that he did 
not distinguish between these quantifier distinctions. We have further evidence of his lack of 
distinction because he stated that both Statements 1 and 3 are about one output and all c’s. Mike 
recognized that these pieces of the quantification are the same. However, since he emphasized 
the singular quantifiers and concluded that the statements are equivalent, we claim that he did not 
distinguish the difference in the order of the quantifiers in the statements. 

Distinguishing Variable Order and Dependence. We also found a difference in how students 
treated the order of the variables c and N in their explanations of the statements. All but one 
student mentioned that the order of the variables was different in some of the statements. 
However, during some moments, students claimed that reordering the variables had no effect on 
the meanings of the statements. Zack, a Calculus student, explained why he thought Statement 2 
( ) was different, but equivalent, to Statement 1 ( ) in this moment: 

 
Zack: Um, so I mean obviously this [N] is now flipped with c, at least in [Statement 2]. I 
don't know how this [switch] necessarily affects [the statement]. So, when I explained it 
on the last one, I thought that N was a dependent value depending on what c is… Such 
that f(c) is equal to N… I don't think that, I'm sorry. So it's like that… I'm interpreting 
[Statement 2] the same, that it's just saying that really for any real value of N's there 
exists a value of c, but c is still the value. Like… this (points to c in f(c) in statement) is 
the independent value versus this (points to an N in the statement) is the dependent value.  
 

We claim that Zack recognized the variable order in Statement 2 in this moment, but he did not 
treat the first variable, N, as being chosen independently of the c-values. Zack mentioned that c is 
an independent variable and N is a dependent variable in the function in both statements. Zack 
appeared to choose c-values first because he thought that independent variables should be chosen 
first. However, he did not seem to connect the variable order in the quantification to his own 
choice for which variable should be held independent of the other. 

Many student moments were different than Zack’s moment; in these moments, students 
noticed the order of the variables and also displayed an understanding of the ramifications of this 
variable switch in different statements. Jay, an Advanced Calculus student, explained why 
Statement 1 ( ) and Statement 3 ( ) are different:  

 
Jay: For this one [Statement 1] all of the... like the values for individual c’s can be 
different. So like given c, I give you an N, but that doesn't have to be the same N as some 
other c. But for here [Statement 3] that's not true. There exists a real... so I give you N 
before you give me c, meaning I know what the answer is before I even know what c is.  

∀N∃c ∀c∃N

∀c∃N ∃N∀c
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Jay was not only aware of the variable order in this moment, but how the variable order affects 
the statements’ meanings. Jay contrasted the order in which the first person gave a c or N and the 
other person gave a variable in return. His contrast suggests that he thought of the first variable 
independently of the second variable. He also used the first variable’s information to give him 
information about the second variable, which indicates that he considered that the second 
variable is dependent on the first variable. 

Explicit Quantifier Distinctions Across Mathematical Levels. The four different meanings in 
Table 2 were more prevalent amongst the more advanced students interviewed. The results of 
this comparison of percentages from each of the three groups are shown in Table 3. 

 
Table 3 
Comparison of Students’ Explicit Quantifier Meanings 
Explicit Quantifier Meanings  
(by % of Relevant Moments) 

Calculus Transition-
to-Proof 

Advanced 
Calculus 

Distinguished “for all” and “there exists” 4/17 
(23.53%) 

21/22 
(95.45%) 

17/17 
(100%) 

Distinguished “for all… there exists…” 
and “there exists… for all…”  

0/8 
(0%) 

7/12 
(58.33%) 

6/6 
(100%) 

First Variable Independent & Second 
Variable Dependent 

4/19 
(21.05%) 

14/15 
(93.75%) 

11/11 
(100%) 

Table 3 summarizes that higher-level mathematics undergraduates exhibit more moments with 
distinctive meanings for explicit quantifiers. The Advanced Calculus students had a greater 
percentage of moments where they exhibited each of these four meanings than Calculus students. 
Calculus student moments not only showed students’ confounded meanings of “for all… there 
exists…” and “there exists… for all…,” but they also revealed Calculus students’ tendencies to 
confound the singular quantifiers “for all” and “there exists” as well. While the Transition-to-
Proof students had a higher percentage of moments than Calculus students for distinctions 
between “for all” and “there exists,” there were still several moments where they confounded 
meanings of “for all… there exists…” and “there exists… for all…” Calculus students may have 
recognized the change in variable order across statements, but the variable dependency moments 
revealed that this recognition was not associated with students’ understanding for why variable 
ordering is important to statement meanings. 
 
Students’ Implicit Quantifications 

Calculus students had fewer moments where they distinguished between different types of 
explicit quantifiers and their attached variables than their advanced peers. However, meanings 
for implicit quantifications varied amongst the groups. The phrase “Suppose f is a continuous 
function” elicited ambiguity in some student moments. All four statements in Table 1 are written 
with the intent that readers will apply each statement to all continuous functions. We found three 
ways that these students implicitly quantified f: universally, existentially, or case-by-case.  

Universal Implicit Quantification. Some students did quantify the phrase “Suppose f is a 
continuous function” as intended. Students used words such as “arbitrary” or the phrase “any 
continuous function” to describe their meanings of the statements.  

Case-by-case Implicit Quantification. Three students considered that some of the statements 
that we were giving them were not firmly true or false for some moments. They preferred to 
evaluate some statements as “sometimes true” or “sometimes false” instead of strictly true or 
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false. Their reasoning for this choice was made apparent when we offered them graphs and they 
considered that the statement was true for some functions, and false for some functions. Zack 
claimed in one moment, “No, I still agree that this statement [Statement 1] would be sometimes 
true… because in my mind this graph (points to what we would consider the counterexample 
graph) proves it… proves that I can't say the statement is true one hundred percent of the time.” 
These students are classified as “Case-by-Case” because they were considering the if-then 
statement as having a variable truth-value instead of being firmly true or false. Our evidence 
supports Durand-Guerrier’s (2003) finding that students tend to think of a conditional as an open 
statement which may be true or false, depending on the case at hand.  

Existential Implicit Quantification. Ron, a Transition-to-Proof student, interpreted the phrase 
“Suppose f is a continuous function” with an existential quantification. He described his lack of 
certainty about the intent of the statement, and described his conclusions in this moment: 

 
Ron: I am not sure if f is limited to there being an existence of a continuous function or 
it's “suppose that any function.” So because the wording is ambiguous in my mind I am 
not sure. I am just gonna keep it true for now because I am going to assume that 
“Suppose f is a continuous function” is going to be equivalent to the wording being 
“Suppose that there is an existence of a continuous function f on the closed interval a to 
b.” 
 

Ron’s implicit quantification of “Suppose f is a continuous function” affected the rest of his 
arguments because he believed he only needed one function to make each statement true. He also 
thought that proving each statement false required exhausting all functions.  

Implicit Quantification Across Mathematical Levels. The summary of all the students’ 
meanings in the moment for implicit quantifiers is shown in Table 4. 

 
 Table 4 
 Comparison of Students’ Quantifications for “Suppose f is a continuous function” 

Implicit Quantifications  
(by % of Relevant Moments) 

Calculus Transition-
to-Proof 

Advanced 
Calculus 

Universal 6/8 
(75%) 

4/8 
(50%) 

7/8 
(87.5%) 

Case-by-Case 2/8 
(25%) 

3/8 
(37.5%) 

1/8 
(12.5%) 

Existential  0/8 
(0%) 

1/8 
(12.5%) 

0/8 
(0%) 

  
As shown in Table 4, the majority of moments when students were implicitly quantifying f 

were distinguished by universal quantification in all three groups of students. However, there 
were some student moments from all three mathematical levels that exhibited a case-by-case 
quantification of “Suppose f is a continuous function.” Our only existential implicit 
quantification moments originated from one Transition-to-Proof student, Ron.  
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Discussion  
 

This study indicates that students may correctly evaluate the IVT, but their meanings for the 
quantifiers in the IVT may be different than the intention of the theorem. Students who 
eventually evaluated all four statements correctly also provided thorough explanations of the 
statements and possessed distinct meanings for different types of quantifiers. These students 
articulated distinctions for single quantifier words “for all” and “there exists,” as well as 
distinctions for the order of quantifiers “for all… there exists…” and “there exists… for all…” 
They also recognized and explained the importance of the order of c and N in the statements. On 
the other hand, students who incorrectly evaluated the truth values of at least one statement 
among the four statements often did not have distinct meanings for at least one of the three 
factors: single quantifiers, the quantifier order, and the variable order. There were also moments 
from students of all three levels who implicitly quantified “Suppose f is a continuous function” in 
different ways than the authors of the statements intended for the statements to be quantified. 

The results of this study suggest what we may need to consider quantifiers more carefully 
when teaching complex mathematical statements. First of all, we may need to place more 
attention on students’ meanings for quantifiers, the quantifier order, and the variable order in a 
complex mathematical statement. Calculus students in this study did not recognize the necessity 
of quantifiers in the statements. Compared to Calculus students, Transition-to-Proof and 
Advanced Calculus students had distinct meanings more frequently for different types of 
quantifiers. However, some Transition-to-Proof moments were characterized by a lack of 
distinction in quantifier order, and some of the students both Transition-to-Proof and Advanced 
Calculus also did not correctly interpret the implicit quantifiers in the statement. Having stable 
and coherent meanings for quantifiers is foundational to understanding complex mathematical 
statements, and we as mathematics teachers would need to reconsider how to help students 
recognize when variables are ordered differently across a set of statements before they focus on 
how this reordering alters the meanings of the statements. These results should be considered 
when making curriculum and instructional decisions for all mathematical courses, but 
particularly for Calculus and Transition-to-Proof courses. 
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We report a qualitative analysis of 14 undergraduate students’ experience in a semester long 
introduction to proof course. Half were mathematics majors. Our research aims to characterize, 
conceptually and empirically, students’ transition from a focus on computation to proof in 
mathematics. Our analysis focused on how students saw the course as different from prior 
courses, whether it required new or different learning activity, how they described their work in 
proof-writing, and how they saw their confidence and success in the course. This approach—
targeting students’ overall experience of the course—differs from prior research that has tracked 
students’ challenges, focused on their work on specific proof problems, and explored how to 
support and improve their work (e.g., Selden & Selden, 2003). Our work has promise for 
informing the design of transition to proof courses and how those courses are organized and 
taught. 

Keywords: Transition to Proof, Proof Reasoning, Students’ Experience, Qualitative Analysis 

The Transition to Proof and Proving 

Many undergraduates experience difficulty in learning to prove mathematical propositions, 
including those who major in mathematics (Baker & Campbell, 2004; Moore, 1994; Selden, 
2012). For many, experience with proof prior to college is quite limited (Anderson, 1994; Jones, 
2000). Students’ prior competence (and interest) in mathematics is typically centered on 
producing accurate answers to easily recognized tasks—“exercises” in Schoenfeld’s terms 
(1992). That work involves recognizing specific types of mathematical tasks quickly and 
applying well-practiced procedures to solve them. These abilities do not support, and may 
interfere with students’ work to conceptualize, write, or evaluate proofs. In addition to 
differences in the didactical contract between computation-heavy courses like calculus and 
proof-intensive courses, Selden (2012) reports that students encounter many difficulties, 
including mastering logic and definitions, generating and using examples and counterexamples, 
understanding concepts and theorems, and evaluating the arguments of others. In short, the 
transition to proof is complex and challenging, and much of students’ prior ability appears 
inadequate, if not problematic for addressing these challenges. 

Many mathematics departments have recognized this problem and experimented with 
different curricular and instructional approaches to support students’ entry into proof, including 
dedicated “transition to proof” courses. These typically focus on precision of language and 
notation, reasoning, and proof and present sample accessible statements from numerous content 
domains to prove or disprove. But designing these courses is not a trivial task, and they have 
often shown limited positive effects (Selden & Selden, 2003; 2014). A crucial limitation 
affecting course design is that research has not systematically focused on the experience of 
students. Instead, course design and instructional decisions have often been shaped by 
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assumptions about students, the kinds of challenges they face, and structures that productively 
support their learning. To begin to address this limitation, we explored how students describe 
their experiences in one such “transition to proof” course. 

 
Conceptual Framework 

The notion of a “transition” from one view and way of working in a school subject to another 
is as conceptually vague as it is intuitively sensible. What does a “transition” in students’ 
experience of mathematics mean? 

To conceptualize the transition from computation to proof, we drew on prior work that 
conceptualized mathematical “experience” and “transition.” Smith and Star (2007) proposed that 
precollege students’ mathematical experience could be understood and studied as a composite of 
four dimensions: Achievement, disposition, differences between prior and current mathematics 
courses, and learning activity. Achievement was simply their grade performance in mathematics 
courses (not an assessment of what they learned to those courses). Disposition involved students’ 
attitudes toward mathematics and their beliefs about their own ability to learn it (self-efficacy). 
Differences captured students’ sense of what changed from prior mathematics courses to work in 
their present classroom; it embraced issues of curriculum, teaching, and assessment. Learning 
activity involved the actions that students took to learn mathematics, in and outside of class. 
Assessing change on these dimensions in turn supported grounded judgments of the 
significance/depth of students’ transitions. 

In exploring students’ transition to proof, we first targeted how students saw the introduction 
to proof course as different from (and similar to) their prior mathematics courses (differences). 
We also sought to understand how students went about learning the content in the course, again 
both inside the classroom and outside (learning activity). Substantive differences in how students 
saw the introduction to proof course could drive substantial changes in how students went about 
their work. We narrowed the notion of disposition to self-efficacy and explored how students’ 
confidence to learn and achieve changed over the semester (confidence). Relative to 
achievement, we solicited their final grades, but also explored if and how they judged their 
success in the course in ways other than grades. Finally and centrally, because the transition to 
proof involves the development of new mathematical abilities, we explored how the students 
described their work in planning, writing, and evaluating proofs on assigned problems (proof 
reasoning). 

More broadly, we approached our data collection and analysis with the constructivist focus. 
That perspective oriented our attention to how students used prior resources (elements of their 
prior mathematical success) to address the new challenges of proof writing, whether those 
resources proved useful and effective or not (e.g., Smith, diSessa, and Roschelle, 1993/94). For 
example, this perspective suggests that elements of prior competence in computing answers 
using practiced procedures would likely be recruited in proof writing (e.g., looking for ways to 
“proceduralize” the task), despite the numerous ways in which applying procedures and proving 
previously unknown statements differ. In a word, this general orientation expects substantial 
continuity in students’ thinking even as elements of prior competence “don’t work” in proof 
writing. 
 

The Course & The Participants 

The 14 participants in the study were all graduates of a multi-section semester course 
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designed to introduce them—both mathematics majors and not—to proof and proving. The 
mathematics department hoped that the course would support greater success for both groups of 
students in upper-division courses that emphasize proof. The introduction to proof course 
focuses on appropriate syntax and notation, basic concepts in set theory and logic, and various 
proof methods before proving “entry-level” statements from various content domains (e.g., linear 
algebra, real analysis, and number theory). These methods were mathematical induction, proof 
by cases, working forward from definitions, contrapositive, and contradiction. The course 
pedagogy is not lecture-based. Instead instructors give short presentations and present proofs (or 
parts of proofs) before students spend substantial time working on proof tasks themselves, often 
in small groups. The course also includes elements of “flipped classrooms;” students read and 
answer basic comprehension questions prior to working on problems in class that draw on that 
content. Evaluation was primarily based on homework and exam grades (n = 3 before the final). 
Students were required to use LaTeX to post their solutions to homework tasks, but their 
solutions on all exams were hand-written. 

We interviewed students in the summer after they completed the course in the prior spring 
semester. We invited all 110 enrolled students from that semester to participate; 17 (~15%) 
responded, and 14 (~13%) completed an hour-long interview about their experience. These 
interviews were audiotaped for analysis. Nine students were male and five were female; three 
were international students. The sample was diverse by major. Six were mathematics majors; 
two others were majoring in actuarial science. In addition, we interviewed students majoring in 
mechanical engineering, chemistry, packaging, biology, and economics. Two of those were 
pursuing dual majors. Most of the other “non-math” majors were pursuing minors in 
mathematics where the course was a requirement. That minor also requires subsequent courses 
that focus on proof. Table 1 provides an overview of the sample, including their final grades. 
Eight students received a 4.0, two received a 3.5, three received a 3.0, and one received a 2.5. 
Our sample was more successful than the average, relative to the course’s grade distribution. 

 
Table 1. Overview of Participants 
Student Gender Home Major(s) Standinga Minorb Grade 

1 F US Mathematics 1  3.0 
2 M US Actuarial Science 2  3.5 
3 M US Mechanical Engineering 4  4.0 
4 M US Chemistry 3 Math 3.0 
5 M US Actuarial Science 1 Math 4.0 
6 M Intl Mechanical Engineering 3 Math 4.0 
7 M Intl Computational Mathematics 3  4.0 
8 F US Mathematics 1  3.0 
9 F US  Packaging 2 Math 2.5 

10 F US Mathematics 2 Act Sci 3.0 
11 M US Human Biology 3 Math 3.5 
12 M Intl Mathematics 3  4.0 
13 F US Economics & Statistics 2  4.0 
14 M US Economics & Mathematics 2  4.0 

a “Standing” reflects the amount of university coursework; in some cases, standing exceeds the 
number of years at the university. bS5 and S9 were strongly considering a mathematics minor but 
had not yet decided. 
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Our interview questions focused on understanding students’ experience of the course in their 

terms, relative to their prior work in high school and college mathematics. We first secured basic 
information about them (e.g., major, standing, section/instructor, minor, and prior and intended 
math courses). Then we asked about their sense of the nature of the course (in contrast to their 
prior courses), their sense of success (or not) in it, what they did to be/become successful, and 
specifically how their view of and work on proof tasks may have changed in the course. As  
complement to seeking their verbal responses, we also asked them to graph their confidence in 
the course across the semester. These Confidence Graphs (Figure 1) often surfaced new 
information about our focal issues, as students explained the shape of their graphs and points 
during the semester when their confidence changed. We also asked about their sense of their 
instructor’s view of the course, whether their course experience influenced their understanding of 
calculus (most had just completed that sequence), and whether they expected to be successful in 
subsequent math courses. Finally, we asked what they would tell incoming students about the 
course.  

We also regularly observed (about twice per week) the classroom teaching and interactions in 
one section of the course for most of the semester—the section taught by the course coordinator. 
Observers took field notes in an observation template. These observations proved essential in 
preparing for the interviews, interpreting and responding to student responses, and in the analysis 
of the resulting data.  
 

 
 

 
 
 

 
 

 
 
 

 

 
 

 
 
Figure 1. Confidence Graph (reduced in size). Each participant drew a graph of their confidence 
over the course of the semester. The X-axis represents time, from just before the course began 
through the final exam. The Y-axis represents their confidence in doing well in the course. 
 

Analysis 

Our analysis the interview data, both verbal and graphical, was qualitative, “bottom-up” 
(guided by our foci), and cyclical in nature. The results of initial analyses led to more detailed 
and focused rounds of analysis around specific issues. First, immediately after each interview, 
interviewers posted detailed summary descriptions of their interviewee’s responses. All members 

 

20th Annual Conference on Research in Undergraduate Mathematics Education 30120th Annual Conference on Research in Undergraduate Mathematics Education 301



of the research team then read carefully and discussed the similarities and differences evident in 
those summaries. Next, the audio records were transcribed verbatim and coded in the qualitative 
software Dedoose according to a coding scheme developed from the initial post-interview 
analyses and the categories suggested by our theoretical framework (achievement, disposition, 
differences between prior and current mathematics courses, and learning activity). This resulted 
in a coding scheme with the following top-level categories: (1) characterizing differences, (2) 
learning activities, (3) proof reasoning, (4) sense of success, and (5) prior mathematical 
experience. The coding scheme and a code book detailing criteria for assigning codes were 
refined through rounds of coding and discussion amongst members of the research team.  

The Confidence Graphs that subjects produced were initially analyzed for their general 
graphical properties (e.g., initial sense of confidence and where slopes of sections were greatest, 
positively and negatively). A second round of analysis explored the relationship between the 
graphs students produced and their verbal explanations of that they drew. We paid particular 
attention to points in the semester when students’ confidence changed and the reasons given for 
those changes.  

 
Results 

We report results in four main components. First, we present our summary of how the 
students described the course in comparison to prior mathematics courses. Second, we discuss 
one aspect of that comparison—how students used the terms “problem” and “answer” in 
describing their course work. Third, we characterize how students described their reasoning in 
solving proof tasks. Finally, we describe how the students viewed and evaluated their success in 
the course and the learning activities in which they engaged and also present the results of our 
Confidence Graphs analysis. 

The Different Nature of the Course 
Students were quite articulate about how the course differed from their prior mathematics 

course experiences, but their focus and emphasis varied. We found three main characterizations 
of difference: (a) the transition to proof course explained the mathematics, whereas prior math 
courses did not, (b) students’ conceptions about proof and writing in mathematics changed, and 
most importantly, (c) the course emphasized explanation and reasoning, differing greatly from 
the computational and answer-focused nature of their work in past math courses. No student 
reported substantial prior experience with proof, in either high school or college; most reported 
no experience whatsoever. Those who did cite their experience with two-column proof in high 
school geometry were largely dismissive of that work as irrelevant. 

First, students frequently stated that the course explained the mathematics, more so than in 
prior courses. Half said the course explained why mathematics is the way it is and how it came 
about. For example,  

The past math courses have been a lot...you are given instructions and then you learn to 
kind of regurgitate them, whereas [this course] really made you think...why the rules are 
in place and coming up with your own rules (S3).  

Students noted that the course explained why procedures they had learned in previous 
mathematics worked. In particular, S8 and S6 cited limits, derivatives, and operations with 
matrices, respectively, as examples of this.  

The difference is: when I learn matrices in differential equations, I only need to calculate 
multiplication, adding, or subtract[ing]. That’s it. But [in this course], I have to know 
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why is it possible to subtract two matrices. I have to show that. And that makes me to 
understand how’s it come from when first it was invented (S6). 

This pattern of response indicates that the course served an explanatory purpose for students, 
providing conceptual understanding over and above their learning about language, notation, and 
proof techniques. This is a central function of proof in mathematics (e.g., Thurston, 1994), but it 
was pleasing to hear students articulate it.  

Second, half of the students (n = 7) talked explicitly about the new focus on proof and the 
dramatically increased focus on writing. S7 remarked that “calculus works with numbers and 
[this course] works with words,” succinctly illustrating how students perceived a huge difference 
between these two types of courses. Students commented on changes in how they perceived 
mathematical writing (n = 5) and noted how much more writing was required in the course (n = 
7). Some realized that proofs can include words, not just symbols (S12, S13); others came to new 
understandings about the importance of accurate grammar in writing compelling proofs (S2, S3). 
They saw that mathematical terms have much more specific meanings than do words in everyday 
language and communication and that that specificity was important. For example, S3 stated that 
“certain words mean different things in math as opposed to normal spoken English.” 

Last and perhaps most important, most students (n = 10) explicitly contrasted the 
computational, answer-focused nature of their work in prior courses (e.g., calculus) to the 
process- or argument-focused work in the introduction to proof course. As we note below, 
numerous students described the course in terms of what it was not: Writing proofs was not 
straightforward or step-by-step (S2-S5, S11) and did not involve applying formulas or solving 
equations (S6, S12, S14). Students discussed how they had to explain their thinking (n = 7), 
something they were not accustomed to doing in previous math courses. Nevertheless, students 
largely understood the rationale for the push for explanation.  

Proof is actually more like explaining. So I learn how to generally explain some stuff...to 
justify your arguments or persuade others in order that they can understand what you 
wanna say (S6).  

As a result, about a quarter of the sample expressed that the course valued the process of 
reasoning more than the answer.  

Answers in proof work. As our constructivist perspective had suggested, students reused 
terms that were standard and relevant to computational work but seemed less appropriate to 
proof-writing work. All but one student used “answer” to describe products of their proof-writing 
work, and nine of them used that term to describe their work before the interviewer did. In some 
cases, students appeared to use “answer” to refer to the result to be proven (e.g., the consequent 
of an “if-then” statement). In other cases, “answer” appears to refer to the entire written proof. 
S10 explained, 

Yeah but personally, me, I'm super neat so my homework I could have turned in [without 
conversion into LaTeX]. But with the writing proofs you have all these ideas all over the 
place, and then you have one final answer where you put everything in order and it 
makes sense.  

S5 similarly used “answer” to refer to the general line of reasoning in his proofs. In contrast to 
S10, he did not seem to indicate the written details. We note the quick shift in his statement from 
“answer” to the more proof-consistent term “justification.” 

If you’re struggling with a [introduction to proof] problem, and you figure out that the 
answer is, that the justification by this road is extraordinarily complicated, my first 
instinct is not to think, oh, this is a complicated problem. My first instinct is to think 
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there’s an easier way to solve it. 
Overall, we found that students carried over linguistic resources (e.g., key descriptive terms) 
from mathematics work that focused on producing numerical and symbolic answers to proof-
writing—a task that most of them saw as quite different from computational work. 

Reasoning in Writing Proofs 
One central goal of our work is to characterize how students see and carry out the reasoning 
required to produce acceptable proofs in the course. Though we did not ask participating students 
to solve and explain their reasoning on particular proof tasks, their responses to some interview 
questions produced more general views of how they came to view proof reasoning from their 
experience with assigned homework and exams. Most students (n = 10) provided relatively 
specific descriptions of their proof-writing work and thinking; more limited responses of four 
others left us unable to characterize their thinking. The ten students’ responses emphasized five 
different features of proof reasoning: (a) applying proof methods, (b) looking for and using 
examples and models, (c) accommodating to problem solving, (d) understanding central 
concepts, and (e) reasoning backwards and forwards. Most students described multiple features, 
so our analysis is not one-to-one. 

Applying proof methods. Six students (S5, S7, S9, S10, S11, S13) cited learning specific 
proof methods and/or described the process of applying them. That six of ten did is not 
surprising given the very limited prior experience with proof that students reported. Four (S7, S9, 
S10, S11) cited particular methods (e.g., proof by contradiction or induction). S10 indicated she 
saw class activity as learning proof methods and applying them to concepts she had learned in 
prior courses. S5, S7, S11, and S13 described proof construction as selecting an initial method 
and re-examining that approach if it did not work well. These students came to see that, relative 
to prior computational work, selecting an appropriate proof method was not a deterministic 
procedure; it involved judgment. For that reason, some students indicated that selecting an initial 
method was problematic. S9 stated that exam problems were more difficult for her than 
homework problems because the latter frequently included explicit hints or problem features 
(e.g., the phrase “for all N” in the statement) that cued specific methods (in this case, induction). 
Some students developed beliefs or expectations about the relationship between statements and 
methods. For S7, there was no shortcut to the best method for a given problem because search 
involved the analytic work of surveying and assessing methods. As quoted above, S5 expressed a 
different stance on this issue. When the solution via one method became complicated, he inferred 
that a simpler solution was possible via another method. By the end of the course, he judged that 
most all course problems could be matched to “one best proof method.” 

Searching for and using examples and models. Three students (S7, S11, S13) reported that 
they adapted examples from class or searched for proofs to homework problems outside of class. 
This orientation was clearly related to what had proven productive in their prior mathematics 
work. S13 said that the instructor gave full proofs as examples in class. She put those next to her 
when she worked on homework and looked for ways to adapt their features to the assigned 
problems. S11 indicated he searched for solutions to exact or similar problems on the internet 
and was frequently “successful” in finding them. 

Accommodating to problem solving. Four students (S2, S7, S11, S12) explicitly stated that 
step-by-step procedures generally did not work in proof-writing and came to embrace the view 
that proving involved problem solving. S11 indicated,  

I mean, doing like calculus, you might not know you’re doing it right but at least you’re 
going through the steps. It’s like a step by step. And this [work in the introduction to 
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proof course], there are no steps. You just kinda think about it, work your way around it 
and finish off. If that makes sense.  

Despite its vagueness, this statement shows S11 was coping with the essentially non-procedural 
nature of proof reasoning. For S2, the “problematic” nature of proof-writing followed from the 
greater variation proof problems compared to prior courses. He said,  

They could still ask you the same question but like based upon like what formula they 
give you or what kind of function they give you, [the proof] could be completely different. 

Understanding central concepts. Four students (S4, S5, S6, and S12) emphasized the 
importance of understanding the concepts that appear the statements to be proven. They did not 
mean simply accurately recalling the definition; they emphasized using the definitions 
effectively in proof work. S4, S6, and S12 described the ways they used concepts in their proof 
reasoning. To prove a given statement, they needed to recall formal definitions and fit them 
together conceptually to support their proof writing. S4 emphasized rapid and accurate access to 
definitions, 

That’s like the heart of math is you have to have your definition in order to go. I kind of 
always forget about them in my mind when I work through it. So I know what I’m doing 
at this point, but just to keep them always in the back of my mind like right there, to like 
always have it to recall.  

He worked on homework problems with the relevant definitions at hand in pursuit of the goal of 
being able to recall them on exams when needed. S12 and S6 both said that they could solve all 
the problems in their calculus courses using only rote learning, but the introduction to proof 
course was different. S12 stated directly, 

So you really have to understand what’s going on and why we use it [the concept] and 
what, what can we apply for, yes. So it’s more like understanding for memorizing 
concepts….. 

Reason backwards and forwards. Two students (S5 and S10) described their proof reasoning 
in spatial and directional terms, as reasoning backwards and forwards. S10 described her proof-
writing work in stages. First she had to work forward to “the final answer”—that is, using the 
assumed properties in the statement to produce the desired result. Then she indicated she 
reversed the direction of her reasoning to write the proof. 

This is what I think I do differently completely, is you write the proof backwards…. 
Because you know that it’s the right answer, you just did all the math, and you can 
clearly see that it’s the right thing. But you can’t just turn that in; that is not a proof.  

S5, by contrast, described his high-level forward reasoning that told him if his selected proof 
method was going to work. He indicated, 

If there’s anything that I took away from this class, it’s that you can usually see how the 
problem is gonna go prior to actually starting the problem.  

His ability to “see” forward a considerable distance in his reasoning may have contributed to his 
inference that one best proof method existed for most course problems. 

Specific Challenges and Learning Activities 
The interviews revealed three major loci of students’ learning activities: (a) in-class work 

(e.g., mini-lectures, class discussion, group work), (b) out-of-class work that was required (e.g., 
completing homework sets and reading quizzes that prepared for and extended work done in 
class), and (c) out-of-class work that was optional such as attending the Mathematics Learning 
Center (MLC) and instructor or TA office hours. The students described aspects of these zones 
of activities that were new to the course and interesting connections between them. New 
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expectations of students’ activities in class (e.g., serious engagement of all students in group 
work) influenced their work outside of class (e.g., going to the MLC to work with peers they got 
to know in their in-class work). And as was intended in the course design, new requirements of 
students outside of class (e.g., completing reading quizzes before related work in class) had 
implications for the work done in class.  

Most students described the work required to be successful in the course as more demanding 
than it had been in prior courses. Some were primed for challenge by characterizations offered 
by friends who had already taken it. Once in the course, they found that the homework carried 
substantial value in the grading scheme and that completing each weekly set took substantially 
more time than it did in prior courses—often much more time. Most students offered estimates of 
seven to ten hours for each set, compared to one to two hours in prior courses. This increased 
“time on task” combined with the students’ descriptions what they did in their proof work on 
homework problems (above) indicates the importance of homework as a site for understanding 
and navigating the new work that was expected of them. 

All but two students explained that they employed different practices in organizing and 
completing their homework than they had in prior courses. In response to the demands of 
frequent and challenging homework, most indicated that they responded by starting earlier in the 
week and/or distributing the work across days. Four communicated with peers via e-mail, 
worked with a classmate, or asked questions in class for the first time in mathematics. Twelve 
described the importance of using the MLC—many for the first time—in interesting and diverse 
ways. Some cited the availability of tutors to answer their questions; others simply sought a 
physical space to go and work alone; others emphasized collaborative work with other students 
in the space designated for this course. For some (e.g., S10), productive discussion and 
community building happened with students from other sections of the course. That said, this use 
of social and peer resources was not universal; some students (e.g., S5) simply worked on their 
own, even as they worked harder and longer. 

  
Sense of Success and Confidence Graph  

When we asked about students’ sense of success in the course, most responded in terms of 
their final grade. Less frequently, they assessed their level of understanding the content or their 
sense of having mastered it. For example, S7 stated that he felt he mastered “90% of the course 
content.” As Table 1 indicates, half of the students received final grades of 4.0, and only one 
student received a 2.5. S1 reported that her 3.0 grade missed being a 3.5 by a single point. So 
overall, despite the new demands of the course, most of the 14 students were successful by the 
traditional measure of final grades.  

In analyzing the Confidence Graphs, five general patterns of graphical shapes emerged, with 
two outliers. The most common pattern (n = 4) was a “W” shape that showed an initial decrease 
in confidence relatively early in the semester followed by increase, then decrease again, and a 
final increase. An example (from S3) is given in Figure 2. Though all four graphs of this type 
followed this shape pattern, the distances between the peaks and valleys varied. The other 
groupings included two student graphs each and were characterized by (a) continuous increase, 
(b) concave up parabolic shaped graph, (c) initial increase followed by a sinusoidal wave for the 
rest of the semester, (d) initial increase followed by decrease, with a final confidence level that 
was lower than their initial level, and (e) other. 
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Figure 2. S3’s Confidence Graph. 

 
After analyzing the graphs by shape, we examined the drawings and the transcripts of 

students’ descriptions of what they drew and tabulated the reasons given for initial confidence 
level and for factors that increased or decreased confidence thereafter. Consistent with how they 
described their sense of success in the course generally, most students (n = 12) identified grades 
(on homework and exams) as the principal causes of increases or decreases in their confidence. 
Many, like S3 above, located course exams as the X-coordinates of relative maxima or minima 
on their graphs. But when students explained what they had drawn, other factors emerged as 
important influences on confidence levels through our analysis of the transcripts.  

Most students began at a confidence level near the middle marking on the y-axis, and 
described an uncertainty about what to expect in the course. Some who began at a low point or at 
y = 0 had heard the class was difficult. Some who started closer to the highest mark on the y-axis 
indicated either a strong belief in their mathematical ability or a favorable result in a prior course 
as orienting their initial confidence. The most commonly cited factors for increased confidence 
that were not grade-based were finding help in the MLC (n = 5), spending extra time studying 
and practicing (n = 4), and realizing a sense of understanding of the course content during the 
two weeks of review before the final exam (n = 4). For decreases, five students indicated that the 
real analysis portion of the course led them to feel less confident. Others alluded to personal 
reasons such as illness or missing classes, difficulty keeping up with the pace of the course, or 
proving in general as reasons for lowered confidence. Overall, their activity proved fruitful not 
only because it produced a representation of students’ confidence over the duration of semester, 
but also because it then provided a visual focus for students to explain what aspects of the course 
and their work in it most affected their confidence. 
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Conclusions, Limitations, & Next Steps 

Our research is ongoing, and we expect that subsequent steps will deepen and refine our 
understanding of students’ experience in this course, and for those who enroll in more advanced 
courses, their further progress in the transition to proof. But the present analysis has been 
revealing, and in some unexpected ways. We first summarize our main findings. 

First, we find substantial evidence that the transition to proof course “moved” students in two 
substantive and productive ways. It has placed them in the “space” of mathematical problem 
solving and thereby altered their views of competence in mathematics (augmenting, if not 
displacing a primarily computational view). Changing the nature of tasks from computing to 
proving substantially shifted mathematical work from “exercises” to real problems—that is, to 
tasks that for most students suggested no immediately obvious means of solution. In that sense, 
the course “successfully” created an environment where we could examine the birth of “new” 
(for students) forms of mathematical thinking and thereby students’ sense of what is involved in 
that transition. 

Second, in these initial steps to chart their transitions, we have identified aspects of cognitive 
continuity where students have reused or adapted aspects of their prior work in mathematics to 
work with proof. Many used prior computationally-oriented words to describe elements of their 
“new” mathematics work (e.g., “answer”), despite what many would see as strong differences in 
context. Some adapted prior patterns of finding solutions to work on proof tasks (e.g., finding or 
adapting examples and models). Many spoke to the difficulty of adjusting away from their past 
patterns of looking for a procedure or model solution to use to complete proof tasks on 
homework. These results are reminders that students try to extend the use of prior resources that 
have proven productive in the past even when they fit poorly or even forestall progress in 
mastering new challenges. 

Third, where we found substantial commonality in how students saw the course as different 
from prior work in mathematics courses, we found considerable diversity their descriptions of 
their work to produce acceptable proofs. Some highlighted proof techniques (learning a set of 
generally-applicable proof methods); some focused on the necessary and productive focus on 
understanding the meaning of key concepts in the statement; some described a process of 
considering a top-level view of a series of steps in the proof—either forward or backward from 
the result. We do not suggest that course design and teaching should explicitly address one or 
another these top-level descriptions of proof reasoning, rather that course design and teaching 
practices can be usefully informed by them. 

This study complements prior work that has focused on students’ reasoning on specific 
problem-based tasks—typically proof construction and evaluation (Alcock & Weber, 2010; 
Selden & Selden, 2003). In targeting students’ experience over the course of a semester, we have 
focused on more general issues, especially how students see their proof work and how they 
reorganize their learning to address the new challenge. These issues are important foci for all 
efforts to assist students in entering and succeeding in this fundamental new (for them) form of 
mathematical thinking. In particular, it informs the design of learning spaces that can support 
students’ work outside of class (e.g., mathematics learning or help centers and how work is 
organized in these environments). 

We see three main limitations in our work thus far, two of which concern our sample. 
Generally speaking, we do not know how well these fourteen students represent the range of 
experiences in the larger population of students who took the course that particular semester. 
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Second and more specifically, we are concerned that our sample was weighed too heavily toward 
successful students. Such students seemed to welcome the chance to describe their experience; 
less successful students, we think, are much less so. We need to find ways to reach those 
students—those who may have good reasons not to revisit a painful experience. Third, our 
interviews have sometimes posed questions that students have struggled to understand and 
respond to, for many reasons. The Confidence Graph activity and talk arising from it was a 
productive addition in that respect. It was accessible, reframed the issues under study, and 
produced many fluent explanations. We (and other researchers) should explore other such 
“stimuli” that may productively support students’ efforts to recount their experience. 

The most important next step in our research is to interview graduates of the course who are 
enrolled in subsequent proof-intensive courses, principally abstract algebra and real analysis. (An 
intervening linear algebra course mixes computational and proof-based work.) In the context of 
those two courses, we want to explore students’ assessments of how well their introduction to 
proof course has supported their current proof writing work. We expect “mixed” and (we hope) 
rich stories of their continued journey as proof-writers and mathematical problem solvers. 
Second, we plan for more detailed analysis of the Confidence Graph data (graphical and verbal) 
in the goal of revealing more clearly how students experience and manage particular challenging 
events or periods of time in the course. 
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Knowledge about Student Understanding of Eigentheory: Information Gained from 
Multiple Choice Extended Assessment 

 
 Kevin Watson Megan Wawro Michelle Zandieh  Sarah Kerrigan 
 Virginia Tech Virginia Tech Arizona State University Virginia Tech 

Eigentheory is a conceptually complex idea whose application is widespread in mathematics and 
beyond. Herein we describe the development and use of an extended multiple choice assessment 
that gives us further insight into the ways students think about and understand eigenvectors, 
eigenvalues, and their related concepts. 

Key words: linear algebra, eigenvector, eigenvalue, student understanding, assessment 

The purpose of this report is to share results regarding student understanding of eigentheory 
that were gained from a multiple choice extended assessment instrument. We chose to focus on 
eigentheory because (a) it is a conceptually complex idea that builds from and relies upon 
student understanding of multiple key ideas in mathematics, and (b) its application is widespread 
in mathematics and beyond. Our aim to create an assessment instrument that captures nuances of 
students’ conceptual understanding of eigentheory exists in tandem with our pursuit to frame 
what it might mean to have a deep understanding of eigentheory. As such, in this report we offer 
results both about student thinking and about possible affordances and constraints of various 
assessment instrument question formats.  

 
Background and Literature 

 Research into people’s understanding of eigenvectors and eigenvalues has had several 
different foci, such as: (a) using Tall’s (2004) three worlds of mathematical thinking in 
conjunction with APOS theory (Dubinsky, 1991; Cottrill et al., 1996; Dubinsky & McDonald, 
2001) to examine students’ abilities to think about eigentheory in the embodied, symbolic, and 
formal worlds, and identify the various processes and objects students need to understand in 
eigentheory (Stewart & Thomas, 2006; Thomas & Stewart, 2011); (b) studying how 
mathematicians use gesture, time and motion to describe the concepts of eigenvector and 
eigenvalue (Sinclair & Gol Tabaghi, 2010); (c) examining how dynamic geometry software can 
encourage students to think geometrically about eigentheory (Gol Tabaghi & Sinclair, 2013); and 
(d) investigating the use of modeling problems and APOS theory to teach students the concepts 
of eigenvectors and eigenvalues (Salgado & Trigueros, 2015). Our current research into students’ 
understanding of eigenvectors and eigenvalues has been influenced by the above work, but we 
endeavor to extend this growing body of knowledge in two ways. First, we hope to share further 
insights into how students think about and understand eigenvectors and eigenvalues that has not 
been reported on previously. Second, we are working towards the development of a framework 
for student understanding of eigentheory that both ties together the work others have done in this 
area of research, and adds our own insights on student understanding of eigentheory. We further 
discuss this framework within the next section.  

 
Theoretical Framework 

There exists a small collection of previous research into students’ understanding of 
eigentheory that has worked towards developing a theoretical framework for what it means to 
have a deep understanding of eigenvectors and eigenvalues (Salgado & Trigueros, 2015; Thomas 
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& Stewart, 2011). These articles point out useful distinctions, including the processes, objects, 
and coordinations necessary for understanding eigentheory.  As we refine our framework for 
student understanding of eigentheory, we aim to include the following ideas: (a) a distinction 
between the equations 𝐴𝐴𝒙𝒙 = 𝜆𝜆𝒙𝒙 and (𝐴𝐴 − 𝜆𝜆𝜆𝜆)𝒙𝒙 = 𝟎𝟎 and how these can influence the ways 
students think about and solve problems involving eigenvectors and eigenvalues; (b) the 
importance of eigenspaces, diagonalization, and their connection to the concepts of eigenvectors 
and eigenvalues; (c) how the concepts of eigentheory can be thought of within different modes of 
thinking (Sierpinska, 2000), modes of description (Hillel, 2000), or contexts (Zandieh, 2000); 
and (d) the various processes (e.g., matrix multiplication, scalar multiplication), entities (e.g., 
matrices, vectors), and theorems (e.g., the invertible matrix theorem) needed to understand 
eigentheory and the calculations involved therein. While this framework is still under 
development, it informed our decisions about the creation and refinement of the assessment 
instrument, and, cyclically, the results of the assessment continue to inform the development of 
the framework. We describe the assessment more fully in the following section. 

 
Methods 

In this section, we describe the development and format of our multiple choice extended 
(MCE) assessment instrument. We then describe the data collection and participants for this 
study, followed by a description of our analysis.  
 
Instrument Development  
 The MCE assessment instrument for eigentheory development grows from our prior work in 
student understanding of span and linear independence in which we developed the MCE-style 
question format (Zandieh, Plaxco, Wawro, Rasmussen, Milbourne, & Czeranko, 2015). During 
this development, we considered literature on conceptually oriented assessment instruments in 
undergraduate mathematics and physics (Bradshaw, Izsak, Templin, J. & Jacobson, 2013; 
Carlson, Oehrtman, & Engelke, 2010; Epstein, 2013; Hestenes, Wells, & Swackhamer, 1992; 
Wilcox & Pollock, 2013). Questions written in an MCE style begin with a multiple choice 
element and then prompt students to justify their answer by selecting all statements that could 
support their choice, a format based on a concept inventory in Upper-division Electrostatics 
created by Wilcox and Pollock (2013).  

To develop the assessment instrument questions for the Eigentheory MCE, we compiled a 
database of questions about eigenvectors, eigenvalues, and related concepts from literature on 
student understanding of eigenvectors and eigenvalues, online resources for clicker and 
classroom voting on linear algebra (Cline & Zullo, 2016), and previous linear algebra homework 
assignments, exams, and interview protocols used by research team members (e.g., Henderson, 
Rasmussen, Sweeney, Wawro, & Zandieh, 2010). The most promising questions that collectively 
addressed various aspects of our working framework were edited into the MCE format. The 
instrument has been administered in two sets of student interviews, as written homework, and as 
an in-class review activity, with subsequent refinements of the assessment after each 
administration. The most recent revision was also administered as written homework in Fall 
2016. This current report relies on the administration of the assessment as an in-class review 
activity, described in further detail below.  

 
Data Collection 

We present data from written assessments collected from three introductory linear algebra 
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classes taught by the same instructor at a large, research-intensive public university in the mid-
Atlantic United States during Spring Semester 2016. The course utilized the Inquiry-Oriented 
Linear Algebra (IOLA) curricular materials. The materials, which are available at 
http://iola.math.vt.edu, contain three main units: Linear Independence and Span (Wawro, 
Rasmussen, Zandieh, Sweeney, & Larson, 2012), Matrices as Linear Transformations (Andrews-
Larson, Wawro, & Zandieh (2017), and Change of Basis, Diagonalization, and Eigentheory 
(Zandieh, Wawro, & Rasmussen, 2017). The course also used Lay (2012) as its textbook.  

Each class worked on one version of the MCE assessment (described in the following 
paragraph) during the last day of class as a review of eigentheory. Students took the assessment 
individually for 20-25 minutes, following which the instructor collected the assessments, and 
then held whole class discussions on the problems. This report focuses on the collected 
individual work.  

All three versions of the MCE assessment consisted of the same six multiple choice question 
elements, with varying justification sections. Class 1 (27 students) received a version in which 
students indicated if each of six given justifications were true and relevant, true but not relevant, 
or false (see Figure 1a). Class 2 (29 students) received a version in which students only selected 
justification choices that were true and relevant (see Figure 1b). Lastly, Class 3 (28 students) 
received an open-ended version in which they wrote their own justification for their choice. 
 

1. The matrix 𝐴𝐴 = �−2 4
2 5� has 𝜆𝜆 = 6 as one of its eigenvalues. Which of 

the following vectors is an eigenvector of 𝐴𝐴 with corresponding 
eigenvalue 𝜆𝜆 = 6?         

(a) 𝒙𝒙 = � 4
−1�      CORRECTÆ (b)    𝒙𝒙 = �12� 

  

Because …  (indicate if the choice is true and relevant, true but not 
relevant, or false)  
  

True & 
relevant 

True not 
relevant 

False Statement 

   (i) This vector 𝒙𝒙 makes 𝐴𝐴𝒙𝒙 = 6𝒙𝒙 a 
true statement. 

   (ii) This vector 𝒙𝒙 is the only vector in 
ℝ2 for which 𝐴𝐴𝒙𝒙 = 6𝒙𝒙. 

   (iii) This vector 𝒙𝒙 makes (𝐴𝐴 − 6𝜆𝜆)𝒙𝒙 =
𝟎𝟎 a true statement 

   
(iv) Subtracting 6 from the diagonal of 

𝐴𝐴 yields this vector 𝒙𝒙 as a column 
vector of the resulting matrix. 

   
(v) The vector 𝐴𝐴𝒙𝒙 is 6 times the 

magnitude and in the same 
direction as this vector 𝒙𝒙. 

   (vi) The matrix 𝐴𝐴 also has 𝜆𝜆 = −3 as 
an eigenvalue. 

 

1. The matrix 𝐴𝐴 = �−2 4
2 5� has 𝜆𝜆 = 6 as one of its eigenvalues. 

Which of the following vectors is an eigenvector of 𝐴𝐴 with 
corresponding eigenvalue 𝜆𝜆 = 6? 

(a) 𝒙𝒙 = � 4
−1�     CORRECTÆ (b)    𝒙𝒙 = �12� 

 

Because …  (select ALL that could justify your choice)  
 
 
(i) This vector 𝒙𝒙 makes 𝐴𝐴𝒙𝒙 = 6𝒙𝒙 a true statement. 

 
(ii) This vector 𝒙𝒙 is the only vector in ℝ2 for which 𝐴𝐴𝒙𝒙 = 6𝒙𝒙. 

 
(iii) This vector 𝒙𝒙 makes (𝐴𝐴 − 6𝜆𝜆)𝒙𝒙 = 𝟎𝟎 a true statement 

 
(iv) Subtracting 6 from the diagonal of 𝐴𝐴 yields this vector 𝒙𝒙 as a 

column vector of the resulting matrix. 
 

(v) The vector 𝐴𝐴𝒙𝒙 is 6 times the magnitude and in the same 
direction as this vector 𝒙𝒙. 
 

(vi) The matrix 𝐴𝐴 also has 𝜆𝜆 = −3 as an eigenvalue. 
 

(a)      (b) 
Figure 1. Comparison of (a) Class 1 MCE (3-Choice MCE) and (b) Class 2 MCE (Basic MCE). 

 
By comparing performance on a measure independent of the items under investigation, 

namely the results of a class exam on eigentheory concepts given by the instructor (see Table 1), 
we can determine if the students in the three classes are of comparable ability. To do so, we ran a 
1-way ANOVA looking for group variation on this data. The results of that analysis reveal there 
is no significant difference between the groups (F = 1.3075, p = .2761) and no post-hoc 
comparisons were necessary.  Thus we can reasonably assume that the three sub-samples are of 
roughly equal ability and superior ability of a particular group will not bias the results in favor of 
one form of the 6-item assessment. 

20th Annual Conference on Research in Undergraduate Mathematics Education 31320th Annual Conference on Research in Undergraduate Mathematics Education 313



 
Table 1 
Summary of Student Performance on a Class Exam on Eigentheory Material Given by Instructor (Independent of Researchers)  

 Class 1 Class 2 Class 3 Overall 
Average Score 82.4 75.9 80 79.4 
Standard Deviation 15.7 13.7 16.3 15.5 
Median Score 88 75.5 82.5 82 

 
Analysis 

After each class’s written assessments were digitally scanned and grouped by question, 
spreadsheets were designed to enter the data from Class 1 and Class 2. Using the spreadsheets, 
the research group examined trends among student responses, which included looking for: (a) 
common sets of justifications that students selected or did not select; (b) how selecting certain 
justifications may have influenced students’ multiple choice selection; and (c) instances where 
we would have expected students to select what we viewed as related justifications, but they did 
not. To help with comparisons and identifying these trends, some basic percentages were 
calculated for the justification choices of students in Classes 1 and 2. 

 

Figure 2. Questions 2 and 3 of the Eigentheory MCE. 
 

The open-ended data were analyzed through multiple iterations of open coding. First, each 
team member individually summarized the key aspects of each student’s justification process. 
Next, the team came together to develop a coding scheme for the student work to be used in the 
second iteration of coding. Each team member then individually coded the student responses 
with the new coding scheme before collectively determining a set of codes for each student. 
Lastly, the larger themes from the finalized coding were identified by examining common 
patterns across multiple students’ solutions and justifications. 

Based upon the patterns and trends found in Classes 1 and 2, as well as common student 
justifications in Class 3, the next step of our analysis involved the creation of a type of 

2. Suppose the vector 𝒙𝒙 ∈ ℝ𝟐𝟐, in the two-dimensional sketch below, is 
an eigenvector of a 2x2 matrix 𝑀𝑀 with real-valued eigenvalues. Which 
of the vectors 𝒖𝒖,𝒗𝒗 or 𝒘𝒘 illustrated below could be the result of the 
product 𝑀𝑀𝒙𝒙? 
 
(a) 𝒖𝒖  
(b) 𝒗𝒗  
(c) 𝒘𝒘 ÅCORRECT 
(d) Not enough information is 

given to know a possible 
result of the product 𝑀𝑀𝒙𝒙  

 
Because …  (select ALL that 
could justify your choice)  
 
(i) This vector is on the same line as 𝒙𝒙. 
 
(ii) This vector and 𝒙𝒙 form a linearly independent set. 

 
(iii) This vector is in 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{𝒙𝒙}. 

 
(iv) This vector is a scalar multiple of 𝒙𝒙. 

 
(v) The matrix 𝑀𝑀 needs to be known to determine what 𝑀𝑀𝒙𝒙 could be. 

 
(vi) There exists a scalar 𝑐𝑐 such that 𝑀𝑀𝒙𝒙 = 𝑐𝑐𝒙𝒙. 
 

3. Suppose 𝐴𝐴 is a 𝑠𝑠 × 𝑠𝑠 matrix, and 𝒚𝒚 and 𝒛𝒛 are linearly independent 
eigenvectors of 𝐴𝐴 with corresponding eigenvalue 2. Let 𝒗𝒗 = 5𝒚𝒚+
5𝒛𝒛. Is 𝒗𝒗 an eigenvector of 𝐴𝐴? 
 

(a) Yes, 𝒗𝒗 is an eigenvector of 𝐴𝐴 with eigenvalue 2. ÅCORRECT 
(b) Yes, 𝒗𝒗 is an eigenvector of 𝐴𝐴 with eigenvalue 5. 
(c) No, 𝒗𝒗 is not an eigenvector of 𝐴𝐴. 
 
Because …  (select ALL that could justify your choice)  
 
(i) 𝒗𝒗 is a linear combination of eigenvectors that have the same 

eigenvalue. 
 

(ii) The set {𝒗𝒗,𝒚𝒚, 𝒛𝒛} is linearly dependent. 
 

(iii) A linear combination of eigenvectors does not result in 
another eigenvector 

 
(iv) 𝐴𝐴𝒗𝒗 = 𝐴𝐴(5𝒚𝒚 + 5𝒛𝒛) = 5𝐴𝐴𝒚𝒚 + 5𝐴𝐴𝒛𝒛 = 5 ⋅ 2𝒚𝒚 + 5 ⋅ 2𝒛𝒛 =

2(5𝒚𝒚+ 5𝒛𝒛) = 2𝒗𝒗. 
 

(v) 𝒗𝒗 is an element of the eigenspace created by the vectors 𝒚𝒚 
and 𝒛𝒛. 
 

(vi) 𝐴𝐴𝒗𝒗 = 𝐴𝐴(5𝒚𝒚 + 5𝒛𝒛) = 5𝐴𝐴𝒚𝒚 + 5𝐴𝐴𝒛𝒛 = 5 ⋅ 2𝒚𝒚 + 5 ⋅ 2𝒛𝒛 =
5(2𝒚𝒚+ 2𝒛𝒛) = 5𝒗𝒗. 

 

x 

u 

0 

v 

w 
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“conditional table” for all three classes on specific justification and multiple choice comparisons. 
We give further explanation of these tables in the results below as they facilitate making 
comparisons across classes. In this report, we focus on the first three questions from the 
assessment (see Figures 1 and 2), with plans to analyze all six later. 
 

Results 
Table 2 shows the general performance of the three classes on the multiple choice portion of 

the three questions. We make a few observations. First, classes performed similarly on all three 
questions, further supporting the reasonableness of comparing across them. Second, Question 1 
and Question 2 may seem somewhat uninformative because a majority of the students chose the 
correct answer. However, in the results and discussion to follow, we share how the MCE gives 
more information about student thinking through the justification portion of each question. Third, 
as evidenced by the results on Question 3, linear combinations of eigenvectors with the same 
eigenvalue, in other words, elements of an eigenspace, is a difficult topic. We first share insights 
into students’ thinking about eigentheory we gained from each individual question, and then 
explain some of the overarching insights gained by looking across questions in the discussion. 
 
Table 2 
Class Percentages for Answers Chosen on the Multiple Choice Portion 

  Class 1 
Judgment MCE 
(27 Students) 

Class 2 
Original MCE 
(29 Students) 

Class 3 
Open-Ended 
(28 Students) 

Overall 
 
(84 Students) 

Question 1 Choice (a) 14.8 (4) 24.1 (7) 7.1 (2) 15.5 (13) 
Choice (b) 81.5 (22) 75.9 (22) 92.9 (26) 83.3  (70) 
No Answer 3.7 (1) 0.0 0.0 1.2  (1) 

Question 2 Choice (a) 0.0 0.0 0.0 0.0 
Choice (b) 0.0 6.9 0.0 2.4 (2) 
Choice (c) 92.6 (25) 82.8 (24) 96.4 (27) 90.5 (76) 
Choice (d) 3.7 (1) 10.3 (3) 3.6 (1) 6.0 (5) 
No Answer 3.7 (1) 0.0 0.0 1.2 (1) 

Question 3 Choice (a) 25.9 (7) 48.3 (14) 21.4 (6) 32.1 (27) 
Choice (b) 3.7 (1) 6.9 (2) 17.9 (5) 9.5 (8) 
Choice (c) 55.6 (15) 31.0 (9) 57.1 (16) 47.6 (40) 
No Answer 14.8 (4) 13.8 (4) 3.6 (1) 10.7 (9) 

NOTE: Correct answers are shaded. Grey numbers in parentheses are the number of students. 
 
Question 1 
 Recall that the main prompt for Question 1 required students to determine which given vector 
was an eigenvector for 𝜆𝜆 = 6 for a given matrix 𝐴𝐴 (Figure 1). From among the provided 
justifications that support a correct answer, students were able to choose “(i) this vector makes 
𝐴𝐴𝒙𝒙 = 6𝒙𝒙 a true statement” or “(iii) this vector makes (𝐴𝐴 − 6𝜆𝜆)𝒙𝒙 = 𝟎𝟎 a true statement.” First, we 
consider the open-ended responses to Question 1 from Class 3 to determine if students, of their 
own accord, explicitly wrote some form of 𝐴𝐴𝒙𝒙 = 6𝒙𝒙 or (𝐴𝐴 − 6𝜆𝜆)𝒙𝒙 = 𝟎𝟎 within their justifications. 
In Figure 3, we provide three examples of student responses: one that included both equations 
(Figure 3(a)), one that utilized 𝐴𝐴𝒙𝒙 = 𝜆𝜆𝒙𝒙 to arrive at the solution (Figure 3(b)), and one that 
utilized (𝐴𝐴 − 𝜆𝜆𝜆𝜆)𝒙𝒙 = 𝟎𝟎 to arrive at the solution (Figure 3(c)). In Figure 3(a), the student’s 
response explained how solving for 𝒙𝒙 in (𝐴𝐴 − 𝜆𝜆𝜆𝜆)𝒙𝒙 = 𝟎𝟎 could be derived from 𝐴𝐴𝒙𝒙 = 𝜆𝜆𝒙𝒙, and the 
goal is to find the 𝒙𝒙 that makes that equation true. The approach in Figure 3(b) started with 𝐴𝐴𝒙𝒙 =
𝜆𝜆𝒙𝒙, substituted in the provided matrix 𝐴𝐴 and the two options for the eigenvector 𝒙𝒙, and carried 
out the computations to determine that the vector in option (b) was an eigenvector of 𝐴𝐴 
associated with the eigenvalue 6. The response in Figure 3(c) began with (𝐴𝐴 − 𝜆𝜆𝜆𝜆)𝒙𝒙 = 0, 
converted it to an augmented matrix, found a general solution of 𝑥𝑥1 = 0.5𝑥𝑥2, and determined that 
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the vector in option (b) satisfied that relationship. We offer these examples as prototypes for the 
kinds of justifications students gave of their own accord in response to this problem, as well as 
illustrations of students’ use of different solution strategies in conjunction with the eigen-
equation they wrote down. 
 
 

 
Figure 3. Three examples of open-ended justifications for Question 1. 

 
 Next, we analyze student responses from Class 1 and Class 2 in regard to their selection of 
justifications (i) and (iii), along with the eigen-equations Class 3 students explicitly wrote in their 
justifications.  We organize this information in a format consistent with conditional tables in 
Figure 4, and we reuse this format throughout the paper in Figures 5, 7-9, and 11. We explain 
Figure 4 in detail here to familiarize the reader with the information contained in these 
conditional tables. Across the top of Figure 4 is justification (iii), and down the left side is 
justification (i). Every cell within the tables indicates the number of students who fall in that 
category (bold number), and gives a breakdown of their multiple choice answers (correct answer 
italicized). The leftmost section of Figure 4 provides information about the number of students in 
Class 2 that chose either, both, or neither of statements (i) and (iii). The cell in the first column 
and first row indicates that 23 students selected both statements as supportive of their conclusion, 
with 19 of them correctly choosing (b) as the solution to the main problem; 4 students selected 
(iii) but did not select (i), of which 1 correctly chose (b); one selected (i) but not (iii) and 
correctly chose (b); and one chose neither (i) nor (iii) and correctly chose (b). 

  

 
(iii) This vector 𝒙𝒙 makes (𝐴𝐴 − 6𝜆𝜆)𝒙𝒙 = 𝟎𝟎 a true statement 

(i) This 
vector 𝒙𝒙 

makes  
𝐴𝐴𝒙𝒙 = 6𝒙𝒙  

a true 
statement  

 Selected  
Not 
selected    TR TNR F  

 
Wrote 
equation 

Didn’t write 
equation 

Selected 23 
19(b) 4(a) 

1 
1(b) 

 TR 23 
19(b) 3(a)  

3 
3(b) 

 Wrote 
equation 

4 
3(b) 1(a) 

10 
10(b)  

Not 
selected  

4 
1(b) 3(a) 

1 
1(b) 

 TNR 1 
1(a) 

  Didn’t 
write eqn  

4 
4(b)  

10 
9(b) 1(a) 

   F       
 Class 2 (Basic MCE, 29 total)  Class 1 (3-choice MCE, 27 total) Class 3 (open-ended, 28 total) 

 
Figure 4. Comparing students’ distinction between 𝐴𝐴𝒙𝒙 = 6𝒙𝒙 and (𝐴𝐴 − 6𝜆𝜆)𝒙𝒙 = 𝟎𝟎 on Question 1. 

 

(a) 

(b) 

(c) 
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 The center section of Figure 4 provides information about the number of students in Class 1 
that thought statements (i) and (iii) were true and relevant, true but not relevant, or false in terms 
of supporting their conclusion to the main problem. The cell in the first column and first row 
indicates that 23 students selected both statements as true and relevant, with 19 of them correctly 
choosing (b) as the solution to the main problem; 3 students indicated that statement (iii) was 
true but not relevant and statement (i) was true and relevant in supporting their solution, with all 
3 correctly choosing (b); and 1 student indicated that (iii) was true and relevant, statement (i) was 
true but not relevant, and correctly chose (b).  
 Finally, the rightmost section of Figure 4 provides information about the number of students 
in Class 3 that explicitly wrote within their justifications either, both, or neither of the equations 
(𝐴𝐴 − 6𝜆𝜆)𝒙𝒙 = 𝟎𝟎 (indicated across the column) or 𝐴𝐴𝒙𝒙 = 6𝒙𝒙 (indicated across the row) in some 
form. The cell in the first column and first row indicates that 4 students wrote forms of both 
equations, with 3 correctly choosing (b) as the solution to the main problem; 10 students wrote 
an equation of the form (𝐴𝐴 − 6𝜆𝜆)𝒙𝒙 = 𝟎𝟎 but not 𝐴𝐴𝒙𝒙 = 6𝒙𝒙, with all 10 correctly choosing (b); 4 
students wrote an equation of the form 𝐴𝐴𝒙𝒙 = 6𝒙𝒙 but not (𝐴𝐴 − 6𝜆𝜆)𝒙𝒙 = 𝟎𝟎, with all 4 correctly 
choosing (b); and ten students did not explicitly write some form of either equation, with 9 
correctly choosing (b). We recognize, however, that students may have been thinking about one 
or both equations without explicitly including them in their written justification. 
 Comparing across the three classes produces an interesting insight. When students are asked 
to write their own justification (Class 3), a majority explicitly write only one of the eigen-
equations, and quite a few write neither. However, when students are forced to consider the truth 
and relevance of the two equations contained in justifications (i) and (iii), the large majority are 
able to see both as true and relevant. Thus, it seems most students understand the importance and 
relevance of the two equivalent eigen-equations. Furthermore, the versions of the MCE that give 
students closed-ended justification choices (Basic MCE and 3-Choice MCE) might actually give 
more insight into students’ understanding of eigentheory than the open-ended justification 
version.  

 
(v) The vector 𝐴𝐴𝒙𝒙 is 6 times the magnitude and in the same direction as this vector 𝒙𝒙 

(i) This vector 
𝒙𝒙 makes  

𝐴𝐴𝒙𝒙 = 6𝒙𝒙  a 
true statement 

 
OR 

 
(iii) This 
vector 𝒙𝒙 

makes  
(𝐴𝐴 − 6𝜆𝜆)𝒙𝒙 
= 𝟎𝟎 a true 
statement 

 Selected  
Not 
selected    TR TNR F NA  

 
Wrote 
Geom. 
Idea 

Didn’t 
write 
Geom. 
Idea 

Selected 13 
12(b) 
1(a) 

15 
9(b) 6(a) 

 TR 12 
11(b) 
1(NA)  

3 
3(b) 

5 
4(b) 
1(a) 

1 
1(b) 

Wrote 
equation 

 
18 
17(b) 
1(a) 

Not 
selected  

1 
1(b) 

 
 TNR 

 
   Didn’t 

write 
equation  

  10 
9(b) 1(a) 

   F        
Class 2 (Basic MCE, 29 total)                Class 1 (3-choice MCE, 27 total) 

 
Class 3 (open-ended, 28 total) 

Figure 5. Comparing students’ Algebraic vs. Geometric Justifications on Question 1. 
 

We now look at students’ judgment of the truth and relevance of geometric justifications on 
Question 1. Looking at the rows in Figure 5, we see that a large majority of students selected or 
wrote at least one of the eigen-equations, a compilation of the results from Figure 4. However, 
looking across the columns in Class 1 and Class 2, we see that a large number of students did not 
see the geometric justification (v) as relevant to answering Question 1 (15/29 students in Class 2, 
and 9/27 students in Class 1); indeed, there were even five students in Class 1 who said this 
justification was false. Even more striking, no students in Class 3 wrote anything geometric in 
their justifications. This might indicate students tend to think about eigenvectors and eigenvalues 

20th Annual Conference on Research in Undergraduate Mathematics Education 31720th Annual Conference on Research in Undergraduate Mathematics Education 317



symbolically more than geometrically, or students may see symbolic reasoning as the more 
acceptable justification to the teacher or the broader math community.  
 
Question 2 
 Students’ geometric understanding of eigentheory was further explored in the results of 
Question 2. When looking at open-ended justifications from Class 3, two of the most common 
justifications students gave mentioned the result of the product being on the same line as the 
eigenvector 𝒙𝒙, or being a scalar multiple of 𝒙𝒙. We share three prototypical examples of students' 
justifications in Figure 6. The student in Figure 6(a) stated that the product should be a scalar 
 

 
Figure 6. Example of three students’ open-ended justifications for Question 2 

 
multiple of the eigenvector, as well as on the same line; the student in 6(b) used the equation 
𝑀𝑀𝒙𝒙 = 𝜆𝜆𝒙𝒙 to argue why the product would need to be a scalar multiple of 𝒙𝒙; and the student in 
Figure 6(c) explained how the product should be in the same direction and on the same line as 
the eigenvector 𝒙𝒙. When we consider how students selected the related justifications (i) and (iv) 
on the Basic MCE and 3-Choice MCE (see Figure 7), it becomes clear that these ideas of the 
result being on the same line as 𝒙𝒙 or a scalar multiple of 𝒙𝒙 were seen by students as particularly 
relevant; more specifically, a majority of students in all classes selected or wrote at least one of 
these ideas, and in Classes 1 and 2, most students selected both justifications (i) and (iv) as true 

 
(iv) This vector is a scalar multiple of 𝒙𝒙 

(i) This 
vector is 

on the 
same line 

as 𝒙𝒙  

 Selected  
Not 
selected    TR TNR F  

 
Wrote idea 

Didn’t write 
idea  
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20(c) 

3 
3(c) 

 TR 24 
24(c)  

 
 Wrote  

idea 
3 
3(c) 

7 
7(c) 

Not 
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2 
1(c) 1(b) 

4 
1(b) 3(d) 

 TNR 1 
1(c) 

 2 
1(d) 1(NA) 

Didn’t 
write  

7 
7(c)  

11 
10(c) 1(d) 

   F       
 Class 2 (Basic MCE, 29 total)  Class 1 (3-choice MCE, 27 total) Class 3 (open-ended, 28 students) 

 
Figure 7. Student justifications that included “scalar multiple” or “on the same line” for Q2. 

 

(a) 

(b) 

(c) 
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and relevant. These results indicate the importance of having these justifications on the MCE 
instrument. Furthermore, we again wish to point out that when students write their own 
justifications, a large majority do not write down both ideas; but, when students are forced to 
consider the truth and relevance of these ideas, most select both as true and relevant. Hence, we 
are able to see deeper into students’ understanding of eigentheory through the MCE instrument 
than we would through only the open-ended assessment.  
 An eigentheory expert might expect a similar majority of students to also select justification 
choice (iii) “This vector is in span{𝒙𝒙}” as true and relevant, since justifications (i), (iii), and (iv) 
could be seen as closely related. However, the results from the three classes tell a different story 
(see Figure 8). Looking at Class 3, we see that this concept was not something students readily 
volunteered as a justification, as only two students mentioned anything about span in their open-
ended response. In Class 2, 16 of the 29 students did not select justification choice (iii) as true 
and relevant, but we cannot be sure why they did not select it. Did they think it was false, or just 
not relevant? The results from Class 1 may be the most illuminating, as no student said that 
justification choice (iii) was false, showing they understand that the result would be in span{𝒙𝒙}, 
but 10 of the 28 students said it was not relevant. Hence, although an expert might see 
justifications (i), (iii), and (iv) as closely related, for some students span was not relevant to 
answering this particular eigentheory question. 

 
(iii) This vector is in span{𝒙𝒙} 

(i) This 
vector is 

on the 
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as 𝒙𝒙  
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Not 
selected    TR TNR F  
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Didn’t write 
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11 
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9 
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idea 

 
10 
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Not 
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1 
1(b) 

5 
1(b) 1(c) 
3(d) 

 TNR 2 
1(c) 1(d) 

1 
1(NA) 

 Didn’t 
write  

2 
2(c) 

16 
15(c) 1(d) 

   F       
 Class 2 (Basic MCE, 29 total)  Class 1 (3-choice MCE, 27 total) Class 3 (open-ended, 28 students) 

 
Figure 8. (Non)relevance of “span” for answering Question 2. 

 
Question 3 
 As mentioned previously, students’ response to Question 3 varied greatly across all three 
classes, suggesting this question was more difficult for students than the first two. Because of the 
varied response on the multiple choice portion, we looked at the relationship between students’ 
multiple choice selection and particular justification choices. In Figure 9, we examine the 
relationship between students’ multiple choice selection and justification (iv) “𝐴𝐴(5𝒚𝒚 + 5𝒛𝒛) =
5𝐴𝐴𝒚𝒚 + 5𝐴𝐴𝒛𝒛 = 5 ⋅ 2𝒚𝒚 + 5 ⋅ 2𝒛𝒛 = 2(5𝒚𝒚 + 5𝒛𝒛) = 2𝒗𝒗". For Class 1 and Class 2, students who 

  
Multiple Choice Answer 

(iv)  
𝐴𝐴(5𝒚𝒚+ 5𝒛𝒛) 

= 5𝐴𝐴𝒚𝒚+ 5𝐴𝐴𝒛𝒛 
= 5 ⋅ 2𝒚𝒚 
+5 ⋅ 2𝒛𝒛 

= 2(5𝒚𝒚+ 5𝒛𝒛) 
= 2𝒗𝒗  

 

 A B  C   A B C  
 
A B  C 

Selected 11 
 

2  TR  7 1 1 Wrote  
idea 

1 2 1 

Not 
selected  

3 2 7  TNR 
 

 10 Didn’t 
write  

5 3 15 

    F   1     
    NA   3    

Class 2 (Basic MCE, 29 total)   Class 1 (3-choice MCE, 27 total) Class 3 (open-ended, 28 students) 
 

NOTE: Four students in Classes 1 and 2 and one student in Class 3 did not answer, and are not included in the tables above. 
 

 Figure 9. Comparing students’ multiple choice response to selection of justification (iv) 
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selected justification (iv) as true and relevant were more likely to select the correct multiple 
choice answer A. We note that in the open-ended responses, this was not the case; in fact, the 
majority of students in Class 3 did not write anything algebraic. Furthermore, Class 3 had the 
lowest percentage get the multiple-choice stem correct. From this result, there is a real possibility 
that having a correct string of algebra provided as a justification choice led the students in 
Classes 1 and 2 to the correct multiple choice answer. However, in some sense, it might be 
considered a good thing that students were able to recognize the algebraic string as correct and 
understand how this supports selecting the correct multiple choice answer. Considerations will 
need to be made on whether or not this justification is too leading for future use on the 
Eigentheory MCE. 
 To further explore why this question was particularly difficult for students, we examined the 
open-ended student responses to Question 3, where students used the concepts of linear 
combination and eigenspace in support of both correct and incorrect multiple choice answers. In 
Figure 10, we share examples of students using these concepts in their justification, but arriving 
at different conclusions. The two leftmost students both mentioned 𝒗𝒗 being a linear combination 
of eigenvectors, but arrived at opposite answers, with one saying 𝒗𝒗 would be an eigenvector, and 
the other saying 𝒗𝒗 would not. Similarly, the two rightmost students both gave justifications that 
could be seen as involving eigenspace, but came to opposite conclusions, with the student on the 
far right mentioning that an infinite number of eigenvectors “doesn’t make sense.” 

 Students’ difficulty with these concepts is further supported when comparing their selection 
of justifications (i) and (v) found in Figure 11. Classes 1 and 2 each had a majority of students 
select at least one justification as true and relevant; however, students used these same 
justifications in support of different multiple choice answers. From Class 3, we notice that this is 

v is a linear 
combination of y and 
z which have the 
same eigenvalue.  
 

No, because v is a 
linear combination of 
the two vectors.  

v is in the eigenspace 
of both y and z 

Multiplying the linearly independent eigenvectors 
by 5 makes them linearly dependent technically 
you could multiply the eigenvectors by any 
number and if you did so and another eigenvector 
was achieved there would be a possibility for 
infinite eigenvectors which doesn’t make sense 

Linear Combination  
Correctly chose (A) 

 

Linear Combination 
 Incorrectly chose (C) 

Eigenspace 
Correctly chose (A) 

Eigenspace 
Incorrectly chose (C) 

NOTE: Typed versions are used here to improve readability of students’ handwritten justifications 
 

Figure 10. Example of four students’ open-ended justifications for Question 3 
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NOTE: Four students in Classes 1 and 2 and one student in Class 3 did not answer. Two students in Class 1 did not select either justification. 
These students are not included in the tables above. 
 

Figure 11. Student use of linear combination and eigenspace for varying answers. 
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also the case for students that only wrote about linear combination and not eigenspace; of the 18 
students that used linear combination in their justification, all three multiple choice answers were 
chosen, with a majority actually choosing the incorrect answer. Furthermore, in comparison to 
the first two questions, there is overall wider variation in students’ selections for justifications (i) 
and (v) in Class 1 and 2. Generally, the results from this question demonstrate how the concepts 
of linear combinations of eigenvectors and eigenspaces are especially challenging for students.  
 

Discussion 
 In this section we share insights into students’ understanding of eigentheory that come from 
looking across the data for all three questions and how these relate to previous research on 
students’ understanding of eigentheory. We then discuss the strengths and weaknesses of the 
three different MCE versions and considerations for future use of the assessments. 
 
Insights from Looking Across Questions and Connections to Previous Research 
 First, there are some indications that students favor algebraic reasoning over geometric 
reasoning when justifying their answers to eigentheory questions, even though the class used the 
IOLA curriculum which specifically introduces eigenvectors and eigenvalues geometrically. As 
a particular example, the proportions of students who selected the algebraic justification (iv) (or 
wrote something similar) on the geometrically-oriented Question 2 were higher than the 
proportions of students who selected the geometric justification (v) (or wrote something similar) 
on the algebraically-oriented Question 1 (see Table 3). This may be seen as corroborating the 
work of Thomas and Stewart (2011), who found that “students tend to think about the concepts 
of eigenvalue and eigenvector in a primarily symbolic-world way” (p. 294), even after two years 
of linear algebra instruction. However, it should be noted that a majority of these students were 
able to answer the multiple choice stem of Questions 1 and 2 correctly, demonstrating some 
ability to reason both algebraically and geometrically about eigenvectors and eigenvalues. This is 
good, as many have advocated the importance of understanding eigentheory from geometric or 
embodied perspectives in addition to algebraic or symbolic ones (Gol Tabaghi & Sinclair, 2013, 
Salgado & Trigueros, 2015, Sinclair & Gol Tabaghi, 2010, Stewart & Thomas, 2006; Thomas & 
Stewart, 2011) and others have explained the significance of fluently translating between 
different modes of description (Hillel, 2000), modes of thinking (Sierpinska, 2000), or worlds of 
mathematics (Tall, 2004), to understanding linear algebra in general. 
 
Table 3 
Evidence of Students’ Preference for Algebraic Justifications over Geometric 

 Class 1 Class 2 Class 3 
Proportion of students who selected the geometric justification  
(v) The vector 𝑨𝑨𝒙𝒙 is 6 times the magnitude and in the same direction as this vector 
on Question 1, or wrote something similar 

12/27 14/29 0/28 

    
Proportion of students who selected algebraic justification 
(iv) There exists a scalar 𝑐𝑐 such that 𝑀𝑀𝒙𝒙 = 𝑐𝑐𝒙𝒙 
on Question 2, or wrote something similar 

17/27 18/29 12/28 

 
 Second, there is some evidence that the ways students think about and solve problems 
involving eigenvectors and eigenvalues are influenced by their reliance on or preference for one 
of the two equations 𝐴𝐴𝒙𝒙 = 𝜆𝜆𝒙𝒙 and (𝐴𝐴 − 𝜆𝜆𝜆𝜆)𝒙𝒙 = 𝟎𝟎. While we agree in the importance of students 
understanding both of these equations and the relationship between them, as suggested by 
previous research (Salgado & Trigueros, 2015; Thomas & Stewart, 2011), our results go beyond 
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this by suggesting that the particular eigen-equation a student thinks about in the problem solving 
process can actually result in different ways to think about the same problem.  
 Some evidence for the idea of students relying on or preferring a particular equation can be 
seen in Class 3’s results on Question 1, where 14 of the 28 students only wrote one of the two 
equations, suggesting students may have a “go to” equation when thinking about and solving 
eigentheory problems. Furthermore, as an example of a student’s thinking or solution strategy 
being potentially influenced by one of the two eigen-equations, consider Figure 12. In this figure, 
we share open-ended work on Question 1 and Question 3 from a student who shows some 
reliance on or preference for the homogeneous equation (𝐴𝐴 − 𝜆𝜆𝜆𝜆)𝒙𝒙 = 𝟎𝟎. On Question 1, we can 
infer this student first found the matrix (𝐴𝐴 − 𝜆𝜆𝜆𝜆), multiplied each vector by it, and chose the 
vector that was mapped to the zero vector. Then, on Question 3, although what he actually writes 
is not mathematically sound, we can infer he was still reasoning similarly with the homogeneous 
equation, imagining the vectors 𝒚𝒚 and 𝒛𝒛 being mapped to the zero vector by the matrix (𝐴𝐴 − 𝜆𝜆𝜆𝜆), 
and therefore the vector 𝒗𝒗 would also map to the zero vector. We recognize this is only one 
example, but we hope it illustrates how students’ thinking and reasoning about eigentheory 
problems can be driven by the particular eigen-equation they adhere to at any given time. Future 
research plans of ours include exploring this idea further. 
 

 
Figure 12. Evidence of student B66’s Preference for Homogeneous Equation (𝐴𝐴 − 𝜆𝜆𝜆𝜆)𝒙𝒙 = 𝟎𝟎 

 
 Third, the concept of eigenspace is particularly difficult for students to understand, as 
evidenced in the results from Question 3. This corroborates the results of Salgado and Trigueros 
(2015) who suggested this might be due to difficulties students have “in understanding the 
concepts of spanning set, basis, and space spanned, and also to the difficulties involved in 
comparing different geometrical objects in a three dimensional space” (p. 118). Our results go a 
bit further in two ways. First, Class 2’s results on Question 2 above, where no student said 
justification (iii) “This vector is in span{𝒙𝒙}” was false, shows the students do have some 
understanding of the concept of span (at least one-dimensional span). Second, from Class 1 and 
Class 2’s (56 students total) results on Question 3, 13 of the students said justification choice (v) 
“𝒗𝒗 is an element of the eigenspace created by the vectors 𝒚𝒚 and 𝒛𝒛” was true, but selected (c) “No, 
𝒗𝒗 is not an eigenvector of 𝐴𝐴.” This suggests students might not understand that any vector 
belonging to the span of a set of eigenvectors with the same eigenvalue (i.e., elements of the 
eigenspace) are themselves eigenvectors with that same eigenvalue. We suggest, along with 
Salgado and Trigueros (2015), further research specifically look at students’ understanding of 
eigenspaces, and ways we might better teach this difficult concept. 

v is a linear combination of y & z 
Since the value 2 already causes y & z to equal 0, adding a 
multiple to it will not change that  
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Comparing the Three MCE Formats 

One might be tempted to think that the open-ended version of the MCE would be the most 
helpful or appropriate for eliciting the ways students think about eigentheory. However, we have 
shown here that forcing students to think about other justifications can lead to interesting results, 
and gives us further insights into students’ understanding of eigentheory. The question arises, 
which assessment (3-Choice MCE or Basic MCE) should be pursued further? We explore three 
considerations, namely time and cognitive demands, information gained, and scoring issues. 

As both the Basic MCE and the 3-Choice MCE have a student read through six justification 
choices for each multiple choice question, the MCE is considerably more time consuming than a 
simple multiple choice assessment. This significantly affects the number of questions that can be 
asked using this format, and is one reason our instrument was limited to six questions. In reality, 
those six questions could be thought of as six multiple choice questions with 36 true-or-false sub 
questions. The MCE can also be cognitively taxing, as students must ponder on each individual 
justification choice to determine if it is true and relevant. Thus, mental fatigue is a real concern 
by the time students reach the end of the assessment. Furthermore, the 3-Choice MCE is more 
demanding in both time and cognition than the Basic MCE, because a student has to make a 
choice for each justification, not just circle those that are true and relevant. 

On the other hand, when it comes to information gained from the assessment, the 3-Choice 
MCE gives more information about students’ thinking than the Basic MCE. When students do 
not select a justification choice on the Basic MCE, we cannot know if they thought it was false, 
or just not relevant to answering the question. With the 3-Choice MCE, we are able to see this 
difference and gain better insight into their understanding of particular eigentheory concepts that 
the justifications are aimed towards. 

Lastly, scoring of these assessments can be particularly troublesome. For example, what 
score is given to a student who selects all of the true and relevant justifications correctly, but 
chooses the wrong multiple choice answer? Or, what score is given for the exact opposite, 
choosing the correct multiple choice but none of the justifications correctly? (In fact, both 
situations have come up with the data we have). As we explore various scoring options, the 
question remains as to what these scores would actually mean, and how they should be 
interpreted or used to inform us about students’ understanding. 

It seems promising to focus on the use of this instrument as either a formative assessment to 
give instructors a general idea of their students’ understanding and help inform further 
instruction, or a research instrument used to examine students’ understanding of multifaceted 
concepts (such as eigentheory) similar to what we did in this current paper. Still, it would be 
useful if there were a more succinct way to look at individual students’ results and quickly 
ascertain where a student’s current understanding is. To this end, we hope to align a method of 
scoring the eigentheory MCE with our solidified framework for student understanding of 
eigentheory in the future. This scoring would hopefully give a summary of a student’s 
understanding (e.g., reliance on a particular eigen-equation, ability to reason geometrically, 
algebraically, etc.) that would be helpful to teachers and education researchers of linear algebra. 

 
Conclusion 

 In this paper we have presented insights into students’ understanding of eigentheory that 
were obtained through the use of the Multiple Choice Extended assessment on eigentheory that 
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we developed. These insights include students’ use of the two eigen-equations and how they may 
influence students’ solution strategies, students’ tendency towards algebraic justifications when 
working on eigentheory problems, and the difficulty of the concept of eigenspace. We have also 
shown how the MCE gives us rich information about students’ understanding of eigentheory. We 
hope that further refinement and use of the MCE, as well as developing possible scoring systems, 
will continue to broaden and deepen the mathematical community’s understanding of the ways 
students reason and think about eigentheory. 
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In this report we share analysis regarding students’ meta-representational competence (MRC) 
that is expressed as they engage in solving quantum mechanics problems that involve linear 
algebra concepts. The particular characteristic of MRC that is the focus of this analysis is 
students’ critiquing and comparing the adequacy of representations, specifically matrix notation 
and Dirac notation, and judging their suitability for various tasks (diSessa, 2004). With data 
from semi-structured individual interviews, we created categories of types of MRC elicited 
during students’ work on an expectation value problem. We provide detail on two students who 
serve as paradigmatic examples of a student’s power and flexibility in thinking in and using 
different notation systems. This work lends credence to and inspires our preliminary conjecture 
that strong meta-representational competence (MRC) is necessary not only to be fluent and 
proficient in the mathematics involved in solving quantum mechanics problems but also to 
develop a robust understanding of the quantum mechanics content.  
 
Key words: linear algebra, physics, matrix notation, Dirac notation, symbolizing 
 

The National Research Council’s (2012) report, which charges the U.S. to improve its 
undergraduate STEM education, specifically recommends “interdisciplinary studies of cross-
cutting concepts and cognitive processes” (p. 3) in undergraduate STEM courses. It further states 
that “gaps remain in the understanding of student learning in upper division courses” (p. 199), 
and that interdisciplinary studies “could help to increase the coherence of students’ learning 
experience across disciplines … and could facilitate an understanding of how to promote the 
transfer of knowledge from one setting to another” (p. 202). Our work contributes towards this 
national need for basic research by investigating students’ understanding, symbolization, and 
interpretation of eigentheory and related key ideas from linear algebra in quantum physics. One 
overarching research question for this work is: What are the various ways in which students 
reason about and symbolize concepts related to eigentheory in quantum physics? 

As we examined data from individual interviews at the end of the course, one student’s work 
in solving quantum mechanics problems was particularly striking to us because of the ease with 
which he moved between and explicitly discussed different notations, namely Dirac notation and 
matrix notation. After reviewing research literature on students’ understanding of symbols, 
notations, and representations, we decided to align our analysis with the framework of meta-
representational competence (diSessa, Hammer, Sherin, & Kolpakowski, 1991), as well as the 
delineation of structural features of algebraic quantum notations offered by Gire and Price (2015) 
which we explain further in the following section. This framing helped narrow our focus to the 
following sub-question: What aspects of Meta-Representational Competence exist in students’ 
reflections on and comparisons of matrix notation and Dirac notation in quantum mechanics?  
In this report we share analysis of two students’ reflections on explicit symbolization choices 
made while solving quantum mechanics problems that involve linear algebra. In particular, we 
inspect data of these two students solving an expectation value problem and analyze their reasons 
for how and why they chose a specific symbol system – either Dirac notation or matrix notation 
– for that particular situation. Our aim is to demonstrate how each student’s rich understanding 
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of linear algebra and quantum mechanics includes and is aided by their understanding and 
flexible use of different notational systems. 
 

Background and Theoretical Framework 
 In this section, we give an overview of research conducted on student understanding of 
symbols and representations in mathematics and physics, as well as our theoretical orientation. 
We conclude with a brief introduction to eigentheory in Quantum Mechanics and Dirac notation. 
 
Student Understanding of Symbols and Representations 

The recognition of the importance of students having an understanding of the symbols used 
in mathematics and physics has grown over the past few decades. Arcavi (1994, 2005) coined 
this as “symbol sense,” which includes (a) being “friendly” with symbols, (b) reading through 
symbols, (c) engineering symbolic expressions, (d) understanding different meanings based on 
equivalent expressions, (e) choosing which aspects of a mathematical situation to symbolize, (f) 
using symbolic manipulations flexibly, (g) recognizing meaning within symbols at any step in 
the solution process, and (h) sensing the different roles symbols can play in various contexts. 
Other research along this vein include: an explication of how different perspectives, such as 
cognitivist, situationist, and social-psychological, provide vastly different ways to understand 
how students make sense of and use inscriptions and symbols (Kaput, 1998); a study of how 
students mathematize their language from a Vygotskian perspective (Van Oers, 2002); and an 
exploration of how notational systems can serve as a mediational tool which triggers and sustains 
mathematical activity (Meira, 2002). 
 Research into students’ competence with symbols, inscriptions, and representations is not 
limited to K-12 studies. For example, Harel and Kaput (2002) describe how mathematical 
notations play a key role in forming conceptual entities in higher mathematics. Additionally, in 
linear algebra research, Hillel (2000) described three modes of description (abstract, algebraic, 
and geometric) of the basic objects and operations in linear algebra and pointed out that “the 
ability to understand how vectors and transformation in one mode are differently represented, 
either within the same mode, or across modes is essential in coping with linear algebra” (p. 199). 
Thomas and Stewart (2011) found that students struggle to coordinate the two mathematical 
processes captured in !! = !!, where ! is an n x n matrix, ! is a vector in ℝ!, and ! is a scalar, 
to make sense of equality as “yielding the same result.” This interpretation of the “equals” 
symbol is often novel and nontrivial for students (Harel, 2000). Harel also posits that the 
interpretation of “solution” in this setting, the set of all vectors ! that make the equation true, 
entails a new level of complexity than does solving equations such as !" = !, with each taking 
values from the reals. Thomas and Stewart (2011) conjecture that this complexity may prevent 
students from progressing symbolically from !! = !! to ! − !" ! = !, which is particularly 
useful when solving for the eigenvalues and eigenvectors of a matrix !. 

Relatedly, diSessa et al. (1991) identified students having a great deal of knowledge about 
what good representations are and how they are able to critique and refine them, which the 
authors defined as Meta-Representational Competence (MRC). In (2004), diSessa commented on 
the choice of term used, stating:  

In using the prefix meta- we do not mean to invoke the idea of metacognition. Instead, meta 
is used generically as it is in metascience or metaphysics (and also metacognition), purviews 
that transcend the mere practice of science or of physics, or, in this case, purviews that 
transcend the mere production and use of representations. (p. 294) 
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diSessa and Sherin (2000) explained that MRC includes inventing and designing new 
representations, judging and comparing the quality of representations, understanding the general 
and specific functions of representations, and quickly learning to use and understand new 
representations. diSessa (2002, 2004) expound upon these ideas by offering a list of critical 
resources students possess as part of their MRC for judging the strength of representations, such 
as compactness, parsimony, and conventionality. Two particular resources encompassed by 
MRC that we focus on in our data are “critique and compare the adequacy of representations and 
judge their suitability for various tasks,” and “understand the purposes of representations 
generally and in particular contexts and understand how representations do the work they do for 
us (diSessa, 2004, p. 94). In this study, we align ourselves with the theory that representations 
are a sense-making tool, in that “the construction of representations on paper during problem 
solving mediates and organizes one's understanding of mathematical concepts” (Meira, 2002, p. 
101). We couple this with a framing of MRC, specific to two notational systems, to investigate 
student reflections on their own notational preferences in quantum mechanics and what that may 
reveal about their understanding of change of basis and eigentheory in that context.  
 Extending even further, research into students’ understanding in quantum mechanics has 
looked at how students make sense of and use a novel notation, called Dirac notation (explained 
in the subsequent section). Singh and Marshman (2013) showed that even after graduate level 
instruction in quantum mechanics, students still struggle with Dirac notation, showing 
inconsistencies in its use among contexts and problems. More closely related with this current 
study, Gire and Price (2015) looked at four structural features of three different notation systems 
used in quantum mechanics (Dirac, matrix, and wave function) and how students’ reasoning 
interacts with these features. The features identified by the authors are: (a) individuation, or “the 
degree to which important features are represented as separate and elemental” (p. 5); (b) 
externalization, or “the degree to which elements and features are externalized with markings 
included in the representation” (p. 7); (c) compactness; and (d) symbolic support for 
computation. Using problem-solving interviews with students as insight into these features, Gire 
and Price found that students readily used Dirac notation, and that the structural features vary 
across the different notations as well as among several contexts within quantum mechanics. 

From an expert’s perspective, Gire and Price have highlighted features that could also be 
identifiable by a student, and articulation of some of these ideas would fit well within diSessa’s 
framework of MRC. The work presented here attempts to develop a coding scheme that can be 
used to identify MRC as students discuss, describe and use matrix and Dirac notation to solve 
quantum mechanics problems. 
 
Brief Introduction to Eigentheory in Quantum Mechanics and Dirac Notation 

In quantum mechanics, certain physical systems are modeled and made sense of using 
eigentheory. To a physical system we associate a Hilbert space (such as ℂ!), to every possible 
state of the physical system we associate a vector in the Hilbert space, and to every possible 
observable (i.e., measurable physical quantity) we associate a Hermitian operator (usually given 
in its matrix form). The only possible result of a measurement is an eigenvalue of the operator, 
and after the measurement the system will be found in the corresponding eigenstate.  

Dirac notation, also known as bra-ket or just ket notation, is a commonly used notational 
system in quantum mechanics. A vector representing a possible state is symbolized with a ket, 
such as ! . Mathematically, kets behave like column vectors, such as ! ≐ !!

!! ,!!!, !! ∈ ℂ, and 
are usually normalized. The complex conjugate transpose of a ket is called a bra, which behaves 
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mathematically like a row vector, such as ! ≐ !!∗ !!∗ . In addition, the eigenvalue equations 
for observables are central to many calculations. For instance, the eigenvalue equations for !! 
(the operator measuring the !-component of intrinsic angular momentum) of a spin-½ particle 
are !! + = ℏ

! +  and !! − = !ℏ! − , where +  and –  are orthonormal eigenvectors of !! and ± ℏ
! 

are the two possible measurement results of the observable. When symbolized in terms of this 
eigenbasis, the matrix representation of !! is ℏ 2 0

0 − ℏ 2 .  
One can also measure spin along other directions, such as !; similarly, the eigenvalue 

equations are !! ± = ±ℏ! ±  (it is common for no subscript to be used for the !-direction). Thus, 
“within its own basis,” the matrix representation of !! would be identical to the aforementioned 
diagonal one for !!. It is often beneficial to change between bases; for example, + ! = !

! + +
!
! −  and − ! = !

! + − !
! − , so !! “in the !-basis” is 0 ℏ 2

ℏ 2 0 . 
An elegant use of Dirac notation involves change of basis; because the eigenvectors of one 

operator are often well known in terms of another, such as along the !-direction of a spin-½ 
particle, Dirac notation is seen to make basis change calculations efficient. Finally, inner 
products are involved in computing the expectation value of observable ! for state psi, ! ! ! . 
These calculations require the bra and ket expansion to be in the same eigenbasis as the matrix 
representation of !.! Because of the orthonormality of eigenvectors of Hermitian operators, the 
relevant inner products yield + + = 1, − − = 1, and ∓ ± = 0.!As such, expectation value 
problems present a rich setting for investigating students’ symbolizing of eigentheory and change 
of basis in a physics context. 

Methods 
 

Participants for this study were junior physics majors at a large, public, research-intensive 
university in the Pacific Northwestern United States. They were drawn on a volunteer basis from 
a class of 35 students in a Spin and Quantum Measurements course; this course met for 7 class-
hours per week for three weeks and involved many student-centered activities and discussions. In 
addition to videotaping each class session, we conducted individual, semi-structured interviews 
(Bernard, 1988) with 8-13 students at the beginning and end of the course. This particular report 
draws on data gathered during the end-of-course interview, in which 8 students participated. The 
goals of the interview questions were to learn how students reasoned about linear algebra 
concepts (e.g., normalization, basis, and especially eigentheory), how they reasoned with these 
concepts as they discussed quantum mechanics concepts and solved quantum mechanics 
problems, and how they symbolized their work.   

To begin our analysis, we viewed the videos and observed how students navigated the 
interview problems, while we kept in mind the overarching research questions regarding 
students’ reasoning about and symbolizing eigentheory in quantum physics. Throughout our 
viewing, we noticed some students were particularly fluent in how they talked about and worked 
with both matrix and Dirac notations. This compelled us to investigate the literature about 
student use of symbols and notations, the most relevant of which were discussed above. As such, 
we began an analysis drawing on the work of diSessa and colleagues (diSessa et al., 1991; 
diSessa 2002, 2004), and Gire and Price (2015). In particular, we coded for instances of students 
mentioning structural features of the mathematics or students making explicit meta-commentary 
on the representations they chose to use. This allowed us to integrate our analysis of students’ 
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MRC with Gire and Price’s types of structural features in a way novel to the physics and 
mathematics education fields. 

We now explain how the students for this report were chosen. One student who fluidly 
worked with both matrix and ket notations was student A25, and this fluidity was especially 
evident within his solution of an expectation value problem. Because this problem seemed to be 
conducive to eliciting students’ understanding, critiques, and comparisons of both notations, we 
identified all students who had engaged in the expectation value problem in their end-of-course 
interview, resulting in a pool of four students to study. The second author then read the transcript 
or watched the video of the entire interview for all four students, indicating instances in which 
the student explicitly talked about either or both notations. These instances were then collated 
into a single document with all student identifiers removed. Using this document, each author 
individually coded the sections, specifically attending to ideas related to MRC (diSessa, 2002, 
2004) and the characteristics of matrix and Dirac notation identified by Gire and Price (2015). 
We then met collectively to share our codes and decide on a final set of codes for each transcript 
section. After the codes were finalized, we began axial coding, placing our collective codes into 
categories of features and characteristics of Dirac and matrix notations students were attuned to. 

In this particular report, we focus on the end-of-course interview with two students: Milan 
and Buzz (both names are pseudonyms). Milan was a double major in math and physics who had 
completed one 10-week course in linear algebra and was concurrently enrolled in a second linear 
algebra course, and Buzz was a double major in physics and nuclear engineering who had 
completed two 10-week courses in linear algebra. The purpose of focusing on Milan and Buzz 
was their demonstrated ability to articulate their thinking. More specifically, during the 
interview, they demonstrated flexibility in reasoning about the concepts we were probing, and a 
great deal of MRC was visible and analyzable through their explanations. 

 
Results 

 Our coding of the data produced three main categories of codes: (A) Preference based on a 
value judgment, (B), Preference based on the problem or context, and (C) Awareness of the 
purposes of representations and the work they do for us. Each category is composed of 5, 6, and 
4 subcodes, respectively (see Figure 1). Category (A) comprises MRC statements related to 
preferences students expressed related to some overarching value; statements were similar to 
sentiments such as one notation being preferred because it is faster to write than another [A2], 
more familiar to work with [A3], or easier to write than another [A5]. The MRC codes in 
Category (B) comprise statements students made that are more intrinsically tied to particular 
problems or contexts; statements were similar to sentiments such as one notation being preferred 
or chosen in a particular problem because of the format of the question statement (e.g., 
“sometimes the ket notation is nicer…if you already know the eigenvalues and you just are 
multiplying by operators.” We note that aspects of [B1] and [B2] are consistent with Gire and 
Price’s structural feature of “symbolic support for calculation.” We also purposefully use their 
other three structural features as our codes for [B4], [B5], and [B6] because we saw evidence of 
them in our data. We do note that which main category these codes best belong in could be open 
for discussion.  Finally, Category (C) derives its name from one of diSessa’s (2004) stated 
functions of MRC as an overarching awareness of representations and what they do for us. 
Again, student statements consistent with all four (C) codes existed in our data and gave rise to 
the codes.  We note that these codes in particular have a compatibility with Arcavi’s (1994) 
characteristics of symbol sense but stand out as novel because of its use with MRC.   
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A. Preference based on a value judgment B. Preference based on the problem or context 
1. Clarity 
2. Speed 
3. Familiarity  
4. “Likeability” 
5. Ease of writing 

1. Useful in calculations 
2. Makes more direct use of given 

relationships 
3. Needs less information 
4. Compactness 
5. Individuation 
6. Externalization 

C. Awareness of the purposes of representations and the work they do for us 
1. Has freedom to choose symbols  
2. Has an ease with notation, writes symbols to mean what is personally desired 
3. Aware of one’s own progress in notation use 
4. Able to “step back” and weigh options to decide which notation system is best 

Figure 1. The list of categories of MRC that resulted from our data analysis. 
 

We organize the remainder of our results section according to excerpts from Buzz and Milan, 
including aspects of their responses that particularly point to and illustrate their MRC. 
 
Buzz 

In the beginning of the interview, Buzz volunteered that he sometimes explicitly chooses 
between doing calculations in matrix notation or in Dirac notation:  
I:  So how do you feel like, using eigenvectors and eigenvalues, in spins has been similar to 

and different from how you've experienced those in other classes? 
Buzz:  Uh, well, it's very similar because you're doing a lot of the same math …the difference 

especially in physics, you're looking at kets. In, in at first it was kind of jarring, like to- to 
try to do the math in kets. But now, it's kinda- it's kinda easier, there's problems, there 
certain problems…where there's two ways to do them, they're kind of parallel, you can do 
it and you can expand the- the- the state in- in like as a- and expand them as- as kets in a 
different basis, or you can write that state as a- as a, as a vector, in that basis, and you can 
either do the matrix math for the like expectation values for example, you can do the 
matrix math or you can do the ket math, and sometimes it's, I'm finding that I, rather 
expand something in the ket. 

From the transcript we see that Buzz was aware that there exist multiple legitimate ways to solve 
the problem, seemingly understanding the various mathematical nuances and implications of his 
notational choices. His brief explanation highlights sentiments that are consistent with Arcavi’s 
characteristics of symbol sense, such as being “friendly” with symbols and using them flexibly. 
We add, however, a metacognitive aspect of symbol sense here, noting that A25 was engaged in 
self-reflection rather than a researcher analyzing Buzz’s engagement with symbols. Thus, we 
code this as “[C4] able to “step back” and weigh options to decide which notation system is 
best.” We also note that Buzz was aware of his own progress, commenting that it was “it first 
kind of jarring…to try to do math in kets,” but that now it is “kinda easier.” We code this as 
“[C3] aware of one’s own progress in notation use.” 

Because Buzz volunteered expectation value problems as a situation in which he could use 
either notation, the interviewer had him work on such a problem right away, even though it was 
prepared to be at the end of the interview: “Consider the state ! = − !

! + ! + ! !! − !!in a spin-
1/2 system. Calculate the expectation value for the measurement of !!.” Buzz immediately 
worked on the problem within Dirac notation, saying, “basically to find the expectation value… 
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it's like denoted that way [writes ! ]!but really what you're doing is you're taking the, the bra of 
the state, and then you're putting the operator [writes = ! ! ! ] in the middle of the inner 
product…” He continued to explain his work as he went, arriving at the correct answer of 7ℏ 50 
(see Figure 2a). Note that his work in Figure 2a involved the state’s expansion and use of 
eigenvector equations for !! in ket notation. In addition, this notation was first introduced to the 
students during this course; as such, Buzz was clearly quick to use and understand this 
representation (a additional quality of MRC, diSessa & Sherin, 2000).  

After discussing his work and solution, the interviewer asked: “Before you were telling about 
bra-ket versus matrix notation, you brought up an expectation value as an example of like, either 
or both, so can you, now that you had this problem, kinda revisit that?” Buzz immediately solved 
the problem completely within matrix notation (see Figure 2b), explaining his steps. For 
instance, in line 1 in Figure 2b, he wrote the complex conjugate transpose of the vector 
representation of the state in the ! basis, the matrix representation of the !! operator in the ! 
basis, and the vector representation of the state in the ! basis. He also stated his process for 
computing the matrix times the column vector before he did the computation, and again in line 2 
he explained “then I do it again, so, um, this time you're gonna get a number out,” meaning he 
anticipated that a row vector times a column vector would be a number. We see this as flexibly 
using symbolic manipulations (Arcavi, 1995) and an anticipation of results.  
 

  
(a)      (b) 

Figure 2. Buzz’s expectation value problem, in ket notation (a) and matrix notation (b).  
 

The interviewer then asked Buzz to reflect on his preference between the two notations: 
Buzz:  Uh...To be honest, I don't really, I don't really know why I prefer this [Figure 2a], I think 

it's just because, um, I like this notation. This- this specific notation [Figure 2a line 1] like 
this to me is like a cleaner way of writing that [Figure 2b line 1] because that- I mean this 
and that [touching lines 1 in both figures] I feel like are your starting points, so you, you 
start here with this nice, like, looking thing [traces his finger under ! ! ! ], or you start 
here with this big array of numbers [puts open hands around Figure 2b], and I prefer this 
[Figure 2a line 1], even though you have to expand this into basically the same amount of 
information [Figure 2a line 2]. And also, the nice thing about, about this [Figure 2a line 
1], is it—actually this is really why it's better—is because you can, you can say ok !! 
works- acts directly on these kets, you can just get rid of the matrix altogether... 

This excerpt begins with two value statements: that Buzz prefers Dirac notation because he likes 
it [A4] and because it provides a cleaner way of writing the desired information [A1]. We see his 
use of “nice looking thing” and “big array of numbers” in comparison to one another are an 
example of compactness [B4]. He also compares line 1 in 2(a) and line 2 in 2(b) regarding the 
“amount” of information they convey, which involves reflection on the physical and 
mathematical content expressed in the compared notations. Finally, acting directly on the 

20th Annual Conference on Research in Undergraduate Mathematics Education 33220th Annual Conference on Research in Undergraduate Mathematics Education 332



expansion in terms of the eigenstates of the operator allow him to forego the matrix calculation 
entirely, which speaks to Buzz’s view of the utility of notation for calculation in a specific 
problem [B1] and his preference for Dirac in a situation that allows him to make a more direct 
use of the given relationships [B2]. 

When asked about his notation preferences if the basis expansion of a given state vector and 
the operator “didn’t match,” Buzz recalled a problem from their last homework that was 
“actually easier…to do the matrix multiplication,” stating “you don't want to have to change 
these kets into different bases all over the place 'cause they're already all written in the same 
basis and you know what the operator is in that basis so you might as well just, do the matrix 
multiplication.” This speaks to his awareness of using given relationships directly [B2] as well as 
being able to choose which notation system is best for a certain situation [C4].. Finally, when 
asked if the notions of basis or eigenvectors/eigenvalues come up more in one notation than the 
other, Buzz stated, “certainly…every time you write down a ket you're, you're very conscious of 
what basis you're in. In this one [points to Figure 2(b)] it's just kinda implied…all this [is] in the 
same basis, so you're just, you're just writing out numbers, an arrays of numbers, but here [in 
Figure 2(a)] you're thinking ok, this is the !! operator, this is the ! plus ket, this is the ! minus 
bra…so I think that you're definitely more aware of what basis you're in when you're using this, 
because you have to be.” This explanation is consistent with Gire and Price’s (2015) notion of 
externalization [B6], in that the ket notation allows features of the problem, namely basis, to be 
externalized in a way that the matrix notation did not provide for Buzz.  
 
Milan 
 We focus our examples of Milan’s MRC on his work with the Expectation Value Problem.  
Like Buzz, he first completed the problem in Dirac notation but then, prompted by the 
interviewer because of a comment Milan had made, correctly completed the problem using 
matrix notation (see Figure 3).   
 

 
(a)     (b) 

Figure 3.  Milan’s work on the Expectation Value problem. 
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Milan: So, this is very convenient because it’s in the Sx basis. Um, so, basically all we need to do 
is put Sx in some matrix representation as — well, do we need to do matrix 
representation? I don’t think we do. So, let’s not worry about that. So, the expectation 
value of Sx is defined as this ψ, and the Sx, and ψ. And we’re just going to include the ψ’s 
in this — We’re just going to drop the x subscript and just assume that it’s, um, the x-
basis…. 

Int: When you first started, you almost started using matrix notation, and then you 
 decided not to. Can you talk more about that? 
Milan: So, ket — because you know this eigenvalue equation, ket notation just skips all that. 

Um, if you wanted to, you could have written this out as, uh, 1/5(-4  3i), But, you can see 
that’s more confusing to go through — and then you have to look at Sx and, where you 
can write it as ħ/2, -ħ/2, 0, 0, and you have to do matrix multiplication. Um, actually, that 
might be quicker, honestly…Which is, the exact same answer we got before, and it was 
substantially quicker. And in — I mean, I guess it depends how good you were with this 
kind of notation ‘Cause, this is, I learned two and a half weeks ago, and this I learned 
almost a year ago. 

As Milan began his work on this problem, he thought out loud about his approach, first 
stating he would put Sx in a matrix form but then deciding he did not need to do so.  We coded 
this as [C4], an ability to “step back” and weigh options to decide which notation system is best. 
Once he decided to solve the problem within Dirac notation, he decided to drop the “x” subscript 
from the expansion of the state ψ in terms of the x basis (see lines 2, 3, and 5 in Figure 3a). This 
indicates Milan’s ease with notation in that he can write and engineer symbols to mean what he 
personally desired [code C2].  

After 4 minutes of work in which Milan explains his steps to correctly solve the expectation 
value problem (Figure 3a), the interviewer asked him to comment more on his rather explicit 
choice to not use matrix notation. We coded his statement, “Because you know this eigenvalue 
equation, ket notation just skips all that” as [B2] because of his preference for Dirac nation based 
on his perception that it made more direct use of the eigenvalue equations !! ± ! = ±ℏ! ± !. He 
also stated that one could have written the vector form of the given ψ, which is another example 
of his awareness of his choice in notation system [C4]. He continued by explaining how that 
would be more confusing in this situation [code A1, preference based on clarity] and 
summarized the matrix symbols and operations that would be necessary to complete. Milan then 
reflected out loud, saying that the matrix notation approach may actually be faster for him in this 
problem [code A2, preference based on value judgment of speed]. The interviewer prompted him 
to “do it that way,” and after one minute of work (see Figure 3b), Milan concluded he got the 
same answer as before but substantially quicker. He then spontaneously reflected a bit more 
about the two notation options, noting aspects of familiarity with matrix notation [code A3] and 
that it takes time to make progress in using the new-to-them Dirac notation system [code C3].  
 

Conclusion 
 

In this report we shared our analysis of the meta-representational competence of two students 
as they engaged in solving a quantum mechanics problem involving linear algebra. To coalesce 
the ideas shared herein, we offer three reasons why this work is important to mathematics and 
physics educators. First, similar to one of the purposes of the work of diSessa et al. (1991), our 
report acts as a counter narrative to a number of articles in physics education that focus on 
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students’ difficulties or misconceptions in learning quantum mechanics (Johnston, Crawford, & 
Fletcher, 1998; Singh, 2001; Styer, 1996), and more specifically with the notations used in 
quantum mechanics (Singh & Marshman, 2013, 2016). We have shown students’ abilities to 
critique and understand the general purposes of the various notations used within quantum 
mechanics, and how their meta-representational competence can even include some ideas about 
strengths and weaknesses of the notations that align with expert determined structural aspects of 
quantum representations (Gire & Price, 2015). Hence, instead of only focusing on students’ 
difficulties with notation, educators might examine how they can build upon the meta-
representational competence students already have to help deepen and strengthen their 
understanding of quantum mechanical and mathematical representations. 

Second, as mentioned by diSessa (2004), educational research is always looking for ways we 
can help students develop deeper understanding of science and mathematics, and an important 
piece of this deeper understanding includes knowing “not only how to operate scientific 
apparatus (from strategies that solve problems, to representations and concepts), but also 
understanding how and why they work, and even being able to generate and judge alternative 
means” (p. 299). Thus, helping students develop deep understanding of quantum mechanics and 
linear algebra should include providing opportunities for students to use and improve their meta-
representational competence. In fact, we noticed that the strongest students within our study in 
regards to their understanding of linear algebra and quantum mechanics concepts were also the 
students who demonstrated particularly articulate and thoughtful MRC. This begs the question, 
does a deep understanding of the physical and mathematical concepts create a conducive 
environment for developing stronger MRC, or does MRC help students develop a rich 
understanding of physical and mathematical concepts? We hypothesize that there is actually a 
cyclical relationship between MRC and physical and mathematical understanding, with 
development in one influencing the development of the other. For example, a student’s 
understanding of eigentheory would influence the aspects of MRC they could attend to when 
using the different notations in quantum mechanics. In turn, the MRC in regard to quantum 
mechanical notations that student develops might strengthen their understanding of eigentheory 
concepts. Future research could examine and explore this cyclical relationship in greater detail, 
and how instructors might take advantage of it in helping students develop deep understanding of 
physical and mathematical concepts. 

Third, we have presented codes we have used for identifying and analyzing students’ MRC 
in their talk about eigentheory and quantum mechanics, as well as general categories for the 
types of MRC these codes indicate students demonstrate. This coding scheme still has the 
potential to be expanded, extended, and refined, especially as students’ MRC within quantum 
mechanics and linear algebra are further explored, and as students’ MRC is studied within other 
mathematical and physical contexts. Our hope is this coding scheme will facilitate analysis of 
students’ understanding of representations within mathematics and physics, and gaining insight 
into the richness of their overall understanding of mathematical and physical concepts. 
Furthermore, we hope the identification of particularly useful and powerful elements of MRC, 
such as those found in analyzing experts or strong students, will help educators know the types 
of thinking and reasoning to emphasize and cultivate in teaching their students. Education 
researchers could then search for teaching methods, questions, and curricular materials that 
would support students in developing their MRC in these productive ways. 

In our own future research, we plan to analyze the rest of the students from the current data 
set, as well as interviews with students in a Junior-level quantum mechanics course at a public 
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university in the Northeastern United States. The latter interviews should be particularly useful 
for further refinement of our MRC coding scheme as we were more explicit in designing 
questions that might elicit students’ MRC when writing the interview prompts. This analysis may 
also begin to give us further insight into the cyclical relationship between students’ MRC and 
their understanding of physics and mathematics, as well as ways researchers and educators might 
elicit and cultivate students’ MRC. 
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We examine multiple data sources to assess the current progress of implementing corequisite 
remediation and multiple math pathways in the state of Oklahoma. We begin by analyzing trends 
in national reform efforts and contrasting them with the status of current challenges and efforts 
in Oklahoma. We then present preliminary data from pilot sections of a corequisite College 
Algebra course and a new math pathway for degrees that require significant quantitative literacy 
but do not require engineering calculus. Finally, we consider statewide data on student course-
taking patterns, degree requirements, and existing institutional efforts that will inform upcoming 
state-level decisions on these reforms. 

Key words: corequisite remediation, mathematics pathways, reform 

Introduction 

The state of Oklahoma is currently in the process of reforming introductory post-secondary 
mathematics options and curriculum across all 27 public higher education institutions with the 
goal of increasing success in college mathematics courses and therefore increasing degree 
attainment across the state. To accomplish these goals the Oklahoma State Regents for Higher 
Education, the governing body for all public higher education institutions in Oklahoma, adopted 
the Complete College America agenda (Complete College America, 2013). The main focus of 
the state reforms are 1) supplementing the current system of remedial courses with a corequisite 
model and 2) creating multiple introductory mathematics pathways better aligned to diverse 
degree programs.  

Traditionally, to ensure preparation of entering students, colleges assess students using 
various criteria (e.g. SAT scores, ALEKS, high school math GPA, etc.) then place them into 
college courses using these measures. Under-prepared students are placed in a remedial course 
sequence designed to fill in deficiencies from secondary mathematics and prepare these students 
for college-level courses. Once a student completes the remedial course sequence, they are 
allowed to take credit-bearing math courses required for a degree. This remedial system, 
however, often fails in its ultimate goal. In 2010, Bailey et al. (2010) found that only 31% of 
community college students referred to a remedial courses sequence in mathematics completed 
it. Only half of the students completing the remedial course sequence enrolled in the subsequent 
college-level course. Ultimately, only 15% of students referred to remediation passed the 
subsequent college credit-bearing course, which is significant as 58% of entering community 
college students enrolled in a remedial mathematics course (Attewell et al., 2006). Overall, 28% 
of college students from two or four-year colleges enroll in remediation (Attewell et al., 2006). 
Furthermore, delaying enrollment in college-level courses in favor of remedial courses has the 
consequence of extending students’ time to degree, meaning both an increased cost and 
decreased persistence toward a degree (Complete College America, 2011).  

Alternatively, in corequisite remediation, underprepared students are placed directly in 
college-level courses with targeted assistance. The aim of the model is to allow under-prepared 
students to earn college credit upon entering while still providing the students with necessary 
perquisite material, thereby eliminating often multiple semesters of remedial courses and 
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enabling students to progress to through their degree programs. Corequisite remediation has been 
successful in several pilot programs across the country, which will be briefly discussed in the 
next section.   

The second focus of the reforms are creating mathematics pathways beyond the standard 
College Algebra/Calculus sequence. Creating additional pathways provides students in non-
STEM disciplines basic mathematics courses more relevant to their interests and needs. The 
reforms seek to increase collaboration between math departments, other academic degree 
programs, and employers as to the necessary mathematical knowledge and skills for students in 
their chosen field.  For many, courses in statistics, quantitative reasoning, or mathematical 
modeling are more applicable to future collegiate and career needs than College Algebra. The 
need for increasing such diverse mathematical competencies has been highlighted by several 
reports from professional associations including: the Common Vision 2025 report by the 
Mathematical Association and America (Saxe et al, 2015), the Guidelines for Assessment and 
Instruction in Statistics Education (GAISE): College Report endorsed by the America Statistical 
Association (Aliaga, 2005), and the Beyond Crossroads Report of the American Mathematical 
Association of Two-Year Colleges (Foley, 2007). Additionally, by creating clearly defined 
mathematics pathways at the state level, Oklahoma is aiming to increase transferability of 
mathematics courses between public institutions.  

In this paper, we address the following research questions: 
1. What are the primary national trends and lessons in corequisite remediation and math 

pathways relevant to the goals and structures of the Oklahoma higher education system? 
2. What are the primary obstacles in implementing corequisite remediation and math 

pathways in Oklahoma, and what factors can local and state leaders influence to address 
these challenges? 

A National Perspective of the Reforms 

Several states have either implemented or are in the process of implementing the reforms 
outlined above. We briefly describe progress in two of the states to lead these reform efforts, 
Georgia and Tennessee. 

Currently, Georgia has two pathways: the traditional College Algebra/Calculus pathway and 
a non-algebra pathway which focuses on either quantitative reasoning or modeling. In Fall of 
2014, Georgia piloted corequisite remediation for both pathways. 67% of the 2919 students in 
the non-corequisite sections passed the gateway course. In the corequisite sections, there was a 
total 1,132 students 64% of whom passed. Comparably, only 21% of students referred to 
remedial education in 2010 passed their gateway course within two years (Complete College 
America, 2015). 

Beginning in Fall of 2014, Tennessee conducted a pilot corequisite program for an 
introductory statistics course with 1,019 students at 9 different campuses. Tennessee saw similar 
results to Georgia, 63.3% of students assessed as being underprepared passed introductory 
statistics whereas under the previous remediation model only 12.3% completed the introductory 
statistics course.  

Similar results can been see in other states (Complete College America, 2016). We will 
continue to examine the progress and challenges of the reforms across the country and how their 
efforts can inform the reforms in Oklahoma. 
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Traditional Remediation at Oklahoma Institutions 

Consistent with the national picture, a large percentage of students at each of the public 
institutions in Oklahoma are referred to remediation. In many of the state community colleges, 
over 60% of the entering students are referred to some type of remediation, be it English, math, 
or both. Figure 1 gives the percentages of student’s referred to remediation at each of the public 
two institutions. With stricter admissions criteria at four-year initiations, the rate at which 
students are placed into remedial courses when entering is lower, however, still over 40% of 
entering students are placed into remediation. Remedial courses have a number of effects on 
students who are enrolled. Remedial students pay both tuition and additional remediation fees for 
courses which confer no college credit. Furthermore, taking remedial courses increases the 
number of mathematics courses a student must take thereby increasing the potential “drop-out” 
points. These “drop-out” points include potential failure in the remedial courses, but also include 
failure to enroll in either the subsequent remedial course or the gateway course after passing the 
initial course. The high remediation rates are particular troubling when one considers the success 
of this as measured by the completion of the college gateway course as shown in Figures 1-4. 

Figure 1. Entering students taking any remedial sequence. 

�

Figure 2. Entering students taking any remedial sequence. 
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Figure 3. Entering students taking only a remedial mathematics sequence. 

 
Figure 4. Entering students taking only a remedial mathematics sequence. 

Figures 1-4 show that less than 35% of the students who begin college in remediation at the two-
year colleges were able to complete the college gateway course within two years. The success 
rates improve slightly when looking at the students that besides mathematics were assessed as 
“college ready.” Again the success rates are higher for students entering a four-year institution, 
but at most of the intuitions, less than half of the students pass the gateway course within two 
years. 

As the gateway course is a degree requirement, students must pass the course in order to 
graduate. This is particularly relevant to the two-year colleges, as the success rate in completing 
the college gateway course within two-years is an upper bound for the graduation rate for these 
students at their starting institution. However, the possibility remains that students can transfer to 
another institutions to complete the college gateway course after completing the remedial 
sequence.  
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Progress in Oklahoma 

Corequisite Remediation 
To address these completion rates, the state of Oklahoma is in the process of implementing 

corequisite remediation. Several institutions have started running pilot sections, and are doubling 
or tripling previous success rates. In this section we report the data from the pilot sections at one 
of our institutions.  

In fall of 2015, Oklahoma State University began piloting corequisite courses. The ALEKS 
PPL test is used to assess entering student college readiness. Normally, to place into College 
Algebra a score of 45 out of 100 is required. The pilot sections consisted of students with scores 
from 30 to 44 on the ALEKS test. That is, students who would ordinarily have to take a remedial 
course sequence were included in the pilot. The students in the corequisite sections attended 
class five days a week as opposed to three days in the regular course sections. Of these five days, 
three days were dedicated to regular instruction. During the other two days, an undergraduate 
learning assistant engaged students in active learning sessions designed by an experienced course 
coordinator to improve students’ prerequisite knowledge. The learning assistants are 
mathematics education majors selected by the department. Students in the corequisite sections 
completed the same homework and took the same exams as students in regular College Algebra 
sections. Figure 5 shows the percentage of the students in these courses earning a D or F or 
withdrawing (D/F/W rate). 

 

Figure 5. College Algebra Passrates.    

While the success rates of the students in the pilot sections in both fall 2015 and spring 2015 
were lower than the students in the regular sections, the improvement is noticeable when 
compared to the historic two-year completion rate in college algebra for these students. 
Moreover, the corequisite students have succeeded in a single semester as opposed to the 
minimum of two semesters that would have been normally required. Equally important is student 
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persistence to and success in subsequent mathematics or statistics courses which is shown in 
Figure 6 for the Fall 2015 corequisite College Algebra cohort.   

 

Figure 6. Fall 2015 corequisite students’ grades in subsequent mathematics or statistics courses. 

Half of the corequisite cohort students enrolled in a subsequent mathematics course, and over 
83% of those students passed. (For reference, the typical success rates for students in these 
subsequent courses are around 70%.) 

With regard to the statewide reforms, we have collected surveys from all public institutions 
in the state on their implementation of corequisite courses. We are in the process of analyzing 
this data, which will provide a useful baseline for comparison as the state reforms unfold.  

Math Pathways 
In the Common Vision 2025 (Saxe et al, 2015) the authors called for a “broader range of 

entry-level courses and pathways into and through curricula” (pg. 13). Of particular interest to us 
are moving degree programs that do not require engineering calculus away from College Algebra 
which is intended to prepare students for calculus. The goal is to increase relevance to students’ 
courses of study.  

Oklahoma State University has created a course Mathematical Functions and Their Uses 
(MATH 1483) which is being offered as an alternative to College Algebra for many business, 
social science, health, and agriculture degrees that do not require an engineering calculus course. 
The course emphasizes quantitative reasoning by modeling data with a calculator and/or excel 
and serves as an equally successful preparation for Business Calculus as College Algebra. The 
D/F/W rates are typically 15% and 25% for the fall and spring respectively.  As degree 
requirements shift away from college algebra, we are in the process of analyzing D/F/W rates 
from subsequent gateway courses. Moreover, the shift to functions has led to an increased 
success in College Algebra. Additionally, in Fall 2016, the university began piloting a 
corequisite section of the functions course allowing traditionally underprepared students another 
pathway to earn college credit upon entering. The success rate in the pilot section was 86.2%, 
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although we are hesitant to make comparisons between this pilot section and the regular sections 
as content and assessments were not consistent across the two.   

Statewide, we collected detailed information on the mathematics requirements for every 
major at all 27 state public institutions and complete statewide data for student enrollment and 
success in math courses by major. The aim is to better understand the current math pathway 
options available and clusters of majors that might benefit from shifts to new math pathways. 

A preliminary review identified 530 majors (out of 1790) that require college algebra but not 
engineering calculus. By analyzing the degree sheets for these majors we identified, 94 programs 
that have a path for which college algebra is not a prerequisite. The most common courses 
required for these majors for which college algebra is a perquisite are physics (37 programs), 
chemistry (100), statistics (45 programs), and trigonometry. In Oklahoma, outside of STEM 
degrees, college algebra is the most commonly taken mathematics course.  

Discussion  

Early corequisite remediation and new math pathways reforms in Oklahoma are showing 
promising results enabling dramatically more students to complete credit bearing gateway 
courses. Moreover, this data shows that these students are able to succeed in subsequent college 
mathematics and statistics courses. While the gains are promising, these results are preliminary. 
As the ultimate goal is to increase student success in college, what remains to be seen is how 
these efforts will affect graduation and degree completion rates. As we continue our data 
analysis, we have been be conducting interviews with individuals involved in the reforms in 
Oklahoma and individuals involved in the national reforms to better understand the data and 
process.  
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Using Intuitive Examples from Women of Color to Reveal Nuances about Basis 
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Research and surveys continue to perpetuate deficit narratives about women of color, 
particularly regarding their participation in and contribution to mathematics. Following the 
broader call for more research concerning STEM learning experiences of women of color, this 
study focuses on the sense making of eight women of color regarding their understanding of 
basis in linear algebra. We documented diverse ways that these women creatively explained the 
concept of basis using intuitive ideas from their everyday lives. These examples revealed 
important nuances and aspects of understanding of basis that are rarely discussed in instruction. 
These students’ ideas can also serve as potentially productive avenues to access the topic. Our 
results also challenge the existing broader narrative about academic underachievement of 
women of color in mathematics. 
 
Key words: student thinking, basis, linear algebra, equity 
 

Most areas of science, technology, engineering and mathematics (STEM) continue to be 
unsupportive spaces for women of color, and people of color more generally. One indicator of 
this issue is the high attrition rates in mathematics among Black,1 Latinx,2 Native Alaskan, 
Hawaiian, and Native American students (NSF SEI, 2014). One way the education community 
has studied this problem is by exploring differences in achievement outcomes between groups of 
students. Outcomes of students from underrepresented groups are often compared with those of 
the dominant groups (e.g., White and male students). More recently, some scholars have shifted 
their focus to understanding ways that students are racialized and gendered in their educational 
experience (Martin, 2009). That is, research has begun to investigate the impact of racism on 
students of color, particularly Black students (e.g., McGee & Martin, 2009), and the impact of 
sexism on women (e.g., Herzig, 2004). Women of color as a group experience both racism and 
sexism, which has motivated the idea of intersectional feminism (Crenshaw, 1991). Ong and 
colleagues’ (2011) literature review pointed out the dearth of intersectional research that focuses 
on experiences of women of color in STEM.  

In this paper we operationalize racism, sexism and their intersection through social narratives 
(Nasir and Shah, 2011; Nasir, Snyder, Shah, & Ross, 2012). Nasir and colleagues (2012) used 
the term racial storyline (narrative) to describe established and shared narratives about a 
particular race that are enacted in social interaction in different social contexts. Existing 
narratives on women of color in mathematics typically frame students, particularly Black and 
Latinx students, as persistently underachieving and academically inferior to their White/Asian 

                                                
1 Berry (2015) uses the term “Black” to acknowledge the Black Diaspora, and to highlight the 
common way that Black learners, regardless of their origin are racialized in the U.S. 
2 “Latinx” is gender-neutral term to describe to describe people with Hispanic and/or Latin 
American origins. The term deemphasizes implicit gender binaries in “Latina/Latino,” and hence 
more inclusive of transgender and other non-binary gender identities. Ramirez and Blay (2016) 
discuss the origin and different perspectives on the use of “Latinx” in scholarship, activism and 
journalism.  
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counterparts. Nasir and colleagues (2013) found that racial storylines, as an example of social 
narratives, limited access to educational opportunities (e.g., who gets called on in class, or who 
gets advised into honors classes) and added cognitive burdens for students while learning.   

These deficit narratives about women of color are also supported by the dominant method to 
study inequities in education: achievement gap studies and comparison studies. Most comparison 
studies and achievement gap studies perpetuate the narrative that students (and women) of color 
are always lagging behind their White/Asian counterparts (Gutiérrez, 2008; Gutierrez & Dixon-
Roman, 2011). Gutierrez (2008) has emphasized that comparison studies and achievement gap 
studies treat dominant students as the standard against which to measure. She also critiqued the 
implicit assumption that the validity of research on underserved populations rests on their 
comparison with the dominant group. Harper (2010) has also highlighted the prevalence of a 
deficit narrative in higher education research that discusses the participation of students of color 
in STEM. He found that research questions often positioned students as personally and solely 
responsible for their underachievement, thus positioning their underachievement as a result of 
personal failure and lack of motivation.  

Deficit narratives about women of color intersect with deficit narratives about students’ 
understanding and learning of mathematics. Deficit narratives about student thinking as generally 
naïve, full of misconceptions, and unrefined reciprocally support the narrative of academic 
inferiority of students (and women) of color in mathematics (Adiredja, under review). Some of 
these narratives about students’ knowledge became more established as a result of the popular 
misconceptions research in the mid to late 1970’s (diSessa, 2006; Smith, diSessa, & Rochelle, 
1993). Nowadays, challenging the prevalence of deficit narratives about mathematical learning 
has been highlighted in research commentaries about equitable teaching (Bartell et al., 2017) and 
position statements about social justice in mathematics education (NCSM & TODOS, 2016). 
Thus, constructing counter-narratives about how women of color learn mathematics can help 
challenge the deficit narrative about women of color. This calls for researchers to be intentional 
about selecting research subjects and adopting an anti-deficit perspective (Adiredja, under 
review). 

A group of Black scholars have recognized the broader deficit narratives regarding Black 
students, and have been intentional in shifting the narratives of research about Black students. 
Instead of fixating on comparing Black students to White or Asian students, scholars have 
focused on understanding Black students’ learning experiences and offering counter-narratives 
about these students (e.g., Berry III, Thunder, & McClain, 2011). In the context of undergraduate 
mathematics, some scholars have focused instead on the experiences of successful Black 
mathematics and STEM majors (Ellington & Frederick, 2011; Larnel, 2016; Martin & McGee, 
2009). This type of research has been able to offer counter-narratives by sharing stories of 
academically successful Black students in STEM. Additionally, it has revealed the 
resourcefulness and resilience of these students in navigating the additional burdens and 
obstacles embedded within the academic institution for these students. The study presented in 
this paper takes a similar approach in subject selection and in the way that it seeks to uncover 
resourcefulness of women of color in learning mathematics without comparing them to the 
dominant culture.  

In this paper we focus on learning of women of color regarding the Linear Algebra concept 
of basis. The focus of this study was partly motivated by a need for more research about 
students’ understanding of this topic. We were able to find only one study reporting on students’ 
understanding of basis, which is an important topic in Linear Algebra. Stewart and Thomas 
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(2010) reported that students in their study struggled in making meaning of basis, and tended to 
explain it in terms of procedures. The authors also found that students struggled in explaining 
span and linear independence, two related concepts. In this study we explore the following 
questions: 

1. How did the women of color in the study explain the concept of basis using ideas from 
their everyday lives? 

2. What did their explanations reveal about nuances in the concept of basis?  
These questions support the two complementary goals for this study. First, the study aims to 
construct a counter narrative about women of color by investigating their sense making of 
mathematics from an anti-deficit perspective. Second, it seeks to investigate the structure of 
understanding of the concept of basis in Linear Algebra. Our focus on explanations rooted in 
students’ everyday experiences was motivated by some of the theoretical frameworks, which we 
turn to now.  
 

Conceptual and Theoretical Frameworks 
Sociopolitical Perspective 

The design and analysis of this study are broadly guided by a sociopolitical perspective in 
mathematics education research (Gutiérrez, 2013, Valero, 2004). Gutiérrez (2013) explains that 
adopting a sociopolitical perspective involves investigating the relationship between knowledge, 
power, identity, and social discourses. She argues,  

[K]nowledge and power are inextricably linked. That is, because the production of 
knowledge reflects the society in which it is created, it brings with it the power relations that 
are part of society. What counts as knowledge, how we come to “know” things, and who is 
privileged in the process are all part and parcel of issues of power. Here, power is not a 
possession but it is circulated in and through discourses (p. 44). 
Social discourses establish particular power relations from a sociopolitical perspective. 

Discourses include “institutions, actions, words, and taken-for-granted ways of interacting and 
operating” (Gutiérrez, 2013, p. 43). These discourses structure the world by producing “truths” 
about individuals and groups of people. Gutiérrez highlighted the power of discourses in 
deciding what counts as productive mathematical knowledge and who can be a successful 
mathematics student, that is, the politics of knowledge (Apple, 1992; Nasir, Hand, & Taylor, 
2008). 

This paper focuses on narratives as part of social discourses. The Oxford English Dictionary 
defines a narrative as a particular telling of a story that “reflects an overarching set of aims or 
values.” The narrator establishes these aims and values, and they position people within the 
narratives. The positioning that results from these aims and values is the impact of the power that 
gets exercised through narratives.  
Knowledge in Pieces (KiP) 

Knowledge in Pieces (KiP) (diSessa, 1993) is a cognitive framework that explicitly 
emphasizes anti-deficit perspectives on students’ knowledge and learning. KiP models 
knowledge as a complex system of elements. KiP rejects oversimplified deficit models of 
students’ misconceptions, and typical efforts to replace persistent misconceptions (Smith, 
diSessa & Roschelle, 1993). The perspective that students have persistent misconceptions 
perpetuates narratives about students as unskilled, lacking resources and prone to mistakes. 
Instead, KiP focuses on the productivity of students’ knowledge and the foundational role their 
prior knowledge plays in learning. KiP recognizes productivity of knowledge (elements) through 
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its principle of context sensitivity (Smith et al., 1993). Misconceptions are seen as 
overgeneralizations of a productive use of a knowledge element in a new context. 

Studies using KiP focus on understanding a student’s own way of reasoning about a topic 
instead of assessing its correctness with respect to a normative standard (diSessa, Sherin, & 
Levin, 2016). More broadly, KiP is more interested in understanding aspects of the current 
context that might have led students to cue particular knowledge elements than in deciding if the 
cueing is “correct.” KiP does not assume that productive knowledge has to be encoded in 
normative academic language. In fact, it is common for studies using this framework to uncover 
productive sense making in students’ use of non-normative language (e.g., Campbell, 2011; 
diSessa, 2014). 

Knowledge Analysis (KA) (diSessa, Sherin, & Levin, 2016) is a method associated with KiP 
that focuses on studying knowledge elements and how they are used. KA focuses on intuitive 
knowledge as a target of study, and assumes that forms of naïve knowledge are diverse and 
generative. Intuitive knowledge is seen as knowledge stemming from students’ observation of 
their everyday experiences in engaging with the physical world. Some studies have shown the 
utility of intuitive knowledge in mathematics (Campbell, 2011; Pratt & Noss, 2002). This 
theoretical assumption motivates asking students about basis using everyday ideas.  
Understanding Basis 

In the same way that KiP motivated the focus of our study on students’ everyday examples 
and our attention on students’ intuitive knowledge, other frameworks motivate our organizing 
our study around different ways in which students understand the notion of basis. 

By analyzing student understanding of a particular mathematical concept, we are following 
from a tradition in the mathematics education research literature of analyzing how students think 
about particular mathematical ideas. At the undergraduate level these include function (e.g., 
Sfard,1992; Oehrtman, Carlson & Thompson, 2008), limit (e.g., Williams, 1991; Roh, 2008; 
Swinyard & Larsen, 2012), and derivative (e.g., Zandieh, 2000).   

In thinking about the various aspects involved in understanding a particular mathematical 
idea, we start with the notion of concept image. The term concept image has been used to refer to 
the “set of all mental pictures associated in the student’s mind with the concept name, together 
with all the properties characterizing them” (Vinner & Dreyfus, 1989, p. 356). Tall and Vinner 
(1981) describe a person’s concept image for a particular concept as “the total cognitive structure 
that is associated with the concept” (p. 152). A longer term goal of our work is to create a 
framework for describing the details of the cognitive structure involved in understanding the 
notion of basis. This paper provides a first step towards describing in more detail the various 
aspects of students’ concept images of basis.  

One tradition for delineating student understanding of a particular mathematical concept is 
the notion of conceptual metaphor (Lakoff & Núñez, 2000). In the undergraduate mathematics 
education literature conceptual metaphor has been used to examine student understanding of a 
number of concepts including function (e.g., Zandieh, Ellis, and Rasmussen, 2017), limit (e.g., 
Oehrtman, 2009), and derivative (e.g., Zandieh & Knapp, 2006).  

Conceptual metaphors may be used without reflection or without even awareness that a 
metaphor is involved. In our study we ask students to create everyday examples that may or may 
not be able to serve more broadly as conceptual metaphors for basis. Our intention for the 
purpose of this paper is to consider students’ everyday examples as potential conceptual 
metaphors that allow insight into nuances of understanding involved in a particular student’s 
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concept image of basis and more generally into delineating a framework for what it means to 
understand this mathematical construct. 
 

Methods 
Data Collection 

Given the desired depth and detail of analysis, this study favored the use of a small number 
of research subjects and videotaped individual interviews (diSessa, Sherin, & Levin, 2016). 
Participants were 8 undergraduate women of color at a large public research university. We 
invited women of color with the help of the university’s mathematics advising center and by 
leveraging our personal contacts with students. We reached out to mathematics majors and 
minors who had completed an introductory linear algebra course.  

The breakdown of racial and ethnic backgrounds and their past mathematics courses are 
presented in Table 1. This information was drawn from a student background survey that was 
administered at the end of the interview. All information was self-reported. The “Other 
Mathematics Courses” column are courses taken by the student prior to linear algebra. By the 
time of the interview in late Spring 2016 some students had completed additional mathematics 
courses post linear algebra. With the exception of Morgan, a Biomedical Engineering major, all 
the other students were mathematics majors or minors. Pseudonyms were selected to reflect the 
origin of students’ names. 

Each interview lasted for 90 minutes. Adiredja led the interview while Zandieh videotaped 
the interview and at times participated in asking questions. Students started the interview by 
solving four tasks that might be asked in a beginning linear algebra course. We chose tasks in 
which basis was not mentioned directly but for which basis might be relevant or related. This 
was followed by more general questions as to each student’s understanding of basis including the 
questions that are the focus for this study: 

1. Can you think of an example from your everyday life that describes the idea of a basis? 
2. How does your example reflect your meaning of basis? What does it capture and what 

does it not?  
Additional questions were asked about comparing their understanding of basis to the original 
four linear algebra tasks. At the end of the interview the students were often given another 
opportunity to share an example from their everyday life, especially if they did not offer an 
example when first asked.  
 
Table 1. Students’ racial/ethnic background and mathematics course history 

Student Racial/Ethnic 
Background 

Linear Algebra 
Completion 

Grade Other Mathematics Courses 

Leonie African American Spring 2016 A Calculus I, II, and III 

Morgan Asian/Asian American Spring 2016 A Calculus I, II, and III, and 
Differential Equations 

Annissa Hispanic/Latinx Fall 2014 B Calculus I and II 

Eliana Hispanic/Latinx Spring 2014 C Calculus I and II 

Nadia Hispanic/Latinx Fall 2015 A Calculus I, II, and III 
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Jocelyn Hispanic/Latinx Spring 2015 B Calculus I, II, and III 

Stacie Hispanic/Latinx Spring 2016 C Calculus I, II, and III 

Liliane Hispanic/Latinx/White Fall 2015 B/C Calculus I, II, and III 

 
Data Analysis 

For the purpose of this paper, we focused on student responses to the two questions listed 
above. We additionally considered other sections of the interview in which students introduced 
an example from their everyday life. We transcribed the interviews and organized the transcripts 
by turns, marked by changes in speaker. Transcripts use modified orthography (e.g., wanna, 
gonna, cus) to stay close to the actual students’ utterance. Hedges (e.g., like, kinda, um) were 
removed from the presentation of transcripts to assist in the reading of the transcripts.  

We started with open coding to capture nuances of students’ understanding (Strauss & 
Corbin, 1994). We identified everyday contexts for each student and the details associated with 
that context (e.g., what is a vector, the vector space, and scalar multiplication in the context?). 
We differentiated utterances about the roles of the basis vectors in the larger space from 
utterances about the characteristics of the basis vectors. These distinctions came as we focused 
on students’ uses of nouns, verbs and adjectives in their explanations.  

We started our analysis by focusing on nouns students used to describe the context and its 
details. Once we identified the context, we separately analyzed the details of that context. 
Adiredja focused on adjectives that highlighted characteristics of basis, while Zandieh focused 
on verbs that highlighted the relationship between the set of basis vectors and the larger vector 
space. This is followed by a discussion about similarities, differences, and, at times, conflicts 
between our codes. We negotiated and refined the codes. For example, in comparing the codes 
with one another, we clarified their distinctions (e.g., minimal focuses on quantity vs. essential 
focuses on quality), and explored other related categories (e.g., maximal for minimal).  

In our presentation of the transcript, we use bolded texts to indicate phrases that capture the 
codes. In cases where two codes are situated next to each other in the transcript, we differentiate 
them using grey and black bolded texts. We use bolded grey italics for nouns that indicate the 
basis vectors and the vector space. We use regular italics to refer to codes in the text.  
 

Results 
Students’ Everyday Examples 

We found that the majority of the students discussed at least one everyday context to explain 
the concept of basis. Table 2 provides a summary of the different contexts. In what follows we 
elaborate on the details of some these contexts as part of illustrating the roles of the basis vectors 
and their characteristics. 
 
Table 2. Everyday contexts used to explain basis and vector spaces 

Student Context (for basis and vector space) 

Leonie friendship 

Morgan driving in a city (on a grid), Legos, cooking, groups of pens 

Annissa set of solutions (no actual everyday example) 
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Eliana least amount of myself I need to cover the space of the room, storage room, dimension, 
skeleton, outline of a paper 

Nadia floor, universe and earth, syntax in programming 

Jocelyn fashion, recipe, art sculpture, collage 

Stacie walking to places in a room, floor as a plane, marching band 

Liliane religious teachings 

 
Roles of Basis Vectors 

In this section we focus on the verbs students used to discuss the role that basis vectors have 
in relationship to the larger vector space. Before collecting the interview data we had noticed that 
basis vectors can be thought of as generating the larger space or as describing the larger space. 
As such we designed our warm-up tasks to be of both types. For example, asking students to 
describe the span of a given set of vectors is a generating task. On the other hand, finding the 
eigenvectors for a given matrix may involve choices as to how to describe the infinite space of 
eigenvectors. One typical choice might be to state the basis for that eigenspace. In terms of 
relationships between the basis vectors and the larger space, generating verbs refer to creating 
the larger space from the basis vectors, whereas describing verbs start with the larger space and 
describe it by listing basis vectors. 
Generating Illustrated 

In our analysis we found that seven of the eight students used generating verbs including 
build, make, create, add, cover and fill. Table 3 provides examples of generating verbs with 
quotes from students. This table serves not only to illustrate the generating examples, but also to 
provide more detailed examples of the contexts that students used to talk about basis. In the 
quotes in Table 3, bold italics grey indicates the context the student was discussing, whereas bold 
non-italics black indicates a verb phrase illustrating a generating relationship between the basis 
vectors and the space. 
 
Table 3. Generating verbs within students’ explanations 

Student Verbs Quote 

Leonie fill I think I could describe it as my different friend group. /…/ They're all 
completely different. One of my friends, my best friend is, she's really 
serious and everything. Then my roommate is really goofy. And then my 
other friend, she's just really wild and crazy. So it's like, they all fill all 
the gaps. 

Morgan build, create You're given like the 3 by 2 Lego [pieces] and you have like a 2 by 2 
Lego [piece] you can just like build on to that to create that I guess 
space that you have. 

Morgan get You could use your basis of one block north not south, east, west. I 
think of those as like basis to get anywhere in the world. 
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Eliana cover So it's like what's the least amount of myself [two arms] I need to cover 
the space of the room. I need that direction. I need that direction, and I 
need that direction. So that's all you need. 

Nadia make You need to know the minimum syntax to be able to make any sort of 
program and make it useful.  

Jocelyn make The span would be all the different recipes that you can make with 
those ingredients. 

Stacie create, 
move 

Well, I remember in marching band where we have to create a circle. 
And you need the people to create the circle. You need the field. And 
you need the music. You need all of three of them to help move on to 
the different parts of the field. 

Liliane add to, 
expand, 
come from, 
reach 

So I’m very religious. And so the teachings that we share with each 
other and that we read about and all that stuff. There are a lot of things 
that you can add to and be like, here’s an application and here’s the 
things, and this expands to this and this and this. But there’s the most 
basic teachings and it all comes back to that. And this is the basic thing, 
like you have the Ten Commandments. You have the Scriptures and 
you have the prophets and you have your connection with God and, all 
of the decisions and all of things that come from that and you can reach 
all of the other points with this basis. 

 
Describing Illustrated 
In our analysis we found fewer examples of verbs that indicated a student was describing a 
vector space by using a basis. Examples from Eliana and Nadia are listed in Table 4.  
 
Table 4. Describing verbs within students’ explanations 

Students Verbs Quote 

Eliana shows So the basis is like the skeleton. You know that it, it shows you what you 
need, and it shows you where everything is. 

Nadia describes I’m just thinking like the whole universe, and that's like planets and stars 
and that like describes the universe. But only a planet describes earth. So 
to get a basis for the universe you'd need planets and stars. 

 
In addition, a student may combine both types of verbs. Just after mentioning skeleton, Eliana 
discussed the outline of a paper both in terms of generating and describing,  

That's the whole point of the basis so you can see on a smaller scale what the rest of the 
space is gonna look like or what type of space here. And I could go with anything depending 
if you're writing a paper, it would be the outline and you build on that.  

To “see on a smaller scale” is to describe or represent the larger space using a well-chosen subset 
of that space. On the other hand, to “build on that” is to (re-)construct the larger space (paper) 
from the basis (outline). 
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Characteristics of Basis Vectors 

Our coding of the adjectives students used to describe basis led to the list of codes below. In 
this section, we illustrate many of these codes through our analysis of Jocelyn’s explanation 
using the context of fashion. The three segments we selected occurred chronologically. The 
analysis highlights the way that Jocelyn’s explanation captures these different nuances about 
basis, and Jocelyn’s sophistication in assessing the fit of her explanation with the formal 
definition.  
1. Minimal focuses on the fact that the basis is the least number of vectors necessary.  
2. Maximal focuses on the need to include all the basis vectors and that more would lead to 
redundancy. 
3. Essential focuses on the quality of the vectors being the core and necessary. 
4. Representative focuses on naming or identifying a smaller set as the structure or 
representation of the larger space. 
5. Non-redundant focuses on not wanting extraneous information in a set, or the act of reducing 
or removing the extraneous information. 
6. Different focuses on comparing items (vectors) based on their differences for the sake of 
keeping or removing items from the basis.  
 
Segment 1: A focus on minimality and non-redundancy 

In this episode, Jocelyn introduced the context of fashion and wardrobe to explain basis. In 
her explanation, she described the generating role that basis vectors play. Her explanation 
focused on the characteristics of basis vectors being the minimal set, and the fact that none of the 
vectors were non-redundant.  

I immediately try to think of, I thought of fashion and a wardrobe. And so, say you have all 
these different outfits you want to make. You have a minimum number of pieces, like a 
pair of shoes or a shirt, or a pair of pants that you need that allows you to make all of 
those outfits. But you don't want to have two of the same pairs of shoes cause you know 
that's wasteful. You don't need two of them. You just use one.  

Jocelyn emphasized that at a minimum she needed a pair of shoes, a shirt and a pair of pants to 
make an outfit. She also used a situation in which she had two of the same pair of shoes as an 
example when the non-redundant requirement was violated.  
 
Segment 2: A focus on difference and essential-ness 

Without prompting Jocelyn also discussed a scalar multiple of a vector to emphasize the 
nuance that separated being different from being essential.  

When you scale a vector by a constant, it might look different. It might change its length or 
its direction but its identity isn't really changed, and so it'll be the same vector. And so if 
you have different pairs of heels, they'd look different but they're still heels, they're still 
like formal. So they're (inaudible) still the same. 

Jocelyn was emphasizing that being different was not a sufficient condition for a vector to be 
part of a basis. She focused on the “identity” or the essence of a vector. Items might appear to be 
different (e.g., different heels), but their essence was still the same and thus both could not be 
part of the basis.  
 
Segment 3: Assessment of explanation 
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In this episode, Jocelyn was sharing the extent to which her explanation captured the meaning of 
basis. In the process she summarized some of the important aspects of basis for her.  

It's minimal. To pick one pair of heels and one pair of tennis shoes. So when I think of my 
idea of a basis, my mind goes to minimal. Um, what doesn't it capture? Well, ok, so it's 
weird cause I guess you can use one pair of shoes for different outfits. But if I'm trying to 
make...it's harder to have a casual outfit and in a formal outfit there's not a whole lot of 
overlap you end up having each piece in each outfit in the basis. So it's like. How do I 
explain this? I feel like the basis I'm making, all of the pieces aren't as, they're not all the 
same. Like, you have shoes, tops and pants. You can't make an outfit with just shoes. But 
if you have a basis, you can pick just some of the vectors, combine them, and make 
something, and leave all the rest out. Cause you can't just put on shoes and pants. So 
that's where it kinda...that's one of the ways that doesn't really [fit the definition]. 

In her summary, Jocelyn returned to the idea of minimal. She needed to pick one pair of heels 
and one pair of tennis shoes. Each selected pair of shoes became a representative of its own 
category. The limitation of the context came when Jocelyn considered overlapping items in 
different types of outfits. While the idea of non-redundancy could be used to remove redundant 
vectors from a basis, Jocelyn was hoping that there were some redundancy so she could pick one 
representative for the redundant items. She emphasized that basis vectors had to be different 
(“not all the same”), but she saw that needing all the basis vector was a limitation of the context 
of fashion. Each piece in the basis is considered to be essential. So she could not just pick some 
of the vectors, like in a strictly mathematical context.  
 

Discussion and Implications 
We have two aims with this paper. The first is to construct a counter-narrative about women 

of color in mathematics. The second is to investigate the structure of student understanding of 
basis. With respect to the first goal, we have documented episodes of productive sense making 
by women of color in mathematics. We highlighted the creativity and breadth of the everyday 
contexts used to describe basis by these women of color. The range of contexts that students used 
was particularly interesting and useful. Most of these were not contexts we were able to generate 
ourselves prior to beginning the study. Although it was not the main focus of the analysis, the 
case of Jocelyn also showed students’ sophistication with their assessment of everyday contexts 
they generated relative to the formal definition of basis. The fact that these women constructed 
these accessible contexts to explain basis positions these women of color as a resource for 
teaching instead of a group of students that persistently needing extra support. Taken together, 
these students’ creativity and sophistication in assessing their examples and the potential utility 
of these everyday contexts challenge the narrative about women of color as persistently 
underachieving and academically inferior to their White and male counterparts.  

With respect to the second aim, we have learned that students are capable of constructing 
productive explanations about basis using everyday ideas. They were able to come up with a 
variety of contexts in which they could describe basis. In grappling with what aspects of their 
contexts worked well and which did not, the students revealed many nuances of basis. This is 
important in two ways. First, these explanations revealed different roles basis vectors play in 
relation to the larger vector space, and nuanced characteristics of basis. Students’ explanations 
delineated the relationship between basis vectors and the larger space in terms of generating and 
describing. As we saw with Jocelyn, nuanced characteristics such as minimal, different, 
essential, and non-redundant were important and interacted with one another in students’ 
explanations. Second, methodologically, we have shown the utility of students’ discussions of 
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everyday examples in revealing their understanding of a topic. We might not have discovered 
these nuances using strictly formal mathematical questions. Moreover, there have been very few 
studies done on student understanding of basis and on students’ ability to create everyday 
examples of mathematical constructs at the undergraduate level. For these reasons, this paper 
adds to the literature on student mathematical cognition at the undergraduate level.  

In addition, we argue that the paper adds valuable data to the corpus of research in 
undergraduate mathematics education in that few studies have been written about the 
mathematical thinking of women of color (Adiredja & Andrews-Larson, in press). Sometimes 
this is because women of color have not been included in data sets (perhaps because there were 
not many women of color in the population from which the data was drawn). Other times we 
simply do not know whether or not women of color were in the data sets because, a review of the 
papers in recent proceeding of the Conference on Research in Undergraduate Mathematics 
Education (RUME) would reveal, it has not been common in the community to report data on 
gender and particularly on ethnicity. 

With regards to findings of this study, we caution against the danger of essentializing these 
women, that is, attributing these examples as inherent to students’ race and gender. It is tempting 
to gender or racialize these examples, which can lead to essentializing the students. Students did 
discuss basis in the context of fashion, cooking and religion, but they also brought up other 
contexts like driving, skeleton, and the universe. These contexts are likely inspired by the 
students’ experiences, and not inherent to their ethnicity or gender. Future studies can further 
explore the range of contexts to explain basis, and the details of their differences. One can also 
investigate if there are shared learning experiences among women of color that might contribute 
to their flexibility to come up with these examples. Moschkovich (2012) has argued that there is 
nothing inherently different about the cognitive processes of students of color in mathematics, 
but there is a difference in their “conditions of learning” (p. 96). We can begin to explore ways 
that differences in conditions of learning might contribute to the examples students bring up in 
interviews.  

We would also like to recognize the tendency to validate findings from or about an 
underrepresented group by comparing them to the behavior of the dominant group. We believe 
that our findings about this group of eight women of color are valid to stand on their own. The 
creativity of these women, and the productivity of their examples do not rest on how they might 
compare to White women, men of color, or White men. While it is interesting to find out what 
students from those other groups might come up with, studies with such focus are not inherently 
necessary to validate the findings of this paper. What we are arguing here is very much related to 
the critique in the literature about ways that achievement gap studies always center the 
achievement of the dominant group (Gutiérrez, 2008).  

This work may have implications for practice and curriculum design. These everyday 
contexts can be used as potential entry points into basis. Moreover, as we saw with students in 
this study, generating explanations using everyday ideas can be a very fruitful activity in the 
classroom to reveal students’ understanding of the topic. With respect to curriculum design, 
consider the experientially real starting points emphasized in the curriculum design framework of 
Realistic Mathematics Education (Freudenthal, 1983). Our analysis challenges us to reflect on 
what counts as an experientially real starting point for our students. Creating these experientially 
real starting points requires us to know our audience. In our past work we may have focused on 
certain types of students more than others in imagining what is experientially real to this 
audience. Making sure to interview and listen to the thinking of students who are not as often 
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interviewed in RUME studies is vital to making sure we are reaching all students with our 
curriculum design, and in instruction more broadly. 
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Exploration of the Factors that Support Learning:  
Web-based Activity and Testing Systems in Community College Algebra 

 
Shandy Hauk & Bryan J. Matlen 

WestEd  
 
A variety of computerized learning platforms exist. In mathematics, most include sets of 
problems to complete. Feedback to users ranges from a single word like “Correct!” to offers of 
hints and partially- to fully-worked examples. Behind-the-scenes design of such systems also 
varies – from static dictionaries of problems to responsive programming that adapts assignments 
to users’ demonstrated skills within the computerized environment. This report presents 
background on digital learning contexts and early results of a mixed-methods study that included 
a cluster randomized controlled trial design. The study was in community college algebra 
classes where the intervention was a particular type of web-based activity and testing system.  
 
Key words: Computer-based Learning, College Algebra, Multi-site Cluster Randomized 
Controlled Trial 
 

Many students arrive in college underprepared for college level algebra, despite its 
importance for future success in mathematics (Long, Iatarola, & Conger, 2009; Porter & 
Polikoff, 2012). Web-based Activity and Testing Systems (WATS) are one approach to 
supporting equity and excellence in mathematics learning in colleges. When it comes to 
technology and algebra learning in college: What works? For whom? Under what conditions? 
These ubiquitous questions plague educational researchers who are assessing the whats, whys, 
and hows of a technology intervention or addition to a course. Did the instructors have enough 
support to adequately implement the technology tool? Were the online materials appropriate to 
provide sufficient practice for each students’ needs? Did instruction with the intervention 
equitably prepare students to pass the final exam?  

This report offers early results from a large project investigating relationships among student 
achievement and varying conditions of implementation for a web-based activity and testing 
system used in community college elementary algebra classes. Implementing a particular WATS 
constitutes the “treatment” condition in this cluster randomized controlled trial study. As 
described below, there are several ways to distinguish WATS tools. Some systems, like the one 
at the heart of our study, include adaptive problem sets, instructional videos, and data-driven 
tools for instructors to use to monitor and scaffold student learning.  

 
Research Questions 

Funded by the U.S. Department of Education, we are conducting a large-scale mixed 
methods study in over 30 community colleges. The study is driven by two research questions: 

 
Research Question 1: What is the impact of a particular WATS learning platform on students’ 

algebraic knowledge after instructors have implemented the platform for 
two semesters? 

Research Question 2: What challenges to use-as-intended (by developers) are faculty 
encountering and how are they responding to the challenges as they 
implement the WATS tool? 
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Background and Conceptual Framing 
There are distinctions among dynamic and static learning environments (see Table 1). 

Though the focus of this report is a particular dynamic system, we offer information on both to 
situate what that means. WATS learning environments can vary along at least two dimensions: 
(1) the extent to which they adaptively respond to student behavior and (2) the extent to which 
they are based on a careful cognitive model.  
  
Table 1. Conceptual framework of WATS environments based on adaptability and basis in a 
theory of learning. 
 Type of Adaptivity in Design 
 Static Dynamic 
Is a particular 
model of learning 
explicit in design 
and implementation 
(structure and 
processes)? 

No 
Text and tasks with 
instructional adaptation 
external to the materials  

Adaptive tutoring systems 
(e.g., ALEKS, Khan 
Academy, ActiveMath) 

Yes 
Textbook design and use 
driven by fidelity to an 
explicit theory of learning 

“Intelligent” tutoring 
systems (e.g., Cognitive 
Tutor) 

Static learning environments deliver content in a fixed order and contain scaffolds or 
feedback that are identical for all users. Although often informed by a learning theory, this type 
of system is distinguished from others in that it is not designed to immediately adapt to 
individual learning needs of users. An example of this type of environment might be online 
problem sets from a textbook that give immediate feedback to students such as “correct” or 
“incorrect.” Studies of college algebra student achievement and attitudes when instruction uses 
these tools in conjunction with face-to-face instruction (e.g., computer-based homework rather 
than paper-and-pencil homework) is mixed, generally indicating that use will do no harm but is 
not particularly beneficial (e.g., Bishop, 2010; Buzzetto-More & Ukoha, 2009; Hauk, Powers, & 
Segalla, 2015).  

Dynamic learning environments keep track of some user behaviors (e.g., errors, error rates, 
or time-on-problem) and use this information in a programmed decision tree that selects problem 
sets and/or feedback based on estimated mastery of specific skills. An example of an “adaptive” 
dynamic environment might be a system such as ALEKS or the “mastery challenge” approach 
now used in the online Khan Academy Mission structure. For example, in working on a 
particular skill (e.g., the distributive property) in the Algebra Mission, a behind-the-scenes data 
analyzer captures student performance on a “mastery challenge” set of items. Once a student gets 
six items in a row correct, the next level set of items in a programmed target learning trajectory 
is offered. Depending on the number and type of items the particular user answers incorrectly 
(e.g., on the path to six items in a row done correctly), the analyzer program identifies target 
content and assembles the next “mastery challenge” set of items. Some studies have found 
correlations between adaptive-dynamic systems and student learning (e.g., Murphy et al. 2014). 
However, other than our own, we are unaware of any large-scale experimental studies assessing 
the efficacy of adaptive-dynamic systems in college mathematics.  

Above and beyond responsive assignment generation, programming in a “cognitively-based” 
dynamic environment is informed by a theoretical model that asserts the cognitive processing 
necessary for acquiring skills (Anderson et al. 1995; Koedinger & Corbett, 2006). For instance, 
instead of specifying only that graphing is important and should be practiced, a cognitively-based 
environment also will specify the student thinking and skills needed to comprehend graphing 
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(e.g., connecting spatial and verbal information), and provide feedback and scaffolds that support 
these cognitive processes (e.g., visuo-spatial feedback and graphics that are integrated with text). 
In cognitively-based environments, scaffolds themselves can also be adaptive. For example, 
more scaffolding through examples can be provided early in learning and scaffolding can fade as 
a student acquires expertise (Ritter et al., 2007). Like other dynamic systems, cognitively-based 
systems can also provide summaries of student progress, which better enable teachers to support 
struggling students. The efficacy of early computer versions of such an approach has been 
documented in some large-scale studies in high school and college settings (Koedinger & 
Sueker, 1996; Koedinger et al., 1997). However, no fully tested cognitively-based web-based 
activity and testing system currently exists for college students learning algebra.  

As mentioned, several adaptive dynamic systems do exist (e.g., ALEKS, Khan Academy 
“Missions”). The particular WATS investigated in our study is accessed on the internet and is 
designed primarily for use as replacement for some in-class individual seatwork and some 
homework. Note: We report here on data collected from the first of two years of study. The 
second year of the study – which repeats the design of the first – is currently underway. Hence, 
we purposefully under-report some details. 

 
Methods 

 
The study we report here uses a mixed methods approach that combines a multi-site cluster 

randomized trial with an exploration of instructor and student experiences. Half of instructors at 
each community college site were assigned to use a particular WATS in their instruction 
(treatment condition), the other half taught as they usually would, barring the use of the 
Treatment WATS tool though other WATS might be used (control condition). Faculty 
participated for two semesters in order to allow instructors to familiarize themselves with 
implementing the WATS with their local algebra curriculum. Specifically, the first term in Fall 
was a “practice” semester to field-test the intervention and the second semester of the same 
academic year was the “efficacy” study from which data were analyzed. 

 
Sampling Strategy !

Rather than recruit a sample by convenience, which is likely to result in poor generalizability, 
we utilized a stratified sampling approach developed by Tipton (2014). This method is a way of 
recruiting a sample that is compositionally similar to the target population for which the results 
of the study are meant to generalize. The target population for this study was defined as students 
at all community colleges in semester-long elementary algebra courses (also known as 
“developmental” or “beginning” algebra, the equivalent of a first year of algebra), in the U.S. 
state where the study took place. This population was selected in part because the state is large 
and diverse, and in part because we sought to decrease variability that may result from differing 
high school mathematics standards and graduation requirements across multiple states. 

To recruit a sample that was compositionally similar to the target population, we first created 
a database that included information about all eligible community college sites (more than 100 
across the state). We included information on college-level characteristics that existing research 
suggests will correlate with the study outcome (e.g., the average age of students at the college, 
the proportion of adjunct faculty, the proportion of students enrolled in remedial math courses). 
We conducted a cluster analysis on these potential covariates with all of the eligible colleges. 
The analysis resulted in a five-cluster solution that explained 29% of the variance between 
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colleges. Examination of the characteristics that were unique to each cluster yielded the 
following descriptive observations:!

Cluster 1. Represented 25% of colleges. These are colleges with a total student enrollment 
near the average (across all community colleges in the state) whose students tend to take 
more credits in the evening relative to colleges in other clusters. Cluster 1 colleges have 
more Temporary Faculty, and more Hispanic students, African American students, and 
students over 40 years old. 

Cluster 2. Represented 15% of colleges. These colleges serve primarily students aged 25 and 
above who take fewer credits and more commonly are evening students. 

Cluster 3. Represented 22% of colleges. These are colleges with a total student enrollment 
near the state average where students are more commonly Asian, younger, and enrolled 
full time during the day. 

Cluster 4. Represented 23% of colleges. Cluster 4 represents smaller colleges that have a 
higher proportion of white students that tend to be younger, mostly full-time, and take 
fewer evening courses. 

Cluster 5. Represented 15% of colleges. These are larger colleges that have more Hispanic 
and younger students. Students tend to take more daytime courses, with more fulltime 
loads and many remedial mathematics courses and high remedial math enrollment. 
 

Our recruitment efforts aimed to include a proportionate number of colleges within each of 
the five clusters. Recruitment for the first cohort of participants yielded a study sample of 
colleges similar to the overall distribution across clusters that was the target for the sample. Due 
to attrition (instructors leaving the study), the representation shifted away from the target slightly 
for Clusters 1 and 4 by the end of the second term (see Figure 1). 

!

 
Figure 1. Recruited, target, and end of spring sample proportions across clusters. 

 
Sample for this Report 

Initial enrollment in the study included 89 instructors across 38 college sites. Attrition of 
instructors from initial enrollment to the end of the spring efficacy data semester was significant 
(68%). For this report, we analyzed the data from 510 students of 29 instructors across 18 
colleges. Student and instructor numbers related to the data reported on here are shown in Table 
2 and characteristics of the teachers and colleges are presented in Table 3.!
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Table 2. Counts of Instructors, Students, and Colleges in the Study. 
Condition Instructors Students Colleges* 
Control 17 328 13 

Treatment 12 182 11 
Total 29 510 18 

* Note: there were multiple instructors at some colleges. 
 
Table 3. Descriptive statistics for the student and instructor populations across the colleges in the 

study, by condition. 

  
Treatment Control 

M SD M SD 
Student Characteristics 

Enrollment 26,520 10,240 25,300 18,200 
U.S. Citizens 0.88 0.05 0.88 0.12 

Math Basic Retention* 0.80 0.03 0.82 0.06 
African American 0.04 0.03 0.06 0.03 

Asian 0.11 0.07 0.15 0.14 
Hispanic 0.49 0.21 0.41 0.19 

Native American 0.00 0.00 0.01 0.02 
White 0.27 0.17 0.30 0.16 

Below 25 0.61 0.05 0.58 0.07 
25 and Above 0.39 0.02 0.42 0.03 
Day Students 0.76 0.04 0.72 0.11 

Evening Students 0.18 0.04 0.16 0.04 
  Instructor Characteristics 

Part Time Faculty 0.45 NA 0.33 NA 
Years Experience Teaching Math 15.78 8.86 15.54 6.59 
Semesters of Algebra Teaching 18.60 11.99 15.36 13.82 

* Proportion retention in remedial mathematics courses 
 
Measures!

A great deal of textual, observational, and interview data were gathered last year and will be 
gathered again for the second iteration of the study. These data allow analysis of impact 
(Research Question 1) and careful analysis of the intended and actual use of the learning 
environment and the classroom contexts in which it is enacted – an examination of 
implementation structures and processes (Research Question 2). Indices of specific and generic 
fidelity derived from this work also will play a role in HLM generation and interpretation in the 
coming year. The instruments are summarized below. With the exception of the observation and 
interview tools, all measures were administered online. 
Instructor Instruments 

Technology and Teaching Survey. This survey measures teachers’ self-reported ability to 
use technology for teaching.  

Perspectives Survey. This survey consists of questions related to teachers’ background 

Pr
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)
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(e.g., years of experience teaching algebra, demographic information) as well as their 
attitudes and perspectives about teaching.  

Measures of Effective Teaching – Algebra Test. This test was developed, piloted, and 
validated by the Educational Testing Service as part of the Measures of Effective 
Teaching (MET) project. It assesses instructors’ pedagogical content knowledge in 
developmental algebra. 

Weekly Instructor Logs. After extensive pilot testing, weekly logs were developed that ask 
about course format, topics, and resources used for that week’s instruction.  

Observation & Interview. The observation protocol captures a variety of information, 
including frequency of mention of WATS use, work completed in a WATS (treatment 
or other), teacher in-class use of WATS tools, as well as amount of time spent in 
whole class, group, and individual work. The interview focus is on the successes and 
challenges teachers face in using a WATS as part of instruction. 

Student Instruments 
Mathematics Diagnostic Testing Project (MDTP) Assessment. The MDTP serves as the 

study’s primary student outcome measure. The Algebra Readiness form is the pre-test 
administered at the start of the semester and the Elementary Algebra form is the end-
of-semester post-test. The MDTP tests have been shown to be valid and reliable 
measures of students’ algebraic understanding (Gerachis & Manaster, 1995). 

Student Background Questionnaire. This survey asks students about academic and 
demographic information such as academic history in mathematics, eligibility for 
financial aide 

Motivated Strategies for Learning Questionnaire (MSLQ). This questionnaire measures 
students’ motivation and attitudes towards mathematics.  

Student Evaluation of Teaching Survey. The evaluation survey asks students to assess their 
experience in the course using Likert-scale questions.  

 
The way performance is calculated is a non-trivial issue in educational measurement. One 

way to estimate student achievement on the MDTP tests is to calculate the raw percentage 
correct (i.e., summing the number of correct scores, and dividing by the total possible score). 
However, such a calculation does not take into consideration other parameters of interest, such as 
item difficulty, that provide added information that can be used to estimate student ability. To 
address this issue, we used a multilevel extension of the two-parameter logistic item response 
theory model to compute student pre- and post-test scale scores (Birnbaum, 1968). Specifically, 
we computed response-pattern expected a posteriori estimates (EAP scores; Thissen & Orlando, 
2001) for each student. Similarly, we created EAP average scores for each classroom (a teacher-
level score). We used individual and classroom aggregate student EAP scores in the analytic 
model described below.!
 

Results 
 

Quantitative Analysis 
The study employed Hierarchical Linear Modeling (HLM), controlling for students’ pretest 

MDTP EAP scores, to estimate the impact of WATS use on student achievement. The 
hierarchical modeling approach accounts for the nested structure of the sample (Raudenbush & 
Bryk, 2002), specifically the nesting of students within instructors. Preliminary analysis revealed 
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that the HLM choice was justified, as the intra-class correlation in the unconditional model was 
0.36, suggesting that the observations were not independent (i.e., student scores varied based on 
their classroom – statistically, the teacher mattered – so other approaches, such as single-level 
regression, would be inappropriate). The specific HLM model we used: 
 
!"# = %&& + %&((*+,-)# + %(&(-/0123)"# + %&4(567/208/92123)# + :&; + <=&!!!!(Equation A)!
!
In the equation above, )

!"# is the MDTP post-test EAP score for the i-th student of the j-th instructor; 
 %&& is the grand mean of EAP scores across all students;  
(*+,-)# is a dichotomous variable indicating instructor assignment to use the particular 

treatment WATS or not; 
 %(&(-/0123)"# is the student MDTP pre-test EAP score; 
 %&4(567/208/92123)# is the MDTP pre-test EAP estimate for all students in the class of 

instructor j;  
:&; and >=& represent a random effect term for instructors and a random error term, 

respectively.  
All covariates were grand-mean centered to achieve the desired model interpretation (i.e., 
covariates were transformed to be centered on a mean of zero). Importantly, the impact of the 
treatment WATS use is captured by %&(. 
 

Baseline equivalence."The What Works Clearinghouse (2014) considers baseline differences 
with a Hedges g < .25 to be within the range of statistical correction. However, differences of 
Hedges g > .25 are considered not amenable to statistical correction. As can be seen in Table 4, 
both situations occurred. The differences between Instructor mean EAP scores (i.e., classroom 
average) and student pre-test raw scores were moderate between the two conditions. However, 
the difference between student pre-test EAP scores was substantive across conditions (g = 0.30). 
The EAP pretest difference for students is large enough that the analytic sample might be 
considered non-equivalent at baseline on this variable (below, we discuss details that attempt to 
address this difference)."

 
Table 4. Baseline equivalence analysis on the analytic sample.!

 !  Effect Size 
Hedges g!

WATS! Control!

M! SD! M! SD!

Student Pre 
(Raw Scores)! 0.25! 30.58! 8.27! 28.54! 7.82!

Student Pre 
(EAP Scores) ! 0.30! 0.45! 1.10! 0.14! 0.99!

Instructor Pre 
(EAP Scores)! 0.08! 0.22! 0.53! 0.18! 0.39!

!
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Intervention impact. The aim of the impact analysis was to address the question: After 
controlling for student and classroom-level average pre-test scores, what is the impact of the 
WATS intervention on students’ elementary algebra knowledge, as measured by the MDTP? To 
address this question, we use Equation A to estimate the average impact of going from the 
control to the treatment condition. Ideally, what we are interested in is this: what would a control 
students’ algebra achievement be if his/her instructor, in an alternative universe, were assigned to 
the treatment group? Because students cannot participate to both conditions simultaneously, our 
randomized trial is a proxy for this counterfactual scenario. The results of random and fixed 
effects in the model are presented in Tables 5 and 6, respectively. 

The random effects (Table 5), tell us that the amount of variance that the instructor-level 
accounts for (i.e., the intraclass correlation) is about 28% (from Table 5 and a quick calculation, 
we see instructor variance divided by the total variance = 0.16/(0.40+0.16)=0.28). This means 
that student level values are not independent. Put another way, students within classrooms were 
more similar to each other than students between classrooms. The intraclass correlation justifies 
our hierarchical analytic approach over single level regression. More generally (and in future 
work), we want to look at what instructors are doing to see how the instructor-level activity is 
shaping student achievement. The fixed effect model estimates are provided in Table 6. 
Controlling for students’ pretest EAP scores, we found that using this particular WATS platform 
corresponded to a 0.35 increase in students’ post-test EAP scores. This difference is considered a 
statistically significant positive effect (p < .05). The Hedges g value for this effect is 0.32, which 
is judged to be substantively important for educational research studies of this type (WWC, 
2014). The 95% confidence interval around the effect estimate was 0.14 - 0.50, which is large, 
but spans an exclusively positive range. 

 
Table 5. Random effects of the model. 
 

! Variance ! Standard Deviation!
Instructor :&; ! 0.16! 0.40!

Level-1 Error >=&! 0.40! 0.63!
 
 

Table 6. Fixed effect results of the model.  
 

! Estimate! St. Error! p-value!
Intercept %&& ! -0.10! 0.10! 0.34!
WATS %&( ! 0.35! 0.16! 0.04!

StudentPre %(&! 0.73! 0.03! < .001!
InstructorPre %&4 ! 0.30! 0.19! 0.13!

!

Using raw MDTP scores (instead of EAP estimates) as outcomes and covariates in the 
model, we obtained similar results. In the raw score model, the impact of WATS was estimated 
to result, on average, in a 2.57 point increase in student raw score. This was a statistically 
significant positive effect (p = 0.04, SE = 1.18, Hedges g = 0.32). The control group mean was 
estimated at 22.04 (out of 50 points), thus, the 2.57 point difference corresponds to nearly 12 
percentage points increase in post-test scores relative to the control group (2.57 / 22.04 * 100 = 
11.66). Since baseline differences between treatment and control group student raw scores were 
within the range of statistical correction, the similarity between the two models (raw score and 
EAP score models) is important, providing more confidence in the estimates of positive impact.!
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The effect size across both analyses was estimated at 0.32. This result can be interpreted as 
the WATS group of students would have scored an estimated 0.32 standard deviations higher, on 
average, than the control group of students on the MDTP, had the groups been fully equivalent 
prior to the intervention. However, to interpret the effect size of 0.32 in a more meaningful way, 
we converted the effect size using properties of the normal distribution. In a normed sample, a 
one standard deviation increase from the middle of the distribution corresponds to a 34 percentile 
point increase in scores. Thus, an effect size of .32 would correspond to an approximate 11 
percentile point increase in scores (i.e., .32 * 34 = 10.88). Therefore, if students in the control 
condition perform at the 50th percentile in a normed sample, the students in the WATS condition 
would perform at the 61st percentile in the normed sample (50 + 10.88 = 60.88).!

While these results suggest that WATS has a positive impact on students’ elementary algebra 
achievement, it is important to note that this study suffered from high instructor attrition. This 
fact, coupled with moderate to large baseline differences at pretest, warrant caution in 
interpreting the results. In order to determine whether the results of the present study are robust, 
we are repeating the study with a second cohort of instructors and their students in the 2016-17 
school year. Pooling the results of these two studies will help to determine the extent to which 
the findings replicate with different samples and will lend more confidence in the study 
conclusions (Cheung & Slavin, 2015). !
 
Qualitative Analysis 

As in many curricular projects, developers of the WATS in our study paid attention to 
learning theory in determining the content in the web-based system, but the same was not true 
for determining implementation processes and structures. The pragmatic details of large-scale 
classroom use were under-specified. Developers articulated their assumptions about what 
students learned as they completed activities, but the roles of specific components, including the 
instructor role in the mediation of learning, were not clearly defined. Thus, there was an under-
determined “it” to which developers expected implementers (instructors and students) to be 
faithful. 

Fidelity of implementation is the degree to which an intervention or program is delivered as 
intended (Dusenbury, Brannigan, Falco, & Hansen, 2003). Do implementers understand the 
trade-offs in the daily decisions they must make “in the wild” and the short and long-term 
consequences on student learning as a result of compromises in fidelity? As Munter and 
colleagues (2014) have pointed out, there is no agreement on how to assess fidelity of 
implementation. However, there is a growing consensus on a component-based approach to 
measuring its structure and processes (Century & Cassata, 2014).  Century and Cassata’s 
summary of research offers five components to consider in fidelity of implementation: 
Diagnostic, Procedural, Educative, Pedagogical, and Student Engagement (Table 7, next page).   

The components in Table 7 are operationalized through a rubric, a guide for collecting and 
reporting data in our implementation study. A rubric articulates the expectations for a category 
by listing the criteria, or what counts, and describes the levels of quality from low to high.  

Each component has several factors that define the component. The research team has 
developed a rubric for fidelity of implementation that identifies measurable attributes for each 
component (for example, see Table 8 on the next page for some detail on the “educative” 
component). Data for assessing each row come from the survey, observation, and interview 
measures described earlier. 
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Table 7. Components and Focus in a Fidelity of Implementation Study. 

Components Focus 
Diagnostic These factors say what the “it” is that is being implemented (e.g., what 

makes this particular WATS distinct from other activities). 

Structural-Procedural 
 

These components tell the user (in this case, the instructor) what to do 
(e.g., assign intervention x times/week, y minutes/use). These are aspects 
of the expected curriculum. 

Structural-Educative These state the developers’ expectations for what the user needs to know 
relative to the intervention (e.g., types of technological, content, and 
pedagogical knowledge needed by an instructor). 

Interaction-Pedagogical 
 

These capture the actions, behaviors, and interactions users are expected 
to engage in when using the intervention (e.g., intervention is at least x 
% of assignments, counts for at least y % of student grade). These are 
aspects of the intended curriculum. 

Interaction-Engagement  These components delineate the actions, behaviors, and interactions that 
students are expected to engage in for successful implementation. These 
are aspects of the achieved curriculum. 

 

Table 8. Example Rubric Descriptors for Levels of Fidelity, Structural-Educative Component. 

Educative: These components state the developers’ expectations for what the user (instructor) 
needs to know relative to the intervention. 

 High Level of Fidelity Moderate Fidelity Low Level of Fidelity 
Users’ 
proficiency in 
math content  

Instructor is proficient to 
highly proficient in the 
subject matter.  

Instructor has some gaps 
in proficiency in the 
subject matter.  

Instructor does not have 
basic knowledge and/or 
skills in the subject area.  

Users’ 
proficiency in 
content (CK), 
pedagogical 
(PK), and 
technological 
knowledge 
(TK) 

Instructor regularly 
integrates content, 
pedagogical, and 
technological 
knowledge (TK) in 
classroom instruction. 
Communicates with 
students through WATS. 

Instructor struggles to 
integrate CK, PK, and 
TK in instruction. 
Occasionally sends 
digital messages to 
students using WATS 
tools.  

Instructor CK, PK, 
and/or TK sparse or 
applied in a haphazard 
manner in classroom 
instruction. Rarely uses 
WATS tools to 
communicate with 
students.  

Users’ 
knowledge of 
philosophy 
behind the 
intervention 

Instructor understands 
philosophy of WATS 
resources (practice 
items, "mastery 
mechanics," analytics, 
and coaching tools),  

Instructor is aware of it, 
but understanding of the 
philosophy of WATS 
tool has some gaps.  

Instructor is not aware 
of or does not 
understand philosophy 
of WATS resources.  

Users’ 
knowledge of 
requirements 
of the 
intervention* 

Instructor understands  
the purpose, procedures, 
and/or the desired 
outcomes of the project 
(i.e., "mastery") 

Instructor understanding 
has some gaps (e.g., 
may know purpose, but 
not all procedures, or 
desired outcomes).  

Instructor does not 
understand the purpose, 
procedures, and/or 
desired outcomes. 
Problems are typical.  

* Note: Disagreeing is okay, this is about instructor knowledge of it. 
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Defining and Refining Measures for the Fidelity of Implementation Rubric 
The ultimate purpose of a fidelity of implementation rubric is to unpack and articulate the 

conditions of implementation and the relationship between those conditions and impact on 
student achievement. In addition to allowing identification of alignment between developer 
expectations and classroom enactment, an examination of implementation provides the 
opportunity to discover where productive adaptations may be made by instructors, adaptations 
that boost student achievement beyond that associated with an implementation faithful to the 
developers’ view.  

In using the rubric, we assign a number to each level of fidelity for each teacher across the 
year of data collection. This can be as simple as the approach shown in Table 8, a 3 for a high 
level of fidelity, 2 for a moderate level of fidelity, or a 1 for a low level. The general score for a 
teacher-level index of implementation fidelity will be the total number of points assigned in 
completing the rubric as a ratio of the total possible. At a more detailed level, once we have 
completed rubric analysis to create the row by row scores for each instructor, these scores will be 
used as a vector of values in statistical modeling of the impact of the intervention as part of a 
“specific fidelity index” (Hulleman & Cordray, 2009).  

We are at the beginning of addressing Research Question 2: What challenges to use-as-
intended (by developers) are faculty encountering and how are they responding to the challenges 
as they implement the WATS tool? To date, analysis of observations, interviews, and weekly 
logs has provided the opportunity to discover instructional orientations. Several orientations are 
emerging from analysis now and include a “denial” orientation in which instructors see the 
WATS as no different from themselves as a teacher, a “polarized” orientation where an 
instructor is either indifferent (no/low expectations for success) or enthusiastic (high/excessive 
expectations for success) about the power of student engagement with the WATS, a “cautious 
optimism” in which the instructor sees the WATS as one tool in a collection of resources to be 
used strategically in designing instruction, or an “adaptation” orientation in the sense that the 
instructor sees the WATS as a resource for which appropriate instructional use is negotiated with 
and through the students’ goals for interaction with the software in the context of the algebra 
course. In addition to the fidelity scoring of alignment between developer expectations and 
classroom enactment, these orientations may serve to explain the relationship between 
implementation and impact, getting at how and for whom WATS are most effective. 

 
Next Steps 

 
As indicated above, we will continue this study with a second cohort of new participants in 

the 2016-2017 academic year. Our specific objectives in the coming six months are to complete 
the second cohort’s efficacy semester, generate fidelity indices for each instructor in each 
cohort, and complete separate and collective statistical modeling explorations. 

Implications for practice. Though the study is ongoing, the early results might be considered 
promising. If the question is: Should I use a WATS? The answer is: It depends. Taking into 
account the potentially biased statistical impact results to date and the exploration of variation 
in instructor implementation, it appears likely that an orientation of “cautious optimism” or 
“adaptation” may be required for a dynamic WATS tool like the one in the study to have 
significant impact on student learning.   

Implications for research. A mixed-methods study like the one reported here is large and 
complex. We note here that there were significant challenges in recruiting and retaining 
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community college mathematics faculty for the project. To build community and assist in future 
research efforts in two-year colleges (and as part of our dissemination about the work) we have 
targeted outlets read by community college faculty (e.g., MathAMATYC Educator – a journal 
of the American Mathematical Association of Two Year Colleges). It is important for 
practitioners and potential participants in studies on research in undergraduate mathematics 
education to be aware of research and the enormous contributions they can make to it. 
Secondly, a major implication for research (for us) was the work in managing all the data 
generated by the project. The reader is encouraged to review the piece by our colleague Aleata 
Hubbard that also was presented at the conference, Data Cleaning in Mathematics Education 
Research: The Overlooked Methodological Step. 
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“Explanatory” Talk in Mathematics Research Papers 
 

Juan Pablo Mejía-Ramos                  Matthew Inglis 
 Rutgers University  Loughborough University 

In this paper we explore the ways in which mathematicians talk about explanation in their 
research papers. We analyze the use of the words explain/explanation (and various related 
words) in a large corpus of text containing research papers in both mathematics and physical 
sciences. We found that mathematicians do not frequently use this family of words and that their 
use is considerably more prevalent in physics papers than in mathematics papers. In particular, 
we found that physicists talk about explaining why disproportionately more often than 
mathematicians. We discuss some possible accounts for these differences. 

Key words: corpus linguistics, mathematical language, mathematical explanation. 

The notion of explanation in mathematics has received a lot of attention in both mathematics 
education and the philosophy of mathematics. In mathematics education, scholars have been 
particularly interested in proofs that explain mathematical theorems (i.e. proofs that provide an 
insight into why a mathematical claim is true) and their role in the mathematics classroom (e.g. 
Hanna, 1990). Philosophers of mathematics have discussed at length possible equivalents for 
mathematics of existing philosophical theories of scientific explanation (e.g. Steiner, 1978). 
Some of these discussions bring to bear the extent to which explanation is relevant to the actual 
practice of mathematicians and often cite individual mathematicians’ views on mathematical 
explanation. In this report we explore the extent to which mathematicians talk about explanation 
in their research papers, and the ways in which they do so. 
 

Literature review 

In an influential paper in mathematics education, de Villiers (1990) argued that proof serves 
several different roles in mathematics, that proof is not only used in mathematics as a way to 
verify results, to provide conviction of the truth of those results (see also Bell, 1976). One of 
those other functions of proof was to explain mathematical results, to provide an insight or 
understanding into why these results were true, as opposed to just evidence in support of that 
result. Hanna (1990) made a similar distinction in the context of the teaching and learning of 
mathematics, discussing the idea that certain proofs fulfilled this explanatory function better than 
others, to the point that among the set of all proofs one could identify proofs that explain why a 
theorem is true, while others simply demonstrate that a theorem is true. Mathematics educators 
have generally suggested that in the mathematics classroom, mathematical explanation should be 
an important, if not the primary role of proof (de Villiers, 1990; Hanna, 1990; Hersh, 1993).  

This distinction between proofs that explain and proofs that demonstrate has a longer history 
in the philosophy of mathematics. Steiner (1978) put forward a model of mathematical 
explanation, arguing that an explanatory proof could be better defined in terms of what he called 
a characterizing property of a concept in the theorem, as opposed to other alternative defining 
characteristics such as the abstractness or the generality of the proof. Steiner’s top-down 
approach to modeling mathematical explanation by providing a general definition of explanatory 
proof (and thus creating an absolute distinction between explanatory and non-explanatory 
proofs) has been criticized by other philosophers of mathematics. In particular, Hafner and 
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Mancosu (2005) argued that ascribing explanatoriness to specific proofs should be done based on 
practicing mathematicians’ evaluations, not philosophers’ own intuitions (such as Steiner’s). The 
extent to which practicing mathematicians not only agree with philosophers’ characterization of 
mathematical explanation, but simply talk about explanation in their practice plays an important 
role in the general argument for the existence of explanation in mathematics (which not all 
philosophers believe). As such, it is not uncommon for philosophical discussions of 
mathematical explanation to mention how much mathematicians talk (or do not talk) about it. 
For example, Steiner claimed that “mathematicians routinely distinguish proofs that merely 
demonstrate from proofs which explain” (p.135). However, there is sharp disagreement 
regarding the extent to which mathematicians explicitly discuss such distinctions, or the notion 
of explanation in general. For instance, Resnik and Kushner (1987) claimed that mathematicians 
“rarely describe themselves as explaining” (p. 151), and Hafner and Mancosu (2005) responded 
stating that “[c]ontrary to what Resnik and Kushner claim (p. 151), mathematicians often 
describe themselves and other mathematicians as explaining” (p. 223, emphasis on the original). 
Hafner and Mancosu (2005) supported this claim by presenting several examples of what they 
called “explanatory” talk in mathematical practice: passages of research mathematics papers in 
which the authors explicitly discuss the role of explanation in their own work. However, this 
kind of evidence is not sufficient to settle the disagreement. Indeed, the specific cases discussed 
by Hafner and Mancosu have been interpreted in significantly different ways: 

“I believe that detailed case studies, such as those by Hafner and Mancosu (2005), decisively 
refute Resnik’s and Kushner’s [claim]” (Lange, 2009, p. 203, our emphasis). 

“Though philosophers have lately been pointing out some exceptions, the examples tend to 
be rather exotic (e.g., in Hafner and Mancosu 2005). There has been no systematic analysis 
of standard and well-discussed texts illustrating any pattern of mathematical explanations.” 
(Zelcer, 2013, 179-180) 

We agree that a systematic analysis of the type suggested by Zelcer (2013) is necessary to 
address this issue. Overton (2013) performed one such analysis in the context of scientific 
discourse. He analyzed all regular articles published in the journal Science in a one year period (a 
total of 781 papers and approximately 1.6 million words), searching for all “explain” words 
(defined to be one of the following words: explain, explains, explained, explaining, explainable, 
explanation, explanations, unexplained, unexplainable, explicate, explicates, explicated, 
explicable, inexplicable) and comparing their frequencies to those of other types of words. 
Overton (2013) found that approximately 45% of the 781 papers contained at least one “explain” 
word (with a total of 368 explain words per million words in his sample of papers) and 
concluded: “The numbers for “explain” are perhaps surprisingly low if scientific journals are 
vehicles for explanations. […] The observed frequencies of “explain” words suggests that 
explanation is only moderately important in science.” (p. 1387) 
 Our goal in this paper is to report a similar analysis in the context of mathematics. One 
method of studying mathematical discourse at such a scale is to use the techniques of corpus 
linguistics, a branch of linguistics that statistically investigates large collections of naturally 
occurring text, known as corpora. Methods developed by corpus linguists can be used to 
investigate many different types of linguistic questions. Here, we report a study that employs 
some of these techniques to address the following questions: to what extent do mathematicians 
discuss explanation in their research papers, how does it compare to the extent to which they 
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discuss other important related notions (such as proving theorems), and how does it compare to 
discussions about explanation in other types of scientific discourse? 
 

Theoretical perspective 

Discussions about mathematical explanation tend to differentiate between explanations of other 
mathematics (i.e. mathematics X explains mathematics Y, or X is an explanatory proof of 
theorem Y), and explanations of physical phenomena (i.e. mathematics X explains physical 
phenomenon Y). Colyvan (2011) refers to these two types of explanation as intra-mathematical 
and extra-mathematical, respectively. Here we focus on intra-mathematical explanations.  

Hafner and Mancosu (2005) further differentiated between two uses of intra-mathematical 
explanations: those that are “instructions” on how to master the tools of the trade (as in 
explaining how to employ a certain mathematical technique), and those that “call for an account 
of the mathematical facts themselves, the reason why” (p. 217). While Hafner and Mancosu 
considered the latter to be a “deeper” use of mathematical explanation, which is also the focus of 
the larger philosophical discussion around explanatory proofs, others have emphasized the 
importance of the former type of explanation in mathematical practice. For instance, Rav (1999) 
insisted that one of the main reasons mathematicians read proofs is because of all the 
mathematical know-how embedded in them, emphasizing the mathematical methodologies and 
problem solving strategies/techniques contained in proofs. According to Rav, “proofs are for the 
mathematician what experimental procedures are for the experimental scientist: in studying them 
one learns of new ideas, new concepts, new strategies—devices which can be assimilated for 
one's own research and be further developed.” (p. 20) Indeed, there is empirical evidence (from 
both small scale interview studies and large scale surveys) that mathematicians maintain that one 
of the main reasons they read proofs is to gain insights into how they can solve problems that 
they are working on (Weber & Mejía-Ramos, 2011, Mejía-Ramos & Weber, 2014). 

An interesting question related to the specific ways in which mathematicians talk about 
explanation in their papers (to the extent that they do), relates to these two types of 
“explanatory” talk: to what extent do mathematicians discuss explanations of why a certain 
mathematical statement is true, compared to their talk about explanations of how to do something 
in mathematics?  

 
Methods 

One of the main ways in which mathematicians around the world communicate about 
mathematics is through research papers stored in the ArXiv. The ArXiv is an online repository of 
electronic preprints of scientific papers in the fields of mathematics, physics, astronomy, 
computer science, quantitative biology, quantitative finance, and statistics. These papers 
constitute a large corpus of scientific text that can be used to analyze mathematical discourse. 

We downloaded the bulk source files (mostly TeX/LaTeX) and converted the source code to 
plain text, which we could then analyze using standard software packages for corpus analysis (all 
analyses reported in this paper were performed using CasualConc, version 2.0.3). We then sorted 
these articles based on their primary and secondary subject classification (Alcock et al., 2017, 
discussed the details about the processing of these source files). The analyses reported in this 
paper are based on a proper subset of this corpus, containing all mathematics and physics articles 
(based on their primary subject classification) uploaded in the first eight months of 2009. In the 
first part of the paper we focus on articles uploaded in the first four months of 2009. After 
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analyzing these articles, we performed these same analyses on the papers uploaded in the 
following four months of 2009 (May through August), in search of further evidence supporting 
our findings. 
 

Results 

Table 1 presents the number of physics and mathematics papers (as well as the number of words1 
in each set of papers) uploaded in January-April and May-August of 2009. We notice that 
researchers uploaded to the ArXiv approximately 2.4 times as many physics papers as 
mathematics papers in these eight months. We also notice that on average physics papers 
contained approximately 5000 words, whereas on average mathematics papers contained roughly 
6200 words. 
 

 January-April 2009 May-August 2009 

 
#papers #words #papers #words 

Mathematics 5,087 30,892,695 4,970 31,289,569 
Physics 11,787 58,859,660 12,370 62,807,075 

Table 1. Number of papers and words in the physics and mathematics corpora 

Frequency of explicit “explanatory” talk in the January-April 2009 papers 
Following Overton (2013), we defined explain-words to be one of 18 words linguistically 

related to the word explain (henceforth explain-words)2: 
Explain-words: explain, explains, explained, explaining, explainable, explanation, 

explanations, explanatory, unexplained, unexplainable, explicate, 
explicates, explicated, explicating, explicable, inexplicable, explication, 
explications. 

Table 2 shows the frequencies of explain-words in our corpus of 5087 mathematics papers 
and 11787 physics papers uploaded between January and April of 2009. Explain-words showed 
up a total of 4910 times in the mathematics papers (around 159 times per million words), an 
average of 0.97 times per paper, with 1898 of mathematics papers (approximately 37%) in this 
sample containing at least one explain-word. While this certainly provides an existence proof of 
explicit “explanatory” talk in this corpus, it is not very surprising (it would very rare if no word 
based on the word explain showed up in these many mathematics papers). In comparison, 
explain-words showed up 21345 times in the corresponding set of physics papers (around 363 
times per million words), an average of 1.81 times per paper, with 6499 of these papers (roughly 
55% of the physics papers) containing at least one explain-word. We see that the number of 
explain-words per million words in the physics papers is around 2.28 times that of the 
mathematics papers. 
                                                
1 A word here is any string of characters between spaces. Importantly, as discussed in Alcock et al. 
(2017), for these analyses we opted to replace all occurrences of inline mathematics with the string 
“inline_math” and count it as one word. For instance, the string “Let !:!!! → !! be a bijection” in a paper, 
coded in LaTeX by the authors as “Let $f:X\rightarrow Y$ be a bijection”, would have been translated to 
text as “Let inline_math be a bijection” and coded as having 5 words. 
2 We added explanatory, explication, explications, and explicating to the 14 words in Overton’s (2013) 
analysis. 
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Table 2. Frequency and frequency per million words of explain-words appearing in the  
January-April mathematics and physics papers 

In order to get a sense of the extent to which these frequencies were high or low in this type 
of mathematical discourse, we compared them against the frequencies of words related to other 
important mathematical activities. Table 3 presents the frequencies of words linguistically related 
to the notions of conjecturing, defining, modeling, proving, showing, and solving.  

Conjecture-words: 3 conjecture, conjectured, conjectures, conjectural, conjecturally, 
conjecturing. 

Define-words:  defined, define, definition, defines, definitions, defining, definable, 
undefined, redefine, redefined, definability, redefinition, definably, 
redefining, welldefined, definedness, interdefinable, predefined, 
redefinitions, interdefinability, redefines, definitional, definitionally, 
undefinability, undefinable. 

Model-words: model, models, modeled, modeling, modelled, modelling, 
countermodel, submodel, submodels, modelized, modelization, 
modelisation, modelize, modelizing, countermodels, premodel, 
remodeled. 

                                                
3 For each group, words are listed in order of frequency, with the most frequent words in the group listed 
first. The italicized words in each group make up 95% of all instances of words from that group appearing 
in the mathematics papers uploaded in the first four months of 2009. 

 Mathematics Physics 
 frequency per million frequency per million 

explain 1827 59.14 
54.7 

7768 131.97 
explained 1690 54.71 

 
6513 110.65 

explanation 498 16.12 3564 60.55 
explains 484 15.67 1601 27.20 
explaining 175 5.66 914 15.53 
explanations 119 3.85 675 11.47 
explanatory 51 1.65 62 1.05 
unexplained 22 0.71 177 3.01 
explication 13 0.42 4 0.07 
explicated 10 0.32 15 0.25 
explicate 6 0.19 5 0.08 
explicating 5 0.16 0 0.00 
unexplainable 4 0.13 8 0.14 
explications 4 0.13 2 0.03 
explainable 1 0.03 23 0.39 
explicates 1 0.03 1 0.02 
explicable 0 0.00 9 0.15 
inexplicable 0 0.00 4 0.07 

Total 4910 158.94 21345 362.64 
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Prove-words: proof, prove, proved, proves, proofs, proving, proven, provable, 
reprove, disprove, provability, provably, reproved, disproved, 
unprovable, unproven, reproving, disproving, reproves, prover, 
unproved, subproof, disproof, disproven, disproves, reproven. 

Show-words:  show, shows, shown, showed, showing. 
Solve-words:  solution, solutions, solve, solving, solvable, solved, solves, resolvent, 

solvability, subsolution, resolved, resolving, supersolution, resolve, 
solver, resolvents, unsolved, resolves, solvers, nonsolvable, 
supersolutions, subsolutions, unresolved, nonsolvable, unsolvable, 
cosolvable, equisolvable, supersolvable, unsolvability. 

 We note that measured against these other frequencies, mathematicians used explain-words 
rather infrequently. For instance, mathematicians used explain-words in their papers 
approximately 12 times less frequently than show-words and nearly 23 times less often than 
prove-words. 

 frequency per million per paper in #papers in %papers 
define 124129 4018.07 24.40 4838 95% 
prove 111838 3620.21 21.99 4710 93% 
show 59359 1921.45 11.67 4691 92% 
solve 53013 1716.04 10.42 3073 60% 
model 23658 765.81 4.65 2013 40% 
conjecture 8362 270.68 1.64 1413 28% 
explain 4910 158.94 0.97 1898 37% 

Table 3. Frequencies (including frequencies per million words and per paper) of words 
related to explaining, conjecturing, defining, modeling, proving, showing, and solving in the 

January-April mathematics papers. The last two columns provide the number of papers 
containing at least one word in that group and the percentage of such articles 

Finally, the search for explain-words may be thought of as requiring an extremely explicit 
discussion of explanation, one that would leave unnoticed a significant amount of the 
“explanatory” talk in these papers. Hafner and Mancosu (2005) offered a list of eight 
expressions that they had found to be commonly used in the mathematics and philosophy of 
mathematics literature to describe the search for explanations. Table 4 presents these expressions 
along with the specific concordance search we made to investigate their prevalence in both the 
mathematics and physics papers, and the frequencies with which these alternative expressions 
appeared. We note that the total number of occurrences of these expressions is only about 10% 
of the total amount of explain-words in each set of papers (with disproportionately more 
occurrences of these expressions in the physics papers than the mathematics ones) and thus this 
analysis does not affect the finding made by only investigating the use of explain-words. 

Based on these results, we also conclude that Hafner and Mancosu (2005) may have grossly 
overestimated how common these expressions are in mathematics research papers. We are also 
left wondering to what extent such common alternative expressions exist. 
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Alternative expression Concordance search Mathematics  Physics 
"the deep reasons" deep* reason* 5 16 
"an understanding of the essence" understand* the essence 0 5 
"a better understanding" better understand* 161 767 
"a satisfying reason" satisfy* reason 0 0 
"the reason why" reason* why 312 924 
"the true reason" true reason 3 1 
"an account of the fact" an account of the fact 0 0 
"the causes of" cause* of 16 609 

 
Total 497 2322 

Table 4. Frequencies of alternative expressions of related to “explanatory” talk in the 
January-April mathematics and physics papers 

Explaining why vs. explaining how 
In order to investigate mathematicians’ discussion of explanations of why a certain 

mathematical statement is true (Hafner and Mancosu’s “deep” explanation), in comparison to 
their talk about explanations of how to do something in mathematics (related to Rav’s notion of 
mathematical know-how), we created a concordance of the corpus of papers and identified every 
instance an explain-word had been immediately followed by the words why or how (e.g. 
unexplained why, explanation how). We did this by searching the concordance for *expla* why 
and *expla* how, and checking that all results were indeed uses of explain-words. We then 
repeated the process with the corpus of physics papers. As, shown in Table 5, there is a clear 
difference between the ways that explain-words show up in the mathematics and the physics 
research papers. 

     
 Mathematics Physics 

 
frequency per million frequency per million 

*expla* why 247 7.99 952 16.17 
*expla* how 458 14.83 353 6.00 

Total 705 22.82 1305 22.17 

Table 5. Frequencies and frequencies per million words of explain-words immediately followed 
by the words why or how in the January-April mathematics and physics papers 

We note that when taken together the total of *expla*-why and *expla*-how expressions 
were roughly as common in math papers as they were in physics papers, with approximately 22 
of these expressions showing up per million words in each set of papers, and also a relatively 
small subset of the wider use of explain-words (roughly 14% and 6% of explain-word usage in 
mathematics and physics, respectively). However, the distribution of these two different types of 
expressions in the two sets of papers was significantly different (Fisher’s exact test, p < .001), 
with mathematicians using nearly twice as many *expla*-how expressions as *expla*-why 
expressions, and physicists on the other hand using between two and three times as many 
*expla*-why expressions as *expla*-how expressions. 
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Frequency of explicit “explanatory” talk in the May-August 2009 papers 
A valuable outcome of having access to such large corpora of scientific writing, and the 

means to analyze them, is that we can parse these corpora and use certain parts for exploratory 
and other parts for confirmatory purposes. As such, having conducted the previously reported 
analyses on the mathematics and physics papers uploaded to the ArXiv between January and 
April 2009, we then performed these analyses on the papers uploaded between May and August 
of that year. Table 6 presents the frequencies of explain-words appearing in this new set of 
mathematics and physics papers, while Table 7 presents the frequencies of explain-words 
immediately followed by the words why or how in these set of papers. 

 

 

Table 6. Frequency and frequency per million words of explain-words appearing in the  
May-August mathematics and physics papers 

 Mathematics Physics 

 
frequency per million frequency per million 

*expla* why 277 8.85 970 15.44 
*expla* how 526 16.81 464 7.39 

Total 803 25.66 1434 22.83 

Table 7. Frequency and frequency per million words of explain-words immediately followed by 
the words why or how in the May-August mathematics and physics papers 

 Table 6 reveals the same pattern of frequencies explain-words as those presented in Table 2. 
Indeed, the same five explain-words (explain, explained, explanation, explains, and explaining) 
made up 95% of all explain-words in each set of papers. Furthermore, the number of explain-

 Mathematics Physics 
 frequency per million frequency per million 
explain 1881 60.12 7974 126.96 
explained 1841 58.84 6596 105.02 
explanation 537 17.16 3788 60.31 
explains 525 16.78 1694 26.97 
explaining 166 5.31 954 15.19 
explanations 98 3.13 740 11.78 
explanatory 36 1.15 78 1.24 
unexplained 19 0.61 159 2.53 
explication 1 0.03 5 0.08 
explicated 6 0.19 12 0.19 
explicate 6 0.19 12 0.19 
explicating 0 0.00 5 0.08 
unexplainable 0 0.00 1 0.02 
explications 2 0.06 5 0.08 
explainable 1 0.03 24 0.38 
explicates 0 0.00 0 0.00 
explicable 0 0.00 24 0.38 
inexplicable 1 0.03 12 0.19 

Total 5120 163.63 22083 351.60 
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words per million words was very similar in each set of papers (going from 158.94 to 163.63 in 
mathematics, and from 362.64 to 351.60 in physics), with the number of explain-words per 
million words in the physics papers being around 2.15 times that of the mathematics papers. 
 Similarly, the frequencies presented in Table 7 are consistent with those in Table 5: there was 
a similar number of *expla*-why and *expla*-how expressions per million words in each 
discipline (25.66 in mathematics, and 22.83 in physics paper), but there was a significantly 
different distribution of these two different types of expressions in the two sets of papers 
(Fisher’s exact test, p < .001), with mathematicians using nearly twice as many *expla*-how 
expressions as *expla*-why expressions, and physicists on the other hand using a little over 
twice as many *expla*-why expressions as *expla*-how expressions.  
 

Discussion 

Our analysis of “explanatory” talk in a large sample of mathematics papers does not offer 
support for a claim often made in the philosophy of mathematics: that this type of talk is 
prevalent in mathematical discourse. When compared to explicit discussion of other related 
mathematical practices (e.g. showing results, solving problems, and proving theorems), 
mathematicians do not seem to discuss explanation nearly as much. Furthermore, when 
compared to another scientific discourse, we found that mathematical discourse contains only a 
fraction of “explanatory” talk as research papers in physics. Indeed, we believe these findings 
suggest that the prevalence of “explanatory” talk in mathematical discourse has been widely 
exaggerated. 

Furthermore, by analyzing the frequency with which variations of the expressions explain 
why and explain how occur in mathematics and physics research papers, we found that, to the 
extent to which they engage in “explanatory” talk, mathematicians seem to be much more 
interested in discussing explanations of how to do something in mathematics, than in 
explanations of why things are the way they are in mathematics. In physics we found the 
situation to be the opposite. This is particularly interesting given mathematics educators’ and 
philosophers’ of mathematics preoccupation with the type of intra-mathematical explanations of 
the form X explains why Y (where X and Y are mathematical assertions), and particularly with 
the notion of explanatory proofs (in which proof X explains why theorem Y is true). This focus 
may have been inherited from the more traditional study of the notion of scientific explanation, 
which is not only naturally concerned with this type of explanations (the desire to explain the 
real world is full of why-questions), but according to our findings may also be more commonly 
discussed in scientific discourse in terms of answers to why-questions. However, our findings 
suggest that this focus may also be misguided for those interested in studying the notion of 
mathematical explanation as it more commonly occurs in the discourse of professional 
mathematicians. Indeed, as suggested by Rav (1999), it seems that when it comes to proofs and 
explanations, mathematicians are primarily interested in learning how to solve other problems, 
possibly over learning the reasons why some mathematical results hold true. 

Now, one must be careful about several inferential jumps made in this kind of analysis. First, 
while the ArXiv may well be the largest, most widely used repository of this type of preprints 
and postprints in the world, we have analyzed a very specific type of mathematical discourse, 
leaving open the possibility that studies of mathematical discourse in others settings 
(conversational or other digital communications) could lead to contrasting findings. Second, we 
have analyzed these research papers for a limited type of “explanatory” talk, one required to 
contain explain-words or a limited number of alternative, related expressions. While this was an 
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obvious place to start to investigate “explanatory” talk in mathematical discourse, it is certainly 
possible that the analysis of other expressions related to mathematical explanation may skew our 
results. These limitations of the present study indicate clear avenues for future empirical research 
on mathematical explanation. 
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How Limit can be Embodied and Arithmetized: A Critique of Lakoff and Núñez 
 

Tim Boester 
University of Illinois at Chicago 

In Where Mathematics Comes From, Lakoff and Núñez (2001) describe how the notions of 
infinity and limit can be constructed through metaphorical extensions of embodied experiences. 
This paper will critique their historical and psychological analysis, revealing an unresolved 
tension between a simplified, geometric “approaching” conception and the arithmetization of 
calculus by Weierstrass. A proposal of how to rectify this conflict through acknowledging how 
novices can metaphorically tie these concepts together is discussed. 

Key words: Embodied Cognition, Limit, Infinity 

Lakoff and Núñez created a detailed guide of how humans learn mathematical ideas through 
the principles of embodied cognition in Where Mathematics Comes From (2001). From 
constructing a foundation of grounding metaphors directly connected to embodied experiences, 
to extending mathematical ideas beyond what can be directly experienced (such as the concept of 
infinity), the authors created a new theoretical paradigm for mathematics education research. The 
work, however, has also been criticized most notably for the inadequacies of their “mathematical 
idea analysis” methodology (Schiralli & Sinclair, 2003). It is long overdue that we follow the 
advice of these critics and attempt to solidify the metaphorical construction of the mathematical 
concepts that form the building blocks of their work, so that we as a field can continue to 
conduct embodied cognition mathematics education research on the firmest foundation possible. 

Limit Conceptualization: A Brief History 

In particular, an unresolved tension exists between how Lakoff and Núñez connect the two 
different ways a student could conceptualize limit, through either a dynamic conception or a 
static conception (Cornu, 1992). The dynamic conception is a motion-based idea of limit, 
frequently expressed using dynamic language such as “approaching”. Graphically, this is 
demonstrated by moving a point along a graph towards another point for the limit of a function. 
The static conception, on the other hand, forgoes all motion in order to describe limit in terms of 
closeness through the coordination of intervals. This is expressed through static language such as 
“is close to” or “within the range of”. Graphically, this is demonstrated through intervals on each 
axis for the limit of a function. 

The underlying difficulty with Lakoff and Núñez’s approach is that they conflate these two 
possible conceptions of limit. The following sections explore in detail the how and why they do 
this, and the difficulties associated with this approach, but there are a couple of general problems 
that should be addressed at the outset. 

First, this approach is historically inaccurate. Limits were originally conceived of in terms of 
fluxions, or what we now think of as infinitesimals, which is a different sort of hand-waving than 
approaching, but it caused similar problems in terms of formality (Kleiner, 2001). Cauchy and 
Weierstrass later formalized the work of Newton and Leibniz (Grabiner, 1992a) by eliminating 
the crutch of fluxions and requiring the coordination of two small intervals for the limit of a 
function at a point. One interval’s radius, signified by the Greek letter delta (

� 

δ), surrounds the 
input or x-value, while the second interval’s radius, represented by the Greek letter epsilon (

� 

ε), 
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surrounds the output or result of the function applied to the x-value. The coordination of the two 
intervals is accomplished through the logical quantification portion of the definition: for any 
epsilon, there exists a delta, such that if the input value is within the delta interval, then the 
output value must be within the epsilon interval. These intervals are symbolized through the 
distance interpretation of the absolute value, while the logical quantification uses common 
logical symbols for “for any,” “there exists,” and the “if …, then …” structure. Conflating the 
dynamic and static conceptions of limit misses the historical context of how the static conception 
was the solution to the informalities of another conception. 

Second, and more important in terms of a theory of cognition, conflating these conceptions is 
also problematic because, if these two conceptions were one and the same, we’d see evidence of 
that in student thinking, and we don’t. The trajectory of mathematics education research of limit 
began with an initial focus on establishing misconceptions in undergraduates’ understanding of 
limit (Bezuidenhout, 2001; Davis & Vinner, 1986; Tall & Vinner, 1981), which then evolved 
into proposals on how students might build appropriate conceptions of limit (Cottrill et al., 1996; 
Lakoff & Núñez, 2001; Williams, 1991, 2001). These proposals brought about several more 
studies yielding successful interventions into students’ limit conceptions (Boester, 2010; 
Oehrtman, 2009; Roh, 2008, 2010; Swinyard & Larsen, 2012). While there are unresolved 
questions concerning the relationship between the dynamic and static conceptions of limit, 
altogether, the entire body of mathematics education limit research on limit has this difference 
between the dynamic and static conceptions as their most basic finding. Students simply treat 
these conceptions as fundamentally different. 

Certainly, a robust conception of limit most likely contains both a dynamic aspect and a static 
aspect, but that does not mean that they are the same. Conversely, this doesn’t necessarily mean 
that embodied cognition is flawed, simply that it has been misapplied to explain how we 
conceptualize limits. The difficulties encountered by conflating these conceptions of limit will 
hopefully provide a guide to appropriately apply embodied cognition to motivate and ultimately 
coordinate both conceptions into a solid metaphorical framework. 

Conceptualizing Limit Through the BMI 

Before introducing the concept of limit, Lakoff and Núñez first discuss how we as humans 
can conceptualize infinity. All mathematical ideas that are not taken directly from embodied 
experiences must be built through metaphorical extensions. This is particularly important here, 
because infinity does not actually exist in the universe. Since we can’t directly experience 
infinity, we have to use metaphors in order to conceptualize it. 

Infinity is commonly thought of as an infinitely continuous process, one which goes on 
forever. In order to motivate this specific type of process, which cannot actually occur, Lakoff 
and Núñez propose a particular metaphorical leap in our thinking: finite iterative processes can 
be thought of as infinite iterative processes, which in turn can be thought of as infinitely 
continuous processes. For example, we can begin with “jump”, an inherently “perfective” 
process, which means it has an end, a completion. Each jump has an end state. But if you 
describe someone as “jumping and jumping and jumping”, we tend to assume this means an 
indefinite number of jumps. So while “jump” is a finite iterative process, “jumping and jumping 
and jumping” is an infinite iterative process. We can then extend this thinking further to 
“swimming”, an imperfective process which has no designated end. Thus “swimming and 
swimming and swimming” is an infinitely continuous process. 
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Now of course, a person cannot go on swimming forever, but Lakoff and Núñez argue that 
we can create a metaphorical leap to think about what that would look like, as swimming is a 
continuous activity, and what could happen at the end of such an infinite process, which moves 
us from a potential infinity to actual infinity. 

 

 
Figure 1. The basic metaphor of infinity (Lakoff and Núñez, 2001, p. 159). 
 

With the basic metaphor of infinity (BMI) in place, Lakoff and Núñez are ready to introduce 
limit by first discussing a one-dimensional limit: an infinite sequence along a number line that 
approaches a particular number (the limit). The traditional, formal definition of limit in terms of 
sequences is: the sequence xn{ }  has L as a limit if, for each positive number ε , there is a 
positive integer n0  with the property that xn − L < ε  for all n ≥ n0  (pp. 189-90). Unfortunately, 
this definition cannot use the BMI directly, because there is nothing being iterated. That’s 
important because the basic metaphor of infinity relies on iteration (the jumping). Because the 
basic concept of limit includes infinity, the authors need to use the BMI here, but because the 
BMI relies on iterative processes, they need a definition of limit where something iterates. 

Thus, the definition they create relies on nested sets, whose iterative quality can be directly 
connected to the BMI: 0 < r < xn − L , where Rn  is the set of all values r bounded between zero 
and xn − L . As xn − L  gets smaller, the range of values in Rn  gets smaller. Since the size of the 
sets Rn  is decreasing, these sets can be nested: Rn+1 ⊂ Rn . This chain of nested sets is then used 
in the BMI to obtain the limit (where the “last” nested set, R∞ , would be the empty set). Lakoff 
and Núñez take the expression 0 < r < xn − L  to be synonymous with xn − L < ε  so that we can 
then extend the BMI to cover the standard formal definition. 

In summary, Lakoff and Núñez are required to use the BMI to explain the concept of limit, 
because limit utilizes the concept of infinity. Because infinity does not exist in reality, this 
presents a critical challenge to a theory of mathematics that is entirely based on real-world, 
embodied experiences, hence the necessity of the BMI. But the BMI uses indefinite iterative 
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processes, and the standard formal definition of sequences does not. So the authors need to 
formulate a new definition which does, hence nested sets. These nested sets can be plugged into 
the BMI as an indefinite iterative process, and thus be used to explain our conception of limit. 

Simple Approaching and the Nonnecessity of Nested Sets 

To demonstrate the process of approaching a limit, and how this utilizes the BMI, Lakoff and 
Núñez give an example sequence xn{ } = n n +1( ) . As n increases, the value xn  gets closer and 
closer to 1 (p. 187). 

 

 
Figure 2. Example monotonic sequence (Lakoff and Núñez, 2001, p. 189). 

 
This example is strictly monotonic, in that it creeps up on the limit in one direction, always 
getting closer and closer to 1, never farther away. This matches the smooth, motion-based 
“approaching” conception of limit. Taking smaller and smaller steps towards a wall would be a 
physical interpretation of the steps of this sequence. 

Notice that Lakoff and Núñez are using a very formal, very complicated argument here to 
justify not just limit, but the concept of approaching, labeled at the top of the above diagram. 
Unfortunately, there is no evidence in the limit research literature to support the conclusion that 
students think of approaching in this complicated, set-theoretic way. One could make the 
argument that perhaps this is what students are doing under the surface, and we just haven’t 
looked hard enough. Or that what Lakoff and Núñez describe is how experts think, but not 
students (although in that case, they don’t describe what students might be thinking or the 
process to go from a novice to expert perspective). 

The real problem here is that Lakoff and Núñez only have one definition for limit, and it 
must encompass both the dynamic and the static conceptions. Thus, it has to contain all of the 
formal pieces of the static conception, even when those pieces are overkill, like in the above 
example. In their attempt to mathematize the concept of “approaching”, they are completely 
ignoring the natural, physical-ness of approaching. What they are trying to do is characterize the 
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distance between you and the limit: the distance becomes smaller as you approach the limit. 
However, they use a complicated mathematical concept (nested sets) encoded in a complicated 
mathematical notation, when a description of “approaching” as simply going towards something 
would suffice. 

Overextending Approaching to Cover Complex Limits 

Not all sequences behave as nicely as the above example, however. Sequences (and 
functions) can approach limits in far more complicated ways than simply monotonically. 
Another example Lakoff and Núñez provide is what they call a teaser sequence. 

 

 
Figure 3. Example teaser sequence (Lakoff and Núñez, 2001, p. 193). 

 
This sequence converges indirectly but still has a limit. In terms of nested sets, one needs to pick 
particular xn  terms to ensure that Rn+1 ⊂ Rn . In this case, every other term would work 
(corresponding to the dotted lines in the above diagram). This improves their coverage of 
possible types of limit convergence, but does stretch the metaphorical interpretation of limits as 
“approaching”. This would correspond to a physical interpretation where, for each step taken 
towards a wall, a step a fraction of that size is taken going away from the wall (remembering that 
the steps overall are getting smaller and smaller).  

The physical interpretations of both monotonic and indirect convergence also illuminate 
another way that students may think of limit, as a barrier that cannot be crossed (Davis and 
Vinner, 1986). Mathematically, this is called a bound. Both examples presented thus far are 
bounded at the limit because they only approach from one direction. 

Lakoff and Núñez do not provide an example like an alternating sequence such as 
xn{ } = −1( )n n +1( ) , whose limit is neither an upper or lower bound. (The limit of this sequence 

is zero, but one could consider any sequence which “alternates” above and below a non-zero 
limit.) 
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Figure 4. Example alternating sequence. 
 

Having terms of the sequence on both sides of the limit is covered by the absolute value 
portion of the original formal definition of limit of a sequence: by making a range around L, it 
doesn’t matter if you are above L or below it, as long as you are no more than ε  away. Lakoff 
and Núñez also cover this possibility in their definition when they utilize absolute value notation 
for nested sets. Remember that the nested sets Rn  are defined as the sets of the values r can take 
when 0 < r < xn − L . However, none of the examples presented in the book necessitate the usage 
of absolute value in the definition, as all instances of xn  are less than L (thus simply writing 
0 < r < L − xn  would suffice). The above alternating sequence finally requires us to use the 
absolute value portion of the definition Lakoff and Núñez propose. But how does this example 
affect the meaning of “approaching”? 

While it is still possible to stretch this motion-based concept to include approaching from 
both sides, there are some important implications in doing so. First, as one will be approaching 
the limit from both sides, this example is difficult to conceptualize using the types of physically-
based interpretations used to ground the concept of “approaching”: it would be like trying to 
approach a wall from both sides simultaneously. Second, one would need to abandon the idea 
that the limit is a barrier or bound, because you would be (repeatedly) passing through it. You 
could not conceptualize the wall in our example as a barrier. Third, the sequence may equal the 
limit while it is “approaching” the limit. In taking the limit of the sequence xn = sin πn / 4( )( ) / n , 
there are many times where the sequence yields values that are zero. In fact, we don’t even need 
to turn to something as complicated as this: a constant sequence will equal its limit everywhere. 
This really challenges the concept of “approaching” the limit, since, for a constant function, you 
don’t actually move at all. 

These three implications push the “approaching” metaphor away from the natural, motion-
based conception of limit mentioned earlier. Of course, one might be able to create a convincing 
argument on how we can take a physical sense of approaching and stretch it or reinterpret it to 
cover the case of an alternating sequence, but then I’d just propose another sequence with more 
obscure “approaching” behavior. (This situation gets even more unacceptable with the definition 
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of limit for a function at a point, as we can consider examples that misbehave in spectacular 
ways, such as a function that is discontinuous everywhere but still has a limit at a particular 
point). We’d have to keep pushing and pushing on this physical sense of approaching when 
confronted with worse and worse sequences, making more and more special cases and 
reinterpretations for those sequences, until the concept of “approaching” is a litany of exceptions 
and really doesn’t connect with our embodied experiences much at all anymore. 

Conflating Approaching With the Formal Definition 

If Lakoff and Núñez want to stay with the embodied, motion-based “approaching” 
conception of limit, they need to stick with simple examples which are not stretched too far from 
normal experiences. However, in mathematizing these simple examples, they should not use the 
absolute value, because it is not necessary. This means that whatever mathematical definition 
they try to establish, based on the examples, it cannot use the absolute value, which means that it 
cannot duplicate the formal definition (Figure 5, argument one). 

If they want to motivate the formal definition, then they must use the absolute value as it 
appears in the formal definition when using the BMI. In order to motivate the usage of the 
absolute value, they need more complex examples which approach the limit from both sides. In 
doing this, they then must use much more complicated explanations of “approaching” than those 
which naturally arise because of the implications discussed above (Figure 5, argument two). 

The authors try to do both. Their bottom-up argument originates with the desire to motivate 
the formal definition using the BMI. They cannot do this without using the absolute value. 
However, working top-down they examine the “approaching” conception of limit and use 
examples which naturally tie into this conception. Unfortunately, there is no reconciliation 
between the simple examples and their usage of the absolute value (Figure 5, Lakoff and Núñez). 

 
Figure 5. Linking the informal, motion-based conception of limit with the formal definition. 
 

The way to fix this problem is to acknowledge that these two conceptions of limit are 
fundamentally different, they come from different things, they have different consequences, 
which means they should be built through separate metaphorical constructs. Traditionally, 
students first learn the dynamic conception, and we should base this on a natural metaphor of 
motion along a path. Next, students typically learn the static conception, which should be based 
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on its own metaphor for closeness. Lakoff and Núñez’s BMI-produced subset metaphor, one 
which is motion-free and emphasizes sets, is suitable for sequences, and a similar metaphor 
could potentially be used for the input-output relationship for functions. Then, students can use a 
final metaphorical association to combine both the static and dynamic conceptions into an 
overall conception of limit. 

 Approaching as Motion Along a Path 

At the beginning of their book, Lakoff and Núñez discuss grounding metaphors, those which 
directly access our physical, embodied experiences. One of those utilizes motion along a path, an 
experience that we have all had many times, starting from an early age, to build what is 
illustrated below, the Source-Path-Goal schema. A schema is a coordinated combination of 
several concepts, which here includes a source, a path, a trajector (you moving along the path), 
and the goal. I propose that this is the schema that students base their conceptual metaphor for 
approaching a limit, for both sequences and functions. 

 

 
Figure 6. Source-Path-Goal schema (Lakoff and Núñez, 2001, p. 38). 

 
Creating a metaphorical mapping from this schema to the limit of a function is more 

straightforward than a mapping to the limit of a sequence, as motion along a two-dimensional, 
continuous function is a more natural extension of motion along a path. If we think of a nicely 
behaved, prototypical function that has a limit at a point, then we can see how the parts of the 
Source-Path-Goal schema (left, Figure 7) can be mapped to the parts of “approaching” a limit of 
a function at a point (right, Figure 7). Your position on the function is the trajector, the goal is 
the x-value of the function being approached, the route is the path of the function’s graph, and 
the direction is getting closer to the limit. Your starting point is a little nebulous, as that is not 
clearly defined, but you still have one, it is just somewhere away from the limit (wherever you 
started). The most important part is the last line, as the final location, the goal, is the y-value of 
the function the path is approaching regardless of what happens when you actually get there 
(since that’s the whole point of a limit). This is the sort of metaphorical entailment that is 
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possible through embodied cognition: the actual goal for the source domain may not be realized 
in the target domain (as the function may not equal the limit at the x-value of interest). 

 

 
Figure 7. Approaching a limit at a point on a function is the Source-Path-Goal schema. 

 

 
Figure 8. Approaching a limit of a sequence is the Source-Path-Goal schema. 
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Because a sequence is a set of discrete values, building a metaphorical mapping from this 
schema to the limit of a sequence is somewhat more complicated, as the “path” isn’t so obvious. 
Instead of the two-dimensional path present in a function, we now have a one-dimensional path 
with discrete steps. But the same type of metaphorical mapping from the Source-Path-Goal 
schema (left, Figure 8) to the target domain of a sequence (right, Figure 8) works here as well. 
The trajector is your position on the number line, there is a clear starting point with the first term 
of the sequence, the goal is the last (infinite) term of the sequence, the route is the jumps from 
one term to the next (even when the jumps are complicated), and the direction is still (generally) 
moving towards the limit. Again, the final location is the value the sequence tends towards, even 
if the sequence never attains that particular value. 

Formal Definition as Closeness 

Once students have built a dynamic conception of limit for sequences or functions, I propose 
that students build a separate, static conception of limit that supports the formal definition. For 
sequences, Lakoff and Núñez provide the details for how students metaphorically map iterative 
processes to the limit of infinite sequences. As long as this metaphor is not trying to support both 
the static and dynamic conceptions of limit simultaneously, then this mapping has none of the 
problematic issues detailed above. If it is only used to provide a sense of closeness divorced from 
the conception of approaching a limit, then the notation and rigor of nested sets is entirely 
appropriate. 
 

 
Figure 9. The BMI for infinite sequences (Lakoff and Núñez, 2001, p. 190). 

 
Lakoff and Núñez do not provide a similar metaphorical mapping from the BMI to the limit 

of a function at a point. They suggest that the input and output of a function can be thought of as 
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two infinite, coordinated sequences, and therefore the output of the function is close to the limit 
of the output sequence when the input is close to the limit of the input sequence (p. 198). 
However, this coordination of the two sequences is nontrivial. In an earlier paper, Lakoff and 
Núñez (1997) attempt to characterize this coordination:  

 
Many students of mathematics are falsely led to believe that it is the epsilon-delta 
portion of these definitions that constitutes the rigor of this arithmetization of 
calculus. The epsilon-delta portion actually plays a far more limited role. What 
the epsilon-delta portion accomplishes is a precise characterization of the notion 
of “correspondingly” that occurs in the dynamic definition of limit where the 
values of f(x) get “correspondingly” closer to L as x gets closer to a. That is the 
only vagueness that is made precise by the epsilon-delta definition. (Lakoff & 
Núñez, 1997, p. 71). 
 

While it is true that mathematicians must formalize the concept of “correspondingly”, that, in 
and of itself, does not formalize “closeness”. And by creating two infinite, coordinated 
sequences, it is the “closeness” of the input and output to their respective limits that Lakoff and 
Núñez have formalized, not the “correspondingly”. 

For this reason, I propose a different metaphorical mapping for the formal definition of limit 
at a point on a function, taken from an earlier study (Boester, 2010). The bolt problem was 
introduced to students to give them a real-world context for the logical quantification involved in 
the formal definition (the “correspondingly”). It basically asks the students to state the 
relationship between the error tolerances on the input (raw materials) and the output (length of 
the bolts produced by the machine). 
 

 
Figure 10. The bolt problem is the definition of limit at a point on a function (Boester, 2010). 
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Once students could explain the solution to the problem (left, Figure 10), the notation of the 
formal definition and the canonical delta-epsilon picture were given, and the pieces of all three 
were mapped to each other. 

Resolution: Connecting Approaching With the Formal Definition 

Finally, once students have both the dynamic and static conceptions, how could they 
ultimately combine both conceptions? It could potentially occur in a few different ways, but data 
collected from the earlier study (Boester, 2010) suggests that students put the static conception 
into motion (rather than freezing their dynamic conception to make it static). These students still 
preferred the dynamic conception over the static (as shown through their language choices). 
When describing the static conception, they no longer restrict themselves to static language, and 
instead use a mix of static and dynamic language. (The same students use solely dynamic 
language when asked to explain how a limit “approaches” a number.) Eventually, some people 
will flip this relationship, so that the static conception will be the dominant conception and the 
dynamic conception is a special case. 

For example, in an interview, I asked Lisa to explain the formal definition of limit at a point. 
She drew the following diagram while giving the explanation below: 
 

 
Figure 11. Lisa’s limit graph (Boester, 2010). 

 
30. L: I don’t, not really, ‘cause I can’t really remember. But um, like, so you’re 

like going towards a point on a graph…  
31. T: Mmm-hmm. 
32. L: … like this is [unintelligible]. And then, you have like here, here, so this is 

your um, this is your, uhh, delta, and this is your other delta… 
33. T: Mmm-hmm. 
34. L: … and as you’re like getting closer this way … 
35. T: Ok. 
36. L: … then you’re getting closer that way, I think. 
37. T: Ok. 

 
Even though she’s describing delta (and the “other delta”, as she had forgotten the word 
“epsilon” – she’s referring to the ranges), she’s using dynamic language to do it. The only static 
language pieces (bold) are those referring to the ranges. The dynamic language pieces (italics) 
describe those normally static ranges being put into motion. She’s coordinating the delta and 
epsilon intervals, and is expressing that as the epsilon interval gets smaller (arrowheads), then the 
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corresponding delta interval has to get smaller too, depending upon the function. She’s 
leveraging the dynamic aspects of approaching in order to help her understand and connect the 
formal, normally-static definition of limit of a function at a point. 

This suggests that students initially connect these distinct metaphors by assuming the 
“approaching” conception is the correct one, and that the static conception of the formal 
definition is a special case, as shown by putting the synchronized ranges created in the definition 
into motion. This would imply that students are using the pieces of the “approaching” conception 
as the source domain and the static conception as the target domain, thus mapping the dynamic 
aspect of motion along a line to the static (now dynamic) aspect of the range. As students’ 
conception of limit evolves through this connection, recognizing that the formal definition 
conception is the correct one and that the “approaching” conception is the special case, they take 
on a conceptual structure analogous to an expert view. This would imply that the students are 
using the static conception as the source domain and the dynamic conception as the target 
domain, thus mapping the static ranges to the dynamic (now static) aspect of approaching. 

Conclusion 

The dynamic, “approaching” conception of limit and the static, formal definition cannot be 
reconciled the way Lakoff and Núñez propose. Instead of the argument presented, the authors 
could have simply kept the motion-based conception and the formal definition initially separate, 
instead of conflating the two. First, they could have presented the motion-based, “approaching” 
conception of limit, the examples which match this, and a conceptual metaphor which does not 
use the absolute value. Then later, they could have shown how the motion-based, “approaching” 
conception of limit breaks down when faced with more complicated types of limit convergence, 
how this ultimately lead Cauchy (Grabiner, 1992a, 1992b) to move to a new conceptual 
metaphor of proximity or range, which was later refined by Weierstrass (Lakoff and Núñez, 
2001, p. 308) and how this leads to the absolute value being used in the formal definition. 

By mixing a motion-based definition with an static-based definition, Lakoff and Núñez cloud 
the real issue: how do people move from the intuitive, grounded, dynamic conception of limit to 
the formal, static definition? This is the central pedagogical question that we need to be asking, 
but through their casual use of absolute value, they gloss over it. The authors attempt to begin 
with the “approaching” conception of limit, which students use, and try to directly connect it to 
an understanding of the formal definition. However, while the formal definition is an important 
concept for students to understand, it is based on a completely different metaphorical foundation 
than the motion-based conception of limit. This implies that, when it is time for the transition 
from the “approaching” conception to the formal definition to take place, a new metaphor needs 
to be introduced. 

The formal definition was created to solve and explain cases of limit convergence that the 
“approaching” conception cannot explain, thus no amount of twisting the informal conception of 
limit will suffice. This has happened with other prominent scientific concepts as well. For 
example, Einstein’s theory of general relativity was created to explain not only the normal cases 
explained by Newtonian mechanics, but also cases where those ideas break down (particularly 
situations concerning the very large and the very small). Thus, a new metaphor was created 
which encompasses the old one, but does not build off of it. Newtonian mechanics cannot be 
sufficiently extended in order to link to the general theory of relativity; however, the general 
theory of relativity can still be used in situations where Newtonian mechanics works. The same 
principle should be attempted here: because the “approaching” conception simply cannot be 
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extended to cover all cases of limit convergence, a new metaphor which explains the formal 
definition needs to be introduced to students, making clear that, while the formal definition 
works in all cases, the “approaching” metaphor still works in simple cases. The informal 
dynamic conception should not be abandoned, as there is value in supporting such dynamism, 
even if the expert view needs to contain the formal definition (Marghetis & Núñez, 2013). 
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Alice Slowly Develops Self-Efficacy with Writing Proof Frameworks, but Her Initial 
Progress and Sense of Self-Efficacy Evaporates When She Encounters Unfamiliar 

Concepts: However, It Eventually Returns 
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We document Alice’s progression with proof-writing over two semesters. We analyzed 
videotapes of her one-on-one sessions working through the course notes for our inquiry-based 
transition-to-proof course. Our theoretical perspective informed our work and includes the view 
that proof construction is a sequence of mental and physical, actions. It also includes the use of 
proof frameworks as a means of getting started. Alice’s early reluctance to use proof 
frameworks, after an initial introduction to them, is documented, as well as her subsequent 
acceptance of and proficiency with them by the end of the real analysis section of the course 
notes, along with a sense of self-efficacy. However, during the second semester, upon first 
encountering semigroups, with which she had no prior experience, her proof writing 
deteriorated, as she coped with understanding the new concepts. But later, she began using 
proof frameworks again and regained a sense of self-efficacy.   

Key words: Transition-to-proof, Proof Construction, Proof Frameworks, Self-efficacy, Coping 
with Abstraction, Working Memory 

This case study focuses on how one non-traditional mature individual, Alice, in one-on-
one sessions, progressed from an initial reluctance to use the technique of proof frameworks 
(Selden & Selden, 1995; Selden, Benkhalti, & Selden, 2014) to a gradual acceptance of, and 
eventual proficiency with, both writing proof frameworks and completing many entire proofs 
with familiar content. We also consider how this approach to proof construction helped this 
individual gain a sense of self-efficacy (Bandura, 1994, 1995) with regard to proving, but later 
evaporated upon encountering unfamiliar abstract concepts. However, after some time she was 
able to return to using the technique of proof frameworks and regained a sense of self-efficacy. 
This study also further illuminates the well-known, documented tendency of students to write 
proofs from the top-down, who consequently are often unable to develop complete proofs.  

Theoretical Perspective 

 In our analysis and in our teaching, we consider proof construction to be a sequence of 
mental and physical actions, some of which do not appear in the final written proof text. Such a 
sequence of actions is related to, and extends, what has been called a “possible construction 
path” of a proof, illustrated in Selden and Selden (2009). For example, suppose that in a partly 
completed proof, there is an “or” in the hypothesis of a statement yet to be proved: “If A or B, 
then C.” Here, the situation is having to prove this statement. The interpretation is realizing the 
need to prove C by cases. The resulting action is constructing two independent sub-proofs; one in 
which one supposes A and proves C, the other in which one supposes B and proves C. 

When several similar situations are followed by similar actions, an automated link may 
be learned between such situations and actions. Subsequently, a situation can be followed by an 
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action, without the need for any conscious processing between the two (Selden, McKee, & 
Selden, 2010). When a situation occurs together with an action well beyond the simple forming 
of a link through associative leaning, it may be “overlearned” and the action will then occur 
automatically in the presence of the situation (Bargh, 2014). In our course, we have observed 
that, with sufficient practice, many proving actions can become the result of the enactment of 
linked, and sometimes automated, situation-action pairs. We have called these automated 
situation-action pairs behavioral schemas (Selden, McKee, & Selden, 2010; Selden & Selden, 
2008). Linking proving actions to triggering situations and automating those actions can 
considerably reduce the burden on working memory, a very limited resource, and this tends to 
reduce errors (Baddeley, 2000).  

Related Research and Concepts 

While studies of students’ proving have been made before, they have not often focused 
on students’ use of proof frameworks. For example, Selden and Selden (1987) examined errors 
and misconceptions in undergraduate abstract algebra students’ proof attempts. They found 
instances of assuming the conclusion, proving the converse, improper use of symbols, misuse of 
theorems, and trouble with quantifiers. Similarly, Hazzan and Leron (1996) in their study of 
students’ misuse of Lagrange’s Theorem found that students often used the converse of a 
theorem as if it were true or invoked the theorem where it did not apply. Selden, McKee, and 
Selden (2010) reported instances of students’ tendencies to write proofs from the top down and 
their reluctance to unpack and use the conclusion to structure their proofs. (See the case of Willy, 
who focused too soon on the hypothesis in Selden, McKee, & Selden, 2010, pp. 209-211). 

The Formal-Rhetorical and Problem-Centered Parts of Proofs 
Previously, we (Selden & Selden, 2013) introduced the idea of the formal-rhetorical part 

of a proof as the part of a proof that comes from unpacking and using the logical structure of the 
statement of the theorem, associated definitions, and previously proved theorems. In general, this 
part does not depend on a deep understanding of, or intuition about, the concepts involved or on 
genuine problem solving in the sense of Schoenfeld (1985, p .74). However, the problem-
centered part of a proof  does depend on genuine mathematical problem solving, intuition, and a 
deeper understanding of the concepts involved. A major portion of the formal-rhetorical part of a 
proof can consist of a proof framework. 

Proof Frameworks 
An early version of the idea of proof frameworks was introduced by us (Selden & Selden, 

1995):  

By a proof framework we mean a representation of the “top-level” logical 
structure of a proof, which does not depend on detailed knowledge of the 
relevant mathematical concepts, but which is rich enough to allow the 
reconstruction of the statement to be proved or one equivalent to it. A written 
representation of a proof framework might be a sequence of statements, 
interspersed with blank spaces, with the potential for being expanded into a 
proof by additional argument. (p. 129). 
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We went on (Selden & Selden, 1995) to connect the ability to unpack the logical structure 
of mathematical statements with the ability to construct proof frameworks and with proof 
validation. We also pointed out that mental skills were involved. The learning and mastering of 
such mental skills can involve much mental energy and considerable working memory. (p. 132). 
While we did not state this explicitly at the time, in the sample validation in the Appendix, we 
did note that sometimes checking a sufficiently complex part of a proof might overload working 
memory and potentially lead to error. (p. 146). 

The First and Second Levels of a Proof Framework  
Later, we further developed the idea of proof frameworks, including that there are often 

both first-level and second-level proof frameworks. A proof framework is determined by just the 
logical structure of the theorem statement and associated definitions. The most common form of 
a theorem is: “If P, then Q”, where P is the hypothesis and Q is the conclusion. In order to 
construct a proof framework for it, one takes the hypothesis of the theorem, “P”, and writes, 
“Suppose P” to begin the proof. One then skips to the bottom of the page and writes “Therefore 
Q”, leaving enough space for the rest of the proof to emerge in between. This produces the first 
level of a proof framework. At this point, a prover should focus on the conclusion and “unpack” 
its meaning. It may happen that the unpacked meaning of Q has the same logical form as the 
original theorem, that is, a statement with a hypothesis and a conclusion. In that case, one can 
repeat the above process, providing a second-level proof framework in the space between the 
first and last lines of the emerging proof. (For some examples, see Selden, Benkhalti, & Selden, 
2014). 

Finally, we do not claim that mathematicians should write proofs using this technique, 
but only that doing so will be helpful for novice students and that their mathematics professors 
will accept the results. As long as the logical flow and clarity of a proof submission is correct, it 
does not matter (and is impossible to recover) in which order the sentences were written. We 
now return to the problem of overloaded working memory that can occur when a proof 
construction, or a proof validation, is sufficiently complex.  

Working Memory  
  It has been said that the “two major components of our cognitive architecture that are 
critical to [thinking and] learning are long-term memory and working memory” (Kalyuga, 2014). 
Working memory makes cognition possible but has a limited capacity that varies across 
individuals. It is associated with the conscious processing of information within one’s focus of 
attention. However, working memory can only deal with several units, or chunks, of information 
at a time, especially when working with novel information (Cowan, 2001; Miller,1956). In 
contrast, long-term memory can be thought of as a learner-organized knowledge base that has 
essentially unlimited capacity and can be used to help alleviate the limited capacity of working 
memory (Ericsson & Kintsch, 1995). However, when working memory capacity is overloaded, 
errors and oversights are likely to occur.  

Coping with Mathematical Abstraction and Formality  
While the mathematics education research literature does not seem to have considered 

working memory overload during learning per se, there are a few studies of coping with 
abstractions. These could be reinterpreted as related to working memory overload causing 
confusion. For example, Hazzan (1999) investigated how Israeli freshman computer science 
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students, taking their first course in abstract algebra in a “theorem-proof format”, coped by 
“reducing the level of abstraction”. Specifically, she found that they tended “to work on a lower 
level of abstraction than the one in which the concepts are introduced in class” (p. 75). For 
example, when doing homework on abstract groups, a student might actually be thinking of a 
familiar group like the integers under addition. 

Further, Leron and Hazzan (1997) pointed out that students in mathematical problem-
solving situations “often experience confusion and loss of meaning.” (p. 265), and that students 
attempt to make sense of a problem situation “in order to better cope with it.” (p. 267). While 
this coping perspective occurs at all levels, they stated that “the phenomena of confusion and loss 
of meaning are even more pronounced in college mathematics courses.” (p. 282). They also 
suggested that more work on the coping perspective in mathematics education is needed. Indeed, 
somewhat similarly, Pinto and Tall (1999) considered two different university students’ coping 
mechanisms when confronted with formal definitions and proofs in real analysis. These were the 
ideas of giving meaning to definitions using concept images versus extracting meaning from the 
formal definition via deduction. However, not many university level mathematics education 
studies have specifically considered students’ coping perspectives. 

Methodology: Conduct of the Study 

We met regularly for individual 75-minute sessions with a mature working professional, 
Alice, who wanted to learn how to construct proofs. Alice followed the same course notes 
previously written for our inquiry-based transition-to-proof course1 used with beginning 
mathematics graduate students who wanted extra practice in writing proofs. The sessions were 
almost entirely devoted to having Alice attempt to construct proofs in front of us, often thinking 
aloud, and to giving her feedback and advice on her work. The notes had been designed to 
provide graduate students with as many different kinds of proving experiences as possible and 
included practice writing the kinds of proofs often found in typical proof-based courses, such as 
some abstract algebra and some real analysis. The notes included theorems on some sets, 
functions, real analysis, and algebra, in that order.  

Alice had a good undergraduate background in mathematics from some time ago and also 
had prior teaching experience. She only worked on proofs during the actual times we met. While 
she usually came to see us twice a week to work on constructing proofs. Sometimes, when her 
paid work got a bit overwhelming, she would take a week off. Thus, unlike the graduate students 
who took the course as a one-semester 3-credit class, Alice worked with us on our course notes 
for two semesters at her own pace and did not want credit.  

   
We met in a small seminar room with blackboards on three sides, and Alice constructed 

original proofs at the blackboard, eventually using the middle blackboard almost exclusively for 
her evolving proofs. After several meetings, she began to use the left board for definitions and 
the right board for scratch work. She did not seem shy or overly concerned with working at the 
board in front of us, and from the start, we developed a very collegial working relationship. She 
seemed to enjoy our interactions as she worked through the course notes. Thus, we gained 
                                                           
1 A description of the course and course notes can be found in Selden, McKee, and Selden (2010, p. 207).  
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greater than normal insight into her mode of working. We videotaped every session and took 
field notes on what Alice wrote on the three boards, along with her interactions with us. For this 
study, we reviewed the first and second semester videos and field notes several times, looking 
for progression in Alice’s approach to constructing proofs. 

Alice’s Progression Through the First Semester 

Our First Meeting with Alice 
We introduced Alice to the idea of proof frameworks and explained in detail how and 

why we use them. We also introduced her to the idea of unpacking the conclusion and mentioned 
that proofs are not written from the top down by mathematicians. With guidance, she was able to 
prove “If A �B, then A�C � B�C.” In addition, she worked three exercises on writing proof 
frameworks--one on elementary number theory and two on set equality. Near the end of this 
meeting, Alice produced a proof framework for the next theorem in the notes. We felt that she 
not only understood our rationale for using proof frameworks, but also how to construct them. 

Our Second Meeting with Alice—Her Reluctance to Use Proof Frameworks Surfaces 
At the beginning of the second meeting, Alice went to the middle board and produced the 

same proof framework that she written five days earlier at our first meeting (Figure 1). 

Theorem: Let A, B, and C be sets. If A � B, 
then C – B � C – A. 
Proof: Let A, B, and C be sets.  
Suppose A � B. Suppose x ∈ C – B. So x ∈ C 
and x is not an element of B. 
 
 
 

 
 
 
 
 
Thus x ∈ C and x is not in A.  
Therefore x is in C – A.  
Therefore, C – B � C – A. 

Figure 1. A proof framework that Alice produced on the middle blackboard. 

Then Alice stopped and after a long silence of 65 seconds, much to our surprise, said, “I 
have a question for you. I find it very difficult to see the framework. Let me show you how I do 
it, because somehow I get confused with the framework.” We asked her what it was about the 
framework that was confusing, but she seemingly could not put it into words. So we encouraged 
her to write a proof the way she preferred. Thus, on the left board, Alice began to write the proof 
in her own way in top down fashion (Figure 2).  

Theorem: Let A, B, and C be sets. If A � B, then C – B � C – A. 
Proof. Let A, B, C be sets.  
Suppose A is a subset of B. We need to prove that C – B is a subset of C – A. 
Suppose x ∈ C – B. We need to prove that x ∈ C – A. 

Figure 2. Alice’s attempt at constructing a proof in her own way. 

Then she then paused for 15 seconds, and said, “We need to have one more,” and wrote into her 
proof attempt, “and x ∈ A” immediately below “x ∈ C – B”, indicating with a caret that “and x 
∈ A” was also part of her supposition (Figure 3). Then, after a 35-second pause, she added to her 
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proof attempt, “Since x ∈ A and A is a subset B. Then x ∈ B.” Shortly thereafter, Alice quietly 
said, “Oh, a contradiction”. This was followed by, “Yeah, ‘cause x doesn’t belong to B. Yeah, 
problem here.” Then, after a ten second pause, Alice said, “The problem is right here, isn’t it?” 
pointing and underlining “B” and the statement “and x ∈ A.” We asked, “And what do you think 
that problem is?” Alice replied, “I assumed that [pointing to “and x ∈ A”], but I do not know. I 
only know this [pointing to “A is a subset of B”]. We replied, “So that’s a good point you’ve 
made.” 

Theorem: Let A, B, and C be sets. If A � B, then C – B � C – A. 
Proof. Let A, B, C be sets.  
Suppose A is a subset of B. We need to prove that C – B is a subset of C – A. 
Suppose x ∈ C – B. We need to prove that x ∈ C – A. 
              and x ∈ A. 

Figure 3. Alice’s adjustments to her proof attempt, done in her own way. 

After that, for a few minutes, we talked about the structure of proofs, and why we use 
proof frameworks. Then we asked Alice to elaborate on why “and x ∈ A” is a problem. She said, 
“I didn’t write it right. I should have said here [pointing to the blank space to the left of “and     
x ∈ A”] I’m going to make an assumption like ‘Suppose x belongs to the A’, and then since x 
belongs to the A and I know that A is a subset of B, then the x will belong to the B.” She 
continued, “I also know that x belongs in the C – B, because I said it earlier. Then x belongs to 
the C but x does not belong to the B.” To which one of us replied, “And then you said 
something. I thought I heard you say the word ‘contradiction’.” Alice explained, “Yeah, I got a 
contradiction because then I’m saying here [pointing to the board] the x belongs to the B, and the 
x doesn’t belong to the B.” We agreed, and she offered, “That assumption [pointing to “and       
x ∈ A”] was bad.” We then reiterated why proof frameworks are structured the way they are, and 
suggested that we could take Alice’s original framework (Figure 2) and what Alice had written 
on the left board (Figure 3), and change the order to write a proof. We proceeded to help Alice 
do this. For the rest of the semester, Alice seemed more inclined to attempt to use proof 
frameworks. 

Alice’s Way of Working 
By midway through the first semester, Alice had developed her own pattern of working. 

She would:  

1. First write the statement of the theorem to be proved on the middle board.  
2. Then look up in the course notes the definitions of terms that occurred in the 

theorem statement and write them exactly as stated on the left board.  
3. Next underline the relevant portions of definitions to assist with writing the proof 

framework. However, we did not teach her to use this strategy. (See Figure 4). 
4. Use the right board for scratch work as needed. 

Alice continued this pattern of working into the second semester. 
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Figure 4. Alice’s underlining of relevant parts of a definition. 

Subsequent Meetings with Alice 
As the first semester meetings went on, we observed that Alice became very methodical 

in her approach to proving, and also somewhat more accustomed to writing proof frameworks. 
We hypothesize this was because of her technical work experience and perhaps because of her 
natural tendencies. By the 12th meeting, Alice had developed the following pattern of working: 
She would write the statement of the theorem to be proved on the middle board, then look up in 
the course notes the definitions of terms that occurred in the theorem statement, write them 
exactly as stated on the left board, and use the right board for scratch work. Indeed, during the 
12th meeting, when she got to the theorem, “Let X, Y, and Z be sets. Let f: X→Y and g: Y→Z be 
1-1 functions. Then g○f is 1-1,” she wrote the first- and second-level frameworks ostensibly on 
her own, and with some guidance from us, completed the proof and read it over for herself aloud.  

By the 19th meeting at the end of the first semester, Alice was more fluent with writing 
proof frameworks than on the 12th meeting, and she had adopted the technique of writing 
definitions on the left board and changing the variable names to agree with those used in the 
theorem statement – all without prompting from us. This is remarkable as our experience has 
been that many students do not change variable names in definitions even when we suggest 
doing so, and this can often lead to difficulties. At this 19th meeting, Alice proved that the sum of 
two continuous functions is continuous (Figure 5). This proof has a rather complicated proof 
framework that necessitates leaving three blanks spaces -- one for using the hypothesis 
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appropriately, one for specifying a G, and one for showing that the chosen G “works” (by 
showing the relevant distance is less than H.) 

 

 

Figure 5. Alice’s proof of that the sum of two continuous function is continuous. 

Alice continued meeting with us and working on the course notes at her own pace during the 
second semester. 

Alice’s Progression through the Second Semester 

Alice Continues Proving Real Analysis Theorems 
Upon resuming in the second semester, Alice continued proving real analysis theorems, 

attempting to prove that the product of two continuous functions, f and g, is continuous in our 
first three meetings (i.e., our 20th-22nd meetings). She set up the proof framework correctly and 
explored the situation in scratch work. During this proving process, Alice made some astute 
observations, for example, having gotten to |fg(x) - fg(a)| = |f(x)g(x) - f(a)g(a)| ≤ |f(x)| |g(x) – g(a)| 
+ |g(a)| |f(x) – f(a)|, and having dealt with term involving |g(a)|, she noted that the former term 
was the “hard part” because |f(x)|, unlike |g(a)|, is not a constant. Somewhat later, Alice exhibited 
some self-monitoring, noting that she needed to move her sentence about the bound on |f(x)|, 
prior to setting G equal to the “minimum of [the] three” deltas she had found. (See Figure 6). She 
also noted, in the 22nd meeting, that it seemed “weird” to write the restrictions on |f(x) – f(a)| and 
|g(x) – g(a)| without immediately explaining why she had chosen the bounds  𝜀

2|g(𝑎)|
 and 𝜀

2𝑀𝑓
 , 

respectively, when applying the definition of continuity at a point to f and g.   
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Figure 6. The first half of Alice’s proof that the product of continuous functions is continuous, 
showing the “minimum of the three deltas”.  

Figure 7 shows the remainder of Alice’s proof that the product of continuous functions is 
continuous, that is, that the her chosen G “works”. 

Alice’s Encounter with Semigroups Begins 

By our 25th meeting, Alice had completed the real analysis section of the notes, and was 
ready to begin the abstract algebra (semigroups) section that starts with the definitions of binary 
operation and semigroup, followed by requests for examples. She provided only the most 
obvious of examples, such as the integers under addition or multiplication, and when asked for 
something “stranger”, she said she could use the real numbers. When asked for another “strange” 
example “with no numbers at all”, she suggested union as the binary operation, and with help, 
wrote up the example of the power set of a set of three elements. Next, when it came to 
providing examples of semigroups, she suggested the natural numbers with subtraction, but had 
to be prodded to check associativity; for this she considered (3 - 7) - 2 versus 3 -  (7 - 2) and 
correctly inferred this was not a semigroup. To provide examples of left and right ideals, Alice 
needed to come up with a noncommutative semigroup, but she drew a blank. We suggested the 
semigroup of 2×2 real matrices under multiplication, and for an ideal, the subset of matrices of 
the form [𝑥 𝑦

0 0]. After some calculation, Alice correctly concluded the subset is a right ideal, but 
not a left ideal.  
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Figure 7. The remainder of Alice’s proof that the product of continuous functions is continuous, 
showing that her chosen 𝛿 “works”. 

Alice Hits a “Brick Wall” with the First Semigroup Theorem 
Alice continued considering examples for the first 35 minutes into the next (26th) 

meeting, after which she came to the first semigroup theorem to prove: “Let S be a semigroup. 
Let L be a left ideal of S and R be a right ideal of S. Then L ⋂ R ≠ ∅.” She first wrote the 
definitions of semigroup, left ideal, right ideal, and ideal on the left-hand board, as she had done 
many times before. Then she wrote the first-level framework on the middle board, after which 
she went to the right-hand board and began doing some scratch work, which included drawing a 
Venn diagram of two overlapping circles, L and R, with an arrow pointing to the intersection. 
She wrote in her scratch work “L ⋂ R = ∅” and “there exists an element a ∊ L ⋂ R”. With this, it 
seemed that Alice was trying to clarify the theorem statement for herself. However, she had not 
yet attended to the second-level framework. We pointed this out.  

During the rest of her proving attempt, we seemed to need to remind Alice of relevant 
actions, such as considering what she knew about ideals (i.e., that they are nonempty), and 
hence, concluding that each of L and R contains an element, which she labeled l and r 
respectively. Then, using those, she tried to “explore” to find an element in L ⋂ R, in order to 
conclude it was not empty. With our guidance, Alice finished the proof, but her sense of self-
efficacy seemed shaken.  

Indeed, at the next (27th) meeting, Alice wanted to reprove the theorem about the 
intersection of left and right ideals before continuing. (See Figure 8).We now feel that she had 
been somewhat overwhelmed, or confused, by the new content, perhaps causing working 
memory overload. She had tried to cope as best she could by concentrating on the new concepts, 
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while “forgetting” her prior proof writing skills. Alice’s hesitant behavior continued for eight 
more meetings. 

 

 

Figure 8. Alice’s proof that the intersection of a left ideal and a right ideal is nonempty. 

Alice Regains Her “Footing” 
Then, during the 35th meeting, Alice considered the theorem, “If S and T are semigroups 

and f: S→T is an onto homomorphism and I is an ideal of S, then f(I) is an ideal of T”. She wrote 
the definition of homomorphism on the left board, wrote “What I know” on the right board, 
constructed the first-level proof framework, unpacked the conclusion, wrote the second-level 
proof framework, and decided to do a two-part proof – one part for left ideals and a second part 
for right ideals. (See Figure 9). With this, Alice seemed to have regained “her footing”. At the 
next meeting, she finished the proof, with some help from us. She continued proving semigroup 
theorems for the rest of the semester, exhibiting increasing proficiency and self-efficacy.  

Discussion 

Working with Proof Frameworks 
Alice came to us with a reasonable undergraduate mathematics background, some of 

which she had forgotten. At the first meeting, we explained the use of proof frameworks and our 
rationale for using them, and she practiced producing several of them. However, at the second 
meeting she told us that she found this way of working confusing. When she attempted her own 
alternative method of proving, she got into difficulty, and as a result, was more willing to try 
using proof frameworks again. Over the course of our subsequent meetings during the first 
semester, Alice became fluent with writing both first- and second- level proof frameworks and 
adopted her own methodical way of working. As the first semester went on, she was able to 
complete proofs with less guidance from us. Indeed, she often mainly required some help with 
the problem-centered parts of proofs. 
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Figure 9. Alice’s proof framework for the theorem about homomorphic images of ideals. 

During the second semester, Alice continued meeting with us and working on the course 
notes. She began the second semester with the construction of additional real analysis proofs and 
seemed to be making very considerable progress, both with writing proof frameworks and with 
the harder problem-centered parts of proofs. By the end of the real analysis section of the course 
notes, we felt that she had developed greatly in her proving ability and had developed a sense of 
self-efficacy (Bandura, 1994, 1995) about proving.  

Difficulties Surface When Encountering Unfamiliar Content 
However, the subsequent introduction of unfamiliar, abstract content in the form of 

several definitions and a theorem about semigroups at the 25th meeting seemed to cause her 
confusion. She constructed only the most obvious examples somewhat hesitantly. Also, when 
asked to prove the first theorem about semigroups, she did not begin by producing a proof 
framework, as she had previously consistently done with the real analysis proofs, but rather 
began writing what she knew or could find in the notes, on the right-hand blackboard. Her proof 
construction, while not top-down, seemed to consist of first trying to gather as many semigroup 
ideas as she could, followed by trying to arrange them into a final proof. We feel that 
concentrating on understanding the unfamiliar abstract content was Alice’s initial way of coping, 
that her working memory may have been overloaded, and that she wasn’t able to deal with the 
additional onus of constructing a proof framework. It was not until the 35th meeting, almost at 
the end of the second semester, that Alice seemed to have regained her sense of self-efficacy, and 
she again constructed proofs using the technique of proof frameworks that she had learned and 
perfected previously with real analysis proofs.  

Implications  

It seems that coping with newly introduced abstract concepts is not easy, even for 
someone as experienced as Alice. It also seems that one cannot expect, having learned the skill 
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of constructing proof frameworks in more familiar settings, that this skill will be easily invoked 
while new abstract content is being learned, perhaps due to working memory overload.  

Fragility of Recently Acquired Proving Skills Can Be Overcome 
Amongst other things, this case study illustrates the fragility of recently acquired proving 

skills, in the context of the acquisition of new abstract mathematical concepts. It also suggests 
that, with persistence, the difficulty due to such fragility can be overcome. Our own experiences 
as mathematicians suggests that one can (implicitly) learn not to be greatly disturbed by the 
introduction of several new abstract ideas at once. However, some school curricula avoid certain 
introductions of concepts, such as the Bourbaki definition of function, because they are 
considered too abstract (Tabach & Nachlieli, 2015). Further, as Hazzan (1999) found, students 
sometimes cope by “reducing the level of abstraction.” Yet Alice’s case suggests that, with time, 
effort and persistence, students can learn to cope with abstraction. 

Eventual Successful Use of Proof Frameworks, along with Persistence and Self-efficacy  
The initial tendency of many university students to write proofs in a top-down fashion 

tends to fade after sufficient exposure to writing proof frameworks. One might ask where this 
tendency comes from. According to Nachlieli and Herbst (2009), it is the norm among U.S. high 
school geometry teachers to require students, when doing two-column proofs, to follow every 
statement immediately by a reason. This implies top-down proof construction. However, as 
noted previously (Selden & Selden, 2013), automating the actions required to write the formal-
rhetorical part of a proof (i.e., writing first- and second-level proof frameworks) can allow 
students to “get started” writing a proof and exposes the “real problem” to be solved in order to 
complete the proof. For this, persistence and self-efficacy are needed.  
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One common approach to assessing mathematical knowledge for teaching (MKT) is designing 
items to measure individual subdomains of MKT as specified by a theoretical framework, with 
factor analyses confirming (or disconfirming) hypothesized subdomains. We interpret this 
approach as adhering to a “compartmentalized” view of MKT, as opposed to a “connected” 
view of MKT. We argue in this paper that a compartmentalized view of MKT is embedded in the 
ways that frameworks are represented, discussed, and used in the field, but that this view of MKT 
may unintentionally undermine understanding of MKT, and in turn, how to measure and 
cultivate it in teachers. Using an analysis of nine items previously shown to assess MKT, we 
illustrate that the tendency for practice-based items to capture multiple subdomains is a common 
issue across frameworks, and perhaps one that is a necessary result of their design.  

Key words: mathematical knowledge for teaching, content knowledge for teaching 

We define mathematical knowledge for teaching (MKT) in broad terms as the content 
knowledge used in recognizing, understanding, and responding to mathematical situations, 
considerations, and challenges that arise in the course of teaching mathematics. In the 1980s, Lee 
Shulman advanced a framework to describe a professional knowledge base for teaching (e.g., 
Shulman 1986), and since that time there have been persistent efforts to describe that knowledge 
base in greater detail, with particular interest among mathematics educators in the dimensions 
relating to mathematical knowledge. Scholarly attention to the construct of MKT emerged from 
work in the 1990s led by Ball and Bass at the University of Michigan in which a close qualitative 
analysis of video records of teaching allowed researchers to build a descriptive account of the 
mathematical work of teaching, documenting ways in which the work of teaching demands that 
teachers invoke mathematical knowledge in ways that are quite different than the ways their 
students do so (Ball & Bass, 2003). In the 2000s, Ball and colleagues described a resulting 
framework for MKT that subsumes Shulman’s content related categories of subject matter 
knowledge and pedagogical content knowledge (PCK) and in which particular attention is called 
to the components of MKT that are both purely mathematical and “unique to teaching” (Ball, 
Thames, & Phelps, 2008, p. 400).  

Another product of this line of research has been the development of assessments to measure 
MKT and its sub-components, the most well-known of which, the Learning Mathematics for 
Teaching (LMT) assessments, was developed by the Michigan team beginning in 2000 (LMT 
Project, n.d.), and has been recognized in the field as an example of the state of the art in terms 
of assessing MKT (National Research Council, 2013). As interest in both the construct and its 
measurement has increased, a number of competing theoretical frameworks have been 
introduced, often based loosely on Ball et al. (2008) but differing in focus or intended use (Heid, 
Wilson, & Blume, 2015; McCrory, Floden, Ferrini-Mundy, Reckase, & Senk, 2012), or focused 
on differing areas of content by extending the framework to secondary or post-secondary levels 
(Baumert & Kunter, 2013; Krauss, Baumert, & Blum, 2008) or narrowing to particular bands of 
content (Herbst & Kosko, 2014).  
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In this paper, we call attention to two ways one might think about these frameworks –
compartmentalized or connected– and discuss the implications for assessment of and teacher 
learning of MKT. One view, the compartmentalized view, is that frameworks map out distinct 
knowledge domains, with clear boundaries, each of which can be conceptualized, organized, 
taught, and measured individually, with separate tests for each domain, and each of which might 
rely on separate coursework to help novice teachers learn the content of the domain. A second 
view, the connected view, is that these frameworks describe important features of MKT in ways 
that help us understand it better, but that these features may not correspond to clearly non-
overlapping portions of the knowledge, and that the overlap may necessarily play out during the 
work of teaching as teachers draw on connected knowledge. We argue in this paper that the first 
view is embedded in many of the ways that various MKT frameworks are represented, discussed, 
and used in the field, but that in adopting this compartmentalized view of MKT we may 
unintentionally undermine our understanding of MKT, and in turn our understanding of how to 
measure it and cultivate it in teachers.  

The study we present here is not a critique of MKT frameworks, but rather an attempt to step 
back from the ways in which those frameworks have come to be used and consider this key 
distinction, between compartmentalized knowledge domains and connected knowledge domains. 
We designed the study to examine instances of knowledge application, using brief MKT 
assessment items to which respondents must apply their MKT in solving a problem of practice, 
and we explore the extent to which these instances of knowledge application involve applying 
compartmentalized or connected knowledge domains of MKT, looking across a set of five 
frameworks. We offer the analysis as an illustration of the degree to which MKT knowledge 
domains may be naturally connected in situations that approximate actual teaching. We suggest 
that the compartmentalized view may be incompatible with how assessments are designed, 
especially when the design is based on a connected view of MKT. We suggest that the connected 
view has implications for teacher education, including how to support to practice-based 
approaches that engage pre-service teachers in the work of teaching rather than attempting to 
provide coursework tailored to distinct domains of knowledge.   

Theories of MKT and MKT Measurement 

In this section, we discuss MKT frameworks in the literature. We define practice-based item 
design, a widely shared approach to measuring MKT, and provide an example MKT assessment 
item. We discuss the emergent empirical research base supporting claims that practice-based 
assessment items do indeed measure MKT as intended, and revisit our distinction between 
compartmentalized and connected views of MKT. 

Theoretical Frameworks for MKT  
In recent years, a number of frameworks for MKT have emerged, building on Shulman’s 

(1986) theorized knowledge classifications of subject matter knowledge and pedagogical content 
knowledge (PCK). The predominant framework, particularly in the US, is that of Ball et al. 
(2008). Other frameworks generally overlap with, draw on, or complement the Ball et al. 
framework, and for the most part they likewise maintain Shulman’s high-level distinctions but 
differ in whether and how they define any distinctions below that level. For example, the 
Cognitively Activating Instruction (COACTIV) framework (Baumert & Kunter, 2013) draws 
directly on the Ball et al. theory, but COACTIV only distinguishes between content knowledge 
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and PCK in their accompanying assessments, essentially ignoring some of the subdomains that 
Ball et al. consider most crucial from a theoretical standpoint.  

Several frameworks focus directly on subsets of content or particular grade levels. Examples 
include Knowledge of Algebra for Teaching (KAT: McCrory et al., 2012), focused on Algebra; 
COACTIV and Teacher Education and Development Study in Mathematics (TEDS-M: Tatto et 
al., 2008), focused on upper and lower secondary level content respectively; and MKT- 
Geometry (Herbst & Kosko, 2014), focused on secondary level geometry. KAT also differs from 
a number of other frameworks in its underlying organizational structure, which diverges from 
Ball et al. (2008) by categorizing knowledge according to where in a typical university trajectory 
a prospective teacher is likely to have learned that knowledge. And a number of frameworks are 
organized to support quite different aims than assessment development, including the 
Mathematical Understanding for Secondary Teaching (MUST) framework, which is designed to 
support professional development and teacher education (Heid et al., 2015), and the Knowledge 
Quartet, which focuses on identifying situations in which mathematical knowledge is used in 
teaching (Turner & Rowland, 2008).  

Practice-based Items: A Different Kind of Theory  
One could argue that part of the reason early theories of MKT were compelling was their 

grounding in analysis of the work of teaching, a kind of job analysis technique examining the 
work teachers need to do, generating descriptions of what they called the mathematical work of 
teaching (Thames, 2009), and working back from there to determine the knowledge teachers 
need to have in order to do that work. Early work by Ball and Bass (2003) described this as 
“practice-based theory” in that it was developed through the study of teaching practice. The term 
“practice-based” has also been used to describe assessment items developed out of this theory, 
and while it is often left unspecified what characteristics make an item practice-based, those who 
do describe it focus on close approximation of the cognitive work of teaching as the defining 
characteristic. Phelps, Howell, Mikeska, Kirui, and Mislevy (in press) describe the early LMT 
items as practice-based in that they “are designed to situate the test taker in a context of practice” 
(p. 9). Bridging multiple content areas, Gitomer, Phelps, Weren, Howell, and Croft (2014), 
Selling, Garcia, and Ball (2016), and Mikeska, Phelps, and Croft (in press) describe item 
development efforts across content areas, all of which are guided by frameworks organized 
around the work of teaching are used to develop practice-based assessment items. Hill (2016) 
also cites the use of such frameworks as critical.  

Implicit in the cited assessment development efforts is an approach we call a practice-based 
item design theory, in which the design of such items is intended to engage the test taker in some 
approximation of the cognitive work of teaching, asking the test taker, for example, to analyze a 
student work sample or choose an appropriate problem for a particular instructional goal. By 
doing so, items are intended to prompt test takers to apply their mathematical knowledge as they 
would in such a teaching situation. By requiring test takers to apply their knowledge to a 
teaching situation, the item is intended to more accurately capture MKT, which be described as a 
form of applied knowledge (Bass, 2005; Stylianides & Stylianides, 2014). Perhaps because of the 
widespread influence of the LMT assessment as a model, most MKT assessment items currently 
available in the field show evidence of a practice-based item design theory approach (Hill, 2016), 
although there are differences in the ways that various efforts provide context to situate the test 
taker (Phelps et al., in press).  

What is more subtle about practice-based item design may be the underlying way in which it 
defines MKT according to the contexts in which it is used. MKT, as these items assess it, is 
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defined by the work of teaching that invokes it. The items are practice-based in that the 
organizing unit is work done in teaching practice, and what is assessed is what we will call the 
associated package of knowledge required to engage in that work. It has been argued elsewhere 
that this organization around the work of teaching is a natural organization, in that it makes sense 
to teachers and allows them to apply their knowledge in ways that they would in their teaching 
(Phelps et al., in press), and it “brings the development of measures closer to the actual practices 
we hope teachers will successfully master” (Hill, 2016, p. 5). Because items are organized 
around the work of teaching, they are designed to require application of knowledge, including 
recognition of what to pay attention to and the ability to bring relevant information to bear as 
well as simply knowing that information. And this plays out in response patterns. Howell, 
Phelps, Croft, Kirui, and Gitomer (2013) highlighted an interview response pattern in which 
respondents discussing an MKT item clearly hold propositional knowledge about a common 
student error pattern but are unable to recognize an instance of that error pattern in student work. 
A test designed simply to measure knowledge of student error patterns might miss critical 
information that the practice-based item, by requiring applied knowledge, reveals. One can easily 
appreciate the argument that this applied knowledge is critical to the work teachers do.  

We discuss the practice-based item design theory in some detail for three reasons. First, it 
will help the reader to understand the items that we analyze in this paper, which are written to a 
practice-based item design theory. Second, authors of each of the frameworks examined in this 
study describe their theoretical development as practice-based. Third, we point out that this is a 
fundamentally different type of theory than the knowledge theories described in the prior 
sections, one that does not necessarily compete with or contradict knowledge frameworks. One 
goal in this paper is to illustrate that practice-based item design theory and frameworks of 
knowledge domains within MKT are not incompatible unless one assumes a direct mapping 
between assessment items and knowledge domains, as the compartmentalized view invites. 

 
During a lesson near the end of a unit on quadratic functions, Mr. Swift asked his students how many 
ordered pairs are needed to determine a quadratic function. Some students in the class responded as 
follows. 
Andrew: Well, I could draw lots of different parabolas that are functions through two points by changing 

where the maximum or minimum is located, but once I have a third point only one of those parabolas 
would work. 

Bria: But what if all three points are on the same side of the vertex? You can determine the function with 
three points, but at least one point needs to be on each side of the vertex. 

Cynthia: That isn’t right. All you need are the two roots of the function. Like if the two roots are ! and !, 
you can just do (! − !)(! − !) and you know what the function is. 

Daniel: But you wouldn’t be able to tell where the maximum or minimum is if you only have the roots. 
You gotta have three points, and they gotta be the two roots and the vertex. 

Which of the students demonstrated the best understanding of the ordered pairs needed to determine a 
quadratic function? 

(a) Andrew (b) Bria (c) Cynthia (d) Daniel 

Figure 1. Swift item: An example of a practice-based item. 
 
Figure 1 presents an example of practice-based item that we analyzed in the present study, 

the Swift item. This item requires the test taker to decide which of four students has 
demonstrated, in his or her comments, the best understanding of the ordered pairs needed to 
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determine a quadratic function. To do so requires a subtle mix of understandings. At stake, 
mathematically, is the fact that the students are attending to both the number and the nature of 
the points that determine the function. The test taker must first figure out, on the basis of 
students’ statements, the claim each student is making. He or she must then evaluate the 
accuracy of each statement, taking into account that each statement may simultaneously 
demonstrate both strengths and weaknesses. The test taker has been asked to evaluate the relative 
strengths of the students’ understandings, not just determine mathematical correctness.  

The Swift item exemplifies practice-based item design. It asks the test taker to engage in a 
constrained version of the work of teaching. Analyzing student statements in terms of their 
mathematical strengths and weaknesses is something that teachers must do routinely, which 
requires not only a deep mathematical knowledge, but also an ability to apply that knowledge to 
a situation in which multiple ideas may be on the table, and those ideas may be expressed 
inchoately. In this case, the best understanding is that shown by the first student, Andrew, who 
indicates that three ordered pairs are needed and that they need not be any particular pairs, and 
who gives a reasonable if incomplete justification in terms of a visualization of the possible 
graphs.  

Evidence that Practice-based Measures Capture MKT and Its Subdomains 
There is an emerging research base supporting the conclusion that practice-based measures 

such as those cited above capture the overall construct of MKT as intended. Studies have 
examined records of the reasoning elicited by assessment items seeking qualitative evidence of 
MKT being used as theorized (Howell et al., 2013), or observing differences in how members of 
known groups such as teachers, mathematicians, mathematics doctoral students, or mathematics 
majors reason about the items or perform on practice-based measures (Buschang et al., 2012; 
Hill, Dean, & Goffney, 2007; Krauss et al., 2008). A number of studies link performance on 
MKT measures to student achievement (Baumert et al., 2010; Hill et al., 2005; Rockoff et al., 
2011). These studies are often cited as evidence that MKT is important to teaching, and they also 
provide additional evidence that the measures capture MKT as theorized, because part of that 
theorization is that it is knowledge that underlies effective instruction and, in turn, student 
learning.  

Across efforts to assess MKT, a common practice has been to apply factor analysis to 
determine whether items hypothesized to measure distinct subdomains of the MKT construct do 
so. Factor analysis, generally speaking, is a method in which data gathered from assessment 
items are used to describe the measured construct(s) in terms of a manageable number of 
hypothetical variables, or factors (Lester, Inman, & Bishop, 2014). Factor analysis can be 
confirmatory or exploratory, and researchers often use both together. In confirmatory factor 
analysis, researchers pre-specify factors so that they can “test some theory about the number and 
nature of the factor constructs needed to account for the intercorrelations among the variables 
being studied” (Comrey & Lee, 2013, p. 4). In exploratory factor analysis, researchers use 
intercorrelations to “explore the underlying dimensions of a given data set” (Lester et al., 2014, 
p. 61) and generate conceptual explanations, after the fact, for the factors that emerge. 
Applications of factor analysis can be useful for theory testing (Hill, 2016), as they permit 
generalization to theory from the item pool, but only to the extent that items can be successfully 
produced to capture the theorized knowledge.  

Results of studies applying factor analysis to assessments of MKT have been mixed. For 
example, Hill, Schilling, and Ball (2004) found that some items designed to measure attributes of 
PCK loaded instead as content, some as intended as PCK, and some as both. Similarly mixed 
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findings have been reported in other studies spanning mathematics and other content areas (e.g., 
Floden & McCrory, 2007; Herbst & Kosko, 2014; Phelps & Schilling, 2004). Our perspective is 
that this set of analyses, across multiple practice-based measures, suggests that practice-based 
items are likely to measure multiple subdomains of the construct. 

The Critical Distinction between Compartmentalized and Connected MKT  
We return here to the critical distinction between compartmentalized and connected views of 

MKT. We argue that the compartmentalized view is supported in many ways by the manners in 
which framework authors and other scholars have presented and used the frameworks. 
Frameworks are often represented in graphics as area models in which non-overlapping sets are 
joined together to make up the whole of MKT. Ball et al. (2008), as an example, call careful 
attention in textual descriptions to what they call the “boundary problem” (p. 403), that 
knowledge domains are often closely coordinated in the work of teaching and so it is difficult to 
discern the precise division between domains. However, the powerful heuristic of the graphical 
representation by Ball et al., with its unambiguous divisions, tends to be the reader’s main 
takeaway, rather than fuzzy overlap among domains; the representation strongly suggests 
mutually exclusive categories with clear divisions. And it is not incorrect to emphasize 
distinctions; in fact, the distinctions between knowledge types such as common and specialized 
content knowledge are what make them conceptually powerful ideas. The fact that specialized 
content knowledge exists as a construct that is distinct from both PCK and common content 
knowledge is an important and influential idea. Nonetheless, the distinctiveness of specialized 
content knowledge does not imply that it can be applied, learned, or measured entirely separately 
from common and pedagogical content knowledge.  

Factor analysis approaches clearly adopt a compartmentalized framework view, taking as 
given a test design logic that maps the items based on a framework directly onto subdomains of 
that framework. Researchers of these studies often design items for the explicit purpose of 
assessing subdomains, sometimes on separate tests. These researchers then use factor analysis in 
attempts to answer underlying questions to the effect, are subdomains empirically 
distinguishable? However, test design logic may simply be incompatible with practice-based 
item design theory because one relies on a compartmentalized view and the other on a connected 
view of MKT. The mixed evidence resulting from factor analysis across multiple assessment 
efforts may reflect this incompatibility.  

Our analysis takes a different approach to the question by asking, in responding to a set of 
nine practice-based items, how knowledge domains across multiple frameworks are elicited, and 
whether, under any of these frameworks, they are invoked in isolation from one another. Our 
logic is as follows: by selecting strong items known to exemplify practice-based item design and 
to measure MKT, we create a common comparison point across the frameworks. For each item 
under each framework, we examine which subdomains of that framework the item measures, 
noting in particular how many subdomains are measured. Our goal is to illustrate that the 
tendency for practice-based items to capture multiple subdomains is a common issue across 
frameworks, and perhaps one that is a necessary result of practice-based item design. In the 
following section we describe the items and frameworks we selected for the analysis and 
describe our coding procedures. We then present our results table and discuss the implications 
with respect to the frameworks and with respect to assessment item design.  
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Methods 

We examined a set of nine assessment items designed to measure mathematical knowledge 
for teaching (Howell, Lai, Miller, & Phelps, 2016). These items were selected for several 
reasons. The items are typical representations of practice-based item design. A prior study 
provided evidence that this set of items captured MKT as they were designed to and 
demonstrated no significant design flaws (Howell et al., 2016). Additionally, as part of this prior 
work, researchers generated knowledge maps for each item specifying the knowledge measured, 
and these knowledge maps were validated by comparison to responses captured in think-aloud 
interviews. In the present study, the items themselves became the data, which we then coded by 
subdomains of each of the five specified frameworks.  For the purposes of this study, the 
responses to each item were used to validate that the knowledge maps were accurate. The 
analysis presented in this study is not of responses to the items, but rather of the knowledge maps 
of the items. An example of the analysis is given below for the Swift item. Before the example 
analysis, we discuss our selection process for MKT frameworks to use and the coding process.  

Framework Selection 
In this study, we considered five theoretical frameworks for MKT: Ball et al.’s (2008) MKT 

framework; KAT (McCrory et al., 2012); COACTIV (Krauss et al., 2008); TEDS-M (Tatto et al., 
2008); and MUST (Heid et al., 2015). We restricted our analysis to frameworks that are fully 
developed in available, seminal documents, which directly claim to describe the MKT construct, 
and for which the framework describes the entire construct. We did not restrict framework 
selection to those explicitly designed for secondary level MKT, but did exclude those that could 
not reasonably be taken to describe the MKT measured in our item set. For example, we 
excluded the MKT-Geometry framework because our item set did not include geometry items.  

Operational Definitions 
We examined seminal documents for each of the five frameworks to extract operational 

definitions of key subdomains. We added clarifications throughout the coding process where 
authors’ original language was insufficient to inform coding decisions, and did so for all 
frameworks. A list of source documents for each framework and subdomains coded is provided 
in Table 2. We illustrate this process for one framework (Ball et al., 2008).  

The article, “Content knowledge for teaching: What makes it special?” (Ball et al., 2008), 
lays out clear definitions for six subdomains of MKT and discusses the authors’ sense of the 
relative clarity of each. Ball et al. first subdivide all of MKT into CK (content knowledge) and 
PCK (pedagogical content knowledge), following Shulman’s (1986) distinctions. They then 
further decompose each of these. CK is decomposed into common content knowledge, 
specialized content knowledge, and horizon content knowledge. Common and specialized 
knowledge are distinguished from one another by context of use, and the authors stress that this 
is a key distinction, suggestive of a body of professional mathematical knowledge needed by 
teachers alone. Each is a form of “pure” mathematical knowledge and explicitly excludes 
knowledge of students or teaching, but common is knowledge that is needed in settings other 
than teaching, whereas specialized is knowledge that is only needed for the teaching of 
mathematics. Horizon content knowledge is defined somewhat more ambiguously, as “an 
awareness of how mathematical topics are related over the span of mathematics included in the 
curriculum” (Ball et al., 2008, p. 403), but the authors also specify that it is a less robustly 
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theorized knowledge type than the other two and, in fact, that it might be a different way of 
describing a component of PCK or a type of specialized content knowledge.  

Given the strength of the claim made by Ball et al. that the distinction between common and 
specialized CK is important and their hesitance about the construct of horizon content 
knowledge, we decided to code for common and specialized but not horizon content knowledge. 
We planned, in the course of coding, to flag any cases which suggested the missing code might 
be problematic, but no such cases were noted. An ambiguity we noted in the distinction between 
“common” and “specialized” is the under-specification of what it means for knowledge to be 
needed in “settings other than teaching,” (Ball et al., 2008, p. 399). We operationalized this 
distinction as professional work other than teaching that requires similar levels of educational 
preparation; for secondary level topics, this is work that requires a math degree or equivalent. 

We note here that early in this process we were faced with the need to make a choice about 
coding subdomains of PCK. Several frameworks included a subdomain called PCK, making 
explicit reference to Shulman’s (1986) definition of the term and delineating similar subdivisions 
within PCK, but two of these frameworks (COACTIV and TEDS-M) elected not to differentiate 
subdomains of PCK in their assessment design. And while the Ball et al. (2008) framework does 
define subdomains of PCK, most assessment efforts based on this framework have focused on 
differentiating between common and specialized knowledge, with less focus overall on 
measuring PCK and its subcomponents. Given these considerations, we elected not to code 
subdomains of PCK.  
 
Table 2. MKT frameworks examined. 

 Ball et al. (2008) 
Knowledge of 
Algebra for 

Teaching (KAT) 

Cognitively 
Activating 
Instruction 

(COACTIV) 

Teacher 
Education Study 
in Mathematics 

(TEDS-M) 

Mathematical 
Understandings 
for Secondary 

Teaching (MUST) 
Subdomains 

examined 
(subdomain 
most similar 

to PCK 
listed in 

same row) 

Specialized content 
knowledge 

Common content 
knowledge 

School algebra 
Advanced 

mathematics 

Content knowledge Mathematical 
content knowledge 

 

Mathematical 
proficiency 

Mathematical 
activity 

Pedagogical 
content knowledge 

Algebra-for-
teaching knowledge 

Pedagogical content 
knowledge 

Pedagogical 
content knowledge 

Mathematical 
context of teaching 

  General pedagogical 
knowledge 

  

Key Citation Ball et al. (2008) McCrory et al. 
(2012) 

 

Baumert & Kunter 
(2013) 

Krauss et al. (2008) 

Tatto et al. (2008) Heid et al. (2015) 

Coding 
As described above, each item had a previously produced knowledge map, which included a 

summary of the key knowledge, skills, and reasoning required to respond to the item. Once an 
initial code list was developed from seminal documents of each framework, these codes were in 
turn applied to each of the identified pieces of knowledge, skill, or reasoning for each item..A 
codebook was created and used in order to maintain adequate rigor (MacQueen, McLellan, Kay, 
& Milstein, 1998; Saldaña, 2012), and, following Creswell’s (2009) suggestion to document as 
many steps as possible, the coding sheet included a note section for the coders to keep a record 
of their reasoning for assigning certain codes to an item, any questions they had, the decisions 
made, and additional observations worthy of attention. For each item and each framework, 
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researchers coded pieces from its knowledge map for the subdomain(s) of the framework that the 
piece represented. Coding was done independently, with two coders per item, and a third coder 
brought in to arbitrate discrepancies as needed. At least one author coded each item; two 
colleagues familiar with research on MKT served as additional coders as needed. Initial inter-
rater reliabilities were generally adequate, ranging from .69 to .97, but our goal in this coding 
was less to establish reliability in coding and more to produce a consensus around accurate final 
coding. Because we drew on codes extracted from the selected frameworks, we were limited in 
how far we could develop our code list without compromising fidelity to each framework’s 
author’s intentions. Given this, the inter-rater reliability in this study may reflect more than 
anything else the degree to which each framework’s provided definitions were amenable to use 
as codes. What is more salient to our study is the intercoder agreement, a term introduced by 
Creswell (2009) to represent the final agreement among researchers after reconciling 
discrepancies in initial coding. Gibbs (2007) suggested that researchers can minimize bias by 
first individually coding the same set of data using the same codes, and then discussing the 
results of the coding with a goal of reaching a common agreement about the meaning and 
application of each code. Following this method, we attained 100% agreement on final codes.  

From coding to results: The Swift example. We illustrate our coding process using the Swift 
item example presented in Figure 1. The previously generated knowledge map for this item 
called out the following four distinct components of knowledge, skills, and reasoning that a test 
taker might draw on in responding to the item: 

1. Knowledge that any three ordered pairs is sufficient to determine the equation of a 
quadratic. 

2. Knowledge that the complete formula for a quadratic expression is !(! − !)(! − !). 
3. Ability to construct the general mathematical claim implicit in a student’s responses 

in the context of discussion. 
4. Ability to evaluate the generalizability and validity of a mathematical claim. 

Under the Ball et al. (2008) framework, the first and second points were coded as common 
content knowledge, and the third and fourth coded as both specialized content knowledge and 
PCK, reflecting a certain ambiguity in the framework that we were not able to resolve because, 
as described in Hill et al. (2008), specialized content knowledge and PCK may be used toward 
similar ends. For example, constructing the general mathematical claim implicit in a student’s 
response might be accomplished from a purely analytical standpoint, attending only to the 
mathematics represented in the stated claim independently of the idea that it was presented as 
student work. But it also might be informed by knowledge of common ways that students 
approach such problems or represent their thinking in words. Under this framework, then, the 
item was coded as measuring three of the subdomains of the framework: common content 
knowledge, specialized content knowledge, and PCK.  

Under the COACTIV framework, the first point was similarly unambiguously coded as 
content knowledge, but the coders indicated that the second point did not fall into the framework 
at all, due to the COACTIV’s conceptualization of content knowledge as a “deep understanding 
of the secondary school mathematics curriculum” (Krauss, Baumert, & Blum, 2008, p. 876). 
COACTIV’s content knowledge category, unlike that of the prior framework, explicitly excludes 
“the school-level mathematical knowledge that good students have” (p. 876), effectively 
excluding from the MKT construct portions of what Ball et al. (2008) term common content 
knowledge. The same definitional distinction shifted the coding of the third point, which was less 
ambiguous under this framework and was coded simply as PCK. And the fourth point was again 
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double coded as content and PCK but for a different reason, as deep mathematical knowledge as 
defined by COACTIV would include the ability to evaluate mathematical claims in general. 
Under this framework the item was coded again as measuring two of the subdomains: content 
knowledge and PCK. Similar patterns of coding occurred across the remaining frameworks. 

Results and Discussion 

Number of Subdomains Assessed by Framework and Item  
Table 1 shows the number of subdomains of each framework assessed by each of the nine 

items. There was some variation by item. For example, the Hillyard item measured a single 
knowledge subdomain (PCK) under four of the five frameworks, and measured multiple 
subdomains under only one, the MUST framework (Heid et al., 2015), where it was coded as 
measuring both mathematical activity and mathematical context. By way of contrast, the Swift 
item measured multiple subdomains under all five frameworks, indicating that it measures a 
blend of knowledge regardless of which framework is selected, and in fact measured three 
subdomains in all but the COACTIV framework (which contained only two content-specific 
subdomains) and the TEDS-M framework (which contained only two subdomains).  

One explanation for our results is that this set of items was designed to capture MKT by 
following a practice-based item design theory. From the practice-based perspective, what makes 
an assessment task effective in measuring MKT is how closely it represents the work of teaching 
and, hence, the item is considered successful based on how well it represents “the actual 
practices we hope teachers will successfully master, rather than the more-slippery notion of the 
‘kinds of knowledge’ teachers should possess” (Hill, 2016, p. 5). And because these tasks of 
teaching are designed to approximate the work of teaching, it stands to reason that, like teaching, 
a strong assessment item might call on multiple types of knowledge and ask the test taker to 
coordinate them in application to the work of teaching. Because the set of items we examined 
were designed to be practice-based, we cannot claim that our findings are likely to generalize to 
assessment items that follow a different design. However, as Hill (2016) points out, many current 
assessments (and all of those explicitly based on the frameworks we examined) follow some 
degree of this practice-based design in which an item focuses on engaging the test taker in key 
tasks of teaching mathematics. This suggests that the findings may generalize, at least in part, to 
many current MKT assessment efforts.  

Additional Results 
We note here one minor result that may be of interest. When multiple frameworks used the 

same terminology, we found a number of items that were coded inconsistently with respect to 
that terminology. For instance, three frameworks contain “PCK” as a subdomain. However, 
coding for PCK in one framework did not guarantee that the item was coded as PCK in all other 
frameworks, due to how PCK was defined. Moreover, as reflected in the Swift coding examples, 
there were also some significant differences between frameworks in how mathematical content 
knowledge was defined. While in the case of mathematical content knowledge, the framework 
authors did not use identical terminology, the similarity of terminology around content 
knowledge, which one might reasonably expect to be fairly unambiguous, arguably creates the 
potential for misunderstanding. These observations mirror those made by Kaarstein (2014), who 
found similarly divergent categorizations analyzing a different set of items across a subset of the 
frameworks we considered, and substantiated concerns more broadly that the field may be 
suffering from an unproductive lack of coherence with respect to our work around MKT (Hill, 
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Sleep, Lewis, & Ball, 2007). While different frameworks may serve different purposes, certainly 
it is potentially problematic when common terms are used differently in ways that undermine 
clear communication, and our results provide additional evidence that this may be the case. 
Table 1. Number of Subdomains Measured by Item by Framework 
 Ball et al. KAT COACTIV TEDS-M MUST 
# subdomains 
coded 3 3 3 2 3 

Item name      
1. Allen 3 2 1 2 2 
2. Hillyard 1 1 1 1 2 
3. Morgan 3 3 2 2 3 
4. Watkins 2 2 1 2 2 
5. Carlies 3 2 2 2 3 
6. Swift 3 3 2 2 3 
7. Rose 3 2 1 2 3 
8. Swain 3 2 2 2 2 
9. Williams 2 2 1 1 3 

Limitations 
We caution here against potential overgeneralizations of our results, which we would 

characterize as more illustrative than generalizable. Our set of items is clearly quite small, and 
while we intentionally selected items to represent strong examples of practice-based item design 
theory for which we had evidence of success in capturing MKT, our observations may not 
generalize to all practice-based items and almost certainly do not generalize to differently 
designed assessment items. That a practice-based approach is prevalent in the field provides 
some evidence that it is a fruitful design method, but other approaches may emerge that are 
equally able to measure MKT and better able to capture its subdomains, or more careful domain 
analysis and framework development might produce a set of knowledge distinctions that can be 
measured in clear isolation from one another.  

We also note that the evaluation or comparison of frameworks on the basis of our numerical 
results is inappropriate given the purpose and method of the coding. Frameworks did not have 
equal numbers of categories to begin with, and our coding decisions may have exaggerated these 
differences or obscured them. Some frameworks afforded clearer coding decisions than others, 
but none were designed to support this type of coding, and many of the authors of the 
frameworks acknowledge some ambiguity in the boundary cases between knowledge types. Not 
all the frameworks were explicitly designed to support assessment design, and it is also worth 
noting that none were utilized to design the set of items we analyzed, and it is possible therefore 
that our items may distinguish subdomains less well than items designed for that purpose under a 
particular framework might do.  

We also call attention to the two items that seemed to measure distinct subdomains best: the 
Hillyard item, which was coded as measuring one subdomain under most frameworks, and the 
Williams item, which was coded as measuring one subdomain under three frameworks. These 
cases illustrate that is clearly possible, even within the set of items we analyzed, for an item to 
measure a single subdomain under a framework, and it is not our claim that practice-based items 
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measure multiple subdomains, with no exception. We simply claim that measuring isolated 
subdomains is unlikely to be the typical pattern.  

Conclusions  

We conducted an analysis of the study items in which we coded each item for the knowledge 
subdomains measured using five different frameworks that have been proposed in the field. Our 
results illustrate that this set of items does not measure subdomains of any of these frameworks 
distinctly, suggesting that the types of MKT elicited by the items are interconnected. We discuss 
three implications of these results. One implication is that these frameworks, each designed with 
different and particular intent and potentially useful with respect to that purpose, may not be 
useful for distinguishing measureable subdomains of MKT. To some degree this is a divide 
between approaches to theory and approaches to assessment. If one takes a compartmentalized 
view of an MKT framework, assuming that subdomains must be distinctly measureable in 
isolation from the larger construct in order to establish the value of the theory, this result could 
be viewed as problematic. We hold, however, that identification of distinctly measurable 
subdomains is not the only or even the most desirable purpose of theory; a theorized subdomain 
need not be distinctly measureable in isolation from the larger construct to be useful in informing 
the field’s thinking, designing policy, or as a heuristic for organizing teacher supports. For 
example, Ball et al.’s (2008) framework, and in particular the subdomain specialized content 
knowledge, has pushed the field substantially by drawing attention to difficult mathematics that 
elementary teachers need to know and are not likely to learn in conventional preparation; this 
attention has changed policy for the mathematical education of elementary teachers (e.g., 
Conference Board of the Mathematical Sciences, 2001). The KAT framework helps us think 
about where prospective teachers are likely to learn particular types of knowledge, and by tying 
their categorization closely to existing course structures for secondary teacher preparation they 
directly inform what might be the content of such courses. In other words, different frameworks 
can be powerful in calling attention to different aspects of MKT and of its importance, and while 
there are many reasons to measure important constructs, it is not obvious that measurability is a 
necessary indication of a theory’s importance or validity. However, much assessment 
development work in this area has focused on doing precisely this: producing items to measure 
specific subdomains of MKT in an effort to validate the theory. We hold that this approach is not 
necessarily optimal if the goal is either to produce valid and reliable assessments of MKT or to 
generate useful theory, unless the explicit intended use of that theory is to support assessment 
development. 

A second implication is that items written to a practice-based framework are unlikely to 
measure isolated subdomains of MKT well. Items organized around the idea of capturing a 
moment in the work of teaching, where the work of teaching of necessity demands that teachers 
draw on and coordinate complex pieces of various types of knowledge simultaneously, are likely 
to be successful only insofar as they measure complex and coordinated knowledge. In other 
words, under this design theory the key to an item’s “success” in measuring the MKT domain is 
its authentic approximation of teaching practice, which may undermine its ability to capture 
distinct knowledge domains. We nevertheless propose that, given the field’s current knowledge, 
the benefit of a practice-based item design in successfully measuring the MKT construct far 
outweighs any drawbacks associated with such items not being able to distinguish among 
theoretical subdomains particularly in cases where there is no clear rationale for the necessity to 
distinguish subdomains. 
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Finally, we call attention to the implications for teacher education. Frameworks for MKT 
effectively called the field’s attention to aspects of teachers’ content knowledge that are needed 
but which traditional teacher preparation provides inadequate opportunity to learn, prompting 
attempts to organize coursework to support that learning (e.g., CBMS, 2001; CBMS, 2012). We 
would argue, however, that it is crucial to attend to the way MKT occurs in the work of teaching, 
and not just to particular subdomains of MKT, however important they might be. While the 
content knowledge that can be called specialized content knowledge, for example, may be 
important for novice teachers to learn, there is no evidence that courses can be organized to teach 
specialized content knowledge directly in isolation from other components of MKT, or that the 
mathematics that makes up specialized content knowledge makes up a mathematically coherent 
topic area. Programmatic organizations that attempt to do this may be, in essence, missing the 
point of a practice-based approach. The work of teaching may form a natural organizing 
structure for teacher learning, just as it does in practice-based items, because the work of 
teaching is, in fact, the work we want to help teachers learn to do. We would argue that it makes 
sense to organize teacher preparation around that work in ways that support learning of the 
whole of MKT, and that we use theory not to decompose what is to be learned into distinct 
pieces but rather to help us appreciate the depth and complexity of the knowledge needed to do 
that work. 
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This theory-based report gives evidence and builds a conceptual framework for a construct 
called “mathematical knowledge for teaching future teachers” (MKT-FT).  Mathematics teacher 
educators construct MKT-FT as they teach courses for pre-service teachers. Connections to 
mathematical knowledge for teaching (MKT) are discussed, with an emphasis on the complex 
relationships among aspects of pedagogical content knowledge in MKT-FT and MKT.  

 
Key words: Mathematical knowledge for teaching, Discourse, Teacher educators 

 
In the 30 years since Shulman’s (1986) seminal speech on the importance of pedagogical 

content knowledge, a variety of theories about such knowledge have emerged (Depaepe, 
Verschaffel, & Kelchtermans, 2013). Among the most well known in the U.S. is at the heart of a 
primary-grades-focused model of mathematical knowledge for teaching (MKT) introduced by 
Hill, Ball, and Schilling (2008). The subject matter knowledge (SMK) and pedagogical content 
knowledge (PCK) components of Ball and colleagues’ model of MKT are illustrated in Figure 1.  

 
In the context of more advanced mathematics, others have explored how the idea of MKT may 
be productively refined for use in research and development in secondary and post-secondary 
settings (Hauk, Toney, Jackson, Nair, & Tsay, 2014; Speer, King, & Howell, 2015). Speer and 
colleagues considered college instructional questions such as: What are the types of specialized, 
horizon, and common mathematical knowledge for teaching calculus? While Hauk and 
colleagues have tackled: How does one unpack the aspects of PCK – knowledge of content and 
curriculum, content and teaching, content and students –  when the teaching is in a college, the 
students are adults, the collections of mathematics experiences brought to the classroom are 
larger, and the sociocultural relationships among students, teacher, and institutions are quite 

Figure 1. Model of mathematical model for teaching (Hill et al., 2008) 
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different from those assumed in the K-8 foundations of the initial framing of MKT? Hauk and 
colleagues (2014) developed an expanded model for college teacher PCK. They used the PCK 
components in Figure 1 as the vertices of the base of a tetrahedron and added a fourth vertex 
which they called knowledge of discourse (knowledge about the nature of communication, 
including context and valued forms of inquiry, socio-mathematical norms, and language in, for, 
and through mathematics in post-secondary educational settings) – see Figure 2. 

 
Context and Researcher Stance 

Here we consider an MKT-related question in undergraduate mathematics education: What is 
the nature of “mathematical knowledge for teaching” for college instructors who teach 
mathematics for pre-service elementary teachers? Such instructors are teaching adults in post-
secondary settings where the mathematical content is in the context of elementary school 
mathematics (rather than advanced) and yet the content is itself linked to MKT for grades K-8. 

Indeed, Gallagher, Floden and Gwekwerere (2012) note that we know little about what skills 
are required to be an effective teacher of future K-8 mathematics teachers nor do we know much 
about how those skills develop. Here, by mathematics teacher educator we mean anyone who 
provides guidance, mentoring, or professional learning opportunities to prospective or in-service 
teachers. The current paper focuses on the subpopulation of mathematics teacher educators who 
teach mathematics-content-rich courses where the learners are pre-service K-8 teachers.   

For us, an important aspect of the context of this work are the experiences we bring to it. 
Below, we outline background that has informed our thinking.  

Shandy Hauk. My experience in the last 25 years includes being a classroom teacher in K-6, 
middle, and high school. The latter as both an English and a mathematics teacher. Others 
perceive me as a white woman though my early experience growing up in and around Los 
Angeles was as a “transcultural kid” (ours was one of two pink families in a neighborhood of 
more than 30 brown families; all were poor). I was raised and have worked in socio-
economically and culturally diverse communities. Along the way, I completed a PhD in 
mathematics (chaos theory and global climate modeling) and a post-doc for research in 

Figure 2.  Tetrahedron model of PCK (Hauk et al., 2014).!
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undergraduate mathematics education. The work I have done with mathematics teacher educators 
has included research about the professional practices of district-level coaches and teachers on 
special assignment. Most closely related to the work reported here is a recently completed 
project where we spent five years looking at the practices and professional development of in-
service high school teachers and the mathematics faculty who teach them. In that project, Billy 
and I, with several others, began our journey of model-development for how to describe the 
aspects of knowledge (and thinking) about teaching we saw (e.g., Hauk et al., 2014). Billy, 
JenqJong and I are just starting a new project that develops and researches professional learning 
about MKT among college mathematics faculty who teach future K-8 teachers. 

Billy Jackson. I grew up in the southeastern U.S. as a member of a typically privileged group 
(white and male). Like Shandy, my PhD is in mathematics and I did a post-doc in mathematics 
education. As part of my post-doc years, I spent a year as a high school mathematics teacher. An 
eye-opening experience. My passion in understanding how to unpack MKT and communicate 
that to other people has grown to include how to represent and communicate MKT to 
mathematics teacher educators and to people who do research with teacher educators. I have 
typically had success in mathematics and know the culture of mathematics and now am working 
in undergraduate classrooms where my professional values are not shared by my students. Being 
a male mathematician when 90% of the student audience is female (pre-service elementary 
school teachers) is a challenge. One bias I face is that as a white male mathematician I am not 
perceived as a “nurturer” by my students. In the classroom, on the first day of class a student told 
me “I get the sense you are a no nonsense kind of guy and get straight down to business.” I have 
found I am more accepted as a nurturer in a one-on-one environment like office hours, when we 
have more time and space for negotiating the cultural differences. In a lot of ways, I am the 
antithesis of what my students perceive about my School of Education colleagues. One of the 
biggest rewards in working with K-8 future teachers is the great feeling to see learners have aha! 
moments and ask me “Why weren’t we taught this way? It makes so much more sense!”  

JenqJong Tsay. I was raised, educated, and initially taught elementary school in Taiwan and 
completed a PhD in mathematics education in the US. I have spent the last 15 years working in 
and developing skill in a new culture. It means I can draw on my learning experience about what 
teaching and classrooms are like in the U.S. and in Taiwan. This comparison has been part of the 
perspective I have brought to this work. Billy noted that being male when 90% of the preservice 
teacher student audience is female was a challenge. For me, the more pertinent challenge comes 
in the perceptions and assumptions students have of me because of my appearance and accent. 
Most of the time I teach middle and high school pre-service teachers. This year I am teaching the 
K-8 Number and Operations content course for the first time. My perception is that most of my 
preservice elementary teacher students do not like, okay to be honest, hate mathematics. This is a 
challenge for me. My instruction is inquiry-based, so I do not use direct instruction or create 
procedural guidelines. For most of the students in the K-8 fundamentals of math course, the 
inquiry-based approach is met with impatience and frustration. My students are not used to the 
idea of spending time to contextualize mathematics and make sense with mathematics for 20 
minutes on one idea. The first few weeks, we spent a lot of time building socio-mathematical 
norms with some reinforcement every class period of this negotiation. In Taiwan, undergraduates 
in general, and preservice teachers in particular, are more persistent and concentrated in their 
study, in part because of their parents’ expectation and financial support. Nevertheless, what I 
have learned from my teaching and research in the U.S. seems to be that conceptual 
understanding is emphasized more in the preparation of teachers in the U.S. than Taiwan.  
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We are still building our personal experiences in research with mathematics teacher 
educators. We rely heavily on the work of others, including the policy and research literature on 
people who teach in-service teachers (see for example AMTE, 2017 and Bitto, 2015). We also 
pull from the limited research and practice literature on the nature of professional knowledge 
among instructors responsible for the collegiate mathematics education of pre-service teachers. It 
is a strength of our theory and model development work that we have these three distinct sets of 
practical experiences. At the same time, we may still have blind spots about the theory and we 
look to the reader and other people in the field to contribute to the triangulation needed in 
rigorous research.  

Importance to RUME Community 
A natural question arises: Why should the Research in Undergraduate Mathematics 

Education (RUME) community have an interest in examining the knowledge required of 
mathematics teacher educators to perform their jobs effectively? First and foremost, much of the 
mathematical preparation for teaching among future K-8 teachers happens in colleges, most at 
the undergraduate level (Masingila, Olanoff, and Kwaka, 2012). In fact, Masingila and 
colleagues found that 88% of the teaching of “mathematics for elementary teachers” courses 
happens in mathematics departments. Across institution types (2-year, 4-year, and master’s and 
doctoral degree granting) most faculty teaching these courses have advanced degrees in 
mathematics (e.g., more mathematics PhDs teach the courses than those with doctorates in 
mathematics education).   

We know that early learning experiences are formative and that children who learn to see 
themselves as mathematical agents do better in secondary school and beyond (Aud, et al., 2013, 
Shim, Ryan, & Anderson, 2008; Woodward et al., 2008). We know teaching that supports 
children in building skills with mathematical process, practices, and content is socio-culturally 
rich and responsive to community experiences and needs (Aud & KewalRamani, 2010; Gay, 
2010; Khisty & Chval, 2002; Téllez, Moschkovich, & Civil, 2011). We know that future teachers 
have greater resources to draw on and are more likely to offer children what they themselves 
have experienced as learners (including the undergraduate learning experiences that are most 
proximal to their launch as teachers; e.g. Ball and Bass, 2000; Conference Board of the 
Mathematical Sciences, 2012; Hodgson 2001). There is a need for mathematics faculty who are 
prepared to teach mathematics content courses for pre-service elementary teachers (PSETs) in 
ways that resonate with the kinds of classrooms those future teachers are expected to sustain.   

In the U.S., the current population of instructors for such courses includes adjuncts, graduate 
students, and full time tenure- and non-tenure-track track mathematics faculty (Masingila, et al., 
2012).  Large segments of this instructor population have difficulty teaching courses for PSETs 
(Flahive & Kasman, 2013; Greenberg & Walsh, 2008). Though instructors in mathematics 
departments usually have a deep mathematical background, they often face challenges teaching 
content that is relevant and has utility for PSETs, unaware of the “cognitive and epistemological 
subtleties of elementary mathematics instruction” (Bass, 2005, p. 419).   

Given this state of affairs, Masingila, Olanoff, and Kwaka (2012) advocate for the design and 
implementation of professional development for mathematics teacher educators. Indeed, 
Masingila and colleagues note that many faculty who participated in their study asked the 
researchers where they could find professional learning resources!  

The RUME community includes experts on such matters. Any design and implementation of 
effective professional development for mathematics teacher educators must involve attention to 
identifying the types of knowledge that faculty use and need. In this case, the research and 
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subsequent implications for practice involve the teaching of college students who are on a 
professional path to teaching K-8 students. 

Mathematical Knowledge for Teaching Future Teachers (MKT-FT) 
!

For these reasons, we propose that college instructors possess a specialized constellation of 
knowledge to be studied: mathematical knowledge for teaching future teachers (MKT-FT).  We 
posit that like MKT, MKT-FT is largely individually constructed by mathematics teacher 
educators while being heavily socially mediated.  Seaman and Szydlik (2007) discussed the 
necessity but insufficiency of the early model of MKT for college mathematics instruction, 
particularly in the context of teaching future teachers. Several authors have noted the existence 
of what we see as components of MKT-FT. Zopf (2010) and Olanoff (2011) argued that effective 
teaching of future teachers requires mathematical knowledge of the work of teaching K-8 
mathematics and awareness of the complexities of K-8 MKT itself.  

According to Rider and Lynch-Davis (2006) and Smith (2003), the mathematical knowledge 
needed for teaching future teachers attends to the fact that one is teaching adult learners who 
have some familiarity with the mathematics (as opposed to teaching children who may be 
learning content for the first time). And, we note, there is a perceived autonomy of the learner in 
the post-secondary setting that is largely absent in K-8 and high school contexts. Smith (2005) 
has claimed that faculty who work effectively with future teachers have some (perhaps implicit) 
knowledge of educational theory and K-12 practice, as well as knowledge resources for 
connecting ideas and concepts in ways that prepare pre-service teachers to review, select, and 
engage with the wide array of curricular decisions that must be made by a schoolteacher (e.g., 
decisions regarding which resources, worksheets, texts, and activities to use or avoid, decisions 
about how to orchestrate classroom mathematical discussions).  Olanoff (2011) points out that 
Deborah Ball herself considers MKT to be the analog of “common content knowledge” for 
faculty “mathematical knowledge for teaching” teachers. 

Research and development on the preparation of teacher educators has long assumed a 
nesting of types of knowledge. One representation of that can be seen in Carroll and Mumme’s 
work (2007). Figure 3 represents the nesting of mathematical content as subject matter 
knowledge (orange disk), linked to (future) teacher and elementary student within the larger 
context of the classroom (yellow disk).  

Figure 3. Nesting of teaching and learning connections (Carroll & Mumme, 2007). 
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Similarly, in Figure 3, mathematical knowledge for teaching (the stuff in the yellow disk) is 
linked to (future) teacher and mathematics teacher educator (“leader”) within the larger context 
of teacher professional learning (green disk).  

Clearly, this is a multi-dimensional situation. For each disk in Figure 3 there is an associated 
set of specifications for what counts as the context and for what constitutes the content about 
which one has “pedagogical content knowledge.” Perks and Prestage (2008) made the case that 
an additional aspect they called “professional traditions” connects to the categories in Figure 3. 
Like Carroll and Mumme, they asserted that knowledge for teaching and for teaching teachers 
operates on several levels with a partially-nested self-similar design. Their model for teacher-
educator knowledge is shown in Figure 4. On the left in Figure 4 is the model they associated 
with Instruction. Unlike Figure 3, Perks and Prestage focused on kinds of knowledge brought to 
a classroom (rather than the interactions among people and content foregrounded by Carroll and 
Mumme). So, though both models involve a self-similar nesting, the nature of what is nested and 
of what is represented by arrows/edges differs. 

Model of Pedagogical Content Knowledge for MKT-FT 
In our own work since 2006, we have used a tetrahedron to represent the relationships among 

types of knowledge (4 vertices) and types of thinking (6 edges) associated with the development 
of mathematical knowledge for teaching. As discussed above for Figure 2, the model for MKT-
FT in Figure 5 (next page) foregrounds attention to pedagogical content knowledge. At each 
vertex in Figure 5 are the mathematical content in the college class and “content” that is the 
mathematical knowledge for teaching K-8 students (illustrated for just the KCS vertex as 
magnified and highlighted, lower left, in Figure 5). We claim a similar cascade of knowledge 
structures, related to Content & Teaching, Curriculum, and Discourses in K-8 are embedded in 
the vertex knowledge of college mathematics instructor MKT-FT (illustrated by similar “mini” 
tetrahedra at each of the other vertices in Figure 5, next page). 

While the nesting of knowledge structures within others is represented as geometrically self-
similar, a fractal structure, the knowledge and thinking represented in the “big” and “small” 
tetrahedra are not identical. Each vertex of the “big” tetrahedron representing MKT-FT has a ten-
to-one mapping (i.e., the 4 vertices and 6 edges of the “small” tetrahedron).  For instance, 
suppose the MKT-FT vertex for knowledge of content and students (KCS) is defined, as by Ball 
and colleagues, as “content knowledge intertwined with knowledge of how students [who are 
future teachers] think about, know, or learn this particular content” (Hill et al., p. 375). 

Figure 4.  Tetrahedron models for teacher-educator knowledge (Perks & Prestage, 2008).  
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In Figure 5, the KCS vertex represents teacher educator knowledge of (a) how to create 

instruction that will engage college students with acquiring the profound understanding of 
mathematics they will need in their future work as teachers as well as (from the small 
tetrahedron) (b) instruction that engages college students in learning to encapsulate, do, and 
unpack mathematical ideas in anticipation of their future work with children in K-8 mathematics 
lessons (i.e., K-8 MKT). In the MKT-FT model, knowledge of content and teaching includes a 
knowledge of teaching mathematics in a college course for future teachers as well as attention to 
K-8 MKT in making instructional choices in that college course. 

 
MKT-FT and Task Design 

Example 1. As a math teacher educator I incorporate my knowledge about my students and 
about their future work as teachers into the design of tasks we do in the college classroom. Using 
my knowledge of content and future teachers, I know that they know how to use the distributive 
property of multiplication across addition, but may not understand what it means (their 
mathematical knowledge) or how to unpack and describe that meaning to teach others (K-8 
MKT). So, one task I have created starts like this:  

 
 
 
 
 
In the task, future teachers make groups of objects and circle groups of objects. Among other 

things, they compare 30 divided by 10 to 30 divided by 5 plus 30 divided by 5.  
 

Figure 5. Model of MKT-FT pedagogical content knowledge – each vertex itself contains 
knowledge structures related to K-8 MKT.  

The$situation:$You$are$teaching$a$5th$grade$class$about$division,$talking$about$the$properties$of$
division.$Daisy,$one$of$your$students,$raises$her$hand$and$says$“shouldn’t$division$distribute$across$
addition$just$like$we$say$multiplication$does$since$division$is$the$opposite$of$multiplication?”$

The$goal$of$this$activity$is$to$investigate$Daisy’s$claim.$
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Example 2. In an activity for college faculty new to teaching future teachers, to illustrate how 
a task for pre-service teachers might be designed, we have used video of Sybilla Beckmann’s 
college classroom (Beckmann, 2013) and a fourth grade classroom (from the Teaching Channel). 
In the college video, the instructor asked preservice teachers to come up with scenarios in which 
multiplication is not a correct operation for the multiplicative phrase “four times as many as.” At 
first glance, this multiplicative phrase indicates a number sentence of the form b = 4a (i.e., 
product (b) = 4 (multiplier) times a (multiplicand). Stated this way, a and b have a multiplicative 
relationship, but if b is given and a is the unknown to be found, an appropriate operation would 
be division. When problem solvers take a direct translation approach to convert a verbal sentence 
into a number sentence, an inappropriately stable piece of knowledge – about the operation – can 
be adopted. In the fourth grade classroom video, the majority, if not all, of the children 
demonstrate such difficulties with the problem “Maria saved $24.  She saved 3 times as much as 
Wayne. How much did Wayne save?” This, in spite of the teacher’s effort to show them 
otherwise. When a mathematics teacher educator is aware of the in-the-wild demands of 
elementary school teaching and the fractal structure of PCK, a task for their preservice teachers 
can be designed to build future teachers’ knowledge to tackle this obstacle. A simple task could 
be similar to Beckmann’s questioning of undergraduates to find different scenarios. A more 
complex task would emphasize the syntax and semantics of linguistics and introduce attention to 
analytic translation and compare it to direct translation. 

 
These examples illustrate an important aspect of what mathematics teacher educators do with 

their MKT-FT. Teacher education has long noted that task design is a significant component in 
the development of knowledge for teaching teachers. For example, Stylianides and Stylianides 
(2006) asserted that it is crucial for activities to be teaching-related mathematics tasks, so future 
teachers learn important school mathematics while at the same time making connections between 
how learning the content relates to its teaching. For Seaman and Szydlik (2007), well-designed 
tasks deepen the “mathematical sophistication” of future teachers, which they define as occurring 
as a result of enculturation into the mathematics community (e.g., this might be signified by 
teachers exhibiting as their own the ways of knowing and values of mathematicians). A broader 
example comes from the Journal of Mathematics Teacher Education issue devoted to the 
important topic of task design (Zaslavsky, Watson, & Mason, 2007). Papers in this special issue 
discussed different aspects of good task design in courses for teachers. For instance, according to 
Chapman (2007), effective tasks facilitate new understandings of familiar concepts and prompt 
reflection, while Bloom (2007) argued that quality tasks enhance mathematical habits of mind 
among college learners who are future teachers.  

Yackel, Underwood, and Elias (2007) demonstrated the profound effect that attention to task 
design and reflection on task implementation can have on MKT and MKT-FT development of 
those who teach future teachers.  One of their mathematics teacher educators commented, 

I found it interesting that adult students also go through some of the same 
progressions that children do.  In particular, I often noticed that many students initially 
needed to use [iconic representations] to perform calculations, such as explicitly drawing 
boxes, rolls, and pieces…Having never taught young children, I had never seen this first 
hand.  Base 8 gave me the opportunity to experience this part of children’s learning 
[emphasis added].  I think this is valuable to college instructors because most, like 
myself, will never have an opportunity to work with elementary school children closely. 
(p. 364) 
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Hence, we see that experiences with task design can support teacher educator growth of 
Knowledge of Content and Teaching in MKT-FT by creating and leveraging a knowledge of 
content and K-8 students. This example also illustrates the nonlinearity needed for an MKT-FT 
model. The instructor in Yackel and colleagues’ work mentioned building Knowledge of Content 
and Students (both for child and adult learners) by thinking about Knowledge of Content and 
Teaching. 

As another example of the multi-dimensional nature of MKT-FT, consider what constitutes 
the “subject matter knowledge” in the mathematical knowledge needed for teaching future 
teachers. For MKT-FT, the “subject matter” is a combination of mathematics and mathematics 
education As Ball noted, MKT (everything in Figure 1) becomes common content knowledge for 
mathematics teacher educators. Simultaneously, “specialized content knowledge” for 
mathematics teacher educators includes an awareness of educational policy and literature as a 
means of supporting future teachers’ awareness about why certain mathematical or pedagogical 
practices are favored (e.g., in the Common Core Standards). Horizon knowledge for teacher 
educators includes recognition of pending consequences of district, state, and national 
mathematics standards. So, in MKT-FT, specialized content knowledge is rich in educational as 
well as mathematical knowledge.  

And what about the knowledge of discourse discussed earlier?  Well, for mathematics teacher 
educators, MKT-FT knowledge of discourse subsumes the same knowledge of discourse that 
teachers have, and draws on knowledge of communicating about MKT and the teaching of 
mathematics in different instructional situations. 

As Hauk, et al. (2014) point out, the literature on PCK includes both stable and dynamic 
features. The edges in the tetrahedron represent the ways of thinking about teaching mathematics 
used in planning for, implementing, and reflecting on practice. These ways of thinking are 
enacted as teachers adapt to varying sociomathematical and cultural contexts that arise over time.  
In like manner, effective mathematics teacher educators also possess ways of thinking about 
teaching mathematics and about teaching MKT that change as the social, mathematical, and 
cultural climates change in their courses for future teachers.  The edges in our fractal tetrahedron 
also represent these dynamic ways of thinking for faculty who teach future teachers. 
 

Concluding Remarks 
 

It is worth noting that much of what we have presented here as knowledge required to teach 
future elementary mathematics teachers is documented in the recent Standards for Preparing 
Teachers of Mathematics issued by the Association of Mathematics Teacher Educators (AMTE) 
in February of 2017.  For instance, the AMTE document stresses (as we have done here) the 
importance of task design and implementation: 
 

In such [active learning] sessions, learners [future teachers in this case] are typically 
provided challenging tasks that promote mathematical problem solving and are provided 
opportunities to discuss their thinking in small group and full group discourse, thus 
promoting important mathematical practices. (p. 31) 
 

This quote also underlines the importance of discourse knowledge that is required of teacher 
educators. Facilitating active learning in a collegiate classroom requires the teacher educator to 
navigate across the many social, cultural, and socio-mathematical norms present in the room.  
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Discourse knowledge is further amplified in paying attention to building reasoning and 
justification skills among future teachers, which the Standards address by noting that “without 
explicit classroom attention to mathematical argumentation, effective programs risk diminishing 
the opportunities candidates have to engage in the mathematical practice of constructing viable 
arguments” (p. 32).  The fractal nature of MKT-FT is also reflected in the Standards: “In 
effective programs, mathematics teacher educators explicitly identify and address mathematical 
practices” (p. 31). Ultimately, faculty teaching future teachers must possess sufficient knowledge 
of mathematical content and of the mathematical nuances of K-8 MKT to offer instruction the 
uses and is aware of valued mathematical practices (e.g., those in the Common Core State 
Standards). 
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Raising reasoning through revision: A case study of an inquiry-based college geometry 
course 

 
Janessa Beach    Rebecca-Anne Dibbs 

         Texas A&M-Commerce       Texas A&M-Commerce 

Geometry is the subject where U.S. students are weakest on international assessments, but 
college geometry is an area of proof that is understudied. Since geometry is secondary 
students’ only exposure to proof, it is vital our secondary teachers can prove effectively in 
this content area. The purpose of this case study, drawn from a larger project, was to 
understand how, if at all, pre-service teachers’ proof schemes became more axiomatic 
throughout a one-semester inquiry-based college geometry course. Participants in this study, 
Alexis and Lindsey, were pre-service teachers enrolled in an inquiry based college geometry 
course. Although Alexis and Lindsey had differing experience with proof at the start of the 
course, the change to revise their proofs and discuss problems with their peers helped both 
students advance to more axiomatic geometric thinking. 

Key words: College geometry, inquiry based learning, proof  

Introduction and Motivation 

Compared to other nations, the students of the United States of America are floundering 
in geometry. The Trends in International Mathematics and Science Study (TIMSS) evinced 
that twenty-one educational systems, including China, Japan, Israel, and England, have 
higher geometry scores than the U.S. (Mullis, Martin, Foy, & Arora, 2012). This deficiency is 
partly because pre- and in-service teachers possess an inadequate understanding of the 
structure of geometry. Despite this difficulty for students and educators, college geometry 
remains severely under-researched (Speer & Kung, 2016).  

A possible solution to this problem is to reassess our preparation of pre-service teachers 
for geometry content and proof. Research suggests that instead of teaching proof in 
instructor-centered environments, proof courses should consist primarily of “student-student 
and student-teachers interactions regarding students’ proof attempts” (Selden & Selden, 2008, 
p.19). One way this can be achieved is through implementation of inquiry-based learning 
(IBL) pedagogies. In an IBL environment, instruction is content- and student-centered, it is 
driven by students’ exploration, and it is concentrated on acquisition of the material (Padraig 
& McLoughlin, 2009).  

The research question of this study was: to what extent do students’ proof schemes 
became more axiomatic throughout a one semester inquiry-based college geometry course? 
Through this study, we can determine whether or not this type of instructional environment is 
a potential solution to pre-service teachers’ shallow understanding of proof and geometry. 
Mathematicians and teacher educators can then make more informed decisions on how to 
structure college geometry courses. We argue that the revisions present in an inquiry based 
classroom were vital to help students develop from a perceptual to a more axiomatic proof 
scheme.  

Literature Review 

Geometry arises from a set of undefined terms and axioms through which all other 
theorems and definitions are constructed. Hence, a thorough understanding of geometry 
involves a deep understanding of axiomatic proof; yet, pre-service teachers are not 
necessarily equipped with the geometry content knowledge required for teaching after merely 

20th Annual Conference on Research in Undergraduate Mathematics Education 44020th Annual Conference on Research in Undergraduate Mathematics Education 440



majoring in mathematics (Jones, 1997). Furthermore, teachers possess a narrow 
understanding of proof. Studies indicate that pre- and in-service teachers believe proof only 
helps explain ideas used in mathematical concepts, and they do not recognize the ability of 
proof to systemize results (Mingus & Grassl, 1999; Knuth, 2002b). Pre- and in-service 
teachers are prone to accept pictures and other types of empirical arguments as proof (Knuth, 
2002a). Also, research depicts teachers disregarding or accepting an argument as proof based 
on its format (Dickson, 2008). 

Constructing proofs at the post-secondary level, compared to proofs at the secondary 
level, requires student to possess a larger knowledge base to apply in the proving process. 
The final products are expected to have a more complex structure as well as expected to be 
precise and concise (Selden, 2012). However, Jones discerned that undergraduates do not 
recognize “…mathematics as a field of ‘intricately related structures’…” (Jones, 2000, p. 59). 
Hence, students fail to establish the connections between ideas required to formulate a proof. 
Undergraduates are also presumed to enter into a proof course with some strategic 
knowledge, knowledge of which proof techniques and helpful theorems, to apply in the 
proving process; yet, research depicts that undergraduates do not have these understandings 
(Weber, 2001).  Therefore, undergraduate students are not entering into proof courses with 
the background required to confront proofs at the post-secondary level. 

A multitude of proof research has devoted itself to unearthing the reasons students do 
not enter a post-secondary proof course with the required background knowledge. 
Alarmingly, students do not have an adequate understanding of what arguments qualify as 
mathematical proof (Weber, 2001).  Harel and Sowder (1998) attribute this to the fact that 
teachers often present proof as an obvious proposition instead of engaging students in the 
process of discerning which arguments are convincing.  Furthermore, students lack the 
important comprehension of the mathematical language and concepts necessary to construct 
proof. For example, students may not recognize the difference in certain terms when used in 
everyday vernacular and when used in a mathematical argument (Selden, 2012).  Another 
difficulty associated with mathematical language for students is the poor comprehension of 
quantifiers – students misunderstand the implications and the importance of universal and 
existential quantifiers (Selden, 2012). Research also depicts that students possess shallow 
understandings of definitions and theorems (Weber, 2001; Selden, & Selden, 2008). Hence, 
students may misapply or misinterpret ambiguous terms, quantifiers, or the pieces of 
knowledge essential in constructing or validating a proof. 

 If educators assume students will develop proficient proof skills without any 
feedback, research manifests students will fail and most likely cultivate ineffective strategies 
(Weber, 2001).  These ineffective strategies are typically proof schemes dependent upon 
external and empirical convictions.  A proof scheme “consists of what constitutes 
ascertaining and persuading” for a particular person (Harel, & Sowder, 2007, p. 7). Rather 
than rely simply on external or empirical convictions to formulate geometry proofs, students 
need to be able base arguments on axioms and logical deductions. Table 1 depicts the proof 
schemes observed in this study as well as their definitions. Proof schemes dependent upon 
external and empirical justifications are the authoritarian, ritual, and perceptual proofs 
schemes. Proof schemes that utilize axiomatic and deductive justifications are the deductive, 
intuitive axiomatic, and structural axiomatic proof schemes. 
 

Methods 

The theoretical perspective used in this project was the reduced Toulmin model of 
argumentation. In mathematics education literature, there are two formats in which the model 
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appears. We will distinguish them as the reduced Toulmin model (Figure 1) and the extended 
Toulmin model. The reduced model consists of three types of statements that represent 
different pieces of the argument, and the extended model consists of six statements. The three 
statements in the reduced Toulmin model are as follows:  The data (D) is the foundation on 
which the argument is based. The conclusion (C) is the statement the arguer intends to 
convince. The warrant (W) justifies the relationship between the data and the conclusion. 
When students are asked to prove a claim, the conclusion is correct because it is given to the 
students. However, the data is typically a mixture of right and wrong. This amalgamation 
occurs because of the warrant the student applies – their reasoning from a piece of 
information to the conclusion. Although a warrant is specific to an argument, a warrant-type 
is a category of warrants with similar properties. 

 
Figure 1. Reduced Toulmin model. Adopted from (Inglis, Meija-Ramos, & Simpson, 2007). 

This study took place at a midsized, rural, research university in the South, and the 
students who participated were those enrolled in a college geometry course based upon Miller 
(2010) geometry course notes. The data collected was part of a larger study; this study is a 
case study of two students – Alexis and Lindsey. Both Alexis and Lindsey are Caucasian 
females whose majors were math education. Alexis was classified as a senior and had one 
prior proof courses and Lindsey was classified as a freshman with no prior proof experience. 
Students in the course were provided with course notes that presented open-ended problems 
related to a specific learning goal. For each new assignment, students were assigned a 
specific problem from the provided course notes and a group. If a group appeared to be 
making little progress or moving in an unproductive direction, the teacher would use guided 
questioning to redirect students’ thoughts. If multiple groups stopped progressing, the teacher 
would initiate a whole class discussion.  

To determine students’ proof comprehension, researchers examined the assignments 
students turned in. Students were allowed to revise and resubmit all assignments, and these 
were analyzed as well. Researchers also used observations to gain further understanding of 
students’ proof comprehension. As students discussed their ideas, a researcher sat behind 
them listening and taking notes on their interactions. 

The submissions were analyzed by assignment, and all the drafts from an individual 
participant were analyzed at the same time. After this initial reading of blinded assignments, 
researchers would journal their impressions of the coding and the trajectory exhibited in the 
multiple submissions. These journals were used to operationalize the proof schemes in Harel 
& Sowder (1998) and Harel (2007), and to construct the standards of evidence (Table 1).  
Although it is not standard to give numerical values to the proof schemes, we did so in this 
case because of the nature of the assignments in the course. Students were always given a 
situation where they had to collect data and use that data to draw a picture and make a 
geometric conjecture before writing a proof of their findings. For a complete solution, 
students needed to give the data, the geometric conjecture based on their data, and a proof. As 
a result, we privileged axiomatic proof schemes for the proof portion of the assignment, since 
a student using an axiomatic proof scheme also had to use perceptual proof schemes to form 
their conjecture. 
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Table 1. Standards of Evidence (Harel, 2007; Harel & Sowder, 1998; Harel & Sowder, 2007). 

Code Definition  Standards of Evidence 

Authoritarian 
(1) 

Acceptance of an argument as 
proof is based mainly on if the 
argument is presented by an 
authority source. 

o Argument produced after intentional scaffolding or 
direct instruction from the teacher. 

o Student did not participate in the group’s reasoning, 
and/or writing process. 

o The correct pieces of reasoning were discussed in 
class, and the argument does not arise from the 
students’ data. 

Ritual (2) 

Acceptance of an argument as 
proof is based mainly on the 
appearance or format of the 
argument. 

o Student misapplies multiple axioms and theorems. 
o Argument mirrors the format of a known correct 

argument, but the argument does not arise from the 
axiomatic system. 

o Student restates the axiom or theorem as it is 
originally written despite the fact that the 
terminology does not relate to the context of the 
proof. 

Perceptual (3)  

Acceptance of an argument as 
proof is based on perceptions – 
rudimentary mental images 
formed without forming or 
considering the results of 
transformations. 

o Student refers to or provides only a diagram as 
justification for reasoning. 

o The argument is driven by students’ perceptual 
observation of the figure he or she drew and not by 
the implications of axioms and theorems. 

Deductive (4)  

Acceptance of an argument as 
proof is based on validating 
conjectures by logical 
deductions. 

o The argument follows the correct deductive process, 
but the student does not establish the definitions, 
theorems, or axioms the process utilizes. 

o The argument follows the correct deductive process, 
but there is one instance in which the student relies 
on another lower warrant. 

o The argument follows the correct deductive process, 
but at least one clarification statement is necessary 
for validity. 

o The argument follows the correct deductive process, 
but an axiom or theorem is misinterpreted and 
misapplied.  

Intuitive 
Axiomatic (5)  

Acceptance of an argument as 
proof is based on justifying 
conjectures using intuitively 
grasped undefined terms and 
axioms. 

o The argument is built from undefined terms and 
axioms, definitions, and theorems of an axiomatic 
system that is intuitively grasped such as Euclidean 
geometry.  

Structural 
Axiomatic (6)  

Acceptance of an argument as 
proof is based on justifying 
conjectures from different 
realizations using an understood 
common structure determined by 
a permanent set of axioms. 

o The argument is logical and made up of systematic 
application of axioms and theorems. 

o If any portion of the argument could be clarified, the 
clarification is not necessary for the argument’s 
validity.  
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Findings 
 

After analyzing the data, we mapped Alexis’ and Lindsey’s warrants throughout the 
course. Figure 2 presents a chronological summary of their proof scheme warrants. On all 
assignments, except Midterm Problem 3biii, students worked on the solutions with a group 
during class. 

 
Figure 2. Proof schemes used throughout the semester 

Viewing Tubes. The Viewing Tubes was the first assignment of the course and the 
required the only Euclidean proof. In this assignment, students were asked to determine the 
formula for the area of the wall that can be seen through a tube. To accomplish this, students 
needed to establish that the two triangles resulting from the situation are similar, and they 
struggled with the justification that both triangles are right triangles. 

Although Alexis turned in three drafts for the Viewing Tubes assignment, her second 
draft addressed formatting and not argumentation issues. The proof scheme warrant in the 
first draft is deductive, and the proof scheme warrant in the third draft is intuitive axiomatic. 
Since Alexis’ draft two had only formatting changes, in the following section, we will discuss 
Alexis’ first and third drafts. 

The first draft from Alexis claims each triangle has a right angle, and her data is the 
explanation of the actions she took in constructing the situation. Alexis’ warrant is the 
deductive proof scheme because she follows the correct deductive process, but she lacks the 
important clarification that her actions produce perpendicular lines which establishes right 
angles.  

 

 
Figure 3. Alexis Viewing Tubes Draft 1 
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Alexis’ third draft employs the same data and claim from draft one. However, her warrant 

is the intuitive axiomatic proof scheme because in draft three Alexis clarifies that the lines 
formed through her actions are indeed perpendicular lines. With this correction, she produced 
a valid argument based of Euclidean definitions and theorems, and it was achieved prior to 
the scaffoled class discussion. 

 
Figure 4. Alexis Viewing Tubes Draft 3 

In the Viewing Tubes assignment, Alexis was able to map the correct deductive process 
for justifying the claim and her warrant was the deductive proof scheme. Receiving feedback 
allowed her to reassess and amend her argument to include an important clarification, and 
ultimately, Alexis was able to reason at the intuitive axiomatic level.  

While Lindsey drafted three different versions of the Viewing Tubes assignment and 
alterations were made between each of the drafts, the argument portion of the paper remained 
unchanged. The proof scheme warrant used in this argument is perceptual. Lindsey claims 
that each triangle is a right triangle, and her data is her diagram. In her justification, Lindesy 
provides the diagram in Figure 4 and states, “On the triangle, angle BAC and angle DAE 
were the same angle. Angles ACB and AED were both right triangles. This made the last 
angles ABC and ADE the same…” To convince herself that the triangles are right triangles, 
she relies only on her observations. Each of her revisions presented this same argument even 
after a scaffoled class discussion. Hence, Lindsey never grasped that her argument lacked the 
necessary reasoning to determine the truth of her claim.  

 
Figure 5. Lindsey Viewing Tubes Draft 1 

Neutral Geometry Worksheet 4 (NG 4). NG 4 was assigned after students completed 
their revisions of the Viewing Tubes assignment. Using the NG axiom system (Figure 6) 
students were asked to prove each point belongs to at least two different lines. This proof 
requires the consideration of multiple scenarios in different spaces that arise from application 
of the axioms, and students struggled to foresee the axiom system in a non-Euclidean context. 

 
“Point” and line are undefined. Lines will consist of points. 
Axiom 1. If L is a line, then there exists at least two points belonging to L. 
Axiom 2. If L is a line, then there exists at least one point not on L. 
Axiom 3. There exists at least one line. 
Axiom 4. If A & B are distinct points, then there is at least one line containing both A & B. 
Theorem 1. There exists at least three different points. 
Theorem 2. If P is a point, there is a line containing P. 
Theorem 3. If P is a point, then there exists two different lines containing P. 
Axiom 4’. If A & B are different points, then there exists one and only one line which contains both A & B. 
Figure 6. Neutral Geometry Axiom System and Theorems Proven in the Course 

20th Annual Conference on Research in Undergraduate Mathematics Education 44520th Annual Conference on Research in Undergraduate Mathematics Education 445



Alexis’ warrants for the Viewing Tubes assignment was deductive on draft one and 
intuitive axiomatic on draft three. For the NG 4 assignment, Alexis turned in four drafts, and 
her proof scheme warrant starting this assignment is authoritarian. Her second draft consists 
primarily of formatting changes, but her third draft utilizes the deductive. Alexis’ fourth draft 
contained only formatting changes, so in the following section, we will discuss her first and 
third drafts. 

 
 
  
 

Figure 7. Alexis NG 4 Draft 1 (left) and Draft 2 (right). 
The first draft provided by Alexis claims that each point belongs to at least two distinct 

lines, and her data is her written portion of the argument. When students worked on this 
assignment during class, Alexis was absent, so she received notes from her group members. 
Her first draft portrays some correct pieces of reasoning such as her consideration of two 
cases and the sphere; however, these correct ideas are not applied appropriately. For example, 
Alexis states that step 4 could be a counterexample to a proof, so it is apparent she does not 
understand the implications of what she is trying to argue. Hence, her warrant is the 
authoritarian proof scheme because although there are correct portions, they are not formed 
from her data.  

On her third draft, Alexis’ claim remains the same, and she clarifies and completes her 
data. Unlike her previous drafts, the warrant for this argument is the deductive proof scheme. 
She follows a generally correct deductive process and considers situations that could arise on 
different surfaces. However, Alexis forgets the truths established by her applications of the 
axioms such as in step 5 of case 1. In this step, she connects a point using line L, but that 
point was established to not be on line L. This misuse of the axiomatic system detains her 
from reaching the structural axiomatic proof scheme, but her consideration of the generality 
of the axioms places her warrant at deductive. 

Lindsey’s proof scheme warrant for all of her Viewing Tubes drafts was the perceptual 
proof scheme. On the NG 4 assignment, Lindsey was partnered with Martin and she turned in 
two drafts of this assignment. The proof scheme warrant used in both drafts is structural 
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axiomatic. Lindsey’s second draft consisted only of formatting alterations, so in the following 
section, we will discuss the first draft submitted by Lindsey. 

For her first draft, Lindsey’s data is the written argument she provides for both cases. Her 
claim is that each point belongs to at least two distinct lines,  

 
 
and her warrant is the structural axiomatic proof scheme. Although Lindsey needs to clarify 
why she continued her argument after establishing line M, the validity of her argument is not 
hindered by the lack of this statement. Lindsey also considers the generality of the axioms, 
and she applies the axioms to form a deductive argument.  

While her arguments on Viewing Tubes employed only the perceptual proof scheme as a 
warrant, Lindsey moves past this type of reasoning in this assignment. Between these 
assignments, students explored other arguments and the Neutral Geometry Axiomatic 
System. Lindsey was able to garner a better understanding of the arguments that constitute as 
proof. She then applied this knowledge on the NG 4 worksheet, and her warrant on this 
assignment was the structural axiomatic proof schemes. 

Neutral Geometry Worksheet Problem 6 (NG 6). The NG 6 assignment took place 
after students had completed at least their first NG 4 drafts. This assignment asked students to 
prove there exists a line not containing a given point on the NG Axiom System; however, for 
this problem, axiom 4 is replaced with axiom 4’ which establishes the uniqueness of a line 
containing two points. 

Alexis’ warrants for the NG 4 assignment started as the authoritarian proof scheme, and 
through revisions, her warrants became the deductive proof scheme. For the NG 6 
assignment, Alexis was partnered with Jeremy, and she turned in two drafts. The proof 
scheme for the first draft is deductive, and the proof scheme warrant for the second draft is 
structural axiomatic.  

Alexis claims on her first draft that for a given point, there exists a line not containing that 
point, and her data is the written argumentation she provides. Her warrant is the deductive 
proof scheme because she applies axioms and theorems to develop a correct deductive 

Figure 8. Lindsey NG 4 Draft 1 
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process; however, there is a portion of her argument that lacks clarity. Although she states 
that the line constructed by axiom 4’ “cannot curve to connect non-collinear points,” she 
needs to clarify why such a line would violate axiom 4’. 

 
Figure 9. Alexis NG 6 Draft 1 (left) and Draft 2 (right). 

The second draft turned in by Alexis has the same data and claim as her draft. On this 
draft, however, she clarifies the contradiction with axiom 4’ that would occur if point A was 
on line L. Following this amendment, her warrant becomes the structural axiomatic proof 
scheme. After spending some time relying on the reasoning of others and processing the 
information, Alexis progressed her reasoning to the deductive proof scheme. She continued to 
improve her reasoning as she spent more time working in the Neutral Geometry Axiom 
System. On the NG 6 assignment, the warrant started at the deductive proof scheme and 
progressed to the structural axiomatic proof scheme. 

Although her warrant for her first assignment was perceptual, once Lindsey started 
working in the Neutral Geometry Axiom System, her proof scheme warrant became the 
structural axiomatic proof scheme. For the NG 6 assignment, Lindsey turned in two drafts, 
and her first draft is comparable to the second draft produced by Alexis. The data for 
Lindsey’s first draft is her written argumentation, and the claim is that there exists a line not 
containing a given point. Lindsey crafts a correct, deductive argument based on the axioms. 
While her explanation for why line M does not contain point A could be clearer, the first 
wording she produces does not hinder the understanding or validity of her argument. Her 
warrant for this draft is then the structural axiomatic proof scheme. 

Midterm Problem 3biii (Problem 3biii).This assignment took place during week 12 of 
15. Students were asked to prove, using the NG axiom system including axiom 4’, that for 
any given point there exist two other distinct points such that the collection of points is non-
collinear. While all other assignments were allotted class time and students worked in groups, 
on the Midterm, students worked individually outside of class. 

Alexis’ data for Problem 3biii is her written argumentation, and she claims that for a 
given point there exist two other different points such that the points are non-collinear. In this 
argument, her warrant is the structural axiomatic proof scheme. Alexis produces a clear 
argument formed from logically applies theorems and axioms. 
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Figure 10. Alexis Problem 3biii Draft 1 
On the NG 6 assignment, the warrant for Alexis’ first draft was the deductive proof 

scheme, and the warrant for her second draft was the structural axiomatic proof scheme. 
Continuing to work in the Neutral Geometry Axiom System, Alexis maintained a warrant of 
the structural axiomatic proof scheme in Problem 3biii. 

Like Alexis, Lindsey produced a correct deductive argument based on the axioms for the 
Neutral Geometry Axiom System. Hence, her warrant for this argument is the structural 
axiomatic proof scheme. The warrant Lindsey used on the NG 6 assignment was the 
structural axiomatic proof scheme. Working independently of her group, Lindsey was able to 
maintain her reasoning at the structural axiomatic proof scheme on Problem 3biii. 

 
Discussion 

 
The purpose of this study was to determine to what extent students’ geometry proof 

schemes became more axiomatic throughout a one-semester college geometry course. By 
assigning each of the proof schemes a number rank based on the level of axiomatic reasoning 
utilized and creating time series graphs to analyze the changes in students’ proof schemes 
through the course, we discerned three proof scheme trajectories: the static participant, the 
peripheral participant, and the central participant. These proof scheme trajectories emerged as 
a reaction to the revision component of the IBL course design (Figure 11). The revision 
component forced students to reanalyze and revise their reasoning. Static participants resisted 
this revision process; peripheral participants withdrew from group participation but used this 
time to process ideas; and central participants invested more time analyzing ideas within their 
groups.  

Regardless of prior proof experience all but one student in this study started with a 
perceptual proof scheme. This suggests that students may have had initial trouble linking 
prior formal proof training to a more familiar content area. After receiving extensive 
feedback on their initial attempts of the viewing tubes lab, participants had three different 
responses to the need to revise their work, two of which were successful. 

The static participants were Jeremy and Kayla, and they relied on prior ideas such as their 
perceptions or beliefs about what a proof should look like to form their reasoning. Jeremy and 
Kayla struggled with beliefs many pre- and in-service possess such as an inclination to accept 
perceptual arguments as proof, and the belief that the validity of an argument depends on its 
formatting (Knuth, 2002a; Goetting, 1995; Dickerson, 2008). However, since they were 
reluctant to reassess these prior beliefs, their proof reasoning improved minimally. 
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Alexis and Bradyn were the peripheral participants, and their response to revising 

arguments that were outside a familiar context was to become seemingly passive group 
members. This passivity occurred when these students had limited knowledge of the content 
and context they were asked to prove in because teachers exhibit difficulty in proof when 
they lack content knowledge (Ko, 2010). On the Viewing Tubes assignment, Alexis had a 
strong understanding of the content within the Euclidean context and was able to exhibit 
axiomatic reasoning. When the proofs left the Euclidean context and moved into unfamiliar 
content in NG 4, Alexis’ reasoning relied solely on others and she employed the authoritarian 
proof scheme. Bradyn did not possess a strong understanding of the content in Viewing 
Tubes, so this move to the authoritarian proof scheme occurred earlier in the semester for 
him. Since Bradyn did not have a thorough understanding of the Euclidean content before 
moving into other contexts, he utilized the authoritarian proof scheme longer than Alexis. 
Observing this period where Alexis and Bradyn relied on the authoritarian proof scheme, they 
appeared to play the role of a spokesman paraphrasing the ideas of others (Krummheuer, 
2010). However, the data analysis revealed that these students were successful after watching 
their peers. This indicates that they were actually partaking in what research refers to as 

Figure 11. Proof Scheme Trajectories 
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legitimate peripheral participation (Krummheuer, 2010).  Hence, peripheral participation 
proved to be a successful reaction to revision for improving proof reasoning. 

The central participants, Lindsey and Martin initially encountered difficulties experienced 
by Jeremy, Kayla, and other teachers – the willingness to accept empirical arguments in the 
form of diagrams as proof (Knuth, 2002a; Goetting, 1995). This is apparent in both students 
initial use of the perceptual proof scheme in Viewing Tubes. However, instead of clinging to 
their prior beliefs, Lindsey and Martin responded to the need for revisions by investing more 
time discussing ideas and the questions posed by the instructor within their groups. By NG 4, 
both students were employing the structural axiomatic proof scheme. Unlike Jeremy and 
Kayla who resisted the IBL course design, Lindsey and Martin fully embraced it. They 
essentially took full advantage of the availability of student-student and student-teacher 
interactions built into the course design. These are the interactions literature suggests would 
be successful for inducing logic and proof techniques in students (Selden & Selden, 2008; 
Harel & Sowder, 1998).  Since they centered their time on investigating and critiquing one 
another’s ideas, their proof reasoning improved quickly. It should, however, be noted that 
Lindsey and Martin were also quite talented as students. 

These proof scheme trajectories were not a phenomenon of group structure or proof 
training. Groups typically contained the following pairs: Kayla and Bradyn, Jeremy and 
Alexis, and Lindsey and Martin. Although the central participants were paired together for 
the majority of the assignments, the static and peripheral participants were seldom in the 
same group. The trajectories exhibited by the static and peripheral participants occurred 
across the groups. Furthermore, these proof scheme trajectories were not a result of proof 
training. Kayla was the most experienced with proofs and started the class having completed 
two proof courses; however, Kayla struggled to utilize deductive reasoning to formulate her 
arguments. Particularly, Kayla was hindered by the belief that a valid proof had to adhere to a 
particular format. This is an idea that was perhaps even cultivated by her prior proof training. 
Lindsey, conversely, had no prior proof training, and she rapidly moved into the structural 
axiomatic proof scheme. Hence, these proof scheme trajectories that emerged were neither a 
result of the group structure nor a product of proof experience.  

The success exhibited by the peripheral participants following their passivity was 
unexpected. Since these students relied solely on the authoritarian proof scheme for a time, it 
did not appear they were developing their own logical and deductive reasoning. Yet, their 
sudden improvement in proof reasoning demonstrates that they were actually partaking in 
what literature refers to as peripheral participation (Krummheuer, 2010). 

Although completing other direct instruction proof courses was not sufficient for pre-
service teacher to be adept at geometry proof, the findings of this study indicate that 
developing a proof course consisting primarily of student-student and student-teacher 
interactions helped all students improve their geometry proofs. This course design was 
achieved through an inquiry-based learning environment, and the revision component of the 
course was pivotal. The way students chose to revise and reanalyzed their arguments in these 
forced revisions is what formed the three proof scheme trajectories and informed students’ 
successes. In analyzing the proofs formed in an IBL course such as a modified Moore method 
course, it is imperative to gather both observation data and the documents students produce. 
Since the proof scheme trajectories were informed by students’ reactions to the revisions, it is 
essential to observe how students participate in their groups as well as the actual arguments 
they produce. 

Limitations to this study arise from the fact that there were a small number of students 
enrolled in the course. Due to the limited number of participants, there was little ethnic and 
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first language diversity as well as minimal diversity in prior proof experience. There may also 
be other proof scheme trajectories that were not observed in the small sample of students. 

While teachers and students have long struggled with geometry and proof, geometry is 
under-researched in mathematics education (Speer & Kung, 2016). However, this study 
provides insight into how to structure a course aimed at instructing geometry and proof. 
Findings depict the impact of an IBL geometry course on the proof schemes utilized by 
students as they form geometry proofs. As the revision element of the course design proved 
to be an integral component due to students’ reactions, this study also portrays some reactions 
students could exhibit and their successfulness.  

In future studies, we suggest copying students’ drafts as they are turned in throughout the 
course. We had students assemble a portfolio that we made a copy of at the end of the 
semester. However, some students did not turn in a complete portfolio and this diminished 
the amount of usable data. Copying drafts as students complete them would also reduce 
confusion about what was on the draft when it was turned in versus what may have been a 
note that the student added at a later time. 

There are several ways that the results of this study may be extended in further inquiry. 
Since it was observed that completing direct instruction proof courses did not translate to 
successful proof reasoning in this study, further research should follow these students through 
their next proof course to determine the usefulness of this type of course design. The 
standards of evidence table developed in this study could also be used to analyze the proof 
scheme trajectories of students in other courses differing in structure and content. Applying 
this type of analysis to other courses could identify other possible proof scheme trajectories 
as well. Furthermore, due to the rapid transition to the structural axiomatic proof scheme for 
the student with no prior proof experience, Lindsey, this type of course design should be 
applied to an introductory or transition to proof course that follows the participants through 
following proof courses. 
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Proof is central to the curriculum for undergraduate mathematics majors. Despite transition-to-
proof courses designed to facilitate the transition from computation-based mathematics to proof-
based mathematics, students continue to struggle with all aspects of mathematical proof. In 
particular, research suggests that proof by contradiction is an especially difficult proof method 
for students to construct and comprehend and yet, there are no satisfactory instructional models 
for how to teach the method. The purpose of this paper is to discuss preliminary results of a 
teaching experiment on student comprehension of proof by contradiction within a transition-to-
proof course. Grounded in APOS Theory, this paper will illustrate that a student’s conception of 
mathematical logic, and quantification in particular, plays an important role in their 
comprehension of proof by contradiction. 
 
Keywords: Proof by Contradiction, Teaching Experiment, Transition-to-proof course 
 

Proof is central to the curriculum for undergraduate mathematics majors. Indeed, the 2015 
CUPM Curriculum Guide to Majors in the Mathematical Sciences contains the following 
recommendation: “Students majoring in the mathematical sciences should learn to read, 
understand, analyze, and produce proofs at increasing depth as they progress through a major" 
(Schumacher & Siegel, 2015, p. 11). Despite transition-to-proof courses designed to facilitate the 
transition from computation-based mathematics to proof-based mathematics, students continue to 
struggle with all aspects of mathematical proof (Samkoff & Weber, 2015). In particular, research 
suggests that proof by contradiction is an especially difficult proof method for students to 
understand and produce (Antonini & Mariotti, 2008; Brown, 2011; Harel & Sowder, 1998). In 
order to address students’ understanding of proof by contradiction, we examined the literature for 
what proof by contradiction means and what is known about how students develop an 
understanding of proof by contradiction. A short summary to these questions is provided below.  

Proof by contradiction is based on the law of the excluded middle: either a statement is true 
or the negation of the statement is true. By showing the negation of the statement cannot be true 
(i.e., leads to a contradiction), the statement must be true. However, some scholars do not 
attribute the law of the excluded middle as the foundation of proof by contradiction. Indeed, Lin, 
Lee, and Wu Yu (2003) state that “the conceptual knowledge of proof by contradiction is the law 
of contrapositive” (p. 4-446). Other scholars do not always distinguish between proof by 
contradiction and proof by contraposition when describing how students understand indirect 
proofs. For example, Antonini and Mariotti (2008) state that the commonality of negating the 
thesis in both methods is enough to consider cognitive aspects of students’ difficulties with both 
methods simultaneously. We consider the two indirect proof methods as having distinct 
underlying concepts: logical equivalence of an implication and its contrapositive 
(Contraposition) and the law of the excluded middle (Contradiction). These distinct underlying 
concepts require cognitive models to consider how students develop an understanding of each 
method separately.  

The only current cognitive models of how students understand proof by contradiction have 
been proposed by Lin, Lee, and Wu Yu (2003) and Antonini and Mariotti (2008). Yet, neither of 
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these cognitive models are satisfactory as they do not focus on how students develop an 
understanding of how the law of the excluded middle validates the contradiction proof method. 
Our larger study aims to address this deficiency in the literature by first modeling how students 
could come to understand proof by contradiction and then, using this model, develop 
instructional materials to teach proof by contradiction. The purpose of this paper is to discuss 
preliminary results on a part of this larger study; that is, to discuss preliminary results of a 
teaching experiment on a single student's understanding of proof by contradiction. In particular, 
this paper will address the following question: How does a student's conception of mathematical 
logic affect their understanding of proof by contradiction? What follows is a detailed discussion 
of the theoretical framework we will use to answer this question.  

Theoretical Framework 

Our theoretical framework of choice is APOS Theory – a cognitive framework that considers 
mathematical concepts to be composed of mental Actions, Processes, and Objects that are 
organized into Schemas. What follows are definitions of the mental constructions, along with 
examples within the context of proof by contradiction.  

An Action is a transformation of mathematical objects by the individual requiring memorized 
or external step-by-step instructions on how to perform the operation. In the context of proof by 
contradiction, this may entail a list of steps (either written down or memorized) that a proof by 
contradiction of an implication statement follows. As an individual reflects on an Action, he/she 
can think of these Actions in his/her head without the need to actually perform them based on 
some memorized facts or external guide; this is referred to as a Process. Staying within the 
context of proof by contradiction, a student may interiorize the external list of steps that a 
particular type of proof by contradiction follows so that these steps become generalized to prove 
any statement by contradiction. In this way, the student would not need to write the proof in 
order to talk about what a step may look like in a specific proof. As an individual reflects on a 
Process, they may think of the Process as a totality and can now perform transformations on the 
Process; this totality is referred to as an Object. Again in the context of proof by contradiction, 
this could entail comparing proof by contradiction to similar methods such as proof by cases. 
Finally, a Schema is an individual’s collection of Actions, Processes, Objects, and other Schemas 
that are linked by some general principles to form a coherent framework in the individual’s mind 
(Dubinsky & McDonald, 2001). In the case of proof by contradiction, this may include an 
individual’s general proof Schema, mathematical knowledge Schema, and mathematical logic 
Schema, as well as any steps (external and specific or internal and general) required to write or 
identify a proof by contradiction.  

One of the central goals when using APOS Theory is to develop a series of hypothetical 
constructions students may need to make in order to understand a concept, referred to as a 
genetic decomposition. This cognitive outline is constructed based on an analysis of the historical 
development of the concept in question, a literature review of the concept, and the conception of 
the instructor or researcher. In addition to outlining the mental constructions a student should 
make in order to understand a concept, a genetic decomposition may include a description of 
prerequisite knowledge a student should possess in order to begin developing a concept (Arnon 
et al., 2014). A description of the prerequisite knowledge for proof by contradiction follows. 
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First, a student should have a general understanding of the propositional logic that 
underscores all proofs. In particular, a student should be able to perform and understand 
negations of the following types of statements: without quantification, implications, and single-
level quantified statements. This is necessary as every proof by contradiction requires a negation 
of some statement. In addition to understanding the mathematical logic, a student should be able 
to move between semantic, symbolic, and algebraic representations of mathematical statements. 
For example, a student should be able to represent the statement ‘If 𝑎 is even, then 𝑎 + 1 is odd’ 
as the symbolic implication ‘𝑃 → 𝑄’ as well as the algebraic representation ‘If 𝑎 = 2𝑛 for 𝑛 ∈ ℤ, 
then 𝑎 + 1 = 2𝑚 + 1 for 𝑚 ∈ ℤ’. Moving between representations of mathematical statements 
is necessary in any mathematical proof and thus is necessary before developing a notion of proof 
by contradiction. Finally, a student should be familiar with the direct proof method in a 
mathematical context as this is the basis of understanding any proof.  

With this prerequisite knowledge in mind, we developed a preliminary genetic 
decomposition. We should be clear that a genetic decomposition need not be unique and so the 
genetic decomposition below may be one of several different ways in which students may 
develop an understanding of proof by contradiction.  

Preliminary Genetic Decomposition for Proof by Contradiction 
1. Students outline the propositional logic of a given proof to develop specific, step-by-step 

instructions to construct proofs by contradiction for the following types of statements: (i) 
implication, (ii) single-level quantification, and (iii) property claim.  

2. Students interiorize each of the Actions in Step 1 into individual Processes by examining 
the purpose of statements of given proofs. These Processes become general steps to writing 
a proof by contradiction for statements of the form (i), (ii), and (iii).  

3. Students coordinate the Processes from Step 2 by comparing and contrasting the general 
steps to determine the necessary steps for any proof by contradiction. This Process 
becomes general steps to writing any proof by contradiction and identifying a proof as a 
proof by contradiction. 

4. Students encapsulate the Process in Step 3 as an Object by utilizing the law of excluded 
middles to show proof by contradiction is a valid proof method. Alternatively, students 
encapsulate the Process in Step 3 as an Object by comparing proof by contradiction to 
other, similar proof methods. Students can now comprehend proofs on a holistic level. 

5. When necessary, students de-encapsulate the Object in Step 5 into a Process similar to Step 
3 that then coordinates with a Process conception of quantification to prove multi-level 
quantified statements. 

First, note that students’ initial conception of proof by contradiction is through the specific steps 
to construct a proof by contradiction. That is, students think that each of these steps are necessary 
for a proof to be by contradiction. Students may also need the external cues from specific steps, 
such as seeing the word “contradiction” near the end of the proof. Students then reflect on these 
specific steps to considering the general procedure of proof by contradiction. Still, students 
conceptualize a proof by contradiction as a dynamic procedure that must be followed and thus 
their conception closely matches the steps to writing a proof by contradiction. It is only after 
encapsulating the dynamic procedure as a static proof method, by comparing the main idea of the 
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method to similar methods, that students do not rely on the steps of a proof by contradiction to 
describe the method. 

Once developed, a genetic decomposition is used as a guide to develop all instructional 
material. One pedagogical approach aligned with APOS Theory is the ACE teaching cycle; an 
instructional approach that consists of three phases: Activities, Classroom discussion, and 
Exercises. In the Activities phase, students work in groups to complete tasks designed to promote 
reflective abstraction. These tasks should assist students in making the mental constructions 
suggested by a genetic decomposition. In the Classroom discussion phase, the instructor leads a 
discussion about the mathematical concepts that the Activities focused on. For example, during 
this phase the instructor may formally state the theorem that was central in the Action phase and 
together with students write its complete proof. In the Exercises phase, students work on 
standard problems designed to reinforce the Classroom discussion and support the continued 
development of the mental constructions suggested by the genetic decomposition. The Exercises 
also provide students with the opportunity to reinforce and apply what they have learned in the 
Activities and Classroom discussion phases to related mathematical concepts (Arnon et al., 
2014). We utilized the proof comprehension assessment model by Mejía-Ramos et al. (2012) to 
develop standard proof comprehension questions for the Exercises. As this assessment model 
was pivotal in the development of instructional materials, we will briefly introduce it below. 

Mejía-Ramos et al. (2012) presented a multidimensional model for assessing proof 
comprehension in undergraduate mathematics. This model contains seven different aspects of 
proof split into two categories: local and holistic. Local types of assessment focus on only one, or 
a small number, of statements within a proof, whereas holistic types of assessment focus on 
student understanding of a proof as a whole. These seven types of assessment are reproduced 
below: 

1. Meaning of terms and statements: items of this type measure students understanding of 
key terms and statements in the proof; 

2. Logical status of statements and proof framework: these questions assess students’ 
knowledge of the logical status of statements in the proof and the logical relationship 
between these statements and the statement being proven; 

3. Justification of claims: these items address students’ comprehension of how each 
assertion in the proof follows from previous statements in the proof and other proven or 
assumed statements; 

4. Summarizing via high-level ideas: these items measure students’ grasp of the main idea 
of the proof and its overarching approach; 

5. Identifying the modular structure: items of this types address students’ comprehension of 
the proof in terms of its main components/modules and the logical relationship between 
them; 

6. Identifying the general ideas or methods in another context: these questions assess 
students’ ability to adapt the ideas and procedures of the proof to solve other proving 
tasks; 

7. Illustrating with examples: items of this type measure students’ understanding of the 
proof in terms of its relationship to specific examples. (Mejía-Ramos et al., 2012, p. 15-
16). 
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These assessment questions revolve around the reading and understanding of a presented proof. 
While the authors caution that all types of assessment questions may not be appropriate for some 
presented proofs, such as if the proof was too short to warrant breaking into modules, we choose 
proofs such that each type of assessment question could be applied.  

In summary, we used APOS Theory to develop a hypothetical model (genetic 
decomposition) of possible mental constructions students may need to make in order to develop 
an understanding of proof by contradiction. We then introduced the ACE teaching cycle, an 
instructional method closely aligned with APOS Theory, which we used to develop lessons on 
proof by contradiction. We used the proof comprehension assessment model by Mejía-Ramos et 
al. (2012) to develop the routine exercise questions for the Exercise phase of the ACE teaching 
cycle. The methodology section will provide a detailed explanation of the lessons on proof by 
contradiction as well as provide the context of the study. 

Methodology 

In order to assess our preliminary genetic decomposition for proof by contradiction, we 
conducted a teaching experiment (Steffe & Thompson, 2000). Unlike a typical instructional 
sequence of the ACE teaching cycle that, in a regular classroom, usually lasts for a week, this 
teaching experiment consisted of 5 shorter, consecutive teaching sessions each mimicking the 
ACE teaching cycle. That is, each session consisted of: students working on the Activity 
worksheet focusing on a particular component of the genetic decomposition for proof by 
contradiction (A); a discussion about the concepts from the worksheet (C); and a typical series of 
proof comprehension questions related to the content of the worksheet (E).  

Our teaching experiment was conducted at a large, public R1 university in the southeastern 
United States with students from a transition-to-proof course. This course, Bridge to Higher 
Mathematics, is the first course in which students at this university are formally introduced to 
mathematical proofs and their accompanying methods of proof. Bridge to Higher Mathematics 
has the following general learning outcomes: 

x Basic Logic (e.g. truth tables, negation, quantification), 
x Proof Methods (e.g., direct, contradiction, induction), 
x Introductory Set Theory (e.g., union, intersection, power set, cardinality), and 
x Introductory Analysis (e.g., least upper bound and greatest lower bound, open/closed sets, 

limit points). 

We began with teaching episodes two weeks into the course, just after a review of basic logic 
and an introduction to direct proofs. Bridge to Higher Mathematics is a primarily lecture-based 
course where proof and proof methods are taught primarily through proof construction (i.e., 
asking students to replicate proofs). Thus, in both teaching style and assessment, the designed 
teaching experiment deviated from the regular classroom. However, the teaching episodes did 
correspond to the content and proofs that were normally covered in the course.  

Data for this report was collected during Summer 2016 from teaching episodes with 
Chandler. Chandler was an untraditional student: he had already graduated once with a bachelor 
degree (in an unspecified topic) and was unsure as to whether or not he wanted to complete a 
bachelor’s degree in mathematics. As a senior, Chandler had already taken courses beyond the 
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prerequisites for Bridge to Higher Mathematics, including Differential Equations, Probability 
Theory, and Vector Calculus. However, none of these additional mathematics courses required 
proof writing and thus Bridge to Higher Mathematics was still Chandler’s first experience 
learning how to read and write formal proofs. While Chandler initially consented to completing 
all five teaching episodes, he dropped the course before mid-semester. As such, Chandler only 
completed the first three teaching episodes.  

We choose to focus on Chandler for this preliminary report for two primary reasons. First 
and foremost, Chandler’s progression of understanding proof by contradiction is similar to the 
majority of other participants and thus can be considered representative of a general participant’s 
understanding. In addition, Chandler was open to communicating, answering, and asking 
questions without any reservation. This provided us with rich data on his thought process. The 
next section will describe how we analyzed Chandler’s thought process through the three 
teaching episodes he completed. 

Data Analysis 

All three teaching sessions were video recorded and then transcribed by the 
teacher/researcher. Transcripts of these three sessions went through multiple passes of analysis. 
First, we identified Chandler’s conception of proof by contradiction, according to APOS Theory, 
for each teaching episode. Next, we identified Chandler’s local and holistic understanding of 
proof by contradiction and proof in general, according to the proof comprehension assessment 
model by Mejia Ramos et al. (2012), during each teaching episode. We then open coded for 
other themes that affected Chandler’s understanding of proof by contradiction, during which 
quantification emerged. Finally, we examined quantification’s role in Chandler’s understanding 
per teaching episode. What follows are the results from this analysis. 

Results 

For each episode, we will first present the statement and proof Chandler was asked to read as 
well as provide the comprehension questions he was then asked to complete. Afterwards, we will 
provide some of Chandler's responses that best illustrate his understanding of proof by 
contradiction in general and his understanding of the presented proof. When applicable, we will 
include a discussion of how mathematical logic, and quantification in particular, affected 
Chandler’s proof comprehension. 

Pre-Teaching Episodes 
Before the first teaching episode, we asked Chandler a few basic questions to ascertain his 

background with mathematical proof. In particular, we were focused on determining whether 
Chandler possessed the following prerequisite knowledge necessary to begin developing a 
conception of proof by contradiction: mathematical logic (especially negating statements), how 
to transition between representations, and proof in general. Chandler exhibited at least an Action 
conception of mathematical logic as he was able to describe rules to use in order to negate 
propositional statements. Chandler was also able to answer questions that required him to 
transition between mathematical statements, their propositional representations, and their 
algebraic representations. Finally, with respect to his understanding of proof in general, Chandler 
gave the following definition:  
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An effort to show something is true or false based on real evidence and facts. 

We see his definition as a dynamic procedure, i.e. an effort to show something, and so infer 
Chandler possesses a Process conception of proof. Based on his responses, we believe Chandler 
had the prerequisite knowledge to begin developing a conception of proof by contradiction.  

We also wanted to know what conception, if any, Chandler had of proof by contradiction 
before the first teaching episode. When asked for a definition of proof by contradiction, he 
stated: 

 Demonstrating the opposite of a statement is false, so the statement is true. 

Note there is no mention of an assumption or contradiction in terms of “demonstrating the 
opposite of a statement is false” and thus this is not a complete definition of proof by 
contradiction. At most, this is a definition for a general type of indirect proof that utilizes the 
tautological equivalence of a double-negated statement and the statement itself. We therefore do 
not believe Chandler has a conception of a mathematical proof by contradiction. 

Teaching Episode 1 
Teaching episode 1 began with Chandler converting a series of statements into propositional 

and predicate logic on his own. After checking his answers to these conversions, it was clear that 
Chandler was able to convert mathematical statements with a single quantifier into a logical 
form. Chandler was then asked to read the following statement and proof.  

Statement 1: The set of primes is infinite. 
Proof 1: Suppose the set of primes is finite. Let 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑘 be all those primes with 
𝑝1 < 𝑝2 < 𝑝3 < ⋯ < 𝑝𝑘. Let 𝑛 be one more than the product of all of them. That is, 𝑛 =
(𝑝1𝑝2𝑝3 … 𝑝𝑘) + 1. Then 𝑛 is a natural number greater than 1, so 𝑛 has a prime divisor 𝑞. 
Since 𝑞 is prime, 𝑞 > 1. Since 𝑞 is prime and 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑘 are all of the primes, 𝑞 is one 
of the 𝑝𝑖 in the list. Thus, 𝑞 divides the product 𝑝1 ⋅ 𝑝2 ⋅ 𝑝3 ⋅ … ⋅ 𝑝𝑘. Since 𝑞 divides 𝑛, 𝑞 
divides the difference 𝑛 − (𝑝1 ⋅ 𝑝2 ⋅ 𝑝3 ⋅ … ⋅ 𝑝𝑘). But this difference is 1, so 𝑞 = 1. From the 
contradiction, 𝑞 > 1 and 𝑞 = 1, we conclude that the assumption that the set of primes is 
finite is false. Therefore, the set of primes is infinite. 

Chandler was then prompted to answer the following comprehension questions on his own. 

1. Please give an example of a set that is infinite and explain why it is infinite.  
2. Why does 𝑛 have to have a prime divisor? 
3. Why exactly can one conclude that 𝑞 divides the difference 𝑛 − (𝑝1 ⋅ 𝑝2 ⋅ 𝑝3 ⋅ … ⋅ 𝑝𝑘)? 
4. What is the purpose of the statement “Let 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑘 be all those primes with 𝑝1 <

𝑝2 < 𝑝3 < ⋯ < 𝑝𝑘.”? 
5. Summarize in your own words the main idea of this proof. 
6. What do you think are the key steps of the proof? 
7. In the proof, we define 𝑛 = (𝑝1𝑝2𝑝3 … 𝑝𝑘) + 1. Would the proof still work if we instead 

defined 𝑛 = (𝑝1𝑝2𝑝3 … 𝑝𝑘) + 31? Why or why not? 
8. Define the set 𝑆𝑘 = {2, 3, 4, … , 𝑘} for any 𝑘 > 2. Using the method of this proof, show that 

for any 𝑘 > 2, there exists a natural number greater than 1 that is not divisible by any 
element in 𝑆𝑘. 
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Considerable attention was given to local comprehension questions 1-4 as Chandler was not able 
to discuss questions 5-8. We highlight his most enlightening responses to the Activity and these 
comprehension questions below.  

After reading the statement and its proof, Chandler was asked to describe or define proof by 
contradiction. He said:  

Aren’t you supposed to show not the conclusion, or try to prove not the conclusion and try to 
come up with something that is? 

While this definition discusses the final steps of a proof by contradiction, it focuses on “showing 
not the conclusion” rather than discussing how the initial assumption and contradiction relate to 
the original statement. Thus, we believe Chandler exhibited a PreAction conception of proof by 
contradiction. 

Chandler was able to describe the meaning of key words and phrases, such as when he 
described infinity as:  

Every time it [a real number] goes up, you can still go up by 1.  

However, Chandler was unable to describe the purpose of statements and provide justification 
for lines in the proof. For example, he initially wrote that the purpose of the statement ‘Let 
𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑘 be all those primes with 𝑝1 < 𝑝2 < 𝑝3 < ⋯ < 𝑝𝑘’ was: 

To construct an infinite number of possibilities for number 𝑛, since numbers are composites 
of primes 𝑝 and 𝑛 is not a particular natural number. 

When the teacher asked Chandler to clarify his written response during the discussion, he said:  

Infinity. Uh, well the set of primes is infinite. [long pause] Is it, 𝑛 is composed of a finite 
number of parts? 

In both cases, Chandler did not recognize the statement as defining the assumed finite set of 
primes so that they may be used to produce a new prime. When the teacher asked Chandler to 
provide justification for the line ‘𝑞 divides the difference 𝑛 − (𝑝1 ⋅ 𝑝2 ⋅ 𝑝3 ⋅ … ⋅ 𝑝𝑘)’, Chandler 
realized that he wrote multiple answers and even expressed confusion on what he was thinking: 

I wonder what I decided… there’s several things boxed in. 

All of the answers Chandler initially provided involved rewriting statements in the proof without 
further clarification. Even after an extended discussion considering the statement with a small 
number of primes, Chandler was unable to provide justification for the line. These examples 
suggest that while Chandler could understand what individual statements meant, he did not know 
how these statements logically or mathematically followed from one another. Thus, we believe 
Chandler showed some local understanding of the presented proof.  

When asked to summarize the main idea of the proof, Chandler restated the statement. When 
asked what the key steps of the proof were, he said:  

Supposing the contradiction is true, that the set of primes is finite and showing how to prove 
that by reducing an infinite number of primes down to the number 1… I don’t know what that 
means. 

20th Annual Conference on Research in Undergraduate Mathematics Education 46120th Annual Conference on Research in Undergraduate Mathematics Education 461



When asked whether the proof would still work if we changed 𝑛 = (𝑝1𝑝2𝑝3 … 𝑝𝑘) + 1 to 𝑛 =
(𝑝1𝑝2𝑝3 … 𝑝𝑘) + 31, he said that it would “Because the difference is 31, so 𝑞 is 31 and 𝑞 is still 
greater than 1. I don’t know.” In the questions above, Chandler does not exhibit any holistic 
understanding. Yet, Chandler does show some holistic understanding in his attempt to show that 
for any 𝑘 > 2, there exists a natural number greater than 1 that is not divisible by any element in 
𝑆𝑘 = {2, 3, 4, … , 𝑘}. Chandler was able to identify the previous construction of 𝑛 as being 
necessary for the new proof and began his proof by appropriately modifying the new number 
𝑛 = (2 ⋅ 3 ⋅ 4 ⋅ … ⋅ 𝑘) + 1.  Rather than showing that this number is not divisible by any element 
in 𝑆𝑘, Chandler tried to mimic the presented proof. It is likely that Chandler was unsuccessful in 
writing the proof because he did not understand the multi-level quantified statement and, in 
particular, did not know how to negate this statement. Consider the following discussion between 
Chandler and the teacher about his proof: 

T: Any idea how to negate this statement? 
C: And I thought of that but I just, it didn’t seem following along, and I sure didn’t [know] 

how to get it following along like this one. I think the contradiction would be: for all 
natural numbers greater than 1, wait [pause, mumbling to self] for all natural numbers 
greater than 1… I don’t know.  

T: Okay, let’s try to rewrite this in symbols, maybe.  
[After prompting, Chandler writes ∀𝑘 > 2, ∃𝑛 > 1 ∈ ℕ 𝑠. 𝑡.  𝑠 ∤ 𝑛 ∀𝑠 ∈ 𝑆𝑘] 
T: Can you negate this now? 
C: I think, piece by piece. There’s a whole string of these, I don’t know. I think for all n less 

than or equal to 1, or yeah, is that right? 
T: We also do the, for every k greater than 2, so maybe it’s “there exists a k greater than 2” 

so there is actually one of them. 
C: Or, wait, which part? You don’t negate this [points at 𝑛 > 1], you negate this [points at 

∀]. The quantifier? 
T: Yes, yes.  
C: So you don’t negate the [trails off]. 
[After more discussion on negating parts of the statement.] 
C: I’m trying to remember [pause] such that for some s, s divides n, for s in the set. Is that the 

entirety? 

While Chandler was unable to negate the multi-quantified statement (either as a mathematical 
statement or in algebraic notation), he did say  

And I thought of that [negating the statement] but I just, it didn’t seem following along, and I 
sure didn’t how to get it following along like this one… 

which indicates that he may have been able to complete proof had he been able to negate the 
multi-quantified statement. We also see phrases such as “I’m trying to remember…” and errors 
such as “I think [the negation would be] for all 𝑛 less than or equal to 1…” that indicate 
Chandler may need an external guide or table to negate quantified statements even single-
quantified statements. At least in this case, it is possible that Chandler’s conception of 
quantification was inhibiting his holistic comprehension of the proof.  
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Teaching Episode 2 
Teaching episode 2 began with Chandler examining the following statement and proof, after 

which he was asked to provide a definition of proof by contradiction based on the presented 
proof. 

Statement 2: If every even natural number greater than 2 is the sum of two primes, then every 
odd natural number greater than 5 is the sum of three primes.  
Proof 2: Assume that every even natural number greater than 2 is the sum of two primes and 
that it is not the case that every odd natural number greater than 5 is the sum of three primes. 
Then there exists an odd natural number greater than 5 that is not the sum of three primes, 
call it 𝑘. Then 𝑘 = 2𝑛 + 1. Since 𝑘 > 5, 2𝑛 + 1 > 5 and so 𝑛 > 2. Rewriting 𝑘, we have 
𝑘 = 2(𝑛 − 1) + 3. Since 𝑛 > 2, 2(𝑛 − 1) > 2 and so is the sum of two primes: 𝑝 and 𝑞. 
Thus 𝑘 = 𝑝 + 𝑞 + 3. This is a contradiction as we assumed 𝑘 was not the sum of three 
primes. Therefore if every even natural number greater than 2 is the sum of two primes, then 
every odd natural number greater than 5 is the sum of three primes. 

After a discussion on the underlying structure of the presented proof and how this related to 
proof by contradiction in general, Chandler was asked to answer the following comprehension 
questions on his own.  

1. Please give an example of a prime number and explain why it is prime.  
2. Why is every even natural number greater than 2 the sum of two primes? 
3. Why exactly can one conclude that 𝑘 − 3 is the sum of two primes? 
4. What is the purpose of the statement “Since 𝑘 > 5, 2𝑛 + 1 > 5 and so 𝑛 > 2.”? 
5. Summarize in your own words the main idea of this proof. 
6. What do you think are the key steps of the proof? 
7. In the proof, we rewrite 𝑘 = 2(𝑛 − 1) + 3. Would the proof still work if we instead 

rewrite 𝑘 = 2(𝑛 − 2) + 5? Why or why not? 
8. Using the method of this proof, show that: if every odd natural number greater than 5 is 

the sum of three primes and 3 is one of those primes, then every even natural number 
greater than 2 is the sum of two primes. 

Unlike teaching episode 1, Chandler was able to talk more about the holistic questions than he 
could previously. We highlight his most enlightening responses below.   

After discussing the specific structure of the presented proof, Chandler came up with the 
following step-by-step guide for a general implication statement: 

 Contradiction ∼ (𝑃 → 𝑄) ← begin negation 
 ∼ 𝑄  
 ⋮  
 𝑄  
 (𝑄 ∧ ∼ 𝑄) > contradiction 

 

Figure 1: Chandler’s written structure (left) and his recreated structure (right)
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First, note that the logical connection between the assumption, ∼ (𝑃 → 𝑄), and the next line, ∼
𝑄, is omitted as well as the logical connection between the assumption and contradiction in order 
to conclude the proof. Also, there is no mention of the role of 𝑃 in the proof. These omissions 
indicate that the structure above is meant to write a complete proof by contradiction and not to 
outline the logical structure of the method. In other words, Chandler focus is on the procedure 
and not in understanding why the procedure works. Thus, we believe he exhibits an Action 
conception of proof by contradiction.  

After reading the first line of the proof and before attempting any of the comprehension 
questions, Chandler said:  

I’m not sure when something contradicts, if you begin with 1, step 1. The assumption, or the 
given, was that P and [sic] Q. If you begin with P and not Q, it’s already a contradiction, 
isn’t it? No?  

Once the teacher explained the logical equivalence between the hidden initial assumption step, ∼
(𝑃 → 𝑄), and the first statement of the proof, 𝑃 ∧ ∼ 𝑄, Chandler was able to understand the 
logical relation between the statement and the first line of the proof. However, rather than 
include this equivalence in his proof by contradiction steps above, he only included ∼ 𝑄, the 
consequent of 𝑃 ∧ ∼ 𝑄 the proof uses to move forward and end up with a contradiction. While 
his steps may now avoid attending to local understanding of the statement and assumption, we 
see an instance in which Chandler, unprompted, attended to the local understanding of a 
particular proof by examining the propositional logic.   

When writing his proof for comprehension question 8, Chandler had difficulty negating 
statement 𝑄 (a key step in his current conception for proof by contradiction) without first 
translating the statement into propositional logic and using rules to negate the propositional 
logic. An excerpt of what transpired is provided below: 

T: Do you have any ideas on how to approach this proof? [Long pause] 
C: Not Q would be ‘every even natural number greater than 2 is not the sum of two primes’? 
No, all? I don’t know.  
[Teacher prompts Chandler to write the statement in propositional logic] 
T: Alright. So for every n here, that’s how you said it to me. So parentheses for all n, in the 
natural numbers, if n is greater than 2, then n is p + q. So what would be the negation of this 
statement? 
C: There is a natural number…  
T: There is a natural number. 
C: n greater than 2 that is not equal to p + q.  

We see Chandler utilizing his general procedure for implication statements by starting with 
negating statement 𝑄. Once he wrote the statement in propositional logic, Chandler was able to 
recognize the negation of a ‘for all’ statement as ‘there exists’ and continue using his procedure 
to complete the proof. This suggests that Chandler’s conception of quantification still inhibited 
his holistic understanding of the proof. 
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Teaching Episode 3 
Teaching episode 3 began with Chandler examining the following statement and proof, after 

which he was asked to provide a definition of proof by contradiction based on the presented 
proof.  

Statement 3: There is no odd integer that can be expressed in the form 4𝑗 − 1 and in the form 
4𝑘 + 1 for integers 𝑗 and 𝑘. 
Proof 3: Assume it is not true that there is no odd integer that can be expressed in the form 
4𝑗 − 1 and in the form 4𝑘 + 1 for integers 𝑗 and 𝑘. Then there is an odd integer that can be 
expressed in the form 4𝑗 − 1 and in the form 4𝑘 + 1 for integers 𝑗 and 𝑘. Let 𝑛 be that 
integer; that is, ∃𝑛 ∈ ℕ such that 𝑛 = 4𝑗 − 1 and 𝑛 = 4𝑘 + 1 for 𝑗, 𝑘 ∈ ℤ. Then 4𝑗 − 1 =
4𝑘 + 1 and so 2𝑗 = 2𝑘 + 1. Note that 2𝑗 is an even number and, since 2𝑗 = 2𝑘 + 1, 2𝑗 is an 
odd number. A number cannot be both even and odd and thus this is a contradiction. 
Therefore, it is not true that it is not true that there is no odd integer that can be expressed in 
the form 4𝑗 − 1 and in the form 4𝑘 + 1 for integers 𝑗 and 𝑘. In other words, there is no odd 
integer that can be expressed in the form 4𝑗 − 1 and in the form 4𝑘 + 1 for integers 𝑗 and 𝑘. 

Chandler was then asked to compare and contrast Proof 2 and Proof 3. After a discussion on the 
similarities and differences of the underlying structures of these proofs how this related to proof 
by contradiction in general, Chandler was asked to answer the following comprehension 
questions on his own.  

1. Please give an example of an integer that is odd and explain why it is odd.  
2. What kinds of numbers can be expressed in the form 4𝑗 − 1? 
3. Why exactly can we assume “∃𝑛 ∈ ℕ such that 𝑛 = 4𝑗 − 1 and 𝑛 = 4𝑘 + 1 for 𝑗, 𝑘 ∈

ℤ.”? 
4. What is the purpose of the statement “Note that 2𝑗 is an even number and, since 2𝑗 =

2𝑘 + 1, 2𝑗 is an odd number.”? 
5. Summarize in your own words the main idea of this proof. 
6. What do you think are the key steps of the proof? 
7. In the statement, we have 4𝑗 − 1 and 4𝑘 + 1. Would the proof still work if we instead 

have 4𝑗 − 3 and 4𝑘 + 3? Why or why not? 
8. Using the method of this proof, show that there is no odd integer than can be expressed in 

the form 8𝑗 − 1 and 8𝑘 + 1 for integers 𝑗 and 𝑘. 

The teacher/research focused Chandler's attention on the holistic comprehension questions as 
Chandler was able to give quick, confident answers to the local comprehension questions. We 
provide some of his most enlightening responses below. 

As mentioned above, Chandler was asked to compare Proof 2 and Proof 3 in their presented 
form. An excerpt of this comparison is provided below, along with a recreation of Chandler’s 
two proof structures that he eventually compared in place of the semantic representations of the 
proofs. 

C: They are both contradiction, proof by contradiction, and [pause] I don’t know. 
T: Well, maybe… let’s see. You have the structures of both proofs, right? 
[Teacher prompts Chandler to examine the structures he already developed.] 
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T: So you were saying something before you started talking about the ∼ 𝑄; you were 
pointing at [steps] 5-7. 
C: Yeah. Those are similar – [steps] 4-7 are similar to this, [steps] 4-6, of course. 

Table 2: Recreation of Chandler's proof structures for implication (left) and nonexistence (right) 
statements. 

𝑃 → 𝑄 (∄𝑥)(𝑃(𝑥)) 
1. 𝑃 ∧∼ 𝑄 
2. ∼ 𝑄 
3. ∼ 𝑄 → 𝑅1 
4. 𝑅1 → 𝑅2 
5. 𝑅2 → 𝑅3 
6. 𝑅3 → 𝑄 
7. 𝑄 ∧ ∼ 𝑄 
8. ∼ (𝑃 ∧ ∼ 𝑄) = 𝑃 → 𝑄 

1. Assume ∼ (∄𝑥)(𝑃(𝑥)) 
2. ∼ (∃𝑥)(𝑃(𝑥)) [sic] 
3. 𝑃(𝑛) 
4. Algebra until contradiction: 4𝑗 − 1 =

4𝑘 + 1 means 2𝑗 = 2𝑘 + 1 
5. ∼ (∼ (∄𝑥)𝑃(𝑥)) 
6. (∄𝑥)𝑃(𝑥) 

What Chandler is talking about here is the role of parts of the proof. In particular, he is 
considering how each structure arrives at the contradiction and uses this contradiction to 
complete the proof (Note: although he initially excludes step 8 in the implication structure as 
seen in Table 2, he clarifies the role of this step later in the discussion). Chandler uses this insight 
when he developed a general set of steps for any kind of proof by contradiction, replicated 
below: 

1. Assume the claim is false.  
2. Rewrite the assumption. 
3. Do algebra until contradiction. 
4. The assumption is false, so the original claim is true.  

Chandler leveraged the propositional and quantified logical structure of the proofs to produce a 
general, non-logical list of steps for any proof by contradiction and thus we believe he developed 
a Process conception of proof by contradiction. 

Chandler used of the general steps above to identify the purpose of single statements in the 
presented proof. When asked why the proof can assume ‘there is an odd integer 𝑛 such that 𝑛 =
4𝑗 − 1 and 𝑛 = 4𝑘 + 1 for 𝑗, 𝑘 ∈ ℤ’, Chandler responded: 

Because we are claiming the negation of “there is no odd integer 𝑛 such that 𝑛 = 4𝑗 − 1 and 
𝑛 = 4𝑘 + 1” which is “there is an odd integer 𝑛…” 

We see that Chandler recognized ‘there is an odd integer 𝑛…’ as a rewrite of the assumption 
without needing to refer to the logical equivalence of the statements. In addition, Chandler 
identified that the purpose of the statement ‘Note that 2𝑗 is an even number and, since 2𝑗 = 2𝑘 +
1, 2𝑗 is an odd number’ was to identify the contradiction. In both cases, we see Chandler relating 
the logical status and justification of statements to the general steps he has developed for a proof 
by contradiction. In doing so, he no longer needed to refer to the underlying structure of the 
proof in order to locally comprehend the presented proof.  
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Unlike teaching episodes 1 and 2, Chandler was able to describe the key steps of the 
presented proof and stated: 

C: Rewording it, I think. Rewording the claim into a negation and the algebra.  
T: That makes sense. Alright. 
C: For this one. I mean… I don’t know.  

What Chandler is describing as the key steps for this proof are steps 2 and 3 for general proofs 
by contradiction that he constructed during the Discussion of this teaching episode, though he 
clarifies that these may only be the key steps for this proof. Based on the previous steps he has 
listed as key steps, it seems that Chandler conceptualized the key steps of a proof as the steps in 
which he found to be most difficult. With this in mind, his clarification that the key steps of 
another proof may be different likely refers to the idea that the difficult steps of another proof 
may be different and not that the general steps of another proof by contradiction may be 
different. Thus, we believe Chandler exhibits holistic understanding of the presented proof based 
on his general understanding of proof by contradiction. 

Discussion 

It was evident that logic, and quantification in particular, played an important role in 
Chandler’s understanding of particular proofs and proof by contradiction in general. First, he 
leveraged propositional logic to develop specific steps for a particular kind of proof by 
contradiction as well as considered the logical connection between the statement and assumption 
of a particular proof. We also observed that Chandler’s initial difficulties with negating 
quantified statements inhibited his ability to transfer the methods of a particular proof into a 
similar context. By the end of the teaching experiment, Chandler developed a list of general steps 
any proof by contradiction should contain through the comparison of two different logical 
structures of particular proofs by contradiction. These steps not only aided Chandler in 
transferring the method of one proof to similar proof, but they aided Chandler in recognizing the 
logical status and justification of statements in a particular proof.  

Chandler’s conception of mathematical logic seemed to, at times, inhibit his proof 
comprehension. In particular, Chandler exhibited a need to convert statements into propositional 
or predicate logic in order to either negate the statement or recognize the logical relation between 
pairs of statements. This is especially important to highlight for proof by contradiction as 
students are not convinced of the validity of the proof method (Brown, 2011). However, by 
exploring the logical relation between the assumption, contradiction, and original statement, 
students may become convinced and thus more accepting of the method. At the very least, we 
found that prompting Chandler to explore the logical relation between statements in a proof and 
to develop key steps aided him in developing a robust understanding of proof by contradiction.  

Future Plans 

Overall, the teaching experiment seemed to aid Chandler in developing a robust 
understanding of proof by contradiction by focusing on the logical relationships within proofs. 
These results further a growing belief that attending to the logical relationship of statements may 
greatly improve proof comprehension (Brown, 2013; Hodds et al., 2014). Before we consider the 
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teaching experiment useful to a general student at the university, we need to consider more case 
studies. Five more students from Bridge to Higher Mathematics volunteered and participated in 
at least 3 teaching episodes during Fall 2016. We plan to analyze these students’ understanding 
of proof by contradiction in terms of APOS Theory and their understanding of specific proofs via 
the proof comprehension assessment model by Mejía-Ramos et al. (2012) in a similar fashion to 
Chandler. Positive results from these cases would strengthen our claim that the teaching 
experiment would be useful for general transition-to-proof students and allow us to examine the 
role of mathematical logic in understanding proof by contradiction.  
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Research and surveys continue to document the underrepresentation of women of color (WOC) 
in mathematics. Historically, their achievement in mathematics has been framed in a deficit way. 
Following the broader call for more research concerning WOC’s learning experiences in STEM, 
we interviewed eight WOC about their understanding of basis in linear algebra. We documented 
diverse ways that these women creatively explained the concept of basis using intuitive ideas 
from their everyday lives. These examples revealed important nuances and aspects of 
understanding of basis that are rarely discussed in instruction. These students’ ideas can also 
serve as potentially productive avenues to access the topic. Our results also challenge the 
existing broader narrative about the underachievement of women of color in mathematics.  

Key words: student thinking, basis, linear algebra, equity  

Women of color continue to be underrepresented in most areas of science, technology, 
engineering and mathematics (STEM), and more research is needed to understand the 
experiences of women of color in those areas (Ong, Wright, Espinosa, & Orfield, 2011). Their 
underrepresentation is also situated in the national call for more graduates in those fields in the 
U.S. (PCAST, 2012). In this study, we centralize the mathematical sense making of these 
students to counter the common colorblind approach to studying cognition. This focus has the 
potential to construct counter-narratives about women of color’s achievement in STEM 
(Adiredja, in preparation). Research has historically positioned students of color as struggling or 
underachieving (Harper, 2010).  

Research in post-secondary mathematics education has uncovered useful insights into the 
process of learning of advanced topics by focusing on students’ individual cognition. However, 
scholars have noted the tendency of cognitive studies to deemphasize equity concerns (Martin, 
Gholson, & Leonard, 2010). Studies of mathematical cognition often take a colorblind approach 
in which students’ background information is omitted (Nasir, 2013). There is a broader call for 
research at the post-secondary level to focus on addressing inequities, which include exploring 
ways that studies of student thinking can engage with issues of equity (Adiredja & Andrews-
Larson, under review). 

Theoretical perspectives on the nature of knowledge and how it develops directly impact the 
way we assess students’ understanding and their contributions in mathematics. Studies of 
cognition share the power to determine what counts as productive knowledge, how learning is 
supposed to happen, and what kinds of students benefit in the process (Adiredja, 2015; Apple, 
1992; Gutiérrez, 2013). For example, if we believe that mathematical knowledge can only be 
built upon prior formal mathematical knowledge, then it would be reasonable to privilege such 
knowledge in learning. However, one implication of this stance is that students who do not have 
the requisite formal knowledge would then be positioned as “not ready” or “less able,” while 
students who do are seen as “smart,” and are allowed to move forward (Gutiérrez & Dixon-
Roman, 2011; Herzig, 2004). This deemphasizes the reality that such knowledge has been more 
available to some groups than others (Oakes, 1990). Cognitive studies can challenge some of 
these assumptions, and broaden what counts as productive ways of thinking and who counts as 
successful learners. 
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One way this is occurring at the undergraduate level is through research that focuses on 
building from students’ informal knowledge and intuitions. For example, the instructional design 
theory, Realistic Mathematics Education (RME) (Freudenthal, 1983) has inspired some 
researchers to design curricula that build from experientially real start points (e.g., abstract 
algebra, Larsen, 2013; differential equations, Rasmussen & Kwon, 2007; geometry, Zandieh & 
Rasmussen, 2010; linear algebra, Wawro, Rasmussen, Zandieh, Sweeney, & Larson, 2012). 
Others focus on students’ intuitions or conceptual metaphors to make sense of formal 
mathematics (Adiredja, 2014; Oehrtman, 2009; Zandieh, Ellis, & Rasmussen 2012). Most of 
these studies focus on using students’ intuitions/ informal knowledge as building blocks for the 
more formal mathematical knowledge. In this paper, we explore ways that students’ intuitive 
explanations can reveal nuances about a formal mathematical topic.  

We explore students’ explanations about the concept of basis in linear algebra using 
everyday ideas. Linear Algebra is a critical course for engineering and mathematics majors, and 
the concept of basis is a central topic. There has not been much research done about the concept 
of basis, though some researchers suggest that it is challenging for students (Stewart & Thomas, 
2010). Stewart and Thomas (2010) found that students struggle in identifying span and linear 
independence in their description of basis. Moreover, they also struggle to define each of those 
terms, and tend to explain those concepts in terms of procedures. However, the authors found 
that students who received instruction that emphasized “geometry, embodiment and linking of 
concepts” (p. 177), were much better in describing the concepts compared to those whose 
instructions solely focused on symbolic algebra and isolated concepts. Students from the former 
group were also able to draw richer concept maps about basis than students from the more 
traditional class. These findings further support the approach of building from experientially real 
starting points (geometry and embodied ideas) to support students’ understanding.     

In this paper, we want to explore the diversity of ideas used by eight women of color to 
describe the concept of basis. We are less interested in identifying students’ struggles with the 
concept of basis. Later we argue for the importance of adopting an anti-deficit perspective in 
analyzing students’ ideas. In particular we explore the following research questions:  

1. What everyday contexts do these women use to explain the concept of basis? 
2. What do their explanations reveal about nuances in the concept of basis?  

In this paper, we position these women as informants into their mathematical thinking and what 
it reveals about the nuances of the concept of basis.  
 

Conceptual and Theoretical Frameworks 

The “Anti-deficit Achievement Framework” from higher education research (Harper, 2010) 
guides the design and analysis of this project. Instead of perpetually focusing on examining 
deficits or struggles of students of color in STEM, Harper’s framework focuses on understanding 
the success of these students despite existing inequities. For example, instead of asking the 
question, “Why are Black male students’ rates of persistence and degree attainment lowest 
among both sexes and all racial/ethnic groups in higher education?” This deficit-oriented 
question can be reframed with the Anti-deficit Framework as, “How did Black men manage to 
persist and earn their degrees, despite transition issues, racist stereotypes, academic 
underpreparedness, and other negative forces?” (p. 68). The Anti-deficit Framework focuses on 
challenging a particular narrative about underachievement of students of color in STEM, which 
is also attached to women of color (e.g., Why are women dropping out of computer science?). 
While the author’s work focuses on inequities in STEM higher education, some researchers in 
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undergraduate mathematics education share similar perspectives in their study of students (e.g., 
successful Black mathematics majors, Ellington & Frederick, 2010).  

In this paper we focus on countering the narrative of underachievement of women of color in 
mathematics, particularly with regards to their participation. The principle of “centralizing 
without essentializing” experiences (Bell, Orbe, Drummon, & Camara, 2000) provides an 
alternative to essentializing experiences of women of color (e.g., “all women of color struggle 
with basis in this way”). Centralizing instead leads to a focus on understanding the richness of 
their knowledge and sense making without attributing particular ways of sense making to all 
students in these groups.  

The two authors of this paper come from different theoretical traditions, which guide our 
joint analysis. The first author comes from Knowledge in Pieces (KiP) (diSessa, 1993) 
perspective, and the second author has used RME (Freudenthal, 1983) and conceptual metaphors 
(e.g., Lakoff & Johnson, 1980) to productively analyze student thinking. The commonality of the 
different perspectives is that they view students’ knowledge in an anti-deficit way. These 
perspectives highlight the use of intuitive ideas to explain mathematical and scientific ideas, and 
ways that they can be productive in building on students’ existing understandings. In laying out 
our perspectives we position ourselves as being open to students’ intuitions and non-normative 
language. 

 
Methods 

Given the desired depth and detail of analysis, this study favored the use of a small number 
of research subjects and videotaped individual interviews (diSessa, Sherin, & Levin, 2016). 
Participants were 8 undergraduate female students of color at a large public research university. 
The university’s mathematics advising center shared contacts of mathematics majors and minors 
who identified as women of color. We invited students via email, and through personal contacts 
of the authors of this paper. The breakdown of racial and ethnic backgrounds and their past 
mathematics courses are presented in Table 1. This information was drawn from a student 
background survey that was administered at the end of the interview. With the exception of one 
student who is a Biomedical Engineering major (Morgan), all the other students were 
mathematics major or minor. All pseudonyms were selected to reflect the origin of students’ 
names.  

Each interview lasted for 90 minutes. We developed the protocol to explore student 
understanding of basis. Students started the interview by solving four linear algebra problems 
that did not mention basis but for which basis could be relevant. We then asked them about basis, 
which included the way they would define it, and everyday ideas that were useful to explain the 
concept. In this paper, we focus specifically on students’ discussion of everyday examples.  
These occurred most often in response to questions Q2a and Q2b below, but also sometimes in 
response to other questions later in the interview.  
Q2a. Can you think of an example from your everyday life that describes the idea of a basis? 
Q2b. How does your example reflect your meaning of basis? What does it capture and what does 
it not?  
 
Table 1. Students’ Racial/Ethnic Background and Mathematics Course History 
Student Racial/Ethnic 

Background 
Linear Algebra 
Completion 

Grade Other Mathematics Courses 

Leonie African American Spring 2016 A Calculus I, II, and III 
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Morgan Asian/Asian American Spring 2016 A Calculus I, II, and III, and 
Differential Equations 

Annissa Hispanic/Latin@ Fall 2014 B Calculus I and II 
Eliana Hispanic/Latin@ Spring 2014 C Calculus I and II 
Nadia Hispanic/Latin@ Fall 2015 A Calculus I, II, and III 
Jocelyn Hispanic/Latin@ Spring 2015 B Calculus I, II, and III 
Stacie Hispanic/Latin@ Spring 2016 C Calculus I, II, and III 
Liliane Hispanic/Latin@/White Fall 2015 B/C Calculus I, II, and III 
 

We transcribed the interviews following guidelines from Ochs (1979). Transcripts were 
organized by turns, marked by changes in speaker. Transcripts use modified orthography (e.g., 
wanna, gonna, cus) to stay close to the actual students’ utterance. Our analysis first focused on 
identifying the everyday context and the details associated with that context (e.g., how does the 
student think about a vector, a vector space, or scalar multiple?). We then differentiated between 
utterances that had to do with characteristics of the basis vectors, and those that had more to do 
with roles of the basis vectors in relation to the larger space. The next step of the analysis is 
developing codes through open coding (Strauss & Corbin, 1994) to capture nuances of students’ 
understanding of basis.  
 

Results 

Students’ Everyday Examples 
We found that the majority of the students discussed at least one everyday context to explain 

the concept of basis. Table 2 provides a summary of the different contexts. We elaborate on the 
details of some these contexts in a later section.  

 
Table 2. Everyday contexts used to explain basis and vector spaces 
Student Context (for basis and vector space) 
Leonie friendship 
Morgan driving in a city (on a grid), Legos, cooking, groups of pens 
Annissa set of solutions (no actual everyday example) 
Eliana least amount of myself I need to cover the space of the room, storage room, 

dimension, skeleton, outline of a paper 
Nadia floor, universe and earth, syntax in programming 
Jocelyn fashion, recipe, art sculpture, collage 
Stacie walking to places in a room, floor as a plane, marching band 
Liliane religious teachings 
 
Characteristics and Roles of Basis Vectors  

Students discussed characteristics of the basis vectors in their everyday examples. While 
many of the ideas they brought up can be associated with the notion of linear independence, their 
ideas reveal nuances about linear independence and its role in defining basis. The first set of 
codes below capture these characteristics of basis:    
1. Minimal/maximal focuses on the required number or amount of vectors needed for the basis.  
Minimal focuses on the fact that the basis is the least amount of vectors necessary. Maximal 
focuses on the need to include all the basis vectors and that more would lead to redundancy.  
2. Essential focuses on the quality of the vectors being the core and necessary. 
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3. Representation focuses on naming or identifying the smaller set as the structure or 
representation of the larger space. 
4. Non-redundant focuses on not wanting extraneous information in a set, or the act of reducing 
or removing the extraneous information. 
5. Different/sameness focuses on comparing items (vectors) based on their difference/similarity 
for the sake of keeping or removing items from the basis.  

Prior to conducting the interviews we had noticed that basis vectors are sometimes 
emphasized in mathematics lessons as a way to generate a space of vectors. This is an emphasis 
on the basis vectors as a spanning set. Other situations might emphasize the role of basis vectors 
to describe the vector space, e.g., the basis for the null space of a non-invertible matrix serves as 
a short hand to describe that space. We asked students directly about this idea of generating and 
describing through Q5 and Q6, which ask, “Can you see a basis as a way to [generate/ describe] 
something?” But even before we asked students directly, they spontaneously brought up the idea 
of generating and describing in their description of basis, suggesting resonance of this idea. 
Lastly, related to the code of representation, students also brought up the role of choosing the 
particular vectors to represent the larger space.    
1. Generating: To create the larger space from the basis vectors. 
2. Describing: To describe the space using the basis vectors. 
3. Sampling: To choose the particular basis vectors as representatives of the larger space. 
In the next section we share our analysis of one student, Jocelyn to illustrate how we 
operationalize these codes.  

Illustrative example of analysis. We illustrate our analysis and codes with one student, 
Jocelyn. Asking students to assess the validity of their everyday example turned out to be very 
informative of aspects of basis to which students were attending. Jocelyn’s case illustrates ways 
that some of the codes emerged in our analysis. Jocelyn described basis in the context of 
fashion/creating an outfit. Jocelyn saw basis as minimum number of clothing pieces that “allows 
you to make all those outfits.” In this turn, she was explaining what aspects of basis her example 
captured. We used bold texts to mark the codes in the write up of our analysis.  
Interviewer: In the way you think about this sort of outfit idea to describe basis, um, what aspects 

of your understanding of basis is captured with your example and what part of it is not 
captured? 

Jocelyn: Um it's minimal. To pick one pair of heels and one pair of tennis shoes. So when I think 
of my idea of a basis, my mind goes to minimal. Um, what doesn't it capture? Well, ok, so it's 
weird cause I guess you can use one pair of shoes for different outfits. But like if I'm trying 
to make...it's harder to kind of have like a casual outfit and in a formal outfit there's not a 
whole lot of like overlap you end up having each piece in each outfit in the basis. So it's like. 
How do I explain this? I feel like the basis I'm making, all of the pieces aren't as like they're 
not all the same. Like you have shoes, tops and pants. You can't make an outfit with just 
shoes. But if you have a basis, you can pick just some of the vectors, combine them and 
make something and leave all the rest out. Cause you can't just put on shoes and pants. So 
that's where it kinda...that's one of the ways that doesn't really [captures it]. 

Jocelyn attended to the minimal aspect of a basis. In addition to using the word minimal, she 
explicitly identified the need for the specific quantity of one pair of heels and tennis shoes. The 
particular pair of shoes serves as a representation for formal shoes and casual shoes 
respectively, and you end up with “each piece in each outfit in the basis.” Earlier in the interview 
she discussed the necessity of one pair of heels for a formal outfit and one pair of tennis shoes 
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for a casual outfit. It was also important to Jocelyn that the basis vectors were different (“they’re 
not all the same”), and as a set was non-redundant (lack of “overlap” in the pieces). She also 
highlighted the essential nature of each element of the basis. She explained this in the way that 
an outfit needs shoes, pants and tops. She asserted, “you can’t make an outfit with just shoes,” or 
“just put on shoes and pants.”  

In addition to attending to particular aspects about the basis vectors, Jocelyn also attended to 
the roles of the basis vectors in the larger space. In particular she attended to the role of the basis 
vector in generating the larger space, and the necessity of choosing or sampling the particular 
basis vectors to represent the larger space. We coded the phrase “combine them and make 
something” as highlighting the generating relationship. We coded “to pick one pair of heels and 
one pair of tennis shoes” as also highlighting the sampling relationship. This is not to be 
confused with the representation code, which focuses on the basis vectors as representatives of 
the larger space.         

Jocelyn’s assessment also revealed a unique concern that we did not observe with other 
students about the ability to choose some of the vectors in the basis but not all of them. Jocelyn 
argued that with basis vectors, one could use a subset of them to generate a vector in the space. 
In the context of fashion, she could take a subset of the pieces to generate an outfit. The fact that 
she needed a top, a bottom and a pair of shoes meant that her example required that she had one 
piece from each category of clothing. She saw this as a limitation to her example. In the next 
section we explore the extent to which students in the study brought up roles of the basis vectors.  

A focus on the generating relationship. In the process of analyzing students’ everyday 
examples we found a wide range of examples of generating, a smaller number of examples of 
describing, and some examples of sampling. We focus now on most common code on the role of 
the basis vectors: generating. Each student had at least one example of what we label as 
generating.  

Common verbs for the generating code were variations of “to make” or “to build.” For 
example, Morgan talked about building in terms of Legos, “you're given like the 3 by 2 Lego 
[pieces] and you have like a 2 by 2 Lego [piece] you can just like build on to that to create that I 
guess space that you have.”  Nadia spoke about computer programming syntax, “Syntax is like 
stuff so you can make a program that doesn't give you an error.” Other variations include “add,” 
“expand”, and “come from that,” which Liliane used in her description of basis using religious 
teachings: 

So I’m very religious and so the teachings that I that we share with each other and that we 
read about and all that stuff. Like, there are a lot of things that you can add to and be like 
here’s an application and here’s the things, and this expands to this and this and this. But 
there’s like the most basic teachings and like it all comes back to that. And this is the basic 
thing like you have the Ten Commandments. You have the Scriptures and you have like the 
prophets and you have your connection with God and, like all of the decisions and all of 
things that come from that and you can reach all of the other points with this basis. 

These examples illustrate the different ways students brought up the notion of generating, and 
these women’s creativity with the everyday contexts. 

 
Discussion and Implication 

The two main components of our results illustrate (1) the creativity and breadth of the 
everyday contexts used to describe basis by these female students of color, and (2) the nuances in 
understanding of basis that have come out of our open coding of this student data. The range of 

20th Annual Conference on Research in Undergraduate Mathematics Education 47420th Annual Conference on Research in Undergraduate Mathematics Education 474



examples that students used was particularly interesting and useful. Most of these were not 
examples we had thought of ourselves prior to beginning the study. We are mindful of not 
gendering or racializing these examples, which would lead to essentializing the students. 
Students did discuss basis in the context of fashion, cooking and religion, but they also brought 
up other contexts like driving, skeleton, and the universe. These contexts are likely inspired by 
the students’ experiences, and not their background characteristics. Future studies can further 
explore the range of contexts to explain basis, and the details of their differences. One can also 
investigate if there are shared learning experiences among these women that contributed to their 
flexibility to come up with these examples. Moskovich (2012) asserted that there is nothing 
inherently different about the cognitive processes of students of color in mathematics. However, 
there is a difference in their “conditions of learning” (p. 96). We conjecture that the different 
conditions for learning might have contributed to the creativity of these students.   

These women were also fairly sophisticated in judging their own examples in terms of what 
aspects of the examples worked well for their understanding of basis and what aspects of the 
context were harder to line up with their understanding of basis. For example, Jocelyn did not 
think her outfit example captured the idea that you can create vectors in the space by just using 
one or two of the basis vectors, whereas in her outfit example, one would need to use all three 
basis vectors (shoes, tops and pants) to create a wearable outfit. In grappling with what aspects of 
their context worked well and which did not, the students revealed many nuances of basis that 
we might not have discovered using strictly formal mathematical questions. Together, these 
students’ creativity and sophistication in assessing their examples challenges the narrative of 
underachievement of women of color that Harper (2010) has noted.   

We argue that this paper makes contributions both to research on student cognition in 
addition to equity research. From a cognitive point of view, this is the only study that we know 
of that focuses on students’ everyday examples of basis. In fact, there have been very few studies 
done on student understanding of basis and also few studies on students’ ability to create 
everyday examples of mathematical constructs at the undergraduate level. For these reasons, this 
paper adds to the literature on student mathematical cognition and reasoning at the undergraduate 
level. In addition, we argue that the paper adds valuable data to the corpus of research in 
undergraduate mathematics education in that few studies have been written about the 
mathematical thinking of women of color. Sometimes this is because women of color have not 
been included in data sets (perhaps because there were not many women of color in the 
population from which the data was drawn). Other times we simply do not know whether or not 
women of color were in the data sets because, as one can see from a review of the papers in 
recent proceeding of the Conference on Research in Undergraduate Mathematics Education 
(RUME), it is not common in the RUME community to report data on gender and particularly on 
ethnicity.  

This work may have implications for curriculum design. As an example, consider the 
experientially real starting points emphasized in the curriculum design framework of RME. Our 
analysis challenges us to reflect on what counts as an experientially real starting point for our 
students. Creating these experientially real starting points requires us to know our audience.  In 
our past work we may have focused on certain types of students more than others in imagining 
what is experientially real to this audience. Making sure to interview and listen to the thinking of 
students who are not as often interviewed in RUME studies is vital to making sure we are 
reaching all students in instruction and also with our curriculum design. 
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Corpus linguists attempt to understand language by statistically analyzing large collections of 
text, known as corpora. We describe the creation of three corpora designed to enable the study 
of expert and learner mathematical language. Our corpora were formed by collecting and 
processing three different genres of mathematical texts: mathematical research papers, 
undergraduate-level textbooks, and undergraduate dissertations. We pay particular attention to 
the method by which our corpora were created, and present a mechanism by which LaTeX 
source files can be easily converted to a form suitable for use with corpus analysis software 
packages. We then compare these three different types of mathematical texts by analyzing their 
word frequency distributions. We find that undergraduate students write in remarkably similar 
ways to textbook authors, but that research papers are substantially different. These differences 
are discussed. 

Key words: corpus linguistics, mathematical language, proof 

Understanding the nature of mathematical language is a goal for at least three research 
communities. Sociologists and philosophers have long been interested in the practices of 
intellectual communities, and mathematics, with its uniquely deductive mode of inquiry, has 
attracted particular attention (e.g., Larvor, 2016). Mathematicians increasingly recognize that 
novices need to learn not only the content of mathematics but also the practices of 
mathematicians. Transition-to-proof courses are therefore common, and a growing number of 
textbooks directly address logical norms of mathematical communication (e.g., Vivaldi, 2014). 
Mathematics educators at all levels aim to support learners in developing sophisticated modes of 
thinking: a commonly-stated goal is that learners should engage in authentic mathematical 
activity that involves reasoning, proving, and communicating their arguments with others in the 
classroom and in written work (e.g., Stylianides, 2007). 

These communities – sociologists and philosophers, mathematics educators, and 
mathematicians – therefore share an interest in understanding the norms of mathematical practice 
and communication. To date, however, there are relatively few empirical studies of this practice, 
and those that exist indicate less homogeneity among mathematicians than is typically portrayed 
in introspective accounts (e.g., Inglis, Mejía-Ramos, Weber & Alcock, 2013). In particular, to 
our knowledge, there have been few large-scale attempts to study the authentic mathematical 
communication of research mathematicians, or to compare this to the communication of 
undergraduates.   

One method of studying language is to use the techniques of corpus linguistics, a branch of 
linguistics that statistically interrogates large collections of naturally occurring text, known as 
corpora. Methods developed by corpus linguists can be used to investigate many different types 
of linguistic question, and have revealed important and surprising findings (e.g., McEnery & 
Hardie, 2011). 
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Our goal in this project was to compare three distinct types of mathematical written 
language: that used by mathematicians when writing research papers, that used by 
mathematicians when communicating with undergraduates for pedagogical purposes, and that 
used by undergraduates when writing for assessment. By collecting and processing naturally 
occurring mathematical texts of these three types we aimed to understand the similarities and 
differences of these three genres of mathematical language. A subsidiary goal was to compare all 
these versions of mathematical language with general (non-mathematical) written English. We 
first discuss the process involved in creating our three corpora. 

 
Collecting the Texts 

The first task for a researcher who wishes to create a corpus is to collect examples of the 
language that they wish to study. We adopted two largely pragmatic criteria: 

1. We collected only text in LaTeX format to enable consistent processing (discussed 
below). 

2. We collected only text that had been published non-commercially or, in the case of 
student projects, where the author agreed to assign us copyright. 

Subject to these criteria, we collected texts for the three corpora in different ways. 
To create the learner corpus we invited undergraduate students to submit their final-year 

projects or dissertations.  Such dissertations are common in the UK (where students specialize to 
study three subjects at age 16 and to one or two when at university) and degree programs vary in 
their dissertation criteria.  But students commonly have the opportunity to undertake an 
individual project – which might be expository or applied– accounting for approximately one 
sixth of their final-year credit.  We invited submissions from such students via project 
coordinators at 15 universities, who sent on an email directing interested students to a Facebook 
page that explained how to process their dissertation LaTeX file to remove personal identifiers, 
and how to submit this along with a copyright transfer form.  Each student who submitted 
received a £5 (approximately $7) Amazon voucher and was asked to encouraged their friends to 
submit too.  By this method we collected 50 student dissertations, which contained a total of 
419,965 words. 

To create the pedagogic text corpus we located online undergraduate-level open textbooks 
using the Open Textbook Library, the College Open Textbooks site, and the American Institute 
of Mathematics Approved Textbook list. Topics included abstract algebra, analysis, linear 
algebra, complex analysis, and textbooks designed to support the transition to proof. If the 
textbooks were not available in LaTeX format we contacted the author and asked for permission 
to access their source files. This approach left us with the source files for 21 complete 
undergraduate textbooks, which contained a total of 1,518,932 words. 

To create the expert corpora we first downloaded all papers that had been uploaded to the 
arXiv in the first four months of 2009. The arXiv is an online repository that is routinely used by 
research mathematicians to share their research articles. The majority of articles on the arXiv are 
available in LaTeX format, and can be bulk downloaded using a command line tool. We then 
sorted the articles using their primary subject classification (e.g., mathematics, physics, etc.) and 
further sorted them using their secondary subject classification (e.g., algebraic geometry, 
algebraic topology, etc.). This left us with a total of 5087 mathematics articles, containing 
30,892,695 words. 
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Processing the Texts 

Collecting mathematical language and converting it into a form that can be processed using 
the standard software packages used by corpus linguists presents a challenge. Unlike most texts, 
mathematical language contains numerous atypical characteristics, such as inline mathematical 
notation. Most mathematics is written using the LaTeX markup language, not plain text. Our first 
goal was therefore to create a method of converting LaTeX source code to plain text in a way 
that preserved the natural sentence structure of the language, but which removed non-linguistic 
features of the source code (the code for bold or italic text for instance). 

An important question for the would-be creator of a mathematical corpus concerns how to 
deal with inline mathematical notation. For instance, a typical mathematical sentence might be 
“Let !:! → ! be a bijection.” How would we want the “!:! → !” to appear in a plain text 
corpus? One approach would be to leave the LaTeX source code intact and to analyze the code 
as if it were natural language. The difficulty with adopting this option is that there are several 
different ways in which one could encode “!:! → !” in LaTeX. For instance, 
$f:X\rightarrow Y$ and \(f:X\rightarrow Y\) produce identical output, and 
$f\,:\,X\longrightarrow Y$ only differs stylistically. We therefore felt that this 
approach would be unhelpful for the majority of questions a researcher would wish to answer 
using a mathematical corpus (although our code does allow this approach as an option, as a 
researcher who wished to primarily focus on the semantic content of papers might wish to retain 
these markup codes). 

A second option would be to delete all mathematical code entirely, and simply record the 
example above as “Let be a bijection”. We rejected this option as it seemed not to preserve the 
logical structure of sentences, which would influence certain analyses (those that investigate the 
collocation of words, for instance). Instead we opted to replace all occurrences of inline 
mathematics with the string “inline_math” (although this decision can be altered by the 
researcher if desired). The scripts we used to convert LaTeX to analysis-ready plain text are 
freely available for the research community at: 
https://github.com/sangwinc/arXiv-text-extracter 

 As our corpus of general written English we used the combined Lancaster-Oslo/Bergen 
corpus (commonly referred to as the LOB corpus; Johansson, 1986) and Brown corpora. The 
Brown University Corpus of Standard American English (commonly referred to as the Brown 
corpus; Francis & Kucera, 1961) is formed of 1 million words of American English from texts 
published in 1961. The LOB corpus consists of written British English created to mirror the 
structure of the Brown corpus (i.e. texts were taken from similar sources in similar proportions). 
Thus our combined Brown/LOB corpus consisted of 2 million words of British and American 
written English. 

Analyzing the Corpora 
 
Having created the corpora, our primary goal was to understand the extent to which they 

were similar: is it the case that the language used in mathematical textbooks, mathematics 
research papers, and undergraduates’ final year projects is consistent? If not, where are the 
differences between these genres, and how can these differences be characterized? 

Kilgarriff (2001) proposed a variety of measures that aimed to assess the similarity of 
different corpora. All his approaches relied upon the so-called ‘bag of words’ model of text 
construction. This model ignores the order in which words occur and instead focuses on 
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understanding texts by assessing their distributions of word frequencies. The basic idea is that 
two texts are likely to be a similar genre, and focus on a similar topic, if they have broadly 
similar word frequency distributions. Of the measures he studied, Kilgarriff concluded that a chi-
squared approach performed best. Suppose one wishes to calculate the similarity of corpora A 
and B. Kilgarriff proposed determining the most frequent n words in the supercorpus formed of  
! ∪ !, and then calculating the test statistic for a chi-squared test of goodness of fit. Since these 
n words were selected to be the most frequent, and not sampled randomly from the population of 
words, it would be inappropriate to actually perform the chi-squared hypothesis test, but 
Kilgarriff reasoned that the test statistic would serve as a suitable measure of similarity (with 
lower values represent more similarity).  

Unfortunately Kilgarriff’s (2001) chi-squared method would not suffice for our purposes, as 
it requires that we are comparing corpora of the same size. We therefore modified his proposal as 
follows. We first determined the 100 most frequent words across our four corpora, where each 
corpus was weighted as representing 25% of the supercorpus (we needed to perform this 
weighting because our expert arXiv corpus was considerably bigger than the others). We did not 
include “inline_math” as a word for this analysis, as clearly it did not appear at all in the 
Brown/LOB corpus. We then calculated the proportion of each corpus consisting of each word. 
For instance, the word “the” represented 6.08% of the arXiv corpus, 6.72% of the textbook 
corpus, 6.62% of the learner corpus, and 6.69% of the Brown/LOB corpus. 

For each pairwise combination of corpora, A and B, we then calculated 

!!" =
!! − !! !

!!
+ !! − !! !

!!

!""

!!!
 

where !! represents the proportion of corpus A formed of word i, and !! represents the proportion 
of corpus B formed of word i. While this is not a true chi-squared value (which would be 
calculated with frequencies rather than proportions) it fulfils a similar role. Therefore if 
!!" < !!" , we can conclude that corpora A and B are more similar than corpora A and C. The 
!!" values for each pairwise combination of our four corpora are given in Table 1, and plots of 
the frequencies of the top 100 words are shown in Figure 1 (so, a point at (x,y) in the bottom left 
graph indicates that the same word formed x% of the arXiv corpus and y% of the textbook 
corpus). 

The results shown in Table 1 and Figure 1 paint a consistent picture. We found that the 
textbook and learner corpora had remarkably similar word frequency distributions, that the arXiv 
corpus formed of mathematical research papers was somewhat different, and that all three 
mathematical corpora were substantially different to the regular written English of the 
Brown/LOB corpus. Before exploring the differences between the arXiv and textbook corpora 
below, we first make some remarks on these findings. 

 
 Textbook Learner Brown/LOB 

ArXiv 0.105 0.097 1.215 
Textbook  0.011 1.317 
Learner   1.320 

Table 1: The similarity measures, !!", for each pairwise combination of our four corpora. 
 

Although our analysis was exploratory in the sense that we did not have strong hypotheses 
about the results in advance, we were somewhat surprised by these findings. We anticipated 
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there would most likely be a gap between the language used by experts and novices. After all, 
mathematicians have typically had many years of enculturation into the discipline, whereas the 
undergraduates who provided the texts for our learner corpus had only had three or four years of 
university-level study. However, we found something quite different. Our learners seemed to 
produce very similar written language to that found in textbooks written by experts, at least in 
the sense that their word frequency distributions were close to identical. One hypothesis that 
might account for this similarity would be if the two corpora had similar balances of 
mathematical topics. For instance, two corpora focused on linear algebra might be expected to 
have similar word frequencies for “kernel”, “matrix”, and so on. But we do not believe that this 
suggestion can account for our data. Because we only considered the 100 most frequent words, 
few were highly domain specific: in fact, only “theorem” and “proof” were words in the overall 
top 100 which had fewer than 100 occurrences in the Brown/LOB corpus. 

Instead our conclusion is that the undergraduate students who provided the texts for our 
learner corpus did successfully produce written mathematics that was consistent with that found 
in undergraduate textbooks written by expert mathematicians. At least in the sense that it shared 
a similar distribution of word frequencies. 
 

 
 

Figure 1. Scatterplots showing the frequencies of the top 100 words (as percentages) for 
each pairwise combination of our four corpora. Axes have logarithmic scales (therefore words 

with zero frequency in one corpus are not shown). 
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The main difference we found between the mathematical corpora concerned the word 

frequency distributions of the textbook and arXiv corpora. We can explore this difference in 
more detail by considering the keywords for each corpus – those words which occur 
disproportionately in one corpus compared to the other. These are shown in Table 2, which is 
ordered by chi-squared value (i.e. the contribution of the word to !!" defined earlier).  

Some of these key words are unsurprising: for instance, ‘example’, and ‘solution’ occur 
proportionately more often in the textbook corpus than the arXiv corpus. The textbook corpus 
also contains proportionately more instances of verbs such as ‘find’, ‘show’, ‘do’, and ‘prove’ – 
than the arXiv corpus. Indeed, the only verbs appearing in the right-hand side of Table 2 are ‘let’ 
and ‘see’. Although one might attribute this to the inclusion of exercises in textbooks, this 
explanation would not account for the extremely similar frequencies for these words found in the 
textbooks and the undergraduates’ final-year projects: although clearly textbooks normally 
contain exercises, student projects do not. 

One further difference between the mathematical corpora concerned the frequency of 
mathematical notation. The arXiv corpus had considerably more instances of “inline_math” per 
100 words (11.1%) compared to the textbook (8.8%) or learner (7.6%) corpora.  

Further analyses are required to understand the significance of some of the other differences 
between the corpora. For instance, ‘by’ occurs disproportionately often in the arXiv corpus 
(1.02% of words) compared to the textbook corpus (0.64%) , but why? Investigating the most 
common clusters of words that include ‘by’ in the arXiv corpus indicates that the word is used to 
both name (“defined by”, “denote by”) and assert (“given by”, “obtained by”, “generated by”). 
By systematically studying such cases we can begin to understand the differences between 
research-level and undergraduate-level mathematical language. 

Conclusion 
 
Our main goal in this paper has been to describe the creation of three mathematical corpora 

designed to aid researchers understand mathematical language. The tools we used to construct 
these corpora are freely available for the research community to use. Having constructed the 
corpora we presented an analysis of word frequency distributions which suggested that 
undergraduate students are, by the end of their courses, surprisingly successful at writing in a 
manner consistent with the language used in undergraduate textbooks. The developmental 
trajectory by which students develop mathematical language skills would be a worthy topic of 
future study. In contrast to the similarity observed between textbooks and final year dissertations 
however, the language mathematicians use in research papers is different to both. 

In this paper we have focused on comparing the word frequency distributions of four 
different corpora, but there are a great many other techniques that can be used to analyze corpora 
which go well beyond this approach (e.g., McEnery & Hardie, 2011). Given the interest shown 
by mathematics educators and other researchers in mathematical language, we believe that 
corpus linguistics is a potentially useful, but currently under used, research technique. 
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More frequent in the 
textbook corpus  

More frequent in the  
arXiv corpus 

Word !!  Word !! 
find 0.01279 

 
by 0.00367 

what 0.01103 
 

on 0.00190 
number 0.00689 

 
where 0.00144 

example 0.00477 
 

case 0.00120 
if 0.00266 

 
i 0.00120 

must 0.00265 
 

with 0.00100 
use 0.00265 

 
for 0.00094 

show 0.00242 
 

let 0.00071 
function 0.00232 

 
in 0.00061 

set 0.00220 
 

see 0.00058 
that 0.00218 

 
following 0.00055 

or 0.00218 
 

such 0.00054 
about 0.00212 

 
space 0.00050 

is 0.00201 
 

which 0.00049 
solution 0.00181 

 
proof 0.00033 

do 0.00167 
 

theorem 0.00028 
two 0.00163 

 
also 0.00019 

not 0.00159 
 

we 0.00015 
each 0.00141 

 
now 0.00013 

than 0.00139 
 

given 0.00010 
so 0.00130  our 0.00007 

prove 0.00124  and 0.00007 
this 0.00123  since 0.00003 
are 0.00113  from 0.00002 
a 0.00113  every 0.00002 

Table 2: The left-hand table shows the top 25 words that occur in the textbook corpus that 
differentiate it from the arXiv corpus. The right-hand table shows the equivalent words for the 

arXiv corpus. 
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Mathematics instruction leadership in undergraduate departments 
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Many universities have begun to coordinate their introductory mathematics courses to handle 
multiple sections of the same course, a situation necessitated by the large numbers of students 
taking precalculus and calculus. Robust coordination systems consist of two major elements: 
uniform course elements (e.g., common text; exams) and regular instructor meetings. These 
regular meetings may turn calculus instruction into a joint enterprise, potentially engendering a 
community of practice. Of particular importance are those who act as leaders (formally and/or 
informally) within these coordination systems – these people have the potential to influence and 
“nudge” instructors towards improving their practice (Rasmussen & Ellis, 2015). This study 
combines case study findings with social network data to investigate instructional leaders at five 
diverse institutions, considering both formal and informal coordination phenomena, and 
hypothesize about their potential to influence practice in their departments. 
 
Key words: Coordination, instructional leadership, social networks, change 
 

Many universities have begun to coordinate their introductory mathematics courses to 
handle multiple sections of the same course, a situation necessitated by the large numbers of 
students now taking precalculus and single-variable calculus (Precalculus to Calculus 2, P2C2). 
Robust coordination systems consist of two major elements: uniform course elements (e.g., 
common text; exams) and regular instructor meetings. These regular meetings can have the effect 
of turning calculus instruction into a joint enterprise, potentially engendering a community of 
practice (Rasmussen & Ellis, 2015). P2C2 instruction has been identified as one of the culprits in 
the mass exodus of college students from STEM majors, and many calls for improvement hint at 
the need for collaborative work: “all faculty, including tenure-track faculty and the 
teaching/pedagogy faculty, should engage collaboratively in undergraduate curriculum and 
teaching reform” (TPSEMath, 2015, p. 10). Coordination systems provide a venue for this 
collaboration to take place. Of particular importance are those who act as leaders (formally 
and/or informally) within these coordination systems – these people have the potential to 
influence and “nudge” instructors towards improving their practice (Rasmussen & Ellis, 2015).  

To better understand the nature of coordination systems and instructional leaders, this study 
combines case study findings with social network data to investigate mathematics departments at 
five diverse institutions, considering both formal and informal coordination phenomena. This 
work is guided by the following questions: 

1. Who in the department influences instructional practice? 
2. To what extent do leaders identified using social network analysis coincide with those in 

formal leadership positions (e.g., coordinators; chair)? 
3. How do leadership roles and influences vary? 

Theoretical Perspective and Literature Review 
Leadership is a concept with many definitions, though all involve influence. A review of 

definitions over the last century emphasizes that it is relational, situated, and can be formal 
																																																								
* The Project through Calculus PI team consists of Linda Braddy, David Bressoud, Jessica Ellis, Sean Larsen, Estrella 
Johnson, and Chris Rasmussen. Graduate students include Naneh Apkarian, Dana Kirin, Kristen Vroom, and Jessica 
Gehrtz. 

20th Annual Conference on Research in Undergraduate Mathematics Education 48520th Annual Conference on Research in Undergraduate Mathematics Education 485



and/or informal (Carter, DeChurch, Braun, & Contractor, 2015). By relational, we mean that 
leadership involves relationships between people: for someone to lead, their influence must be 
felt by others. By situated, we mean that a person who leads in some situations may follow in 
others, it is not an unchanging characteristic of an individual. A key element of the situational 
nature of leadership is that different characteristics and expertise have different value in different 
contexts – a person who is considered a leader in one domain (e.g., pedagogy) may not be seen 
as a leader in another domain (e.g., research). Finally, leadership involves formal and/or informal 
influence. That is, leadership can originate from positional power (e.g., manager, chairman), or 
from personal power (e.g., respect, trust), and the two are not exclusive (Carter et al., 2015). 

In this study, we focus on instructional leaders, whom we conceptualize as those with the 
ability to influence the practice of instructors in the classroom. This influence may be explicit 
(e.g., providing advice) or implicit (e.g., conversation partners), and may relate to particular 
elements of a course (e.g., exams, homework) or be a more diffuse influence on general 
approaches to instruction. Those in formal positions of leadership can certainly influence the 
choices others make, but many without formal titles have informal influence. While in some 
organizations it is possible to mandate actions, instructors at institutions of higher education 
enjoy a remarkable amount of autonomy, particularly those with tenure. However, even those 
with complete independence can be nudged toward making certain decisions. 

The idea of nudging, increasing the chances of a certain decision being made, comes from 
the work of behavioral economists Thaler and Sunstein (2009). They describe how the moves of 
choice architects, those who organize the context of decision making, can strongly influence the 
actions of others without removing their ability to make their own choices. The general principle 
they recommend is to make it easy for individuals to make “healthy” decisions, and more 
difficult (though not impossible) to select alternatives. This often comes in the form of setting 
desired options as a default, providing feedback to choosers, mapping out courses of action, and 
providing information about others’ actions. As detailed by Rasmussen and Ellis (2015), many of 
these roles are within the purview of course coordinators. This report builds on that previous 
analysis to include a more diverse set of institutions, some with less formal coordination systems, 
and instructors of a more diverse set of introductory mathematics courses.  

The notion of leadership also necessitates conceptualizing the community of those involved. 
Toward this end we draw on the communities of practice literature (Wenger, 1998). In particular, 
we take the point of view that norms and practices related to instruction are part of a 
continuously developing, shared repertoire which develops through mutual engagement 
surrounding a joint enterprise. Central members of a community of practice are those perceived 
as the most expert, and exert stronger influence over the group than newer or more peripheral 
members. While the departments being studied are not necessarily true communities of practice, 
they (at least officially) refer to undergraduate instruction as one of the purposes of the 
department, and one of the responsibilities of instructors and faculty.  

Bringing these literature bases together directs our attention to the nature of instructional 
leadership, the scope of its potential to influence others through social interactions, and the 
conduits through which people engage and negotiate normative practice and beliefs. We next 
turn to data sources and how the methods of social network analysis offer an approach for using 
these data to assess leadership and identify conduits for influence. 

Data Collection Methods 
Data for this report comes from two research projects, Characteristics of Successful 

Programs in College Calculus (CSPCC) and Progress through Calculus (PtC). The CSPCC 
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project surveyed faculty and students across the nation to identify those whose Calculus 1 
implementations were more relatively more successful, where success was defined in terms of 
affective changes, passing rates, and persistence rates. Case studies of these more successful 
programs led to the articulation of common features, at least at the research universities 
(Bressoud, Mesa, & Rasmussen, 2015; Bressoud & Rasmussen, 2015). Follow-up surveys and 
interviews were also conducted at several case study sites, when possible, to further explore the 
themes and surrounding context. These, and other project findings, influenced the design of the 
PtC census survey, which investigated P2C2 courses at departments that offer a graduate degree 
in mathematics (Apkarian et al., 2016; Rasmussen et al., 2016). The five departments 
investigated in this report come from sites that were selected in the CSPCC study, had follow-up 
investigations, and participated in the PtC census survey. 

Of particular interest to this study are data and findings related to course coordination. From 
the original CSPCC case studies come interviews with faculty and course coordinators of 
Calculus 1. From the PtC survey comes information about the coordinated elements, 
coordinators, and instructor meetings for each P2C2 course. From the follow-up social network 
surveys comes information about social interactions and relationships between instructors and 
faculty at each department. Social network surveys are used to ascertain the ties, and strength of 
those ties, between people by asking participants to identify others with whom they have a 
particular relationship (Daly, 2010; Kadushin, 2011; Scott, 2012). Our follow-up survey asked 
about five types of interaction: seeking advice about teaching, seeking instructional materials, 
discussing instructional matters, friendship, and instructional influence, supplemented with 
demographic information and Likert scale questions to characterize the actors between whom 
ties exist or do not exist (Coburn & Russell, 2008; Daly, 2010; Scott, 2012).  

Data Analysis Methods 
Graph theoretic techniques common to social network analysis were used to identify those 

with influence over instructional matters (Borgatti, Everett, & Johnson, 2013; Daly, 2010; 
Kadushin, 2011; Scott, 2012). Table 1 explains the interpretations of participant A selecting 
participant B for each of the four instruction-specific networks. This interpretation was used to 
determine what network measures were appropriate for each relationship. This proposal 
discusses only degree though other more complex measures are being used to ensure the validity 
of interpretation and to identify more nuanced differences. Degree refers to the number of ties 
that an actor in the network has. An actor’s in-degree refers to the number of nominations they 
receive, while their out-degree refers to the number of nominations they provide, in a given 
network. High and low degree values are determined based on the distribution of degrees across 
all actors in a particular network, rather than in absolute terms. 
 
Table 1. Interpretation of social network survey responses. 
If A chooses B 
for… 

…this means that: The instructional influence 
being passed is: 

An influential actor is 
identified by: 

Advice A believes B has 
worthwhile advice 

Specific; explicit; primarily 
from B to A 

High in-degree 

Materials A believes B has useful 
materials 

Specific; implicit; primarily 
from B to A 

High in-degree 

Influence A has been influenced 
by B 

Nonspecific; explicit; 
primarily from B to A 

High in-degree 

Discussion A and B have discussed 
a topic 

Nonspecific; implicit; 
direction indeterminate 

High total degree 
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In addition to identifying actors with high degree values, it is informative to compare an 

actor’s in- and out-degrees to determine their level of involvement (higher degree values = more 
involved) as well as their perceived function. When someone receives many nominations but 
provides very few, they function as an authority; when they provide many but receive few, they 
function as an apprentice (Borgatti et al., 2013). 

The social network data was used to determine who in these departments has functional 
influence on their colleagues’ instructional practice. This information was then combined with 
data from our other sources to understand where positional leadership overlapped with 
instructional leadership, where it did not, and (to a certain extent) why. Actors with positional 
authority were identified through their titles, either from official records or interview data. The 
formal setup of coordination systems (see Table 2) was identified through the PtC census survey 
data. Interview data from CSPCC case studies reveal nuances about the coordination system, 
including characterizations of coordinators, attitudes towards the coordination system, and the 
extent to which cooperation with the coordination systems is enforced. 

Results 
A first step in this project was to identify basic facts and features of each institution, 

department, and P2C2 coordination system. Table 2 gives a brief overview of each site, 
including institutional descriptors, the individuals identified as having positional power related to 
undergraduate instruction (other than chairpersons), and selected information about the 
coordinated elements and meetings of P2C2 courses. 

 
Table 2. Characteristics of each institution, department, and P2C2 coordination system. 
 Large Public 

University  
Public Tech. 
University  

Private Technical 
Institute 

Public 
University 1  

Public 
University 2 

Institution type* R1 R2 R2 M1 M1 
Undergraduate 
enrollment* 

30,709 7,099 6,381 9,501 12,503 

Participant pool 61 56 26 24 23 
Coordinators 3 course coord. 3 course coord; 

1 lab coord 
1 course coord; calc 
cmmte. chair 

Calc cmmte. 
chair 

Calc cmmte. 
chair 

Course content 
and schedule 

Yes Yes Topics for all; 
pacing for Calc 1 

Topics, not 
pacing 

Topics, not 
pacing 

Uniform 
homework 

Online 
homework 

Online 
homework 

Not required Not required Not required 

Uniform 
exams 

All calculus 
exams 

Yes Finals only 1/3 of items on 
final 

Calculus 1 final 

Uniform 
grading 

Calculus: exams 
and overall 

Exams and 
overall 

Calculus 1; exams 
only 

Not required Not required 

Instructor 
meetings 

2-4 per term Weekly Calc 1 weekly; 1-4 
per term for other 

1-4 per term 1-4 per term for 
pre-calculus(es) 

*Carnegie Classifications (Indiana University Center for Postsecondary Research, 2015) 
As we begin to describe the results of this project, we remind the reader that leadership is 

situated, and that someone with influence in one domain may not have the same level of 
influence in other contexts. We reinforce this idea to clarify that if we identify a chair as not 
exerting instructional leadership, this does not mean that there are no contexts in which they are 
highly influential. Bearing that in mind, we first consider some common features across all five 
institutions, followed by a more detailed treatment of three sites. Full reports of the remaining 
two sites have been omitted from this proposal due to space constraints.  
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General results 
At each of the five institutions examined in this study, a few individuals emerge from the 

social network analysis as instructional leaders with regard to undergraduate mathematics 
courses. Their formal roles vary, as do the networks in which they appear important, but across 
all institutions it appears that these individuals are not simply the “most popular” members of the 
department. Justification comes from usage of the friendship network question – as their position 
in the friendship network is not extreme, it appears that they are sought out for advice because of 
perceived expertise or authority, not simply because they are nice to talk to. 

In these five institutions, which were identified in the CSPCC study as having relatively 
successful Calculus I programs, there is overlap between those with formal leadership titles and 
those who function as leaders via the social analysis. This may be an indication of a “healthy” 
environment, wherein department members trust in the expertise of those in power. While trust 
was not one of the explicit questions participants were asked to comment on, looking at those 
who are sought out for advice and those who are identified as influential can serve as a proxy in 
the context of instruction. 
Large Public University - LPU 

This institution’s mathematics department has three course coordinators, each specializing 
in a particular course. While their specific assignments rotate through Precalculus, Calculus 1, 
and Calculus 2, these three are permanent coordinators and work together as a unit to manage the 
courses. These three individuals emerged as instructional leaders from the social network 
analysis. They function as authorities in advice, material, and influence networks, and are highly 
involved in the discussion networks. In practice, this means that these three are the most likely to 
be asked for advice or sample materials (thus influencing specific practices explicitly); very 
likely to be involved in informal conversations about instruction (thus influencing practice 
implicitly); and considered by many instructors to be the most influential on their teaching 
practice. Thus we see that the positional authority of all three coordinators is supplemented with 
real instructional influence, indicating that at LPU the coordination system is functioning as 
intended. We note that at LPU, the department chair had very low involvement in every network, 
implying that his/her positional authority does not extend to matters of undergraduate instruction. 
No other actors appeared to exert significant influence over instructional matters. 

Interview data are consistent with the network-based findings. These coordinators are 
appreciated by other instructors as reliable resources for advice about content as well as teaching. 
They maintain websites to host instructor resources and sample materials, which are widely used 
by others. While these three were viewed by their colleagues as leaders, it was noted that they do 
not insist on every detail, thus allowing instructors independence, even within a coordinated 
system. At this institution, P2C2 courses are only coordinated during the on-sequence terms of 
instruction, but many instructors note that they use the coordinated materials no matter which 
term they are teaching a course, freely choosing to act under the coordinators’ influence. 
Public Technical University - PTU 

This institution has three course coordinators and a lab coordinator, each a multi-year, semi-
permanent position. One course coordinator, the lab coordinator, and (to a lesser extent) the 
department chair emerged from the social network analysis as instructional leaders. The 
coordinators function as authorities with regards to advice, materials, and influence and are 
highly involved in the discussion networks; the chair is an authoritative figure in the influence 
network but does not appear highly involved in advice or materials. In practice, this means that 
these two coordinators are the heaviest influences on explicit elements of practice (via advice 
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and material sharing); are involved in many conversations about instruction (a more general, 
implicit influence); and the chair joins them in generally influencing instruction. These three 
actors appear to have positional power backed up with real influence over instruction, 
representing a good match between theory and practice. Two other faculty members in the 
department had high involvement in discussion networks, but not in any of the direct influence 
networks. They also appeared highly in the friendship network, perhaps indicating that these two 
are friendly, but not perceived as having any particular expertise in instructional matters. 

The CSPCC interview data provides some context and explanation for the result that only 
one of the three coordinators has real influence over instruction. The influential coordinator 
frequently takes the helm and provides default options to those working under her; the other 
coordinators project less authority and consider themselves to be “organizers” rather than 
supervisors of the coordinated courses. Their decision to operate “on the same level” as the other 
instructors is apparent from their interviews as well as interviews with instructors, and may 
explain why they do not exert significant influence over instructional practice in the department. 
Private Technical Institute - PrTI 

PrTI has one course coordinator and a calculus committee to oversee introductory courses, 
and the calculus committee is managed by a chairperson. This institution, which is smaller than 
LPU and PTU, has more distribution of degree than some other places – a sign that leadership is 
somewhat distributed. However, instructional leaders do emerge from the analyses, coinciding 
with the course coordinator and the calculus committee chair. Neither appear to function as 
authorities, but they are the most influential in terms of advice and discussion networks. The 
committee chair was also identified as a major source of advice. No actors emerged as 
particularly influential with regards to course materials; no other actors emerged in leadership 
roles; and the department chair has low involvement in the instructional networks. In practice 
this indicates that while instructional materials are not influenced by particular members of the 
department, the positional authority invested in the coordinator and chair of the calculus 
committee is reinforced by personal power and influence – another instance of a good match 
between title and role. As with LPU, the department chair’s positional authority does not appear 
to extend to influence over instructional practice. 

It is worth noting that the network analysis identified the committee chair as having 
influence before his/her position was known. Follow-up investigation of the available data 
revealed that they did, in fact, have a position which carries some inherent power. The fact that 
no actor, not even the coordinator, is a major source of instructional materials is made less 
surprising when we note that this department does not have many uniform course elements – 
homework and non-final exams are at the discretion of the instructor. This is further supported 
by the CSPCC interview data, which indicated that the coordinator organizes meetings and 
provides feedback to instructors, but does not insist on the usage of pre-specified elements.  
Public Master’s Universities – PU1 & PU2: A Brief Overview 

At both PU1 and PU2 the calculus committee chair and department chair have instructional 
influence as well as positional authority. Also at each, instructors do not feel particularly 
restrained by the recommendations of the committee, but there is evidence of collaboration, 
cooperation, and some informal coordination through the influence of leaders. Moreover, at each 
the networks are somewhat distributed and the leaders, though they have influence, do not stand 
out as much as they do at the doctoral institutions we studied. 

Discussion 
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One overarching message from our work is that, despite having significant pedagogical 
autonomy, university instructors are influenced by their colleagues. Note that pedagogical 
autonomy is distinct from academic freedom – the former refers to instructional practice in the 
classroom while the latter refers to research. Our results lend themselves to two related 
implications: one for the study of leadership in undergraduate departments and one for the 
potential of social network analysis to inform the change process. We present some hypotheses 
and questions for future research in this area. 

We have discussed the nature of leadership as being relational, situated, and both informal 
and formal. The theoretical premise and empirical results of this paper lead us to extend these 
ideas to consider larger systems. The relational nature of leadership lends weight to the 
consideration of people and their interactions within a department, and we highlight again that 
leadership comes from and is embedded in relationships – it is not an inherent trait of particular 
individuals. While our work identifies relationships between instructors and faculty members, we 
have little evidence of relationships connecting members within the department to those outside. 
We see that centers for teaching and learning are not heavily utilized (when they exist), and there 
is not much coordination between departments. While administrators (e.g., deans) have some 
positional power over department activities, they did not appear to be involved in interactions 
related to instruction. The situated nature of leadership implies that in different contexts, or when 
considering different domains, the traits that coincide with influence are varied. Our work here 
focuses on instructional leadership rather than administrative or research leadership, but there are 
other contextual factors to consider. How does institution size and/or mission affect the nature of 
leadership? What about institutional or departmental culture? Considerations of departmental 
culture lead to the nature of leadership as both informal and formal. While formal meetings are 
held with some regularity in many departments, we do not know the extent to which instructors 
meet informally with each other. Having identified influence and interactions related to 
instruction at schools without regular instructor meetings, we believe that informal interactions 
have some impact on the development of influencing ties. Furthermore, the literature and our 
data support the idea that titles are neither necessary nor sufficient conditions for instructional 
leadership.  

We believe that this work has implications for those interested in studying or planning 
change at the undergraduate level. Understanding the readiness of a department for change 
involves understanding the context and community, without which efforts may well fail (Lee, 
Hyman, & Luginbuhl, 2007). Identifying those with influence and those with positional authority 
may go some way to explaining the success or failure of a particular effort – when the two do not 
coincide there is the potential for subversion via misaligned influences. We may go so far as to 
recommend social interventions prior to the implementation of change efforts, in the event that 
the organization (in this case department) is fractured or heavily influenced by an opposition 
leader – something which can be revealed through social network analysis (Carolan, 2014; Daly, 
2010; Lee et al., 2007). We see great promise in coordination systems for instructional 
improvement. Not only do these systems provide more uniform experiences for students, but a 
coordinator with both positional and personal instructional influence is in a position to be a 
choice architect. That is, the default options they set for their colleagues is likely to be accepted 
and their recommendations are likely to have real implications for instructional practice. Their 
ability to nudge others makes them a high-priority ally for change agents interested in making a 
difference (Kezar, 2014; Rasmussen & Ellis, 2015; Thaler & Sunstein, 2009). 
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Using learning trajectories to structure teacher preparation in statistics 

Anna E. Bargagliotti 
Loyola Marymount University 
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As a result of the increased focus on data literacy and data science across the world, there has 
been a large demand for teacher preparation in statistics. Project-SET constructed two 
hypothetical learning trajectories for teacher learning and subsequently used the hypothetical 
learning trajectories to structure a professional development curriculum. We illustrate how the 
utilization of learning trajectories to design professional development allowed participating 
teachers to develop several aspects of Statistics Knowledge for Teaching (Groth, 2013).  

Key words: Learning trajectories, statistics, professional development, teacher preparation 

Large-scale research provides some indication of the key characteristics of effective teacher 
training (Doerr, Goldsmith, & Lewis, 2010; Garet, Porter, Desimone, Birman, & Yoon, 2001; 
Heck, Banilower, Weiss, & Rosenberg, 2008). These include a focus on content knowledge, 
opportunities for active learning, and coherence with other learning activities (Garet et al., 2001). 

The purpose of this article is to report on how using teacher learning trajectories (TLTs) to 
design teacher training offers a structure to develop teacher content knowledge in deep and 
meaningful ways. This study is based on the implementation of Project-SET, a project funded by 
the National Science Foundation to develop professional development curriculum to enhance 
teachers’ content knowledge of two statistics topics – sampling variability and regression. 
Project-SET first developed TLTs for these two topics and then designed a professional 
development curriculum around the trajectories. In exploring the outcomes of the 
implementation, we recognized the important role that the TLTs played in creating opportunities 
for teacher participants to achieve different aspects of Statistical Knowledge for Teaching (SKT). 

We aim to answer the following research question: How did the use of learning trajectories 
to design professional development curriculum support the development of teachers’ statistics 
knowledge for teaching? Our findings suggest that TLTs offer a promising structure for aiding 
professional development design. 

 
Learning Trajectories 

The idea of a learning trajectory (LT) was initially introduced by Simon (1995) as a way to 
conceptualize how students might progress through a learning sequence. He stated that a LT 
included “the learning goal, the learning activities, and the thinking and learning in which the 
students might engage” (pp. 133). Originally grounded in constructive theory, LTs connect 
students’ thinking and learning for specific mathematical content with a conjectured pathway to 
move students through a developmental progression (Clements & Sarama, 2004). While all 
learning trajectories essentially organize learners’ thinking and learning, how a learning 
trajectory is built and the scope for which it is used differs in the literature.  

For example, Confrey and Maloney (2010) describe LTs for a several of topics as “a 
researcher-conjectured, empirically-supported description of the ordered network of constructs a 

20th Annual Conference on Research in Undergraduate Mathematics Education 49420th Annual Conference on Research in Undergraduate Mathematics Education 494



student encounters through instruction (i.e. activities, tasks, tools, forms, of interaction and 
methods of evaluation), in order to move from informal ideas, through successive refinements of 
representation, articulation, and reflection, towards increasingly complex concepts over time” 
(Confrey, 2008; Confrey et al., 2008, 2009). Clements and Sarama (2004) instead focus on early 
childhood mathematics and describe LTs for narrow sequences of topics.  

The LTs constructed by Project-SET differ that those discussed in the literature as they are 
focused on teachers. In other words, the Project-SET LTs were build and designed to 
conceptualize teacher content knowledge in statistics. Project-SET adapted the definition of a 
learning trajectory as that of Clements and Sarama (2004): “learning goal, developmental 
progression of thinking and learning, and sequence of instructional tasks.” The learning goal for 
the trajectories was to address teacher content knowledge on the topics of sampling variability 
and regression. This goal was coupled with a progression and instructional tasks. 
 

Theoretical Framework 

The Project-SET teacher learning trajectories (TLTs) served to guide and develop a 
professional development for teachers. In applying the LTs to teachers, we intersect LTs with 
frameworks of teacher knowledge. In particular, we draw upon the Mathematical Knowledge for 
Teaching (MKT) framework and the Statistical Knowledge for Teaching (SKT) framework 
(Groth, 2013).  

 

Figure 1 SKT Framework (Groth, 2013, pp. 143)� 

Groth (2013) identified Key Developmental Understandings (KDUs) as landmarks in the 
teachers’ development of subject matter knowledge. Building from the work of Simon (2006), 
Groth describes KDUs as significant conceptual shifts. According to Groth, these landmarks or 
conceptual shifts can occur in each of the three types of subject matter knowledge in his 
framework (common content knowledge, specialized content knowledge, and horizon content 
knowledge). Groth’s SKT framework also incorporates ideas outlined by Silverman and 
Thompson (2008) regarding the development of pedagogical content knowledge. In particular, 
Silverman and Thompson assert that teachers’ development of KDUs with regard to subject 
matter knowledge are a necessary, but perhaps insufficient, first step with regard to improving 
student learning.  
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The purpose of the Project-SET professional development was to develop teachers’ content 
knowledge. These TLTs served as guides for the structure of the professional development. 
Figure 2 represents the relationship between teacher learning trajectories, professional 
development, and SKT. This study focuses on understanding how this process might work.   

 
Figure 2. Project-SET Conceptual Framework 

Methods 

Participants 
 
Nine secondary teachers completed the first implementation of the professional development.  

Seven of the 9 teachers taught in the local public school district. Two of the teachers taught in a 
private school within the city. Their average number of years teaching statistics was 2.4.� 

Data Sources 
 
End-of-Loop Assessment Tasks. Assessment tasks were completed by the teachers at critical 

points of the LT in order to measure understanding with respect to the content included in the 
LT. The scoring of each part was modeled after the AP Statistics scoring of: E (Essentially 
Correct); P (Partially Correct); or I (Incorrect). The assessment tasks were scored each week by 
two scorers who were part of the research team but not present during the professional 
development session. The scorers graded the papers separately and then discussed their scores to 
come to a consensus on the final scores.� 

End-of-LT Assessment. At the completion of the content of each LT, teachers were assigned 
as homework an assessment intended to bring together the content of the entire trajectory.� 

Video of Class Sessions. Each class session of the professional development was videotaped. 
Outlines of the videos were created and portions of the videos were transcribed. The videos 
provide a means to confirm and elaborate on the observed patterns of teacher learning 
documented from the teachers’ written work.� 

 
Analysis  

A two-phase process was used to investigate how the use of TLTs supported the development 
of SKT, with a particular focus on KDUs. The first phase took place during the analysis of 
teachers’ written work on the End-of-Loop Assessment Tasks and the end-of the LT projects. 
This analysis provided insight into which ideas were pivotal to teacher understanding thus 
permitting the research team to identify a preliminary list of KDUs.  
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In the second phase of the data analysis, these prospective KDUs were then examined 
through the analysis of classroom interactions. During this phase, the videos were examined in 
order to determine how teachers’ SKT developed as they progressed through the LTs.  

 

Results 

We present illustrative examples of the KDUs that we identified along with supporting 
evidence consisting of samples of teacher work or transcript segments.  

 
Example 1 Common Content Knowledge KDU: Sample Size and the Sampling Distribution  

One of the most persistent ideas that surfaced in teachers’ work and discussion involved the 
relationship between sample size and the shape and spread of the sampling distribution. We have 
identified this as a KDU reflecting Common Content Knowledge in Groth’s framework insofar 
as this is not a concept specific to the domain of teaching.  

Teachers repeatedly made statements alluding to the fact that when repeated samples were 
taken and a sample mean was computed, then the shape of the sampling distribution should 
become more bell-shaped and the variability of the sampling distribution should decrease. For 
example, an assessment task for sampling variability asked teachers to compare three different 
approximate sampling distributions taken with samples of n=5, 15, and 30 according to their 
shape, variability, and center. There is evidence at this point that the nine teachers developed an 
understanding of the effect of the sample size on the spread, even if they were not yet clearly 
articulating the relationship to shape. Three samples of teacher responses are provided:  

 
The videos of the class sessions provide further support for the assertion that this was a KDU 

for teachers that the loop design of the LTs fostered. After investigating these ideas over a period 
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of time, teachers expressed different “aha” moments around the effect of the sample size. For 
example, the activity for Loop 3 engaged the teachers in sampling from four populations with 
vastly different distributions (bimodal distribution, skewed distribution, roughly normal 
distribution, and scattered distribution). The teachers took samples of size n=5, n=10, and n=25 
and generated approximate sampling distributions for each sample size. They compared the 
sampling distributions of different sizes and noted the similarities in the effect of the sample size 
on the sampling distribution.  

Instructor: So, tell us what you’ve got there from Jamal [the bimodal distribution] and what 
happened with the samples of different sizes?�Teacher 6: As you can see, as you increase the 
sample size, the variability gets smaller and smaller, if you look you are going from 20 to about 
110, versus the spread going from 20 to about 80 where for size 10 you are going about 52 to 66, 
your variability is decreasing.  

As the discussion continued, several teachers also compared the sampling distributions to the 
corresponding population distributions, noting the way in which the distributions with the larger 
sample sizes behaved in a similar manner, regardless of the distribution of the population. In 
particular, even when the population had a non-symmetric or bimodal shape, as the sample size 
increased, the variability of the sampling distribution decreased. During this comparison of the 
different distributions, one of the teachers, focused on the behavior of sampling distributions of 
the bimodal population distribution, began to talk through the reasons behind what she had 
observed.  

Teacher 5: No matter what the population looked like, there was a mean. And our data, or our 
samplings, were samplings of the average. So, they all should have been near the average of the 
population. No matter what [the population] looked like.  

Another teacher builds on this idea and offers an argument for why the variation of the 
sampling distribution should logically decrease with an increase in the sample size:  

Teacher 7: I guess they can’t do this because they are obviously...cards, but if we had done 
N=60, a.k.a. all the cards, it would have just been a straight line at 60... So that like N = 60 
literally is just 60, 60, 60, 60 [the mean of the sample] over and over again, just a straight line of 
60, but that would have been a good thing to compare to n = 4, n=10, n = 30. [Note: The 
example to which she was referring had a population mean of 60 and a population size of 60.]  
In this segment, the teachers appear to not only recognize the effect of the sample size on the 
spread of the sampling distribution (as with their written work, their descriptions of the shape are 
not as explicit at this point). They also appear to be creating corresponding mental images of 
why this makes sense, no matter what the shape of the population is.  

The significance of this idea as a KDU is reflected in their own comments a few minutes 
after the observations from Teacher 5 and 7 described above.  

Teacher 3: You know...I’m not sure that I ever understood that...I’m serious.�Teacher 5: The 
light did come on, in terms of understanding what was happening in this activity.  

 
Example 2 Specialized Content Knowledge KDU: Line of Best Fit Counterexamples  

Specialized content knowledge, defined in the SKT framework as knowledge of content 
needed in the practice of teaching, may include teachers’ ability to comment on student work and 
strategize ways they can address student errors. One way to illustrate to students their errors 
would be to provide students with examples for which their solution will not work. The ability to 
develop such counterexamples is knowledge specific to teaching.  
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In the regression LT, the teachers were asked to examine a scatterplot of drop heights versus 
bounce heights of a golf ball and place a piece of spaghetti on the scatterplot in such a way that 
they believed represented a line of best fit. Teachers also had to explain what their criterion was 
for the placement of the line and why they chose to place it there. This same activity had been 

given to 8
th 

grade students. A second component to the teacher activity was then for the teachers 

to comment on the 8
th 

grade students’ work and, if the work showed a misunderstanding, then 
provide a counterexample scatterplot that would illustrate to the student that their placement 
criterion would not be successful in general.  

During part one of the activity, all of the teachers created criteria that matched that of the 
previously collected student data. For example, one teacher asked “do you assume it [the 
spaghetti] goes through (0,0)?” She noted that in the context of the problem, dropping balls, if 
you dropped the ball from 0 height, you would get a 0 bounce height. She thus concluded that 
her line of best fit must go through the origin. This same reasoning was also seen in the student 
work. Another teacher stated that she placed her line in such a way that “there are 4 dots above 
and 4 dots below and so it is in the middle.” Again, similar reasoning was uncovered in the 
student work with a student stating that they wanted to “split” the points.  

When teachers were given the student results to analyze, they were asked to evaluate whether 
the criteria the students used to place their line was one that would work for any data set. If not, 
then the teachers were to give an example scatterplot for which their student criteria would not 
work. This proved difficult for the teachers. For example, one student had the origin criteria 
similar to one of the teachers. Looking at the student work, she stated: “I think that is a good 
idea.” However, teacher 8 responded by saying “in this case, it [going through the origin] is ok 
but not all the time.” At this point, a conversation emerged as to whether the criterion the student 
applies must work for any set of linear data or just the golf ball data in front of them. After a 
short deliberation about what defining a criterion means and how it should be applied, it was 
accepted that a criterion must work for any set of data. Then, the teachers created the 
counterexample of a data set that had a negative association and thus would require a line to have 
a negative slope so it would not enable the line to go through the origin. Although the teachers 
were able to develop counterexamples to help guide student misunderstandings in the context of 
the line of best fit, the work was non-trivial.  

 
Discussion & Conclusion 

As noted by Simon (2006), for someone to develop a KDU, one must have repeated exposure 
to the concept. Additionally, according to Simon, students without a KDU “do not tend to 
acquire it through explanation or demonstration” (p. 362); instead a KDU must emerge through 
discovery. In this way, a person would be able to shift their understanding and gain a Key 
Understanding. We gathered evidence to show that the Project- SET LTs offered a platform for 
teachers to develop KDUs by scaffolding more complex ideas and repeatedly looping for each 
topic. Due to limitations in space, only two examples were presented above. We assert that the 
design of the Project-SET activities to progress teachers through the TLT facilitated the 
development of SKT and the emergence of KDUs. In addition, the TLT also allowed for the 
conceptual unpacking necessary to develop teachers’ knowledge.  

The TLTs’ mapping created clearly-defined conceptual boundaries that allowed us to 
recognize when inadequate connections were begin made to horizon content knowledge. Thus, 
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although this is a small study with nine teachers, we see promise in the use of TLTs in the design 
of teacher preparation curriculum to support the growth of teachers’ knowledge. The SKT 
construct asserts that teacher statistical knowledge for teaching consists of both content 
knowledge and pedagogical knowledge. We found evidence that building professional 
development using TLTs can help teachers advance both their content knowledge and their 
pedagogical knowledge. In addition to the development of subject matter knowledge, we 
evidenced the translation of this subject matter knowledge into pedagogically powerful ideas.  

The goal of this paper was to analyze the affordances of TLTs in the design of professional 
development. In particular, we sought to understand how the use of TLTs might support the 
development of SKT, with a particular focus on the KDUs that emerged. Doerr et al. (2010) have 
identified this type of small-scale study as making important contributions to our understanding 
of professional development. In particular, through the description and analysis of the “critical 
elements” (Borko et al., 2008) of the program, it is possible to better understand the teacher 
learning process and the potential of the program for sustained success.  

We view the findings in this paper contributing to the advancement of knowledge and 
literature base in three ways. First, this study provides small-scale evidence that learning 
trajectories can not only be used to map student curriculum and learning, but also can be used as 
maps for teacher curriculum and learning.  

A second contribution of this study is the connection of learning trajectories to existing 
teacher learning constructs such as SKT, KDUs, and Pedagogically Powerful Ideas. This study 
provides evidence that TLTs offer a means to observe and develop such constructs with teachers.  

The analysis of the use of TLTs as a “critical element” of a professional development 
program suggests that TLTs can offer similar structures for teacher learning that mirror those 
previously documented for student learning. In particular, the TLTs offered a framework for 
identifying and achieving KDUs and making instructional decisions based on the KDUs. The 
TLTs gave the research team a way to see how KDUs were directly related to the development 
of SKT. Furthermore, the TLTs provided a means for teachers to achieve KDUs due to their 
repeated exposure while moving through the loop structure of the TLTs. By construction, the 
TLTs provided scaffolding for KDU development. The repeated exposure illustrated when 
cognitive shifts were occurring in teachers’ knowledge. In addition, this repetition allowed 
teachers to transform KDUs into pedagogically powerful ideas.  

While Project-SET has a specific focus on teachers’ statistics knowledge, we submit that the 
implications for mathematics teacher training are broader than this teacher population. In 
particular, by focusing on a “critical element” of Project-SET– the use of LTs for teacher 
knowledge – we assert that the model has potential for other content within mathematics teacher 
professional development. The use of LTs for teacher learning offers a potentially powerful 
strategy for developing teachers’ knowledge of other concepts within the larger mathematics 
curriculum.  
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Interaction, Activities, & Feedback: A Taxonomy of GTA Professional Development 
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In this report we present a taxonomy of mathematics graduate student teaching assistant 
(GTA) professional development (PD) programs. This taxonomy is based off of the 
characterization of GTA PD programs from 120 mathematics departments, and is 
informed by the framework developed by Ellis (2015) based on case studies of four GTA 
PD programs. A cluster analysis revealed nine distinct models of GTA PD within the 120 
programs. These nine models vary with respect to the amount of interaction the GTAs 
have through the PD, the amount of activities involved in the PD, and the level of 
feedback given to GTAs involved with the PD. We present a characterization of one of the 
nine models using Ellis’s framework. 

Key words: GTA, professional development, taxonomy, institutional change 
 

Graduate teaching assistants (GTAs) are playing an increasingly integral role in the 
education of undergraduate students at major universities in the United States, serving as 
both primary instructors of introductory courses and as lab or recitation assistants. 
Although many of the GTAs coming in to these teaching roles in mathematics 
departments are likely well-versed in the content of the course they are teaching, this may 
not be enough (Ball, Thames, & Phelps, 2008). Shulman (1986) and Ball, Thames, and 
Phelps (2008) argue that teaching also requires an additional type of understanding and 
knowledge, that of the “organizing principles and structures and the rules for establishing 
what is legitimate to do and say in a field” (Ball, Thames, & Phelps, p. 391, 2008). Thus, 
it is essential that GTAs receive adequate training in order to help them to be successful 
in their roles as teachers.  

There are numerous case studies and journal articles (such as Alvine et al., 2007; 
Belnap, 2005; Barry & Dotger, 2011; Harris, Forman & Surles, 2009; Luft, Kurdziel, 
Roehrig & Turner, 2004; Wayne et al, 2008) about improving GTA training programs at 
single universities across the nation. This is further corroborated by a recent national 
survey in which about 33% of the 210 PhD or Masters granting institutions that 
responded said that changes to their GTA teaching preparation program are either being 
discussed or changes have recently/currently been implemented (Ellis, Speer, & Deshler, 
2016). One difficulty in evaluating current GTA professional development programs is 
that there is not an agreement on how this training is defined (Shannon, Twale, & Moore, 
1998). Consequently there is a need to create a taxonomy of GTA professional 
development (PD) programs and an accompanying metric for determining the 
effectiveness of these programs. The overarching question that guides the analysis in this 
paper is: What models of GTA PD are currently being implemented in US mathematics 
departments where GTAs are tasked with teaching? 

In order to help us characterize the existing GTA training programs, we can gain 
insight from the PD programs at the secondary level. Graduate students often receive 
training before they teach (similar to pre-service teachers) and ongoing training while 
they teach (similar to in-service teachers). In order to develop a characterization of the 
current GTA PD programs we will also elaborate on the framework given by Ellis 
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(2015). Ellis’s framework “can help direct attention to important components to consider 
[for a GTA training program], as well as provide a visual representation of the many 
components” of such a program (p. 12, 2015). Figure 1 provides an outline of the 
framework and the main components of the framework. 
 

 
Figure 1. GTA PD framework (Ellis, 2015) 

 
It will be beneficial to test and expand (if needed) Ellis’s proposed framework to 

GTA PD programs across the nation as this framework is currently based on models used 
by only four universities. The process for collecting the data used to characterize these 
models was very intensive. In the characterization that we propose, the information that 
went into categorizing the training programs came from national survey data and did not 
require site visits and interviews, although these could be helpful in further classifying 
GTA PD programs. In the discussion section we consider the applicability of the 
framework based on the data available through the survey.  

Methods 

The aim of this research is to investigate how graduate-degree granting mathematics 
departments are training their GTAs, and more broadly refine a systematic classification 
of such programs. To understand what models of GTA PD currently exist in graduate 
degree granting mathematics departments, we analyze survey data from the Progress 
through Calculus (PtC) Census Survey. This survey was sent to every masters and 
doctoral degree granting mathematics department in the US, and was comprised of 
questions related to many aspects of the Precalculus through Calculus II (P2C2) 
sequence, including student placement, what courses the school offers in the sequence, 
and who teachers these courses and how these courses are taught.  

We focus on the section of the survey dedicated to graduate student teaching 
involvement in the sequence, and the GTA PD involved. The PtC research group (NSF 
DUE-1430540) and the College Mathematics Instructor Development Source 
(CoMInDS) (NSF DUE-1432381) research group jointly developed this section of the 
survey. Overall, the response rate for the survey was 68%. There were 223 schools that 
completed the GTA section of the survey. Of the 223 schools, we focus primarily on 
schools who had a department wide training. Only 148 of the 223 schools responded that 
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they had department wide training that was required. Of the 148 schools with department 
specific training, 120 indicated that their GTAs primarily served as the sole instructor of 
a P2C2 course. The breakdown of the 120 schools can be found in Table 1. 
 
Table 1. Overview of institutions involved in analysis 

Degree 
Awarded 

Undergraduate 
Population 

Number of 
Schools % of Schools % within 

Degree 

Masters <20,000 29 24% 83% 
>20,000 6 5% 17% 

PhD <20,000 55 46% 65% 
>20,000 30 25% 35% 

 
To understand the main components of the GTA PD programs currently being 

implemented, we started by looking at each school’s responses to five questions on the 
survey (as shown in Figure 2) related to the structure of the GTA PD. 

 
Figure 2. Survey questions used for analysis 

 
To prepare for the analysis, some of the response options were combined. For 

instance, we combined responses from schools that indicated their GTAs participate in 

1.	WHEN	do	GTAs	participate	in	the	department's	teaching	preparation	program?	Mark	all	that	apply.	
q Before	teaching	for	the	first	time	(e.g.,	pre-term	orientation)		
q During	their	first	term	of	teaching		
q During	their	second	term	of	teaching		
q At	some	point	later	(e.g.,	an	on-going	series	of	teaching	seminars,	activities	later	in	the	graduate	

program)		
q Other	(please	explain)	
	
2.	Which	of	the	following	best	describes	the	FORMAT	of	your	main	activity	in	the	GTA	teaching	
preparation	program?	Mark	all	that	apply.	
q Short	workshop	or	orientation	(1-4	hours)		
q One-day	workshop		
q Multi-day	workshop		
q Term-long	course	or	seminar		
q Occasional	seminars	or	workshops		
q Other	(please	explain)	
	
3.	Which	of	the	following	activities,	related	to	providing	feedback	on	GTA's	teaching,	does	your	
program	FORMALLY	include?	Mark	all	that	apply.	
q GTAs	practice	teaching	and	receive	feedback	on	their	teaching		
q GTAs	are	observed	by	an	experienced	instructor	while	teaching	in	the	classroom	and	receive	

feedback	on	their	teaching		
q New	GTAs	are	observed	by	experienced	GTAs	while	teaching	in	the	classroom	and	receive	

feedback	on	their	teaching		
q New	GTAs	teaching	in	the	classroom	are	videotaped	for	review	and	discussion	with	a	mentor	or	

experienced	instructor.		
q GTAs	are	paired	with	a	mentor	to	discuss	teaching		
q Other	(please	explain)	
	
4.	Which	of	the	following	activities,	related	to	evaluating	GTAs’	teaching,	does	your	program	
FORMALLY	include?	Mark	all	that	apply.	
q GTAs	are	observed	by	a	faculty	member	while	teaching	in	the	classroom		
q Student	evaluations	required	by	the	institution	or	department		
q Student	evaluations	gathered	specifically	for	the	purpose	of	evaluating	GTAs	(in	addition	to	or	

separate	from	those	required	by	the	institution	or	department)		
q Other	(please	explain)	
	
5.	Which	of	the	following	other	activities	does	your	program	FORMALLY	include?	Mark	all	that	apply.	
q GTAs	watch	or	read	cases	of	others	teaching	and	discuss	the	teaching		
q Experienced	GTAs	are	observed	by	new	GTAs	while	teaching	in	the	classroom		
q GTAs	develop	lesson	plans		
q GTAs	learn	classroom	assessment	methods		
q GTAs	learn	about	what	research	tells	us	about	how	students	learn	mathematics		
q Other	(please	explain)	
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training before teaching and during their first term of teaching with schools that indicated 
their GTAs participate before teaching and also at some point later. We felt these two 
groups could be combined because they both had a pre-teaching training and follow up 
training. Similar combinations were made to reduce the large number of variables. Our 
main goal in the analysis was to group schools together based off of their responses to the 
five questions, with essentially 25 binary yes or no questions.  

To help guide us with the grouping we used SPSS to perform a hierarchical cluster 
analysis. We used Ward’s method and, since the data was binary, a squared Euclidean 
distance and focused our analysis on the dendrogram. From this dendrogram we were 
given initial groupings of schools. One thing that became quickly apparent was that 
across the groups the type(s) of evaluation did not significantly vary. We concluded this 
would not be a deciding factor of our groupings, and thus question four (concerning 
evaluation) was dropped from our cluster analysis to help make more clear groupings. 

Running the analysis again resulted in more distinct groups that we felt we could 
describe based on the institutions’ responses to the remaining four questions. Nine 
distinct groups emerged from the cluster analysis and were illustrated by the dendrogram. 
After identifying these nine groups, we determined that the important factors were the 
amount of interaction (based off of question one and question two) and the amount of 
activities they were conducting (question five), and that the amount of feedback (question 
three) seemed to be a function of the level of interaction and the amount of activities 
involved in the training.  

Results 

The cluster analysis produced nine groups based off the amount/type of interactions 
and the amount/type of activities involved in the GTA PD programs. Table 4 has the 
breakdown of those groups based on the interaction level (low, medium, or high) and the 
amount of activities involved in the professional development (low, medium, or high).  

Table 2. Nine models of GTA PD delineated by interaction level and 
activities 
Model 
Name 

Interaction Level Activities Number of programs  

Model 1 Low Low (0-1) 9 
Model 2 Low Medium 

(2) 
13 

Model 3 Low Medium  
(3) 

11 

Model 4 Medium-Mixed Low (0-1) 15 
Model 5 Medium-One 

Semester 
Low (0-1) 27 

Model 6 Medium Low (1-2) 15 
Model 7 Medium High (4-5) 9 
Model 8 High Medium 

(2-3) 
11 

Model 9 High High (4-5) 10 
The programs that are categorized as Model 1 have GTAs participate in professional 

development before teaching their first course, with this training primarily consisting of a 
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short workshop or orientation (1-4 hours) or a one-day workshop. The GTAs do not 
participate in any of the activities listed on the survey during training. This is considered 
a model with a low level of interaction and a low level of activities. The type of feedback 
that the GTAs receive was split between practice teaching with feedback and being 
observed by an experienced instructor with feedback.  

The programs categorized as Model 2 primarily have their GTAs participate in 
professional development before teaching their first course with this training either 
lasting one day or multiple days. Schools using this model include two activities (on 
average) into the training with the creation of lesson plans and assessments being the 
most common activities. Model 2 is considered to have a low level of interaction, but a 
medium level of activities. The feedback for GTAs primarily came from practicing 
teaching and being observed by an experienced instructor and/or an assigned mentor.  

 The programs that are categorized as Model 3 have GTAs participate in training 
before teaching their first course and lasting either multiple days or continuing for one 
semester, thus having a low interaction level. Schools using this model incorporate an 
average of three activities (medium level of activities). The predominant activities are 
creation of lesson plans, creation of assessments, and the discussion of case studies. 
Model 3 incorporates several ways of providing feedback to GTAs, including feedback 
from practice teaching and being observed by an experienced instructor while teaching.  

The programs that are categorized as Model 4 have GTAs participate in training 
before the first course they teach with ongoing training during their first semester of 
teaching. Over half of the schools using this model also have training taking place during 
the GTAs second semester of teaching. The format of these trainings varied across 
schools ranging from only a few hours of PD and then follow up training that met as a 
semester course, occasional seminars/workshops, or a meeting schedule that went longer 
than one semester. Schools using this model are considered as having a medium level of 
interaction, but use a minimal number of activities as identified by the survey. All of the 
schools in this group gave feedback to their GTAs by having observations by an 
experienced instructor and/or an assigned mentor.  

 The programs that are categorized as Model 5 have GTAs participate in training 
before the first course they teach with the training continuing for one semester. This 
model has a medium level of interaction, with minimal activities conducted during the 
training. Feedback for the GTAs is primarily from practice teaching and receiving 
feedback from an experienced instructor and/or an assigned mentor.  

The programs that are categorized as Model 6 have a very similar structure of GTA 
training and style of feedback as those categorized as Model 5; however, the schools 
using Model 6 incorporated at least one activity (often two) into the training. The most 
prominent activities used are the creation of lesson plans and the creation of assessments.  

The programs categorized as Model 7 have GTAs participate in training before 
teaching their first course and during their first and second term of teaching which is 
categorized as a high level of interaction. During these trainings, GTAs are involved in a 
high number of activities (4-5) with the most common among schools categorized in this 
model being creating lesson plans, creating assessments, and reading research on how 
students learn mathematics. The amount of feedback given is also high with it coming in 
the form of feedback from practice teaching, teaching while being observed by an 
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experienced instructor, and one of the following: being videotaped while teaching, being 
observed by experienced GTAs, or having a mentor.  

The interaction level of GTA training of schools categorized as using Model 8 is 
similar to that of Model 7, but the level of activities incorporated is considered medium 
(2-3 activities). The major activities included are creating lesson plans, creating 
assessments, and discussing case studies or research on how students learn mathematics. 
The main method of feedback used in Model 8 is practice teaching and being observed by 
an experienced instructor, with the level of feedback classified as medium.  

The schools that are categorized as using Model 9 have GTAs participate in training 
before the first course they teach with most school having the training continue through 
their first semester of teaching. GTAs engaged with a high number of activities (4-5) with 
all school having GTAs create lesson plans, create assessments, discuss case studies, and 
observe experienced GTAs and/or discuss research about how students learn. 

In Table 4 we present a graphical depiction of the nine models, with the x-axis 
representing the amount of activities involved in the GTA PD program, and the y-axis the 
amount of interaction involved. We represent the amount of feedback involved in the PD 
by the size of the circle in this graphical depiction. This visualization helps to illuminate 
the apparent positive correlation between the amount of feedback and the amount of 
interaction and activities. In other words, GTA PD programs that have the GTAs 
participate more often in the professional development and where the PD involves more 
activities (represented by the programs in the upper rand hand corner) also provide GTAs 
more feedback on their teaching. This is worth noting as feedback is beneficial for 
improving teaching skills, and is thought to be correlated with more effective teaching 
(Shannon, Twale, & Moore, 1998). 

 
	
 

 

 

 

 

Figure 3. A graphical representation of the nine GTA PD models 

Figure 3 helps to identify clusters of models. Model 1 is the least robust, while 
models 7-9 are the most robust. Models 4-6 have more interaction but less activities 
involved than Model 1, while Models 2 and 3 have less interaction but more activities. 
Based on these nine models, it appears that the amount of activities involved may be 
more related to the amount of feedback provided to the GTAs compared to the amount of 
interaction (as evidenced by Model 3 compared to Model 4).  

Discussion 

In this study we set out to determine how graduate-degree granting mathematics 
departments are currently preparing their GTAs for teaching. We approached this 
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problem scientifically by developing a taxonomy of the characteristics of GTA PD 
programs. This taxonomy was informed both by Ellis’s (2015) initial work to this end, 
and by the structure that emerged through the cluster analysis illustrated through the 
dendrogram. After identifying the nine models of GTA PD that currently exist across the 
country in graduate-degree granting mathematics departments based on this taxonomy, 
we can begin to explore a metric for comparing GTA PD programs and to aid in the 
development and improvement of such programs.  In this discussion, we briefly explore 
the applicability of Ellis’s (2015) framework to the models identified through the cluster 
analysis and based on survey data.  

When Ellis (2015) initially began work on the taxonomy she created a framework to 
characterize GTA PD programs based on in-depth case studies of four programs. These 
case studies provided a large amount of information, but were time and resource 
intensive. We wondered if the information provided by the census survey would be 
sufficient to characterize our nine models using her framework. To do this, we identified 
relevant questions in the census survey and conducted basic descriptive statistics to 
determine the average responses for each cluster of schools per model. We attended to 
the structure of the program, the types of knowledge and pedagogies of practices 
emphasized in the structure, and the institutional and departmental context and culture, as 
described in Figure 1. We were happy to find that we were able to characterize each 
aspect through survey questions, though there is inherent bias in the survey based on the 
subjectivity of who answered the survey, whereas with case study data collection it is 
possible to triangulate findings. Due to space limitations, we characterize only Model 8 in 
this representation, as shown in Figure 4.  

 

 
Figure 4. Characterization of Model 8 using Ellis’s (2015) framework 

 
In the presentation we will explain this characterization in depth, including the 

shading for the types of knowledge and practices, and compare this model to another 
using the oval representation. We will also explore what the taxonomy tells us about a 
metric for evaluating and comparing programs, and what the direct implications of this 
work are for mathematics departments seeking to improve their GTA PD program.  
  

20th Annual Conference on Research in Undergraduate Mathematics Education 50820th Annual Conference on Research in Undergraduate Mathematics Education 508



References 

Alvine, A., Judson, T.W., Schein, M., & Yoshida, T., (2007). What graduate students 
(and the rest of us) can learn from lesson study. College Teaching, 55(3), 109-
113. 

Ball, D. L., Thames, M., & Phelps, G. (2008). Content knowledge for teaching: What 
makes it special? Journal of Teacher Education, 59(5), 389-407. doi: 
10.1177/0022487108324554 

Barry, D., & Dotger, S. (2011). Enhancing content knowledge in graduate teaching 
assistants through lesson study. Paper presented to the National Study of 
Education in Undergraduate Science, Research Based Undergraduate Science 
Teaching: Investigating Reform in Classrooms Conference, Tuscaloosa, Alabama. 

Belnap, J. K. (2005). Putting TAs into context: Understanding the graduate mathematics 
teaching assistant. Unpublished doctoral dissertation, University of Arizona. 

Ellis, J. (2015). Professional Development of Graduate Students Involved in the Teaching 
of Calculus I. D. Bressoud, V. Mesa, and C. Rasmussen (Eds.), Insights and 
recommendations from the MAA national study of college calculus. MAA Notes 
(pp 121-128). Washington, DC: Mathematical Association of America. 

Ellis, J., Deshler, J., & Speer, N. (2016) How do mathematics departments currently 
evaluate their graduate student professional development programs? Proceedings 
of the 40th Conference of the International Group for the Psychology of 
Mathematics Education, Szeged, Hungary. 

Elmore, R. F. (2002). Bridging the gap between standards and achievement: The 
imperative for professional development in education. Washington, DC: Albert 
Shanker Institute. 

Garet, M. S., Porter, A. C., Desimone, L., Birman, B. F., Yoon, K. S. (2001). What 
makes professional development effective? Results from a national sample of 
teachers. American Educational Research Journal, 38, 915–945. 

Harris, G, Forman, J, & Surles, J. (2009). The professional development of graduate 
mathematics teaching assistants. International Journal of Mathematical 
Education in Science and Technology, Vol. 40, No. 1, 15 January 2009, 157-172. 

Hawley, W. D., & Valli, L. (1999). The essentials of effective professional development: 
A new consensus. In L. Darling- Hammond & G. Sykes (Eds.), Teaching as the 
learning profession: Handbook of policy and practice (pp. 127–150). San 
Francisco: Jossey-Bass. 

Kilpatrick, J., Swafford, J., & Findell, B. [Eds.] (2001). Adding it up: Helping children 
learn mathematics. Washington, DC: National Academy Press. 

Loucks-Horsley, S., Stiles, K. E., Mundry, S., Love, N., & Hewson, P. W. (2010). 
Designing professional development for teachers of science and mathematics. 
Third Edition. Thousand Oaks, CA: Corwin Press. 

Luft, J., Kurdziel, J.P., Roehig, G., & Turner, J. (2004). Growing a garden without water: 
Graduate teaching assistants in introductory science courses at a doctoral/research 
institution. Journal of Research in Science Teaching, 41, 211-233. DOI 
10.1002/tea.20004 

Shannon, D. M., Twale, D. J., & Moore, M. S. (1998). TA teaching effectiveness: The 
impact of training and teaching experience. Journal of Higher Education, 440-
466. 

20th Annual Conference on Research in Undergraduate Mathematics Education 50920th Annual Conference on Research in Undergraduate Mathematics Education 509



Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. 
Educational Researcher, 15(4), 4–14. 

Wayne, A. J., Yoon, K. S., Zhu, P., Cronen, S., & Garet, M. S. (2008). Experimenting 
with teacher professional development: Motives and methods. Educational 
researcher, 37(8), 469-479. 

 

20th Annual Conference on Research in Undergraduate Mathematics Education 51020th Annual Conference on Research in Undergraduate Mathematics Education 510



 

Difficult Dialogs About Degenerate Cases: A Proof Script Study 
 

Stacy Brown 
California State Polytechnic University, Pomona 

 
Abstract: The purpose of the reported study is to explore students’ reasoning about the “within 
argument contradictions” that arise from logically degenerate cases by analyzing the 
problematics noticed in students’ proof scripts. The work proposes a framework for students’ 
noticed proof problematics and explores the viability of the proof script methodology as a 
mechanism for identifying difficulties experienced by students but unseen by experts. In the case 
of logically degenerate cases, findings indicate students held conceptions of proofs by cases that 
inhibited students’ reasoning about the encountered contradictions. 
 
Keywords: Proof by contradiction; proof scripts; proof comprehension; proof by cases 

 
Research on students’ understanding and production of proofs by contradiction indicates that 

this form of proof is exceptionally difficult for students (Robert, & Schwarzenberger, 1991). In a 
reflective account of multiple teaching experiments, Leron (1985) proposed students’ difficulties 
with proof by contradiction are rooted in a preference for constructive as opposed to destructive 
arguments, in part because the latter require learners to reason against that which is “real” to 
them. Harel and Sowder (1998) reported on multiple teaching experiments with undergraduates 
and observed that students don’t use proof by counterexample and are not convinced by proof by 
contradiction. Like Leron, they argued students’ difficulties are tied to ways of thinking in which 
ascertainment is reliant on constructive approaches; that is, students’ reasoning with a 
constructive proof scheme. In contrast, in their study of young children playing the game Set, 
Reid and Dobbin (1998) reported observations of children spontaneously reasoning with 
informal contradiction arguments when convincing others of the validity of their solutions. And, 
Maher and Martino (1996) reported similar findings from their longitudinal studies of children’s 
combinatorial reasoning. Hence, studies on students’ views of indirect proof have offered 
disparate views. In work that bridges these conflicting reports, Antonini and Mariotti (2008) 
analyzed instances of students producing informal contradiction arguments but experiencing 
difficulties linking those arguments to formal proofs by contradiction. Thus, the conflicting 
reports may be related to the level of formalism expected. 

Attending to the specific demands of indirect proofs, researchers have noted particular 
sources of difficulty. Taking a more syntactical approach, Wu, Lin, and Lee (2003) found that 
students were rather unsuccessful negating quantified statements. In relation to inferential 
practices, Antonini and Mariotti’s (2006) analyses of interview protocols illustrated how, when 
students assume a true statement is false, they may experience difficulties understanding the 
ramifications of this assumption for they assume that other true statements may be false in this 
new “absurd world.” And, Antonini and Mariotti (2008) documented how students’ difficulties 
with indirect proofs (proofs by contradiction and proof by contraposition) can be tied to students’ 
difficulties accepting the logical “theorems” that allow for indirect proofs; e.g., the tautologies  
(P ⇒ Q) ≡ (~Q ⇒ ~P) and (P ⇒ Q) ≡ ~ (P∧~ Q). Taken together these studies show that 
students may encounter a myriad of difficulties that are specific to proofs by contradiction.  

One issue with the existing research, however, is that much of the research on students’ 
understanding and production of proofs by contradiction has been generalistic in nature rather 
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than focused. By this I mean that while researchers have argued that students dislike and are not 
convinced by proofs by contradiction, there is little empirical evidence related to the specific 
features students attend to which foster students’ reactions and their subsequent lack of 
conviction or dislike of proof by contradiction, with the exception of the work of Antonini and 
Mariotti (2006, 2008). Indeed, their work has demonstrated connections between: (1) students’ 
difficulties at the level of the logical theory and their lack of acceptance of proofs by 
contraposition; and (2) students’ lack of conviction and students’ confusion regarding which 
mathematical statements hold true and can be reasoned with when assuming a true statement is 
false. Yet, despite this progress, further research is needed on students’ understanding and 
production of proofs by contradiction. There are two reasons for this claim. First, outside of 
research in geometric contexts, existing research has primarily focused either on basic 
conditional statements, “If n2 is even then n is even” (Antonini & Mariotti, 2008) or non-
compound statements, “there exists infinitely many primes” (Leron, 1985) and “√2 is irrational” 
(Tall, 1979). Yet, contexts that recurrently call for reasoning with contradictions have not been 
studied; such as, proofs of existence, nonexistence, disjointness, or those involving logically 
degenerate cases. Second, research on proof by contradiction has primarily involved interview 
protocols and assessments in which students’ attention to and reasoning about proofs by 
contradiction are elicited by a knowledgeable other, whose questions provide a focusing effect. 
While both approaches are commonly taken by researchers and are of value, there is reason to 
question the types of difficulties students “see” when they are not engaged in communications 
that direct students’ attention (e.g., structured interviews or comprehension tests). Stated another 
way, little is known about students’ problematics; that is, “what students themselves see as issues 
of difficulty” (Koichu & Zazkis, 2013, p. 364). Indeed, as Koichu and Zazkis argue:  
 

As a rule, students’ difficulties with constructing and understanding proofs are exposed 
by means of documenting and interpreting their (often poor) performance when coping 
with various proving tasks. This research approach implies that students’ understanding 
of proofs and their difficulties are mainly examined from an expert point of view (p.364).  

 
To move away from methodologies that necessarily employ preselected foci and assume the 
difficulties determined a priori by experts will coincide with those experienced by students, 
researchers have begun to build on the “lesson play” methodology developed by Zazkis, 
Liljedahl, and Sinclair (Zazkis, Liljedahl, & Sinclair, 2009; Zazkis, Sinclair, & Liljedahl, 2009; 
Zazkis, Sinclair, & Liljedahl, 2013) and the dialog methodologies of Gholamazad (2006, 2007) 
to develop techniques for examining students’ proof “problematics” through students’ proof 
scripts (Koichu & Zazkis, 2013; Zazkis & Zazkis; 2014). At the most basic level, the proof script 
methodology involves asking participants to write a dialog between characters in which the two 
characters discuss points of difficulty and resolve problematic issues. Building on Sfard’s (2008) 
theoretical work, which views cognition as a form of interpersonal communication, researchers 
employing these methodologies have argued proof scripts provide an avenue by which 
participants may make “personal thinking salient.”  

The Study 
The purpose of the reported study was to explore students’ reasoning when confronted with 

within argument contradictions that arise from logically degenerate cases. A logically degenerate 
case is a case in which the case’s assumption lead to a contradiction with the constraints of the 
mathematical statement or a definition, axiom, or property of the reference theory.i Such cases 
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are not only common when proving basic properties of the real numbers (e.g., in proofs that use 
the Law of Trichotomy) but also occur in a variety of divisibility and topology proofs. Moreover, 
it was observed during prior teaching experiments that there are theorems for which one may 
produce a simple proof by contraposition or a direct proof involving logically degenerate cases. 
Among those seeking to avoid the Law of Contraposition, difficulties occurred interpreting the 
consequences of the contradictions encountered, when the overall structure (and the student’s 
intention) was that of a direct proof. Building on prior work, the reported study aimed to 
document students’ ways of reasoning about contradictions arising from logically degenerate 
cases by examining the problematics evident in students’ proof scripts.   
Data Collection 

This research is part of a larger study on students’ reasoning about and production of indirect 
proofs. For the purposes of this paper, we report on the proof scripts produced by 20 students 
randomly selected from two, inquiry-based “Introduction to Proof” courses at the end of the 
academic term. Students enrolled in these courses were either mathematics majors or minors, at a 
designated Hispanic-serving institution, where the majority are first generation college students 
and are eligible for need-based financial assistance. Collected proof scripts were blinded of 
students’ names and scanned into a database, prior to the instructor’s markings.  

The scripting task instrument included instructions for the dialog and a line-numbered proof 
of the theorem “For every integer m, if 3∤ (m2 – 1), then 3|m”. The scripting task (see Figure 1) was 
assigned as homework, so students had access to their texts, course notes and other resources.  

Instructions: Create a 1-2 page dialogue that introduces and explains the theorem and its proof. Highlight the problematic points in the proof with 
questions and answers. In your submission:  
• The dialogue should occur between two students, you and a mathematics student named Gamma, which you can denote with either Γ or γ.   
• Start by reading the proof and identifying what you believe are the “problematic points” for a learner when attempting to understand the 

theorem/statement or its proof.  List these “problematic points” in a bulleted list.  
• Write a dialogue between you and Gamma in which you explain the theorem and the proof to Gamma, paying special attention to the 

problematic points you identified and listed in your bulleted list. In the dialogue you should both pose questions to Gamma and answer any 
questions Gamma might ask. (THIS IS THE MAIN PART OF THE ASSIGNMENT)   

• You may add comments at the end or within the dialogue using [ ], explaining your questions or answers, if these are not obvious to the 
reader.  

 
Theorem: For every integer m, if 3∤ (m2 – 1), then 3|m 
1) Proof:  Assume 3∤ (m2 – 1).  
2)   Since (m2 – 1) = (m + 1)(m – 1), we can say 3∤ (m + 1)(m – 1). 
3)   By a previous theorem we know,  
4)    if 3∤ (m + 1)(m – 1) then 3∤ (m + 1) and 3∤ (m – 1).  
5)    Since 3∤ (m + 1), it follows from the Division Algorithm, that  
6)    (m + 1) = 3k + 1 or (m + 1) = 3k + 2 for some integer k. 
7)     Case 1.  Let (m + 1) = 3k + 1 
8)      Then  m + 1 – 1 = 3k + 1 – 1 
9)       m = 3k 
10)      Since k is an integer, 3|m.  
11)      This is our desired result.     
12)     Case 2.  Let (m + 1) = 3k + 2 
13)      Then  m + 1 – 1  = 3k + 2 – 1 
14)       m = 3k + 1 
15)        m – 1 = 3k + 1 – 1  
16)        m – 1 = 3k 
17)       Since k is an integer, 3|(m – 1),   
18)      This is a contradiction. 
19)    It follows from Case 1 and Case 2, that 3|m. ☐ 

 

Figure 1. Proof Script Assignment ii 
This particular proof was chosen for two reasons. First, one can either prove the statement 

directly, with the possibility of logically degenerate casesiii (as shown above) or one can write an 
indirect proof using use the Law of Contraposition. Since researchers have argued that students’ 
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prefer direct proofs, the selected proof afforded an opportunity to explore students’ reasoning 
about the outcomes of their potential proving proclivities. Second, as mentioned above, the proof 
was produced by a group of students during a previous teaching experiment. Thus, it was an 
“authentic” student proof, by which I mean that it arose from students’ mathematical activities, 
as opposed to an expert’s. In that experiment, the authoring students asked to share the proof 
with the class, for they were uncertain of the proof’s validity. Thus, there was reason to posit not 
only that students’ might produce such proofs but that they might find them problematic. Indeed, 
during the prior teaching experiment the proof fostered an extensive debate about how to 
interpret the contradiction encountered. Thus, the proof was viewed as providing a fruitful venue 
for exploring students’ reasoning about contradictions arising from logically degenerate cases. 
Analytic Methods 
 Taking the perspective that asking students to produce dialogs around observed problematics 
is akin to asking students to share and elaborate on the difficulties noticed, the analytic methods 
employed in the study were heavily influenced by the construct of noticing (Mason, 2002; 
Jacobs, Lamb, Philipp, & Schappelle, 2011; VanEs, 2011). Building on Mason’s work (Mason, 
2002; 2011) it was hypothesized that noticing requires “a movement or shift of attention.” 
Drawing on the work of Jacobs, Lamb, Philipp, and Schappelle (2011), it was posited that 
attending to noteworthy aspects and potential complexities is a sign of expertise. Thus, one can 
interpret “difficulties attending to difficulties” as indicative of one’s need to grow expertise 
rather than as indicative of expertise. Drawing on the work of VanEs (2011), it was argued that 
noticing of complex phenomena is marked not only by what is noticed but how one notices; in 
particular, the extent to which one can accurately describe, focus on, or extend an observation is 
indicative of one’s emerging level of expertise.  
 To analyze students’ proof scripts, VanEs’s (2011) “framework for learning to notice,” which 
was developed to characterize teachers’ noticing of classroom lessons, was adapted to examine 
two dimensions of students’ noticing: what proof problematics students noticed and how students 
noticed those proof problematics. Specifically, three levels, which are defined in Table 1, were 
used to characterize the foci of students’ dialogs and the depth of engagement with those foci.  
 

FRAMEWORK FOR STUDENTS’ NOTICED PROOF PROBLEMATICS 
Dimension Level 1 Level 2  Level 3 
 
1. What students noticed 
(i.e., students’ identified 
problematics and other 
dialogical foci). 

(a) Identifying (perceived) 
rudimentary errors, wording 
refinements, instances in which the 
naming or stating of definitions or 
theorems could add clarity, or (b) 
failing to attend to the proof by 
dismissing the proof in its entirety. 

Addressing level 1 issues and 
potential points of confusion that are 
in need of clarification due to the 
application of content, theorems, or 
linkages between consecutive 
statements. 

 

Addressing level 2 issues and 
identifying potential points of 
confusion across sets of 
statements or related to potential 
consequences of a sequence of 
statements or the logical 
architecture of a proof. 

 
2. How students noticed 
(i.e, students’ ways of 
attending to problematics 
and other dialogical foci).  
 

Remarks are limited to correcting 
rudimentary errors, reiterations of 
lines of the proof in a “lecture-
oriented” dialog or a single speaker 
monolog, or to assertions. (Note: 
Corrections may contain errors.) 

Engaging with problematics, beyond 
the rudimentary level, to explore 
potential rationales or implications 
but in a perfunctory manner. (Note: 
Rationales or implications may 
include errors.) 

Attending both holistically and 
locally to problematics so as to 
link the content and structure of 
the proof. (Note: Linkages may 
include errors.) 
 

Table 1. The Framework for Students’ Noticed Proof Problematics 
 

What students’ noticed (Dimension 1) was determined by comparing the student’s bulleted lists 
to the students’ written dialog, so as to produce a list of attended to proof problematics. How 
students’ noticed (Dimension 2) was determined through analyses of the rationales, claims, and 
backing (if any) the student explicitly provided when attending to proof problematics.  

Prior to data collection, it was anticipated that students would: (1) remark that a variable m is 
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introduced but not defined; and, (2) experience difficulties determining the appropriate number 
of cases, i.e., incorrectly argue additional cases arise from the statement 3∤(m – 1). In relation to 
the logically degenerate case, it was anticipated that students’ might view the contradiction in 
Case 2 as implying the entire proof was a proof by contradiction and, therefore, that the original 
theorem was false. No other difficulties were anticipated prior to data collection.  
Results 
 The coding of the students’ noticed proof problematics indicates the majority of novices 
experienced a great deal of difficulty interpreting and attending to the given proof, for nearly half 
of the students (9 out of 20) produced Level 1 proof scripts; that is, proof scripts focused on 
rudimentary errors or wording refinements, without attention to conceptual issues, linkages 
across statements, or the logical architecture of the proof. With regard to the given proof, typical 
characteristics of the Level 1 scripts included: (1) an extended discussion on the need to define 
the variable m; (2) incorrectly claiming cases were missing for the statement 3∤(m – 1); and, (3) a 
verbatim reiterations of lines 12 – 18 coupled with a lack of attention to the role/ramifications of 
the logically degenerate case, which I will refer to as the within-case contradiction. The 
following written dialog excerpt illustrates a Level 1 response with characteristic (3):iv 
 

Example 1  
Student 1: (written dialog reiterates lines 13 – 18 verbatim)   
Gamma: Damn, we got it wrong. 
Student 1: No we didn’t. This was our desired result, so in the end we got it right. 
Gamma: Cool. 
Student 1: So once we proved the cases, we can write this ‘Since both cases had the desired  

results, we can say that 3|m, therefore the statement is true. 
 
Level 2 dialogs were produced by 8 of the 20 students. These responses differed from the Level 1 
dialogs in that beyond addressing rudimentary issues, the students’ dialog clarified content and 
explained the application of theorems and/or linkages between consecutive statements. With 
regard to the given proof, common characteristics of Level 2 scripts included: (1) specifically 
stating and clarifying the application of the “previously proved theorem;” (2) explaining how to 
apply the division algorithm and/or the meaning of “a|b”; and, (3) addressing the within-case 
contradiction in a perfunctory manner either by merely identifying the statement that was 
contradicted or by suggesting alternative proofs. Indeed, several students’ remarks were limited 
to asking Gamma to find the contradicted statement; namely, 3∤(m – 1). And, many either 
informed Gamma that the within-case contradiction implied the entire proof was a proof by 
contradiction (see Example 2) or told Gamma that “a stronger argument” would have been a 
proof by contraposition, with several providing the proof by contraposition.v  

 
Example 2 
Gamma: In Case 1, the statement is manipulated to show that m = 3k, then by definition 27 
  we write 3|m, which is the desired result. 
Student 2: We can see that the right idea is being established. In Case 2, the same process is  

used but results in a contradiction. 
Gamma: Case 1 gives us the desired result but case 2 does not. 
Student 2: Therefore, since Case 1 results 3|m but Case 2 results 3|m-1, the original statement  

is false. [- End of dialog -] 
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Level 3 dialogs were produced by 3 of the 20 students. These responses differed from the Level 2 
dialogs in that beyond addressing rudimentary issues and clarifying definitions or theorems, 
Level 3 students attended to the conjuctive structure (i.e., the logical “and”) of the statement 
“3∤(m + 1) and 3∤(m – 1)” and attempted to address (either successfully or unsuccessfully) 
questions concerning the meaning of the within-case contradiction. Regarding the unsuccessful 
attempts, these students (n = 2) argued that the Division Algorithm resulted in “or cases” and, 
consequently, one case could be “false” or omitted. Example 3 illustrates responses of this form. 
Moreover, it should be noted that brief remarks indicative of similar reasoning were present in 
some Level 2 dialogs (see Example 4), but these dialogs did not meet the criteria of the Level 3 
responses.  

 
Example 3 
Gamma: Case 2 has proven that 3|(m – 1) which is the contradiction of 3|m. Then does  

that mean the theorem is false?vi 
Student 3: From line 6, it is stated that the remainders are 1 or 2, that means only one case is  

needed to be true for the 3|m to be true. Moreover, Case 2 is not quite necessarily needed 
when Case 1 is already proven to be true to make the theory true. [- End of dialog -] 

 
 Example 4 
 Gamma: … Case 2 ends in a contradiction, does that mean that the whole proof is wrong? 
 Student 4: Not at all! We were looking for only 1 case to be true, in terms of the value of r.  

We obtained our desired result in Case 1 already.  
 

Regarding the successful attempt, the student argued that the contradiction arose from an earlier 
statement in the proof “3∤(m – 1)” and that m + 1 = 3k + 2 could not occur under the theorem’s 
given constraints. In so doing, the student moved beyond the Division Algorithm’s disjunctive 
structure to make connections across statements and (correctly) conclude the case was logically 
degenerate (i.e., can’t happen), under the conditions 3∤(m + 1) and 3∤(m – 1).  
Discussion 

The purpose of the reported study was to explore students’ reasoning when confronted with 
within argument contradictions that arise from logically degenerate cases by examining the 
proof problematics students identified and attended to in their scripts. The aim of employing 
proof scripts, rather than clinical interviews or comprehension assessments, was to create a 
context within which students could make their “personal thinking salient” and articulate the 
problematics visible to students but potentially unseen by experts. Certainly, the findings suggest 
the methodology afforded these opportunities. Neither the students’ beliefs related to “or cases” 
and nor the students’ general lack of attention to the within-case contradiction were anticipated.  

In regard to students’ efforts to account for the contradiction by arguing it was a consequence 
of the disjunctive result of the Division Algorithm, it appears that many of the students 
incorrectly reasoned [(A∨B) ⇒ C] ≡ [(A⇒C)∨(B⇒C)] rather than reasoning [(A∨B) ⇒ C] ≡ 
[(A⇒C)∧(B⇒C)]. In other words, the students appear to have extended the logical “or” linking 
the statements derived from the Division algorithm (m + 1 = 3k + 1 or m + 1 = 3k + 2) to the 
(implicit) connective linking the cases. Consequently, the students viewed the cases as “or-
cases.” This response may explain why so few students attempted to relate the contradiction to 
the concomitant constraint 3∤(m – 1). While difficulties making connections broadly across 
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statements within a proof might not be unexpected when studying novices, and have been 
discussed by others (Selden & Selden, 2003), the students’ views of proofs by cases (if 
prevalent) are unexpected. Moreover, they could suggest a serious misconception. Consideration 
of the ways such reasoning might manifest itself leads one to imagine a similar scenario in which 
when asked to prove, “if n is an integer, then 2|(n2 – n),” these students might (incorrectly) argue: 

 
By the Division Algorithm, n = 2k or n = 2k + 1. If n = 2k, then  
(n2 – n) = 4k2 – 2k = 2(2k2 – k). Since (2k2 – k) is integer, 2|(n2 – n). The result follows.  
 

And, the instructor might note “you forgot the case n = 2k + 1” thinking the student was being 
absentminded, when in fact the student was acting on a conception of or-statements in proofs by 
cases. Indeed, such difficulties would be difficult to recognize from the experts’ point of view.  

In regard to the students’ general lack of attention to the within-case contradiction, it is 
surprising that nearly half of the students produced Level 1 dialogs in which the student avoided 
engaging with the contradiction. How might such low level responses be accounted for? One 
reason may be that the responses are reflective of the students’ classroom experiences and the 
students are accustomed to problematics arising that are either ignored or are only given cursory 
explanations by their instructors. In such circumstances, the student may simply be attempting to 
follow the modus operandi. It is also possible that, despite the fact that the dialogs were graded 
(or perhaps due to their being graded), students avoided issues they felt inadequately prepared to 
address even though, in the students’ eyes, they were problematics. In such situations, a lack of 
attention would indicate a higher degree of confusion rather than understanding. Such an account 
of the dominance of Level 1 responses is reasonable, for as researchers (Mason, 2002; Jacobs, 
Lamb, Philipp, & Schappelle, 2011; VanEs, 2011; Sherin, 2001) studying noticing have argued, 
noticing of complexities requires expertise – a point cleverly illustrated by Sherin (p. 75):  

 
Imagine that you are standing at the site of an archeological dig. On your left, you see a large 
rock with a dent in the middle. Next to it you see a pile of smaller stones. Aside from this, all 
you see is sand. An archeologist soon appears at the site. What looked like just a rock to you, 
he recognizes as the base of a column; the small stones, a set of architectural fragments. And 
where you saw only sand, he begins to visualize the structure that stood here years before. 

Thus, the prevalence of Level 1 proof scripts might speak to the students’ need to further develop 
their expertise. Indeed, the predominance of Level 1 scripts coupled with the prevalence of 
students’ incorrect conclusion related to the Division Algorithm and students’ belief that 
additional cases were required for 3∤(m – 1), lead to significant concerns about the student 
reasoning that occurs when such proofs are presented in lectures and the opportunities required 
(but likely not afforded) for students to develop appropriate interpretations. Indeed, recent work 
by Lew, Fukawa-Connelly, Mejia-Ramos, and Weber (2016) on advanced mathematics lectures 
suggests that direct approaches (e.g., stopping to remark on such issues) might not be effective. 
And, as noted by Hemmi (2008), “Teachers’ intentions of focusing on certain things in their 
presentation do not necessarily imply that these aspects become visible to students” (p. 424). 
Thus, future research is needed on how, within the various didactical constraints, students’ proof 
problematics might not only be elicited but also productively addressed in classrooms, which 
seek to develop students’ understanding of proof in advanced mathematics. 
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i In mathematics the phrase degenerate case is used to refer to a case that is qualitatively 
different from and often simpler than the other cases, for it belongs to a simpler class of objects 
or has some other features that distinguishes it from the class of objects. In line with this 
definition, the phrase logically degenerate case is being used to refer to cases that result in 
contradictions and are, therefore, qualitatively distinct from those cases by which one produces a 
desired result. 
ii The previously proved theorem was “For any integers x and y, if 3∤xy then 3∤x and 3∤y. 
iii I have used the phrase “with the possibility” because one may avoid degenerate cases by 
arguing after line 4 that the integers m – 1, m, and  
m + 1 are consecutive integers and then prove that for any triplet of consecutive integers one 
member of the triplet must be divisible by three.  
iv Due to space limitations, the discussion of students’ dialogs will be focused on the primary 
research question of how students reasoned about the within-case contradiction. 
v Examples of this type of response have been excluded due to their length.  
vi Earlier in the dialog the student had argued that 3 could not divide two consecutive integers. 
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Stages of development for the concept of inverse in abstract algebra 
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In this study, we conducted a teaching experiment with two students to investigate the development 
of a generalized concept of inverse in abstract algebra. In particular, we document the stages through 
which the students’ reasoning progressed, initiating with an understanding of the additive inverse of 
an element as the result of a procedure applied to that element, and concluding with a generalized 
understanding of inverse that was broad enough to identify instances of inverses in various and 
unfamiliar algebraic structures. Of critical importance was the development of and coordination with 
a corresponding concept of identity. 
 
Key words:  student thinking, abstract algebra, Realistic Mathematics Education, teaching 
experiment 

 
Introduction 

 
The concept of inverse is prevalent in abstract algebra and is used to define such foundational 

algebraic structures as ring and field.  Inverses are a key concept in secondary algebra as well and 
have been stated as a direct connection that pre-service teachers should make between their advanced 
coursework in abstract algebra and the algebra they will be teaching (CBMS, 2001).  Accordingly, as 
abstract algebra is intended to be “the place where students might extract common features from the 
many mathematical systems that they have used in previous mathematics courses” (Findell, 2001, p. 
12), the inverse concept – like the other properties that characterize rings and fields – is certainly 
familiar to abstract algebra students from previous courses.  What makes inverse unique, perhaps, is 
the wide variation it exhibits across different contexts.  Consider, for instance, the following 
examples of inverse from the undergraduate curriculum that reappear in abstract algebra:  

� Inverse of a complex number: if 𝑎 + 𝑏𝑖 is nonzero, then (𝑎 + 𝑏𝑖)−1 = 𝑎
𝑎2+𝑏2 − 𝑏

𝑎2+𝑏2 𝑖. 
� Inverse of an integer modulo 𝑛: if gcd(𝑎, 𝑛) = 1, then 𝑎𝜙(𝑛)−1 ≡ 𝑎−1 (mod 𝑛). 
� Inverse of a matrix: if 𝐴 = [𝑎 𝑏

𝑐 𝑑] and 𝑎𝑑 − 𝑏𝑐 ≠ 0, then 𝐴−1 = 1
𝑎𝑑−𝑏𝑐

[ 𝑑 −𝑏
−𝑐 𝑎 ]. 

These few examples are widespread and varied, each largely dependent on its mathematical context.  
Without coordinating the binary operation with these examples of inverse and their respective 
identities, there are few surface-level indications that these are all direct implementations of the same 
overarching concept.  The key notions of the generalized inverse concept – that the inverse of a given 
element is the element that, when combined with the given element, yields the identity – might be 
obscured within specific examples of inverses.  Though students would likely recognize such 
examples of inverse within each context, research suggests that it might be challenging to recognize 
commonalities amongst these examples that reflect a generalized inverse concept.  In particular, 
familiarity with algebraic properties prior to abstract algebra does not guarantee proficiency with 
these properties in abstract algebra (e.g. Larsen, 2010).  Additionally, when working with examples, 
students attempt to overgeneralize in order to reduce the level of abstraction (e.g. Hazzan, 1999) and 
struggle to focus their attention on productive facets of the example structure (e.g. Simpson & 
Stehlikova, 2006).  Thus, it is unclear if and how introductory abstract algebra students might 
identify these examples as instances of a general notion of inverse.  This observation motivated our 
central research question:  how might students in abstract algebra come to understand a generalized 
notion of inverse in a way that enables them to recognize instantiations of inverse within various 
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structures?  We propose that it is the coordination of the inverse concept with a corresponding 
concept of the identity that is critical to using and recognizing inverses in abstract algebra.  
Analyzing results from a ring theory teaching experiment, we document three stages of development 
for the inverse concept through which two undergraduate students progressed as we guided their 
reinvention of the concept of ring.   
 

Literature 
 

Much of the research pertaining to inverses provides characterizations of students’ understanding 
of particular kinds of inverses, such as the reciprocal of a rational number (e.g. Tirosh, 2000), inverse 
functions (e.g. Even, 1992), and inverse matrices (e.g. Wawro, 2014).  We focus on those papers 
describing student activity with inverse (1) across multiple contexts and (2) in abstract algebra. 
 
Use of the Superscript −𝟏 Symbol Across Multiple Contexts   

Consistent with our observation above that the varied manifestations and contexts in which 
inverses arise might prevent students from noticing that each is an instance of the same underlying 
concept, Zazkis and Kontorovich (2016) pointed out a discrepancy related to potential interpretations 
of  the superscript −1 symbol in a study of students’ lesson scripts.  For example, 5−1 can be 
interpreted as the reciprocal of the rational number 5, whereas 𝑓−1 refers to the inverse of the 
function 𝑓, a concept that itself admits various interpretations.  For example, students might interpret 
𝑓−1 algebraically (switching 𝑥 and 𝑦 and solving for 𝑦), graphically  (reflecting the graph of 𝑓 about 
the line 𝑦 = 𝑥), or as the result of reversing or undoing the function 𝑓 (Carlson & Oehrtman, 2005; 
Even, 1992).  In accordance with these contextually varied interpretations, many students (15 of 22) 
described the superscript −1 as “the same symbol applied to different, unrelated ideas” (p. 103).  All 
other students viewed the superscript as having “different but related” (p. 107) meanings, each 
depending on the context in which it is used.  One of these students wrote that “we have an example 
of using the same symbol or same word in different contexts. Both are inverse … a multiplication 
inverse means 1 over, and an inverse function is when you switch x any y.”  There are no substantial 
commonalities amongst her descriptions; her use of the word “inverse” seems to be the only link 
between “1 over” and “switch x and y.” Notably absent from any of the above interpretations of 
inverse is any mention of an identity element.   

While Zazkis and Kontorovich noted the extent to which the students attempted to account for 
the apparent variation in meaning across different instances of inverse, their study left for future 
research the question of how students’ might develop a generalized, coordinated understanding of the 
concepts of inverse and identity that enables them recognize instantiations of these concepts within 
various structures.   
 
Students’ Use and Understanding of Inverse in Abstract Algebra 

Even though inverses are a familiar concept from school algebra, there is reason to believe that 
employing the inverse axiom in abstract algebra can be challenging for students.  Research on 
student thinking about inverses delineates two lines of thinking that might explain these challenges.  
First, students might not carefully attend to closure and the binary operation(s) of an algebraic 
structure (Nardi, 2001).  This could lead to determining inverse pairs by overextending the familiar 
operations of the real numbers (Hazzan, 1999) or identifying a potential inverse for an element but 
not verifying that the inverse is in the given set (Brown et al, 1997, p. 207).  Second, students might 
not carefully attend to the algebraic properties on which their reasoning hinges.  Indeed, there is 
evidence that students fail to verify or directly acknowledge inverses (Brown et al., 1997), even if 
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they are implicitly invoking inverses by cancelling adjacent inverse pairs in a calculation (Larsen, 
2013).   

 
Theoretical Perspective 

 
We adopted the perspective of Realistic Mathematics Education (RME) to guide our inquiry into 

how students might develop a generalized notion of inverse because of its view that mathematics can 
and should “link up with the informal situated knowledge of the students” (Gravemeijer, 1998, p. 
279) in order to “enable them to develop more sophisticated, abstract, formal knowledge” (ibid).  We 
leveraged the RME principle of guided reinvention, the goal of which is to design tasks that 
encourage students to “formalize their informal understandings and intuitions” (Gravemeijer, Cobb, 
Bowers, & Whitenack, 2000) en route to developing formal mathematical concepts themselves.  The 
reinvention principle shaped both the overarching objective of the teaching experiment (to 
investigate how students might be guided to reinvent the concepts of ring, integral domain, and field) 
and also our specific objectives in this paper (to investigate how students might develop generalized, 
coordinated concepts of identity and inverse from their own intuitive understandings).   

We propose that a robust understanding of the inverse concept necessarily involves coordination 
with the relevant binary operation and a generalized concept of identity. This is based upon 
suggestions in the literature (e.g. Brown et al., 1997) and also the hypothesis that such a coordination 
elucidates the common inverse structure across different binary operations and algebraic structures 
(as opposed to comparing the formulas or procedures to compute inverses across contexts).  By 
generalized concept of the identity, we mean that a student should understand that an identity, if it 
exists, can only be conceptualized with respect to a particular binary operation (this is particularly 
important when studying rings, which have 2 binary operations and, therefore, two potential identity 
elements).  An identity element, then, if it exists, is an element of that structure such that, when 
combined (in any order) with any element of that structure (under the relevant binary operation), 
leaves that element unchanged.  That is, given an algebraic structure 𝑅 with binary operation ∗, an 
identity is an element 𝐼 ∈ 𝑅 for which 𝑎 ⋅ 𝐼 = 𝑎 = 𝐼 ⋅ 𝑎 for any 𝑎 ∈ 𝑅.  This understanding should be 
broad enough to accommodate instances of identity elements beyond the familiar 0 and 1 (such as an 
identity matrix or the element 8 in the ring 4ℤ12).  It should also be broad enough to employ in 
symbolic arguments for a general (unspecified) algebraic structure.  Accordingly, a generalized 
concept of inverse depends not only upon a particular binary operation but also the aforementioned 
understanding of identity.  Moreover, an inverse should be understood as an inverse element of the 
algebraic structure in question (as opposed to an inverse operation), and therefore the student needs 
to understand that, if an element 𝑎 of an algebraic structure 𝑅 with binary operation ∗ has a 
corresponding inverse element 𝑎−1, then 𝑎−1 is also an element in 𝑅, and combining 𝑎 with 𝑎−1 (in 
any order) yields the identity, i.e. 𝑎 ∗ 𝑎−1 = 𝐼 = 𝑎−1 ∗ 𝑎.  This understanding should be broad 
enough to accommodate unfamiliar instances for which there is not a canonical procedure or formula 
that determines the existence of an inverse or produces the inverse element itself, and should also be 
broad enough to employ in symbolic arguments for an unspecified algebraic structure.  A student 
must also understand that some elements in certain algebraic structures might not have a well-defined 
inverse, and that some elements might have an inverse that exists only outside the algebraic structure 
under consideration.   

Freudenthal (1973), the founding father of RME, provided suggestions about how students might 
be guided to reinvent such generalized notions of algebraic structure.  Arguing that there is a 
hierarchy of levels of mathematical activity, he noted that “the means of organization of the lower 
level become a subject matter on the higher level” (1973, p. 123).  He defended this claim by 
describing the historical development of the concept of group.  In the 19th century, he noted, groups 
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were only implicit in mathematicians’ intuitive reasoning, which led to explicit formulation of the 
group properties and, eventually, to the axiomatic abstraction of the definition of group.  This 
characterization provides an operational, hypothesized model of how a student might abstract 
algebraic properties by leveraging his/her own activity: 

(1) The property is implicit in the student’s activity with an example structure; 
(2) The property appears explicitly as a student’s general description of his/her activity with 

the structure; 
(3) The student uses the property as a lens to classify and investigate other structures. 

Larsen (2013) verified that a learning trajectory proceeding in such a manner could indeed be 
leveraged to support students’ reinvention of the group concept, and earlier studies provided similar 
evidence for the efficacy of this approach for reinventing rings (Cook, 2012).  In this study, we 
hypothesized that students would be able to achieve the desired, coordinated understanding of 
identity and inverse by engaging in a task sequence informed by Freudenthal’s characterization of the 
emergence and gradual formalization of an algebraic property in a student’s activity.   
 
 

Methods 
 

We adopted the teaching experiment methodology (Steffe & Thompson, 2000) in order to 
construct models of students’ thinking about the concepts of inverse and identity.  We also sought to 
discern how their understanding of these concepts might evolve to a coordinated, generalized 
understanding of these concepts as they engage in mathematical activity in response to our teaching 
actions.  It should be noted that such explanatory models of student thinking “may not, and probably 
cannot, account for students’ mathematics” (Steffe & Thompson, 2000, p. 268), and instead reflect a 
researcher’s best attempts to provide a rational frame of reference for a student’s observable 
behaviors in response to a mathematical scenario.  Thus, we deemed the models of student thinking 
that we constructed as valid insofar as they provided a viable explanation for students’ utterances and 
written work.    
 
Participants and Data Collection 

Two undergraduate mathematics majors – Josh and Meagan (pseudonyms) – at a large 
Midwestern research university participated in this study.  Both Josh and Meagan were juniors and 
had completed courses in linear algebra and number theory but had no prior exposure to concepts in 
abstract algebra.  We selected these students for participation not only because their respective stages 
of mathematical preparation and abilities (as indicated by their own reports of their mathematical 
course experience and by a survey administered prior to participation) were suitable for this study, 
but also because of our perception of their enthusiasm for participating and willingness to openly 
articulate their mathematical thoughts.  The teaching experiment consisted of 7 sessions of up to 2 
hours apiece.  The first author served as the interviewer and the second author served as an observer.  
We conducted two sessions per week to allow sufficient time for ongoing analysis (explained below).  
Each session convened on the campus of the students’ institution.  We recorded students’ verbal 
utterances and written work using Microsoft Surface tablets, which recorded video-like capture of 
their written work with synchronized audio.   

 
Data Analysis 

We employed two methods for data analysis:  ongoing and retrospective.  The ongoing analysis 
occurred during and between sessions as we attempted to construct more stable models of student 
thinking in situations involving the concepts of inverse and identity.  Ongoing analysis involved the 
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first author’s intuitive responses to students’ activity in the form of asking questions or introducing 
tasks that would provide additional insight into their thinking and test the viability of our proposed 
explanations for their mathematical behavior.  The models constructed during sessions were 
necessarily fluid and in need of additional refinement.  Therefore, between sessions, we both viewed 
the videos from the previous session and, in particular, looked for evidence (in the form of the 
students’ observable behaviors) that would either confirm or disconfirm the hypothesized models that 
we had developed during that session.  Any additional hypotheses that arose would inform the 
instructional tasks administered in the next session.   At the conclusion of data collection, we 
engaged in a retrospective analysis (Steffe & Thompson, 2000) in order to look for conceptual 
change across the entire teaching experiment.   
 

Results 
 

While it is beyond the scope of this proposal to comprehensively document the evolution of Josh 
and Meagan’s understanding of the inverse concept throughout the entire teaching experiment, in this 
section we simply describe the first few stages of development: 

 
Stage 0:  Entrance Survey 

Prior to selection for this study, Josh and Meagan, working independently of each other, 
answered the following questions as part of an entrance survey (the questions that appear here are 
only those that involved inverses; they have also been renumbered for easier reference): 

� Consider the set {0, 1, 2, … ,11} with addition and multiplication modulo 12.  To familiarize 
yourself with this set and its operations, construct an operation table for both addition and 
multiplication modulo 12, and then answer the following questions. 

o Q1: Does this set contain an identity with respect to addition?  Explain.   
o Q2: Does this set contain an identity with respect to multiplication?  Explain.   
o Q3: Does this set contain an additive inverse for 4?  If so, identify it.  If not, explain. 
o Q4: Does this set contain an additive inverse for 5?  If so, identify it.  If not, explain. 
o Q5: Does this set contain a multiplicative inverse for 4? If so, identify it. If not, 

explain. 
o Q6: Does this set contain a multiplicative inverse for 5? If so, identify it. If not, 

explain. 
� Consider the set {0,4,8} with addition and multiplication modulo 12.  To familiarize yourself 

with this set and its operations, construct an operation table for both addition and 
multiplication modulo 12, and then answer the following questions. 

o Q7: Does this set contain an identity with respect to addition?  Explain.   
o Q8: Does this set contain an identity with respect to multiplication?  Explain.   
o Q9: Does this set contain an additive inverse for 4?  If so, identify it.  If not, explain. 
o Q10: Does this set contain a multiplicative inverse for 4? If so, identify it. If not, 

explain. 
The results from this survey indicate that Josh and Meagan’s understanding of inverse seemed more 
tied to notions of inverse as an operation (i.e. the inverse of addition is subtraction) or a procedure 
(i.e. take the reciprocal), as their additive inverses were initially negative numbers (Q3, Q4, and Q9), 
the multiplicative inverses were reciprocals (Q5, Q6, Q10).  It appears that they both strongly 
associated the number 1 with multiplicative identity, and, moreover, there was no evidence that they 
coordinated these inverses with the respective identities.  Had they been coordinating with an 
identity, we would have expected their explanation in response to Q10, for example, to focus on their 
assertion in Q8 that a multiplicative identity did not exist in the set.   
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 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 
Josh Yes; 

0 
Yes; 

1 
Yes;  
-4=8 

Yes; 
-5=7 

No; 1/4 
not in 

set 

No; 1/5 
not in 

set 

Yes; 0 No; 1 
not in 

set 

Yes;  
-4=8 

No; 1/4 
not in 

set 
Meagan Yes; 

0 
Yes; 

1 
Yes; 
-4=8 

Yes; 
-5=7 

No; 1/4 
does 
not 

make 
sense 

No; 1/5 
does 
not 

make 
sense 

Yes; 0 No; 1 
not in 

set 

Yes;  
-4=8 

No; 1/4 
does 
not 

make 
sense 

 
Stage 1:  Additive Inverse of 𝒂 as −𝟏 ⋅ 𝒂 
 Notions of inverse first appeared in the teaching experiment in response to the first task, which 
prompted them to use addition and multiplication modulo 3 to determine the total number of distinct 
elements that could be generated, starting from 1 + 2𝑖.  The task permitted them to add and multiply 
1 + 2𝑖 by itself as many times as desired; they could also add and multiply results of any calculations 
they performed.  The idea behind this task was that the algebraic properties that define a field would 
emerge implicitly in their activity as they acclimated to the elements and operations of what we knew 
to be the field ℤ3[𝑖].  Soon after they generated the element −1, Meagan concluded that the existence 
of −1 enabled them to include the “opposite” of every element in their list because they could 
multiply any element by −1: 
 
 Meagan: So, like … if we … Isn’t negative one, is negative one one of our numbers? 
 Josh: Yeah, because since negative one is one of our numbers … 
 Meagan: It’s always going to be there. 
 Josh: Every one will have an opposite. 
 
This characterization persisted unchanged into session 3, at which time they were completing 
operation tables to keep track of their calculations.  In doing so, Josh and Meagan noticed that the 
addition table was a Latin Square (every element appears exactly once in each row and column).  
Following Larsen’s (2013) recommendation regarding the role of proof in furthering students’ 
reasoning, we prompted Josh and Meagan to prove this result, which essentially amounts to 
justifying (1) existence (that each equation of the form 𝑎 + 𝑥 = 𝑏 has a solution) and (2) uniqueness 
(that 𝑎𝑥 = 𝑎𝑏 ⇒ 𝑥 = 𝑏).  Their existence proof involved the cancelling of additive inverses.  At this 
point, we prompted Josh and Meagan to articulate their “opposite” rule.  Josh wrote: 

 
Figure 1: Josh and Meagan’s initial characterization of additive inverse. 

Notice that their demonstration of their use of this rule involves a cancellation, but does not 
acknowledge the role of the identity (or any of the other algebraic properties involved).  We asked 
them to develop a “test for inverses” so that we could determine if cancelling featured prominently in 
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their characterization of inverses or if it was just a consequence they derived from a stable  −1 ⋅ 𝑎 
conceptualization: 
 
  Meagan:   Multiply them by the negative, and then according to our mod three, um,  
    determine if they’re, equal. And you can do that with any equation. 

 
Thus, their operational characterization of additive inverse still centered on −1 ⋅ 𝑎. 
 
Stage 2: Beginnings of a Coordination of −𝟏 ⋅ 𝒂 with the Additive Identity 
 It was not until Josh and Meagan proved the “uniqueness” component of the Latin Square 
property that the additive identity began to emerge in their discussions of additive inverses.   
 

 
Figure 2: Josh and Meagan’s proof of uniqueness for the Latin Square property. 

 
Upon writing out the proof (Figure 2), I asked them to justify that 𝑎 + (−1 ⋅ 𝑎) = 0: 
 

Researcher: Josh, what you’ve written there seems to be minus one times a? 
Josh:  Right. 
Researcher: Ok, how do you know that minus one times a gives you zero?  Is that true? 
Meagan: I mean, it might be another rule. An inverse plus itself should always equal 

zero.  
Right? 

Josh:  Yeah.  
 
We asked Josh and Meagan to update their statement of the inverse rule: 

  
Figure 3: Josh and Meagan’s statement of their additive inverse rule includes 0. 

 
This concludes the results section, which is admittedly brief due to space constraints.  The conference 
presentation (pending the acceptance of this proposal) will provide a much more comprehensive and 
detailed analysis of Josh and Meagan’s understanding of inverse and identity and how it evolved 
throughout the teaching experiment. 
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Characterizing the Nature of Introduction to Proof Courses: A Survey of R1 and R2 
Institutions across the U.S. 
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A number of institutions with mathematics programs offer introduction to proof courses in order 
to ease mathematics students’ transition from primarily calculation-based courses to proof-
centered courses. However, unlike most tertiary mathematics courses, whose mathematical 
content is directly implied by their course titles, introduction to proof courses may vary in terms 
of the mathematics content discussed. In this study we document the variation in content of 
introduction to proof courses. This is achieved by examining recent syllabi and other relevant 
course documents from introduction to proof courses at 179 R1/R2 universities across the United 
States. The various types of content used in these courses are discussed. We describe the 15 
categories of ITP courses that emerged from the course information we collected and offer our 
categories as a framework for classifying ITP courses or students in future studies. 

Key words: Introduction to Proof Courses, Syllabi, Survey, Categorization 

Introduction 

Undergraduate students taking introduction to proof (ITP) courses (also commonly called 
transition to proof courses), are a commonly studied population in mathematics education 
research on proof. However, what the courses that these students are drawn from look like across 
the United States is not well-known for several reasons. Unlike Calculus, Linear Algebra, Group 
Theory, Graph Theory, Topology, Combinatorics etc., ITP courses are one of the few 
undergraduate mathematics courses where the mathematical content covered is not specifically 
implied by the title of the course. Additionally, the possible mathematics content used to 
introduce students to proof is not well-defined. So, a number of mathematical topics may be the 
basis of an intro to proof course and the specific curriculum/texts used have not been 
documented. In spite of this lack of transparency, researchers interested in beginning proof 
students commonly make content-general claims from data of students working within a specific 
mathematics context (Dawkins and Karunakaran, 2016). Furthermore, students from ITP courses 
are often treated as if they are comparable regardless of the mathematics content used to 
introduce these students to proof. For example, the use of phrases like, "We present data on the 
reasoning of two students in a transition-to-proof course" (Alcock & Weber, 2010), without any 
further description of the course are fairly common. This language creates a false sense that intro 
to proof courses are compatible enough that the results of one study of ITP students is likely 
applicable to other ITP students. Such treatment also generates the impression that ITP courses 
are ubiquitous across mathematics programs. Both the ubiquity and comparability of ITP courses 
can be tested, rather than tacitly assumed, which is our goal in this manuscript.  

Our goal in this study is to simply document the variability in ITP courses in order to 
facilitate researchers’ descriptions of the particular ITP student population they are drawing 
from. This documentation will allow researchers to increase the specificity of the descriptions of 
the populations they study and will allow for comparison of courses across institutions. We 
achieved this by gathering syllabi and other relevant documentation from all 215 US universities 
that a) offer an undergraduate degree program in mathematics and b) are categorized by the 
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Carnegie foundation as either high research output (R2) or very high research output (R1). These 
syllabi provide a lens into what curricula ITP courses cover across the US. 

Methods 
 
The goal of this study was to collect and classify information on the nature of Introduction to 

Proof (ITP) courses offered at the undergraduate level across the United States. In order to gain a 
clear and accurate picture of the nature of these courses, the 215 of 221 R1 and R2 universities 
that offer undergraduate mathematics degrees were considered for this study. By examining a 
university’s course catalog, math department website, and/or a list of course offerings, we 
determined whether an institution offered an ITP course. When this information was not 
available through online sources, we emailed instructors or administrators to acquire the needed 
information to make an ITP determination. For our purposes, a course was labeled an ITP course 
if the course description indicated an explicit emphasis on easing the transition to proof, bridging 
the gap between Calculus and higher level mathematics, and/or developing written mathematical 
arguments. To acquire an ITP label these emphases needed to be central to the course’s content, 
as opposed to covered during a brief review period during the initial stages of the course.  

Some courses functioned as ITP courses, but centered on a single mathematical topic, such as 
analysis or abstract algebra. In order to distinguish between these ITP courses and introductory 
courses on a mathematical topic that are not ITPs, we used schedules of content coverage in 
addition to course descriptions and listed objectives to make our ITP determinations.  

For each of the 179 R1 and R2 schools that we determined offered ITP courses, we set out to 
collect one recent course syllabus per school through Internet searches and departmental 
websites. These Internet searches were typically of the form: “Course Code, Course Title, 
University Name, course syllabus.” (Ex: MAT 300 Mathematical Structures Arizona State 
University course syllabus). When multiple syllabi were found, preference was given based upon 
precedence in search results, most recent date, and level of detail, in that order. If a course 
syllabus was not available through Internet searches or departmental sites, we emailed the 
department’s administrative staff or a professor who had recently taught the course (when 
known) requesting a recent copy of the course syllabus. In all, 164 course syllabi were collected 
from 164 of the 179 ITP-offering institutions. Twelve of the remaining 15 schools had highly 
detailed course descriptions on their webpages. These descriptions were collected in lieu of 
course syllabi. Three schools with ITP courses did not respond to emails or provide enough 
detail online to sub-categorize them in terms of the mathematical content they covered. These 
three schools were excluded from the remainder of the analysis.  

From these 176 ITP courses, (164 with syllabi, 12 with detailed online course information) 
the following information was collected in a spreadsheet: institution, location, course code, 
course title, textbook/author used, date, and course description/content covered. The vast 
majority of syllabi collected were from courses taught within the last 3 years (Fall 2013-Spring 
2016) and only 6 syllabi were dated earlier than 2011. The results section below describes our 
analysis and sub-categorization of these courses based on their approach to introducing proof. 

Results 
 
Once we compiled all of the relevant information from each course, we looked for trends in 

types of courses, textbooks used, and topics covered in order to categorize these courses. From 
the beginning, there was striking variation, perhaps most noticeably in the number of textbooks 
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used. Across the 176 courses, 63 different textbooks were used and 16 courses relied entirely on 
instructor or departmental lecture notes. The two most commonly used texts: Mathematical 
Proofs: A Transition to Advanced Mathematics, by Chartrand, Polimeni and  Zhang, and A 
Transition to Advanced Mathematics, by Smith, Eggen and St. Andre were each used by only 16 
and 15 of 176 of the courses surveyed, respectively. From the spreadsheet data collected for each 
course, we examined the types of courses in terms of topics covered and two broad categories of 
courses emerged: courses that followed a highly similar order of topics and courses that 
introduced proof in the context of a particular advanced mathematical topic. Of the 176 ITP 
courses, 144 (82%) of the courses were of the first type, which we categorized as Standard ITP 
courses and the remaining 32 (18%) we categorized as Topic-Based ITP courses. Once we 
separated the courses into these two categories, we looked for further trends and subcategories 
within each category. We will proceed to explain our categorizations, sub-categorizations, and 
provide examples of the two most common course type in each to illustrate how we made our 
determinations, as well as the frequency of each type of ITP course. 
 
Standard ITP Courses 
The 82% (144/176) of ITP courses we categorized as Standard ITP courses typically covered the 
following topics: symbolic/formal logic, truth tables, propositions, quantifiers, methods of proof 
(including contradiction and induction), number systems, sets relations and functions, infinite 
sets, and cardinality. Some of the Standard ITP courses covered additional topics from advanced 
mathematics towards the end of the course such as analysis or discrete mathematics topics. 
Courses that only covered these standard topics and did not include additional topics we 
categorized as Standard only ITP courses, which comprised 50% (72/144) of the Standard ITP 
Category. The other 50% (72/144) of Standard ITP courses contained introductions to topics 
beyond the standard topics, which we categorized as Standard+ Topic ITP courses. 

Standard only: Within the Standard only ITP subcategory, which consists of 41% (72/176) 
of all ITP courses surveyed, 29 different texts were used, many of which are used for ITP 
courses in other categories. The most commonly used text, used by only 15% (11/72) of courses 
in this category, was Mathematical Proofs: A Transition to Advanced Mathematics, by 
Chartrand, Polimeni and Zhang.  Additionally, 8% (6/72) of Standard only ITP professors use 
their own lecture notes or notes developed by their department. As described earlier, these 
courses cover what we take as the standard set of topics as a means of introducing proofs and do 
not introduce any other mathematical topics. We provide an example of an overview of topics 
from one such course: 

	
Figure 1. Howard University, Mathematical Reasoning: Writing and Proof, Standard 
only ITP Course 

Standard+ Topic: Any course that focused primarily on the same topics as a Standard only 
ITP course, but also introduced a certain mathematical topic or topics for a small portion of the 
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course, we categorized as Standard+ Topic, according to which topic was introduced. These 
courses made up another 41% (72/176) of the ITP courses surveyed. Typically these courses 
covered formal logic, sets, functions, relations, etc. (the “standard” material) for the majority of 
the semester and then spent a few weeks on introducing a particular topic from a certain branch 
of advanced mathematics, often towards the end. The most common Standard+ Topic courses 
added on 2-4 weeks of discrete mathematics topics or introductory analysis topics. The 
breakdown of all of the Standard+ Topic ITP course subcategories that emerged is as follows:  
Standard + Discrete 35% (25/72), Standard + Analysis 15% (11/72), Standard + Combination 
11% (8/72), Standard + Algebra 10% (7/72), Standard + Number Theory 8% (6/72), Standard + 
Algebra & Analysis 7% (5/72), Standard + Sampler 7% (5/72), and Standard + Other 7% (5/72).  

Standard+ Discrete: Making up 35% (25/72) of all of the Standard+ Topic ITP courses, 
Standard+ Discrete courses usually spent the last few weeks of the course on several Discrete 
Mathematics ideas such as counting techniques, permutations, combinations, the Binomial 
Theorem, probability, graph theory, or possibly elementary number theory. Among the courses 
of this type, the most commonly used text, used by only 20% (5/25) of the category, was 
Discrete Mathematics and its Applications by Kenneth Rosen. We provide a sample course 
overview from a course in this category: 

	
Figure 2. San Diego State University, Discrete Mathematics, Standard+ Discrete ITP Course 

 
Standard+ Analysis: The second most frequent, Standard+ Analysis courses made up 15% 

(11/72) of the Standard+ Topic category. After the standard material, these courses covered 
introductory topics within Analysis such as sequences, limits, and continuity. Among these 
courses, 8 different texts were used.  The most commonly used text was A Transition to 
Advanced Mathematics, by Smith, Eggen and St. Andre, and was used by only 27% (3/11) of 
Standard+ Analysis ITP courses. We provide two examples from course syllabi from this 
category. Note that while the additional Analysis topics are part of the course, the entire course is 
not centered on Analysis. Such ITP courses were categorized as Topic-Based ITP courses and 
will be discussed later in this manuscript. 
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Figure 3. George Washington University, Introduction to Mathematical Reasoning, Standard+ 
Analysis Course 

Standard+ Algebra: Likewise, the courses that added several weeks of Algebra topics to the 
standard material in their introduction to proofs were categorized as Standard+ Algebra and 
made up 10% (7/72) of the Standard+ Topic category. The concluding topics for courses in this 
category include topics such as groups, subgroups, homomorphisms, cosets, rings, and fields.   
Each course in this category used a distinct textbook from other courses in this category, though 
some used the same text as courses in other categories.  

Standard+ Number Theory: Six of the 72 courses in the Standard+ Topic category (8%) 
added number theory topics to the standard set of material. These courses are distinct from the 
Standard+ Discrete category since they only added number theory concepts specifically, and did 
not cover any other type of discrete mathematics such as counting, graph theory, or probability.  

Standard+ Algebra & Analysis: Five of the 72 (7%) Standard+ Topic ITP courses added 
introductory ideas from Algebra and Analysis. These courses typically only added a few topics 
from each of Algebra and Analysis and do not have as much time to devote to each topic.  

Standard+ Combination (other than Algebra & Analysis): While Algebra and Analysis were 
the most common two topics to add into standard material in an ITP Standard+ Topic course, 
11% of courses (8/72) found in the Standard+ Topic category added different combinations of 
topics from two branches of mathematics to their course. The different combinations observed 
include: Discrete and Analysis, Geometry and Number Theory, and Algebra and Topology.  

Standard+ Sampler: Five of 72 (7%) Standard+ Topic ITP courses added topics from more 
than two branches of advanced mathematics, which we classified as Standard+ Sampler ITP 
courses.  

Standard+ Other: Five of the 72 (7%) Standard + Topic ITP courses did not fall under one of 
the previous categories were labeled Standard+ Other. These courses delved into more 
tangentially related topics, such as intermediate logic or certain software such as LaTex.  

 
Topic-Based ITP Courses 

Unlike courses in the Standard category, Topic-Based ITP courses introduce proof in the 
context of either a single mathematical topic, or occasionally through several topics. Such 
courses devote little, if any, time to the “standard” material that is the focus of Standard only and 
Standard+ Topic courses. These courses, through an introduction to a particular mathematical 
topic or topics, emphasize proof-writing and formal mathematical argumentation as a major goal 
of the course. Much less frequent, they comprise 18% (32/176) of the ITP courses surveyed and 
consist of the following subcategories, listed in order of prevalence: Analysis 38% (12/32), 
Discrete 25% (8/32), Algebra 16% (5/32), Sampler 9% (3/32), Combination 6% (2/32), Number 
Theory 6% (2/32). The following is a description of the characteristics of each subcategory. 

Analysis: The most prevalent of the topic-based ITP courses, Analysis ITP courses have the 
goal of teaching mathematical proof in the context of Analysis topics and make up 38% (12/32) 
of the topic ITP category. Typically, these courses cover the real number system, limits, 
continuity, differentiation, integration, sequences, all in the context of single-variable functions. 
The most commonly used textbook for courses in this category, used by 25% (3/12) of Analysis 
ITP courses, was Analysis with an Introduction to Proof, by Steven Lay. Below is a description 
of one such course we placed in this category: 
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Figure 4. Princeton University, Honors Analysis in a Single Variable, Analysis ITP Course 

Discrete: These courses, which make up 25% (8/32) of the Topic-Based ITP courses have 
the goal of learning mathematical proof in the context of various topics in Discrete Mathematics 
including graph theory, probability, and combinatorics. These courses may include graphs, trees, 
Boolean algebras, cryptography, divisibility, permutations, combinations, binomial coefficients, 
and may include a sampling of number theory topics, although courses situated entirely in the 
context of number theory were divided into their own subcategory. Among these courses, the 
most frequently used text was Discrete Mathematics with Applications by Epp, employed by 
50% (4/8) of the courses in this category. The following course description illustrates the nature 
of these types of courses: 

 

	
Figure 5. University of Oklahoma, Discrete Mathematical Structures, Discrete ITP Course 

Algebra: The third most frequent type of Topic-Based ITP course at 16% (5/32), the Algebra 
ITP courses have the goal of understanding mathematical proof in the context of abstract algebra 
topics. Typically, these courses cover groups, subgroups, normal subgroups, quotient groups, 
rings, homomorphisms, polynomials, subrings, cosets, isomorphism theorems, and sometimes 
include fields, integral domains, prime numbers and the division algorithm. Every Algebra ITP 
course surveyed used a different textbook.  

Sampler: Three of the 32 (9%) topic-based ITP courses had the goal of learning 
mathematical proof in the context of a wide-array of mathematical topics, which we labeled as 
“sampler” courses. Often the goal of these courses is to introduce students to many different 
subjects in advanced mathematics. Courses in this category used the context of a minimum of 
four topics. 

Number Theory: Distinct from Discrete ITP Courses, which typically sample various 
discrete mathematics topics, these courses, though rare, have the goal of learning mathematical 
proof in the context of Number Theory. In our study we only came across 2 such courses.  

Combination: Courses in this category are topics-based intro to proof courses in the context 
of a combination of two different topics, and make up a very small portion (6% or 2/32).  

The following table summarizes all of the ITP categories that emerged from the course 
information, as well as their prevalence. 

 
Table 1 
ITP Course Category Data Summary 

Course Category 
(Percent of ITP Courses) Description Subcategories  

(Percent of Category) 
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Standard 
82%	

Standard + ∅ ITP    
41% 

 

Introduce proof through the 
following topics: symbolic logic, 
truth tables, propositions, 
quantifiers, methods of proof, 
number systems, sets, relations and 
functions, and cardinality. No 
additional topics covered. 

N/A  

Standard+ Topic 
ITP 41% 

Cover the same topics as a Standard 
ITP course for the majority of the 
course, but also include an 
introduction to a specific advanced 
mathematical topic or topics near 
the end, which typically lasts 2-4 
weeks.  

35%  Standard+ Discrete 
15% Standard+ Analysis 
11% Standard+ Combination 
10% Standard+ Algebra 
8%   Standard+ Number Theory 
7%   Standard+ Algebra & Analysis 
7%   Standard+ Sampler 
7%   Standard+ Other 

Topic 
18% 

Topic-Based ITP  
18% 

Grounded in the context of either a 
single or several topics in 
combination. Majority of time on 
the topic and devote little to no time 
to formal logic and other “standard” 
topics. 

38%  Analysis 
25%  Discrete 
16%  Algebra 
9%    Sampler 
6%    Combination 
6%    Number Theory 

Discussion 
 
Our chosen focus on syllabi facilitated the collection of data across a fairly complete sample 

of R1 & R2 universities. This allowed for breadth rather than depth; syllabi offer a fairly 
accurate look into the material covered and textbook used but have little information regarding 
day-to-day classroom dynamics. Even with these limitations we were able to discover a wide 
variation in ITP courses. As discussed in the results section, ITP courses are not necessarily 
offered at all universities, meaning the universality of ITP student populations should not be 
assumed to exist within any tertiary mathematics program. We observed that no single textbook 
had more than 9% market share and most textbooks designed for ITP courses were used at only 
2-3 institutions. Furthermore, when categorizing ITP courses we generated 15 different 
categories to describe the differences in mathematical content covered. These results point to the 
high variability in how students across the United States are introduced to proving, and highlight 
the importance of taking this variability in content into account when studying students enrolled 
in ITP courses. Since we only chose one representative syllabus per institution, in an effort to 
keep the data set manageable, we did not account for variability within institutions, which likely 
exists at many schools, as we found at our own institution. In other words, the categories and 
counts we’ve compiled are likely a simplification of the true degree of variability among these 
courses. Unlike Dawkins and Karunakaran (2016), we are not necessarily encouraging all 
researchers interested in proof to take mathematical content into count when analyzing student 
data, although we do believe doing so adds depth to data analysis. Instead, we encourage 
researchers to be more specific when describing the ITP population they are drawing from in 
order to help situate their chosen population relative to the various types of ITP courses that 
exist. We offer the 15 categories and descriptions provided here as a framework for ITP course 
categorization for future studies. Our categories serve to provide additional information and may 
add depth to a highly-studied population in mathematics education. Identifying and categorizing 
the variability within these courses lays the foundation for further studies, which might include 
studies within certain categories, or comparisons of students across categories of ITP courses. 
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The Role of Visual Reasoning in Evaluating Complex Mathematical Statements: A 
Comparison of Two Advanced Calculus Students 

 
Erika David, Kyeong Hah Roh, Morgan Sellers, Kody D’Amours 

Arizona State University 

The purpose of this study is to examine the role of visual reasoning while students evaluate 
complex mathematical statements about real-valued functions. We conducted clinical interviews 
with nine undergraduate students from mathematics courses at different levels. In the interviews, 
we asked these students to evaluate several mathematical statements alone and then using 
various graphs.  In this paper, we focus on the cases of two students who had completed 
Advanced Calculus to highlight the contribution of their visual reasoning about several graphs. 
We found that student’s graphical interpretation of “between” in these statements affected their 
evaluation of the statements. Even at advanced levels, students’ visual cues dominated their 
reasoning about the statements. Our findings indicate that students’ visual reasoning contributes 
to their evaluation of mathematical statements and helps to account for differences between 
students’ meanings of statements. 

Key words: Visual Reasoning, Complex Mathematical Statements, Graphical Interpretations, 
Undergraduate Students, Intermediate Value Theorem 

Introduction 

Mathematical statements, including definitions, theorems, and mathematical claims, which 
may be true or false, are a central part of elementary through postsecondary mathematics 
curriculum. Mathematics education research has shown that students often struggle with both 
understanding mathematical statements (Roh, 2010; Selden & Selden, 1995) and evaluating 
whether mathematical statements are true or false (Bubp, 2014; Dawkins & Roh, 2016; Selden & 
Selden, 2003). In particular, studies have shown student difficulty with statements involving 
multiple conditionals such as “if ! → !, then ! → !” (Zandieh, Roh, & Knapp, 2014) or multiple 
quantifiers such as “∃!∀! !(!,!)” (Dubinsky & Yiparaki, 2000). In this paper we focus on 
students’ understanding of statements involving both conditional structure and multiple 
quantifiers, which we refer to as complex mathematical statements. Although these statements 
look complicated, statements with such structure are common in Calculus and Real Analysis. For 
example, the Intermediate Value Theorem (IVT) can be stated as a complex mathematical 
statement as follows: “Suppose that f is a continuous function on [a, b] with f(a)≠f(b). Then, for 
all real numbers N between f(a) and f(b), there exists a real number c in (a, b) such that f(c)=N.”  

In order to help students understand these types of statements, instructors may often provide 
a graphical illustration to introduce the idea of the statement. Several textbook authors and 
researchers have cited the benefits of incorporating visual representations of theorems and/or 
proofs in instruction (Alcock & Simpson, 2004; Arcavi, 2003; Davis, 1993; Guzman, 2002; 
Hanna & Sidoli, 2007). While research has looked at students’ understanding of multiple 
quantifiers (Dawkins & Roh, 2016; Dubinsky & Yiparaki, 2000; Epp, 2003; Roh & Lee, 2011) 
and conditional structure (Durand-Guerrier, 2003; Zandieh et al., 2014), few studies have looked 
at the role of students’ reasoning about the graphs or images that correspond to a statement about 
a real-valued function. Although instructors may consider such explanations clear 
representations of the statement, we do not know what sense students make from these graphical 
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illustrations. While these visual representations have the potential to be valuable to student 
understanding, little research has been conducted to examine the role of students’ visual 
reasoning in understanding and evaluating complex mathematical statements. This study 
addresses the following research question: How do students’ visual reasoning contribute to their 
evaluations of complex mathematical statements about real-valued functions? 

Theoretical Perspective 
 

Our study is grounded in a constructivist perspective and builds on Moore and Thompson 
(2015) and Moore (2016)’s theories of students’ graphical activity. We adopt von Glasersfeld’s 
(1995) view that students’ knowledge consists of a set of action schemes that are viable given 
their experience, and that we, as researchers, do not have direct access to their knowledge. This 
perspective implies that we as researchers can only model student thinking based upon their 
actions. Thus, our analysis reflects our best attempt at creating a hypothetical model of student 
visual reasoning grounded in evidence found in their words, gestures, and markings on paper.  

In this study, we reference Moore and Thompson’s (2015) distinction between static shape-
thinking and emergent shape-thinking as well as Moore’s (2016) constructs of figurative and 
operative thought in the context of graphing as a means of situating our constructs that describe 
students’ visual reasoning we observed. Moore and Thompson (2015) describe static shape-
thinking as conceiving of a graph as an object in itself, in which mathematical objects and 
actions are subordinate to visual perception. In contrast, they describe emergent shape-thinking 
as conceiving of a graph as a trace which emerges from the coordination of two varying 
quantities. To develop this distinction, Moore (2016) aligns static shape-thinking with figurative 
thought and emergent shape-thinking with operative thought, consistent with Piaget’s (2001) and 
Steffe’s (1991) use of the terms. Moore (ibid) explains that figurative thought is dominated by 
visual properties of a graph, such as aspects of the shape of the curve which overrides 
considerations about relationships of the quantities being represented. In contrast, for students 
engaged in operative thought, “figurative elements of their activity are subordinate to that 
coordination [of covarying quantities]” (Moore, 2016, p. 3). Students engaged in operative 
thought may still perceive visual properties of a graph, but their thought is guided by the 
relationships represented in the graph. Furthermore, Moore (ibid) explains that these modes of 
thought are not exclusive of the other. Students may engage in both, although one may dominate 
the student’s activity, depending on which mode of thought the students’ actions are subordinate. 
While these constructs help to distinguish certain student graphing behavior, they do not account 
for important nuances of the graphing behavior we observed in this study. Thus, we define the 
constructs location-thinking and value-thinking to distinguish between the relevant aspects of the 
graphing behavior we observed, as explained in the results section. 

Methods 
 

For this study, we conducted two-hour clinical interviews with nine undergraduates at three 
different levels: students who had just completed Calculus, an Introduction to Proof course, and 
Advanced Calculus, respectively. Due to the complex nature of the interview, we decided to 
have one researcher serve as the interviewer with the other three researchers as witnesses, two of 
whom were in the interview room, and the third who watched the interview live-streamed from 
elsewhere. We recorded the interview with three cameras to capture the entire frame, student 
work on the table, and to live-stream the interview to the third witness. All four researchers had 
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laptops, whose screens the participant could not see, to communicate their current models of the 
participant’s thinking in real-time via group chat. This set-up allowed all four researchers to offer 
clarifying questions for the interviewer to pose to the participant to test these models. 
      In the interview, the participants were asked to evaluate four complex mathematical 
statements about real-valued functions and provide justification for their evaluation. One of these 
statements was the Intermediate Value Theorem (IVT), which we presented in the introduction. 
The remaining three statements were variations on IVT with the re-ordering of the quantifiers 
(for all, there exists) and/or variables reversed (N, c). For example, another statement read, 
“Suppose f is a continuous function on [a, b] where f(a)≠ f(b). Then there exists a real number N 
between f(a) and f(b), such that for all real numbers c in (a, b), f(c)=N.” This altered statement 
was made from a reversal of both the quantifiers and variables in IVT. 

Once the participants had evaluated each of the four statements, the interviewer asked them 
to compare the statements and explain whether any of the statements had the same meaning, in 
their interpretation. The interviewer later asked students to look at each statement along with six 
graphs we created, with the chance of changing their evaluation in order to gain insight into the 
effects of students’ reasoning about various graphs on their evaluation.  These graphs, which 
were intended to represent a spectrum of possible functions and relevant counterexamples, 
included: a constant function, a monotone increasing function, a vertical line, a polynomial with 
extrema beyond the endpoints of the displayed function, the tangent function, and the sine 
function. The participants were also asked to explain how they interpreted various aspects of the 
graph and to label relevant points and values on the graphs where appropriate. 
      After conducting the interviews, our research team closely analyzed the video data for 
patterns in student thinking that could explain their statement evaluations. Our data analysis was 
consistent with Corbin and Strauss’s (2014) description of grounded theory, in which categories 
of student visual reasoning emerged from the data, as we did not begin our study with the 
specific intent of investigating visual reasoning. Through analyzing the student interviews, 
students’ interpretation of the phrase “between f(a) and f(b)” emerged as highly relevant to their 
reasoning about the graph and subsequent evaluation of the given statement.  

Results 
 

In analyzing the interviews, a distinction emerged in students’ interpretation of the phrase 
“between f(a) and f(b),” which stemmed from their meaning for f(a) and f(b). As we analyzed 
student meanings for this phrase, students fell into one of two categories in terms of their 
interpretation of this phrase, and we labeled each student as a value-thinker or location-thinker, 
accordingly. In this categorization, value-thinkers interpret “between f(a) and f(b)” as referring to 
output values between the values of f(a) and f(b). In contrast, location-thinkers interpret 
“between f(a) and f(b)” as locations between the locations of f(a) (at (a, f(a))) and f(b) (at (b, 
f(b))). In other words, value-thinkers distinguish between the value of the output of the function 
and the resulting location of the coordinate point on the graph, whereas location-thinkers do not 
make this distinction. Students who were labeled as value-thinkers were seen as engaging in 
operative thought and emergent shape-thinking, as their visual perception of the graph was 
subordinate to their meanings for output value and they coordinated the values of the varying 
quantities. Location-thinkers, on the other hand, did not clearly fall into the category figurative 
thought, and by extension, static shape-thinking. The visual cues from the graph dominated their 
thinking in some aspects of the graph and informed their interpretation of “between f(a) and 
f(b).” Although location thinkers engaged in figurative thought, they did not conceive of the 
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graph statically. Instead, for these students, a graph emerged from the coordination of input 
values with locations of the points on the graph.  In this way, we consider our constructs of 
value-thinking and location-thinking as novel in describing students’ graphical activity. We 
summarize the characteristics of each way of thinking in the following table.  
 

Table 1. Comparison of location-thinking and value-thinking characteristics 

 
Location-Thinker Value-Thinker 

Visual Reasoning Evidence Visual Reasoning Evidence 

Output of 
Function Confounds the output 

value of a function with 
the location of the 
coordinate point 

▪ Marks output on 
the curve	

 
▪ Speaks about 
points as the 
resulting output of 
the function (e.g. 
“an input maps to a 
point on the curve”) 

 

The resulting value 
from inputting a 

value in the function 

Speaks about 
output values 

Point on Graph 

The coordinated 
values of the input 

and output 
represented together 

▪ Labels points as 
ordered pairs 

 
▪ Speaks about 

points as the result 
of coordinating an 
input and output 

value 

Graph 

A collection of 
geometric points 

associated with input 
values 

A collection of 
coordinates relating 

the value of two 
quantities 

“Between f(a) 
and f(b)” 

All points on the curve 
located between (a, f(a)) 

and (b, f(b)) 

Sweeps along entire 
curve between (a, 
f(a)) and (b, f(b)) 

All values between 
the values f(a) and 

f(b) 

Marks the interval 
of values between 
f(a) and f(b) on the 

output axis 
 
Based on our analysis of the interview data, four students were identified as location-thinkers 

and five students were classified as value-thinkers. In this paper, we choose to highlight the cases 
of two students, Jay, a value-thinker, and Nate, a location-thinker, to illustrate the difference in 
these visual reasoning and their subsequent impact on the student’s understanding and evaluation 
of the given statements. Both Jay and Nate had recently completed Advanced Calculus and 
earned an A in the course. Additionally, both students showed evidence of having strong 
meanings for multiple quantifiers and conditional structure. However, their evaluation of the 
truth values of these statements differed. Jay correctly evaluated each of the four statements and 
offered justifications that were consistent with the mathematical community. Nate paraphrased 
one of the statements1 as, “for every single c there is a point on the curve that it maps to,” 
indicating that he correctly interpreted the multiple quantifiers in the statement. While Jay 
correctly evaluated this statement as false, Nate evaluated it as true. Jay and Nate’s evaluations 
of these statements serve as a contrast due to the significance of visual reasoning in their 
evaluations of the statements.  
 
Jay: A value-thinker 

The excerpt of Jay’s interview below provides evidence for Jay’s interpretation of “between” 
as value-thinking.  In this excerpt, Jay has just looked at the IVT and evaluated the statement as 
true. He used the graph he drew (Figure 1, left) to explain why this statement, in his 
interpretation, is true. 

                                                
1Suppose that f is a continuous function on [a, b] such that f(a)≠f(b). Then, for all real numbers c 
in (a, b), there exists a real number N between f(a) and f(b) such that f(c)=N. 
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… So this right here is y equals N, this line is y equals N (points to horizontal line which 
he labeled N). If f crosses this line (points to horizontal line he just drew), then there 
exists a real number c in the open interval such that f(c) is N. Because if I cross these 
lines... lines say here, this (marks c on x-axis) is my value of c, right? Because that's 
where f(c) is N. Okay, so the only way for like this not to be true is if you can draw a 
continuous graph through it or a continuous graph from a to b with f(a) being this (marks 
f(a) below the line drawn), f(b) being this (marks f(b) above the line drawn), such that 
you skip N.   

 

Figure 1. Jay’s hand-drawn explanation for why the IVT is true (left) and Jay’s possible values 
of N (right)   
 

Both Jay’s graph and his explanation above of why IVT is true reveal how he made sense of 
the phrase “between f(a) and f(b)” in the statement. Jay drew a horizontal line between these 
output values that intersected the y-axis, which indicated that he attended to the values of the 
output, rather than the location of the ordered pair point in space. Later, Jay described that the 
horizontal line he drew in his diagram is arbitrary, indicating that he imagined all of the possible 
horizontal lines passing between the horizontal line through f(a) and the horizontal line through 
f(b). For Jay, the phrase “between f(a) and f(b)” was connected to this image that he shared. Not 
only did Jay consider the values of f(a) and f(b), he visualized the graphical meaning of IVT, 
which is that a continuous function will always intersect any horizontal line drawn between the 
output values of f(a) and f(b). Further evidence of Jay’s visual reasoning for “between” was 
found later in the interview, when Jay evaluated another statement and provided graph, and 
marked off the relevant interval for N along the y-axis (Figure 1, right). Jay’s interval of possible 
N values between f(a) and f(b) in Figure 1 indicates he again considered the values between the 
value of f(a) and f(b) rather than the spatial locations of these points.  
 
Nate: A location-thinker 

In contrast with Jay’s value-thinking, Nate’s reasoning was labeled as location-thinking. 
Evidence for Nate’s thinking can be seen in the following excerpt. Nate had already evaluated 
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Statement 1 (which is false)2 as true, and below explained why it is true using the same provided 
graph that Jay used above (which, from our perspective, is a counterexample to Statement 1).  

Nate: So for all these c’s (sweeps pen along x-axis between a and b) you can see that it 
mapped to a point on the curve. For every single c there is a point on the curve that it 
maps to…So after that c, N would be here (marks c around 1 on x-axis, N at ordered pair 
location of (c, f(c)). So it maps to that. And this c would be in here (marks c around 2 on 
x-axis). And this c would be like, N right here (marks corresponding N’s for each c on 
graph).  
Interviewer: Okay. Lets say we picked a point over here (points to a point beyond (a, 
f(a)), (b, f(b)), rightmost marked point on Figure 2). Could we say that the output would 
be between f(a) and f(b)? 
Nate: I would not say its between f(a) and f(b). Even though the, yeah. This is the, the 
actual numbers 2.5 and 0 (marks the points 2.5, 0). This would be… If you are looking at 
numbers 2.5, 0, this would be in between that interval. But it’s in between that number 
interval. But it’s not in between the functional interval in this case. So f(a). The interval 
will refer, refers to all these points between f(a) and  f(b) (sweeps pen along curve). All 
points of the function. That's what I am interpreting.  

In the transcript above, when asked about the far right point the interviewer selected, if the 
output would be between f(a) and f(b), Nate explained, “it’s in between that number interval, 
yeah, but it’s not in between that functional interval in this case.”  The “it” Nate referred to here 
is the point in question, which he confounded with the output of the function at that point. Nate 
further clarified that “the interval refers to all the points between f(a) and f(b)” and illustrated 
what points he is talking about by sweeping his pen along the curve between the points (a, f(a)) 
and (b, f(b)). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Nate’s work on provided graph with his possible N values labeled on the curve, outside 
the range of values between f(a) and f(b).  
 

Nate’s response indicates that his perception of the graph guided his interpretation of and 
evaluation of Statement 1. Nate labeled f(a) and f(b) not on the y-axis, but at the location of the 
point (a, f(a)) and (b, f(b)), which indicates that he conceived of the output of the function as the 
point itself. These two labeled points became visual boundaries for Nate, between which lay all 

                                                
2 Statement 1: Suppose that f is a continuous function on [a, b] such that f(a)≠f(b). Then, for all 
real numbers c in (a, b), there exists a real number N such that f(c)=N. 

A point that the 
interviewer marked and 
asked Nate about in order 
to further probe his 
meaning for “between” 

Nate’s labels for points 
along the curve 
corresponding to various 
c values 

Nate’s 
labels for 
the values 
2.5 and 0 
on the 
graph 
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of the relevant N values.  In other words, he interpreted the relevant values of N “between f(a) 
and f(b)” as all of the points on the path of the curve between the starting point that he labeled as 
f(a) and ending at the point in space that he labeled f(b). Nate’s response to the question of the 
curve extending beyond the point (b, f(b)), but including values that are numerically between f(a) 
and f(b), is further evidence that Nate conceived of “between f(a) and f(b)” as all of the points 
along the path between (a, f(a)) and (b, f(b)). While Nate said the point in question was not 
between f(a) and f(b), he acknowledged that this point was numerically between 2.5 and 0 (the 
values of f(a) and f(b)). The fact that Nate did not ignore the numerical value of the outputs, and 
even acknowledged the confusion surrounding this meaning indicates that he recognized 
multiple possibilities for the meaning of between.  Nate’s interpretation of “between” in terms of 
the location of the points, prompted by his visuospatial perception of the graph, reveals the 
power of his visual perception to override his numerical evaluations.  

Together, both Jay’s and Nate’s meanings for “between” and their subsequent evaluations of 
the given statements highlight the role of visual reasoning in evaluating such statements. Since 
both participants understood the quantifiers and conditional structure of Statement 1 the same 
way, but had different truth-value evaluations, the difference in their visual reasoning became the 
focus of our analysis. For Jay, the phrase “between f(a) and f(b)” was visually connected to 
horizontal lines between the values of f(a) and f(b).  Jay interpreted the outputs of the function as 
values, distinct from the coordinate points on the graph and thus was classified as a value-
thinker. For Nate, “between f(a) and f(b)” referred to every point along the path of the graph 
between the location f(a) (at (a, f(a))) and the location f(b) (at (b, f(b))). Since Nate did not 
distinguish between the outputs of the function and the locations of the coordinate point on the 
curve, Nate was labeled a location-thinker. In summary, Nate and Jay, both successful Advanced 
Calculus students consistently interpreted “between” differently, which led to their different 
understandings, and subsequent opposing truth-value evaluations of Statement 1. 

 
Discussion 

Based on our findings that almost half of the students whom we interviewed were identified 
as location thinkers, visual reasoning about mathematical statements plays a significant role in 
students’ understanding. These results highlight and explain some important aspects of students’ 
graphical activity that were not previously accounted for by current theories and studies on visual 
reasoning (Moore & Thompson, 2015; Moore, 2016). Thus, the use of our constructs of value-
thinking and location-thinking could progress the depth of analysis in the field of student 
graphical activity, especially with regard to ideas from Calculus and Analysis. As illustrated 
through the cases of Nate and Jay, different interpretations for “between,” both rooted in visual 
reasoning, contributed to different evaluations of a complex mathematical statement about real-
valued functions. While in our study, value-thinking helped students to understand versions of 
IVT, in other contexts, such as Geometry, location-thinking may be preferable. Ideally, students 
should possess the ability to think in both ways, as well as the discernment for when to use each. 
Overcoming various perceptual cues found in graphs, beyond conceiving of the graph as a static 
shape, is a nontrivial achievement, even for advanced students. Teachers utilizing such 
representations should support students in overcoming adherence to visual cues. In the 
classroom, instructors should be aware of the various ways in which students may interpret 
information from a visual representation. Further research on this topic may include developing 
instructional tasks to address this topic, whether in the context of the IVT or other statements 
commonly associated with graphs, such as the formal limit definition of continuity at a point. 
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Features of Explanatory Proofs: An Exploratory Study 
 

Eyob Demeke 
California State University, Los Angeles 

 
In mathematical research as well as pedagogy, mathematicians rely on proofs to convey 
mathematical knowledge. Both mathematicians and mathematics educators have argued that a 
proof is more valuable to students when it explains why a theorem is true. In this contributed 
report, I discuss attributes of explanatory proofs that eleven doctoral students in mathematics 
described. Doctoral students in this study interpreted the nature of mathematical explanation in 
the context of a proof in a wide range of ways. In particular, these participants expressed that 
they are more likely to consider a proof more explanatory when it succeeds in providing (a) 
insight into the derivation of certain formulas, (b) intuition as to why the theorem is true, or (c) 
insight into how the author or the reader could have discovered the proof in practice.  
 
Keywords: Proof, Mathematical explanation, Roles of proofs, Abstract Algebra. 

 
In 1976, two mathematicians—Kenneth Appel and Wolfgang Haken—jointly supplied a 

computer-assisted proof of the four-color theorem, which roughly states that four colors are 
sufficient to color the regions of any map so that no two adjacent regions have the same color. 
Soon after its publication, the proof generated controversy within the mathematics community. 
The controversy was less about the validity of the proof but more about absence of insight gained 
from the method the proof employed. For some prominent mathematicians such as Paul Halmos, 
the proof failed to provide a sense of illumination as to why the theorem is true, since it relied on 
a computer program verifying thousands of cases (Thurston, 1994). The controversy surrounding 
the proof of the four-color theorem suggests that for a mathematician a proof is far more than a 
certificate of truth and that mathematicians have considerable interest in the reasoning used in a 
proof. Furthermore, we have evidence lending support to the claim that mathematicians do not 
always need a proof in order to believe a claim or proposition. In a recent survey study of 
mathematicians, Weber et al. (2014) argued that mathematicians do obtain conviction based on 
quasi-empirical or heuristic evidence. de Villiers (1990) also noted this when he wrote: “proof is 
not necessarily a prerequisite for conviction—conviction far more frequently is a prerequisite for 
proof” (p. 18).  

Furthermore, a careful look at the history of mathematical research suggests that 
mathematicians continue to search for proofs for conjectures that are widely believed to be true. 
Consider, for instance, the Riemann hypothesis; it is believed that most mathematicians consider 
it to be true, yet mathematicians continue the search for a proof. This is perhaps because a proof, 
if found, will be a rich source of insight into why Riemann’s conjecture is true. In their book The 
Mathematical Experience, Davis and Hersh (1983) made the following observation on why 
mathematicians continue to search for the proof:  

…It is interesting to ask, in a context such as this, why we still feel the need for a 
proof…It seems clear that we want a proof because…if something is true and we 
can’t deduce it this way, this is a sign of a lack of understanding on our part. We 
believe, in other words, that a proof would be a way of understanding why the 
Riemann conjecture is true, which is something more than just knowing from 
convincing heuristic reason that is true (p. 368). 
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The quote above underlines the fact that verification of the certainty of a theorem is not the 
only role a proof plays in mathematical scholarship. Several authors such as de Villiers (1990) 
have written extensively about the various roles a proof can play in conveying mathematical 
understanding. This paper aims to explore the explanatory role a proof plays in conveying 
mathematical understanding. In other words, this study seeks to expand our understanding of 
what it really means for a proof to explain by collecting and analyzing interview data from 
doctoral students in mathematics with a wide range of research interests.  

 
Conceptual Framework and Relevant Literature 

 
According to de Villiers (1990), a proof can function as a means of verification, explanation, 

systematization, discovery, or communication. Hersh (1993) maintains that in mathematical 
research conviction is an essential aspect of any valid mathematical proof. Hersh (1993), in fact, 
defines a proof simply as: “a convincing argument, as judged by competent judges” (p. 389).  

For a mathematician, a proof—beyond convincing—also could function as an explanation as 
to why a theorem is true (de Villiers, 1990; Hersh, 1993; Knuth, 2002; Thurston, 1995; Weber, 
2002; Weber, 2008). Roughly speaking, a proof serves as an explanatory argument when it can 
lead one to “acquire an intuitive understanding of the main ideas of the proof” (Fukawa-
Connelly, 2013, p.2). Moreover, in mathematics instruction, researchers have suggested that the 
primary purpose of a proof in a mathematics class should be to provide complete explanations 
why a given theorem is true (Hersh, 1993; Hanna, 1995; Weber, 2012; Yopp, 2011). Hersh 
(1993) writes: “proof can make its greatest contribution in the classroom only when the teacher 
is able to use proofs that convey understanding” (p.7). Harel and Sowder (2007) also noted this 
when they said: “…mathematics as sense making means that one should not only convince 
oneself that the particular topic/procedure makes sense, but also that one should be able to 
convince others through explanation and justification of her or his conclusions” (p. 808-809). 
Mathematics professors interviewed in Weber’s (2012) and Yopp’s (2011) study also maintain 
that they present proofs to students to convey understanding of why theorems are true.  

The consensus view from research cited above is that the primary role of a proof—at least in 
the teaching of mathematics both at the K-12 and undergraduate levels—should be to convey 
mathematical explanations (Weber, 2012; Hersh, 1993). That is to say, a proof should help 
students develop understanding of why something (be it a claim, proposition, lemma, theorem, 
corollary, and so forth) is true. However, the relatively few existing studies on this topic do not 
provide a full account of what it means for a proof to explain or when a proof explains. To 
reiterate, one of the goals of this study is to expand our understanding of what it means for a 
proof to explain. 

In addition to verifying that a theorem is true and explaining why it is true, a proof functions 
as a means of systematization of known results (de Villiers, 1990). According to de Villiers 
(1990), proofs are our only tool “in the systematization of various known results into deductive 
system of axioms, definitions, and theorems” (p.20). For example, the proof of the intermediate 
value theorem for continuous functions; de Villiers (1990) asserts that the primary function of 
this proof is basically a systematization of continuous functions. Systematization, among other 
things, provides global perspective, simplifies mathematical theories, and enables us to identify 
inconsistencies, circular reasoning, and hidden assumptions (de Villiers, 1990).  

Finally, proofs can convey established or novel techniques that can later be used to tackle 
other problems (Thurston, 1994; Weber, 2012; Yopp, 2011; Lew et al., 2015). For example, 
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mathematicians interviewed in Weber’s (2010) study stated that when reading a proof, they 
would hope to learn new techniques that might eventually help them prove conjectures or 
problems they have been thinking about. Also, mathematicians interviewed in Mejia-Ramos and 
Weber (2013) said that the main reason they read published proofs is to gain techniques that they 
can later apply to other problems. The notion that mathematicians use proofs to convey proving 
methods or techniques is not limited to research publication; indeed, a significant number of 
mathematicians interviewed in both in Weber’s (2012) and Yopp’s (2011) study claimed that 
they presented proofs to students to illustrate proving techniques. A recent study by Lew et al. 
(2015) also maintains that mathematics professors present proofs to convey new proving 
methods.  

Methods 

Participants 
The data to address the research questions are obtained from interviewing eleven doctoral 

students in pure mathematics from a PhD granting public university in the northeastern United 
States. All participants have passed their PhD qualifying exams. The participants’ research 
interests include, but are not limited to, algebra, category theory, algebraic topology, analysis, 
and operator algebra. After completing their PhD degree, nearly all participants (nine out of 
eleven) indicated that they wanted to pursue an academic career in a more teaching focused 
institution. This attribute of these participants is of particular importance to this study as they are 
near experts and likely to be teaching undergraduate mathematics courses in the near future. 
Also, researchers have argued that for mathematics research to advance, we should examine the 
beliefs and practice of mathematicians (Harel & Sowder, 2007). 

Research Procedure 
I met each participant individually for a videotaped, semi-structured task-based interview that 

resulted in about 63 minutes of footage. One of the goals of these interviews was to gain insight 
into characteristics of proofs that some consider explanatory. During the interview, I gave 
participants four tasks. Two of the tasks are given in appendixes A and B. In each task, 
participants were asked to read two different proofs proving the same result. Participants were 
told that they can write on and/or highlight the text of the proofs. Additionally, they were 
encouraged to think out loud while reading each proof. 

Participants were asked to read each proof for understanding as opposed to validating the 
proofs, and they were told that these proofs are taken from either an undergraduate textbook or a 
research journal. The methodological rationale for incorporating two proofs for each result was 
to elicit the multiple perspectives on the nature of explanatory proofs. For each task, I asked 
participants to compare and contrast each proof. In particular, after participants read both proofs 
in each task, I asked them the following questions: 

●  Does one proof show something different than the other proof? If so, how so? 
●  Do you prefer one proof to another? If so, why? If not, why not? 
●  Do you find one proof more explanatory than the other? Why or why not?  

Materials: The Tasks  
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During the interview, rather than simply asking participants if they hope to gain explanation 
from proofs they read, I opted to elicit some narrative as to how participants view the nature of 
mathematical explanation in the context of proofs. To that end, I took proofs deemed explanatory 
in the literature and asked participants questions to probe their views on the method employed in 
the proofs in tasks A and B. A subset of proofs in tasks A and B has been presented in the proof 
literature as being conceptually more beneficial to students because these proofs succeed in 
showing not only that something is true—convincing or verifying that the claim is true—but 
also, they provide an explanation of why it must be true (cf. Hanna, 1990, Knuth, 2002, Cellouci, 
2008). Additionally, participants were asked questions to elicit some narrative about their 
philosophical disposition about proofs. Of particular interest to this research was whether or not 
they distinguished proofs that only verify from proofs that, in addition to verification, also 
establish why a theorem is true. 

Data Analysis 
Each interview was transcribed fully and imported to a qualitative software, MAXQDA, for 

analysis. Participants were assigned pseudonyms G1-G11. I then analyzed interview transcripts 
using thematic qualitative text analysis (Kuckartz, 2002). In the first pass through the data, 
participants’ responses were organized by topic: explanatory role vs. non-explanatory role. I 
coded participant’s response as explanatory role when the response followed a prompted 
question about whether a participant found a given proof explanatory or not. Furthermore, a 
participant’s response was coded as explanatory role when it suggested any of the following 
comments: 

• A proof establishes a cause or reason for the veracity of the theorem (Yopp, 2011) 
• A proof provides an intuitive understanding of the key ideas so that from the proof 

it is clear why the theorem must be true (de Villiers, 1990; Steiner, 1978; Yopp, 
2011; Fukawa-Connelly, 2013) 

• A proof provides intuition about mathematical objects or the topic involved in the 
proof  

Furthermore, I wrote analytic memos while carefully reviewing each interview transcript. During 
this process I documented emerging themes; in particular, those relating to how participants 
talked about the meaning of explanation in proofs.  

 
Results 

 
Participants described how a proof can explain in a wide range of ways. For example, for 

G11, a proof is more explanatory when it succeeds in showing why a certain result is true by 
showing how it can be derived. According to this interpretation of mathematical explanation in 
proofs, participants such as G11 drew distinction between proofs that only verify from those that, 
in addition to verification, also provide a reason as to why something is true. When I asked G11 
which proof in task B he finds more explanatory, he commented: 

Obviously the first one…because...so we're trying to show that the sum of the first 
n integer is given by this formula. And uh so it actually shows you where this 
formula comes from. It exactly shows if you do it this way then it exactly shows 
where this formula comes from, but now in the second proof you are starting with 
this statement that let p"be this number n times n plus one over two so where did 
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you get this from… 
In the excerpt above, note that G11 does think that proof 2 of task B, the induction argument, 

is valid and does verify that the formula for the sum is correct; however, he pointed out that it 
does not provide a reason or insight into why "

#$"
%

 is the formula for the sum of the first n 
positive integers. In short, proof 1 shows how one could have obtained or derived the formula, 
whereas proof 2 first assumes the formula and then it shows that it is correct. 

Participants stated that while some proofs such as proof 1 in task B do make the distinction 
between showing something is true—verification—and why it is true more apparent, other 
proofs are less successful at doing so, as the following excerpt from G1 illustrates: 

Why in mathematics is a tricky thing. Uh so for some of them like the sum of k 
where k is 1 to n [referring to the first proof of task B], I feel like the why there is 
the first proof where it’s gauss’s proof. It’s self-evident, it’s nice.  

Some participants, such as G5 and G7, also spoke about mathematical explanation in proofs 
in terms of the extent to which a proof displays the author’s thought process. That is to say, these 
participants find a proof that disguises the thinking behind the discovery of the proof less 
explanatory. And, they consider proofs that enhance one’s clarity by providing some sense of 
understanding as to how the author originally interpreted the theorem to be more explanatory. 
Consider, as an illustration, the various ways participants described the absence of this 
phenomena—mathematical explanation—in proofs of task A. G7 said the following: 

Okay so here we say note that 641 has this expression. Okay now 641 has many 
expressions. Okay and so it seems funny to say note that well I don’t know. I 
guess maybe it’s…and it doesn’t say like why are we considering the number 
641…where does this number come from you know? Did we just try the you 
know 200 and however many odd numbers or odd numbers before that or I don’t 
know did we try the prime numbers up to 641 and finally that’s the one that 
worked? So you know this is very like opaque to me [emphasis G7’s] 

Likewise, G7 did not find the second proof of task A any more explanatory than the first, as 
the following excerpt illustrates: 

Well it’s conclusive but it doesn’t teach me anything. Okay and this one um so I 
mean there are two important parts to this proof and one of them is hidden. Okay 
so one important part of this proof is um we should identify, somehow identify 
this number 641 with which to attack this the 2 to the 2 to the 5th plus 1. So I mean 
we’re going to attack 2 to the 2 to the 5th using 641. Okay. So some part of this 
proof is coming up with 641 is the useful number we should apply. Okay and then 
all right and the rest of the proof is this modular arithmetic argument to get you 
know to get that it works. You know I sort of lost interest. 

In both excerpts above, we observe that for G7, the mysterious appearance of 641 made both 
proofs less explanatory. Both proofs fail to provide some sense of understanding as to why or 
how the authors thought of the number 641 to be important in the first place. To put it simply, 
both proofs were less successful in conveying how the author came up with those factors of the 
number in question, and as such, G7 found them less explanatory. Another participant, G5, also 
found proof 1 of task A less explanatory. He commented:  

I mean okay I will say this at least the second proof uses techniques of number 
theory to convince me that 641 divides this number but it’s still kind of coming 
off like they know 641 is going to divide this number. I mean where’s the lead up 
to knowing that 641 is even going to be a candidate? You know that would be 
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nice. I mean I look at both of these and I still just go okay uh how would I ever 
recreate this. 

In this excerpt, G5 stated that proof 1 of task A failed to provide an explanation for the 
sudden appearance of the number 641. He asked, “where’s the lead up to knowing that 641 is 
going to divide this number.” According to G5, proof 1 masks the thought process that led to its 
discovery and the proof would have been more exploratory had it described why the number 641 
is crucial or how one could have discovered it initially.  

 
Discussion 

 
Hanna (1995) writes: “in trying to define the true function of proof in mathematics education 

it is helpful to look at the function of proof in mathematics itself” (p.14). This study contributes 
to the mathematics education community in several ways. First, it expands our understanding of 
the roles a proof can play in conveying mathematical understanding; in particular it sheds light 
on how proofs can convey mathematical explanation. 

Much of the scholarship on proof and proving (e.g., Hanna, 1990; Weber, 2012; Yopp, 2011; 
Hersh, 1993; De Villiers, 1990) has suggested that a proof is pedagogically more valuable when 
it is used during instruction as explanatory argument, yet the notion of mathematical explanation 
in proofs—despite being one of the most cherished roles of a proof—is rarely articulated in 
mathematics education research. Several authors such as Hanna (1990) and de Villiers (1990) 
discuss the explanatory role of a proof, but neither of these studies present interview or survey 
data with students or mathematicians; instead, the discussion of explanatory proof in previous 
studies is merely based on the authors’ reflections and hypotheses based on their own 
experience. Moreover, even though both Weber (2012) and Yopp (2011) present the explanatory 
role of a proof based on interviews with mathematicians, still the lack of concrete examples in 
these studies makes the distinction between the verification and explanation role of a proof 
subtle.  

While participants in this study did not display the same interpretation of mathematical 
explanation in proofs, their responses provided a rich source of perspective on the nature of 
proofs that are deemed explanatory. Further study, with more participants and a wider range of 
proofs, is called for so that we can continue clarifying our understanding of what it means for a 
proof to explain.  

The current study also provides data that suggest that certain presentations of a proof have 
the potential to enhance the proofs’ explanatory power. For example, I conjecture that a proof is 
more likely to be explanatory when it clearly displays to its audience how its key ideas are linked 
to prove the theorem. In other words, the degree to which a connection between a proof’s key 
ideas are made transparent to the reader has some bearing on the level of mathematical 
explanation conveyed in the proof; in some cases, this entails including more detail or 
explanation of assertions within a proof. Sometimes explanation of assertions within a proof can 
be made using visual aids such as pictures or diagrams. However, the extent to which students 
can actually extract a mathematical explanation from proofs that incorporate a picture or a 
diagram is mainly untested. Future research can examine the pedagogical effectiveness of proofs 
that include pictures, heuristic approaches.  
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Appendix A: Task A 
Note: The following two proofs are borrowed from Avigad (2006). 

 
Claim: 2%- + 1	 is not prime.  

Proof 1 
A calculation shows that 2%- + 1 = 641 6700417 .	Q.E.D. 

Proof 2 
First, note that 641 = 5 28 + 1 ⟹ 5 28 ≡ −1 <=>	641 ⟹ 5? 2%@ ≡ 
1 <=>	641 . On	thoe	other	hand,we	have	that	641 = 5? + 2? ⟹ 5? ≡ −2?(<=>	641). 
Then	 5? 2%@ ≡ −2O% <=>	641 . So	we	have	that	1 ≡ −2O% <=>	641 .	Q.E.D.  

Appendix B: Task B 
Note: The following two proofs are borrowed from Hanna (1990) 
Claim:	 Q = R(R$S)

%
R
TUS .	  

Proof 1 
We write out the terms first forward (as in *) and then backward (as in **) 
  1  +   2  +  3  +… +  (n-1)  +  n  …………(*) 
  n   +  (n-1) +  (n-2)  +… +   2  + 1  ………...(**) 
 
The conclusion follows from the fact that the sum of the two terms in each column is (n+1) and 
we have n columns. Q.E.D.   

Proof 2 
We will proceed by induction. Let	W(X) be a statement that says the sum of the first	X natural 
numbers is R R$S

%
. We will show that W(X) holds for all natural numbers X.	The case for X = 1 is 

immediate. For the inductive step, assume that for some Q, W Q 	is	true, so	1 + 2 +⋯+ Q =
T(T$S)

%
. We must show that W Q + 1 	is	also	true.	Since 1 + 2 +⋯Q + Q + 1 = T T$S

%
+

Q + 1 = T$S T$%
%

, we conclude that W X  is true. Q.E.D. 
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Undergraduate Students’ Holistic Comprehension of a Proof 
 

Eyob Demeke 
California State University, Los Angeles 

 
In this paper I explore eleven undergraduate students’ comprehension of a proof taken from an 
undergraduate abstract algebra course. My interpretation of what it means to understand a 
proof is based on a proof comprehension model developed by Mejia-Ramos, et al. (2012). This 
study in particular examines the extent to which undergraduate students are able to summarize a 
proof using the proof’s higher-level ideas. Additionally, eleven doctoral students in mathematics 
were asked to provide a summary of the same proof that the undergraduate students received. 
Undergraduates’ holistic comprehension of the proof was then analyzed in light of summaries 
that the doctoral students provided. The main finding of the study is that undergraduates’ 
comprehension of the proof was overall inadequate—notably, they demonstrated limited skills in 
summarizing a proof via the proof’s key ideas. Moreover, undergraduates failed to recognize the 
scope of the method used in the proof. 
 
Key words: Proof, Proof Comprehension, Abstract Algebra. 

 
In advanced undergraduate mathematics courses, students are expected to spend a significant 

portion of their time reading proofs. Although proof comprehension is a fundamental aspect of 
undergraduate mathematics education, studies by Conradie and Frith (2000), Rowland (2002) 
and Weber (2012) suggest that mathematicians rarely measure their students’ comprehension of 
proofs. For example, Weber (2012) reports that mathematicians assess their students’ 
comprehension of proofs by asking students either to reproduce the proof or prove a similar or a 
trivial consequence of proofs they presented in class. However, Conradie and Frith (2000) 
suggests that asking students to reproduce a proof may not be a pedagogically useful way of 
assessing students’ understanding of a proof because students can and do correctly reproduce a 
proof by simply memorizing it word for word, with virtually no understanding at all. 

Despite its importance in undergraduate mathematics education, research on undergraduates’ 
comprehension of proofs is limited. In fact, much of the proof literature focuses on students’ 
aptitude to construct or validate proofs and less on their ability to comprehend proofs (Mejia-
Ramos et al., 2012;  Mejia-Ramos & Inglis, 2009). Mejia-Ramos and his colleagues (2009) 
systematically investigated a sample of 131 studies on proofs and they found that only three 
studies focused on proof comprehension. They hypothesize that the scarcity of the literature on 
proof comprehension is perhaps due to the lack of a model on what it means for an 
undergraduate student to understand a proof. In this study, I adopt an assessment model for proof 
comprehension that was developed by Mejia-Ramos, et al. (2012) to explore undergraduates’ 
comprehension of proofs. In particular, this study seeks to address the following research 
questions.  

To what extent do undergraduates comprehend a proof? More specifically, to what extent do   
undergraduates: 

• summarize a proof using its high-level ideas, 
• recognize and appreciate the scope of a method used in a proof? 

 
Theory: Assessment Model for Proof Comprehension 
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Mejia-Ramos, et al. (2012) proposed that one can assess undergraduates’ comprehension of a 

proof along seven facets. These seven facets are organized into two overarching categories: local 
and holistic. A local understanding of a proof is an understanding that a student can gain “either 
by studying a specific statement in the proof or how that statement relates to a small number of 
other statements within the proof” (p.5). Alternatively, undergraduates can develop a holistic 
comprehension of a proof by attending to the main ideas of the proof. Below, I will elaborate on 
what it means to understand a proof holistically. 

 
Assessing the Holistic Comprehension of a Proof 

According to the proof comprehension model, the holistic understanding of a proof consists 
of being able to: (1) summarize the proof using the proof’s main ideas, (2) identify the modular 
structure of the proof, (3) recognize and extend the method used in the proof, and (4) illustrate 
the method of the proof using a specific example or diagram. They developed these four facets of 
holistic comprehension of proofs based on: (a) mathematicians’ perspectives on how and why 
they read and present proofs and what it means for them to understand a proof; (b) the proof 
literature on the role of proof; and (c) the recommendations by mathematicians and mathematics 
educators on proof presentations that would presumably improve students’ proof comprehension. 
Below, I elaborate on (1) and (3).  

Summarizing a proof via its high-level ideas. Mejia-Ramos, et al. (2012) state that “one 
way that a proof can be understood is in terms of the overarching approach that is used within a 
proof” (p.11).” Being able to summarize a proof via its high-level ideas entails understanding the 
proof’s “top-level overview” or “big idea”. A good summary of a proof may include what 
Raman (2003) describes as a proof’s key ideas. Raman (2003) defines key ideas as “heuristic 
ideas which one can map to a formal proof with appropriate sense of rigor” (p. 323). Key ideas 
provide “a sense of understanding and conviction why a particular claim is true” (Raman, 2003, 
p. 323). Mathematicians can evaluate their students’ understanding of this aspect of a proof in at 
least two ways. They can, for instance, directly ask students to provide a brief summary of the 
proof that includes the proof’s higher-level ideas. Alternatively, they can provide students with a 
few summaries of the proof and ask them to choose which summary best captures the main ideas 
of the proof (Mejia-Ramos et al., 2012). In this study, I asked undergraduates to provide a proof 
summary using the proof’s main ideas. 

Transferring the general ideas or methods to another context. Mejia-Ramos, et al. (2012) 
suggested that identifying the scope of a method or technique used in a proof is an important 
aspect of proof comprehension. Mathematicians can assess this aspect of proof comprehension 
by asking students to (a) identify methods or techniques without which the proof would have 
collapsed, or (b) prove new claims by applying methods similar to those used in the original 
proof. In this study, undergraduates were asked questions to elicit their understanding of the 
scope of a method used in a proof. 

 
Review of the Literature 

 
As noted earlier, educational research on proof comprehension in undergraduate mathematics 

has received little emphasis. Osterholm (2006) was among the first to look into student’s 
comprehension of mathematical texts. He conducted a quantitative study of reading 
comprehension of abstract algebra students (he compared texts with one including symbols and 
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another one not). He concludes that “mathematics itself is not the most dominant aspect affecting 
the reading comprehension process, but the use of symbols in the text is a more relevant factor” 
(p.325). His contention is based on the fact that the group of students who had almost no 
symbols and notations in their reading assignment outperformed, in a reading comprehension 
test, those whose reading assignments involved mathematical symbols and notations. Although 
Osterholm (2006) does point to difficulties student encounter while reading mathematical texts, 
it should be noted that his study only asked students to read mathematical texts and not proofs 
specifically.  

Research also suggests that undergraduates are not successful in gleaning understanding from 
the proof they see during lecture (Selden & Selden, 2012; Lew et al, 2015). For example, 
students interviewed in Lew et al.’s (2015) study fail to comprehend much of the content the 
instructor desired to convey, including the method used in the proof. Students interviewed in 
Selden and Selden’s (2012) study also failed to understand a proof holistically since they were 
fixated on verifying each line and put little emphasis in attending to the overarching methods 
used in the proof. One purpose of this study is to build on the growing body of research on proof 
comprehension. 

 
Methods 

 
Research Settings  

This study took place in a large public university in the northeastern United States. The 
content of the proof used in this study come from an introductory abstract algebra course. In the 
chosen research setting the standard textbook used is Abstract Algebra: An introduction by 
Hungerford (2012). The goal of the course (as stated in the syllabus) is to introduce students to 
the theory of algebraic structures such as rings, fields, and groups in that order. 

 
Participants 

Undergraduate student participants. Since the main purpose of this study is to explore 
undergraduates’ comprehension of proofs—in particular, proofs that appear in an introductory 
abstract algebra course—I personally approached undergraduates who had taken or were 
enrolled in an introductory abstract algebra course. Eleven undergraduates agreed to participate 
in this study and were assigned pseudonyms S1-S11. At the time of the study, six of the eleven 
undergraduate participants (S3, S5, S6, S7, S8, and S9) were enrolled in an introductory abstract 
algebra course. Seven participants—S1, S2, S3, S5, S6, S7, S8, and S9—were pursuing a major 
in secondary mathematics education and said they intended to be high school mathematics 
teacher. The remaining four students were mathematics majors. Furthermore, each participant 
had taken a minimum of three proof-based courses and all but three (S1, S3, and S6) said they 
received an A or B in their introduction to proof course. Participants’ responses on a background 
survey suggest that each participant spent at least two hours per week reading proofs outside of 
class.  

Doctoral students. Eleven doctoral students at the aforementioned research site agreed to 
participate in this study. I used doctoral students to analyze undergraduates’ summaries of a 
proof. At various times, I asked the doctoral students to provide, in writing, a summary of a 
proof using the proof’s key or main ideas. To avoid confusion, in the remainder of this paper I 
will refer to these doctoral student participants as experts. 
Materials and Research Procedures 
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 In this study undergraduates were asked to read a proof that shows that any finite integral 
domain is a field. This proof is given in appendix 1. I chose this proof because (a) it nicely draws 
connection between two important topics covered in abstract algebra: integral domains and 
fields, and (b) it uses a proof technique that I speculated most participants probably have not 
seen.  

The principles I employed to write this pedagogical proof—a proof that is geared toward 
undergraduates for the purpose of pedagogy—is based on the Lai, Weber, & Mejia-Ramos 
(2012) study. Lai et al. (2012) report that mathematicians valued pedagogical proofs that (1) 
made assumptions and conclusions of the proof explicit, (2) centered on important equations to 
emphasize the main ideas, and (3) did not contain “true but irrelevant statements.” (p.94). Also, 
when writing the proof, I consulted mathematics professors and made appropriate modifications. 

Participants were asked to read the proof until they felt they understood it and were 
encouraged to write and/or highlight on the proof paper as well as to think out loud while 
reading. Once a participant finished reading the proof, she/he was asked to: 

• to provide a good summary of the proof including the proof’s main or higher-level 
ideas 

• to indicate assertion(s) in the proof that would fail if ! was infinite. 
 

Analysis 
Recall that eleven doctoral students in mathematics were asked to write a summary of the 

proof using what they think are the main ideas of the proof. Doctoral students were also asked to 
describe the key ideas of each proof. First, I carefully studied doctoral students’ summaries of 
the proof. I then developed a synthesized summary for the proof. This synthesized summary, 
which will hereafter be referred to as the expert’s summary, also incorporated all the key ideas 
that doctoral students described for each proof. That process resulted in the following summary 
of the proof.  

The proof shows that any finite integral domain R is a field by showing that any 
non-zero element of ! has a multiplicative inverse. Let " be any non-zero element 
of R. The absence of zero divisor in ! taken together with the fact that ! is finite 
implies that left multiplication by " defines a bijective map from the integral 
domain to itself (In	other	words, /0: ! → ! given by /0 3 =
"3	is	a	bijection).	Surjectivity of this map guarantees that " has a multiplicative 
inverse. 

The key ideas identified in the expert’s summary of the proof: 
• overarching method: given an arbitrary non-zero element " ∈ !, one can show 

that there exists = ∈ ! such that "= = 1? (! is a finite integral domain) 
• define a left multiplication by a non-zero element " ∈ !, /0: ! → !, 3 ↦ "3. Use 

the kernel of /0 to show that it is injective.  
• the finiteness of ! coupled with the injectivity of /0 shows that /0 is a surjective 

map from !	to !. 
The above expert’s summary of the proof was eventually verified by two experienced 

researchers in mathematics education as to whether or not it indeed incorporated all the key ideas 
of the proof that doctoral students discussed; modifications were then made to the expert’s 
summary, as needed.  

Finally, using a rubric, two researchers, both with a master’s degree in mathematics, 
independently conducted a comparative analysis of undergraduates’ summaries of the proof 
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against expert’s summaries. When disagreement emerged, w engaged in discussion until a 
consensus was reached.  

 
Results and Discussion 

 
Results on Undergraduates’ Summaries of the proof 

Recall that undergraduates’ summaries of the proof were analyzed in comparison to the 
expert’s using a rubric that is omitted here for a shortage of space. Nearly all participants, nine 
out of eleven, provided a summary of the proof that suggested a limited proof comprehension. In 
particular, their responses indicated that they either poorly or very poorly understood the proof. 
The results of students’ summaries of the proof is given in Table 1. Note, in table 1, that a 
majority, six undergraduates, provided a very poor summary of the proof, which implies that 
their summary failed to highlight the main ideas of the proof that was described in the expert’s 
summary.  
Table 1  Undergraduate students’ summaries of the proof 

Evaluation Undergraduate students 
Very poor S3, S5, S6, S8, S9, S11 
Poor S1, S2 
Satisfactory S4, S7, S10 
Good None 

In order to give you a sense of a very poor summary, I will provide a detailed description of 
summaries given by S5, S8, and S9. When asked to provide a good summary of the proof 
including the proof’s main ideas, S5 offered the following summary: 

R is an integral domain and field. It is both surjective and injective to the kernel of 
the function that defines it. There is also 1? ∈ ! that allows it to have 
multiplicative inverse, thus units. I know a field’s non-zero elements all make 
units, a field. 

 S5’s summary consists of incomplete sentences and phrases that are either mathematically 
incorrect or appear to have been copied from the proof word for word. For instance, S5 begins by 
supposing the thing that needs to be shown—that R is a field. Also, there is evidence of a 
misunderstanding about injectivity and surjectivity of a map. This is evident when he asserts that 
R, as opposed to /0, is both surjective and injective. Finally, S5's summary doesn’t mention how 
crucial assumptions in the proof such as the finiteness of R are used in the proof. Thus, S5's 
summary is deemed to be very poor, which means it was considered to be very different from the 
expert’s as it did not highlight main ideas of the proof. S8, likewise, provides a very poor 
summary:  

The proof basically gave a less textbook traditional explanation of a way to prove 
that all finite integral domains are fields. It used the understandings of kernals 
[sic], bijections, injection, surjections in order to prove facts about rings, where 
usually you learn the facts about rings before being introduced to functions 

Her summary above makes no mention of the proof’s high-level or key ideas and thus 
does not suggest a satisfactory comprehension of the proof. While she enumerates topics 
that are used in the proof, her summary does not illustrate how they were employed in the 
proof. S8's summary, for example, indicates that the concept of bijectivity is employed in 
the proof, but she does not explain how it is used. Along the same lines as S5, and S8, S9 
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also supplied a summary of the proof that did not suggest a satisfactory comprehension of 
the proof. For example, S9 provided the following summary: 

Given a finite integral domain, you can prove that it is a field by showing it has a 
multiplicative inverse, no zero divisors, injective and surjective, kernels, and if 
there is a multiplicative inverse such that "3 = 1? and " ≠ 0? then ! is a field. 

S9’s summary above says very little beyond restating the claim. S9 essentially repeats 
phrases that appeared in the proof verbatim. He does not draw any connection between key ideas 
described in the expert's summary of the proof. Also, S9’s summary states that R is first shown 
not to have zero divisors, but this is neither necessary nor true; R is assumed to be an integral 
domain and therefore it does not have zero divisors. Overall, S9's summary fails to mention the 
proof’s key ideas and consequently shows limited comprehension of the proof. 
While the majority, six out of eleven students, provided what is considered to be a very poor 
summary of the proof, S1 and S2 supplied a poor summary of the proof. S2, for example, 
provided the following summary of the proof:  

The aim of the proof is to show that if ! is a finite integral domain, then ! is a 
field. It then wants to show that ! has a multiplicative inverse, then that the kernel 
of /0: 3 → "3 to be trivial. The prof then shows that 3 = 0 since if "3 = 0 then 
"	or	3 is 0 but " is not, thus ker /0 = {0} so /0 is injective. Thus, ! = |/0 ! |, 
which shows it is surjective. It then proves " has a multiplicative inverse, so ! is 
a field. 

S2’s summary is incoherent and appears to duplicate some parts of the proof word for word. 
Moreover, her summary includes way too much unnecessary information; for example, she 
repeats the argument for the triviality of /0. While S2’s summary does mention some key ideas 
that are noted in the expert’s summary, it doesn’t make the logical connection between those 
ideas. In fact, S2 appears to have the logic of the proof backward, as she seems to think the 
existence of multiplicative inverse is what guarantees the triviality of the kernel of /0.	 

While no one provided a good summary of the proof, three students—S4, S7, and S10—
provided a satisfactory summary of the proof. S7, for instance, summarized the proof as follows:  

First it is important to show each nonzero element of R has a multiplicative 
inverse. Then I consider a nonzero element " ∈ ! and the map of /0. I use the 
kernel of /0 to prove /0 is injective. Then from the fact that /0 is injective and 
therefore ! = /0 ! , /0 is also surjective. Finally, I show /0 3 = 1? hence " 
has a multiplicative inverse and therefore ! is a field. 

Evidently, S7’s summary above has significant resemblance to the expert's summary of the 
proof. In particular, S7 does mention some key ideas of the proof. However, she did not indicate 
the fact that the surjectivity of /0 depends on the finiteness of R, which was a crucial idea that 
was noted in the expert's proof. Furthermore, the last line of her summary is incorrect in the 
sense that /0 is not identically equal to the identity 1?. Also, based on what is stated at the very 
end of her summary, S7 does not seem to have understood how " (the fixed nonzero element) 
has a multiplicative inverse. However, S7's summary overall does bear some resemblance to the 
expert’s summary and suggests a satisfactory understanding of the proof. On the whole, while 
nearly all students provided a poor or a very poor summary of proof, no one provided a good 
summary. Indeed, only S4, S7, and S10 managed to provide a satisfactory summary of the proof.  
 
 

20th Annual Conference on Research in Undergraduate Mathematics Education 55920th Annual Conference on Research in Undergraduate Mathematics Education 559



Results on Undergraduates’ Ability to Recognize or Appreciate the Scope of a Proof’s 
Method  

No undergraduate demonstrated why ! must be finite for the proof to be valid. When asked 
why the method of the proof would fail if R was assumed to be infinite, six out of eleven 
undergraduates offered no response or said “I don’t know…” The other five students pointed 
incorrectly to an assertion that would fail if R is infinite. Table 2 below illustrates the various 
responses they provided:  

 
Table 2 Reasons undergraduates provided for why R must be finite  

Reason why R must be finite Participants 
R would not be commutative (line two) S1 
There wouldn’t be exactly be the same number of 
elements in each 

S3 

/0 would not be injective (line seven) S2, S8, S5 
No response/I don’t know/Not sure S4, S6, S7, S9, S10, S11 

Table 2 shows that participants failed to pinpoint a specific assertion in the proof that would 
fail—the argument in line eight—if R was infinite. That is to say, if R is infinite, /0 ! ⊆ ! and 
! = |/0 ! | taken together would not guarantee that /0 ! = !, which would not make 
/0	surjective.  

To summarize, Mejia-Ramos and colleagues (2012) maintain that being able to provide a 
good summary of a proof is a key indicator of comprehension. However, undergraduates in this 
study showed a limited comprehension of the proof. In particular, in their proof summary 
undergraduates failed to highlight the proof’s main idea.  For a large number of participants, 
their proof summary was essentially a replica of a few sentences that appeared in the proof. 
Further research is needed to identify why undergraduates fail to summarize a proof using the 
proof’s main ideas.  
 

Appendix 1 
 

Claim Let R be a finite integral domain. Then R is a field. 
Proof. 1. Let R be a finite integral domain whose multiplicative identity is 1? and whose 
additive identity is 0?. 

2. Since R is a commutative ring, it suffices to show that every nonzero element in R 
has a multiplicative inverse. 

3. Let a be a fixed nonzero element of R (" ≠ 0?).	Consider the map /0:	! → ! 
defined by /0:	3 → "3.	I first show that the kernel of /0 is trivial. 

4. Note that kernel of /0 = {3 ∈ !: /0 3 = 0?} = {3 ∈ !:	"3 = 0?}. 
5. Since R has no proper zero divisors, "3 = 0? ⟹ " = 0?	or	3 = 0?.	But, " ≠

0?	thus 3 = 0?. 
6. Therefore kernel of /0 = {0?} and so /0 is injective. 
7. Next, note that ! ≥ /0 ! .	Since /0 is injective, it follows that ! = /0 ! . 
8. Because /0 ! ⊆ ! and ! = |/0 ! |, I have that /0 is surjective. 
9. Finally, since 1? ∈ !, I have that ∃3 ∈ ! such that /0 3 = "3 = 1?.	So " has a 

multiplicative inverse. Therefore, R is a field. 
 

20th Annual Conference on Research in Undergraduate Mathematics Education 56020th Annual Conference on Research in Undergraduate Mathematics Education 560



References 

Conradie, J., & Frith, J. (2000). Comprehension tests in mathematics. Educational Studies in 
Mathematics, 42(3), 225-35.  

Lai, Y., Weber, K., & Mejia-Ramos, J. (2012). Mathematicians' perspectives on features of a 
good pedagogical proof. Cognition and Instruction, 30(2), 146-169.  

Maxwell, J. A. (2013). Qualitative research design: An interactive approach: An interactive 
approach (3rd ed.) Sage.  

Mejia-Ramos, J. P., & Inglis, M. (2009). Argumentative and proving activities in mathematics 
education research. In F. Lin, F. Hsieh, G. Hanna & d. M. Villiers (Eds.), Proceedings of the 
ICMI study 19 conference: Proof and proving in mathematics education (Taipei, Taiwan 
ed., pp. 88-93)  

Mejia-Ramos, J. P., & Weber, K. (2014). Why and how mathematicians read proofs: Further 
evidence from a survey study. Educational Studies in Mathematics, 85(2), 161-173.  

Mejia-Ramos, J., Fuller, E., Weber, K., Rhoads, K., & Samkoff, A. (2012). An assessment model 
for proof comprehension in undergraduate mathematics. Educational Studies in 
Mathematics, 79(1), 3-18.  

Raman, M. (2003). Key ideas: What are they and how can they help us understand how people 
view proof? Educational Studies in Mathematics, 52(3), 319-325.  

Osterholm, M. (2006). Characterizing reading comprehension of mathematical texts. 
Educational Studies in Mathematics, 63(3), 325-346.  

Selden, J., & Selden, A. (2009). Teaching proving by coordinating aspects of proofs with 
students’ abilities. Teaching and Learning Proof Across the Grades: A K-16 Perspective, 
339-354.  

Selden, A., & Selden, J. (2003). Validations of proofs considered as texts: Can undergraduates 
tell whether an argument proves a theorem? Journal for Research in Mathematics 
Education, 34(1), 4-36.  

Weber, K. (2012). Mathematicians' perspectives on their pedagogical practice with respect to 
proof. International Journal of Mathematical Education in Science and Technology, 43(4), 
463-482.  

 

20th Annual Conference on Research in Undergraduate Mathematics Education 56120th Annual Conference on Research in Undergraduate Mathematics Education 561



Generalising Univalence from Single to Multivariable Settings: The Case of Kyle 
 

Allison Dorko  
Oregon State University  

 
A function is defined as a mapping from one nonempty set (the domain) to another nonempty 
set (the co-domain or range) such that each element of the domain maps to exactly one 
element of the range. Algebra curricula typically include classification tasks in which 
students determine if a relation violates the univalence criterion – the condition that each 
element in the domain corresponds to exactly one element of the range. This paper provides a 
longitudinal case study of how one student generalised the univalence criterion from single- 
to multivariable functions. For f(x), Kyle primarily thought of univalence in terms of the 
vertical line test and the variables x and y. He generalised univalence for the multivariable 
function f(x,y) by thinking about input, output, independence, and dependence. Kyle’s story 
provides an example of how a student might generalise facets of the function concept in 
normatively correct ways.  

Key words: multivariable functions, generalisation, univalence  

Introduction 

Functions are fundamental to mathematics. Introduced in algebra, functions appear 
throughout calculus, real and complex analysis, transformational geometry, and many other 
areas of mathematics. It follows that understanding function is critical for student success in 
mathematics. While high school curricula have traditionally focused on functions of one 
variable, the Mathematical Association of America has proposed adding multivariable topics 
as a way to increase mathematical competence for all students (Ganter & Haver, 2011; 
Shaughnessy, 2011). Supporting this, research findings indicate that seventh graders can 
accurately model real-life situations of two variables (Yerushalmy, 1997). However, at the 
undergraduate level, we know students struggle with multivariable calculus topics (Dorko & 
Weber, 2014; Jones & Dorko, 2015; Kabael, 2011; Trigueros, & Martínez-Planell, 2010). 
Hence research about how students come to understand multivariable functions can help 
inform instruction for a broad band of students.  

Understanding how students think about multivariable functions necessarily includes how 
they determine what is and is not a function. This involves evaluating whether or not a 
relation violates the univalence criterion, and students tend to use the vertical line test in such 
evaluations (Leinhardt, Zaslavsky, & Stein, 1990). However, we do not know how students 
think about what is and is not a function, and how they generalise univalence, in the 
multivariable case. Hence this paper focuses on the following research question: How do 
students generalise univalence? I investigated this via a longitudinal study of five students 
who completed a series of interviews throughout their differential, integral, and multivariable 
calculus sequence. In this paper, I present a case study of a single student who successfully 
generalised univalence.  

Background  

Univalence is the condition that each element in a function’s domain is mapped to exactly 
one element of the range. For a single-variable function f: R à R such that y = f(x), 
univalence means that each x maps to exactly one y. Beginning algebra instruction typically 
includes ‘classification’ tasks in which students are given a relation and asked if it represents 
a function (Leinhardt, Zaslavsky, & Stein, 1990). For a graphical representation, students 
typically evaluate univalence with the vertical line test. A graph is univalent, and hence a 
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function, if any line x = c for some constant c and x in the domain will intersect the graph 
exactly once. For a multivariable function g: R x R à R such that z = g(x,y), the univalence 
condition means that each (x,y) maps to exactly one z. The vertical line test generalises such 
that any vertical line through a point (x,y) in the domain will intersect the graph of z = g(x,y) 
exactly once.  
Student understanding of univalence for single-variable functions 

Researchers have documented that students commonly solve graph classification tasks 
with the vertical line test (Clement, 2001; Thomas, 2003) and that some students will convert 
a non-graphical representation to a graph so they can use the vertical line test (Kabael, 2011; 
Thomas, 2003). Other students solve classification tasks by looking for x’s and y’s (Thomas, 
2003). For example, Thomas (2003) observed students say the set of points (x, 2x) for  
was not a function because there were no y’s. Finally, students may solve classification tasks 
by comparing graphs to prototypical examples such as x = y2 (Clement, 2001).  

Students commonly conflate univalence with other properties, such as one-to-one-ness 
(Bakar & Tall, 1991; Clement, 2001; Even, 1993; Markovits, Eylon, & Bruckheimer, 1986; 
Vinner & Dreyfus, 1989). Students may not include the univalence criterion when defining 
function, or they may state it backward, saying each element in the range is paired with 
exactly one element in the domain (Even, 1993; Kabael, 2011). Similarly, Thomas (2003) 
found that some students used a horizontal line test instead of a vertical line test on graphical 
classification tasks.  
Student understanding of multivariable functions 

Kabael (2011) found after instruction about multivariable functions, 21 of 23 students 
solved graphical classification tasks by converting the graphs to algebraic formulae. In a test 
at the end of the multivariable calculus course, 13 of the 23 solved graphical classification 
tasks with the vertical line test. On classification tasks in which the students were given 
algebraic formulae, 5 of the students drew a graph and used the vertical line test. Four 
students evaluated univalence by determining algebraic formulae for all classification tasks 
on both tests. These findings suggest by the end of the course, some but not all students had 
generalised univalence across representations (Kabael, 2011).  
 Researchers have found that thinking of functions in terms of inputs and outputs allows 
students to generalise in normatively correct ways (Dorko & Weber, 2014; Kabael, 2011). In 
contrast, focusing on specific variables leads some students to believe that the domain of a 
function f(x,y) is the set of all possible x values and the range is the set of all possible y 
values, as is often true for the f(x) case (Dorko & Weber, 2014). Kabael (2011) also observed 
that students struggled with domain and range, giving a particular (x, y, z)-tuple as an 
example of an element of the domain or an element of the range. Difficulty with domain and 
range may play a role in students’ ability to generalise univalence, as testing for univalence 
requires identifying an element of the domain and checking that it is paired with exactly one 
element of the range.   

Theoretical Perspective  

I interpret students’ thoughts and generalisations from an actor-oriented perspective 
(Lobato, 2003; Ellis, 2007). This perspective focuses on what connections students identify 
across situations, even if their perceived similarities are not normatively correct. In the actor-
oriented perspective, generalisation is defined as “the influence of a learner’s prior activities 
on his or her activity in novel situations” (Ellis, 2007, p. 225). Students may make 
connections across situations by identifying similarities, or by “discerning differences and 
modifying situations” (Ellis, 2007, p. 225). Hence in exploring how students generalised 
univalence in graphical and tabular contexts, I looked for similarities and differences in how 
they handled the single- and multivariable tasks.  
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The actor-oriented approach is an alternative to traditional transfer (e.g., Gick & Holyoke, 
1980; Judd, 1908), in which research questions tend to focus on whether or not participants 
identify pre-determined similarities. By attending to only what is normatively correct, such a 
perspective often fails to capture the sense participants make of situations. One reason the 
actor-oriented perspective is appropriate for the design of this study is that in the 
multivariable pre-interview (see below), students were looking at a novel context (R3) with 
significant differences from the original (R2) context. Hence the actor-oriented perspective 
allowed us to capture what students saw as similar, what they saw as different, and what 
adaptations they made between the two contexts.  

Research Design 

Data Collection 
I conducted task-based clinical interviews (Hunting, 1997) with each of five students at 

three separate instances over the span of their differential, integral, and multivariable calculus 
courses. This paper focuses on a subset of tasks from the interview in which students were 
given graphs and tables and asked which represented functions. The interviews were recorded 
with audio, video, and Livescribe technology, and I subsequently transcribed them for 
analysis.  

The first interview, conducted at the beginning of students’ single-variable calculus 
course, contained R2 graphs and tables (Figures 1). The second interview, conducted during 
integral calculus, contained R3 graphs (Figure 2). Asking students about graphs in R3 before 
instruction about multivariable functions allowed me to capture students’ initial sense-making 
about multivariable functions and how the univalence criterion might generalise. Before 
starting the tasks I presented students with a picture of R3 axes, pointed out the axis labels, 
and explained that the xy axis made a flat plane like a tabletop and the z axis was vertical and 
orthogonal/perpendicular to the xy plane. I demonstrated this using the corner of a table and a 
pen held orthogonal to it. Some of the students had plotted points on R3 axes in high school 
algebra, but that was the extent of their experience with multivariable topics.  
Which of the following represent 
functions? 

Which of the following graphs represent functions of 
x? 

i x -2 0 3 3 5 6   a 

 

  b 

 

y 9 2 4 5 7 7 
 

ii x -2 0 3 5 6 7 
y -1 1 4 6 7 8   c 

 

  d 

 

 
iii x -2 0 3 5 6 7 

y 0 0 8 15 31 -5 
Figure 1. Interview 1 classification tasks  

 
Which of the following graphs represent functions? (from Kabael, 2011) 

A B C D E F 

      
 
Figure 2. Interview 2 classification tasks 
Do the following represent functions? 

I II III IV 
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V b2 a2 c2 

 
   

A2 G2 F2  

   

 

Figure 3. Interview 3 classification tasks, listed in the order they appeared to students. Tasks 
c2 and A2 from Kabael (2011) 

The phrasing “do the following represent functions?” in the Interview 2 and 3 tasks was 
purposefully ambiguous. Since findings from research indicate that some students generalise 
domain and range by thinking about inputs and outputs and/or independence and dependence 
(Dorko & Weber, 2014; Kabael, 2011), I wanted to see how students would determine which 
variables were the input(s), output, independent, and dependent variables. 

The third interview, conducted at the end of students’ multivariable calculus course, 
contained both graphs and tables in R2 and R3  (Figures 3). I explained how to read the tables 
and gave the example ‘in Table I, when x is 0 and y is -1, z is 0.’ These post-instruction tasks 
captured the sense students made of normative ideas and how they connected those ideas to 
prior knowledge. In short, the longitudinal nature provided unique insight into the 
generalisation phenomenon.  
Data Analysis  
 I used a constant comparative analysis (Strauss & Corbin, 1998) to code students’ 
reasoning. Findings from literature influenced my coding in that I looked for x, y, input, 
output, independent, and dependent, as these are common ways students think about 
multivariable functions (Dorko & Weber, 2014; Kabael, 2011). However, I was careful to 
include other phrases not within that list. After coding students’ responses for particular 
phrases, I compared the students’ reasoning from interview 1 to 2 to 3. Because of the 
longitudinal nature of the study, this allowed me to compare how students thought about what 
a function is pre- and post- instruction, and to identify ideas that stood out to them. In 
particular, I looked for ways of thinking that were the same across interviews, and ways of 
thinking that were different. This allowed me to address the question of how students 
generalised from the single- to multivariable case. 

Results 

In thinking about the questions, students used words like x and y, input, output, 
independence, dependence, no dependence, repeated x values, pattern, and vertical line test. 
When answering the multivariable questions, many first stated the definition of univalence 
for a single-variable function. They then applied this criterion directly to the multivariable 
setting (example below), and/or worked on how to adjust it for R3.    

Kyle was the only student who answered all of the questions correctly. I present some of 
his thinking as an example of how a student successfully generalised univalence.  
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Single-variable tables and R2 graphs 
Kyle answered all of the single-variable table and single-variable graph questions 

correctly. He searched for x values paired with multiple y values in both contexts and used 
the vertical line test for the graphs (Excerpts 1 and 2). 
Excerpt 1. SV Interview, SV Tables i, ii, and iii 
Kyle: Okay, so for every x there is only one y. Well this one is not a function, so i, i is not a 

function… Because there are two values for x of 3 that have different y values. The y 
is 4 and this one, 5 on this one.… ii is a function. And iii is a function… I determined 
that because … in ii, for every x value, it has a y value. It has one y value, not 
multiple y values. And same with iii. There’s no repeated x values that have different 
y values. 

Kyle’s work with the single-variable tables revealed that he understood that each element in 
the domain must map to something in the range (“for every x value, it has a y value”). I take 
the statements “for every x there is only one y” and his example of x = 3 mapping to y = 4 and 
y = 5 as evidence that Kyle understood the univalence criterion. His responses to the R2 graph 
tasks provided further evidence that he understood a function must be univalent (Excerpt 2). 
Excerpt 2. SV Interview, SV Graphs b and c  
Kyle: So b is a function of x, and this is also, c is also a function of x. So you determine 

whether a graph represents a function if for every x value there’s only one y value that 
is present. And so for both these graphs, that’s the only, that’s the case. There’s, 
there’s like a test you could do where you make lines going straight down and if the 
line only goes through one point in the curve…then it’s a function. 

Here, Kyle described the vertical line test and restated his criterion of each x mapping to one 
y. One point of note is that while Kyle stated the letters x and y, he did not use any other 
descriptors (e.g., input, output, independence, dependence). This may be an artifact of the 
tasks, which were all posed with x’s and y’s.  
Multivariable graphs (pre-instruction) 

In classifying MV graphs A, B, C, D, E and F, Kyle sought to generalise the vertical line 
test and his notion that each x has exactly one y. In doing so, he appeared to draw on the 
particular symbols, coordinate points, and the notion of an output.  
Symbols and coordinate points  

Kyle reasoned with symbols and the form of coordinate points for graph A and graph C 
(Excerpt 3 and 4). 
Excerpt 3. MV Pre-interview, MV Graph A 
Kyle: [Graph A]…it’s a function, I think…for every x there’s a y, for every, for every x 

there could be multiple y’s, so it’s not a function… 
Excerpt 4. MV Pre-interview, MV Graph C 
Kyle: [Graph C] I mean I guess it can be a function, because it could have a different… at 

every, maybe…for 3D if it’s a value of x, it has to have a different y and z [writes 
(x,y,z)] instead of just for every value of x there’s a y, as long as something’s different 
in the y or the z, then it’s okay… for some value of x there has to be a value of y and a 
value of z. 

Kyle’s first attempt at generalising seemed to be to evaluate the R3 graph with the same 
criterion he used for R2 graphs. That is, his first statement was that the graph was not a 
function because “for every x there could be multiple y’s”, which was his evaluation criteria 
for graphs in R2 (Excerpts 1 and 2). In further thinking, Kyle sought to change the way he 
evaluated the R3 graph. For instance, he considered that maybe a multivariable function 
would have ‘something different’ in the y or the z.  

I interpret Kyle’s statement “for some value of x there has to be a value of y and a value 
of z” as a generalisation of his statement in the single-variable tables “for every x value, it has 

20th Annual Conference on Research in Undergraduate Mathematics Education 56620th Annual Conference on Research in Undergraduate Mathematics Education 566



a y value.” That is, he seemed to try to generalise the idea of each element in the domain 
mapping to an element of the range. I take as evidence the phrases “for every x” (single 
variable) and “for some value of x” (multivariable), suggesting that Kyle was attempting to 
pair x with something in each case. He generalised x having “a y” (single-variable) to x 
having “a value of y and a value of z” (multivariable). In these statements, Kyle seemed 
primarily focused on the particular symbols themselves rather than what they might 
represent.   
 As Kyle thought about this, he wrote the three-tuple (x, y, z). This seems salient for two 
reasons. First, it is further evidence of Kyle’s attention to symbols. Second, he appeared to 
use it as a tool to help him generalise. The evidence for this is how he alternated between 
talking about the single variable case to the multivariable case (Table 1).  
Table 1. Using the coordinate point structure as a tool for generalisation  

Statement SV or MV  
“maybe…for 3D if it’s a value of x, it has to have a different y and z” Multivariable  
[Writes (x, y, z)] Multivariable 
“instead of just for every value of x there’s a y,  Single variable 
as long as something’s different in the y or the z, then it’s okay.” Multivariable  
In short, the coordinate point seemed to help him generalise the ‘mapping’ idea from single- 
to multivariable. Kyle then wrote f(x, y, z). The interviewer explained that for a function in 
R3, the notation is “f(x,y) equals something.” This helped Kyle discern that z was an output 
(Excerpt 5). 
Excerpt 5. MV Pre-Interview, Graph C 
Kyle: Right, that equals something, and that equals the z value. [writes f(x,y) = z] then z 

would be what we’re, the output of it… f(x) = y. For every x value there’s only one y 
value. So my thought now is that every x and y value there’s only one z value for it to 
be a function. 

Kyle appeared to see the f(x) = y and f(x,y) = z forms as similar, allowing him to realise that z 
was the output. He then correctly stated the univalence criterion for f(x,y). I infer that seeing z 
as the output afforded this generalisation.   
Vertical line test 
 Kyle’s approach to the sphere task included generalising the vertical line test. Like the 
coordinate points, he alternated between talking about the single- and multivariable cases 
(Excerpt 6). 
Excerpt 6. MV Pre-interview, MV Graph A  
Kyle: [Graph A]…there’s parts that don’t pass the vertical line test, then it’s not a 

function… So for something to be a function, for every x value there can only be one 
y value…. And you can test that with the vertical line test because what it’s doing is 
it’s, it’s keeping x the same but…if there’s more than one value of y, then it, then it 
doesn't pass… But I think that, I think that works for not just, if it’s x and y, like this, 
then that’s the vertical line test [draws R2 example]. But if it’s x, y, and z, it could be, 
it could either be the vertical line test for z [gestures to indicate lines parallel to the z 
axis], or the I guess the same principle applies if it’s going that way [draws lines on 
the xy plane, parallel to the y axis].  

I take Kyle’s statement “I think that works for not just, if it’s x and y” [emphasis mine] as 
Kyle generalising the vertical line test to R3. Specifically, I infer that the word ‘just’ as 
meaning Kyle thought the vertical line test would work not only for x and y, but also for x, y, 
and z. However, although he thought the vertical line test generalised to R3, he was unsure 
which direction the lines should go, as evidenced by his drawings of lines both parallel to the 
z axis and parallel to the y axis. He stated later he thought lines parallel to z would be correct.  
Multivariable tables and graphs (post-instruction)  
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Kyle answered all the multivariable table tasks correctly. In contrast to his focus on x’s 
and y’s in the first interview, here he thought about inputs, outputs, and having one z value 
“for each pair of independent variables” (Excerpt 7).  
Excerpt 7. MV Post-interview, Table 1 and Graph G 
Kyle: [Table 1] So my definition is like for each pair of independent variables, there can 

only be one z…it is a function… like for a point x is 0, y is 0, z is, there’s one value 
for that. 

Kyle: [Graph G] So if it’s f(x,y) equals z, yeah, the output would be z. For every f(x,y) there 
could only be one z. And this is a function because, because yeah there’s only one z 
value for every x and y. 

I infer that Kyle leveraged the ideas of independence and output to aid generalisation. He 
stated that “the output would be z”, then returned to variable-based language to state his 
generalisation “there’s only one z value for every x and y.” Like the second interview, he 
appeared to draw on the symbols f(x,y) = z to conceptualise z as an output, which afforded 
generalising univalence.  
Discussion 
 In the first interview, Kyle spoke only about x and y. This may have been an artifact of 
the task design. He continued to reason primarily with symbols, and it is notable that all of 
his statements of univalence were in terms of variables (e.g., “there’s only one z value for 
every x and y”). This does not mean that Kyle had a weak conception of function. On the 
contrary, he talked about independence and dependence, and outputs, and in particular these 
ideas helped him generalise. However, symbols served as tools as Kyle generalised. one of 
his first attempts at generalising included thinking about the coordinate point (x, y, z) and 
what such a set of points would have to look like to make something a function. He seemed 
to attend to the similar forms form f(x) = y and f(x,y) = z to think about which variable 
represented the output. Others have documented relating objects as a way students generalise 
(Dorko & Weber, 2014; Ellis, 2007).  
 One answer the research question How do students generalise univalence? is students 
generalise univalence by thinking about inputs, outputs, independence, dependence, specific 
coordinate points, using examples and counterexamples, and attending to symbols. Another 
way is that students often first seek to apply their criterion from R2 directly to R3. For 
example, Kyle’s first attempt at generalisation was to say the sphere was not a function 
because there existed multiple y’s for a single x. He also considered that the vertical line test 
in R3 might use a line parallel to the y axis. After applying these R2 ideas, Kyle seemed to try 
to adapt them for R3.  

Suggestions for Instruction and Future Research 
My findings support others’ that function machines, input-output, and independence-

dependence provide powerful ways for students to think about and generalise functions 
(Dorko & Weber, 2014; Kabael, 2011). Hence I suggest that we continue to emphasise these 
ways of thinking in instruction. One way to do this is to decrease our use of x and y, asking 
questions like  

m -4 9 0 0 3 
n 1 4 -6 8 2 

Could m be a function of n? Could n be a function of m? 

r = q2 
Could r be a function of q? 
Could q be a function of r? 

There is still much work to be done regarding how students generalise multivariable 
topics. One question concerns the cognitive mechanisms underlying such generalistion. For 
instance, how can we explain students’ tendency to apply an idea from R2, and then alter it? 
Such work can contribute toward developing theory about generalisation and transfer.  
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SCNI: A Robust Technique to Investigate Small-Group Learning at College 
 

Fady El Chidiac 
University of California, Berkeley 

The Stimulated Construction of Narratives about Interactions (SCNI) technique for data 
collection, introduced in this paper, enables robust investigations of small-group learning at 
college. The SCNI technique consists of promptly soliciting participants’ perspectives on their 
recent joint activity using video records thereof. Thus the SCNI technique creates a space to 
network the narrative discourses that shape how participants understand their world, and the 
pragmatic forces that shape participants’ interactions in a practice. Data reported in this paper 
are collected from a number theory class comprised of ethnically diverse students. In this paper, 
I will report three cases to illustrate the advantages of SCNI data over data collected by video 
records and unmediated interviews in elucidating, nuancing, and expounding what matters for 
group work. Through these cases, I will use three different analyses appropriate for SCNI data. 
Limitations and recommendations for efficient conduct of SCNI are discussed as well. 

Key words: Small-Group Learning, Narrative Identity, Interaction Analysis, Discourse Analysis. 

Since the 1970s, qualitative and quantitative research have been constantly emphasizing and 
confirming the positive effect of small-group work on students’ learning and achievements 
(Astin, 1977, 1993; Cockrell, Caplow, & Donaldson, 2000; Laursen, Hassi, Kogan, Hunter, & 
Weston, 2011; Springer, Stanne, & Donovan, 1999; Tinto, 1997). Simultaneously, an ever 
growing body of scholarship has been reporting debilitating processes in group work, such as 
lack of social skills (Barnes & Todd, 1977), poor mathematical knowledge (Webb, Ing, Kersting, 
& Nemer, 2006), weak coordination (Barron, 2003), undue influence (Engle, Langer-Osuna, & 
McKinney de Royston, 2014), communication problems (Sfard & Kieran, 2001; van de Sande & 
Greeno, 2012), problematic identities (Heyd-Metzuyanim & Sfard, 2012; Langer-Osuna, 2011) 
and others (see a review by Webb, 2013). To investigate the differential processes taking place in 
group work, researchers have been investing less in achievement studies and more in the study of 
social interactions in small-group learning, as noted by Cohen (1994).  

Additionally, recent research (Esmonde, 2009a, 2009b; Esmonde & Langer-Osuna, 2013; 
Gresalfi, 2009; Langer-Osuna & Esmonde, In Press) has emphasized the need to study learning 
ecologies constructed through ongoing interactions with an emphasis on how socio-emotional 
and power relationships play out in the moment-by-moment of group work. Such a research 
program, I claim, requires new techniques for data collection. To this date, video records and/or 
unmediated interviews have been the most common data sources used to investigate small-group 
learning. Socio-emotional and power forces at play through ongoing interactions do not 
sufficiently manifest through videos or unmediated interviews for the following reasons: 

x During ongoing interactions, participants often act without manifesting the forces 
underpinning or motivating their actions. 

x In unmediated interviews about interactions, participants often sustain a handful of strong 
impressions from group work and become oblivious of fleeting but otherwise significant 
ones. 

x Although data from unmediated interviews can elicit participants’ individualized 
discourses by which they narrate self, others and the world, it cannot help determine 
which discursive forces are at play in situ. 
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This paper will show how video records of group work and interviews of participants are not 
sufficiently robust to investigate socio-emotional and power relationships in small-group 
learning. The Stimulated Construction of Narratives about Interactions (SCNI) technique for 
data collection, to be introduced and explicated in this paper, attempts to address the 
aforementioned challenges to an ecological study of small-group learning. The SCNI technique 
consists of promptly soliciting participants’ perspectives on their recent joint activity as they 
watch a video of the group work.  

In this paper, I will first lay out the conduct of SCNI interviews, then explicate the 
underpinning theoretical frame of this technique. Second, I will present three cases of SCNI data, 
which will illustrate how SCNI data complement data from video records. I will also use 
different analytical methods to treat the SCNI data as illustration of the diverse appropriate 
analyses that can be used with these data. The underpinning belief of this paper is that combined 
data from SCNI and video records afford robust understanding of processes that shape small-
group learning. 

 
The SCNI Technique 

The SCNI technique consists of probing participants to construct narratives about (comment 
on) their social interactions by watching a video of the activity in which they participated within 
24 hours prior to the SCNI interview. The SCNI technique builds on the cognitive technique 
commonly known as Stimulated Recall (Gass & Mackey, 2000) and video viewing practiced by 
interactional analysts (Jordan & Henderson, 1995). Contrary to the heavily cognitive SR 
technique, the SCNI technique aims at eliciting not only cognitive but also fleeting and enduring 
social processes individualized by participants. While SR and video viewing interviews seek to 
understand what happens in the studied group work, SCNI interviews are also interested in 
knowing who participants are and what frameworks they have individualized to make sense of 
their world. This distinction will become evident as I explicate the theoretical grounding of the 
SCNI technique. 

Conduct of SCNI Interviews 
An SCNI session consists of (i) the preparation of the medium (i.e., the video of actual 

activity); (ii) a low-probing video viewing section; and (iii) a proactive open interview section. I 
started recording the SCNI sessions with an audio recorder but soon came to realize that they are 
best recorded as videos to facilitate future analyses. 

During the classroom activities, stable and unmonitored video cameras (wirelessly connected 
to microphones placed in the middle of the group table) captured the entire interactional space of 
each group. The resulting videos are used to mediate the following two interview styles.  

The SCNI sessions, conducted individually in this study, take place within 24 hours of the 
end of the videotaped group activities. The interviewer launches the interview with this probe: 
“In my study I try to understand the interactions between people. Today, I would like you to help 
me see through your eyes to understand what happened in your recent group session. You will 
watch a video of it to help you recall what happened. You can pause the video at any time you 
recall your significant mathematical reasoning and your feelings about yourself or your 
groupmates at the moment of the interactions. Try your best not to confuse your current thoughts 
and emotions with those you experienced when you were working in group.” 

The interviewee and interviewer sit facing a screen placed in front of the interviewee and 
streaming the recently videotaped group session. This seating foregrounds the video and 
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backgrounds the interviewer to the informant. During this phase, the interviewer may use gentle 
probes, such as pausing the video and asking whether the informant can recall what s/he was 
thinking or feeling at that time, or if s/he understood a groupmate’s explanation. If informants 
drift away from talking about the moment of interactions, the interviewer may gently orient 
him/her back to the task by asking, “Is this what you were thinking/feeling at the moment?” The 
interviewer must also note the time stamps when the video is paused for commenting.  

At the end of the session, the interviewer follows up on the participant’s significant 
comments by rewinding the video to those moments and asking open questions such as, “What 
did you mean when you said you were frustrated here?”; “Is it common that you feel/think like 
this in such circumstances?”; or “At time t, you said Fred is smart. Why is that?”  

People tend to tailor their talks to their perception of their interlocutors’ knowledge. Hence, 
to trigger talks about the mathematics involved in the group work, the interviewer must be 
knowledgeable in the subject matter and exhibit his relevant mathematical knowledge to 
interviewees. In my data collection in an upper-division course, I introduced myself as someone 
who had earned a Master degree in mathematics and assisted students during group work and 
tutoring sessions. 

Theoretical Grounding of SCNI 
The SCNI technique creates a space to network the narrative discourses and the pragmatics 

that govern participants’ interactions in a practice (Figure 1). As participants in SCNI talk about 
their interactions in a recent activity, their comments will be constrained and enabled by two 
forces: on the one hand, the narrative discourses that construct and regulate their subjectivities 
(Kramsch, 2010) and, on the other, the pragmatic forces that have just regulated their 
interactions. Hence, in SCNI sessions, interviewees are positioned in a space negotiating two 
realms: (1) their individualized discourses that shape the narrations of self, others, and activities 
and (2) the pragmatic forces that shaped the recent interactions they watched in a video.  

Figure 1. The SCNI conducted at time Δt2
+ on social interactions at time Δt2 produces data 

shaped by (a) the semiotics of pragmatics that govern social interactions at time Δt2 and (b) 
discourses that frame unmediated narratives -at time Δt1 < Δt2 and Δt3 > Δt2. 

Following interaction analysis methods (Jordan & Henderson, 1995), the SCNI technique 
provides participants’ perspectives, that is, the pragmatic frames that participants activate to 
make sense of interactions during ongoing activity. Are the narratives produced by interviewees 
in SCNI sessions pure recall of what really happened in recent activity? Certainly not. But 
neither are they pure constructions disconnected from the reality of recent activity. Narratives of 
past events are partly faithful and partly unfaithful to actual events. By placing interviews, like in 

      

Interaction 
at Δt2 SCNI 

at Δt2+ 

Narratives 
at Δt1 or 
Δt3 
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SCNI sessions, soon enough to the focal activity and constraining narratives by strong stimuli 
like videos of activity, we increase the reliability of recruited data. 

Informants’ responses in SCNI sessions ought to be treated as narratives. Like all narratives, 
they draw on remembered impressions that are narrated employing internalized genres and 
styles (Baynham, 2014; Dervin & Risager, 2014). The discontinuity of SCNI data with actual 
interactions does not threaten its reliability. On the contrary, the internalized narratives by which 
informants narrate their recent interactions regulate their enduring identities (Kramsch, 2010). To 
put it in a way pertaining to small-group learning, by talking about their recent group work in 
SCNI sessions, participants implicitly or explicitly give off signs of their entrenched 
understanding of themselves, their groupmates, mathematics, and group work activity. Whether 
in group work or in SCNI sessions, participants act by the same habitus (Bourdieu, 2003; 
Bourdieu & Thompson, 1991) that gives each one of them an enduring existence through 
different contexts and activities. 

As noted in the introduction of this paper, researchers of small-group learning must invest in 
robust studies of ongoing interactions in group work and all that they involve (hidden social 
norms, emotions, and power). Yet ongoing interactions are fleeting. Traditionally they are 
accessed through either records thereof, such as videos, audios and fieldnotes, or perpetrators of 
actions. Researchers have attempted to capture ongoing interactions through video records and 
thus made them objects of analyses. Although video analysis is a powerful tool to investigate 
ongoing interactions, it presents limitations and biases, such as the orientation of the camera 
(transforming the 3-D reality into 2-D video), and the limitation of capturing good sound quality 
in a noisy environment (see Erickson, 2006; Hall, 2000). In some way, videos are one narrative 
about reality. In addition to videos, past interactions can be accessed through participants who 
engaged in them. The uniqueness of SCNI technique resides in investigating ongoing 
interactions by revealing the subjectivities/habitus/identities of participants in relation to the 
studied interactions. 

The SCNI technique has its own limitations. First, interviewees must have agility in talking 
about interactions and verbalizing their emotions and experiences. Although the SCNI technique 
resulted in rich data for all participants in my research (youngest age is 19 years old), it may not 
be equally informative with elementary and middle school students. Second, crucial for rich 
SCNI data, the interviewer and interviewee must construct a safe environment as much as 
possible, allowing the interviewee to speak his/her mind and say what s/he conceals in her/his 
ongoing interactions with groupmates because of face-saving and politeness processes (Goffman, 
1967; Pearson, Kreuz, Zwaan, & Graesser, 1995). 

 
Results 

Data reported is collected from a number theory class at a Northern California college. The 
course was solely based on small-group work throughout the semester. Students (10 females and 
13 males) composed their groups at their will. There were 5 groups of 4 or 5 students each. Four 
groups (G1, G2, G3 & G4) consented to be videotaped (all their group sessions were videotaped) 
and 15 students of these groups participated in individual interviews (early and late unmediated 
interviews + SCNI). Groupmates participated in SCNI interviews on the same day and every 
other week. I conducted 45 SCNI interviews in total. 
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Case 1: Friends, yet not alike 
Izabelle, Nawal, Leila, and Gaia wanted to be in the same group, G1, because they had been 

friends for at least a year. On September 22nd (henceforth 9/22) the instructor Hoffmann started 
the class by explaining the definition of primitive roots for about 10 minutes then set the groups 
to work. The group G1 was still in the middle of a worksheet that they could not finish during the 
last session. While groupmates were opening their notebooks and getting ready to work together, 
Gaia called the instructor. We observe in the video of this group session that Leila was surprised 
(evidence: eyes wide open, head turns swiftly, then she frowns) when she looked up and found 
the instructor at the group table. The video does not show significant reactions from Izabelle and 
Nawal. In the individual SCNI interviews that followed this group session, Izabelle did not 
comment on Gaia’s behavior, but Leila and Nawal did.  

Leila:  [pauses the video at the moment when Gaia calls the instructor] I was a little annoyed by 
what happened there ... haha because we were all like kind of like trying to get like going 
and then Gaia she's been like really on top of stuff but I just felt like as a group like ... we 
should have ... kind of like went over stuff together and then she just like jumped in and 
like asked Hoffmann when we like I or at least I didn't feel like I was ready to like kind 
of ... ask the questions about that yet. Because I hadn't even really had the chance to look 
at it so like as far as like working as a group I was like a little like ... frustrated like I 
hadn't even had the chance to look at it and we were already going [coughs] going for it. 

Nawal: [pauses the video slightly before the moment when Gaia calls the instructor] I felt kind of 
annoyed with Gaia when she did what was coming up. Cuz she called over the professor 
right away instead of like asking us the question she had and I thought it was kind of like 
not very like group like because I feel like if you have a question and you’re sitting with 
your group you should like ask the rest of your group members first because like maybe 
someone gets it too or maybe they have the same question. So I remember feeling kind of 
like annoyed and I thought it was kinda rude how she like called him [Professor] over and 
asked him directly instead of like talking to us about it first. 

While Izabelle seemed to not be affected by Gaia’s calling the instructor, Nawal and Leila 
found Gaia’s act annoying. However, Nawal and Leila narrated their frustrations differently. 
Leila was frustrated because she “hadn’t even had the chance to look at” the problem and thus 
not yet ready to follow any conversation about it. Nawal felt insulted (“it was kinda rude”) that 
Gaia did not consider her groupmates capable of answering her question, because Gaia “called 
and asked [Hoffmann] directly instead of like talking to [them] about it first.” Three women who 
had associated with each other in the past two years and shared a Hispanic background had 
different reactions and understandings of the same act. The diversity of individualized discourses 
employed to make sense of group interactions would not have been revealed without SCNI 
interviews. Video analysis is not enough to study group interactions. 

Case 2: My personal space 
For the purposes of this paper, I will merely sketch the argument for cases 2 & 3 (the full set 

of data will be included in the extended paper, if the proposal is accepted). In the early 
unmediated interview (general questions about students’ experiences with mathematics 
classrooms and small-group work), Leila (on 9/12) said that she needed her “personal space” and 
became irritated when groupmates, particularly Gaia, started writing on her notebook and got 
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physically close to her. Indeed, on the group session of 9/22, Leila gave Izabelle, who moved her 
body close to Leila, a look from the side of her eyes and immediately Izabelle backed off and 
smiled. In her SCNI on 9/22, Izabelle commented, “Leila likes her own space.” Nonetheless, on 
9/22 Gaia stood twice (for about 1 minute 30 seconds each time) over Leila’s shoulders and 
wrote on her notebook. Surprisingly Leila did not seem irritated by Gaia in the video. 

In her SCNI interview on 9/22, Leila repeatedly commented that she was struggling to make 
sense of the mathematical conversation of the instructor with her group. She also mentioned that 
she was masking her lack of understanding by nodding every time the instructor looked at her. 
When the instructor left the group, Leila was totally confused about the task and what they were 
supposed to prove and how. But her groupmates started working on the problem without noticing 
her struggle, for which reason she was even more irritated. She ended up asking her groupmates 
a couple of questions, and it was Gaia who immediately volunteered to explain matters to Leila 
by standing over her shoulder and writing on Leila’s notebook. In her SCNI interview, she 
commented on this moment of group session. 

Excerpt SCNI-Leila on 9/22. [Leila pauses the video of group session at 28:10 when Gaia is 
standing behind Leila and explaining to her].  
Leila: […] at this point I was like understanding like when Gaia explained to me [clears throat] 

how you get from like our what we're trying to show like how you would factor out one 
part or whatever [sniffs] and then like basically like how we got to like what our 
conclusions were supposed to be and then this is where it clicked for me, I was like, Oh 
that makes sense now … So I was feeling good about myself. [laughs] for once. 

[The video is running at 28:50. Events in the video: Izabelle remarks that the difference is 
reversed; Gaia moves close to Izabelle to explain to her that 𝑖𝑓 𝑎 − 𝑏 ≡ 0 𝑡ℎ𝑒𝑛 𝑏 − 𝑎 ≡ 0] 
Leila: Yeah see Gaia is so teachery [laughs] 
Facilitator: Ok, umm, why are you saying this? 
Leila:  Gaia is like very teachery like sometimes it's good like I like like in cases like this I like it 

but sometimes it's a little too much for me ... like it's a little sometimes I feel like it's a 
little overbearing. But like in this situation like the way that she like approached helping 
me and showing me like, Oh I was really appreciative of it because she like really helped 
me and explained it really well. 

Leila did not seem irritated by Gaia’s invasion of her personal space as she was explaining 
the exercise to her in this group session (9/22). She backgrounded her sensitivity about her 
personal space because other contextual issues were more pressing at that moment. Leila was 
desperate to understand the mathematics discussed and to catch up with her groupmates’ work. 
Because Gaia’s explanation was helpful to Leila and thus responding to a contextual pressing 
need, the latter could tolerate Gaia’s intrusion into her personal space. This case cautions us 
about using data from unmediated interviews to explain ongoing interactions, which are subject 
to contextual forces that can qualify or compromise what people think about themselves and 
others in absolute terms. 

Case 3: Two types of passive engagement 
Boutros, a member of group G3, and Tito, a member of group G2, were only passively 

engaged in group-work for several sessions. Both of them sat in their group silently, listened to 
what groupmates were discussing, took notes, sometimes detached themselves from the group to 
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do individual work, and almost never shared their mathematical thoughts with the group. They 
would engage sometimes in off-topic conversations with groupmates. 

In their first SCNI interviews (Tito on 9/24 and Boutros on 10/15), Tito and Boutros 
commented on their respective group sessions in two distinct ways. Tito exhibited evidence that 
he was following the group discussion, even when he was not actively participating. He 
accurately commented on group activity using “we” (31 times) instead of “they” (5 times), 
despite his rarely participating in the group activity. On the contrary, Boutros spoke little about 
group activity, which he could rarely identify, using the pronouns “they” (7 times) and “we” (4 
times). While Tito identified himself with the collective activity (e.g., “we solved the problem”), 
Boutros narrated a gap between his and his groupmates’ actions. Following are two samples of 
Tito’s and Boutros’s comments. 

Tito: Um, clearing it up. Cause we already finished it we were um, we concluded that Tom’s 
part was right, so we just so everyone's writing it down.  

Boutros: Uh, yeah I was looking at the problems on the worksheet and tryna figure out what they 
were working on. Yeah like I think I was listening to them a little bit, so I knew what 
problem they were doing […] It was the second one? So they finished the first one and 
then they started working on the second which, which was, which was can't remember 
right now. [underlines are mine] 

I also coded the subjectifications and objectifications (as presented in Heyd-Metzuyanim & 
Sfard, 2012) in Tito’s and Boutros’s styles of narrations. Each one of them produced 100 
subjectifying units, i.e., attributing social and socio-mathematical actions to agents. Note that for 
Tito, 31% of subjectifying units were attributed to the collectivity (“we”), compared to only 4% 
for Boutros. Boutros produced 20, as opposed to Tito having produced only 4, objectifying units.  

According to the sfardian learning theory (Sfard & Prusak, 2005), Boutros is more prone to 
maximize his learning gain than Tito, because he is aware of a gap between his and his 
groupmates’ actual actions. Although working in small-group, Tito may have fallen into the 
same illusion of students attending lectures, who misperceive the neat proofs laid out on the 
whiteboard by the instructor as representations of their own state of understanding and thus 
remain heedless of their actual state of knowledge. Future work will investigate this prediction 
and conjecture. 

 
Conclusion 

When working in small-groups, students draw on their social and socio-mathematical habits, 
which they internalize through their prior experiences in other or outside classrooms, to act and 
interpret groupmates’ acts. As the field of small-group learning is moving toward investigating 
interactions and their underpinning power and socio-emotional forces, the SCNI technique is 
well suited to the task. Data from unmediated interviews may not be reliable for contextual 
analysis (case 2) and video analysis of group sessions may not be sufficiently informative 
(case1). The SCNI technique affords nuanced data in rapport to ongoing interactions, mainly due 
to participants’ perspective in situ, and opens up the possibility for new analytical methods (for 
example, case 3) to enhance our understanding of small-group learning. 

20th Annual Conference on Research in Undergraduate Mathematics Education 57620th Annual Conference on Research in Undergraduate Mathematics Education 576



 
 

References 

Astin, A. W. (1977). Four critical years. Effects of college on beliefs, attitudes, and knowledge. 
San Francisco, CA: Jossey-Bass. 

Astin, A. W. (1993). What matters in college. San Francisco, CA: Jossey-Bass.  
Barnes, D., & Todd, F. (1977). Communication and learning in small groups. Oxford, England: 

Routledge & Kegan Paul. 
Barron, B. (2003). When smart groups fail. Journal of the Learning Sciences, 12(3), 307–359. 
Baynham. (2014). Identity brought about or brought along? Narrative as a priviliged site for 

researching intercultural identities. In F. Dervin & K. Risager (Eds.), Researching 
Identity and Interculturality (pp. 100–116). New York, NY: Routledge. 

Bourdieu, P. (2003). Participant objectivation. The Journal of the Royal Anthropological 
Institute, 9(2), 281–294. 

Bourdieu, P., & Thompson, J. B. (1991). Language and symbolic power. Cambridge, MA: 
Harvard University Press. 

Cockrell, K. S., Caplow, J. A. H., & Donaldson, J. F. (2000). A context for learning: 
Collaborative groups in the problem-based learning environment. The Review of Higher 
Education, 23(3), 347–363.  

Cohen, E. G. (1994). Restructuring the classroom: Conditions for productive small groups. 
Review of Educational Research, 64(1), 1–35. 

Dervin, F., & Risager, K. (2014). Researching identity and interculturality. New York, NY: 
Routledge. 

Engle, R. A., Langer-Osuna, J. M., & McKinney de Royston, M. (2014). Toward a model of 
influence in persuasive discussions: Negotiating quality, authority, privilege, and access 
within a student-led argument. Journal of the Learning Sciences, 23(2), 245–268. 

Erickson, F. (2006). Definition and analysis of data from videotape: Some research procedures 
and their rationales. In J. L. Green, G. Camilli, & P. B. Elmore (Eds.), Handbook of 
complementary methods in education research (pp. 177–191). USA: American 
Educational Research Association. 

Esmonde, I. (2009a). Ideas and identities: Supporting equity in cooperative mathematics 
learning. Review of Educational Research, 79(2), 1008–1043. 

Esmonde, I. (2009b). Mathematics learning in groups: Analyzing equity in two cooperative 
activity structures. Journal of the Learning Sciences, 18(2), 247–284. 

Esmonde, I., & Langer-Osuna, J. M. (2013). Power in numbers: Student participation in 
mathematical discussions in heterogeneous spaces. Journal for Research in Mathematics 
Education, 44(1), 288–315. 

Gass, S. M., & Mackey, A. (2000). Stimulated recall methodology in second language research. 
Mahwah, NJ: Lawrence Erlbaum Associates, Inc. 

Goffman, E. (1967). On face-work: An analysis of ritual elements in social interaction. In A. 
Jaworski & N. Coupland (Eds.), The discourse reader (pp. 299-310). London ; New 
York, NY: Routledge.  

Gresalfi, M. S. (2009). Taking up opportunities to learn: Constructing dispositions in 
mathematics classrooms. The Journal of the Learning Sciences, 18(3), 327–369. 

Hall, R. (2000). Video recording as theory. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of 
research design in mathematics and science education (pp. 647–664). Mahwah, NJ: 
Lawrence Erlbaum Associates, Inc. 

20th Annual Conference on Research in Undergraduate Mathematics Education 57720th Annual Conference on Research in Undergraduate Mathematics Education 577



 
 

Heyd-Metzuyanim, E., & Sfard, A. (2012). Identity struggles in the mathematics classroom: On 
learning mathematics as an interplay of mathematizing and identifying. International 
Journal of Educational Research, 51–52, 128–145.  

Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice. The Journal 
of the Learning Sciences, 4(1), 39–103. 

Kramsch, C. (2010). The multilingual subject. Oxford; New York: Oxford University Press. 
Langer Osuna, J., & Esmonde, I. (In Press). Insights and advances on research on identity in 

mathematics education. In J. Cai (Ed.), First Compendium for Research in Mathematics 
Education. National Council of Teachers of Mathematics. 

Langer-Osuna, J. M. (2011). How Brianna became bossy and Kofi came out smart: 
Understanding the trajectories of identity and engagement for two group leaders in a 
project-based mathematics classroom. Canadian Journal of Science, Mathematics and 
Technology Education, 11(3), 207–225. 

Laursen, S., Hassi, M.-L., Kogan, M., Hunter, A.-B., & Weston, T. (2011). Evaluation of the IBL 
mathematics project: student and instructor outcomes of inquiry-based learning in college 
mathematics. Retrieved from 
http://www.colorado.edu/eer/research/documents/IBLmathReportALL_050211.pdf 

Pearson, N. K., Kreuz, R. J., Zwaan, R. A., & Graesser, A. C. (1995). Pragmatics and pedagogy: 
Conversational rules and politeness strategies may inhibit effective tutoring. Cognition 
and Instruction, 13(2), 161–188. 

Sfard, A., & Kieran, C. (2001). Cognition as communication: Rethinking learning-by-talking 
through multi-faceted analysis of students’ mathematical interactions. Mind, Culture, and 
Activity, 8(1), 42–76.  

Sfard, A., & Prusak, A. (2005). Identity that makes a difference: Substantial learning as closing 
the gap between actual and designated identities. In H. L. Chick, & J. L. Vincent (Eds.), 
Proceedings of the 29th Conference of the International Group for the Psychology of 
Mathematics Education (Vol. 1, pp. 37–52). Melbourne: PME.  

Springer, L., Stanne, M. E., & Donovan, S. S. (1999). Effects of small-group learning on 
undergraduates in science, mathematics, engineering, and technology: A meta-analysis. 
Review of Educational Research, 69(1), 21–51. 

Tinto, V. (1997). Classrooms as communities: Exploring the educational character of student 
persistence. Journal of Higher Education, 599–623. 

van de Sande, C. C., & Greeno, J. G. (2012). Achieving alignment of perspectival framings in 
problem-solving discourse. Journal of the Learning Sciences, 21(1), 1–44.  

Webb, N. M. (2013). Information processing approaches to collaborative learning. In C. E. 
Hmelo-Silver, C. Chinn, C. Chan, & A. O’Donnell (Eds.), The International Handbook of 
Collaborative Learning (pp. 19–40). New York, NY & London: Routledge. 

Webb, N. M., Marsha, I., Nicole, K., & Kariane Mari, N. (2013). Help seeking in cooperative 
learning groups. In S. A. Karabenick & R. S. Newman (Eds.), Help seeking in academic 
settings: Goals, groups, and contexts (pp. 45–88). New York, NY: Routledge.   

 

20th Annual Conference on Research in Undergraduate Mathematics Education 57820th Annual Conference on Research in Undergraduate Mathematics Education 578



Infinitesimals-based registers for reasoning with definite integrals 
 

Rob Ely 
University of Idaho 

 
Abstract: Two representation registers are described that support student reasoning with definite 
integral notation: adding up pieces (AUP) and multiplicatively-based summation (MBS). These 
registers were developed in a Calculus I class that used an informal infinitesimals approach, 
through which differentials like dx directly represent infinitesimal quantities rather than serving 
as notational finesses or vestiges. Student reasoning reveals how the AUP register supports 
modeling with integral notation and how the MBS register supports sense-making with and 
evaluation of integrals. 
 
Keywords: calculus, integral, register, semiotics, infinitesimal, differential 
 
 

My goal is to examine and illustrate two registers for interpreting and working with definite 
integral notation, registers that are particularly useful for supporting student modeling and sense-
making with integrals. These registers—adding-up-pieces (AUP) and multiplicatively-based 
summation (MBS)—are situated in a Calculus I course that uses an “informal infinitesimal” 
approach to calculus. I briefly summarize this general approach to calculus before describing 
these registers and how students reason with them. 
 

Informal Infinitesimals Approach to Calculus 
 
For nearly two centuries, Calculus was “the infinitesimal calculus.” For its inventors, G. W. 

Leibniz and Isaac Newton, it was a set of techniques for systematically comparing infinitesimal 
quantities in order to determine relationships between the finite quantities that they comprised 
(and vice versa). In the 19th century, calculus was reformulated in terms of limits rather than 
infinitesimals, and 20th century calculus textbooks have followed suit. Yet calculus textbooks and 
courses still use Leibniz’ notation, dx and ∫ , but without the meanings Leibniz assigned to these: 
dx is an infinitesimal increment and the big S is a sum (“summa”). The notations are now 
vestiges, and in particular, differentials no longer directly represent quantities that students can 
manipulate and reason with. 

The guiding principle of the informal infinitesimals approach is to restore this direct 
referential meaning to calculus notation. The approach is supported by the work in nonstandard 
analysis in the 1960s showing that calculus can be founded upon infinitesimals with equal rigor 
and power, but it uses the informality of Leibniz’ reasoning rather than the formal development 
of the hyperreal numbers (e.g. Keisler, 1986). For instance, the derivative at a point dy/dx really 
is a ratio of two infinitesimal quantities, not code language for lim!→!

! !!! !!(!)
!  . The chain 

rule is canceling fractions. And an integral really is a sum of infinitesimal bits, each of which in 
MBS is given by the product f(x)·dx. By taking differentials seriously, students can develop 
formulas for volumes of rotation, arclength, work, and many other ideas, formulas, and 
applications in first-year calculus (Dray & Manogue, 2010), and in vector calculus and physics 
(Dray & Manogue, 2003).  
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Registers and Signs 
 
For Duval (2006), a representation register is a collection of signs and a set of 

transformations by which some of these signs can be substituted for others. Transformations 
within the same register are treatments; transformations of signs from one register to another are 
conversions. Barthes defines a sign as a combination of a signifier and a signified (1957/1972). 
For instance, a bunch of roses (signifier), together with the concept of passion it is representing 
(signified), comprise a sign. In our case, when a mathematical representation (e.g., “dx”) 
signifies a concept (e.g., an infinitesimal increment), the combination of the representation “dx” 
(signifier) and infinitesimal increment (signified) is a sign. An interpretation is thus a signified 
concept. So if a representation stays the same but its interpretation changes, it becomes a 
different sign, since it signifies a different thing or concept. This points to a conversion to a 
different register, because within a given register interpretation should remain relatively stable. 
Such a conversion is often accompanied by a new lexicon of signs, interpretations, and 
treatments that which might support the new purpose or apply to the new context.  

Consider the following example: We can use infinitesimals to develop the formula for the 
arclength of a curve in the plane between x = 0 and 1. We imagine a curve to be comprised of 
infinitesimal segments, each of which is the hypotenuse of a right triangle with legs dx and dy. 
Then the arclength of the curve would be the sum of these hypotenuse lengths: 

!"! + !"!!
!!! . So far we have performed a modeling step, treating the dx and dy as quantities 

representing magnitudes, and have used the adding up pieces (AUP) register (which I detail 
soon). But this is no form to be evaluated for any particular curve, however. To be evaluated, the 
integral must first be converted by imagining all the dx’s as uniform in size and then being 

factored from the integrand, to get 1+ (!"!")!!!"
!
!!!  (if y is a function of x, say g(x)). Now the 

integral is of the form !(!)!!"!
!!!  (where f(x) is 1+ !′(!)!). So the integral can be evaluated 

by F(1) – F(0), for some F as an antiderivative of f. Thus using algebraic manipulations we have 
converted to a new register that is suited for evaluating integrals. The [!]! + [!]! structure lost 
significance and the !(!)!!"!

!  structure gained salience, and it became important for the 
original curve to be seen with y as a function of x.  

 
The Adding Up Pieces (AUP) and Multiplicatively-Based Summation (MBS) Registers 

 
The elements of the AUP and MBS registers are based on the work of Jones (2013, 2015a, 

2015b). The interpretations involved in both registers are summarized in Figures 1 and 2, and the 
strange numbering on these (I2, etc.) draws from the learning progression in my class through 
which they emerge, which I reference elsewhere in detail (Ely, in review). The interpretations in 
the AUP register (Figure 1) entail the idea that a definite integral measures how much of some 
quantity A is accumulated over an interval of a domain, say from t = a to b. This domain is 
partitioned into infinitely many infinitesimal increments of uniform size dt. For each 
infinitesimal increment dt there corresponds an infinitesimal increment of A, dA. The integral 
!!! adds all of these up to give the total accumulation of A over the interval from t = a to b. In 

order for this to make sense, one must appeal to conception C5: The sum of infinitely many 
infinitesimal bits is a finite accumulation of A. 
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The AUP register allows one to 
transparently represent a general bit of the 
sought quantity and of the whole quantity as 
an accumulation of these bits. The treatments 
in the register include (a) writing a symbolic 
expression for a generic bit dA and (b) 
rewriting this expression for dA in terms of 
other infinitesimal quantities that specify the 
expression for the domain at hand, usually in 
terms of its corresponding domain increment 
dt. These treatments require viewing 
infinitesimals as legitimate quantities that behave 
normally under algebraic operations (including possibly 
some additional Leibnizian rules for operating with 
infinitesimal quantities). The treatments also rely on two 
other grounding conceptions: (1) equivalent expressions can be substituted for the same quantity 
(conception C6), and (2) a foundational understanding of covariation, which in turn relies on the 
basic understanding that variables vary (Thompson & Carlson, in press). The student must be 
able to coordinate changes of A with changes of t in order to reason that for each increment dt 
there is a corresponding increment dA.  

 The MBS register includes many of the same notational interpretations as AUP, but it 
also adds to these the expression of each piece dA as a product r(t)·dt. This introduces the 
integrand, which is necessary for the Fundamental Theorem of Calculus (FTC) to apply. We 
follow Thompson, Byerley, & Hatfield’s (2013) approach to treat the integrand r(t) as a rate at 
which A accumulates over the increment dt. This ultimately allows us to recognize and use that 
an accumulation function f for A will have r(t) as its rate-of-change function. Thus, one 
supporting conception in this interpretation of the product r(t)·dt is the idea that A accumulates at 
a constant rate r(t) over the dt increment, and that this constant rate is determined by the value of 
t closest to that dt increment. This relies on conception C4: A concept image for rate of change at 
a moment (Thompson, Ashbrook, & Musgrave, 2015). This momentary rate of change can vary 

constantly as t varies. 
The second supporting 
conception is the 
multiplicative structure 
associated with rate, 
expressed in conception 
C1i (see Figure 2). The 

Figure 1 – Interpretive elements 
of integral notation in the adding 
up pieces (AUP) register 

Figure 2 –
Interpretive 
elements of 
integral notation 
in the 
multiplicatively-
based summation 
(MBS) register 

r(t)·dt

I1i. dA: a generic 
“little bit” of the 
quantity A

I2i. An infinitesimal 
increment of t

I3i. “Rate” at which A accumulates 
over the dt-sized increment of t 

I4i. Sum of all the bits of A, 
as t hops along by dt-sized 
increments from a to b  

C1i. The multiplicative 
structure: If A accumulates at 
a rate of r(t) A-units per t-unit, 
over an increment of dt t-
units, the product r(t)·dt is the 
accumulated bit of A.

a

b
∫

C5i. The sum of infinitely many 
infinitesimal bits is a finite accumulation.
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word “rate” is used here broadly. It does not necessarily mean that r(t) is measured in a 
compound unit like miles-per-hour. Rather it means that as t changes, A changes by a 
proportional amount, and r(t) provides that rate of proportionality (Lobato & Ellis, 2010). Most 
broadly, r(t) serves as a factor allowing conversion from an increment of t to an increment of A, 
by dA = r(t)·dt. Reasoning with quantities, rather than bare numbers or symbols, is crucial to this 
interpretation.  

The MBS register promotes reasoning with the FTC: if we can find any accumulation 
function f(t) whose rate-of-change function (i.e. derivative) is this r(t), we can use it to recover 
the accumulated amount A, by determining f(b) - f(a). The treatments within the MBS register 
include the same kinds of algebraic operations with summand and integrand as in the AUP 
register, and also include evaluating the integral f(b) - f(a) by means of an antiderivative f.  

 
Other Modes of Student Reasoning with Definite Integrals 

 
Although we focus on AUP and MBS, these modes of reasoning are relatively rare among 

students in traditional calculus courses. For instance, Jones (2016) surveyed 150 undergraduate 
students who had completed first-semester calculus, using Prompts 1 and 2 on the next page. 
Only 22% of students made even a passing reference to summation of any kind on either prompt, 
and on each prompt less than 7% appealed to reasoning consistent with AUP or MBS. On the 
other hand, 87.3% of students appealed to an “area” interpretation on Prompt 1, and 76% used an 
“anti-derivative” interpretation on Prompt 2.  

These two interpretations have also been described, and found prevalent, by other 
researchers. The area interpretation is that the definite integral represents an area “under” a 
curve in the coordinate plane, with the “d[]” denoting the variable on the horizontal axis, which 
forms the bottom of the shape. “The shape is taken as a fixed, undivided whole that is not 
partitioned into smaller pieces” (Jones, 2015b, p. 156). The anti-derivative interpretation is that 
the integrand came from some other other “original function” through differentiation; now the 
integral symbol represents an instruction to find this original function. The d[] dictates the 
independent variable “with respect to” which the derivative had been taken, and the limits of 
integration are the values that one must plug into the original function to get the numerical 
answer (Jones, 2015). Fisher et al. (2016) found that the majority of students in a standard 
calculus class used only the area interpretation when describing the meaning of a definite 
integral, and Grundmeier, Hansen, & Sousa (2006) found that only 10% of students mentioned 
an infinite sum when asked to define a definite integral. 

Various studies claim that sum-based interpretations of the definite integral are much more 
productive in general for supporting student reasoning than are area and anti-derivative 
interpretations (e.g., Sealey, 2006, 2014; Sealey & Oehrtman, 2005, 2007; Thompson & 
Silverman, 2008, Jones 2013, 2015a, 2015b; Jones & Dorko 2015; Wagner 2016). For modeling 
in particular, the area and anti-derivative interpretations have serious limitations. The area 
interpretation is problematic when modeling in the myriad situations when the sought quantity is 
difficult to imagine as the area of a region (e.g., work, velocity, force, volume, arclength) 
(Thompson et al, 2013; Jones 2015a). The anti-derivative interpretation provides even less 
support for modeling, since it gives only a technique for evaluating a definite integral, not for 
creating one (Jones 2015a). These interpretations produce significant obstacles for students 
modeling with integrals in physics applications (e.g., Nguyen & Rebello, 2011). 
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 Along with AUP and MBS, there are other sum-based interpretations of integral notation, 
notably the Riemann sum (limit of sums). Nearly all calculus books define the definite integral 
using Riemann sums, but this fact seems to contribute little to building sum-based reasoning for 
the students who use these books. When investigating this apparent pedagogical disconnect, 
Jones, Lim, and Chandler (2016) found that instructors’ teaching moves lead students to perceive 
the limit of Riemann sums not as a conceptual basis for understanding the definite integral, but 
merely as a calculational procedure that allows an integral to be estimated accurately. Another 
way that the limit process involved in the Riemann sum interpretation can form a conceptual 
obstacle for students is through the problematic collapse metaphor, through which students 
imagine the pieces losing a dimension in the limit, so the d[] loses its quantitative meaning 
(Oehrtman, 2009).  

 
Data Collection 

 
I taught an experimental Calculus I class using the informal infinitesimals approach, for 

science, engineering, and math majors at a large public university in the northwestern U.S. I 
conducted semi-structured interviews and analyzed student written work. I focus here on two 
prompts I used in the interviews: Prompt 1, which is verbatim from Jones (2013, 2016), and 
Prompt 3, a novel modeling context of a kind very different from what the students seen before 
(although they had done a few volume-of-rotation problems in class and on homework). 

Prompt 1: Explain in detail what ! ! !"!
!  

means. If you think of more than one way to 
describe it, please describe it in multiple ways. 
Please use words, or draw pictures, or write 
formulas, or anything else you want to explain 
what it means.  

Prompt 3: Set up an integral that represents 
the volume of this solid, whose base is the region 
bounded by the curves y=√x and y=-√x, and 
whose cross sections perpendicular to the base 
and perpendicular to the x-axis are squares. 

 
Results 

I analyze here the reasoning displayed in the responses of two students, Dmitri and Galena.  
 

Reasoning in the AUP Register  
 In response to Prompt 3, Dmitri’s initial answer of ( (2! ⋅ !")!!

!!! ) was incorrect, but after 
reflecting for a minute he corrected it to (2!)! ⋅ !"!

!!! . He notes that if the slice was (2ydx)3, it 
would make a perfect cube, which can’t be right. It should instead look like what is in Figure 4. 
He narrates as he draws and labels the slice: “This [indicates the width] is going to be dx. This 
will be the same thing as the other one: this one [indicates the slice’s height dimension] is still 
2y. This one’s still 2y [indicates the slice’s depth dimension]. But the width is still dx. So to find 
the volume of that, we’d have 2y squared times dx. And that is all. And that solves my problem.” 
He then describes how the slices are aggregated, each time “you’d go up an infinitely small 

430 Chapter 6    Applications of Integration

11. The solid with a semicircular base of radius 5 whose cross sec-
tions perpendicular to the base and parallel to the diameter are 
squares

12. The solid whose base is the region bounded by y = x2 and the 
line y = 1, and whose cross sections perpendicular to the base 
and parallel to the x-axis are squares

square
cross section

base

y ! x2

y

x

13. The solid whose base is the triangle with vertices 10, 02, 12, 02, 
and 10, 22, and whose cross sections perpendicular to the base and 
parallel to the y-axis are semicircles

14. The pyramid with a square base 4 m on a side and a height of 2 m 
(Use calculus.)

15. The tetrahedron (pyramid with four triangular faces), all of whose 
edges have length 4

16. A circular cylinder of radius r and height h whose axis is at an 
angle of p>4 to the base

h
r

circular
base

d

17–26. Disk method Let R be the region bounded by the following 
curves. Use the disk method to find the volume of the solid generated 
when R is revolved about the x-axis.

17. y = 2x, y = 0, x = 3 (Verify that your answer agrees with the 
volume formula for a cone.)

x

y

3

y ! 2x

R

(3, 6)

0

5. Why is the disk method a special case of the general slicing method?

6. The region R bounded by the graph of y = f  1x2 Ú 0 and the  
x-axis on 3a, b4 is revolved about the line y = -2 to form a solid 
of revolution whose cross sections are washers. What are the inner 
and outer radii of the washer at a point x in 3a, b4?

Basic Skills
7–16. General slicing method Use the general slicing method to find 
the volume of the following solids.

7. The solid whose base is the region bounded by the curves y = x2 
and y = 2 - x2, and whose cross sections through the solid per-
pendicular to the x-axis are squares

x y

8. The solid whose base is the region bounded by the semicircle 
y = 21 - x2 and the x-axis, and whose cross sections through 
the solid perpendicular to the x-axis are squares

y
x !1  ! x2 y "  

y
x

9. The solid whose base is the region bounded by the curve 
y = 1cos x and the x-axis on 3-p>2, p>24, and whose cross 
 sections through the solid perpendicular to the x-axis are isosceles 
right triangles with a horizontal leg in the xy-plane and a vertical 
leg above the x-axis

y

x
y !    cos x 

 

y

x

10. The solid with a circular base of radius 5 whose cross sections perpen-
dicular to the base and parallel to the x-axis are equilateral triangles

yx

equilateral triangles

circular base

y ! 2 " x2

y ! x2

x y

M06_BRIG7345_02_SE_C06.3.indd   430 21/10/13   5:20 PM

!

x 
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amount and then you’d do the same thing for that one, and you’d do that for all numbers between 
0 and 1.” Then he notes that the collection of all these pieces is the volume of the whole figure.  

In this sequence of reasoning, Dmitri appeals to all the elements of AUP. He has imagined a 
domain partitioned into increments of infinitesimal size dx (I2), described a representative slice 
of the figure’s total volume as the thing being summed (I1), and described the integral as the sum 
of all such pieces across the appropriate domain (I4). He notes that these have infinitesimal 
volume but that when you sum them all you get the whole region, which indicates he is using C5.  

       Dmitri checks his answer by appealing to dimensional quantities and units: even if dx is a 
“really small amount of meters, it’s still meters – so meters squared times meters equals meters 
cubed, and that’s the unit of volume.” Dmitri uses AUP, not MBS; he never seems to need the 
summand to be in the form “f(x)·dx.” His initial answer is not at all in that form, and his final 
answer still does not have the integrand written as a function of x. Additionally, he appeals to 
multiplicative structure when he talks about the summand, he does not describe or treat the area 
part, the integrand, as a “rate” at which the figure’s volume grows with each infinitesimal 
increment of the domain.  

 
 Reasoning in the MBS Register  
In response to Prompt 1, to explain what ! ! !"!

!  means, both Galena and Dmitri express 
notational interpretations I1-I4 and conceptions C1i and C5i. Galena’s succinct response is shown 
here, and I indicate how it displays I1-I4. There is no textbook with MBS in it yet, but if there 
was, Galena’s account would be the “textbook” description of MBS: 

 

!

!

!
!

!

I2i"
!

I3i"
!

I1i"
!
I4i"
!

G:  Okay, so, I’ll just separate this into chunks:   
So the dx is gonna be a small increment in time, like ideally it would be 
infinitely small. Um, so this [gestures to the “dx”] is a chunk of time, or 
whatever is on your x-axis. It doesn’t necessarily have to be time; it could 
be meters if you were doing it in length. But it’s a small increment of 
whatever x is. 
Then f(x) is the rate at which that grows over this [points to the dx] chunk 
of time, per se. And then, so this is a rate [points to the f(x)]. So it would 
be like meters per second, or whatever this x value is per whatever is the y 
value [she says these reversed but writes them correctly].  
Uh, and this [points to the entire integral] is making this a summation of 
these chunks. So this [points to f(x)dx] is going to be a chunk. And this is 
the summation from a to b of those tiny chunks that you’re adding up 
along the way.  

 

Figure 4 -- Dmitri’s modeling of a 
representative piece of volume. The 
axes labels were written by the 
interviewer. 
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Dmitri’s responses to Prompt 1 also illustrate his reasoning using I1-I4, C1 and C5, and he 
explicitly refers to f(x) as a “rate of change function; … let’s say it’s meters per second, then dx 
could be a really small increment, an infinitesimally small increment, of seconds.”  

 
 Converting From the AUP Register to the MBS Register 
An example of Galena’s written work illustrates the process of converting between the two 

registers. The problem asks her to first set up, then evaluate, an integral representing the volume 
of the figure created by rotating around the x-axis the region enclosed by the curves y = x + 6 and 
y = x2. Galena makes a couple of small mistakes in her work, but the switch between registers is 
clear. Her modeling work, to set up the integral, is shown in Figure 5.   

 

     
To evaluate the integral, Galena converts to interpreting the integrand [!(! + 6)! − !(!!)!] 

not as two dimensions of a slice but as a “rate of change,” (she writes this). She then seeks to 
evaluate by finding an “accumulation function” evaluated at the starting and ending values of 0 
and 3. The interpretation of the integrand has changed with the register shift, so she no longer 
refers to elements of the figure. 

 
Discussion 

 
These are a few illustrative examples of how students in an informal infinitesimals calculus 

course used the AUP register to model with definite integrals and the MBS register to reason 
with and evaluate definite integrals, and how there is an explicit change of interpretation marking 
the conversion between the registers. Since the two registers support these distinct purposes, it 
may support student learning for the instructor to teach the registers independently and to be 
explicit about the interpretations and affordances in each register. By explicitly teaching students 
the signs (notations and interpretations), treatments, and purposes of the two registers, we may 
help them develop meta-level awareness of the significance and affordance of their actions in the 
registers. An informal infinitesimals approach to calculus can help students develop these two 
registers, which are more powerful tools for reasoning with definite integral notation than the 
prevalent antiderivative and area interpretations. 
  

Figure 5—Galena’s modeling in the AUP register 
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Students’ Attitudes Toward Listing and Subsequent Behavior Solving Counting Problems 
 

Sarah A. Erickson 
Oregon State University 

 
Counting problems provide rich mathematical content and a variety of applications for students, 
motivating investigation into the difficulties students face while counting. In particular, an 
important result supported by previous quantitative and qualitative evidence is that listing may be 
an effective strategy for combating some student struggles in counting, particularly since it draws 
explicit attention to outcome structure. However, anecdotal experience has shown that students 
can resist listing and feel that it is tedious and not worth the effort. To investigate whether these 
negative mindsets exist outside these anecdotes, task-based interviews were conducted targeting 
student attitudes toward listing and their success in using listing to solve counting problems. 
Contrary to the anecdotal evidence, the students in the study expressed that they felt listing is a 
worthwhile activity, but their work on counting problems suggest that they would benefit from 
more explicit support relating to listing in their discrete mathematics classes. 

 
Key Words: Combinatorics, Discrete Mathematics, Counting Problems, Mathematics Education 

 
Introduction 

 
Counting, or combinatorial enumeration, is an important part of students’ mathematical 

curricula for a variety of reasons. Counting problems admit relevant applications in multiple fields, 
provide opportunities for students to engage in meaningful mathematical practices, and give 
contexts to help students understand difficult mathematical topics (Kapur, 1970). However, it has 
been shown that students at a variety of levels struggle to solve counting problems (Melusova & 
Vidermanova, 2015; Eizenberg & Zaslavsky, 2004; Batanero, et. al., 1997). While student 
difficulties persist, recent studies have found promise in a strategy known as listing: explicitly 
writing down one or more of the things you are trying to count while solving a counting problem 
(Lockwood & Gibson, 2016). 

However, despite the quantitative and qualitative results providing evidence for the usefulness 
of listing, anecdotally it has been found that some students feel that listing is tedious and not worth 
the effort, preferring instead to look for key words in problem statements and determine an 
appropriate formula. Students in discrete mathematics classes where they were explicitly 
encouraged to list have been overheard saying things such as, “But there are so many!” and “I feel 
like I’m not learning when I list all of the outcomes. I learn better when I’m given the theorems to 
use, not doing something tedious.” Seeing student resistance to listing despite evidence for its 
utility prompted investigation into the following research questions:  

1. What are undergraduate students’ attitudes towards listing as a strategy 
for solving counting problems?  

2. How willing are undergraduate students to use listing as a strategy to solve 
counting problems, and how successful are they are? 
 

Literature Review and Theoretical Perspectives 
 

Previous research has shown substantial need to better understand how to help students 
overcome difficulties they face solving counting problems. Specific struggles that earlier studies 
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have found include that student errors can persist even when given combinatorial instruction 
(Batanero et. al., 1997); intuition on how to approach problems can be misleading (Fischbein & 
Grossman, 1997, p. 35); students lack efficient verification strategies (Eisenberg & Zaslavsky, 
2004); and students get confused on the types of objects being counted (Batanero et. al., 1997). 

To help students overcome difficulties while counting, Lockwood (2013, 2014) argues that 
attention to outcomes—the objects which are enumerated when solving a counting problem—
should play a significant role in teaching students to count. Listing therefore can be a useful tool, 
as it provides students with a concrete way of attending to the outcomes of a counting problem and 
tying them explicitly to the counting process used to solve the problem. Indeed, Lockwood and 
Gibson (2016) found quantitative evidence for listing as a potentially useful strategy for students. 
They also discovered the following features of student lists that seemed most helpful while 
counting: useful notation and appropriate modeling of outcomes, organized strategy, and evident 
structure. Useful notation and appropriate modeling of outcomes refer to the way the student 
encodes each outcome, and whether the encoding correctly articulates what constitutes a desirable 
outcome. Organized strategy pertains to the order in which these outcomes are written down by 
the student, which could include the Odometer Strategy (English, p. 458-61, 1991) in contrast to 
random outcome generation. Finally a student list is said to contain evident structure if its 
organization reflects the counting process that the student uses. Lists with evident structure make 
it easier for a student to justify that a particular process counts every outcome once and only once. 

In this study, I follow Lockwood (2013, 2014) in viewing outcomes as an intrinsic part of 
combinatorial enumeration. Since attention to outcomes has been supported by theoretical 
perspectives (Lockwood, 2013; Lockwood, 2014) and shown to be useful from quantitative and 
qualitative evidence (Lockwood & Gibson, 2016), finding out how students might feel about 
listing is an important addition to existing combinatorics education literature. I frame the data 
analysis and results using Lockwood and Gibson’s (2016) features of productive listing. 

 
Methods 

 
To study student attitudes toward listing and success in using it to solve counting problems, 

individual task-based interviews were conducted and video-recorded with 9 discrete mathematics 
students at a large university in the western United States. Each student solved 6 counting 
problems, which were aimed at eliciting listing since their outcome sets have small cardinality or 
contain outcomes that are easily encoded: 

1. Chocolate Truffles. A chocolate store sells five varieties of chocolate truffles: 
raspberry, sea-salt caramel, mocha fudge, dark chocolate, and white chocolate. How 
many ways are there to select two truffles (of possibly the same variety) to buy? 

2. Committee. A department committee consists of four people. If there are seven senior 
faculty members, how many committees are there if Bob (one of the senior faculty 
members) must be on the committee? 

3. Letter Arrangements. How many ways are there to arrange the letters A, B, C, D, Z, Z, 
if the two Z’s must be together at the beginning or end of the arrangement? 

4. Binary Strings. How many strings of 1’s and 0’s are there of length 8? 
5. Door. How many ways are there to arrange the letters in the word DOOR? 
6. Olympic Swimming. There are 10 swimmers in the women’s 200-m fly final race at the 

Rio Olympics. How many ways are there to award the gold, silver, and bronze medals? 
While the sample size of this study is small, the interview design allowed for more insight into 
student attitudes about listing, since I had the opportunity to follow up and question students about 
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their solutions. After the students solved the counting problems, they were given 15 Likert-
response statements (responses could range from 1-strongly disagree to 5-strongly agree) which 
measured constructs related to their attitudes toward listing as a strategy for counting.  

After data collection, each solution was coded as being correct or incorrect and whether a 
listing strategy was used or not. In addition, each list was coded as being productive or 
unproductive, where a productive list is one where the student arrived at the correct answer and 
was able to articulate a relationship between their answer and their list. This is a modification of 
Lockwood and Gibson’s (2016) definition of productive listing. In addition, lists were examined 
to see if they contained the three features of productive listing found by Lockwood and Gibson 
(2016). Finally, descriptive statistics for each Likert statement were calculated. 

 
Results 

 
Responses to Likert statements 

The Likert statements were aimed at answering several related questions about student 
attitudes toward listing. For brevity, I will focus on the following questions since they are most 
relevant to the research questions above: 1) do students think listing is a useful strategy in general, 
2) do they find listing to be a worthwhile activity, and 3) what did they report about their teachers’ 
listing activity. Questions 1) and 2) express slightly different constructs in that 1) looks into how 
students think about listing in general, while 2) gets at whether students report that they themselves 
find listing to be valuable. This allowed for the possibility that some students might think listing 
is a useful strategy for other or less-experienced counters, but not for themselves personally.  

To investigate question 1), I looked at student responses to the following Likert items: item 1, 
“When solving counting problems, it is often useful to write down some outcomes;” item 6, 
“Before solving a counting problem, it’s important to articulate explicitly what you’re trying to 
count;” and item 14, “Creating a list of outcomes is not necessary for solving counting problems.” 
In contrast to the anecdote previously mentioned, the students in the study actually expressed broad 
agreement with statements 1 and 6, which had means of 4.11 and 4.66, respectively. The mean 
response to statement 14 was lower at 3.44, but most of those responding clarified that they felt 
listing is useful; they just did not feel it was always necessary for solving every counting problem.  

Similarly, student responses indicated that they also viewed listing as a strategy they personally 
thought was worthwhile. The statements which measured this attitude were Likert item 7, “I dislike 
writing outcomes when solving a counting problem, because I usually know the right formula to 
solve the problem right away;” item 10, “Creating a list of what I’m trying to count is tedious and 
not worth the effort;” and item 11, “Writing outcomes is a useful activity for me when solving 
counting problems.” Items 7 and 10 expressed a negative attitude about listing being personally 
worthwhile, and so I expected students would agree with them. However, the means of these 
responses were 2.44 and 2.67, respectively, indicating that students largely disagreed with these 
particular statements. Likewise, statement 11 had a mean response of 3.67, indicating that students 
at least did not disagree with the notion that writing down outcomes is useful for them personally.  

Overall, the answers to all six of the Likert items above went contrary to expectations. Despite 
the resistance to listing that I had observed anecdotally from students in the classroom, the results 
from the Likert-response items indicated that there may be more to their resistance than simply 
finding listing to be useless and unnecessary. Thus, I needed to look further to see what else besides 
negative attitudes might contribute to resistance to listing.  

A partial answer to this was found in the responses that students gave to Likert item 5, which 
reads, “My teacher mentioned outcomes but never encouraged us to list.” The mean of the 

20th Annual Conference on Research in Undergraduate Mathematics Education 59020th Annual Conference on Research in Undergraduate Mathematics Education 590



responses to this question was 2.78, indicating that students largely neither agreed nor disagreed 
with this statement. A limitation of this statement as a stand-alone Likert item was that it is a 
compound statement, meaning that by only looking at the mean response it is difficult to determine 
which part of the item they agreed or disagreed with. However, students could clarify their answers 
in the interview as they went through the Likert items, and some of the student utterances indicated 
that they felt more support could be given to them in terms of productive listing.  

For example, Student 1 gave this statement a 2, which meant that he disagreed, but his 
explanation showed that he disagreed in particular with the idea that his teacher mentioned 
outcomes while teaching him to count. He said, “[My teachers] encourage formulas, rather than 
listing, I guess.” Student 8 expressed a similar sentiment when he gave the statement a 4. He said, 

Student 8: “Yep, [my teacher] really doesn’t. Like, maybe for the digit problem [my 
teacher will] list it out, but for all the others, [my teacher will] just use a formula, 
which is bad, I think, because most people if they don’t--if they haven’t touched like 
possibilities and that kind of stuff they don’t know which one to use. They’ll often 
get confused.” 

In this context when he said, “possibilities,” he was referring to outcomes, meaning that he felt it 
could be more helpful to him and his peers to see his teacher write down outcomes more often so 
that they would know which formula to use while solving counting problems.  

Noting the small sample size of this study, I acknowledge that I cannot make any broad claims 
or generalizations from these students’ responses. However, it was surprising and is worthwhile to 
know that these students overall seemed to have positive attitudes about listing, and some of their 
responses to Likert item 5 support the idea that some students might resist listing because they lack 
instructional support to know how to list productively. The results from the Likert items thus 
provide some insight into the first research question, which targets students’ attitudes toward 
listing. 

 
Work on Counting Problems  

The students in each interview also answered a sequence of 6 counting problems, all of which 
were written to hopefully elicit listing as a strategy. Indeed, out of the 53 total solutions obtained, 
28 of them included listing as a strategy. Since this is over half of the solutions, their work provides 
further evidence that the students in the study felt that listing is a worthwhile strategy. Interestingly 
though, when I looked at these students’ listing behavior, I saw that their ability to list did not 
necessarily reflect the positive outlook they had on listing. Out of those 28 lists that the students 
used, only 17 of them were productive (which, again, meant the students were able to reach the 
correct answer and relate the list to the solution obtained). In addition, the percentage of correct 
solutions found using any strategy (69.81%) was slightly higher than the percentage of correct 
solutions when the domain (of all student solutions) is restricted only to those found using a listing 
strategy (67.74%). As noted in the literature above, Lockwood and Gibson (2016) had previously 
found a positive correlation between listing and solving counting problems correctly, so this 
prompted me to investigate why the students in my study seemed not to be as successful on 
problems in which they listed.  

Looking at instances where listing was productive for students, a characteristic example of 
their work is Student 2’s solution to the Committee Problem. Her list can be seen in Figure 1. 
Using her exhaustive list, she was able to obtain a correct solution of 10+6+3+1=20. Examining 
her list, I see that it exhibited all three characteristics of productive listing found by Lockwood and 
Gibson (2016). She had useful notation and appropriate modeling of outcomes, encoding the 
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outcomes using the items 1, 2, 3, 4, 5, and 6 and writing unordered groups of three of these 
numbers. Her strategy for writing down outcomes was organized, making use of the Odometer 

 

 
Figure 1. Student 2’s work on the Committee Problem. 

 
Strategy (English, 1991), and her list also had evident structure, in that she was able to draw a clear 
connection between the list she obtained and the solution 10+6+3+1. In addition, while her 
productive list was exhaustive, I note that there were several productive lists in the study that were 
only partial lists of outcomes as well.  

However, 11 of the 28 lists that students made in this study were unproductive, either leading 
students to incorrect solutions or, in one case, failing to contribute to a correct solution. For 
example, four out of the nine students made an incomplete list while solving the Chocolate Truffles 
Problem, which led them to the incorrect solution of 52=25. A characteristic example is Student 
1’s list, which can be seen in Figure 2. In making this list, I see that he listed all of the outcomes 
in which a raspberry truffle is selected, and then extrapolated an observed pattern he saw in the 
outcomes: that there are 5 outcomes when one truffle type is fixed. He then reasoned that there are 
5 total truffle types, so the solution must be 5×5=25. In this example, I see that he inappropriately 
modeled the outcomes of this problem using ordered pairs rather than unordered selections of 
truffles. While it is certainly possible that he would have reached this incorrect solution without 
the list he made, having a partial list of ordered pairs reflecting the multiplication 5×5 certainly 
didn’t help as he solved the problem. 

 

 
Figure 2. Student 1’s work on the Chocolate Truffles Problem. 

 
While inappropriate modeling of outcomes was present in student work, other features of 

productive listing identified by Lockwood and Gibson (2016) were missing in the students’ 
unproductive lists as well. For instance, Student 4 used an unproductive list while solving the 
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Letter Arrangements problem. While making his list, he tried to write down all of the outcomes 
beginning with two Z’s and an A, appearing to be trying to use the Odometer strategy (English, 
1991). However, he arranged the letters B, C, and D at random and was only able to come up with 
four outcomes beginning with ZZA, concluding from his partial list that the solution was 
2×4×4=32 total arrangements. While, again, it is possible he would have obtained this solution 
without making a list, the disorganized strategy stands in contrast with the kind of listing shown 
to be productive in Lockwood and Gibson (2016).  

Since the students’ unproductive lists in this study were often missing one or more of 
Lockwood and Gibson’s (2016) features of productive listing, this suggests that perhaps instructors 
could provide more support for students learning to solve counting problems by discussing how to 
create lists with the three features. It appears from these results that even if students are willing 
and able to list, they will not always be successful in generating productive lists. 

 

 
Figure 3. Student 4’s work on the Letter Arrangements Problem. 

 
A second interesting observation about the students’ unproductive listing behavior occurred 

when the lists were examined by problem. Three of the problems in this study (the Letter 
Arrangements Problem, Binary Strings Problem, and Olympic Swimming Problem) can be solved 
by simply applying the Multiplication Principle, while the other three problems are likely to be  

 
Table 1 
Descriptive Statistics on Solution Accuracy with and without Listing for Each Problem. 

Problem 
Percentage accuracy of 

solutions using any strategy 
Percentage accuracy of 

solutions using a listing strategy 

Chocolate Truffles 33.33 42.86 

Committee 37.50 40.00 

Letter Arrangements 88.89 75.00 

Binary Strings 88.89 80.00 

Door 66.67 85.71 

Olympic Swimming 100.00 100.00 
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more challenging or novel to students. The Chocolate Truffles Problem requires a multi-choose or 
a sum to solve it; the Committee Problem can be solved using an unordered selection; and the 
Door Problem can be solved using division. I found that while overall listing had no correlation 
with obtaining a correct solution, a closer look showed that listing appeared to have no effect or 
was a hindrance mostly on the problems requiring just the Multiplication Principle. For the three 
more challenging problems, the percentage of correct solutions when a listing strategy was used 
was higher than the percentage of correct solutions where any strategy was used. While there still 
were several unproductive lists for these three problems, and the percentage of accurate solutions 
for these more challenging problems was still low, these results support the conclusion that perhaps 
listing could be more beneficial for students solving more novel or challenging problems. These 
results are summarized in Table 1. While I cannot read too much into these numbers because of 
the small sample size, the findings at least suggest that there may be some effect of problem type 
on students’ listing behavior and the extent to which listing is useful for students.  

Overall for the students in this study, listing appeared to be most helpful on problems that were 
more novel or challenging, rather than simply requiring use of the Multiplication Principle. This 
may be in alignment with findings from Lockwood and Gibson (2016), in which the students were 
novices and were faced with some more challenging problems than were the students in my study. 
However, even on these more challenging problems, listing was not always helpful, and the 
students’ willingness to list was not reflected in a need they may have had for more support in 
knowing how to list productively. 
 

Conclusion 
 

The aim of the study was to investigate students’ attitudes toward listing, and to see if my 
findings would corroborate anecdotal evidence of student resistance to listing. Contrary to 
anecdotal experience, the evidence from this small-scale study suggests that students may agree 
that listing is useful and worthwhile, and that some instances of student resistance to listing actually 
may stem from not knowing how to list productively. Data from the Likert responses suggest that 
some students wish their teachers modeled productive listing and taught them explicitly how to 
list. I saw also from their activity while solving counting problems that they personally were 
willing to use listing as a strategy, but their positive attitude about listing was not reflected in the 
high percentage of unproductive lists that were created. I additionally observed that effectiveness 
of listing as a strategy may depend to some extent on the problem type and its degree of novelty. 

Since student resistance to listing may result in part from a lack of instructional support rather 
than simply negative attitudes, a natural direction moving forward would be investigating how 
instructors can help model and teach productive listing for students in their discrete mathematics 
classes. In addition, a larger-scale study should be conducted to determine if the positive attitudes 
about listing I encountered persist when examining a larger sample. Finally, future studies should 
seek a more sophisticated understanding of the relationship between the utility of listing and 
problem type.  
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Tinker Bell’s Pixie Dust: Exploring the Differentiations  
 Necessary to Engage in Emergent Shape Thinking 

 
Kristin M. Frank 

Arizona State University 
 

Researchers have described the importance of seeing a graph as an emergent trace of how two 
quantities’ values vary simultaneously. Researchers have also identified the many difficulties 
students face when constructing this conceptualization of graphs. In this paper I explore the role 
of two didactic objects on a student’s conceptualization of graphs. In particular, I examine how 
a student’s interactions with these didactic objects supported her in making key differentiations 
that enabled her to conceptualize a graph as emerging from simultaneously tracking two 
quantities’ varying values. My findings revealed that a student must differentiate a place on a 
function’s graph from the value of the function’s output. Also, the student must distinguish 
tracking a point in the plane from creating the point by simultaneously attending to the variation 
of two quantities. 
 
Keywords: Covariational Reasoning, Emergent Shape Thinking, Graphing 
 

Students’ conceptualizations of graphs remains a prominent area of study in both 
mathematics and science education. Researchers have documented how students’ impoverished 
conceptualizations of graphs inhibit them from constructing productive meanings of function and 
rate of change (e.g., Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Johnson, 2015; McDermott, 
Rosenquist, & van Zee, 1987; Oehrtman, Carlson, & Thompson, 2008). While researchers have 
highlighted ways of thinking that either support or inhibit students from developing propitious 
conceptualizations of graphs (e.g., Moore, Paoletti, Stevens, & Hobson, 2016; Whitmire, 2014), 
they have not documented how to support students who conceptualize graphs as static shapes in 
shifting to see them as emergent representations of the simultaneous variation of two quantities’ 
values. In this paper I characterize the constructions and differentiations necessary to see a graph 
as representing the simultaneous variation of two quantities’ values. 

 
Background 

 
Moore and Thompson (2015) describe two ways of thinking students hold for graphs: static 

shape thinking and emergent shape thinking. A student engages in static shape thinking when he 
conceptualizes graphs as objects in and of themselves. This student is likely to reason about a 
graph based on his perception of the shape. For example, a student who engages in static shape 
thinking might understand slope as the property of the line that determines whether the line falls 
or rises as it goes from left to right. This way of thinking is consistent with Bell and Janvier 
(1981) and Carlson’s (1998) findings that students often reason about graphs based on their 
perception of the shape of the curve and confound pictorial attributes of a situation with the 
shape of the graph.  

An alternative way of thinking about graphs is what Moore and Thompson (2015) called 
emergent shape thinking. They explained,  

“Emergent shape thinking involves understanding a graph simultaneously as what is made (a 
trace) and how it is made (covariation). As opposed to assimilating a graph as a static object, 
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emergent shape thinking entails assimilating a graph as a trace in progress (or envisioning an 
already produced graph in terms of replaying its emergence), with the trace being a record of 
the relationship between covarying quantities” (p. 4).  

Moore and Thompson explained that students who think about graphs emergently are positioned 
to reflect on their reasoning and thus have the opportunity to form abstractions and 
generalizations from their reasoning. As a result, relationships students construct from these 
generalizations are not tied to particular shapes, labels, and orientations.  

As Saldanha and Thompson (1998) explained, “understanding graphs as representing a 
continuum of states of covarying quantities is nontrivial and should not be taken for granted” (p. 
303). To engage in emergent shape thinking the student must first conceptualize two attributes, 
call them x and y, and imagine representing the varying measures of these attributes along the 
horizontal and vertical axes, respectively. Then she needs to imagine projecting these measures 
into the plane and conceptualize the intersection of these projections, the correspondence point, 
as a way to unite the measures of x and y (Figure 1). When one constructs an object that unites 
two attributes and the relation between these attributes she has constructed what Saldanha and 
Thompson (1998) call a multiplicative object. Conceptualizing a point in the Cartesian plane as a 
multiplicative object that unites values of x and y is essential when engaging in emergent shape 
thinking because, as Saldanha and Thompson explained, by constructing a multiplicative object, 
when one tracks the value of x (or y) she is constantly aware that the other quantity also has a 
value. As a result, as the student tracks the correspondence point, he is simultaneously attending 
to both the value of x and the value of y.  

 
Figure 1: Conceptualizing a point in the Cartesian plane as a projection of  

two quantities’ values, which are represented on the axes. 

Methodology 
 

I conducted one-on-one teaching experiments (Steffe & Thompson, 2000) with three 
university precalculus students (1 male STEM major, 1 female STEM major, 1 female liberal 
arts major).  These students were selected to participate in the teaching experiments because they 
demonstrated different ways of engaging in covariational reasoning in a recruitment interview. 
My primary teaching goal was to support students in engaging in emergent shape thinking when 
constructing and making meaning of graphs. After I completed the interview process I engaged 
in retrospective analysis by identifying instances that provided insights into the students’ 
conceptualizations of quantities, points in the Cartesian coordinate system, and covariation of 
quantities’ values. I used these instances to generate tentative models of each student’s schemes 
for graphing and covariational reasoning.  I tested these models by searching for instances that 

x

y
correspondence 

point
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confirmed or contradicted my model and repeatedly refined my model until it accounted for the 
student’s mathematical activity.  

Of the three students who participated in my study, only one student, Ali, came to 
consistently engage in emergent shape thinking. At the time of the teaching experiment Ali had 
just completed her freshman year at a large public university and had earned a B in her 
precalculus course. As a liberal arts major, this precalculus course satisfied Ali’s math 
requirement and she did not intend to take calculus. In the follow sections I describe my initial 
model of Ali’s schemes for graphing and covariational reasoning. Then I describe two didactic 
objects the research team used to support Ali in engaging in emergent shape thinking. I conclude 
by hypothesizing why these interventions supported Ali in constructing new meanings for points 
and graphs in the Cartesian coordinate system.  

 
Results 

 
In the second of four one-on-one teaching sessions it was apparent that Ali was not 

conceptualizing a point in the Cartesian coordinate system as a multiplicative object and thus 
was not engaging in emergent shape thinking. She was working on a task adapted from an 
instrument used to assess secondary teachers’ mathematical meanings (Thompson, 2016). This 
animated item was originally designed to support researchers in better understanding in-service 
secondary mathematics teachers’ schemes for covariational reasoning (Thompson & Carlson, in 
press). For the purpose of my study, I used this task to help me understand the nature of the 
multiplicative object Ali constructed when engaged in covariational reasoning. 

I showed Ali a video that depicted a red bar along the horizontal axis and a blue bar along the 
vertical axis. As the video played, the lengths of the bars varied simultaneously in such a way 
that each bar had one end fixed at the origin. (See Figure 2 for selected screenshots from the 
video). The horizontal (red) bar’s unfixed end varied at a steady pace from left to right while the 
vertical (blue) bar’s unfixed end varied unsystematically. I explained to Ali that the length of the 
red bar represented the varying value of u and the length of the blue bar represented the varying 
value of v. I presented Ali with a printout that included the animation’s initial screen depicting a 
set of axes and the initial placement and lengths of the red and blue bars. I asked Ali to sketch a 
graph of the value of v relative to the value of u. I anticipated Ali would be successful if she 
could imagine placing a point in the plane as a way to simultaneously represent the lengths of the 
red and blue bars. The video played repeatedly until Ali completed the task. 

 
Figure 2: Three screenshots from the animated task. 

 
After watching the video play through two times Ali began making dots within the plane and 

then connected those dots with a curved line (see Figure 3a). She explained that she figured out 

value of v

value of u

value of v

value of u

value of v

value of u
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the graph by “looking at the motion of how the blue line is increasing and decreasing” and made 
a dot each time “the blue line kinda stopped and the line kinda dipped down.” When I asked her 
about the red line she said, “since the whole time this red line is increasing it (the graph) is going 
to the right.” While Ali was able to produce a correctly shaped graph by tracking the motion of 
the blue bar with respect to experiential time, her focus on the blue bar suggested that she was 
not coordinating the varying lengths of the red and blue bars and thus had a non-multiplicative 
conception of her graph. In the following paragraphs I provide evidence to support this claim.  

First, consider Ali’s initial point (see Figure 3a). Since Ali sketched her graph on axes that 
displayed the initial lengths of the red and blue bars, Ali’s initial point should have been placed 
at the intersection of the projections of these bars (see Figure 3b). However, her initial point is 
only aligned with the projection of the blue bar. When I asked Ali to explain how she decided 
where to place her initial point she said, “I based it off of this blue line (points to blue line on 
vertical axis).” Notice that Ali does not mention the red line when discussing how she placed her 
initial point. Since Ali only attended to one of the bars when constructing the starting place for 
her graph, she was not conceptualizing her mark in the plane as a multiplicative object – as a 
way to unite two attributes simultaneously.  

  
Figure 3a: Ali’s graph generally correct shape 
but incorrect initial point. 
 

Figure 3b: Accurate graph for animated item in 
Figure 2. 

Ali’s focus on the blue line extended beyond her placement of the initial point. When Ali 
described what her graph represented she said, “As the red is increasing (traces hand left to right 
on horizontal axis) it (the graph) is showing the motion or like the path of the blue line (traces 
along curve from left to right).”  Ali’s conception of the curve was based in the motion of the 
blue line, not the coordination of the red and blue line. As a result, when Ali described the 
motion of the blue line she gestured along the curve. This suggests Ali confounded the variation 
of the length of the blue bar with the path of the curve and thus confounded the length of the blue 
bar with a place in the plane. Since the motion of the blue line and the curve were synonymous in 
Ali’s thinking, she had no need to attend to the red line when describing her graph.  

This task was not designed to support Ali in making new constructions. Instead, it was 
designed to assess the role of multiplicative thinking in her covariational reasoning. Since her 
activity provided evidence that Ali was not thinking multiplicatively the research team used two 
didactic objects in the third teaching session to support Ali in engaging in emergent shape 
thinking. As Thompson (2002) explained, a didactic object is “‘a thing to talk about’ that is 
designed with the intention of supporting reflective mathematical discourse” (p. 198). The first 
didactic object was designed to support Ali in conceptualizing a correspondence point that 
simultaneously represented two attributes. The second didactic object was intended to support 
Ali in conceptualizing a curve as a locus of points.  

value of v

value of u

value of v

value of u
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Didactic Object I: Conceptualizing Correspondence Points 
To support Ali in conceptualizing a point as a multiplicative object, I introduced the notion of 

a correspondence point as a way to represent the value of u and the value of v simultaneously. I 
modified the animation described in Figure 2 so that at any moment I could pause the animation 
and display the correspondence point as depicted in Figure 1. Following the recommendation of 
Thompson et al. (under review),  I engaged Ali in an activity where I let the animation play, 
paused the animation, and asked Ali to use the pointer to show where the correspondence point 
would be. Each time I asked Ali to justify why the correspondence point would be in that 
specific location. Finally, I displayed the correspondence point to confirm Ali’s 
conceptualization. I repeated this four times to ensure that Ali could construct the location of the 
correspondence point given the lengths of the red and blue lines and to ensure that she 
coordinated her conception of the correspondence point with both the red and blue lines.  

After Ali repeatedly described the correspondence point with the animation paused, I asked 
her to imagine tracking the correspondence point as the animation played and to try to remember 
everywhere it had been. Ali watched the animation play through once, tracked the 
correspondence point with the mouse pointer, and then sketched a graph from her memory of 
where the correspondence point had been. While Ali’s graph now had the correct shape and 
correct initial point, her image of her graph did not include points. She conveyed that her graph 
was made of imaginary points that had no coordinates. 

 This description suggests that although Ali could visually unite attributes to create her graph, 
she was not viewing her constructed graph in terms of the attributes she used to create the graph. 
One possible explanation is that to create the graph Ali needed to engage in two actions: first she 
needed to imagine uniting the length of the red bar and the length of the red bar through a 
correspondence point and then imagine tracking this point. After constructing the graph she was 
able to track the motion of a point, but did not retrospectively conceptualize the point as a 
representation of the simultaneous the lengths of the red and blue bars they varied together. As a 
result, her explanation of her graph was no different than before; she explained, “As v is 
increasing and decreasing u is just going to the right.”  Her conception of the completed graph 
was still non-multiplicative.  
 
Didactic Object II:  Tinker Bell’s Pixie Dust 

The researchers hypothesized that Ali was not conceptualizing the curve as a collection of 
points that emerged from simultaneously tracking two quantities’ measures. The witness to the 
teaching experiment intervened to support Ali in conceptualizing her graph as being made by 
Tinker Bell, the fairy from Peter Pan’s Neverland, flying along the path of the curve so that she 
left a trail of pixie dust marking everywhere she had been. As Thompson (2002) explained, 
supporting students in conceptualizing graphs being made of pixie dust supports them in coming 
to imagine lines and curves as being composed of points - pieces of pixie dust - where each piece 
of pixie dust simultaneously represents the measures of two quantities. 

To ensure that Ali was familiar with Tinker Bell and her pixie dust, the witness asked Ali to 
describe what she knew about Tinker Bell. Ali explained that Tinker Bell is special because she 
can fly and has pixie dust so as she flies you “see where she has been in the pixie dust”. The 
witness then asked Ali to think about her pen as Tinker Bell and everything she drew (the curve) 
as pixie dust. When he asked if there was any pixie dust on her graph Ali explained that each 
particle of pixie dust looked like an imaginary point. Additionally she said the pixie dust 
represented where Tinker Bell had been and Tinker Bell knew where to fly by “noticing where 
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the value of u and the value of v were”. This is significant because Ali included both the value of 
u and the value of v in her conceptualization of placing a piece of pixie dust. I hypothesize that 
thinking about how Tinker Bell knew where to fly gave Ali a way to differentiate between the 
two actions she used to construct the graph, coordinating two measures through a point (how 
Tinker Bell knew where to fly), and then tracking that point (where Tinker Bell flew).  

After I introduced the idea of Tinker Bell’s pixie dust there were two noticeable differences 
in Ali’s actions. First, when Ali described the value of v she would point to the vertical axis as 
opposed to the curve. This suggests that introducing the notion of a piece of pixie dust enabled 
Ali to differentiate between the magnitude of an attribute and a place on the curve. As a result, 
Ali no longer explained a place on the curve, a piece of pixie dust, by attending to just v, the 
length of the blue bar. Instead, she thought about both the u and v when describing the pixie dust. 
The second difference in Ali’s actions were in her description of how u and v changed together. 
Up until this point Ali always described how u changed, it increased, and how v changed, it 
increased, then decreased, then increased again. After introducing the notion of pixie dust Ali 
gave her first explanation of how u and v changed together that, from my perspective, revealed 
that she was coordinating two attributes.  

Ali: So as the value of u keeps on going towards the right the value of v um dips down. So v 
gets a bit closer to the value of u and then it dips down. Then as the value of u keeps going 
towards the right the value of v increases significantly (moves pen up vertical axis) then at a 
certain point where the value of u is about here (points on horizontal axis), the value of v 
decreases and then when the value of u is about here (points on horizontal axis), up until the 
value of u is around here the value of v increases and then dips down again (moves finger up 
vertical axis). Then again when the value of u is around here (points on horizontal axis) then 
the value of v increases again. 

This reveals that when Ali attended to the meaning conveyed by her graph she maintained a 
multiplicative conception of a point and imagined the line coming from simultaneously tracking 
both the length of the red bar and the length of the blue bar. 

 Introducing the notion of pixie dust was critical because it gave Ali something real to think 
about on the graph. As a result, it enabled Ali to differentiate between the value of v and the 
point on the graph. Thus, she came to a reflective conceptualization of a point in the plane where 
she could imagine constructing a point by attending to the measure of u and v but also, she could 
conceptualize a placed point as a representation of both the value of u and the value of v. 
Additionally, thinking about where Tinker Bell flew versus how she knew where to fly enabled 
Ali to differentiate between the actions of placing a point and then tracking that point. 

 
Discussion 

 
At the beginning of the teaching experiment Ali was limited to static shape thinking. She 

constructed graphs by tracking one quantity with respect to experiential time. This led her to 
confound the measure of the output quantity with the location of a point in the plane. As a result 
she conceptualized the variation of the output quantity as the trace of the curve. While this 
suggests a dynamic conceptualization of graphs, with this way of thinking she did not 
conceptualize - and had no need to conceptualize - uniting two attributes to make her graph.  

Introducing the notion of Tinker Bell’s pixie dust supported Ali in making two key 
differentiations. First, conceptualizing the pixie dust gave Ali a new cognitive object to operate 
on. Additionally, Ali imagined this pixie dust to be different than the blue bar. Conceptualizing 
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these two objects enabled Ali to differentiate between the value of the output, the length of the 
blue bar, and the point in the plane, the piece of pixie dust. More importantly, since Ali saw the 
pixie dust as different from the blue bar, Ali necessitated a way of thinking about placing the 
piece of pixie dust that involved more than blue bar. She responded to this intellectual need by 
coordinating her conception of the red and blue bar in order to think about the location of the 
pixie dust; Ali constructed the pixie dust as a multiplicative object.  

 The most robust form of emergent shape thinking involves more than constructing graphs by 
imagining tracking a correspondence point. One must also be able to reverse this way of thinking 
so that she imagines a curve having been produced by tracking a correspondence point. 
Constructing this reversible way of thinking is non-trivial as it involves reflecting upon the 
actions one engaged in when constructing the graph. As Moore and Thompson (2015) explained, 
“Emergent shape thinking involves understanding a graph simultaneously as what is made (a 
trace) and how it is made (covariation)” (p. 4). This implies that engaging in emergent shape 
thinking requires two actions: tracing the correspondence point and uniting two varying 
attributes through a correspondence point. Thinking about where Tinker Bell flew and how 
Tinker Bell knew where to fly enabled Ali to differentiate these actions so that each was 
available for reflection. As a result Ali was able to explain her constructed graph in terms of the 
actions she used to produce it: simultaneously attending to the red and blue bar as they varied.  

This study provides insights into the understandings necessary to engage in emergent shape 
thinking and didactic objects instructors can use to support students in constructing these 
understandings. Perhaps most importantly, these results provide evidence that educators can 
support students in shifting from static to emergent shape thinking.  This is essential as we call 
upon pre-service teachers, who often engage in static shape thinking (Moore et al., 2016), to 
support our students in conceptualizing and representing simultaneous variation in two 
quantities’ measures. Future studies should explore the way in which these shifts might occur in 
classroom instruction. 

I want to address a limitation of this work: the task described is not situated in a context.  As 
a result, I caution interpreting Ali utterances of values of u and v as evidence of having 
quantified a situation and enacted a measurement process. Instead, it is likely that Ali’s meaning 
for value of u and value of v were tied to the pictorial features of the representation in the 
Cartesian coordinate system. This claim is supported by Ali’s ability to engage in emergent 
shape thinking in other novel graphing contexts, such as the City A and City B task (see 
Saldanha & Thompson, 1998), but her inability to construct multiplicative objects in an algebraic 
contexts. This suggests a limitation to studies situated entirely in the graphing world and 
motivates future studies that explore the ways in which students construct multiplicative objects 
in non-graphing contexts.  Such studies have the potential to understand how students generalize 
their schemes for covariational reasoning. 
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Gender and Discipline Specific Differences in Mathematical Self-Efficacy of Incoming 
Students at a Large Public University 

 
Ulrike Genschel, Hien X. Nguyen 

Iowa State University 

This study investigates differences in mathematical self-efficacy and outcome expectations of 
3107 incoming students enrolled in introductory level mathematics or statistics courses at a land 
grant university in the Midwest. Students were grouped by discipline (STEM (Science, 
Technology, Engineering and Mathematics), Social Sciences and Arts & Humanities) and by 
gender within each discipline. All students enrolled in an introductory mathematics or statistics 
course during their first semester at the institution were surveyed about their perceived 
mathematical self-efficacy and outcome expectations at the beginning of that semester.   Our 
results suggest that discipline specific differences are dependent on the definition of STEM 
majors, namely distinguishing between math intensive and non-math intensive STEM majors. 
After accounting for this distinction gender differences in mathematical self-efficacy and 
outcome expectations disappear. 

Key words: Mathematics, Self-Efficacy, Gender, Social Sciences, and STEM 

Introduction 

The gender gap in the STEM sciences continues to afflict the U.S.’s economic and social 
prosperity. For the U.S., as a nation, to remain innovative, competitive and at the forefront 
economically and technologically, the country needs to continue growing the number of 
baccalaureates in the STEM sciences and provide diverse opportunities for individuals to pursue 
STEM related career paths. The National Science Board (NSB-2015-10) published in a recent, 
up to date, report that “policymakers, scholars, and employers have come to recognize that 
science, technology, engineering, and mathematics (STEM) knowledge and skills are critical to 
an extensive portion of the entire U.S. workforce and that a broad range of STEM-capable 
workers contribute to economic competitiveness and innovation.” 

In addition to unrecognized pathways, one of the recognized reasons for the existing shortage 
is the systematic exclusion of parts of the population due to the underrepresentation of women 
and minorities pursuing STEM or STEM-related degrees, a trend that has been challenging to 
reverse or to even slow down. Although much research has been devoted to understanding 
reasons for the shortage of women and other minorities in the STEM sciences (e.g., Betz & 
Hacket, 1983; Blickenstaff, 2005; Eccles et al., 1983; Else-Quest, Hyde, & Linn, 2010; Gainor & 
Lent, 1998; Hacket et al., 1992; Lent, Lopez & Bieschke, 1991, 1993; Lent, Brown, & Larkin, 
1984, 1986; Wigfield & Eccles, 1992;) it is still not fully understood why these groups choose 
STEM careers at significantly lower rates than non-minority men. Contributing factors include 
gender differences in STEM science self-efficacy (Eccles et al., 1993; Jacobs, Davis-Kean, 
Bleeker, Eccles, & Malanchuk, 2005), lack of role models (Betz & Fitzgerald, 1987; 
Blickenstaff, 2005) or societal norms and expectations Eccles, 1987, Raty et al., 2002). 
Additionally, the complexity of the associations among these factors adds another layer of 
complicatedness to the phenomenon. For a more recent and complete review of the literature we 
refer to Wang & Degol (2013). 
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The primary focus of this research is on introductory mathematics and statistics classes taken 
at the beginning of college motivated by the fact that the mathematical and statistical sciences 
are seen as gate keepers (Gainen, 1995) to the STEM sciences. Without successful completion of 
calculus or differential equations continuing in many STEM science majors is difficult if not 
impossible. While research has explored gender differences in mathematical self-efficacy at the 
middle and high school level or at the college level within specific STEM disciplines, less is 
known about the critical transition period from high school to college. For students enrolling into 
STEM majors or interested in pursuing a STEM major introductory mathematics and statistics 
classes are commonly among the classes taken during their first semester at college. This 
motivates the question whether students’ experiences in these classes contribute or are related to 
the gender gap. To provide at least partial insight into this question we investigate the levels of 
mathematical (and statistical) self-efficacy of incoming students at a large public state university.  
 

Theoretical Framework 

The theoretical framework builds on the construct of social cognitive career theory (SCCT; Lent, 
Brown & Hackett, 1994, 2000).  SCCT is based on Bandura’s social cognitive theory (Bandura, 
1986, 1989, Bussey & Bandura, 1999). At the center of SCCT lies an individual’s self-efficacy. 
Self-efficacy is defined according to Bandura (1986) as ‘people’s judgments of their capabilities 
to organize and execute courses of action required to attain designated types of performance’ (p. 
391). Thus when an individual contemplates a particular career path, the conviction the 
individual has about his or her ability as well as past, successful experiences plays an important 
role. With specific regard to a STEM field, if a person perceives that ultimately, he or she is not 
likely to be successful and has had what can be thought of as less than successful experiences, 
the likelihood that this person will choose that particular career path decreases. Self-efficacy is 
only one of three components of SCCT. The other two components are outcome expectations 
and personal goals. Outcome expectations refer to the belief about what outcomes are possible 
based upon specific courses of actions or experiences. An individual considers the question about 
what will happen if a course of action is completed. Environmental factors are often perceived as 
controllable and influential on the outcome, more than the individual’s own behavior (Gro, 
2008). Self-Efficacy and Outcome Expectations as the two primary pillars of SCCT are 
important when considering success of underrepresented groups, in particular females, in STEM 
career choices.  

Research Questions and Research Hypotheses 
 

The main research question of interest focuses on the levels of mathematical (and statistical) 
self-efficacy and outcome expectations of incoming students at a large public university such as 
Iowa State University. In order to obtain information related to gender gap issues in the STEM 
sciences, we group incoming students according to gender and discipline of declared major. We 
categorized declared major into STEM majors (distinguishing between math-intensive STEM 
and non math-intensive STEM majors), social sciences and arts and humanities. A student was 
considered as pursuing a STEM degree if the first or second declared major was in a STEM field.  

 
Research Question  
What is the level of mathematical or statistical self-efficacy and of outcome expectations of 

students entering a large public university, such as Iowa State University?  
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In order to obtain information related to the gender gap in the STEM sciences, incoming 
students will be grouped according to 

(1) gender 
(2) declared discipline, i.e. STEM, social sciences, arts and humanities. 
 
Thus, our research question is aimed at baseline information, summarizing academic self-

efficacy in mathematics and statistics courses. 
 
Hypotheses 
 
H1.1 Self-efficacy, mathematical self-confidence and outcome expectations of incoming 

students are, on average, significantly higher in students with STEM majors compared to 
students with a social science or an arts and humanities major. 
 

H1.2 Within each of the three groups, self-efficacy, and mathematical self-confidence 
and outcome expectations is comparable for women and men. 

 
Data and Statistical Analyses 

Data for this study stem from a larger parent study, which collected data on 15,960 students 
enrolled into an introductory mathematics or statistics course during the semesters of Spring and 
Fall 2012 and Spring 2013. Of these students, 3107 students were described as an incoming 
student, for which we also had complete background data on ACT scores, high school credits in 
mathematics and natural sciences, as well as high school rank and GPA. Incoming students are 
defined, as students who entered the university directly from high school, were actively degree 
seeking, had U.S. residence status and enrolled into an introductory level mathematics or 
statistics course during their first college semester. Of the 3107 students 1868 completed a pre-
survey on mathematical or statistical self-efficacy during week three of the semester. The survey 
instrument is based on an existing 36-item instrument called the “Survey on Attitudes Toward 
Statistics” (SATS-36) (Schau et al., 1995 and Schau, 2003). Schau’s SATS-36 survey consists of 
six subscales measuring Affect, Interest, Difficulty, Cognitive Competence, Effort and Value, 
respectively. Although the survey is well known among statistics educators and has been utilized 
extensively since its introduction in the literature, the authors were not able to confirm the six 
dimensional structure but rather that items measuring Affect, Cognitive Competence and 
Difficulty loaded onto a single factor.  This single factor reflects what is generally defined as 
perceived mathematical/statistical self-efficacy.  Our finding is supported by VanHoof, S., et al. 
(2011). Some items not loading onto any factor motivated additional changes to individual items. 
These changes, most of them minor, and adapting the survey to mathematics students were made 
in consultation with a survey expert from the Center of Survey Statistics and Methodology 
(CSSM) at Iowa State University. In accordance with Lent’s Social Cognitive Career Theory 
(Lent, Brown & Hackett, 1994, 2000) we further added six questions to measure outcome 
expectations, as outcome expectations are the second pillar in the SCCT framework in addition 
to self-efficacy.  

We used exploratory factor analysis to estimate the latent factor structure (self-efficacy, 
value, effort, interest and outcome expectations) and evaluated each factor calculating 
Cronbach’s alpha. The levels of Cronbach’s alpha (standardized) are 0.87 (self-efficacy), 0.90 
(value), 0.76 (effort), 0.61 (interest) and 0.87 (outcome expectations). Subsequently, we obtained 
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the corresponding factor scores for each student and calculated numerical summaries of the 
factor scores and conducted corresponding two-sample t-tests according to the groupings defined 
in the Research Question.    

 
Results 

We will summarize the results in tabular form for each hypothesis. We begin with H1.1: 
Although the primary focus is on mathematical self-efficacy and outcome expectations we also 
include the results for students’ perceived value and interest in mathematics. H1.1 hypothesizes 
that mathematical self-efficacy and outcome expectations of incoming students are, on average, 
significantly higher in students with STEM majors compared to students with a social science or 
an arts and humanities major.  
Contrary to hypothesis H1.1 we were not able to identify significant discipline specific 
differences among the incoming student that participated in our study (see Tables 1 and 2). 
 
Table 1 
STEM Sciences versus Social Sciences (Soc. Science)  

Dimension Mean 
STEM 

Mean 
Soc. Science t-statistic df p-value 95% Confidence Interval for 

difference in means 
Self-Efficacy 0.154 -0.084 2.049 72.3 0.0441 (0.006, 0.472) 

Value 0.352 -0.371 5.80 70.5 <0.0001 (0.475, 0.972) 
Interest 0.028 0.044 -0.139 72 0.8898 (-0.240, 0.209) 

Outcome Expectations 0.075 -0.135 2.070 76 0.0419 (0.008, 0.412) 
 
Table 2 
STEM Sciences versus Arts & Humanities (Arts & Hum)  

Dimension Mean 
STEM 

Mean 
Arts & Hum t-statistic df p-value 95% Confidence Interval for 

difference in means 
Self-Efficacy 0.154 -0.126 2.103 56.8 0.0399 (0.013, 0.547) 

Value 0.352 -0.550 6.402 55.8 <0.0001 (0.620, 1.185) 
Interest 0.028 -0.052 0.713 57.8 0.4789 (-0.145, 0.306) 

Outcome Expectations 0.075 -0.117 0.858 60 0.3944 (-0.124, 0.309) 
 
Both, mathematical self-efficacy and outcome expectations are comparable although based on 
the observed p-values less than 0.05 one may suggest a week tendency1. The same result holds 
for interest suggestion no significant differences between the disciplines. Highly significant, 
however, is the difference in how students in different disciplines value mathematics. A possible 
explanation based on the items belonging to the interest dimension is that students in STEM 
majors directly experience and appreciate the need for foundational mathematics knowledge in 
order to succeed in their downstream courses while for many social science and arts and 
humanities majors degree requirements often consist of no more than one class. Regarding the 
somewhat unexpected results for self-efficacy and outcome expectations we theorize that a 
possible explanation for this result lies in the definition itself of what majors are considered 
STEM majors. In recent years several majors such as economics, psychology or food sciences, 

                                                
1 Because of the large number of hypotheses tests, we do not use the usual cut-off value of 0.05 
for the level of significance but in an effort to adjust for the multiple testing procedures consider 
p-values of 0.001 or less as statistically significant. 
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for example, have been grouped more frequently with the STEM sciences in an effort to provide 
a more inclusive definition of STEM and because many of these majors frequently include 
STEM related tasks or knowledge. Different majors within STEM, nevertheless have 
substantially different mathematical prerequisites, which prompted us follow up our analysis by 
distinguishing between so-called math intensive STEM majors and those that are not math 
intensive. For a major to be considered math intensive the major’s degree requirement had to 
include science/engineering Calculus I, or equivalent. Table 6 provides the updated results 
displaying differences in mathematical self-efficacy and outcome expectations for students when 
distinguishing between math intensive and non-math intensive STEM majors. All four factors 
show a significant difference between both groups with students in math intensive STEM majors 
exhibiting higher levels of self-efficacy, value, interest, and outcome expectations. The same 
distinction further explains gender differences in mathematical self-efficacy and value originally 
observed in Table 3 for students in the STEM sciences. When accounting for the type of STEM 
major (math intensive or not) Tables 7 and 8 show that gender differences within each group 
disappear and can likely be attributed to random variation. Tables 4 and 5 support our second 
hypothesis H1.2 showing no gender differences in the social sciences and the arts and 
humanities.  
 
Table 3 
Gender Differences in the STEM Sciences 

Dimension Mean 
Female 

Mean 
Male t-statistic df p-value 95% Confidence Interval 

for difference in means 
Self-Efficacy 0.032 0.201 -2.921 572.1 0.0036 (-0.282, 0.055) 

Value 0.140 0.433 -5.485 551.9 <0.0001 (-0.398, -0.188) 
Interest -0.042 0.055 -1.838 620 0.0666 (-0.200, 0.007) 

Outcome Expectations 0.071 0.076 -0.085 631.5 0.9323 (-0.121, 0.111) 
 
Table 4 
Gender Differences in the Social Sciences 

Dimension Mean 
Female 

Mean 
Males t-statistic df p-value 95% Confidence Interval 

for difference in means 
Self-Efficacy -0.093 -0.047 -0.150 16 0.8829 (-0.689, 0.598) 

Value -0.347 -0.484 0.348 13.6 0.7333 (-0.713, 0.988) 
Interest 0.094 -0.186 1.006 16.7 0.3290 (-0.309, 0.870) 

Outcome Expectations -0.111 -0.244 0.424 13.7 0.6779 (-0.367, 0.488) 
 
Table 5  
Gender Differences in the Arts & Humanities 

Dimension Mean 
Females 

Mean 
Males t-statistic df p-value 95% Confidence Interval 

for difference in means 
Self-Efficacy 0.004 -0.277 1.078 51.5 0.2859 (-0.119, 0.740) 

Value -0.549 -0.552 0.012 49.1 0.9903 (-0.567, 0.574) 
Interest -0.013 -0.098 0.387 52 0.7007 (-0.357, 0.527) 

Outcome Expectations 0.003 -0.041 0.204 45 0.8393 (-0.280, 0.486) 
 
Table 6 
Math intensive (MI) versus non-math intensive (NMI) STEM Sciences 

Dimension Mean 
MI 

Mean 
NMI t-statistic df p-value 95% Confidence Interval 

for difference in means 
Self-Efficacy 0.192 -0.019 -2.847 287 0.0047 (-0.357, -0.065) 

Value 0.523 -0.443 -15.441 280.4 <0.0001 (-1.089, -0.843) 
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Interest 0.070 -0.164 -3.527 300 0.0005 (-0.407, -0.104) 
Outcome Expectations 0.120 -0.136 -3.326 295.4 0.0010 (-0.356, -0.092) 
 
Table 7 
Gender Differences in the math intensive STEM Sciences 

Dimension Mean 
Female 

Mean 
Male t-statistic df p-value 95% Confidence Interval 

for difference in means 
Self-Efficacy 0.110 0.212 -1.553 312.8 0.1215 (-0.214, 0.027) 

Value 0.546 0.517 0.581 331.7 0.5617 (-0.070, 0.128) 
Interest 0.086 0.066 0.333 333 0.7393 (-0.098, 0.138) 

Outcome Expectations 0.193 0.102 1.447 372.6 0.1487 (-0.033, 0.214) 
 
 
Table 8 
Gender Differences in the Non-math intensive STEM Sciences 

Dimension Mean 
Female 

Mean 
Male t-statistic df p-value 95% Confidence Interval 

for difference in means 
Self-Efficacy -0.082 0.089 -1.210 179.5 0.2279 (-0.387, 0.101) 

Value -0.455 -0.423 -0.253 158 0.8007 (-0.280, 0.216) 
Interest -0.228 -0.054 -1.355 166.1 0.1722 (-0.427, 0.079) 

Outcome Expectations -0.107 -0.185 0.549 188.7 0.5839 (-0.204, 0.362) 
 
 

Discussion and Conclusions  

 Although we did not test for significant differences between math intensive STEM majors 
and the social sciences and arts and humanities, respectively it is possible to conclude that the 
statistically significant differences found between math intensive and non-math intensive STEM 
majors will extend to statistically significant differences between math intensive STEM majors 
and the social sciences and arts and humanities as the sample means for math intensive STEM 
majors only increased from those of all STEM majors combined. Under the theoretical 
framework of Social Cognitive Career Theory with self-efficacy and outcome expectations as its 
two cornerstones the existing differences imply that the shortage of a strong STEM workforce as 
well as limitations on the number of pathways leading to a workforce will continue rather than 
beginning to embrace the STEM sciences. Our results were encouraging, however, in the sense 
that within each of the disciplines gender differences have subsided or continue to no longer 
present. 
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Exploring a Pre-Service Teacher’s Conceptions of Area and Area Units 

Sayonita Ghosh Hajra Betsy McNeal 
Hamline University Ohio State University 

This paper highlights the data from a one-semester course with pre-service teachers in an 
ongoing study of their conceptions of area at a public university in the western United States. 
Their meanings of area and area units, both standard and non-standard, were explored 
throughout the semester. Analysis of our interviews with these pre-service teachers about their 
responses to area tasks allowed us to uncover three cognitive conflicts in conceptualizing area, 
namely: 1) how can non-square units be square(d)?, 2) how can we find the area of a shape 
when the area unit is neither square nor polygonal?, 3) how can we use square or polygonal 
area units to measure the area of a shape with curved boundaries? The work of one 
representative case study is reported here. This work will help educators develop tasks to initiate 
these cognitive conflicts for improved conceptualizations of area. 

Keywords: area, area units, geometry, pre-service teachers 

Area is a fundamental construct of geometry and is usually introduced in 2nd or 3rd grade. In 
the Common Core State Standards (CCSSM, 2010), area appears in 3rd grade under the 
Measurement and Data standards. In this grade, area measurement is discussed as covering a 
planar figure, or fitting squares (the area unit) into a planar figure, without any gaps or overlaps, 
and then counting the squares (CCSSM, 2010). In general, a 1-unit by 1-unit square is the 
standard unit that is used to measure area. 

Even though the definition of area is straightforward, researchers demonstrate that current 
and future elementary teachers struggle with this concept of area (Enochs and Gabel, 1984; 
Simon and Blume 1994; Baturo and Nason, 1996; Reinke, 1997; and Menon, 1998). We, the 
current authors, were mathematics teacher educators at public universities at the time of the 
study. Over our collective years of working with pre-service teachers (PTs), we have noticed 
independently that our PTs struggle with defining and using area units, especially non-standard 
units. In conversation with each other, we found that our observations were very similar 
irrespective of our classes being at two different universities in two different states. This led us to 
our first study (Ghosh Hajra, McNeal, & Bowers, 2016), where we documented many of our PTs 
have difficulty defining a “square unit” and often reported answers in “square units” when 
measurements were actually taken using non-standard units. We found a wide gap between PTs’ 
definitions of area and their use of area units. We also found that PTs particularly struggled when 
they had to find areas of irregular 2D shapes using non-standard units.  

Our instructional goals for our PTs’ learning include: 1) deepening their understanding of 
each geometric concept that they will teach and 2) preparing them to articulate fundamental 
features of each topic by pushing them to think beyond the level of mathematics that they will 
teach. In our instruction, we have begun to broaden the meaning of area to be the amount of 2D 
space taken up by a planar figure and measured using any two-dimensional object as the area 
unit. We describe measurement as a comparison of the given area unit with the 2D shape, as 
accomplished by covering the shape with an iteration of the area units and counting how many 
area units can fit in the shape. For example, consider the hexagon in Figure 1 as an area unit. We 
can iterate this unit to cover the blue region. The area of the blue region is then the number of 
hexagons that are needed to cover it, or 9 hexagons. Our area instruction thus aims to prepare our 
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PTs to respond to the following questions based on our course goals: What makes an appropriate 
unit of area? How does one use this unit to measure area? How does one report the resulting 
measurement, whether using a standard or non-standard unit? 

                     
Figure 1: Measuring area using a non-standard area unit. 

 
Like all classroom teachers, we aim to improve our instruction through close study of our 

students’ work. We asked ourselves what effect continued work in class with a variety of non-
standard units would have on PTs’ understanding of area and its measurement. This led us to 
develop new area tasks for the students in our classes in Spring 2016.  One of the limitations of 
the first study (Ghosh Hajra et al., 2016) was that we analyzed only students’ written responses. 
The current study is an extension of the Ghosh Hajra et al. (2016) investigation, using data from 
the new group of students. The ideas expressed in the current paper emerged as the first author 
engaged in conversation with her students during the spring 2016 class and then in out-of-class 
interviews about their responses to the newly developed area tasks. Although our informal 
observations were the basis from which we articulated the points of cognitive conflict in PTs 
conceptualization of area-units, we undertook this latest study to enrich our understanding of 
these conflicts by looking more closely at students’ thinking through the interviews.  We also 
hoped this would move us toward validating the points of cognitive conflicts PTs have with area 
and area units.  In this paper, we discuss the progress one of the 30 PTs in the study made in the 
process of measuring area. This particular student was selected because her thinking and points 
of confusion around the meaning and use of area units reflected the thinking of many other PTs 
in the class. 

Theoretical Framework 

The constructivist theory of learning provides the theoretical framework for this study in that 
it drives both our classroom instruction and our interpretation of the participants’ thinking, 
whether derived from written work or from interviews. From the point of view of constructivism, 
new ideas are generated by individuals when new situations and experiences, which conflict with 
existing ideas, cause the individuals to modify their existing ideas (von Glasersfeld, 1995). Based 
on this theory of learning and in pursuit of our course goals, we pose non-traditional tasks as a 
regular feature of our instruction. These tasks (initially conceived as instructional materials 
rather than data tasks) are selected and sequenced to help PTs examine their own thinking and to 
provide a source of cognitive conflict. We hypothesized that tasks involving non-standard area 
units would be a significant source of productive conflicts and might cause reorganization of 
PTs’ area concepts when needed.   
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Methodology 

The first author was the PTs’ instructor for a geometry course, the second part of a two-
course mathematics sequence for elementary teachers. Thirty PTs enrolled in two sections of this 
course participated in a semester-long research project examining PTs’ understanding of area 
units. The instructor used the Beckmann (2013) mathematics textbook that is aligned with the 
Common Core State Standards Initiative (2010).  

In our first study (Ghosh Hajra et al., 2016), tasks were designed in the middle of the 
semester and PTs’ written responses to those tasks were the focus of the report. PTs were not 
interviewed for additional clarification of their work. In the current study, we used Units Task 1 
(Figure 2) from Ghosh Hajra et al. (2016) as well as new tasks aligned with our instructional 
goals. The instructor posed several non-traditional tasks on area and, in class, listened to PTs’ 
real-time responses for informal feedback on their understanding. This feedback was used to 
design follow-up class activities in a manner reminiscent of Simon and Blume (1994). In-class 
writing assignments, quizzes, tests, and the final exam were collected from all thirty PTs. A few 
clinical interviews (Clement, 2000) were conducted with eight of the PTs about their in-class 
work and other assignments individually. Each of the interviews was videotaped and transcribed, 
and the written work was digitized.  

We used qualitative research methods to analyze our data. Our qualitative analysis drew on 
the techniques of grounded theory, constant comparison, and retrospective analysis. Our 
developing theories were grounded in our initial observations as classroom teachers and 
constantly compared to new classroom observations (Strauss & Corbin, 1990).  We provisionally 
tested our theories in classroom interactions and by conducting interviews while instruction was 
ongoing. We developed, modified and generated new tasks through engaging in conversations 
with each other and with the students (PTs). We used the retrospective analysis procedure (Steffe 
& Thompson, 2000) to analyze videotaped interviews and students’ written work to understand 
students’ ways of conceptualizing area and area units after the conclusion of the period of 
instruction. Each author analyzed the interviews independently and later discussed them 
together. We followed all PTs closely throughout the semester to examine their conceptions of 
area and area units. This study reports only the work of one PT, Martha (pseudonym), who 
performed well in the first course in the sequence with the same instructor, and whose thinking 
was representative of the rest of the class as demonstrated in the entire data collection.  This PT 
was selected as a case study on the basis of our retrospective analysis and after the conclusion of 
the instructional period. 

Results  

How can non-square units be square(d)?  

In our first study, we observed PTs’ unusual written responses to non-square units. This led 
us, in the current study, to watch closely how PTs engaged in the same tasks (and some new 
tasks) during class. Based on their work in class and written responses, individuals were selected 
for interviews to clarify our understanding of how they were thinking.  

Early in the semester, the instructor presented the class with Task 1, shown in Figure 2. The 
goal of this task is to use the 2D shapes marked a, b, c, and d as area units to measure the area of 
the larger shapes A, B, C, and D, respectively. Martha used “unit2” and “units2” throughout even 
though her calculations were based on the given area units. While a “square unit” is defined as a 
1-unit by 1-unit square that is used to measure the area of a shape, Martha’s use of “units2” in all 
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tasks seemed to occur without regard to the actual unit given. For example, she wrote “11 unit2” 
as her answer to Task 1 b) which asked her to find the area of shape B using a triangle. 

Task 1: Find the areas of the shapes (A), (B), (C), and (D) using the following 2D shapes (a), 
(b), (c), and (d). 

 
 

Figure 2: Area task involving standard and non-standard area units. 

After several weeks of instruction, Martha reported the area of a shape in terms of the given 
unit, but still used the “squared” terminology. An example of this came up during the follow-up 
interview in which she was asked how she would interpret covering a rectangular piece of paper 
with a specific number of triangles and hexagons. Her responses are cited in Figure 3.  

Interviewer: Suppose you have 20 triangles filling the rectangular shape [showing a rectangular piece 
of paper], what will be the area of the rectangle? 
Martha: It will be 20 triangular units. 
 
Interviewer: Say you try to cover this piece [a rectangular sheet of paper] with a hexagonal region 
[showing a hexagon drawn on a paper], and you need 36 such [hexagonal] pieces, so what will be the 
area of this [rectangular sheet of] paper? 
Martha: It would be 36 hexagonal regions squared. 

Figure 3: Martha’s responses on task 2 (shown in Fig 4).  

Martha used the number of triangular units when stating the area of the sheet of paper, but 
when she referred to the area of the same region in terms of hexagons, she added the word 
“squared”. Martha’s reporting of the answer was correct for the triangular units, but her response 
to the hexagonal unit was technically incorrect. Martha appeared to be uncomfortable with 
simply reporting the number and type of unit as an area, i.e., saying “36 hexagons”. This is 
indicated by the extraneous (to our ears) use of the word “square”. She understood that the unit 
of measurement should be specified, but clearly did not yet completely understand the meaning 
of a “square unit”. Hence, the use of a non-square unit causes students to experience cognitive 
conflict and compels them to reconsider the meaning of "1 square unit". Martha and PTs like her 
do not seem to view a “square unit” as a 1-unit by 1-unit square. That is, saying that something 
has an area of “6 square inches” does not seem to mean that it has been covered with “six 1-inch 
by 1-inch squares”. Simon and Blume (1994), who studied the multiplicative understandings of 
pre-service teachers in the context of area, found similar responses and observed, “It is likely that 
for some of these [PTs], square units do not conjure up an image of a square” (p. 485). In fact, 
one of our PTs went so far as to write on a quiz that “a square inch is not a square”.  
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How can we find the area of a shape when the area unit is neither square nor polygonal? 
After a couple of weeks of instruction on area, the following task (Figure 4) was presented on 

a midterm exam.  

Task 2: Which of the following can be an area unit? Provide reasoning for your choice. 

A 1inch-by-1 inch square, a triangular region, a circular region, length 
of your finger, width of your finger, a finger nail, length and width of 
your finger, a hexagonal region, a toothpick, and a ribbon.  

Figure 4: Area unit task. 

Martha responded that all of the listed items could be area units except the circular region, 
length of your finger, and width of your finger. She correctly described why the triangular region 
can be an area unit explaining that it is a 2D shape and multiple copies of it can fit together to 
cover a shape without leaving any gaps (see Figure 5). However, Martha reasoned that a circular 
region could not be used as an area unit because the units would not fit nicely together without 
leaving gaps. She makes this conclusion regardless of the particular shape to be measured. 
Martha’s thinking reflects the thinking of many other PTs in this study and others we have 
encountered in our teaching careers. It seems that most PTs believe area units need to have nice 
straight edges, i.e. only a polygonal 2D shape can be an area unit.  

 
Figure 5. Written response of Martha on the area unit tasks.  

 When the area unit under consideration is polygonal and the shape to be measured is also 
polygonal, it is reasonable to Martha that an area unit be decomposed because the area units fit 
nicely inside the shape without any gaps.  The same holds true along the boundary. For example, 
in Figure 1, we saw that the hexagonal area unit needed to be decomposed into halves to cover 
the region. This is an application of the moving and additivity principles of area in the 
measurement of area. The moving principle states that moving an area unit rigidly without 
stretching maintains its area. The additivity principle states that if we combine a finite number of 
area units (whole or part units), the area of the resulting shape is the sum of the areas of the 
individual area units. When faced with a circular unit, the question of whether we can cover our 
shape with this unit became an issue even before considering the particular shape to be 
measured. 

How can we use square or polygonal area units to measure the area of a shape with curved 
boundaries? 

In the next task (Figure 6), Martha was asked to find the area of the circle using the non-
standard polygonal area unit. To answer part (a), Martha wrote that the “exact” area cannot be 
found using the given area unit. For part (b), she tentatively mentioned that the moving and 
additivity principles of area could be used, but was not sure how to account for the parts of the 
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circle that cannot be covered by a whole area unit. Martha wrote, “No it is not possible because 
the Area unit is using straight edges which would leave parts of the circle unmeasured. If we 
used the moving and additivity principles to manipulate the area shape to fill in those missing 
parts we couldn’t count the number of ‘area units’ it created to be exact.” In an interview about 
this task, she explained that, since the area unit is not the usual square grid, it was not possible to 
“know exactly how many will fit in even if you do break it apart.” Note that with the polygonal 
area unit, she immediately showed understanding that she could break the unit for purposes of 
covering the circle, but the curved boundary became now the source of cognitive conflict.  This 
part of her response also suggested that, even if the unit could be broken, it could not be used to 
fill curved spaces.  

When the interviewer asked her if she could estimate the area, Martha was able to do so by 
counting the full area units first, finding that 10 complete area units would fit in the larger shape, 
and then decomposing the area unit further to obtain a total of approximately 17 area units. 
When asked if she would like to change her answer to part (b) of task 3, Martha said, “Yes it’s 
possible but I guess it wouldn’t be, like it is possible but it’s not possible to give you an exact—
like a perfect measurement. Unless you know the exact, how like big that is [the circular region] 
compared to that [given area unit], like how many of those [given area units] go in here [within 
the circle] and how many of these [given area units] cause these [leftover parts within the circle] 
aren’t the same.” Martha seemed to feel that the units could be decomposed a few times, but that 
the process could not be completed—no straight-edged units could ever completely fill a region 
with a curved boundary. 

Task 3: a) Find the area of the following region bounded by the circle using the given area 
unit. 

            Area unit:         The 2D shape:  
b) Is it possible to use the above area unit to measure the area of the above circular region?  

Figure 6. Task 3: Measuring the area of the circular region using a non-standard unit. 

When using squares and triangles as area units, Martha was able to articulate the idea clearly. 
However, with non-polygonal non-standard area units and 2D shapes with curved edges, she had 
difficulties. Martha assumed her area calculation needed to be exact. Even though she was able 
to calculate an estimate of the area of the circular region using the non-standard unit, she did not 
think she could find the exact area.  
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Discussion and Conclusions 

Our repeated questioning of Martha in and out of class over the semester generated cognitive 
conflicts that ultimately helped her recognize an area measurement as meaningful when obtained 
by covering a shape with a non-standard unit. Martha’s understanding of area unit had thus 
grown in two ways: 1) identification of any 2D shape as a possible area unit (without regard to 
efficiency or ease of use) and 2) awareness that an area unit need not have straight edges.  
 

Task 4: Consider the units of area given below as shapes A and B (picture to the left).  

                                          
For each unit, indicate whether or not the 2D rectangular shape (picture to the right above) 
has an area with the given unit. If the shape DOES have an area with the unit, explain how 
you would find it using the unit. If it does not, explain why not. 

Figure 7. Final exam question. 

Martha continued, however, to have trouble making sense of her work when asked to 
interpret her “area answer” in terms of that non-standard area unit. On the final exam, when we 
repeated Task 1b, Martha gave her answer as “11 triangle units squared”. On the same exam 
(Task 4 in Figure 7 above), she correctly identified the area unit and mentioned the 
decomposability of that unit. She wrote that both A and B could be used as area units. She wrote 
that 32 of unit A would be needed to fill up the space, but using unit B would require that we 
“break it [the unit] apart filling in the gaps, which would be a little over 2 times”.  
 Our analysis suggests that engaging Martha in various tasks generated cognitive conflicts 
which influenced Martha’s understanding of area. Our data also illustrates that we have not 
generated sufficient conflicts to disrupt her habitual use of square units. 

Overall, students’ understandings of the process of area measurement (separate from the 
formula “length times width”) and of area units themselves (other than squares) were deeply 
enriched through tasks involving non-standard area units and through discussion of their 
responses. We propose two new types of tasks for work with future students.  First, we would 
like to pose tasks that involve covering a shape with non-standard units (such as different-shaped 
post-it notes) with the idea of engaging PTs in thinking about fitting curved units into polygonal 
boundaries and polygonal shapes into curved boundaries. Finally, we propose to have PTs use 
rectangular units to cover larger rectangles as a way to coordinate their meaning of area with the 
definition of multiplication in the formula for the area of a rectangle. 
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Contextualizing Symbols in Word Problems  

Sayonita Ghosh Hajra Victoria Kofman 
Hamline University Stella Academy 

 
The Common Core State Standards recommend students to decontextualize word problems 
using symbols and contextualize symbols by defining the meaning of values. We observed 
pre-service teachers’ difficulties with contextualizing symbols in word problems; hence, we 
incorporated supplementary word problems’ modeling instructions for an arithmetic course 
with pre-service teachers. After six weeks of instruction, on a midterm exam, our pre-service 
teachers started using symbols to present arithmetic word problems. However, many of them 
still could not clearly define the meaning of the symbols they used. After completing the 
program, students demonstrated improvement in their reasoning with symbols. We believe 
difficulties with defining symbols are connected to weaknesses with active scientific 
vocabulary in terms of measurable attributes. Therefore, we propose mathematics courses for 
prospective teachers to accentuate scientific vocabulary regarding measurable attributes. 

Key words: Algebraic reasoning, symbols, pre-service teachers, word problems  

One of the main goals of the Common Core State Standards Initiative (CCSSI, 2010) is to 
promote quantitative reasoning. Thompson (2011) stated quantification as the “process of 
conceptualizing an object and an attribute of it so the attribute has a unit of measure, and the 
attribute’s measure entails a proportional relationship (linear, bilinear, or multi-linear) with 
its unit” (p. 37). For example, in the statement, Ravi bought 3 kilograms of flour, a qualitative 
attribute is weight and a unit of measure is kilogram. Here, the measurable attribute (weight) 
is not specified but can be deducted from the text.  

Another aspect of children’s education greatly emphasized by CCSSI is early 
development of algebraic reasoning. According to Kaput and Blanton (2005), algebraic 
reasoning requires students to “generalize mathematical ideas from a set of particular 
instances, establish those generalizations through the discourse of argumentation, and express 
them in increasingly formal and age-appropriate ways” (p. 99). Lins and Kaput (2004) 
recommend developing algebraic reasoning in elementary grades. The National Mathematics 
Advisory Panel of the U.S. Department of Education (2008) acknowledged this, since 
research has shown most students struggle in algebra in secondary grades (Kieran, 1992). An 
early introduction of algebraic reasoning might help in transition to algebra in later 
mathematics classes. Low algebraic skills are believed to be a gatekeeper to progress in 
mathematics and science (Greenes et al., 2001). 

One of the features of algebraic reasoning includes an ability to decontextualize word 
problems, i.e., “to abstract a given situation and represent it symbolically and manipulate the 
representing symbols as if they have a life of their own, without necessarily attending to their 
referents” and contextualize symbols by attending to the meaning of quantities, i.e., “to pause 
as needed during the manipulation process in order to probe into the referents for the symbols 
involved” (CCSSI, 2010, p. 6). As a symbol, some choose basic letters (A, B, C, X, Y, Z, 
etc.) (Davydov, 1975; Dougherty & Slovin, 2004), while others use parameter pointers, 
letters or words, that point to key words connected with qualitative characteristics of values 
(Kofman, 2016). The latter are routinely used in physics (Serway & Faughn, 2006) and 
chemistry (Dingrando et al., 2006). Parameters, such as V1 is the volume of a gas before 
expansion or m is the mass of an object, are used to remind a problem-solver about the 
symbols’ meaning in challenging word problems, which involve multiple symbols. Shifting 
gears toward problem-solving (CCCSI, 2010) increased the role of teaching students to use 
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symbols, which help with solving word problems.  
According to CCSSI (2010), children should start developing knowledge regarding 

measurable attributes as early as kindergarten and be able to “describe measurable attributes 
of objects, such as length or weight” (CCSS.Math.Content.K.MD.A.1, p.12). A well-
developed understanding of measurable attributes helps students to develop an active 
scientific vocabulary—a basis for communicating math ideas needed to successfully solve 
mathematics word problems. CCSSI (2010) expects 6th graders “to use variables to represent 
numbers and write expressions when solving a real-word or mathematical problem” and 
“understand that a variable can represent an unknown number, or, depending on the purpose 
at hand, any number in a specified set” (CCSS.Math.Content.6.EE.6, p. 44).  

Since we want our elementary and middle school students to start developing algebraic 
reasoning by presenting word problems using symbols, we need to ensure teacher candidates 
(pre-service teachers) are fluent with this material because, according to Patton et.al. (2008), 
pre-service teachers “possess naive conceptions believing that teaching mathematics is only 
about delivering facts and memorizing mathematic procedures” (p. 494). Patton’s finding 
corroborate with early studies, which demonstrated undergraduates (non-physics majors) 
display difficulties with algebraic reasoning, particularly with interpreting variables when 
solving math problems (Rosnick, 1981). Also, MacGregor and Stacey (1997) have shown 
novice algebra students do not understand the meaning of symbols and commonly 
misinterpret symbols as representing objects or words.  

We hypothesized pre-service teachers might exhibit similar difficulties. Although, the 
research regarding prospective teachers’ difficulties with generalizing patterns (Brown & 
Bergman, 2013; Hallagan, Rule, & Carlson, 2009) was undertaken recently, future educators’ 
active vocabulary with implicitly stated attributes has not been studied, yet.   

Based on this, we closely monitored pre-service teachers (our students) performance on 
contextualizing symbols for simple arithmetic word problems. Observing their difficulties 
with defining the meaning of symbols in word problems, we undertook this research to 
analyze how prospective teachers contextualize symbols in word problems. To meet students’ 
needs, we strongly emphasized developing scientifically valid active vocabulary, which 
ensured fluent communication in terms of symbols, measurable attributes, and units of 
measure. Since high-level communication skills are a necessary condition for developing 
thinking (Vygotsky, 1978), we expected by increasing pre-service teachers’ abilities to 
communicate using correct terminologies, we could deepen their understanding of word 
problems; hence positively affect developing communication skills of their future students. 
Thus, the second stage of the research was to provide specific instructions to improve pre-
service teachers’ abilities to identify measurable attributes and clearly define symbols used 
for presenting arithmetic word problems and acquire preliminary estimation of its impact. 

Theoretical Framework 

Our theoretical framework is based on the schemata approach. A schemata approach 
subdivides simple addition word problems into logical categories (Combine, Compare, 
Change, etc.) (Jitendra et al., 2007; 2015) and proposes schema for solving each type of word 
problem. We believe the schemata approach works because it helps students to concentrate 
on one learning dimension at a time, while allowing some variations. According to Marton 
and Pang (2006), namely ‘dimension variation’ elevates quality of the learning process. In the 
schemata approach, students learn to solve and present one type of problem (one learning 
dimension), while choosing between arithmetic operations (variation). This approach allowed 
us to concentrate on teaching students one dimension at a time—students solve one type of 
problem, while creating algebraic and visual word problems’ models specific for each type. 
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Contrasting variations were applied in the following aspects: 
a) Problems were assigned that can be solved using addition or subtraction in each type 

of problem (Combine, Compare, and Change problems); 
b) Students were taught to continuously differentiate between symbols (capital letters) 

and units of measure (lower case letters) by denoting them in different ways;  
c) Students were taught to define parameter-pointers using precise definitions based on 

naming attributes (e.g., M is the distance Marta walked), which created a contrast 
with parameters’ associative meaning (e.g., M is Marta). 

Using the schemata approach combined with modeling and defining parameter-pointers 
allowed us to apply the dimension variation method when creating materials designed to 
improve pre-service teachers’ knowledge how to interpret symbols they use.  

Methodology 

Participants and the word problem-solving (WPS) Treatment 
Seventeen pre-service teachers from a western research university enrolled in an 

arithmetic course for elementary teachers participated in this study. The lead author taught 
the arithmetic course. This course was the first content course in a two-course sequence for 
elementary pre-service teachers. This course provided pre-service teachers with a deeper 
understanding of the real number system and arithmetic operations for whole numbers, 
fractions, and decimals for Grades K-6. The course textbook was written by Beckmann 
(2014). Mainly, chapters 1 through 9 were covered during the semester.  

Along with standard course materials, supplementary materials on word problem-solving 
(WPS) were used throughout the semester. These supplementary materials (available upon 
request) were independently developed by the second author and were chosen because no 
books concentrating on developing teachers’ vocabulary regarding measurable attributes and 
defining symbols for arithmetic word problems exist to the best of these authors’ knowledge. 
These supplementary materials were self-explanatory workbooks, consisting of 13 chapters. 
Pre-service teachers read each of the chapters, each chapter comprised of multiple sections, 
worked on the examples, and completed the assigned problems for each section. The 
exercises involved presenting arithmetic word problems using multiple models and then 
solving the problems. The WPS workbooks focused on the following list of measurable 
attributes: number of objects, amount of money, length-type characteristics (depth, width, 
distance, height, and length), volume, weight (in terms of mass), temperature, and time. 

The instructor provided feedback after pre-service teachers handed their assignments to 
the instructor during each class period. The instructor spent five-ten minutes in class 
discussing pre-service teachers’ work and ideas from each section of the WPS materials. Pre-
service teachers were given chances to correct their assignments until 100% fluency was 
shown with the assignments. When teaching the WPS supplementary program, the instructor 
constantly monitored pre-service teachers’ progress, mistakes, and misconceptions, and 
focused on extending and sharpening students’ mathematical vocabulary. The dimension 
variation approach was used to teach problem-solving topics. It includes materials teaching 
identification of the meaning of symbols (Table 1).  

After the mid-term exam, pre-service teachers were asked to define each of the symbols 
they used when presenting word problems. Also, pre-service teachers were divided into 
groups of two or three and given word problems to work in class—they presented their 
solutions to the entire class.  Pre-service teachers modeled arithmetic problems using visual 
and algebraic representations. When presenting problems in the form of algebraic equations, 
pre-service teachers were prompted to use parameter-pointers. For example, T1 is the number 
of flowers Linda had at first or R is the length of Rob’s wire.  
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Table 1 
Objectives connected with contextualizing symbols in word problems 

Dimensions of learning Variations 
Create models presenting word 
problems. 

After presented separately, different types of problems were 
mixed together: combine, compare, and change. 

Present problems using symbolic 
equations. 

Denote symbols and measurement units for each problem, 
while using capital letters for parameter-pointers and lower 
case for measure of units.  

Define parameter-pointers in 
symbolic equations. 

Types of attributes (number of objects, amount of money, 
the distance between, …, etc.) were varied. 

In the beginning, the WPS workbook contained word problems with easy to define 
attributes: “Linda has 5 erasers,” and attributes were stated explicitly: “The weight of Linda’s 
chair is 7 lbs.” Later in the semester and during the final exam, more difficult, implicit (not 
stated directly) attributes were used in word problems, “Agnes collected 84 liters of 
rainwater.” In such problems, pre-service teachers had to deduce the name of the qualitative 
attribute (volume) connected with the given value, 5 liters.  

Data Collection and Analysis 
The research design was a mixed-methods study. Data were collected from the pre-

service teachers’ writing assignments—two pre-tests, WPS workbook, quizzes, a midterm 
exam, and a final exam and instructors’ classroom observations. A strong correlation in 
students’ written work (correct usage of scientific vocabulary) and their usage of the 
vocabulary in oral presentations in the classroom were observed. For qualitative analysis, the 
pre-tests, mid-term exam, quizzes, and final exam written data were analyzed following an 
open, axial coding method (Strauss & Corbin, 1998). Each of the two authors read the written 
works and created a rubric. Then, we met to discuss our rubrics and created a common rubric 
(Table 2), based on pre-service teachers’ presentations and explanations of the symbols used. 
For quantitative analysis, we created an excel spreadsheet of the responses for each task in 
the pre-tests, mid-term and final exam, which allowed us to follow an individual’s progress 
throughout the semester. We recorded the responses using the rubric in Table 2 and counted 
the number of pre-service teachers in each category.  

Table 2  
Categories of symbols’ descriptions 

Coding 
categories Examples 

Students 
demonstrate 
difficulties 

Not defining symbols Writing Anna = 9, A= 9, or X=9 and not saying what A, 
Anna, or X mean. 

Definition reflecting 
misconception 

Defining symbols using key words from the text.  
A means Anna 

Students 
present 
conceptually 
correct 
definition of 
symbols 

Unclear naming of 
quality of quantity 

Explaining symbols while inaccurately defining the 
qualitative characteristic of the symbols.  
A is the grams of apples. 

Clear naming of 
quality of quantity 

Clearly associating symbols with their meaning.  
A is the weight of apples. 

Results 

The pre-tests run on the first two days of the semester demonstrated our pre-service 
teachers had difficulties to explain the meanings of the symbols they used in the word 
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problems. After observing pre-service teachers’ difficulties with CCSSI K-6th grade 
materials, we used the supplementary WPS materials for six weeks. The WPS sections 
regarding measurable attributes were thoroughly discussed in the classroom.  

After six weeks into the semester working on the WPS materials, we found pre-service 
teachers continued to struggle with the concept of contextualizing symbols. More than half (9 
out of 17) did not contextualize the symbols in the mid-term exam. For a Combine addition 
task, one pre-service teacher wrote “P = Pearls” (Figure 1a) instead of writing “P is the 
weight of the box with pearls.” Another wrote “F = First box” instead of writing “F is the 
weight of the first box.” It is interesting to note, the same students appeared under the same 
categories for the two tasks (Table 3). It is noted, the materials were also reviewed a day prior 
to the midterm exam.  

The final exam contained word problems with implicitly stated quantities (i.e., attributes 
are implied in the word problem, not directly mentioned) (see problem in Figure 2). In spite 
of this, we saw an increase in the conceptually correct definitions of symbols. The definitions 
reflected students’ understanding of symbols, but were still somewhat unclear with precise 
defining measurable attributes (e.g., Figure 1b). We classified such answers as unclear, but in 
terms of symbol definition, conceptually correct. Across four different tasks in the final 
exam, 16 (15 in tasks involving length) students defined the symbols correctly or at least 
conceptually correctly (see Table 3).  
 
Table 3 
Comparison of pre-tests, mid-term, and final exam. The problems’ difficulty in terms of 
contextualizing symbols was higher on the final exam than on the pre-test and mid-term.  

Pre-treatment: 
Pre-test (beginning of instruction, 16 students; one student enrolled late) 

Measurable 
attributes 

Not defining 
symbols 

Definition 
reflecting 

misconceptions 

Conceptually correct definition 
of symbols 

Unclear naming 
of quantity 

Clear naming 
of quantity 

All categories 16 0 0 0 
Mid-treatment:  

Mid-term (after 6 weeks of instruction, 17 students using the WPS workbook) 
Number of fish 3 6 0 8 

Weight 3 5 0 9 
After-treatment: 

Final Exam (after 12 weeks of instruction, 17 students using the WPS workbook) 
Number of apples 1 0 4 12 

Weight 1 0 4 12 
Length 1 1 1 14 
Volume 1 0 4 12 

Note: The numbers above show the number of pre-service teachers under each category for each 
problem type. 

Students were taught to use any letter but “O” when creating symbols to prevent 
confusing “O” with zero. However, 15 students used “O” as a symbol to represent the weight 
of onions and only 2 students used other letters. Figure 3 demonstrates how the same symbol, 
P, has different meanings in a word problem involving volume. Since the measurable 
attribute was not explicitly mentioned in the problem, four pre-service teachers used the same 
words used in the word problem, but failed to use the correct attribute name, volume, when 
defining the symbols.  
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Elizabeth found two boxes that together weigh 11 lbs. The first box had pearls weighing 7 
lbs and the second box had emeralds. How much did the second box weigh? 

 

                        
          (a) Coded as “misconception.”            (b) Coded as “unclear.” 

Figure 1. Symbol definition: a) misconceptions regarding parameters, b) missing attributes. 
 

 
     (a)                                            (b)                                                        (c) 

Figure 2. Defining symbols: (a) definition is unavailable; (b) definition is conceptually 
correct—there is a misconception regarding attribute; (c) correctly defined symbols. 

            

Figure 3. Responses of three pre-service teachers on the same task for the final exam. 
 
Additionally, one student failed to define symbols for all the tasks in the final exam. This 

student did not complete the supplementary WPS workbook on her own and did not meet 
with the instructor to receive additional help.  

Discussion and Conclusions 

Our findings regarding students’ misinterpretation of letters as objects or words are 
consistent with other studies (Booth, 1988; MacGregor & Stacey, 1997). When presenting 1–
2-step arithmetic word problems in symbolic form, our pre-service teachers demonstrated 
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difficulties with defining symbols they used. Their work reflected both—misconceptions in 
regards to the symbols’ meaning (e.g., G is the green paint) and misconceptions regarding 
defining measurable attributes represented by the values (e.g., P = grams of pepper Agnes 
bought). Supplementary instruction in word problem solving allowed us to improve pre-
service teachers’ precision in defining symbols. 

One can argue that the pre-service teachers did not perform well, since they did not 
understand the task. This can be true for the pre-test. However, this is not true for all later 
tests. The pre-service teachers were taught throughout the semester using the WPS materials 
similar to the examples used in this paper. Hence, during the mid-term exam, pre-service 
teachers were well-aware of the type of questions and expectations for the symbol-meaning 
tasks.    

The data reveal the difficulties demonstrated by pre-service teachers are real in regards to 
active scientific vocabulary connected with properties of matter measured and/or calculated. 
About 50% of the pre-service teachers, who already had prolonged instruction on defining 
symbols by naming the attributes of the values they represent, on the midterm exam, still 
demonstrated difficulties with the materials and only additional studies helped them improve 
their performance. The final exam demonstrated the improvements.  

We corroborate the progress in pre-service teachers’ abilities to define symbols is much 
greater than presented in Table 3 because (1) the word problems on the final exam were more 
difficult in terms of symbols’ definition than on the mid-term exam and (2) because we 
compared performance of the pre-service teachers on the mid-term (discarding pre-test 
results) and final exams. Meanwhile, the performance on the mid-term exam was measured 
after the students had some WPS instruction regarding defining symbols used to present word 
problems.  

In the future, it would be interesting to examine pre-service teachers’ performances using 
a redesigned pre-test and compare treatment group results with a control group that does not 
have supplementary instruction. Based on our results, it can be concluded, mathematics 
courses for elementary teachers must put greater emphasis on teaching pre-service teachers 
scientifically-correct vocabulary regarding measurable attributes.  

References 

Booth, L. R. (1988). Children’s difficulties in beginning algebra. In A. F. Coxford & A. P. 
Schulte (Eds.), The ideas of algebra, k-12 (1988 yearbook) (pp. 20–32). Reston, VA: 
National Council of Teachers of Mathematics. 

Brown, S., & Bergman, J. (2013). Preservice teachers’ understanding of variable. 
Investigations in Mathematics Learning, 6(1), 1–17. 

Common Core State Standards Initiative (CCSSI). (2010). The common core state standards 
for mathematics. Washington, D.C.: Author.  

Davydov, V. V. (1975). Logical and psychological problems of elementary mathematics as 
an academic subject. In L. P. Steffe, (Ed.), Children’s capacity for learning mathematics. 
Soviet Studies in the Psychology of Learning and Teaching Mathematics, Vol. VII (pp. 
55–107). Chicago: University of Chicago. 

Dingrando, L., Tallman, K. G., Hainen, N. & Wistrom. C. (2006). Chemistry: Matter and 
change. New York, NY: The McGraw Hill Companies.  

Dougherty, B. J. & Slovin, H. (2004). Generalized diagrams as a tool for young children’s 
problem solving. Proceedings of the 28th Conference of the International Group for the 
Psychology of Mathematics Education, 2, 295–302. 

Greenes, C., Cavanagh, M., Dacey, L., Findell, C., & Small, M. (2001). Navigating through 
algebra in Prekindergarten – Grade 2. Reston, VA: National Council of Teachers of 

20th Annual Conference on Research in Undergraduate Mathematics Education 62720th Annual Conference on Research in Undergraduate Mathematics Education 627



Mathematics. 
Hallagan, J. E., Rule, A. C., & Carlson, L. F. (2009). Elementary school pre-service teachers’ 

understandings of algebraic generalizations. The Mathematics Enthusiast, 6(1), 201–206. 
Jitendra, A. K., Griffin, C. C., Haria, P., Leh, J., Adams, A., & Kaduvettoor, A. (2007) A 

comparison of single and multiple strategy instruction on third-grade students’ 
mathematical problem solving. Journal of Educational Psychology, 99(1), 115–127. 

Jitendra, A. K., Petersen-Brown, S., Lein, A. E., Zaslofsky, A. F., Kunkel, A. K., Jung, P. G., 
& Egan, A. M. (2015). Teaching mathematical word problem solving: The quality of 
evidence for strategy instruction priming the problem structure. Journal of Learning 
Disabilities, 48(l), 51–72. 

Kaput, J., & Blanton, M. (2005). Algebrafying the elementary mathematics experience in a 
teacher-centered, systemic way. In T. Romberg & T. Carpenter (Eds.), Understanding 
mathematics and science matters (pp. 99–125). Mahwah, NJ: Lawrence Erlbaum 
Associates. 

Kieran, C. (1992). The learning and teaching of school algebra. In D. A. Grouws (Ed.), 
Handbook of research on mathematics teaching and learning (pp. 390–419). New York, 
NY: Macmillan. 

Kofman, V. (2016). Parameter-pointers in early algebra. 13th International Congress on 
Mathematics Education.  Hamburg, Germany. 

Lins, R., & Kaput, J. (2004). The early development of algebraic reasoning: The current state 
of the field. In K. Stacey, H. Chick, & M. Kendall (Eds.), The future of the teaching and 
learning of algebra: The 12th ICMI study (pp. 47-70). Norwood, MA: Kluwer Academic. 

MacGregor, M., & Stacey, K. (1997). Students’ understanding of algebraic notation: 11–15. 
Educational Studies in Mathematics, 33(1), 1–19. 

Marton, F. & Pang, M. P. (2006). On some necessary conditions of learning. Journal of the 
Learning Sciences, 15(2), 193–220. 

National Mathematics Advisory Panel (2008). Foundations for Success. n.p: U.S. Department 
of Education. 

Patton, B. A., Fry, J., Klages, C. (2008). Teacher candidates and master math teachers 
personal concepts about teaching mathematics. Education, 128(3), 486-497. 

Rosnick, P. (1981). Some misconceptions concerning the concept of variable. Are you careful 
defining your variables? Mathematics Teacher, 74(6), 418–420. 

Serway, R. A. & Faughn, J. S. (2006). Physics. Austin, Texas: Holt, Rinehart and Winston. 
Strauss, A., & Corbin, J. (1998). Basics of qualitative research: Techniques and procedures 

for developing grounded theory (2nd ed.). Thousand Oaks, CA: Sage Publications, Inc.  
Thompson, P. W. (2011). Quantitative reasoning and mathematical modeling. In L. L. 

Hatfield, S. Chamberlain & S. Belbase (Eds.), New perspectives and directions for 
collaborative research in mathematics education. WISDOMe Monographs (Vol. 1, pp. 
33-57). Laramie, WY: University of Wyoming. 

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological 
processes. Cambridge, Mass.: Harvard University Press. 

 

20th Annual Conference on Research in Undergraduate Mathematics Education 62820th Annual Conference on Research in Undergraduate Mathematics Education 628



Using Oral Presentations and Cooperative Discussions to Facilitate Learning Statistics 
 

Abeer Hasan Sayonita Ghosh Hajra 
Humboldt State University Hamline University 

In this paper we report on a study of assessment-based oral presentation tasks in a statistics course 
at a public university in the United States. We examine student attitudes towards using oral 
presentation tasks in learning statistics and their disposition towards statistics as well as their 
knowledge of the statistical concepts. Our results suggest that use of oral presentation improves 
students’ mastery of statistical concepts and their disposition towards statistics. Moreover, 
responses to the anonymous course evaluation questionnaire provide insights on the benefits of 
using oral presentation tasks in statistics courses for students. 

Keywords: Attitudes, beliefs, oral presentation, statistical significance 

Introduction 
There is a long-standing scholarly dialogue on how to deal with recurring concerns about 

student motivation and achievement, and how to improve student understanding of the role of 
statistics in providing answers to real-world problems (Meng, 2009). Ograjenšek and Gal (2016) 
propose re-examining the role of qualitative thinking in the early stages of learning statistics and 
integrating selected elements of qualitative research methods into statistics curricula. Cobb 
(2007) calls for further use of technology in teaching and more focus on simulation-based 
instruction. The use of technology to introduce and reinforce these essential concepts has also 
been promoted in the Guidelines for Assessment and Instruction in Statistics Education (GAISE) 
for introductory statistics at the college level (ASA, 2005). Using technology in teaching 
statistics has been discussed in a series of publications (e.g., Chance, Ben-Zvi, Garfield, and 
Medina, 2007). Gordon (2004) discusses the unique challenges faced by students and instructors 
of statistics in a service course. Issues with background deficiencies and lack of motivation are 
among the most critical factors when teaching occasional users of statistics.  

One of the authors teaches statistics as a service course offered for a wide range of science 
majors. She designed the course with a focus on conceptual understanding and an emphasis on 
real-world applications and automated computations. These changes enriched students’ learning 
experience and enhanced the overall course instruction. Technology can support conceptual 
understanding and data visualization. However, we believe that a change in the culture of 
teaching statistics and the way we interact with our students is needed. In this study, we consider 
pedagogical strategies that could improve students’ conceptual understanding of statistics, 
thereby also improving their statistical awareness.  

One of the strategies we discuss here is use of oral presentations in class for active learning. 
Fan and Yeo (2007) describe oral presentation as a classroom practice where students share their 
ideas verbally, and check their own doubts. They discuss that oral presentation provides students 
an opportunity to share their understanding about a concept in their own words. These verbal 
communication skills are believed to promote conceptual understanding (Berry and Houston, 
1995) and are believed to increase students’ confidence (Butler and Stevens, 1997). Recently, in 
Ghosh Hajra and Hasan (2016), we discussed using assessment-based oral presentation tasks in a 
mathematics content course for pre-service teachers. We found that our pre-service teachers 
gained confidence in their ability to teach mathematics and also improved their disposition 
towards mathematics. 
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Another strategy we discuss here is the use of cooperative discussions in class for active and 
meaningful learning. Cooperative learning environments encourage students to interact, critique 
one another, and learn from each other socially (Slavin, 1996). In this setting, students work in 
groups, share common goals, and are each responsible for the success of their group (Johnson 
and Johnson, 1994). Leikin and Zaslavsky (1999) propose four necessary components, which 
form a cooperative learning environment—learning in small groups, group interdependence, 
individual accountability within groups, and equal opportunity for interaction and 
communication for all participants.  

Various studies (Meeuwsen, King and Pederson, 2005; Sutton, 1992; Webb, 1991) suggest 
multiple interpersonal and intrapersonal benefits of cooperative learning. These benefits include 
improved communication among students and enhanced creative thinking in students. Other 
studies have shown connection between disposition and learning (Maas and Schlöglmann, 2009; 
McLeod and Adams, 1989, Philipp, 2007). Disposition is one’s attitudes, beliefs, and aptness to 
act in positive ways (NCTM, 1989). Attitude is a mental concept representing favorable or 
unfavorable feelings for identifiable entities, and a belief is known or perceived information 
about an object (Koballa, 1998). For example, statements about likes or dislikes reflect one’s 
feelings toward an object; a statement such as, “Statistics is hard” represents one’s beliefs. One 
is most likely to perform an action if one has a favorable attitude towards it (Fishbein and Ajzen, 
1975). In particular, if students have favorable feelings and beliefs about oral presentations, they 
are more likely to use them in their own learning.  

In this study, we investigate students’ general beliefs and attitudes toward the use of oral 
presentation tasks in learning statistics. We examine if using oral presentation activities changes 
student dispositions towards statistics.  

Theoretical Framework 
Our theoretical framework is based on three theories: theory of constructivism, social 

constructivism, and multiple intelligence. Theory of constructivism hypothesizes that an 
individual constructs meanings through his own experiences (von Glasersfeld, 1995). Theory of 
social constructivism hypothesizes individuals’ meanings are constructed through experiences in 
social interaction (Brooks and Brooks, 1993). From the viewpoint of multiple intelligence 
theory, every individual has different learning styles. Therefore, each individual needs different 
forms of learning opportunities (Fan and Yeo, 2007). Hence, we use oral presentations with 
cooperative discussions as a learning tool in class, in addition to other formal writing 
assignments, quizzes, and exams. We ask our students to discuss problems in groups and present 
their solutions to the class.  

Methodology 

Study participants and course description 
This study took place at a public university in the United States of America. Two sections of 

a statistical modeling class were involved, one designated as control and the other as the 
treatment group. The two sections had the same instructor, same resources, and same written 
assessments. The participants were science majors who took an introductory statistics course as a 
prerequisite to this class. This course was their second course in statistics. The majority of the 
students were biology majors who took the course either as an elective or as a part of the 
requirement for their statistics minor. This course was designed as an undergraduate course, but 
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some graduate students took it to supplement their statistical background and to prepare for the 
quantitative research component for their master’s theses. 
Study design 

We applied an experimental design in this course. One of the two sections was assigned to 
the treatment group (19 students) and the second section (26 students) was assigned to the 
control group. This assignment was made before the start of the semester, and the students were 
unaware of such arrangements. The lecture notes, homework assignments, and tests were 
identical in both sections. The only difference was that oral presentation with cooperative 
discussion activities were used for the treatment group and not for the control group during the 
lecture and statistics lab sessions. 

Base groups were formed in the first week of the semester with 3–4 students in each group in 
the treatment group. Base groups are groups that stay together for the entire course period 
(Barkley, Cross and Major, 2005). Members in a group were selected randomly according to the 
class roster after sorting them alphabetically by last name. 

The instructor implemented two assessment-based oral presentation tasks in the treatment 
group: pre-structured oral presentation and impromptu presentation (Fan and Yeo, 2007). Fan 
and Yeo (2007) described pre-structured oral presentations as tasks that are prepared by the 
students in advance and impromptu presentations as tasks that are performed without rehearsals. 
Below, we describe the two tasks in the context of this study. 

Task 1: Pre-structured oral presentation: Presentations were used in the treatment group 
during the lab sessions. In these sessions students were using the software R to perform data 
analysis. The class was given a handout with a list of solved data analysis problems. Each group 
was assigned one example to discuss. Twenty minutes were allotted for cooperative discussion. 
The problems were usually a data set with a research question. Students were given some 
programming code, description of the dataset, and research question. Students were required to 
understand, discuss, and interpret the code, along with interpreting the output and answering the 
research question. Each group had to elect a representative to explain their assigned problem to 
the class. Each student presented at least twice during the semester. The instructor was available 
to help during the cooperative discussion, but students were instructed to ask the instructor for 
help only after the entire group discussed the problem. 

Task 2: Impromptu oral presentation: We implemented two forms of spontaneous 
presentations in the treatment group: a) Student presenters had to answer instant questions 
related to the presentation from the audience and the instructor after the pre-structured oral 
presentation. b) Each student had to summarize the day’s lesson twice throughout the semester in 
the form of a 2-minute presentation. The software R was used to randomly choose a presenter at 
the end of each class. Students had to take notes and be prepared for presenting their 2-minute 
summary each day because they did not know whose name would be chosen at the end of the 
class.  

We used weighted assessment categories for grading both classes. For the treatment group, 
oral presentation activities counted 5% and written homework counted 10% of their weighted 
total grade. For the control group, written homework counted 15% towards the total grade and 
there was no oral presentation component. Cooperative lab discussions were used only in the 
treatment group. However, students in both groups had the option to collaborate on some written 
homework assignments and on a major group projects outside class. 
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Data collection 
We collected data in the form of pre-and post-surveys (modified survey questionnaire from 

Fan and Yeo (2007) (see Table 1), pre- and post-tests, and end-of-term online course evaluations. 
The pre- and post-survey consisted of questions on students’ general beliefs and attitudes toward 
the use of oral presentation tasks, their beliefs in their own ability to use statistics in their own 
research and in their own dispositions towards statistics. The pre-and post-tests/surveys were 
conducted on the first day and last day of class respectively. Pre-and post-tests had a question 
with 5 parts on analyzing some R output from a simple linear regression model. We used the 
anonymous online course evaluation surveys at the end of the semester as our third data source. 
This survey included 10 questions where students ranked the instructor on a scale of 1–5 and 
answered two open-ended questions reflecting their thoughts about the most engaging and 
exciting aspects of the class and any recommendation for improvement.   

Table1 
Survey questions. 

1. Oral presentations improves my understanding of statistical concepts 
2. Oral presentation skill is important in learning  statistics 
3. Oral presentation skill is important in scientific research 
4. Oral presentation makes me feel inadequate 
5. Listening to other classmates’ presentations help me understand other’s perspectives 
6. Oral presentation is a waste of time 
7. I am very worried about presenting statistical concepts in front of my classmates 
8. I see statistics as practical and useful 
9. I would like to have more oral presentations for my statistics classes 
10. Preparing for oral presentations helps me gain deeper understanding of statistical concepts 
11. I am confident in my ability to communicate statistical concepts 
12. I feel confident in my ability to use statistics in my research or course projects 

Results 

Quantitative analysis 
Pre-Post Surveys and Tests 

 To analyze the data from the two surveys, we use a numerical scale to code the responses on 
a scale of 1–5, where 1=Strongly Disagree and 5=Strongly Agree. Our study is twofold—we aim 
to investigate changes in student attitudes toward oral presentations and changes in their 
disposition toward statistics. Hence, we divide the survey into two categories. Questions 1–7 and 
9–10 addresses general attitudes and beliefs toward oral presentations. Questions 8, 11, and 12 
represent student disposition toward statistics. We create the following score functions: 

Oral presentation score = (Sum of responses to questions 1–7 and 9–10)/45*100 
Disposition toward statistics score = (Sum of questions 8, 11, and 12)/15*100 

Here we note that 45 and 15 are the maximum possible scores for each of the above scores 
respectively and can be obtained by multiplying the number of questions by 5 which is the score 
of a Strongly Agree response. The numerical scores of questions 4, 6, and 7 were inverted to 
account for the negative wording of the statement in these questions. 

We consider the responses of each student as paired data. We used the averages to replace 
missing values for students who filled out one survey but missed the other. The paired 

20th Annual Conference on Research in Undergraduate Mathematics Education 63220th Annual Conference on Research in Undergraduate Mathematics Education 632



differences in the three scores passed Anderson-Darling’s normality test at the LOS=0.01, thus 
we apply a paired t-test to see if the observed sample differences are significant. Table 2 
summarizes the results of our statistical inference. We have a strong evidence of improvement in 
the disposition towards statistics in both groups. However, the treatment group showed a 13% 
mean increase in their disposition towards statistics score compared to a 7% mean increase in the 
control group. Both the treatment and the control groups did not show a significant improvement 
in their oral presentation scores. 

Table 2 
Summary of the statistical tests on the three score function. The data is considered normally 
distributed if the p-value of Anderson-Darling’s test exceeds 0.01. The observed sample 
difference is significant if the p-value of the paired t-test is less than 0.01.  

Group 
Assignment 

Score functions p-value for the 
normality test 

Mean sample of 
differences  

(After-Before) 

p-value for the 
paired t-test 

Treatment   
n = 19 

Oral presentation score  0.753 
 

-0.662  
 

0.5526 
 

Treatment  
n = 19 

Disposition towards 
statistics score 

0.0472 
 

12.918 
 

0.0014 
 

Control  
n =26 

Oral presentation score  0.471 
 

-1.345  
 

0.4303 
 

Control  
n =26 

Disposition towards 
statistics score 

0.131 
 

7.703  
 

0.0007 
 

 
Figures 1 and 2 display side-by-side boxplots for each of the two scores we introduced. The 

graphs show improvement in the disposition towards statistics scores at the end of the semester 
in both groups. It is interesting that neither of the two groups showed improvement in their 
attitudes towards oral presentation. On the contrary, some of them had slightly more negative 
opinion towards oral presentation at the end of the semester. Few students found public speaking 
stressful despite the fact that they learned a lot from presenting their ideas. It is also worth noting 
that students in both sections were either seniors or graduate students and at this stage of their 
career they had fixed ideas on oral presentations. Their overall responses were favorable of the 
practice and the treatment group had slightly more positive attitude towards oral presentation at 
the beginning of the semester.  

To assess learning in the two groups, we administered a test before and after teaching a unit 
in the class. Both groups showed significant improvement in the post-test scores compared to 
their pre-test scores. This can be attributed to the collective learning activities that were used in 
class. Figure 3 shows a comparison of the pre-test scores and the post-test for the two groups. 
The treatment group had lower pre-test scores compared to the control group. The post test 
scores highlight the discrepancy between the two groups as the treatment group outperformed the 
control group.  

To compare the test scores of the two groups, we apply Wilcoxon’s rank-sum test with 
continuity correction. The rank-sum test on the pre-test scores resulted in a p-value = 0.9645. 
Thus, there was no significant difference in the pre-test scores between the treatment and control 
groups. Applying the same test to the post-tests resulted in p-value = 4.497× 10−5. This 
provides strong evidence that the post-test scores for the treatment group were significantly 
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higher than those of the control group. The median of the post test scores for the treatment group 
is 95% compared to 73.75% for the control group.  

 
Figure 1: Boxplots for the survey responses on attitude scores for the control group before and 
after the oral presentation tasks. 
 

  
Figure 2: Boxplots for the survey responses on the attitude scores for the treatment group before 
and after the oral presentation tasks. 

 
Figure 3: (Left) Comparison of the pre-test scores between the control and treatment groups. 
(Right) Comparison of the post-test scores between the control and treatment groups. 
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End-of-Term Online Course Evaluation Surveys 
We used University’s anonymous voluntary online course evaluation to solicit student 

feedback on their classes. It was interesting to compare and contrast the survey responses for the 
treatment and the control groups. The average instructor rating for the treatment group (n = 11) 
was 4.3 on a 5-point scale with a standard deviation of 0.8. The average for the control group (n 
= 14) was 3.9 with a standard deviation of 1.2. Overall, the treatment group had more positive 
comments about their experience in the class compared to the control group. The sample sizes 
are too small for this difference to be statistically significant. However, a difference of 8% in 
ranking the same instructor who used the same teaching material is probably due to the only 
difference in the instructional design, namely, the use of oral presentations and cooperative 
group discussions. Here are some written comments from the treatment group: 

o “In class it was really nice to consistently experience an active, excited discussion about 
the limitations and possibilities of statistical analyses.” 

o “Overall, the environment of this course made one feel that there was a strong support 
system to understand and apply statistics.” 

o “I think forcing all the public speaking was unnecessary and less helpful than other aspects 
of the class but I recognize that others may have benefited from it more.” 

This course was taught again by the same instructor after completing this study. This time 
only one section was offered, and oral presentations and cooperative discussions were used in the 
class. Students’ resistance to oral presentation activities seemed to diminish when they did not 
have another section to compare themselves to and they were not informed that they were a part 
of an experiment.   

Conclusions 
Our quantitative analyses provide evidence that implementing oral presentation with 

cooperative discussion tasks in teaching statistics resulted in significant improvement in the 
student disposition towards statistics as a field as well as their basic knowledge of the course 
content. Students came to class with a prior opinion on the use of oral presentations which did 
not change much during the class. It was an interesting coincidence possibly that the treatment 
group had an already more favorable attitude on the use of oral presentation tasks compared to 
the control group, and that the overall attitude scores did not change significantly at the end of 
the semester. This discrepancy could be due to the fact that the treatment group knew that they 
will be required to present their work before they filled the survey and their responses were 
influenced by the desire to please their instructor who required this additional activity in class. 
The students who took the class were mostly senior or graduate students, and they probably had 
fixed opinions on oral presentations based on their experience with other classes.  

Limitations of the study 
Due to the nature of the study, it was not feasible to randomly assign the students to either 

group. However, it is assuring that the pre-test scores indicated no significant difference between 
the groups. Lurking factors might include the class time (the treatment group met at 9 a.m. while 
the control group met at 11 a.m.). The course evaluation survey was a voluntary response survey 
and both sections had response rates below 60% of the total number of enrolled students. 
Generally, voluntary response sampling schemes tend to over represent people with strong 
opinions. Based on the course evaluation survey, 92.9% of the respondents in the control group 
were required to take the course compared to 63.3% in the treatment group. It is possible that 
students who elected to take the class are more motivated than those who are required to take it. 
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Exploration of the Factors that Support Learning:  
Web-based Activity and Testing Systems in Community College Algebra 
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A variety of computerized interactive learning platforms exist. Most include instructional 
supports in the form of problem sets. Feedback to users ranges from a single word like 
“Correct!” to offers of hints and partially- to fully-worked examples. Behind-the-scenes design 
of systems varies as well – from static dictionaries of problems to “intelligent” and responsive 
programming that adapts assignments to users’ demonstrated skills within the computerized 
environment. This report presents background on digital learning contexts and early results of a 
cluster-randomized controlled trial study in community college elementary algebra classes 
where the intervention was a particular type of web-based activity and testing system.  
 
Key words: Adaptive Tutoring System, College Algebra, Multi-site Cluster Randomized 
Controlled Trial 
 

Many students arrive in college underprepared for college level algebra, despite its 
importance for future success in mathematics (Long, Iatarola, & Conger, 2009; Porter & 
Polikoff, 2012). Web-based Activity and Testing Systems (WATS) are one approach to 
supporting equity and excellence in mathematics learning in colleges. When it comes to 
technology and algebra learning in college, what works? For whom? Under what conditions? 
These ubiquitous questions plague educational researchers who are assessing the whats, whys, 
and hows of a technology intervention or addition to a course. Did the instructors have enough 
support to adequately implement the technology tool? Were the materials adequate to provide 
enough practice hours for students? Was instruction sufficient to prepare students to pass the 
final exam?  

This preliminary report offers early results from a large project investigating relationships 
among student achievement and varying conditions of implementation for a web-based activity 
and testing system (WATS) used in community college algebra. Implementing a particular 
WATS constitutes the “treatment” condition in this cluster randomized controlled trial study. As 
described below, there are several ways to distinguish WATS tools. Some systems, like the one 
at the heart of our study, include adaptive problem sets, instructional videos, and data-driven 
tools for instructors to use to monitor and scaffold student learning.  

 
Research Questions 

Funded by the U.S. Department of Education, we are conducting a large-scale mixed 
methods study in over 30 community colleges. The study is driven by two research questions: 
Research Question 1: What is the impact of a particular digital learning platform on students’ 

algebraic knowledge after instructors have implemented the platform for 
two semesters? 

Research Question 2: What challenges to use-as-intended (by developers) are faculty 
encountering and how are they responding to the challenges as they 
implement the learning tool? 
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Background and Conceptual Framing 
 

First, there are distinctions among cognitive, dynamic, and static learning environments (see 
Table 1). Web-based Activity and Testing System (WATS) learning environments can vary 
along at least two dimensions: (1) the extent to which they adaptively respond to student 
behavior and (2) the extent to which they are based on a careful cognitive model.  
  
Table 1. Conceptual Framework of the Types of Instruction Based on Adaptability and Basis in  

a Theory of Learning 
 Static Dynamic 
Is a particular 
model of learning 
explicit in design 
and implementation 
(structure and 
processes)? 

No 
 

Text and tasks with 
instructional adaptation external 
to the materials  

Adaptive tutoring systems 
(Khan Academy, ALEKS, 
ActiveMath) 

Yes Textbook design and use driven 
by fidelity to an explicit theory 
of learning 

“Intelligent” tutoring systems 
(Cognitive Tutor) 

Static learning environments are those that are non-adaptive without reliance on an 
underlying cognitive model – they deliver content in a fixed order and contain scaffolds or 
feedback that are identical for all users. The design may be based on intuition, convenience, or 
aesthetic appeal. An example of this type of environment might be online problem sets from a 
textbook that give immediate feedback on accuracy to students (e.g., “Correct” or “Incorrect”).  

Dynamic learning environments keep track of student behavior (e.g., errors, error rates, or 
time-on-problem) and use this information in a programmed decision tree that selects problem 
sets and/or feedback based on students’ estimated mastery of specific skills. An example of a 
dynamic environment might be a system such as ALEKS or the “mastery challenge” approach 
now used at the online Khan Academy. For example, at khanacadmy.org a behind-the-scenes 
data analyzer captures student performance on a “mastery challenge” set of items. Once a student 
gets six items in a row correct, the next level set of items in a programmed target learning 
trajectory is offered. Depending on the number and type of items the particular user answers 
incorrectly (e.g., on the path to six items in a row done correctly), the analyzer program identifies 
target content and assembles the next “mastery challenge” set of items.  

Above and beyond such responsive assignment generation, programming in a “cognitively-
based” dynamic environment is informed by a theoretical model that asserts the cognitive 
processing necessary for acquiring skills (Anderson et al. 1995; Koedinger & Corbett, 2006). For 
example, instead of specifying only that graphing is important and should be practiced, a 
cognitively-based environment also will specify the student thinking and skills needed to 
comprehend graphing (e.g., connecting spatial and verbal information), and provide feedback 
and scaffolds that support these cognitive processes (e.g., visuo-spatial feedback and graphics 
that are integrated with text). In cognitively-based environments, scaffolds themselves can also 
be adaptive (e.g., more scaffolding through examples can be provided early in learning and 
scaffolding can be faded as a student acquires expertise; Ritter et al., 2007). Like other dynamic 
systems, cognitively-based systems can also provide summaries of student progress, which better 
enable teachers to support struggling students.  

No fully tested cognitively-based system currently exists for college students learning 
algebra. As mentioned, several dynamic systems do exist (e.g., ALEKS, Khan Academy 
“Missions”). The particular WATS investigated in our study is accessed on the internet and is 
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designed primarily for use as replacement for some in-class individual seatwork and some 
homework. Note: We report here on data collected from the first of two years. The second year 
of the study – which repeats the design of the first – is currently underway. Hence, we 
purposefully under-report some details. 

 

Method 
 

The study we report here is a multi-site cluster randomized trial. Half of instructors at each 
community college site are assigned to use a particular WATS in their instruction (treatment 
condition), the other half teach as they usually would, barring the use of the Treatment WATS 
tool (control condition). In addition, faculty participate for two semesters in order to allow 
instructors to familiarize themselves with implementing the WATS with their local algebra 
curriculum. Specifically, the Fall semester is a “field” semester to field-test the intervention and 
the Spring semester of the same academic year is the full “efficacy” study. 

Using a stratified sampling approach to recruitment, we first conducted a cluster analysis on 
all 113 community college sites eligible to participate in the study (e.g., those offering semester-
long courses in elementary algebra that met at least some of the time in a physical classroom or 
learning/computer lab). The cluster analysis was based on college-level characteristics that may 
be related to student learning (e.g., average age of students at the college, the proportion of 
adjunct faculty, etc.). This analysis led to five clusters of colleges. Our recruitment efforts then 
aimed to include a proportionate number of colleges within each cluster. The primary value of 
this approach is that it allows more appropriate generalization of study findings to the target 
population (Tipton, 2014). The first cohort of participants was a sample of 38 colleges similar to 
the overall distribution across clusters that was the target for the sample (see Figure 1).  

 

 
Figure 1. Recruited sample proportions and target sample proportions across clusters. 

 
Sample for this Report 

Initial enrollment in the study included 89 teachers across the 38 college sites. For this report 
on early results, we have used the data from 510 students of 29 instructors across 18 colleges. 
Student and teacher numbers related to the data reported on here are shown in Table 2. 
 

Table 2. Counts of Teachers, Students, and Colleges in the Study 
Condition Teachers Students Colleges 
Control 17 328 13 

Treatment 12 182 11 
Total 29 510 18 
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Results 
 

The primary outcome measure for students’ performance is an assessment from the 
Mathematics Diagnostic Testing Program (MDTP), which is a valid and reliable assessment of 
students’ algebraic knowledge (Gerachis & Manaster, 1995). The primary aim of the quantitative 
analysis was to address Research Question 1, what is the impact of WATS use on students’ 
outcomes? To this end, we employed Hierarchical Linear Modeling (HLM) (Raudenbush & 
Bryk, 1998) to predict students’ end of semester MDTP scores. The HLM model includes a 
random effect of teacher to account for the nesting of students within instructors, and covariates 
that account for students’ pretest MDTP scores at both student and teacher levels (i.e., student 
scores are aggregated at the teacher level; covariates were grand mean centered to achieve the 
intended covariate-adjustment). Importantly, in the model below, WATSj represents a 
dichotomous variable (dummy coded) indicating treatment assignment, and the main effect of 
the intervention is captured by !"#.  
 
Model 

 
 

The random and fixed effects for the model presented above are displayed in Tables 3 and 4, 
respectively. 
 
Table 3. Random Effects of the Model 
 

 Variance Standard Deviation 
Teacher $"% 6.95 2.64 

Level-1 Error &'" 37.69 6.14 
 
Table 4. Fixed Effect Results of the Model 
 

Variable B Standard Error p-value 
Intercept !"" 21.98 0.74 < .001 
WATS !"# 2.59 1.17 .04 
StuPre !#" 0.54 0.04 < .001 
TeaPre !"( 0.35 0.17 .05 

 
Controlling for students’ pretest scores, we found that using WATS corresponded to a 2.59 

point increase in students’ post-test scores, a statistically significant positive effect (p < .05). 
Since the post-test is out of a 50 point total, the estimate corresponds to about 5 percentage 
points greater post-test score, on average, for treatment group students (2.59/50). The 
Hedges g value for this effect is 0.32, which is considered a small but noteworthy effect in 
educational research for studies of this size (Cheung & Slavin, 2015; Hill et al. 2008). The 95% 
confidence interval of the Hedges g value is .14 - .50. 

We note this study suffered from high instructor attrition, which may bias the outcome of 
results. To investigate the robustness of the findings above, we are in the process of repeating 
this study with a second cohort of participants during the current (2016-17) academic year. 
Pooling the results of these two studies will help to determine the extent to which study results 
replicate with different populations. In this same vein, we plan to reanalyze the results using 

20th Annual Conference on Research in Undergraduate Mathematics Education 64120th Annual Conference on Research in Undergraduate Mathematics Education 641



post-test scores that are estimated using item response theory (IRT).  IRT is a measurement 
approach that takes into consideration potential differences in item characteristics when scoring 
individuals and places scores on a continuous metric. The use of IRT will allow us to take into 
consideration the difficulty and discriminability of items and represent these in the calculation of 
post-test scores, which can then be analyzed using the model presented above.  

 To address Research Question 2, a great deal of textual, observational, and interview data 
were gathered last year (and will be gathered again for the second iteration of the study). These 
data allow careful analysis of the intended and actual use of the learning environment and the 
classroom contexts in which it is enacted – an examination of implementation structures and 
processes. Indices of specific and generic fidelity derived from this work also will play a role in 
HLM generation and interpretation in the coming year. 

As in many curricular projects, developers of the WATS in our study paid attention to 
learning theory in determining the content in the web-based system, but the same was not true 
for determining implementation processes and structures. The pragmatic details of large-scale 
classroom use were under-specified. Developers articulated their assumptions about what 
students learned as they completed activities, but the roles of specific components, including the 
instructor role in the mediation of learning, were not clearly defined. Thus, there was an under-
determined “it” to which developers expected implementers (instructors and students) to be 
faithful. 

Fidelity of implementation is the degree to which an intervention or program is delivered as 
intended (Dusenbury, Brannigan, Falco, & Hansen, 2003). Do implementers understand the 
trade-offs in the daily decisions they must make “in the wild” and the short and long-term 
consequences on student learning as a result of compromises in fidelity? As Munter and 
colleagues (2014) have pointed out, there is no agreement on how to assess fidelity of 
implementation. However, there is a growing consensus on a component-based approach to 
measuring its structure and processes (Century & Cassata, 2014).  Century and Cassata’s 
summary of research offers five components to consider in fidelity of implementation: 
Diagnostic, Procedural, Educative, Pedagogical, and Student Engagement (see Table 5).   

Table 5. Components and Focus in a Fidelity of Implementation Study 
Components Focus 
Diagnostic These factors say what the “it” is that is being implemented (e.g., what 

makes this particular WATS distinct from other activities). 
Structural-Procedural 
 

These components tell the user (in this case, the instructor) what to do 
(e.g., assign intervention x times/week, y minutes/use). These are aspects 
of the expected curriculum. 

Structural-Educative These state the developers’ expectations for what the user needs to know 
relative to the intervention (e.g., types of technological, content, and 
pedagogical knowledge needed by an instructor). 

Interaction-Pedagogical 
 

These capture the actions, behaviors, and interactions users are expected 
to engage in when using the intervention (e.g., intervention is at least x 
% of assignments, counts for at least y % of student grade). These are 
aspects of the intended curriculum. 

Interaction-Engagement  These components delineate the actions, behaviors, and interactions that 
students are expected to engage in for successful implementation. These 
are aspects of the achieved curriculum. 
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The components in Table 5 are operationalized through a rubric, the guide for collecting and 
reporting data in our implementation study. A rubric articulates the expectations for a category 
by listing the criteria, or what counts, and describes the levels of quality from low to high. Each 
component has several factors that define the component. The research team has developed a 
rubric for fidelity of implementation that identify measurable attributes for each component (for 
example, see Table 6 for some detail on the “educative” component). 

Table 6. Example Rubric Descriptors for Levels of Fidelity, Structural-Educative Component. 

Educative: These components state the developers’ expectations for what the user (instructor) 
needs to know relative to the intervention. 

 High Level of Fidelity Moderate Fidelity Low Level of Fidelity 
Users’ 
proficiency in 
math content  

Instructor is proficient to 
highly proficient in the 
subject matter.  

Instructor has some gaps 
in proficiency in the 
subject matter.  

Instructor does not have 
basic knowledge and/or 
skills in the subject area.  

Users’ 
proficiency in 
TPCK  

Instructor regularly 
integrates content, 
pedagogical, and 
technological knowledge 
in classroom instruction. 
Communicates with 
students through WATS. 

Instructor struggles to 
integrate CK, PK, and TK 
in instruction. 
Occasionally sends digital 
messages to students using 
WATS tools.  

Instructor CK, PK, and/or 
TK sparse or applied in a 
haphazard manner in 
classroom instruction. 
Rarely uses WATS tools 
to communicate with 
students.  

Users’ 
knowledge of 
requirements 
of the 
intervention 

Instructor understands 
philosophy of WATS 
resources (practice items, 
"mastery mechanics," 
analytics, and coaching 
tools),  

Instructor understanding of 
the philosophy of WATS 
tool has some gaps. 
NOTE: Disagreeing is 
okay, this is about 
instructor knowledge of it. 

Instructor does not 
understand philosophy of 
WATS resources. NOTE: 
Disagreeing is okay, this is 
about instructor 
knowledge of it. 

Users’ 
knowledge of 
requirements 
of the 
intervention 

Instructor understands  the 
purpose, procedures, 
and/or the desired 
outcomes of the project 
(i.e., "mastery") 

Instructor understanding of 
project has some gaps 
(e.g., may know purpose, 
but not all procedures, or 
desired outcomes).  

Instructor does not 
understand the purpose, 
procedures, and/or desired 
outcomes. Problems are 
typical.  

 
Defining and Refining Measures for the Fidelity of Implementation Rubric 

The ultimate purpose of a fidelity of implementation rubric is to articulate how to determine 
what works, for whom, under what conditions. In addition to allowing identification of alignment 
between developer expectations and classroom enactment, it provides the opportunity to discover 
where productive adaptations may be made by instructors, adaptations that boost student 
achievement beyond that associated with an implementation faithful to the developers’ view.  

In using the rubric, we assign a number to each level of fidelity. This can be as simple as a 3 
for a high level of fidelity, 2 for a moderate level of fidelity, or a 1 for a low level; or the items 
can be weighted. The general score for the intervention will be the total number of points 
assigned in completing the rubric as a ratio of the total possible, across all instructors. It will also 
be possible to create a fidelity of implementation score on each row for each instructor – these 
data will be used in statistical modeling of the impact of the intervention as part of a “specific 
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fidelity index” (Hulleman & Cordray, 2009). We first total points for the item, then the 
component, and finally all components for a single score as an index of implementation.  

 
Next Steps 

 
In upcoming work, we will analyze a host of data on students, teachers, and colleges that 

may influence learning with WATS, including issues of feasibility of use in differing contexts, 
and measures associated with the nature of alignment or “fidelity” of implementation to WATS 
developers’ expectations. Such analysis will help to inform important questions such as how and 
for whom WATS are most effective. 

As indicated above, we will continue this study with a second cohort of new participants 
who will repeat the year-long study in the 2016-2017 academic year. Also, between now and 
the conference we will do more complex modeling of the data, with the introduction of IRT-
informed scores and specific fidelity indices. Our specific objectives in the coming six months 
are to (1) continue analyses from the Spring 2016 efficacy study, and (2) conduct the field-test 
semester of the study with second cohort of participants. 
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Supporting Instructional Change in Mathematics: The Role of Online and In-person 
Communities 

 
Charles N. Hayward and Sandra L. Laursen 

Ethnography & Evaluation Research, University of Colorado Boulder 

While studies continually show benefits of active learning strategies like inquiry-based learning 
(IBL), it is difficult to get faculty to adopt these methods. Particularly challenging is the third 
and final stage in Paulsen and Feldman’s (1995) model, ‘refreezing,’ when instructors use 
feedback and support to decide whether to continue with the instructional changes they have 
made or return to their previous methods. In this paper, we show how a workshop to teach 
college mathematics instructors to implement IBL used both online and in-person communities to 
help provide the ongoing feedback and support necessary for ‘refreezing.’ We offer lessons for 
how to increase the relevance of and participation in online support communities. We also use 
an innovative analytical approach, Social Network Analysis, to understand the ongoing 
processes of how e-mail exchanges provide feedback and both intellectual and emotional support 
to workshop participants. 

Keywords: Inquiry-Based Learning, Pedagogy, Instructional Change, Professional Development 

Numerous studies have found benefits for the use of active learning methods in science, 
technology, engineering and mathematics (STEM) fields (Freeman et al., 2014). Freeman et al. 
(2014) stated that the benefits are so strong that, “If the experiments analyzed here had been 
conducted as randomized controlled trials of medical interventions, they may have been stopped 
for benefit—meaning that enrolling patients in the control condition might be discontinued 
because the treatment being tested was clearly more beneficial” (p. 4). While the evidence in 
support of the use of active learning strategies is strong, getting large numbers of faculty to adopt 
new methods is difficult (Fairweather, 2008; Henderson & Dancy, 2007; 2008; 2011). 
Professional development workshops are one strategy for helping instructors to adopt research-
supported teaching methods. Workshops are the preferred method of National Science 
Foundation (NSF) program directors, particularly when they are multi-day, immersive 
workshops and include follow-up interaction between participants and organizers (Khatri, 
Henderson, Cole, & Froyd, 2013). Professional developers often include follow-up interactions 
in their designs through group email lists, reunion meetings, and mentoring (Council of 
Scientific Society Presidents, 2012), but there is almost no evidence that these plans are acted 
upon or whether they matter. In one study of a series of three workshops, only one of them 
successfully implemented the plan to engage participants in an email group (Hayward, Kogan, & 
Laursen, 2016). 

In this report, we present findings from a weeklong, intensive workshop that engaged almost 
all participants in follow-up activities. This workshop was designed to help college mathematics 
faculty implement Inquiry-Based Learning (IBL) in their classes. IBL has its roots in the 
teaching methods of mathematician R.L. Moore (1882-1974) (Mahavier, 1999), but the term IBL 
is now used more broadly to include various practices that share the spirit of student inquiry 
through the core features of (1) deep engagement with rich mathematics and (2) collaboration 
with peers (Yoshinobu & Jones, 2013). 
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Conceptual Framework 

Rather than impose a conceptual framework from the start, we let one emerge from the 
analysis and found a good fit to a three-stage model of instructor change developed by Paulsen 
and Feldman (1995), based on Lewin’s (1947) theory of change. These authors described three 
stages: (1) unfreezing, (2) changing, and (3) refreezing. During unfreezing instructors gain 
motivation to change through experiencing incongruence between their goals and the outcomes 
of their teaching practices. In changing, instructors learn, apply, and reflect on new teaching 
strategies to help align their behaviors with desired outcomes. While teaching strategies may be 
fluid during this stage, in the final stage, refreezing, either the new strategies are ‘reconfirmed’ 
through positive feedback and support, or the instructors return to their original strategies. 

In this paper, we present data to show that participants have applied their learning from the 
workshop by implementing IBL techniques and have therefore completed a crucial step of stage 
two, changing. However, our main focus in this paper is on how this workshop supported 
instructors through the refreezing stage by providing ongoing support and positive feedback, 
since little is known about this third stage (Connolly & Millar, 2006). Follow-up support can be 
challenging when workshop participants are from geographically diverse institutions and cannot 
easily reconnect face to face, but here organizers of this workshop leveraged other IBL-related 
resources and events and a group email list to help workshop participants through the refreezing 
stage. Some authors have argued that these “external networks of like-minded colleagues… can 
be important forces in promoting instructional reform” (Fairweather, 2008, p. 27), as they 
“provide a trusted community for faculty who may [have] no other support” (Stains, Pilarz, & 
Chakraverty, 2015, p. 1474). This is especially important given evidence that collegial 
interactions influence changes in instructional practices, even more than direct participation in 
professional development for some teachers (Penuel, Sun, Frank, & Gallagher, 2012). We 
explore the following research questions about refreezing: 

(1) What resources can workshops use to support participants through refreezing? 
(2) How can participation in online support resources be maximized? 
(3) What are the processes of providing ‘reconfirmation’ through positive feedback and 

emotional and intellectual support? 

Methods 

This paper comes from a larger study of four workshops on IBL for college mathematics 
instructors held between 2013-2015. Each of the workshops was four days long and featured a 
mix of sessions designed to help participants learn about IBL and prepare to implement it in their 
classrooms. The workshop included four types of sessions that all featuring active participation 
and self-reflection, which are characteristics of effective professional development (Cormas & 
Barufaldi, 2011; Garet, Porter, Desimone, Birman, & Yoon, 2001). The sessions were: (1) 
Reading sessions to discuss research, (2) Video sessions to watch and analyze IBL classes, (3) 
Nuts & Bolts sessions to develop plans for how to structure and run an IBL class, and (4) Course 
Content sessions to work in small groups to develop IBL materials for their own courses. Data in 
this study come from the second of these four workshops, though all were very similar and post-
workshop listserv cohorts functioned similarly as well. 

We use a mixed-methods approach to understand how the workshop supported participants 
through refreezing. Through our quantitative analysis of survey data and tracking of email group 
activity, we share results about participants’ engagement with support resources. We are 
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currently conducting an innovative analysis of activity in the post-workshop email listserv to 
reveal the processes of how the email listserv helped to provide positive feedback and support 
participants both emotionally and intellectually. We are applying techniques of social network 
analysis (SNA) to examine the interactions between participants and staff via e-mail. SNA is 
appropriate for this context since emails are inherently social connections and these methods 
allow us to examine support processes as they develop over time.  

For all four workshops, we collected surveys pre-workshop, post-workshop, and one academic 
year later. The surveys included all of the same items as workshop surveys published and 
presented previously (Hayward, Kogan, & Laursen, 2016), as well as some new items to assess 
participants’ engagement with support resources. Survey data were analyzed using SPSS v. 21. 
Open-ended items were coded in Microsoft Excel. We tracked and coded listserv messages using 
Microsoft Excel, and we are performing a social network analysis on this message data in the 
statistical program R using the packages, Social Network Analysis and iGraph. 

Results 

The workshops served 35 participants. Of these, 54% identified as women and 43% as men 
(3% did not respond). They represented a variety of career stages and institution types, though 
most were untenured faculty (54%) and from four-year colleges (69%). Most were early in their 
careers with 2-5 years of teaching experience (51%) or less than 2 years (17%). All 35 
participants (100%) completed the pre- and post-workshop surveys and 28 (80%) completed the 
one-year follow-up survey. Surveys were matched by respondent using anonymous identifiers. 

Implementation of IBL 
In order to assess whether participants had gone through the stage of changing their 

instructional methods, we assessed implementation of IBL in a number of different ways. On 
one-year follow-up surveys, 26 (93%) of 28 respondents reported using IBL methods in their 
classes, ranging from “some IBL methods” (25%) to “more than one full course” (39%). Seven 
did not answer the survey. In messages sent on the listserv, 30 of the 35 participants (86%) made 
comments indicating that they were using IBL methods. Combining these measures reveals that 
at least 31 participants (89%) were using at least some IBL methods. Changes in teaching 
practices from pre-workshop to one-year follow-up were consistent with IBL practice as well: 
decreases in instructor-led activities and increases in some student-centered activities, as detailed 
in Figure 1. Overall, these multiple data sources indicate very high usage of IBL methods. 

Follow-up Activities, Resources, and Supports 
Making a change (i.e. implementation of IBL) indicates completion of stage two of Paulsen 

and Feldman’s instructional change model. Stage three, refreezing, is characterized by sustained 
use of new instructional methods reinforced by positive, ongoing support and feedback. To 
assess support and feedback, we asked participants on follow-up surveys to report their 
engagement with various IBL-related events and resources. 

IBL events. Of the 28 respondents to the follow-up survey, 68% had participated in another 
IBL-related event in the year following the workshop. Events included IBL sessions at JMM, 
MAA meetings, MathFest, and the annual IBL conference. Some also presented at these events 
(7, 25%). Together, this means 22 participants (79%) attended or presented at another event. 
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While some events were more popular than others, it appears that the variety of related events 
made it possible for many participants to engage in at least one. 

 
Figure 1. Comparison of teaching practices from pre-workshop to one-year follow-up. 

 
IBL resources. Most respondents to the follow-up survey (25, 89%) reported using IBL 

resources. The resources used most frequently were the workshop listserv (21, 75%) and the 
Journal of Inquiry Based Learning in Mathematics (12, 43%). A few participants used the 
mentor program and mini-grants, which were both provided by the Academy of Inquiry Based 
Learning (AIBL). Again, participants engaged with a number of different resources, and the 
variety available may help to meet the various needs of different participants. 

IBL support. On the follow-up survey, we asked participants to report the level of support 
they received from their institutions. Overall, the majority of participants felt supported at their 
institutions and rated key individuals as ‘mostly supportive,’ including department heads/chairs 
(64%) and departmental colleagues (50%). In describing how they were supported, some 
participants reported active support (12, 43%) through either encouragement or financial support, 
while others reported the absence of obstacles: they were ‘free to do what they wanted’ (5, 18%). 
Only a few reported feeling doubted or discouraged by colleagues (3, 11%). While these 
numbers suggest that collegial resistance is not a barrier for most, only 43% of respondents 
received the active support crucial to refreezing. 

Participation in Online Follow-Up Activities 
Past efforts by professional developers to engage workshop participants in online follow-up 

communications have failed (e.g. Hayward, Kogan, & Laursen, 2016). Social networking 
platforms like Facebook or Google+ seem like a good way to keep in touch, but those efforts too 
were unsuccessful for this workshop. In a semi-official capacity, one participant of the workshop 
created a private group on a social networking platform, and 24 people (55%) from the workshop 
joined it. Only 4 people (9%) exchanged 8 messages in the 2 days following the workshop, and 
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in the two years since then, the group has had no activity. In contrast, 32 (91%) of workshop 
participants were active on the official group listserv at some point in the year after the 
workshop. In total, they exchanged 282 messages over the year. These observations suggest that 
‘push’ technologies that deliver messages directly are more successful than requiring participants 
to log in and seek them out. Below, we share some other findings about why this group listserv 
was able to successfully engage participants in follow-up when other approaches have failed. 

Promoting participation. Organizers sometimes prompted the list to generate discussions, 
but all members were free to send messages to the entire group at any time. The list was closed 
but un-moderated. Frequencies of individuals’ participation are shown in Figure 2 below. 
 

 
Figure 2. Frequencies of individuals’ participation. 

 
Most individuals sent fewer than 10 messages to the list in the year following the workshop. 

In fact, 27 participants (77%) sent 5 or fewer messages. Among organizers, most also sent fewer 
than 10 messages to the list. However, one organizer sent 66 messages, or about ¼ of all 
messages on the list. Many of these were announcements of upcoming events or resources, while 
others were prompts inviting check-ins from participants and raising topics for discussion. Such 
organizer prompts were often followed by flourishes of activity, including from participants who 
had not yet been active in the listserv, as shown in Figure 3. 

In February, organizers also prompted individuals who had not yet been active in the group 
listserv. They checked in individually with these quiet participants in order to see how things 
were going and to offer assistance. Most of these participants responded individually, and two 
also later participated in the group list. In total, 94% of all 35 workshop participants were active 
in online ‘e-mentoring,’ either individually or as a group. 

Relevance and helpfulness of discussions. As shown in Figure 3, organizers frequently 
prompted the list. The timing and content of these prompts are important. The biggest 
concentration of activity was in the fall (August through mid-October) soon after the summer 
workshop. This is an important time as many instructors prepare and then begin teaching their 
first IBL class. Organizers prompted the list with relevant topics, such as asking participants to 
share their ‘first day plans,’ offering advice, and checking in about how ‘first-day’ activities 

0	

1	

2	

3	

4	

5	

6	

7	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 25	 30	 35	 40	 45	 50	 55	 60	 65	 70	

N
um

be
r o

f i
nd

iv
id

ua
ls	

Number of Messages	

Participants	

Organizers	

20th Annual Conference on Research in Undergraduate Mathematics Education 65020th Annual Conference on Research in Undergraduate Mathematics Education 650



went. The listserv was relatively quiet again until another small burst of activity in January. 
Again, organizers provided relevant prompts by asking participants to reflect back on what did 
and did not go well during their first term using IBL, and querying participants’ plans for the 
upcoming term. For the rest of the academic year, activity came in short bursts for a day or two 
as participants responded to a specific question or announcement. Over time, participants became 
more likely to initiate new exchanges, though organizers continued to pose occasional prompts.   

 

 
Figure 3. Chronological activity on the group email listserv. 

 
On follow-up surveys, 39% said the list was a “great help,” and 22% said it was “much 

help.” None reported that it was “no help.” Individually, most participants only sent a handful of 
messages and some did not engage with the list for a long time. However, evidence suggests that 
the collective discussions still helped even when they were not active participants: a few of the 
latest ‘new participants’ offered long, thoughtful reflections that included references to earlier 
discussions, suggesting they had been actively tracking and mentally engaging in the online 
cohort even though they had not posted. Moreover, some new participants stated that they had 
been ‘lurking’ and found ongoing discussions helpful. 

Networks formed through email exchanges. While we have provided evidence of use of 
follow-up support resources, the ongoing process of reconfirmation through positive feedback is 
harder to assess with a one-time follow-up survey. However, while observing listserv traffic 
throughout the course of the year, we noticed that feedback loops sometimes developed: 
participants might raise a concern to the group, others would provide suggestions, and then the 
original participant would report back after testing out the suggestions. Such social exchanges 
prompted us to analyze not only the frequency but the content of messages sent on the listserv, 
using SNA methods to reveal the process of refreezing. We are coding each message to reveal its 
function and content, and to document how it relates to previous messages. For example, one 
message’s content may be to celebrate (e.g. “My IBL class went so well today…”) while another 
message may function as a connection by celebrating somebody else (e.g. “That sounds like an 
awesome class! Good job!”). Our coding scheme attends to the emotional function of messages 
—such as celebrating or commiserating—as well as intellectual content, such as trouble-shooting 
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and idea-sharing, because we observe the list traffic to include a perhaps surprising degree of 
emotion-related messages. We suspect this interpersonal support may be particularly helpful in 
normalizing challenges of new implementers. The tone set by organizers also appears crucial to 
establishing the trust needed to share and seek help about teaching challenges. 

We are exploring the relationships between content of messages and the type of connections 
that follow it in order to help understand how the participants and staff used the listserv during 
the refreezing stage. For example, we hypothesize that messages that seek information or help 
will tend to be followed by many messages in which others share opinions, advice, and 
resources, whereas a broadcast announcement will be followed up by fewer messages, largely to 
say thanks or expand on the initial announcement. This coding is painstaking but is well 
underway and will be finished by the RUME meeting in February, where we will present 
additional findings on the nature of listserv communications and how they support refreezing. 

Discussion 

Evidence from both the follow-up surveys and activity on the group listserv indicates that the 
workshop was largely successful in helping instructors through changing by beginning to use 
IBL practices in their classes in the year following the workshop. The third and final stage of 
Paulsen and Feldman’s (1995) theory of instructor change, refreezing, often presents the biggest 
challenges, so support and positive feedback during this time are crucial so that participants do 
not return to their original strategies (Connolly & Millar, 2006). Feedback and support are most 
readily available at one’s home institution, but only about 43% of participants described active 
support from colleagues. While support is essential during refreezing, more than half of survey 
respondents reported no active, local support. 

Workshop participants and organizers can serve as another source of support for instructional 
change, but geographic distances make this challenging. The workshop organizers incorporated 
various methods to overcome these distances to help support participants through the refreezing 
stage, and participants reported high rates of IBL implementation. Participants took advantage of 
various IBL-related events and IBL-related resources. Some participants took part in in-person 
events, but the group e-mail listserv was the most widely used support. Both survey responses 
and participants’ comments in emails indicate that the listserv was helpful. 

The findings here show why this method of online support was successful when others have 
failed, and offer some lessons for those looking to support instructors involved in changing their 
teaching practices: First, online communication can be an effective way to help instructors 
interact with like-minded, supportive colleagues, especially if they do not have any at their home 
institutions. Second, listservs and other ‘push’ technologies that deliver relevant messages 
directly to participants seem to make it more likely that participants will engage, in comparison 
to methods that require participants to actively seek out information and help, such as online 
communities or forums. These findings are encouraging because listservs are relatively easy and 
inexpensive to set up and manage. Third, listservs function better when somebody is providing 
prompts that both encourage participation and keep discussions relevant to participants’ 
experiences, in effect enabling list participants to provide each other with “just-in-time” 
implementation support as they try the new teaching strategies. 

Ongoing analysis of listserv messages will reveal how participants and staff engaged in two 
important processes of the refreezing stage: (1) supporting each other emotionally and 
intellectually and (2) providing positive feedback by improving their implementation of IBL 
practices through trouble-shooting and idea-sharing. 
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Student Proficiency with Transformational Geometry After a College Proof-Based 
Geometry Class 

 
Meredith Hegg and Timothy Fukawa-Connelly 

Temple University 
 
This report explores pre-service teachers’ proficiency with concepts of transformational 
geometry at the end of a semester-long advanced geometry course. During the course, the 
instructor presented transformational geometry content, including congruence proofs, in an 
attempt to align with the Common Core State Standards for Mathematics. At the end of the 
course, the students, all pre-service teachers, appeared to mix ideas from the traditional 
approach involving triangle congruence criteria (SAS, ASA, SSS, AAS) and transformational 
approaches, and struggled with conceiving of transformation functions as objects. These 
difficulties appear to compound in their proof-writing attempts such that after citing appropriate 
transformational geometry ideas, such as the angle- or distance-preservation property, they 
would then supplement with congruence-based approaches in order to finish the proof. This has 
implications, especially for professional development, as this is the final mathematics class that 
these preservice teachers will take concerning transformational geometry prior to beginning 
their classroom instruction.  
 
Key words: transformational geometry, proof 
 

Identifying what prospective teachers know about geometric transformations gains new 
significance when we consider the prominence these functions are given in the Common Core 
State Standards in Mathematics (CCSSM). The draft of the Progressions for CCSSM in 
Geometry, 7-8, High School (Common Core Standards Writing Team, 2016) states that 
congruence should be defined in terms of rigid transformations, and that the traditional triangle 
congruence conditions (SAS, ASA, SSS, AAS) should then be proven using this definition. That 
is, students are expected to:  

Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the 
definition of congruence in terms of rigid motions. 

The Progressions borrow heavily from Wu (2013), who points out that this approach allows one 
to define congruence independently of polygons and who also argues that the transformational 
approach connects the formal definition taught in high school geometry to the intuitive 
understanding of congruence that students develop in middle school. While there are important 
mathematical reasons to make such a change, it represents a substantial break from past practice 
and has significant implications for curriculum, inservice teacher education, and preservice 
teacher education. This contributed report approaches this complex issue of curricular change at 
a very granular level; exploring how preservice teachers in a university-based geometry course 
make sense of and write proofs about transformational geometry, as well as coping strategies 
they exhibit.  

Harel (2014) cautions against heavy reliance on plane transformations due to the 
difficulties students and teachers have in understanding the transformations themselves. Some of 
these challenges and misconceptions include identifying the domain of a transformation as some 
subset of the plane rather than the plane itself (Hollebrands, 2003; Harel, 2014; Yanik, 2011), 
having an action or process conception of function rather than an object conception (Harel, 2014; 
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Hollebrands, 2003; Portnoy, et al., 2006), having a motion rather than mapping conception of 
transformations (Yanik, 2011), struggling to understand parameters such as the vector that 
defines a translation (Hollebrands, 2003; Yanik, 2011), and viewing geometric objects as 
perceived rather than conceived (Portnoy, et al., 2006) or drawings rather than figures 
(Hollebrands, 2003). In particular, Portnoy, et al. interviewed prospective high school teachers in 
a college geometry course and found that the students' conceptions of geometric objects as 
perceived objects and their process conceptions of transformations hindered their abilities to 
prove congruence using transformations rather than corresponding congruent parts.  
 We also note that this work is situated in the context of proof-based advanced 
mathematics classes and draws on student’s proof-writing proficiency. For the sake of brevity, 
we do not report all of this research here, rather we note that there are multiple handbook 
chapters (e.g., Harel & Sowder 2007; Stylanides, Stylanides, & Weber, in press) describing the 
literature, and a comprehensive summary of undergraduate mathematics majors’ difficulties with 
proof is given in Selden and Selden (2008) as well as Weber (2003). Student’s difficulty with 
proof is well-documented (Moore, 1994, Weber, 2001). In both reading (e.g., Hodds, Alcock, & 
Inglis, 2014) and writing proofs (e.g., Raman, 2003; Weber & Alcock, 2004), they are more 
likely to focus on symbol-manipulation rather than the logical connections or connecting proofs 
to informal ideas (e.g., Raman, 2003). These certainly limit their ability to write proofs, but also 
to gain understanding from proofs that they produce (e.g., Weber, 2005; Weber & Alcock, 2009). 
Another important source of difficulty for students in writing proofs is that they do not appear to 
appreciate the fact that proofs are based on definitions of concepts (Alcock & Simpson, 2002; 
Bills & Tall, 1988). Finally, there is more recent research examining what students learn from 
lectures in advanced mathematics and why they appear to learn different things than the 
professors intend (e.g., Lew, et al., 2016). Students misunderstood terms that the professor used 
to convey content, focused on the symbolic manipulations that the professor wrote on the board, 
while ignoring or forgetting the conceptual explanations and ways of thinking about content and 
proofs that the professor said aloud (and described as the salient points of the lecture). That is, 
there appear to be several mismatches in communication styles between students and professors 
that inhibit student’s comprehension of lectures about proofs.  Thus, this study investigates the 
following research questions: 

1) What resources (knowledge, skill) have students demonstrated, in terms of content, from 
their undergraduate geometry course to write proofs about transformational geometry, 
and are those sufficient to write proofs about congruence via transformations? 

2) When writing proofs about congruence via a transformational approach, what 
proficiencies do students display? What difficulties do they display? 

3) What are coping strategies that they exhibit when they encounter difficulties? 
 

Theoretical Commitments 
 

We hold three important theoretical commitments; the first is that students, and others, 
make decisions to act via practical rationality (c.f., Herbst & Chazan, 2003), making decisions 
about how to act in circumstances in order to achieve the best possible outcome in a given 
situation within the constraints that they perceive. In the case of students in this study, the 
context that most shapes their behavior is the fact that this is a proof-based collegiate 
mathematics class. As a result, we also draw on the notion of the didactical contract (Brousseau, 
1986/1997), which can be understood as structuring the economy of the classroom in which 
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students exchange work for grades (especially on exams). This student work addresses prompts 
that professors set, where research suggests (e.g., Herbst, 2003; Voigt, 1994) that there is 
frequent negotiation, often tacit, between professors and students about how to engage in a 
particular task. We claim that the use of partial credit when grading is one such form of 
negotiation--professors can, bluntly, give students a measure of how close they have come to 
fulfilling the expected role. In terms of what work, on the student’s part, fulfills the expectations 
for proof within a particular domain, this negotiation typically begins with a professor’s 
classroom presentation of proofs about and drawing on particular ideas and continues with the 
student’s completion of homework about the topic (Thurston, 1994), indicating the needed 
elements and appropriate detail for a proof. The professor then grades the homework, using 
scores to indicate whether, and how close, the work comes to fulfilling the professor’s 
understanding of the student responsibilities. The students can then use these marks to further 
calibrate their understanding of the didactical contract. This process is repeated on exams--
although in the case of final exams, the marking will no longer serve as formative feedback to 
the students, only a summative evaluation of the professor’s evaluation of how close the student 
came to fulfilling their responsibilities.    
 

Methods 
 
The Institution, Class, and Participants 
         Data from this study was collected in an undergraduate geometry class at a mid-sized 
urban doctoral-granting institution along the east coast. The course was an advanced, proof-
based geometry course with an introduction to proof (or equivalent) prerequisite. The researchers 
solicited consent from the students to use data from the final exam after the end of the course and 
after grades had been submitted, and 17 of the students agreed to participate.  The course 
description indicated that the course served as an introduction to Euclidean and non-Euclidean 
geometries, emphasizing proofs. The catalog also describes the course as targeted at pre-service 
secondary mathematics teachers. Because of this, the instructor (the first author) purposefully 
introduced transformational geometry, defining congruence and similarity via transformations. 
The instructor also stated and proved a variety of theorems about and with transformations. She 
also did examples of the types proofs that students would be expected to produce using a 
transformational approach. The data from this study is drawn from one three-part problem on the 
final exam. (Three out of nine problems on the exam focused on transformational geometry.) 
 

Assume in the figure below that ∠𝐹𝐷𝐴 ≅ ∠𝐶𝐷𝐴 and ∠𝐷𝐴𝐸 ≅ ∠𝐷𝐴𝐵. Let 𝑅1 be an 
isometry that maps △ 𝐷𝐸𝐴 to △ 𝐷𝐵𝐴. 

 

 
(a) What could 𝑅1 be? Define 𝑅1 in terms of the given figure. (You do not need to justify 

your definition at this point.) 
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(b) Is 𝑅1 unique? Why or why not? 
(c) Using your definition of 𝑅1, justify that 𝑅1(𝐸) = 𝐵. (You should NOT refer to triangle 

congruence theorems!) 
 
In line with the expectations of the CCSSM, this task was designed to assess whether students 
could produce a proof based solely on the properties of transformations. In part (a), students had 
to identify the appropriate transformation as a reflection across line DA. Part (b) was intended as 
an independent question addressing the idea that the images of three non-collinear points 
uniquely define an isometry. Finally, part (c) required that students first cite the angle-
preservation property of transformations to state that ray DF maps to ray DC and that ray AE 
maps to ray AB. The proof would then be completed by observing that while E represents the 
intersection of ray DF with ray AE, B represents the intersection of ray DC with ray AB, and 
therefore, the uniqueness of the intersection requires that the image of E is B. There is no way to 
ask this kind of question without giving students sufficient information to do it; that is, students 
cannot be asked to prove that triangles are congruent without giving them sufficient information 
to prove that the triangles are congruent. However, by giving them enough information and then 
focusing entirely on the justification, it may seem strange in part (c) to justify that R(E) = B 
when, in the preamble to question (c), R maps E to B by definition. The goal of (a) and (c) was to 
have the students create a definition in part (a) that they would draw on in developing their proof 
for part (c). 
 
Methodology for Analysis 
 To analyze the definitions of 𝑅1 that the students offered, we first examined whether they 
correctly identified the appropriate transformation as a reflection. Second, we analyzed whether 
the student specified a line (or line segment) to serve as the axis of reflection, which we then 
described as mathematically appropriate or not. Finally, we noted whether the students identified 
the images of particular points under the isometry. To analyze student responses to part (b), we 
first parsed whether the students correctly stated whether the transformation is unique, marking 
their responses as correct or incorrect. Subsequently, we evaluated the offered justifications; 
positing ways of thinking about the figure and transformations that would be consistent with the 
combination of the given justification and uniqueness response. For this work, we engaged in 
thematic analysis (Braun & Clarke, 2006), looking for conceptions such as having a motion 
rather than mapping conception of transformations (Yanik, 2011), and viewing geometric objects 
as perceived rather than conceived (Portnoy, et al., 2006) or drawings rather than figures. We 
used our analysis of parts (a) and (b) as an indicator of their understanding of transformations. 
Finally, to analyze students’ proofs in part (c), we first indicated whether each student used a 
transformational approach, particularly the transformation that the student defined in (a).  If the 
student did not, we described what approach the student took, specifically looking at the rate at 
which the inappropriate approaches drew on triangle congruence criteria (even though 
specifically warned not to). We noted whether the student carried out a direct or indirect proof, 
which properties the student drew on, such as distance preservation, and any claims that were 
needed but omitted (for example, about the intersection of rays). Finally, we gave a holistic 
evaluation of the proof-attempt; indicating what about it was productive and what was 
unproductive--where, by productive, we mean whether we could hypothesize a direct way for the 
work to lead to a correct proof.  When students performed unproductive actions, we noted what 
was problematic. For each student, we read across their responses (and our analysis) to the three 

20th Annual Conference on Research in Undergraduate Mathematics Education 65820th Annual Conference on Research in Undergraduate Mathematics Education 658



 

prompts and developed a summative description of their work, and hypothesized a conceptual 
model of transformations that the student might hold that would lead them to produce the 
exhibited work.   
 

Data and Results 
 

 We first present summaries of student performance on items (a) and (b), then the analysis 
of their work on item (b), followed by a description and analysis of their proof-productions. 
Thus, we first note that 16 of the 17 students correctly identified that 𝑅1 could be a reflection 
across the line DA. The one student who did not state that 𝑅1 was a reflection stated:  

R(D) = D, R(E) = B, R(A) = A 
In this case, the student determined the images of three points under the transformation. Since 
the class had discussed that the images of three non-collinear points define a transformation, the 
evidence suggests that the student was claiming that the transformation was a reflection. The 
other 16 students made three different types of claims: 

● 9 students made a claim that “R could be a reflection across the line DA” (or AD). One 
student added, “This would reflect everything on the left of AD to the right of AD but 
AD is fixed.” 

The first clause gives little insight into student thinking. The phrasing raises the question of 
whether the student imagines part, or all, of the figure moving (e.g., half at a time). 

● 4 students made a claim similar to “Reflection with line of symmetry DA such that R(D) 
= D and R(A) = A” where they both named the line of symmetry and stated images of 
particular points. 

● 1 student stated: “R would be a reflection across line DA. R(triangle DEA) = triangle 
DBA” (which implicitly draws on triangle congruence) 

On Item (b), 9 students stated that the transformation was not unique, while 8 stated that it was, 
but only 4 students gave a correct justification. An example of such a justification: 

No! This same isometry could have been done as a glide reflection and translation, etc. 
Three reflections could have worked. 

In this case, the student gave a correct statement, and indicated knowledge of the three-
reflections theorem that the professor presented in class, which stated that any isometry is 
equivalent to one, two, or three reflections. The students who gave incorrect justifications gave 
responses that indicated a variety of ways of understanding reflections and transformations 
generally.   

Seven students gave a response that indicated that their understanding of unique implies 
that only one ‘move’ can be used (ignoring the idea that a composition of transformations is a 
transformation). These students wrote claims such as, “Yes because any other isometry would 
require more than one isometry.” This type of claim suggests that the student has a conception 
that an isometry must be only one ‘move,’ rather than a composition of possible transformations. 
This way of thinking suggests that students have a definition of isometry as a ‘move’ rather than 
as a map. Similarly, one student wrote, “Yes, by definition isometries are onto and one-to-one 
which imply uniqueness.” This claim that “onto and one-to-one” implies uniqueness is 
interesting, but not mathematically correct. There were two instances where students claimed 
that a rotation would suffice; one claiming a rotation of 180 degrees and another student claimed 
a rotation of 360 degrees. These students’ responses do not give much insight into their thinking, 
but one hypothesis is that the first believes a rotation of 180 and reflection to be equivalent.  The 
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second may have been attempting to ‘land’ the figure back in the original image, but have not 
attended to the position of the points—essentially attending to the appropriate relationship 
between figure and ground, while ignoring others. Finally, there were two responses that suggest 
the students were writing a justification because one was asked for, but with no relationship that 
the researchers could hypothesize to the claims, for example, “it bisects ∠𝐷 and ∠𝐴.”   That is, 
apart from the students who gave correct responses and justifications and the two students who 
seemed to be attempting an answer, it appears that the students’ justifications show that the 
concept of uniqueness of transformations is difficult for students. It appears that they are focused 
on the way of ‘moving’ the points rather than the outcome of the transformations. To relate this 
to the literature, they may be making the figure/plane distinction that Yanik (2011) identified, or, 
may (also) have a process-oriented understanding such as Portnoy, Grundmeier, and Graham 
(2006) described. A process-oriented conception would suggest that the individual focuses on the 
means of the transformation, imagining a particular output, without physically manipulating 
points, while an object-conception would allow the students to focus on the output of multiple 
processes simultaneously and then be able to compare those outputs for uniqueness. We note that 
this explanation, that students concurrently hold these two problematic conceptions, is 
speculative, based on their written production. We treat it as a hypothesis that would require 
further testing, and only one possible explanation for the work that they exhibited. 

Looking to part (c), a correct proof uses the angle preservation property on both pairs of 
angles to show that the image of E must be at the intersection of the rays DC and AB and 
therefore must be B. First, one of the students, whose work on (b) appeared to be aimed at 
earning credit, wrote a collection of statements that were all related to the prompt, but which we 
could not interpret in any coherent manner, again suggesting that the work was aimed at earning 
partial credit. Second, four students drew on notions of triangle congruence; two of whom did so 
explicitly. For example, arguing that “Since triangle DAE is congruent to triangle DAB, we 
know DE = DB, and AE = AB.” These students typically used triangle congruence to claim 
segment congruence. 

All of the students used the distance preservation property or angle preservation property 
in some way; some only used these properties implicitly, while others correctly stated them and 
yet did not productively use them. Multiple students made false claims based on the distance 
preservation property, such as the claim that unequal points cannot be equidistant from the line 
of reflection. Many correctly used the angle preservation property, but omitted the needed claims 
about the intersection of rays; the following is a representative such proof: 

Since ∠𝐹𝐷𝐴 is congruent to ∠𝐶𝐷𝐴 and ∠𝐷𝐴𝐸 is congruent to ∠𝐷𝐴𝐵, then R(ray DE) 
will match to ray DB and R(ray AE) will match to ray AB respectively. Since this is an 
isometry length is invariant, so DE = DB and AE = AB. Thus R(E) = B. 
Note that the first line begins by identifying two pairs of congruent angles and making a 

claim about where a pair of rays is mapped, indicating that the student has used the angle 
preservation property twice, although without stating it. However, the student omits any claims 
about the intersection of rays. Instead, the student then draws on the distance preservation 
property to state that length is invariant under an isometry and names line segments that are 
equal. Though accurate, this statement has not been justified and, in fact, relies implicitly on the 
fact that the triangles are congruent. The proof is complete without this statement, but the student 
possibly believes that citing length invariance is important. Four students only used the angle 
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preservation property on one pair of angles, then attempted to ‘repair’ the result using other 
notions, such as that the preimage and image of a point are the same for reflections, or that a pair 
of segments would be parallel, while two of these students then used triangle congruence. 
Finally, four students gave correct proofs, though two of them used, without stating, both the 
angle preservation property and the intersection of rays. 

  
Discussion 

 
We argue that one important finding is that the majority of the students (future teachers) 

do not appear to be fluent with transformational geometry at the end of their one-semester 
course. This is an important finding from both the perspective of teacher education and 
undergraduate mathematics. From the perspective of undergraduate mathematics it reinforces the 
claim that students find advanced courses difficult and struggle with proof-writing (Selden & 
Selden, 2008), and supports an argument that they need significantly more time with the material 
to develop appropriate fluency. From the perspective of teacher education, this finding is 
important because it suggests that even teachers whose geometry class includes a 
transformational approach are not adequately prepared to teach it. It raises significant questions 
about their future instruction, their future students’ learning, and policy questions about what 
additional levers for change need to be attempted.  

A second important finding that we highlight is the fact that many students implicitly 
drew on triangle congruence ideas and sometimes did so explicitly, and, especially for part (c). 
We suggest that the notions of the classroom economy and students’ practical rationality may 
have made this likely. In particular, we hypothesize that the students were attempting to 
maximize the points that they earned, and that, while the directions might indicate not to use 
congruence theorems, the students may believe submitting this proof is better than the alternative 
of possibly not submitting a proof. That is, they are trying to earn partial credit as a means to 
maximize their grade. We further claim that drawing on congruence theorems may be a form of 
coping--reverting to a more familiar and practiced set of content for proving, and away from the 
newer and less familiar content. 

We also note two curious correlations that may be interesting to further explore. Students 
often use ideas implicitly, i.e., without stating them or warranting their use, and it is not clear 
whether they are omitting the name and warrant because they are hurried in an exam setting, 
because they find it obvious, or because they do not realize they need to warrant the use. There 
were only three cases where students transparently made an unsupported statement. Secondly, 
the students who did best on part c did not do especially well on part b. Most importantly, we 
note that this was a first study of students’ understanding of transformational geometry and that 
we have drawn some preliminary hypotheses that can help explain the types of performances that 
they exhibited on their exam. We note that we did not interview the students; we did not, at the 
time, anticipate that this question would produce interesting data. Thus, one follow-up study will 
be to explore which of the proposed hypotheses for student difficulty are the most plausible by 
engaging in task-based interviews, as well as interviewing students at the completion of their 
final exam in a similar class.  Moreover, because these are future teachers, asking for the kinds of 
explanations of ideas that they would give their students has value in both giving researchers 
insight into their understanding of the content and giving policy-makers a better understanding of 
what additional supports will be needed going forward.  
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Exploring Experts’ Covariational Reasoning 
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 In this paper, we discuss two experts’ reasoning abilities when tasked with drawing a graph that 
relates two varying quantities. We present evidence that in some cases, these experts had 
constructed and coordinated the amounts of change of the quantities (while interpreting and 
constructing graphs). By comparing each experts’ activities and corroborating previous 
researchers’ findings, we argue that constructing a multiplicative object is critical to conceiving 
a graph and situation as constituted by covarying quantities. We identify particular complexities 
involved in the development of covariational reasoning including the conceptualization, 
coordination, and referent accumulation of the amounts of change of two quantities. 

Key words: Covariational Reasoning, Multiplicative Object, Graphing 

Many researchers have illustrated the importance of covariational reasoning in order for 
students and teachers to construct and represent relationships graphically, understand families of 
relationships (e.g., linear, quadratic, trigonometric, exponential), and develop mathematical ideas 
in calculus (e.g., limits, rates of change, differential equations) (Ellis, Özgür, Kulow, Williams, 
& Amidon, 2015; Moore, 2010; Moore & Thompson, 2015; Strom, 2008). In recent decades, 
researchers have developed constructs in order to characterize students’ and teachers’ 
quantitative and covariational reasoning. The results of such work has included frameworks of 
mental actions (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Thompson & Carlson, 2016), refined 
characterizations of observed behavior (Castillo-Garsow, 2010, 2012), and examples of students’ 
and children’s reasoning about dynamic quantities (Ellis et al., 2015; Lobato, Rhodehamel, & 
Hohensee, 2012; Moore, Paoletti, Stevens, & Hobson, 2016). Researchers have also shown the 
importance and necessity of certain cognitive objects that an individual must construct in 
reasoning covariationally. In particular, Thompson and colleagues described that constructing a 
multiplicative object is critical to an individual constructing and representing covariational 
relationships (Thompson & Carlson, 2016; Thompson, Hatfield, Joshua, Yoon, & Byerley, 
2016). 

In this study, we extend the aforementioned body of research to include examples of experts 
reasoning in a dynamic situation. We use the covariational framework developed by Carlson et 
al., 2002 with particular attention to amounts of change to characterize the mental actions we 
inferred from the work of these experts. By comparing their reasoning and activity, we provide 
evidence of the importance of joining two quantities’ amounts of change into a multiplicative 
object for interpreting and graphing relationships involving varying quantities.  

 
Background 

Our understanding of covariation stems from Saldanha and Thompson’s (1998) description 
of “someone holding in mind a sustained image of two quantities’ values (magnitudes) 
simultaneously… coupling the two quantities, so that in one’s understanding, a multiplicative 
object is formed of the two” (p. 299). To further understand the notion of multiplicative object, 
we leverage Thompson’s (1994) characterization of accumulations and accruals. Thompson 
described that a sophisticated conception of covariation and rate involves the construction and 
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coordination between two quantities’ accumulations and the accruals that make up these 
accumulations. We note that an accrual is understood in terms of a smooth accumulation itself 
and as a quantity whose magnitude is a difference between two states of another quantity’s 
magnitude. We interpret Thompson’s (1994) articulation of this relationship between covarying 
quantities’ accumulations and accruals to involve forming interrelated multiplicative objects both 
between corresponding accumulated amounts of quantities and changes between these quantities. 

Carlson and colleagues proposed a framework articulating levels of images of covariation 
and mental operations that support each level (Carlson et al., 2002). These mental actions can be 
described with regard to the elements that one is coordinating and the aspects of these elements 
one is attaining to. For example, amounts of change (Mental Action 3) are one such element that 
we focus on here. In regards to amounts of change, Carlson et al. (2002) observed students’ lack 
of propensity to reason with these elements, indicating the difficulty of coordinating amounts of 
change into a multiplicative object. Corroborating the findings of Carlson et al., Johnson (2012a, 
2012b) illustrated that maintaining an image of simultaneous accruals is non-trivial for students. 
For instance, Johnson described children’s tendencies to reason about associated changes in 
magnitudes as happening independently in each quantity, which may be problematic for their 
ability to make sense of variation in rates of change. Furthermore, other studies have investigated 
students’ construction of a multiplicative object uniting quantities’ values (Thompson et al., 
2016; Stalvey & Vidakovic, 2015; Frank, 2016). Thompson and colleagues (2016) investigated 
teachers’ graphs representing animated magnitudes that were displayed on orthogonal axes. 
These researchers illustrated that a teacher’s ability to unite the axes magnitudes into a 
multiplicative object was essential to her or his graphing the varying quantities.  

 
Data Collection and Methods 

 
The two participants of this study, Jake and Dan, were first year students in a mathematics 

education PhD program in a southeastern US university. Each participant had previously 
completed a Bachelor’s degree in mathematics and taught secondary school mathematics for at 
least two years. These participants’ interviews were part of a larger study aimed at investigating 
teachers’ and college students’ quantitative and covariational reasoning (see goo.gl/dAA7Re). 
The research team of this larger study (which includes the authors of this paper) conducted 60-
minute semi-structured clinical interviews (Ginsburg, 1997) with 10 experts from the same 
university. By expert, we mean an individual who is enrolled in a doctoral program in 
mathematics or mathematics education with teaching experience in secondary or undergraduate 
mathematics. Thus, we mean expert as someone who one might expect to have sufficient 
experience engaging in tasks involving representing and reasoning about quantities.  

One or two members of the research team led each interview. Each interview was video- and 
audio-recorded and each participant’s work was digitized. We analyzed the data using grounded 
approach (Strauss & Corbin, 1998) combined with Thompson’s (2000, 2008) notion of 
conceptual analysis. The data was first transcribed and instances offering insights into the 
experts’ thinking were identified. After discussions with the full research team, Jake’s and Dan’s 
activity seemed to provide the most enlightening comparison for us, as both participants’ 
behavior focused on quantities and did not resort to thematic associations or memorized 
formulas. Focusing on these two experts, we performed a conceptual analysis (Thompson, 2000) 
of their thinking in order to generate and test models of their thinking so that these models 
provided viable explanations of their behaviors.  
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Tasks 
Each interview task began with having the participant watch a short (about 20 second) 

animated clip. The first interview was focused on Going Around Gainesville (GAG) (see Figure 
1) and the animation played a “car” moving back-and-forth along the path indicated in the figure. 
The second interview was focused on Taking a Ride (see Figure 2). The first part of this task 
played a circle wheel spinning around the axle and the second part of the task involved an 
animation of a fixed square “wheel” in which the carts traversed along the frame of the “wheel.” 
All three of these animations played so that the motion was at a constant speed. 

 

 
Figure 1. The Going Around Gainesville (GAG) task.1 

 

Figure 2. The Taking a Circle and Square Ride task. 
 
We designed the situations in these animations to illustrate multiple measurable attributes 

and the tasks to prompt students to graph various relationships between two quantities without 
explicit reference to numerical values. Since we were interested in students’ images of 
covariation, we did not want them to rely on learned facts or formulas to relate the quantities’ 
magnitudes (Saldanha & Thompson, 1998). The focus on novel attributes and multiple 
orientations of graphs were intended to perturb students’ ways of thinking about graphs (Moore, 
Silverman, Paoletti, & LaForest, 2014). We avoided time as one of the quantities for students to 
relate as they can often reason uni-variationally when time is one of the quantities under 
consideration (Leinhardt, Zaslavsky, & Stein, 1990). 
 

                                                
1 This task is a modification of the task provided by Saldanha and Thompson (1998).  
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Results 

In this section, we compare and contrast Jake’s and Dan’s actions in responding to the 
interview tasks. Due to space constraints, we do not report on the entirety of their actions, but 
instead focus on particular aspects that were critical to their responses or instances in which we 
inferred marked differences in their actions.     

Going Around Gainesville (GAG) 
 Both Jake’s and Dan’s activities in this task began in a similar way. After reading the task out 
loud, they each created and labeled axes and traced, what we perceived to be, an accurate graph 
(see Figure 3 and Figure 4). In each case, the interviewer then proceeded by asking the 
participant why he drew a graph composed of straight lines (or segments). 
 

 
   

 
 
 
 
 

Figure 3. Jake’s graph in GAG.   Figure 4. Dan’s graph in GAG. 
 

Each participant initially contended that the straight lines in his graphs were a consequence 
of the constant speed in the situation. Their initial verbal responses did not indicate their 
conceptions of two covarying distances, and we infer their constructing a thematic association 
(Thompson, 2016)—constant speed necessarily implies line—between their graphs and the 
situation. Upon further questioning from the interviewers, each participant concluded that the 
shape of his graph was actually not influenced by time or constant speed. Each explained, 

Jake: It's still like a, I guess, one to one relationship… for every one mile you move 
towards the total distance towards Tampa you're still getting that one mile closer to 
Gainesville at least for this part of the graph [referring to the first linear segment of the 
graph]. 
Dan: There's a relationship between as the car's moving, it's consistently getting closer to 
Gainesville and it's also consistently traveling a distance. So, whatever it is doing 
distance-wise is also happening to its distance to Gainesville… 10 miles total distance 
traveled and it's also 10 miles closer to Gainesville.  

In both responses, the participants identified a relationship between the quantities’ total distance 
and distance from Gainesville by reasoning with an explicit amount of change in each quantity 
respectively. From their language (“for every” and “consistently”), we infer that this relationship 
resulted from participants’ awareness that such an explicit amount of change could be 
constructed along any section of the first part of the road or first segment in the graph. 

 
Taking a Ride  
 In the second interview, Jake’s and Dan’s activities unfolded in distinguishable ways, and 
thus we focus the majority of the results section here. Despite the participants’ initially drawn 
graphs being noticeably similar, their ways of reasoning over the course of this task unfolded 
quite differently.  
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Figure 5. Jake’s graph and diagram for Taking a Circle (a and b) and Square (c and d) Ride. 
 

Jake—Taking a Circle Ride. Jake justified the curvature of his graph by claiming, “it’s not a 
constant rate of change.” The interview continued with Jake justifying this claim, concluding the 
situation instead involved “increasing rates of change,” and then reasoning that this phenomenon 
was reflected in his graph. To explain why the situation was not a constant rate of change, Jake 
partitioned an arc around the circle wheel into equal parts (see Figure 5b). He then drew in 
segments to the “ground” from the points he marked on the wheel to indicate the corresponding 
“height of the rider” at each location on the wheel. He continued, 

“…so all of those are congruent, I guess, arcs [referring to the arcs in Figure 5b]. You 
see that the height is a lot different in comparison to these arcs being the same, um, so it's 
not linear. If it was linear we would expect these heights to all be the same for each arc 
along the circle that you move.”   

Due to Jake’s construction and emphasis on the “congruent” arcs, we interpret Jake’s activity to 
indicate that he was coordinating changes in arc length with total height at the terminal point of 
each partitioned arc. After further questioning, Jake continued to claim, “Because these heights 
aren’t the same, we had kind of changing rates of change.” We subsequently asked Jake to 
represent this phenomenon (of changing rates of change) on the graph. He responded, “Oh, well, 
I guess I mean, you can just look at tangents to the curve if you want.” At this point in the 
interview, Jake had not engaged in behaviors we interpret to indicate his coordinating amounts of 
change in the context of the graph or situation, instead referring to “rates of change” and slopes 
of tangent lines. Thus, we were curious about Jake’s mental actions associated with these 
phrases. We asked Jake if he could say more about tangents and slope. Jake responded, 

“So if you take the tangent of the curve at this point to be that [drawing first orange 
segment on graph in Figure 5a], the rate of change is increasing, whereas maybe as you 
take it through the maximum point [drawing second orange segment on graph] your rate 
of change is zero at that instant…. [Increasing rate of change] means … as you're moving 
along the wheel, as your total distance is changing, your height is also changing as well in 
the same direction but positive.”   

Jake claimed (1) a positively sloped tangent line at a point indicates the rate of change is 
increasing at that point and (2) the rate of change increasing means both quantities are 
increasing. As the interview progressed, Jake persistently repeated these two claims and he did 
not engage in activity that suggested his unpacking the tangent line as the result of “smaller and 
smaller refinements of the average rate of change” (Carlson et al., 2002, p. 358). Jake did not 
associate tangent lines or “rate of change” with coordinating what we perceived to be associated 
amounts of change of two quantities. Jake’s coordination of congruent arcs around the wheel 
and total height where problematic in his constructing rate of change from coordinating changes 
in both quantities. 

Jake— Taking a Square Ride. After watching the animation, and like the previous task, Jake 
immediately drew what we perceived to be an accurate graph (see Figure 5c). Jake explained the 
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shape of his graph by claiming the rider was “increasing at a constant rate.” Jake, however, was 
perturbed by how to illustrate this relationship on the situation. After various attempts to do so, 
he redrew the square wheel (see Figure 5d), identified similar triangles, and explained that the 
quantities’ magnitudes maintained a fixed ratio. Jake explained, “For each unit that I move up, 
along the square, whatever this height is [motioning to the total amount of height corresponding 
to the first “unit up”] is going to be twice the original height, or if you want to call it a unit 
height.” Jake seemed confidant that this justified his linear graph, but subsequently expressed 
skepticism in using this argument to justify the statement: “height is changing by a constant 
rate.” We do not include this example in order to discredit Jake’s thinking, but instead to further 
illustrate that across the tasks in this interview, Jake did not persistently coordinate amounts of 
change of the quantities in ways that indicated his constructing a multiplicative object composed 
of amounts of change.  
 

 
Figure 6. Dan’s graph and diagram for Taking a Circle (a and b) and Square (c and d) Ride. 

 

Dan— Taking a Circle Ride. After watching the video Dan drew a set of axes, marked the 
minimum and maximum height along the vertical (height) axis and then partitioned the 
horizontal axis of his graph into half rotations of the wheel (see Figure 6a). He then plotted 
points on his graph corresponding to the rider’s height at each half rotation. He next questioned 
how to trace the graph between these points, “The question I'm having is, will this be a straight 
line [motioning a straight line between the first two points he marked on his graph] or will there 
be any curve in it.” This behavior is in contrast to Jake’s in that Dan focused on pairing two 
quantities’ values and considering how these quantities’ magnitudes vary between two pairs of 
magnitudes before drawing a graph.  

Continuing, Dan drew a diagram of the wheel (see Figure 6b), marked a point at a quarter 
spin along the wheel and drew a vertical segment corresponding to the rider’s height at this 
location; this segment is “halfway as high as he can get.” He then referred to a “quarter spin” 
being “halfway” along both axes and plotted this point on his axes. Dan then partitioned the first 
quarter arc of the wheel into two equal arcs and drew vertical segments corresponding to the 
change of height of the rider along each arc (Figure 6b). He explicitly identified that these two 
arcs were equal and then compared the associated vertical segments; he stated that the first 
segment was “less change” than the second segment. He subsequently drew the first part of his 
graph corresponding to the rider’s trip along the first quarter of the wheel. Dan finished his graph 
by using this same strategy for each remaining quarter of the wheel. 

We asked Dan how his graph related to his reasoning with the diagram. Dan explained by 
indicating a coordination of the amounts of change of total distance and the amounts of change 
of height from ground (i.e., reasoning with accruals). Dan explained,  

“These [tracing along the arcs in Figure 6b]… are all the same amounts on the same 
axis. So those are uniform tick marks … [marking over the points on the horizontal axis 
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corresponding to the arcs]. But … then you notice in the first x interval [holding fingers 
around first interval on horizontal], there's very little change in y [points to vertical 
segment in Figure 6b corresponding to first change of height] ... But then if you look at 
the next same amount of x [holding fingers around the second interval on horizontal 
axis], you get a much bigger change in y [points to vertical segment corresponding to 
second change of height].” 

In this dialog, we infer that Dan was constructing the quantities on his graph by coordinating, 
along the axes, the accruals by which accumulations occurred (Thompson, 1994).  

Dan—Taking a Square Ride. In this task, Dan acknowledged that he could construct his 
graph using the “same logic” as in the previous task. He partitioned each quarter of the square 
wheel into two equal parts and identified the corresponding change of height of the rider along 
each segment. Next, Dan identified a relationship between these changes in height by asking 
himself out loud, “… is this right here [drawing arrow in Figure 6d pointing to a change in 
lowest height segment] the same as this right here [drawing second arrow in Figure 6d]? And the 
answer is yes. So, and this is, I said for an eighth but you could do this for any arbitrary piece of 
the square.” We infer that Dan held in mind that two arbitrary, but equal, distances traveled 
along the square wheel had corresponding changes in height that were also equal.  

Conclusion 
 
 In this study, the participant’s ability to construct and coordinate amounts of change was 
essential to his ability to reason covariationally about the shape of his graph. In the first 
interview, both Jake and Dan constructed amounts of change of each quantity in the situation and 
were able to use this construction to explain the relationship between the quantities. However, in 
the second interview, Jake did not construct associated amounts of change of the quantities. In 
these tasks, Jake instead relied on reasoning with tangent lines (Taking a Circle Ride) or the 
geometry of his drawn diagram of the situation (Taking a Square Ride). Jake did not unpack his 
constructed tangent line in terms of amounts of change or construct amounts of change from the 
geometry he described in his diagram. In both tasks Jake did not reach what he considered a 
satisfactory justification for his drawn graph. 

In contrast, Dan’s activity in the second interview was to construct equal changes of one 
quantity and compare corresponding changes in the other quantity. Dan represented the coupled 
changes of quantities on a graph by conceiving simultaneously accumulated amounts in terms of 
simultaneous accruals. The collection of these activities is an indication that Dan had constructed 
amounts of changes into a multiplicative object (Thompson, 1994).  
 This report extends previous observations from Carlson et al. (2002) and Johnson (2012a, 
2012b) on the difficulties college-level students and children have in constructing and 
coordinating amounts of change of quantities. Indeed, we illustrate that maintaining an image of 
simultaneous accruals is also not trivial for experts. Furthermore, the evidence suggests that it 
was the construction of corresponding amounts of change that afforded Jake and Dan the ability 
to represent and interpret the animations covariationally. 
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How Students Interpret Line and Vector Integrals Expressions: Domains, Integrands, 
Differentials, and Outputs 
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This study expands on research happening in multivariate calculus education to an exploration 
of student understanding of line and vector integrals. We describe how students interpreted these 
types of integrals, including the various symbols in their expressions and their relationships to 
each other. We found that while students were able to associate mathematical objects with the 
individual symbols in the integral expressions, the main issues came in trying to coordinate these 
objects into a comprehensive whole for the entire integral expression. While the literature has 
discussed connections between the integrand, differential, and integral symbol, we also found 
that connecting the domain to the other parts of the integral expression was difficult as well. 
Thus, to give more attention to the domain in addition to these other parts, we have incorporated 
it into a general “domain-chop-evaluate-add” framework for reading integrals. 

Key words: multivariate calculus, line integral, vector integral, domain, framework 

Undergraduate education research has recently taken an interest in multivariate calculus, 
which is an important required course for many mathematics, science, and engineering majors 
(e.g., Harvard University, 2016; Massachusetts Institute of Technology, 2014). This research has 
begun to examine student understanding of function (Dorko & Weber, 2014; Martinez-Planell & 
Trigueros-Gaisman, 2012), graphing (Martinez-Planell & Trigueros-Gaisman, 2013; Weber & 
Thompson, 2014), partial derivatives (Martinez-Planell, Trigueros-Gaisman, & McGee, 2015; 
McGee & Moore-Russo, 2015), and integration (Jones & Dorko, 2015; McGee & Martinez-
Planell, 2014). However, the studies dealing with multivariate integration have focused only on 
how students understand real-valued multiple integrals (Jones & Dorko, 2015), or on teaching 
strategies that may help students learn this specific type of integral (McGee & Martinez-Planell, 
2014). There is no research we could find on other important types of integrals from the 
multivariate calculus curriculum, such as line integrals and vector integrals. By line integrals we 
mean integrals of a real-valued function over a curved line, C, as in ( , )

C
f x y ds³ . By vector 

integrals we mean integrals with a vector field for the integrand, such as 
C
V dr�³
K G . Line and 

vector integrals are important both for later mathematical study (e.g., contour integrals) and later 
science and engineering study (e.g., work, flux, or circulation). Due to the lack in the research 
literature on student understanding of these important subtopics within multivariate integration, 
in this paper we seek to shed light on the following question: How do students interpret line and 
vector integral expressions, including the various symbols within those expressions? 

 
Semiotics 

Since this study deals with students interpreting symbols, we employed a semiotics framing 
and analysis (Peirce, 1998; Presmeg, Radford, Roth, & Kadunz, 2016; Radford, Schubring, & 
Seeger, 2008). Semiotics deals with how symbols or signifiers are used to refer to objects, in this 
case mathematical objects. Peirce (1998) defined a “sign” as containing three components: an 
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object, or the actual thing represented by a symbol or signifier; a representamen, or the symbol 
or signifier used to refer to the object; and an interpretant, or one’s understanding of the 
relationship between representamen and object. Note that an interpretant is not the interpreter. 
That is, an interpreter of the symbol or image creates an interpretant through the connections 
they see between the signifier and the signified. Peirce explained a difference between the 
intentional intepretant created by the one who generates the symbol or image, and the effectual 
interpretant created by one who “reads” the symbol or image. For the purposes of this paper, we 
focus mainly on effectual interpretants, or those created by students as they interpret the symbols 
in the integral expressions. Peirce also described that signs can potentially be iconic (physical 
resemblance), indexical (physical connection), or symbolic (conventional symbol) in nature. For 
the purposes of this paper, since we are using conventional symbolic notations of integral 
expressions, we are only examining signs that are symbolic in nature. 

For successful communication using signs, the object and representamen must be known to 
go together by the one who interprets the representamen, such as an exclamation mark inside a 
triangle indicating danger, or that a stick figure is meant to represent a person.  However, in 
mathematics it may be the case that a symbol has been invented to capture a particular idea – 
such as Leibniz introducing the integral symbol, ∫, to refer to a summation, in which there is an 
implication that integrals are inherently sums (Katz, 2008) – but that a student is not aware of 
that intention. In that case, the student may associate that symbol with a different mathematical 
object, say, geometric area, implying that integrals denote areas within shapes. In this case 
Leibniz’s intentional interpretant and the student’s effectual interpretant do not match up. In this 
study, we were interested both in what objects students might perceive the line and integral 
symbols as referring to, and the interpretants created by the students in that interpretation 
process. That is, we are not necessarily assuming “successful communication” regarding the 
signs involved in the integral expression in terms of their normative, intentional meanings. 
Rather, we are interested in open-endedly seeing the objects that students determine a particular 
symbol to refer to and what the implications of that association are. We use the term “interpret a 
symbol” to mean that a student has linked the symbol to a mathematical object, through which an 
interpretant, or implication of that interpretation, might also exist. 

 
Methods 

The data used for this report were generated from semi-structured interviews on different 
types of integrals with 10 university students of varied backgrounds. Six students (A–F) had just 
completed multivariate calculus, coming from three different instructors. Two students (G and 
H) were further in their undergraduate mathematics studies, and two students (I and J) were 
graduate students in mathematics education. This diversity in background was deliberate in order 
to broaden the potential interpretations of symbols we might observe in the results. For this 
conference report, we focus on two of the questions from the interview protocol, which asked the 
students to describe a generic line integral expression and a generic vector integral expression, as 
follows: “What does ( , )

C
f x y ds³  mean, where C is a curve (i.e. curved line) in the x-y plane?” 

and “What does 
C
V dr�³
JK K

 mean, where V
JK

 represents a vector field and C represents a curve (i.e. 
curved line)?” Standard follow-up questions were used to probe student thinking. 

For our analysis, we considered each symbol of each integral expression, C, f(x,y), V, ds, dr, 
and ∫, to constitute a separate representamen that could potentially refer to some mathematical 
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object. The object was not specified for the students, so they could make their own interpretation 
of each symbol. After the interviews, we independently went through the data, one student at a 
time, to identify the mathematical objects they associated with each individual symbol. We then 
brought our separate analyses together to compare our results, which we found to be fairly 
consistent with each other, and to resolve any discrepancies. Once we had done this for each 
student regarding each symbol in both types of integrals, we went through the entire data set one 
more time to check if we had missed any objects in light of our joint discussions. For each 
symbol, we then identified which students shared the same interpretation. Lastly, after 
identifying the mathematical objects each student associated with each symbol, we then went 
back through the data, one student at a time, to see how the objects associated with each symbol, 
and the implications of those associated objects, fit together to give rise to an overall object for 
the entire integral expression. 

 
Results 

We organize our results by first describing the students’ interpretations of each symbol, in 
terms of the objects associated with the symbols, and the implications of those associations. We 
do so first for the line integral, and second for the vector integral. Also, within each integral 
expression, we describe how the individual objects associated with the symbols gave rise to an 
overall object associated with the entire integral expression, and the consequent implications. 

 
Line integrals 

Student interpretations of the integrand, f(x,y), and the domain, C. Since the interview 
prompt for the line integrals explicitly stated that C was a “curved line,” it is not surprising that 
most students interpreted the symbol C as referring to a curved line. What is interesting, though, 
is that nine of the students (all except J) commonly interpreted the symbol f(x,y) as also referring 
a curved line, and not to a curved plane. Only Student J consistently interpreted f(x,y) as referring 
to a curved plane, though Students E and I also did so at certain points in the interview. 

The students varied in how they interpreted the relationship between the objects associated 
with the symbols C and f(x,y). The majority of the students (A, B, F, G, I, and J) interpreted both 
C and f(x,y) as essentially representing the same mathematical object. For example, three of the 
students (B, G, and I) believed f(x,y) represented a long (possibly infinite) curved line, and that C 
represented a certain finite segment of that same curved line, as seen in Figure 1a and 1b. Note 
that 1a shows f(x,y) in the x-y plane (Student G), while 1b shows f(x,y) in 3-space (Students B 
and I). Two other students (A and F) made an even stronger connection between f(x,y) and C by 
representing them as the exact same closed loop in the x-y plane (Figure 1c). These students 
initially drew C, alone, as a closed loop in the x-y plane, but as the interviewer asked about 
where f(x,y) fit in, they both simply indicated it would be the same thing as C. 

          
(a)     (b)     (c) 
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Figure 1: Interpretations of f(x,y) and C as representing the same mathematical object 
 
Student J and Student I (at a different time) both interpreted f(x,y) as referring to a curved 

plane, with C as a curved line coinciding with the plane f. While Student I thought C might refer 
to a closed loop traced out inside the curved plane itself (Figure 2a), Student J drew C running 
through f (Figure 2b). Interestingly, Student J actually described f  as a finite object that bounded 
C, essentially flipping the roles of f(x,y) and C, as though the integral were 

( , )f x y
C ds³ . 

 
Student J: I don’t know… I would imagine that, probably, where your function is [f(x,y)], this 
plane right here tells you what part of the curve [C] you’re integrating, or something. 
 

      
(a)        (b) 

Figure 2: C as a curved line (a) inside f(x,y) and (b) running through f(x,y) 
 
Student interpretations of the differential, ds. Eight of the students in this study (A, B, E, F, 

G, H, I, and J) interpreted the differential, ds, as referring to a small arc length, or a small portion 
of C, which agrees with the Δs in the Riemann sum that often forms the basis of the 
mathematical definition of the line integral. Three of these students (E, G, and H) further 
specified that the ds could be thought of as the infinitesimal hypotenuse of a right triangle with 
dx and dy as the legs. However, one of the students (C) interpreted ds as referring to small pieces 
of area instead of length, based on his idea of the integral as calculating the area underneath a 
portion of an f(x,y) graph. The tenth student (D) made no meaningful interpretation of ds, even 
when prompted by the interviewer. 

Interestingly, half of the students (A, B, C, E, and F) attempted to alter the ds symbol in the 
line integral expression into other types of differentials, such as dt, dx and dy, dA, or dr and dθ. 
This seems to suggest that the symbol ds was deemed insufficient by these students in 
representing the mathematical object they believed ds referred to. By analogy, this may be like a 
stick figure that, while referring to a person, is inadequate for specifying the person’s age. 
Presumably this may be due to the fact that computing a line integral by hand using anti-
derivatives typically requires either a parameterization or a change to other types of coordinate 
systems. Thus, the procedure for computing line integrals seems to have influenced how several 
of the students fundamentally interpreted the differential, ds, of a line integral expression. 

Student interpretations of the overall integral. Six of the students (B, C, D, E, H, and I), at 
one point or another, pieced the individual objects together to come up with an overall 
interpretation of the line integral as representing the surface area of a “curved sheet” stretching 
between C and f(x,y), matching the normative geometric interpretation of line integrals. 
However, only two of the students (E and H) had what could be considered a stable 
interpretation of the overall line integral (see Thompson, Carlson, Byerley, & Hatfield, 2014), as 
exemplified by Student H: 
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Student H: [Draws a parabolic curved line in the x-y plane, see Figure 3]. There’s my curved 
line [C]… Then whatever my f(x,y) is [draws a curved line in 3-space above C]… I’m 
finding this region right here [shades in between C and f]… If my curve under here [C] is just 
a single line, I’m not going to have a volume, I’m just going to have an area. That could be, I 
mean, an area that ends up being curved and all this kind of stuff, but it’s an area. 

 
Figure 3: A line integral representing the surface area of a curved sheet between C and f 
 
The other students who came up with this interpretation (B, C, D, and I) were clearly hesitant 

about it, and often began the prompt by making other interpretations instead. Student B initially 
described the line integral as a more “succinct” way of writing the multivariate integral 

( , )
R

f x y dA³ ³ . Student C initially attempted to interpret this integral as the manifestation of 
some theorem, naming Green’s theorem, Stoke’s theorem, and the divergence theorem as 
possibilities. Student D frankly admitted, “I don’t know, I’m guessing on this one.” Student I 
was initially convinced that the line integral should represent the volume contained between the 
x-y plane and the region created by a closed loop, C, traced out inside of f(x,y) (see Figure 2a). 
Almost half of the students (A, G, J, and I) stated the line integral might represent the arc length 
of either C or f(x,y). Finally, two students (A and F) believed the line integral represented the 
area of the region inside of the closed loop they had drawn in the x-y plane, as seen in Figure 1c. 

 
Vector integrals 

Student interpretations of the integrand, V
G

, and the domain, C. For the vector integral 
expression, the students were split into three overlapping groups in terms of how they interpreted 
the integrand, V

G
. Five of the students (C, D, E, H, and J) interpreted V

G
 as a collection of literal 

“arrows” in that they drew several arrows pointing in different directions. Four of the students 
(E, F, G, and I) interpreted V

G
 as representing a physical phenomenon, such as the flow of water, 

wind currents, or the force of gravity. Three of the students (A, B, and C) represented the 
integrand as an algebraic function, including as <–cos t, sin t, t>, f(x,y), and F(r(t)), respectively. 
This result is not to say that students in one group would be unaware of or unable to make 
interpretations from another group, but this result rather demonstrates the various approaches 
taken by the students to interpret V

G
. 

All of the students interpreted C as a curved line, though in somewhat different ways, as seen 
in Figure 4. Three students (E, H, and J) drew a 2-dimensional vector field and represented C as 
a curved line passing through it (Figure 4a). Three students (C, D, and E) actually drew a 3-
dimensional vector field, but then only drew C as a curved line on the 2-dimensional “x-y” plane 
(Figure 4b). Two students (A and F) thought of C as a closed loop in the x-y plane, without much 
reference to a vector field at all (Figure 4c). Another student (I) interpreted C as a collection of 
vectors from V

G
 lined up from tail to tip (Figure 4d). Finally, two students (B and G), while 

stating that C was a curved line, as specified in the prompt, never articulated exactly what it was 
or how it fit in with the other pieces of the integral expression. 
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(a)    (b)    (c)   (d) 

Figure 4: Various types of interpretations of C in relation to the integrand, V 
 
Student interpretations of the differential, drG . The students were most diverse in their 

various interpretations of the differential, drG . There were a total of fifteen different types of 
interpretations the students gave to drG , with some students coming up with more than one 
interpretation at different times as they struggled to give meaning to the vector integral. In fact, 
one student (I) came up with seven different interpretations for drG  at different times! There were 
only three interpretations, however, that were shared by at least three separate students. First, 
Students F, I, and J stated that drG  represented an “infinitesimal vector,” agreeing with the r'G  in 
the Riemann sum that often forms the basis of the mathematical definition of the vector integral. 
Students C, D, and I, however, wondered at times whether drG  might actually represent the 
distance from the origin to points on the curve, C, as seen in Figure 5 and Figure 4d. Yet, the 
most common interpretation, made by five students (A, B, C, E, and F), was that drG  needed to 
be converted to a different type of differential, including a conversion to dt, dx-dy-dz, ds, or dr-
dθ. As with the line integral, the computation of vector integrals by hand using anti-derivatives 
may have influenced these students’ fundamental interpretations of what a differential represents. 

  
Figure 5: The differential, drG , as representing distances from the origin to C 
 
Student interpretations of the overall integral. The students were generally unsure about 

what overall object might possibly link all of the objects associated with the individual symbols. 
While five students (A, C, D, F, and G) stated that a vector integral might mean “work,” they 
only seemed to state it from memory, explaining that they remembered having seen “work” 
examples in class. They confessed not knowing why the integral might calculate work, nor what 
work even meant in this context. Most of the students were explicit with the interviewer that they 
had no idea what the vector integral might represent, making statements such as, “Integrating 
over a vector field, um, I still don’t really understand that part” (Student C) and “I don’t know—
I’m just trying to think of, like, values that might have some meaning in a vector field” (Student 
J). At the urging of the interviewer, the students attempted to imagine on overall object, which 
ranged ranged from a possible “surface area” (I), to an “average magnitude” of the vector field 
(G and J), to some kind of area underneath an unknown curve (B, H, and J), to an arc length (G 
and I), to an “overall direction” of the vector field (J). 
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Discussion 

The students who participated in this study varied considerably in terms of how they 
interpreted the symbols in line and vector integrals. In many cases, the students associated the 
symbols with mathematical objects that align with typical intended objects, such as C 
representing a curved line, f representing a curve of some kind, or ds representing a small 
segment of a curve. However, the students were not always able to grasp the implications of 
these objects in relation to each other, and often struggled to amalgamate the objects defined by 
their own interpretations into an overall object referred to by the entire integral expression. For 
example, students struggled with the implications of C and f both being “curves,” and sometimes 
reduced them to being the same mathematical object. Similarly, the students often struggled with 
the relationship between C and V in the vector integral, not knowing how to combine such 
distinct objects. Students also typically seemed unsure of how to relate the object represented by 
the integrand, f or V, with the object represented by the differential, ds. 

Thus, the results of this study seem to imply that issues in understanding line and vector 
integrals do not necessarily come in the form of identifying the specific mathematical objects 
that the individual symbols refer to, but rather in combining these objects together to form a 
coherent object for the entire integral symbolic expression. This is similar to the idea of semiotic 
chains (Presmeg, 2006), though semiotic chains are used to describe the increasing abstraction or 
generality of a single mathematical object. In our case, the “chaining” has more to do with 
linking separate objects together into a new object that is referenced by the entire expression 
involving all of the individual symbols. Past research has looked at how students understand the 
connections between the symbols such as the integrand and the differential  (Hu & Rebello, 
2013; Jones, 2015; Sealey, 2014; Von Korff & Rebello, 2014), or the summation or 
accumulation of the quantities obtained from their product (Jones, 2015; Kouropatov & Dreyfus, 
2013; Thompson & Silverman, 2008). From this arises a “chop, evaluate, and add” 
interpretation, in which little pieces represented by the differential are multiplied by objects 
represented by the integrand, which are then added up (a cue from the integral symbol). Yet, this 
interpretation does not involve the domain over which the integral happens. In our study, 
students also had issues incorporating the object represented by “C” with the differential and 
integrand. Thus, in order to help students see how all of the pieces of the integral relate to one 
another, including the domain, and to successfully chain the mathematical objects into a 
comprehensive whole represented by the entire integral expression, we recommend an 
interpretive framework for reading the symbols in an integral expression through a four-part 
process: (1) identifying the domain, (2) chopping the domain according to the differential, (3) 
evaluating the product of the integrand and differential within each piece, and (4) 
summing/accumulating this product across all of the pieces. This framework, depicted in Figure 
6, shows how a student might need to visually break down the compact integral symbolic 
structure in order to make sense of the various pieces of the expression, how they fit together, 
and how they ultimately give rise to a meaning for the overall integral’s value. 

 
Figure 6: Domain-chop-evaluate-add framework for reading integral expressions 
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Definite Integrals Versus Indefinite Integrals: How do Students See Them as the Same or 
as Different? 

 
Steven R. Jones   Cache Thompson 

Brigham Young University  Brigham Young University 

Much of the calculus education research on student understanding of integrals has been 
separated into definite-integral-focused studies and indefinite-integral-focused studies. This 
means that research may not be capturing how students might see these two types of integrals in 
relation to one another, as opposed to in isolation of each other. This study examines whether 
students see these two types of integrals as representing the same basic concept, distinct 
concepts, or as sharing some concepts while diverging in others. The results show that a large 
majority of students ascribe the exact same underlying conceptions to both types of integrals, 
even describing the indefinite integral as representing the area under a curve also. We relate 
what aspects of each type of conception students saw as common to both types of integrals, and 
what features of the conception the students saw as different between them. 

Key words: calculus, definite integral, indefinite integral, concept images 

There has been growing interest in recent years on first-year calculus students’ understanding 
of the definite integral. In particular, researchers have examined students’ general understanding 
(Jones, 2013; Sealey, 2014), students’ understanding of differentials and infinitesimals (Ely, 
2010; Hu & Rebello, 2013a), students’ understanding of accumulation and the fundamental 
theorem of calculus (Thompson, 1994; Thompson & Silverman, 2008), how students apply 
integrals to science and engineering (Hu & Rebello, 2013b; Jones, 2015a; Nguyen & Rebello, 
2011), and ways to teach definite integrals to promote deeper understanding (Jones, Lim, & 
Chandler, in press; Kouropatov & Dreyfus, 2014; Thompson, Byerley, & Hatfield, 2013). In 
addition to this research focused on definite integrals, there has also been some attention given to 
student understanding of indefinite integrals as well. This smaller subset of the literature has 
examined student understanding of accumulation in connection with indefinite integrals,  as well 
as student understanding of features such as zeroes, extrema, and inflection points (Swidan, 
2011; Swidan & Yerushalmy, 2014; Yerushalmy & Swidan, 2012). 

Yet, so far, the research literature on first-year integration has tended to be separated into 
definite-integral-focused studies and indefinite-integral-focused studies. This separation, 
unfortunately, does not speak to the way in which definite and indefinite integrals are often 
taught in close association with one another, with instruction on each happening within the same 
set of lessons. Thus, there remain important questions about how students themselves see these 
two types of integrals in relation to one another, as opposed to in isolation of each other. As a 
result, this report is meant to shed light on the following two questions: (1) Do first-year calculus 
students tend to see definite and indefinite integrals as representing the same basic concept, 
distinct basic concepts, or as sharing some concepts while diverging in others? (2) Given 
whether students see them as the same or different, in what ways do the students see them as 
representing the same or different ideas? These questions are important, because otherwise 
research may end up only speaking to compartmentalized portions of students’ overall 
understanding of “integration” from first-year calculus. 

 

20th Annual Conference on Research in Undergraduate Mathematics Education 68220th Annual Conference on Research in Undergraduate Mathematics Education 682



Concept Images 

This study is framed by Tall and Vinner’s (1981) construct of concept images. A concept 
image is defined as “the total cognitive structure that is associated with the concept, which 
includes all the mental pictures and associated properties and processes” (p. 152). For this paper, 
the “concept” under consideration is that which is termed “integral” in first-year calculus. We 
consider both definite and indefinite integrals to fall under the umbrella concept “integral” for 
the following reasons: (a) both are literally called “integrals,” (b) both make use of the exact 
same symbols, “∫,” and “dx” (or another differential), (c) students are taught to calculate both 
using similar methods, and (d) because they are often taught in close proximity to each other 
(Stewart, 2014; Thomas, Weir, & Hass, 2009). 

Using this theoretical lens means that what students understand of definite integrals and what 
students understand of indefinite integrals together form a student’s complete concept image for 
“integral” at the first-semester calculus level. Note that within a student’s concept image for 
integral, any of the following conditions may hold. First, a student might have merged the two 
types of integral into a single idea, with no distinction between them. In this case, the student’s 
concept image would have only one set of pictures, properties, and processes that encompass 
both types. Second, a student might have compartmentalized these two types of integrals. In this 
case, the student’s overall concept image may have two distinct sets of pictures, properties, and 
processes, one for each type. Third, a student might have some kind of blending between the 
two, in which some pictures, properties, or processes might be shared by both types, and where 
other pictures, properties, or processes might be unique to each type. This study is meant to 
examine how students’ concept images might fit under these different cases. 
 

Data and Analysis 

The body of data used for this study consists of surveys (described to the students as an 
introductory quiz) administered to 132 students on the first day of second-semester calculus at a 
large university in the United States. The purpose of surveying second-semester calculus 
students, as opposed to first-semester students, was that (a) these students were all guaranteed to 
have successfully completed a first-semester calculus course, and (b) these students came from a 
range of different instructors for first-semester calculus, making the sample more randomized 
than would occur by surveying students in first-semester calculus. In fact, the majority of 
students at the university come from locations outside of the school’s home state. Interviews 
were also conducted with select individuals, but for the purpose of this abbreviated conference 
report, only the survey data is reported on. 

The survey was divided into two parts, with a multiple-option section (Part 1) and an open-
response section (Part 2). The purpose of having two parts was to create two separate 
opportunities to code a student into the categories “same,” “different,” or “mixed,” according to 
what they perceived as the relationship between definite and indefinite integrals. Furthermore, 
Part 2 allowed for an analysis of which specific conceptions the students ascribed to both a 
definite and an indefinite integral. 

 In Part 1, the students were presented with four statements regarding the generic expressions 
( )f x dx³  and ( )

b

a
f x dx³ , and were asked to mark any they agreed with. Two statements (A and 

C) were intended to suggest that they had similar meanings, with the only differences being 
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superficial (as in statement A). The other statements (B and D) were meant to suggest that they 
were different in conceptual meaning. The four statements were given as: 

 
(A) The fundamental difference between the meanings of the two integrals is that you need to 
plug a and b into your answer for the second one, but you don’t have any numbers to plug in 
for the first one. 
(B) These two integrals are quite different from each other and represent different ideas. 
(C) The final answers you get for the two integrals might look different from each other, but 
the integrals essentially represent the same idea. 
(D) Even though you can use anti-derivatives to find answers for both of these kinds of 
integrals, the final answers you get mean very different things. 
 
The multiple option Part 1 is obviously insufficient, alone, for constructing a picture of the 

relationship a student believes to exist between definite and indefinite integrals, or for knowing 
what conceptions are actually ascribed to each kind of integrals. Thus, a second, open-response 
section was included on the survey. In this second part, the students were given the prompt,  

 
Explain as much as you can what  ( )f x dx³  means. Similarly, explain what ( )

b

a
f x dx³  means. 

Use words, pictures, formulas, or whatever you want to help explain what they mean. How 
are they different? How are they similar? Please explain in as much detail as possible. 
 
Part 1 and Part 2 of the survey were analyzed independently and then compared. For Part 1, 

students were coded as “same” if they marked only A, only C, or both A and C. Students were 
coded as “different” if they marked only B, only D, or both B and D. Students who selected at 
least one statement from A or C and one from B or D were coded as “mixed.” Since Part 1 
already dealt with explicit statements as to whether the two integrals are the same or different, 
Part 2 was not analyzed by whether the student explicitly stated they were the same or different. 
Rather, we coded a student’s description of each kind of integral according to the 
conceptualization the statement seemed to assign to that integral. Based on previous research 
(Jones, 2013, 2015b), a student’s description of each type of integral was categorized into (a) 
area, (b) anti-derivative, (c) summation/MBS, or (d) other. For a description of the MBS 
conception, see Jones (2015a). Each response coded into “other” was examined for the type of 
conception it represented, creating new categories (see Results). If the conception(s) contained in 
a student’s explanation of the definite integral exactly matched the conception(s) contained in 
their explanation of the indefinite integral, the student's response was coded as “same.” If there 
was no overlap in the conceptions contained in the explanations of the two integrals, the response 
was coded as “different.” If a student ascribed at least one conception to both, but then also 
explained one of the integrals using a conception not ascribed to the other, the response was 
coded as “mixed.” 

 
Results 

Part 2 of the survey 
We organize this section by first describing the results from open-response Part 2 of the 

survey and then comparing them with the results from Part 1. Of the 124 completed responses to 
Part 2—meaning the students made statements for both types of integrals—most of the students 
(93 students, 75.0%) had descriptions of the definite and indefinite integrals using the exact same 
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base conception(s). Table 1 shows a breakdown of the shared conceptions these 93 students 
applied to both definite and indefinite integrals. The “unspecified function” category was used 
for responses in which the student simply indicated that the integrals both represented functions, 
without specifying what that function was, including whether it was an anti-derivative. The 
“derivative” category was for students who claimed that the integrals represented derivatives, 
rather than an anti-derivative, though there is a possibility that some of those students could have 
made a mistake in what they wrote down. The “other” category contained unique meanings from 
the students, like a kinematics interpretations, or uninterpretable responses, like the “path on a 
graph.” Note that 11 of these 93 students gave more than one meaning to both integrals and are 
hence double-counted in Table 1. Nine of these 11 students claimed that both the definite and 
indefinite integrals represented both the area under a curve and an anti-derivative. 

 
Table 1 
Number of students in “same” that applied a given conception to both integrals 

Area Anti-
derivative 

Summation/ 
MBS 

Unspecified 
function  

Derivative Other 

65 22 2 4 5 6 
 
Given the numbers of students ascribing the “area” conception and the “anti-derivative” 

conception to both types of integrals, we present representative examples from the surveys to 
illustrate how these conceptions were simultaneously applied to both integrals. First, students 
often used “area under a curve” to describe both, wherein the main conceptual difference was the 
interval over which the area was taken. For indefinite integrals, the area was taken under the 
entire curve. While this may seem similar to what Hall (2010) called “potential area,” many 
students in this study were clearly thinking of literal area, and, in fact, seemed to equate 

( )f x dx³  with ( )f x dx
f

�f³ . The following two quotes and two sets of images (Figures 1a and 
1b) are representative descriptions and drawings taken from among the surveys. Note that to save 
space in this paper, in Figure 1 some of the written integral expressions have been cut-and-pasted 
closer to the corresponding graphical images than they were in the original student written work. 

 
Example survey response 1: ( )f x dx³  means find the area under the entire graph whereas 

( )
b

a
f x dx³  means find the area only between points a and b on a graph. 

 
Example survey response 2: ( )f x dx³  means the area under the whole curve from –∞ to 

+∞… Meanwhile ( )
b

a
f x dx³  is the area of a part of that curve. 

 

(a)     
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(b)     
Figure 1: Representative graphical depictions of the indefinite and definite integrals  

 
A smaller subset of the students (22), interpreted both types of integrals as meaning an anti-

derivative. The following two quotes are representative descriptions taken from the survey 
responses fitting into this category. 

 
Example survey response 3: They are similar in that you find the anti-derivative of f(x). They 
are different in that for the indefinite integral you are done after finding the anti-derivative 
while for the definite integral you plug in the values of a & b. 
 
Example survey response 4: 

32 3 3 3

0
( ) 3 . ( ) . ( ) (3) (0) 27.f x x f x x f x   �  ³ ³  The integral 

of a formula provides you with a new formula capable of showing several properties about 
the original function. ( )

b

a
f x dx³  is an equation that helps us learn more. 

 
For responses in this category, both definite and indefinite integrals seemed to be represented as 
an anti-derivative function, and the essential difference seemed to be whether inputs needed to be 
inserted into the algebraic function or not. 

We now briefly turn our attention to the 24 students coded as “different” for Part 2 (19.4%) 
and the seven students coded as “mixed” (5.6%). Of the 24 “different” students, the vast majority 
(21 students) described the definite integral as meaning the area under a curve and the indefinite 
integral as meaning an anti-derivative. These interpretations match with curricular meanings 
often given to the two types of integrals (e.g., Stewart, 2014)—which makes it interesting to note 
that only about a fifth of the students in this study made this particular interpretation for the two 
integrals. Among the “different” students, there was only one single student who described the 
definite integral as a Riemann sum (and the indefinite integral as an anti-derivative). 

Of the seven “mixed” students, four said that both integrals shared the anti-derivative 
meaning, but that only the definite integral represented area under a curve. Two of the students 
described both integrals as sharing the area meaning, and that only the indefinite integral 
represented an anti-derivative. The final student indicated they both represented unspecified 
functions, with the definite integral representing area also. 

 
Comparison with Part 1 of the survey 

Part 2 of the survey demonstrated that a large majority of students’ concept images hold the 
definite and indefinite integrals as representing the exact same basic concept, even as they note 
possible minor differences within that particular concept regarding each integral type. This result 
resonates with the options selected by the students on the multiple option Part 1 of the survey. Of 
the 132 students, 82 students (62.2%) were coded as “same,” 20 students (15.2%) were coded as 
“different,” and 30 students (22.7%) were coded as “mixed.” To compare the options the 
students selected for Part 1 with whether they used the same or different conception(s) to 
describe the integrals in Part 2, Table 2 shows the breakdown of the students coded into “same,” 
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“different,” or “mixed” for both Parts 1 and 2. Note that “blank” in Part 2 indicates that the 
student did not write anything for that part of the survey. 

 
Table 2 
Students coded into each category for both Parts 1 and 2 of the survey 

 Part 2 “same” Part 2 “different” Part 2 “mixed” Part 2 “blank” 
Part 1 “same” 69 4 4 5 
Part 1 “different” 4 13 1 2 
Part 1 “mixed” 20 7 2 1 

 
Table 2 shows that most of the students who described the two integrals as representing the 

same concept in Part 2 also selected only statements in Part 1 that suggested they meant the same 
basic concept. Similarly, most students coded as “different” in Part 2 had also selected only 
statements in Part 2 portraying the integrals as different. The main discrepancy between Part 1 
and Part 2 is the portion of students who were coded as “mixed” for Part 1, but that ended up 
invoking the exact same conception(s) for both types of integrals in Part 2. This result says 
something interesting about what some students may see as being same or different. 

 
Discussion 

Indefinite and definite integrals representing the same concept 
Most students in this study seemed to conceive of both types of integrals as representing the 

same underlying conception. Most students described both integrals as representing the area 
under a curve, or both as representing an anti-derivative. In other words, it appears that many 
students’ concept images for “integral” may have merged both types of integrals into essentially 
the same mathematical object—as a geometric area, or as an algebraic function, or both. This 
suggests that we, as calculus educators, need to decide if we are comfortable with this conceptual 
merging of these two types of integrals, as implied by this study, or whether we would want to 
emphasize different meanings or conceptual objects for each type of integral. For example, many 
textbooks (e.g., Stewart, 2014; Thomas et al., 2009) describe them differently in that definite 
integrals arise from areas under curves and are defined as the limit of Riemann sums. On the 
other hand, indefinite integrals are typically presented as a family of functions with the related 
property of having all their derivatives equaling the integrand. Further, past research has 
suggested that Riemann-sum-based understandings of definite integrals may be important for 
applying integration to science and engineering (Jones, 2015a), and that anti-derivatives may 
relate well to continuous accumulation (Swidan, 2011; Yerushalmy & Swidan, 2012). With these 
various possible meanings, it may be worth our effort to decide carefully and explicitly what 
meanings we might want our students to closely associate with definite integrals and what 
meanings we might want them to closely associate with indefinite integrals. It is also important 
to decide what meanings should be given to both and what meanings should be exclusive to one 
or the other. As it stands, it could be problematic for the bulk of students to have fundamentally 
combined the two into, essentially, a single construct. This may limit the applicability of these 
two types of integrals to only situations that match the exact conception given to both. 

 
Why are they believed to be the same? 
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One might initially believe that the reason many students ascribe very similar meanings to 
both types of integrals is because of the calculational similarity between them, through anti-
derivatives. That is, because of the fact that students work out lots of exercises computing both 
definite and indefinite integrals through anti-differentiation, they may come to see them as the 
same basic thing. Yet, interestingly, this study’s data does not support this possible conclusion. 
Rather, the majority of students interpreted both indefinite and definite integrals through the 
concept of area under a curve, even though this meaning is generally not given explicitly to 
indefinite integrals. What might account for this? We wonder if it is the case that students simply 
do not have much of a conceptual meaning for indefinite integrals, and that students 
consequently simply rely on their conception of definite integrals to invent a meaning for 
indefinite integrals. Past research has found that the “area under the curve” tends to be the most 
common conception students associate with definite integrals (Jones, 2015b), which matches the 
conception the students in this study gave to indefinite integrals as well. Thus, we conjecture that 
many students may be trying to find ways to simply extend the familiar “area under a curve” 
concept to the indefinite integral. They may have done so by extending the “bounded” definite 
integral to a “boundless” indefinite integral, which they then conceived of as representing the 
entire area under the whole curve, possibly from –∞ to ∞. If our hypothesis is right, then much 
work needs to be done in promoting better possible conceptual understandings of the indefinite 
integral itself (e.g., see the work of Swidan & Yerushalmy, 2014; Yerushalmy & Swidan, 2012). 

 
What some students may focus on for “same” or “different” 

Finally, it is interesting to note that a subset of the students had selected statements in Part 1 
of the survey indicating that definite and indefinite integrals were fundamentally different, but 
then described them both using the exact same conception in Part 2. While on the surface this 
may seem contradictory, it is actually quite reasonable. It appears that it matters what the grain 
size of difference is. For example, two equilateral triangles of different size could either be said 
to be the same since they are both the same basic shape, or different since they are not exactly 
congruent. Therefore, some students seemed to focus on certain aspects within a 
conceptualization as determining whether the two types of integrals were exactly identical or not. 
It certainly is a difference for one type of integral to be over the interval (–∞,∞) and the other 
type of be over the interval [a,b]! Furthermore, it is different for one type of integral to require 
the insertion of inputs into a function, when the other does not. Thus, many of the students who 
were coded as “mixed” in Part 1 may really see integrals through the same basic conceptual lens, 
but then were more attentive to whether they felt those features within the conception were 
identical or not. It may be, then, that some of the “mixed” students on Part 1 were actually more 
closely associated with the “same” students than Table 2 depicts. 
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Using Video in Online Work Groups to Support Faculty Collaboration  
 

Nicholas Fortune Karen Keene William Hall 
 North Carolina State University  

 
Faculty in undergraduate mathematics departments are currently involved in making changes to 
their instruction, particularly by introducing different modes of student-centered type instruction.  
In this paper, we analyze a situation where faculty are involved in online collaboration using 
video of their own classrooms. We found that showing the video during the online work groups 
promotes more discussion of pedagogy rooted in instructional components than instructors 
watching the videos alone before. Pedagogy and students’ mathematics also become important 
discussion points that encouraged and supported the instructors. Providing instructional 
components as a frame proved to be successful in supporting the video discussions as they stay 
centered on instruction.  
 
Key words: Inquiry-oriented instruction, faculty collaboration, video, differential equations 
 

Introduction 
 

Recently, practitioners and researchers have turned their focus to the study of online 
resources meant to improve collaboration among faculty as a means to improve STEM education 
at the university level.  For example, at a recent conference sponsored by AAAS and NSF, the 
Envisioning the Future of Undergraduate STEM Education Symposium, there were several 
sessions about faculty collaboration. Collaboration among faculty in different STEM disciplines 
at one university, among faculty in the same disciplines at different universities, and using 
technology of all types to facilitate and enhance collaboration were different foci considered at 
the conference. Online collaboration is particularly of interest as the technology to support this 
has made huge improvement in the last 10 years.  

In this paper, we have chosen to consider one specific collaboration category. We will 
describe the use of videos from faculty classrooms during the implementation of faculty online 
work groups. This research is one component of a larger NSF funded project that is intended to 
build and conduct research on supports for instructors seeking to change their instruction. In this 
NSF project, the three supports (online work groups, curricular materials, and summer 
workshops) are studied together in order to support faculty as they implement one kind of active 
learning, inquiry-oriented mathematics (Rasmussen & Kwon, 2007). Later publications will 
report on the other supports and the effect on student outcomes. 

 
Literature Review 

 
When instruction that supports students’ conceptual understanding is enacted, access to 

expertise and ongoing collegial support are important for sustaining that kind of instruction 
(Coburn, Russell, Kaufman, & Stein, 2012). At the K-12 level, a common support for teachers as 
they move to improve their teaching practice is professional development (PD). K-12 research 
points to a number of characteristics of effective PD programs. Impactful programs and supports 
need to be ongoing and sustained (Darling-Hammond, Wei, Andree, Richardson, & Orphanos, 
2009; Gallucci, 2008; Garet, Porter, Desimone, Birman, & Yoon, 2001; Hill, 2007; Kazemi & 
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Hubbard, 2008), be focused on subject matter, in terms of the mathematics, the students’ 
mathematical thinking, and the instructional goals (Hill, 2007; Kazemi & Franke, 2004; Kazemi 
& Hubbard, 2008), be integrated into teacher’s daily work (Darling-Hammond & McLaughlin, 
1995; Franke, Kazemi, & Battey, 2007; Putnam & Borko, 2000) and provide teachers with 
feedback (Elmore, 2002). 

Research on instructional change strategies at the undergraduate STEM level provides further 
insights. In a review of literature on instructional change strategies, Henderson, Beach, and 
Finkelstein (2011) identified two common but ineffective approaches: (1) top-down policies 
meant to influence instructional practices and (2) merely making “best practice” curricular 
materials available to faculty. In contrast, Henderson et al. found that effective change strategies 
which align with or seek to change beliefs of individuals involved, involve long-term 
interventions and are compatible with the institutional context are the most effective. 

As far as research on using video, according to Borko, Koellner, Jacobs, and Seago (2011), 
“... by choosing video clips, posing substantive questions, and, facilitating productive 
conversations, professional developers can guide teachers to examine central aspects of learning 
and instruction” (p. 176). Borko and her colleagues describe using video of teachers in two ways: 
the teachers’ own videos and videos from other classrooms. They found that the selection of 
goals for the video use was very important as was the selection of the video clips. The facilitator 
selected the videos which is different than our work, where the instructors selected their videos. 

As one analysis framework, we used work by Sherin and van Es (2009). Their research 
focused on using videos to study teacher professional vision. Sherin and van Es analyzed the 
meetings focused around videos for the following categories: Management, Climate, Student 
Thinking, and Pedagogy. Their analysis using these and other codes showed that participating 
teachers did grow in their knowledge based reasoning, change their ways of paying attention to 
students and student thinking, and changed their instruction in the classroom.  
 

Research Goal and Framework 
 

Our research goal was to characterize the conversations that occur during an inquiry-oriented 
differential equations online work group when the participants are sharing videos of their 
instruction. As the project where the research was done has evolved, the team has developed a 
framework (Kuster, Johnson, Andrews-Larson, & Keene, under review) to analyze instructors 
implementing inquiry-oriented instruction. Four components of instruction have emerged which 
served as an additional framework for our analysis (table 1). 
Table 1 
Focal Instructional Components 
Component Definition 
Generating Student 
Reasoning 

Facilitating student engagement in meaningful tasks and mathematical activity related 
to an important mathematical point, eliciting student reasoning and contributions, 
actively inquiring into student thinking 

Building on Student 
Thinking 

Being responsive to student contributions and use student contributions to inform the 
lesson, guiding and managing the development of the mathematical agenda 

Developing a Shared 
Understanding 

Engaging students in one another’s thinking 

Connecting to Standard 
Mathematical Language and 
Notation 

Teachers introducing language and notation when appropriate, teachers supporting 
formalizing of student ideas/contributions 
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Methods 
 

Research Context and Participants 
For one semester, instructors participated in a weekly online work group (OWG). The main 

goals of the OWG were to: 1) aid instructors in making sense of the materials (i.e., thinking 
through the sequences of tasks, how students might approach the tasks, how to structure 
instruction around the tasks to support student learning), and 2) assist instructors in developing 
and enhancing their instructional practices. In particular, attention was focused on the focal 
instructional components mentioned above. 

The OWG included two multi-week lesson studies. Lesson studies are composed of 
approximately four week-long segments that have instructors doing the math that they will have 
their students do in class (week 1); discussing the possible student thinking (week 2); and sharing 
videos of themselves teaching the unit with attention to the focal instructional components 
(weeks 3 and 4). In those last two weeks, instructors seek feedback from the group to improve 
their teaching methods; they use the video clips of their classroom teaching to facilitate that 
discussion. Due to logistics of filming video in classes, video was shared during weeks 4, 5, 8, 9, 
and 10 of the OWG; with 4 and 5 as part of the first lesson study on one unit (autonomous 
differential equations) and for weeks 8, 9, and 10 (systems of differential equations).  

Participants were interested in exploring instructional change and came from smaller 
universities across the US. In the inquiry-oriented differential equations (IODE) OWG there 
were four participant instructors (instructors teaching differential equations at the time of the 
OWG), one previous participant instructor (instructor who partook in the pilot OWG but was not 
currently teaching differential equations), two graduate research assistants, and one facilitator.  
 
Data Collection 

Each of the 12 OWG sessions took place via Google Hangouts as instructors were at their 
universities across the country throughout the semester. All OWGs were screen recorded by one 
of the researchers to be able to capture both audio and video of the OWG. As part of the OWG, 
instructors were to create videos of themselves teaching the same unit at two different times 
during the semester. The instructors then self-selected clips (cf. Borko et al., 2011) they wished 
to bring to the OWG, knowing that clips should be focused on the focal instructional components 
if possible. Clips ranged from 2-6 minutes in length and usually 2-3 were watched for each 
participant at a time. 
 
Data Analysis 

This study focuses only on the conversations in the OWG when the participants were 
sharing or discussing the shared videos (5 of the 12 total meetings). Two researchers watched the 
entirety of the OWGs and marked all the timestamps when video was discussed. To give 
perspective, Table 2 shows the percentage of the total time of the OWG sessions (approximately 
one hour each) that discussion of the videos specifically occurred.  
Table 2 
Percent of Coded Time of Discussion 
Week 4 5 8 9 10 
% of Coded Time 45.86% 53.78% 40.51% 40.16% 26.18% 
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We created content logs to summarize in detail the conversations of the OWGs. The content 
logs had multiple columns for us to be able to characterize the conversations (i.e., timestamps, 
topic of conversation, focal instructional components, speaker, and detailed notes). We began by 
coding two full OWGs together. To code the topic of conversation, we used a priori codes that 
were influenced by previous research on video clubs (Sherin & van Es, 2009). Using a constant 
comparative method (Strauss & Corbin, 1998) we open coded and also created new emerging 
codes to fully characterize the conversations in the OWGs. The focal instructional components 
were also used as an analytical framework for analysis of the conversation. 

We watched the video until one researcher felt that the conversation had shifted directions 
and changed topics significantly. That chunk of time then became a row (or time block) in the 
content log, where we coded the topic of conversation and focal instructional components (if 
applicable). Whenever possible, video was divided so that each time block had as few topic of 
conversations as possible. However, multiple topics of conversation and focal instructional 
components often happened in one utterance so those could not be parsed out and the time block 
was coded as all applicable topics. For perspective, the average time block was 47 seconds 
across all five coded segments of the OWGs. We developed and refined a codebook with 
detailed definitions based on the a priori codes, as well as the new codes that emerged during 
analysis (see table 3 for the topic of conversation a priori codes). Collectively all disagreements 
were worked out. Finally, two researchers coded the three remaining OWGs and left any 
disagreements between them to be resolved by the third researcher. 
Table 3 
Topic of Conversation A Priori Codes 
Codes Definition 
Pedagogy Teacher instructional moves or ideas about teacher instructional moves 
Student Mathematical Thinking Evaluating and/or discussing students’ thinking about mathematical concepts 
Mathematical Content Discussion of mathematics, IODE material, difficulty of mathematics 
Social and Sociomathematical 
Norms 

Discussion about getting students used to participating in group work; includes 
quality of group work and interaction 

Environment Classroom behavior, classroom setup, access to tools and technology 
 
It is important to note that all time durations reported in results will be over estimates based 

on the way we divided up the video into the time blocks. Multiple codes could occur at the same 
time but may not have been used for the entire time block. However, as noted, we kept the time 
block as small as possible while still maintaining the integrity of the analysis; this aided in 
alleviating the limitation of the overestimates. 

 
Results 

 
First, we present a characterization of the conversation through the two perspectives (topics 

of conversations and focal instructional components). These results will be broken down by 
week and also shown as a synthesis across the five weeks of the OWG. Second, we discuss the 
role of when video was watched and how that influenced the conversation that occurred and the 
richness of said conversation.  

 
Topic of Conversation and Focal Instructional Components 

Table 4 includes the four new topic of conversation codes which emerged. 
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Table 4 
Topic of Conversation Emergent Codes 
Codes Definition 
OWG Logistics How to record videos; what clips to share/select; what to watch; remembering video 
Orienting Setting the stage for the video that will be shown 
Appraisal Participants give value judgments about events from the videos, instructional moves 
As noted, when codes were discussed they oftentimes were not alone. Here is an excerpt from 
the week 5 OWG where pedagogy, appraisal, norms, environment, orienting, OWG logistics, and 
student mathematical thinking were all coded. Note, this excerpt spanned four time blocks. 

Instructor 1: … So if we go to the video that is Instructor1_Owl_2. We’ll start at 6:15. 
So this is, we had just spent some time talking about whether if we started with the 
owl population below 5 if they were going to go extinct or not. My students seemed to 
have that idea that because the derivative is negative the population is going to 
decrease and it is going to decrease down until it hits 0. Right - they kind of had a 
handle on that. So starting at 6:15, we want to talk about what happens for P between 5 
and 8 … What I want you to look for, is that I bring up the Uniqueness Theorem 
myself. I didn’t really give the students an opportunity to see it. And that is maybe 
based on past experience where they just aren’t used to arguing with it yet. So I want 
you to look at how I brought that up and maybe if you think I brought it up too soon or 
what you have done if you’re thinking, ‘oh maybe, they’re not going to get the 
Uniqueness Theorem.’ So I’m going to stop talking so you can watch the video now. 
Video watching occurred and additional conversation for approximately 8 minutes. 
Facilitator: It would have been interesting, just as a suggestion to think about, you 
could have students come up to the front and present their ideas. It would have 
encouraged them to be more open about what they were thinking about. 
Instructor 1: Yeah, I don’t have the students come up to the board too often in this 
class. The room is a little bit, I don’t know, it doesn’t quite fit for me somehow. It is 
also maybe that I have created a culture where that doesn’t happen very often. 
Although, whenever I do have them come up to the board, they come quite willingly. 
Instructor 2: They were participating, they were bringing up things and you were 
writing them down. And you did a nice job of hearing what one person was starting to 
say and finishing up the other. 
In the first lesson study, when video was watched during the OWG, there was a higher 

amount of time spent on OWG logistics. Particularly, much of the logistics were issues that 
participants had in finding the clips to watch. Videos of instruction were not screen-shared (a 
common feature of online collaboration tools) because audio was typically quiet and participants 
were not able to hear the video. Thus a shared video folder on an online server was made, as well 
as an online agenda that contained all relevant links. However, participants still had technology 
issues. For example, 

Facilitator: Let’s at least start it. Let’s watch the first couple. The 2:45-4:00, the 9:30-
12:40 and then we might have to come back. 
GRA: Don’t forget to mute yourself when you watch the video. 
Instructor 3: GRA, I’m clicking on the Drive link you sent but it just sends me to a 
verify your email address page and it is not going to the Drive at all. 

To be able to resolve these issues the GRA would assist the instructor, which took time away 
from the OWG.  
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Because of space limitations, we are only reporting percentages on pedagogy and OWG 
logistics. Pedagogy was the largest topic of conversation that occurred across all OWGs (by 
week 4, 5, 8, 9, 10, respectively: 41.33%, 41.08%, 85.74%, 85.85%, and 59.50% and across all 
weeks, 59.15%). OWG logistics had the following breakdown: by week 4, 5, 8, 9, 10, 
respectively - 53.72%, 55.94%, 10.29%, 19.12%, and 22.50%, with a total of 36.98% across all 
weeks. Noteworthy is the difference in time spent discussing pedagogy and OWG logistics. 

The objective of the OWG is to prepare instructors to teach inquiry-oriented instruction and 
thus the components were crucial for that discussion. Rarely were the components ever 
referenced by name, however, the practices that make up the components or a general sense of 
the components were discussed by the instructors. Generating was discussed 24.40% of the time, 
building 22.47%, shared 20.75%, and connecting 5.33%. The component Connecting was the 
least referenced component. While the week by week discussion varied, overall the remaining 
three components were roughly discussed the same amount of time. 

 
Role of When Video is Watched 

We note that during weeks 4 and 5 video clips were watched during the OWG and weeks 8, 
9, and 10 they were watched prior to the OWG. Recall the inverse relationship between how 
often pedagogy and OWG logistics were discussed. When videos of instructors’ classrooms were 
watched in the OWG (weeks 4 and 5), more OWG logistics were discussed than pedagogy. Yet, 
when video was watched prior to the OWG, logistics were discussed less and pedagogy more. 
Interestingly, when breaking down the pedagogy discussion into times when it was cross-coded 
with a focal instructional component, highlights something noteworthy (see figure 1). A large 
amount of the pedagogy discussion in weeks 8, 9, and 10, was not actually rooted in the focal 
instructional components. Participants noted in exit interviews they believe this was because the 
video was not fresh in their mind so the conversion could not be as deep. 

 
Figure 1. Percent of coded discussion by OWG logistics and pedagogy. 

Conclusion 
 

Overall, we have described the conversation around the use of video in faculty OWGs. As 
mentioned earlier, our research is part of a larger project, but the use of self-selected video and 
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the discussion around it have provided us interesting new knowledge about what these 
conversations look like. We conclude this proposal with a brief interpretation of the results of our 
analysis and implications for future online faculty collaboration whose purpose is to support 
instructor change.  The topics of conversation when the OWGs focused on the videos were 
heavily focused on the pedagogy during all the weeks of the OWGs. This is an important 
implication as faculty collaboration across universities is going to be increasingly more common.  
Traditionally, faculty collaboration has revolved around research and the development of new 
mathematics, but currently, faculty collaboration to discuss instruction is growing. Using the 
videos provided an object for pedagogy to revolve around.  

Other conversation focused (in an interweaving way) on mathematical content, student 
thinking, and environment/norms. But we found that logistics were also common parts of the 
discussion. This category, along with orienting, had not been in our original code lists, but 
because of the online environment, they were important to document and interpret. We found 
that the orienting of other faculty participants to the classroom video was imperative to allow 
productive discussion to occur. Orienting needs to be encouraged, and different or more refined 
ways of orienting will be part of future work. 

We particularly note the fine-grained analysis of the two methods of watching video, either 
during the actual OWG, or beforehand. Analysis showed that watching video during the OWG 
meant that technical support is needed to aid instructors in synchronously watching the videos, 
which in turn detracts from the amount of time that can be spent discussing the intended content 
(the focal instructional components). However, we also found that watching videos beforehand 
meant the discussion was not as rooted in the focal instructional components either because the 
video was not fresh in instructors’ minds or they did not actually watch the videos. Further 
analysis is required to ascertain which method is concretely better, as our analysis revealed pros 
and cons for both approaches. Nevertheless, instructors noted they preferred to watch videos 
during the OWG in exit interviews.  

As far as the focal instructional components that our project provided as a framework for 
thinking about inquiry-oriented instruction, we found that three of the components (generating 
ways of student reasoning, building on student thinking, and developing a shared understanding) 
were part of the conversation about an equal amount of time. The fourth component, connecting 
to formal notation, was present significantly less of the time. This is not surprising, as the content 
in differential equations involve much less formal structural development than other upper level 
undergraduate mathematics courses where our work is also focused. 

The participants in the OWG were all from small universities where they were usually the 
only faculty member teaching Differential Equations and the only ones implementing this new 
kind of instruction. There is significant work going on across many universities in many projects 
that are attempting to improve STEM undergraduate instruction. We found that videos were a 
particularly powerful way to provide avenues for instructors to share their own classrooms in 
ways that were comfortable and affirming, reflect on their own authentic teaching and discuss 
pedagogy and students’ mathematics. 

Although the facilitator’s role was not part of this proposal, it also has proven to be very 
important. Facilitators can learn from studying the research about OWGs that we are working on, 
to help better understand how to make the conversations most productive. Ultimately, the goal is 
to improve instruction in order to improve student outcomes. But taking this intermediate step of 
describing and analyzing one new and powerful tool, using video in OWGs, may help the 
mathematics education research community with the final goal. 
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Undergraduate Abstract Algebra: Is Teaching Different at ‘Teaching’ Colleges? 
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Reforming the way undergraduate math is taught has been the target of significant research 
efforts for decades; however, lecture remains the predominant form of instruction.  While 
interest has been primarily focused on entry-level courses in order to recruit and retain STEM-
intending students, quality instruction in upper division courses is also important. In a national 
survey of abstract algebra instructors, we investigated typical teaching practices, beliefs, and 
constraints that influence pedagogical decisions, and similarities/differences between those who 
do/not lecture. Of particular interest was exploring whether instructors at Bachelor’s-granting 
institutions have markedly different circumstances than their counterparts at Master’s- and 
Doctoral-granting institutions and the effect (if any) this has on their pedagogical decisions. 

Key words: Collegiate teaching practices, beliefs, abstract algebra  

In STEM higher education, but specifically in mathematics, a well-established tradition of 
lecture still persists despite the growing volume of mathematics education research that urges 
teachers to move beyond this practice. The ineffectiveness of lecture has been consistently 
reported (Freeman, et al., 2014) and students have been pretty clear about their dislike of lecture-
based courses. Eric Mazur, Harvard professor and active-learning proponent, suggests that 
change is coming:  “Though it remains the dominant form of instruction in higher 
education…the lecture may be on its last legs” (Lambert, 2012). Data from the HERI report 
(Eagan, et al., 2014) confirm this trend, reporting an increase in student-centered teaching 
practices and a decrease in lecture over the past 25 years; listing the most recent figure (2014) 
hovering around 51% of faculty reporting that they lecture in “all” or “most” of their courses; 
however, when dis-aggregated by discipline, “the data continue to show that nearly two-thirds of 
faculty across STEM sub-fields utilize extensive lecturing in all or most of their courses” (Eagan, 
2016). This is particularly problematic given that the President’s Council of Advisors for Science 
and Technology found that fewer than 40% of students entering college in pursuit of a STEM 
degree complete that degree (PCAST, 2012, p. i). It appears that students are frustrated by 
“faculty modes of teaching that suggest [they] take little responsibility for student learning” 
(Seymour, 2006, p. 4), as students cite ineffective teaching methods and uninspiring atmospheres 
in introductory-level STEM courses as the primary reason for attrition (PCAST, 2012, p. i, p. 5).   

The mathematical professional societies (AMATYC, AMS, ASA, MAA, and SIAM) have 
taken notice and issued a joint statement indicating that while they would refrain from specifying 
pedagogical practices, they “feel that active student engagement is necessary for a mastery of 
algebraic ideas” and that “problem-based, inquiry-based, and collaborative learning activities are 
appropriate means of maintaining student engagement” (CUPM, 2015). Despite this 
recommendation, lecture is still the norm – even in upper division mathematics courses, which 
tend to have fewer constraints and more flexibility in terms of content (e.g., these courses are 
typically not coordinated across multiple sections and have few subsequent courses).  Keith 
Weber reports that “the advanced proof-oriented courses for mathematics majors are typically 
taught in a lecture format” (Lockwood, 2015) and in a recent study by (Fukawa-Connelly, 

20th Annual Conference on Research in Undergraduate Mathematics Education 69820th Annual Conference on Research in Undergraduate Mathematics Education 698



Johnson & Keller, 2016), it was found that when considering abstract algebra specifically, 
lecture is overwhelmingly the dominant pedagogical technique both in terms of percentage of 
instructors using it and percentage of class time devoted to its use.   

In our previous study, the target population was mathematics instructors teaching at 
Master’s- and Doctoral-granting institutions; i.e., ‘research’ universities. The purpose of the 
present study is to extend this work by investigating the teaching habits, beliefs, and constraints 
of instructors at Bachelors-granting institutions, traditionally ‘teaching’ colleges, to see if any 
differences emerge. To that end, we investigate the following research question:  Does the way 
that abstract algebra is taught vary by institution type and can those differences be explained? 

Literature Review 

The literature has cited many reasons why instructors choose to lecture, not least of these is 
the belief that lecture is the best method and/or necessary for content coverage (as discussed by 
Roth McDuffie, & Graeber, 2003; Wagner, Speer, & Rosa, 2007; Yoshinobu, 2014). While we 
do not wish to discount the enormous influence personal beliefs have on instructional decision-
making, we must acknowledge that a bevy of other external circumstances can factor 
considerably when instructors plan their courses. Research has indicated that instructors are 
reluctant to change practice when serving an administration that provides neither pressure nor 
incentive to do so and, furthermore, that concerns about promotion and tenure inhibit change 
when the administration is not perceived to value experimentation in teaching (Roth McDuffie, 
& Graeber, 2003). Another important factor is departmental and university culture. According to 
Henderson & Dancy (2007), working with colleagues who either lack knowledge about or 
withhold support of pedagogical reform inhibits an instructor’s willingness to modify current 
practice. Finally, departmental resources must be considered as a factor. Instructors who are not 
offered classroom assistance, release time to plan and prepare tasks and revise syllabi, or 
financial support for professional development are unlikely to abandon the traditional lecture 
style in light of the high “start-up costs” demanded by a change in pedagogy (Henderson, Beach, 
& Finkelstein, 2011; Wagner, Speer, & Rosa, 2007; Roth McDuffie, & Graeber, 2003).   

In higher education, a distinction is drawn between what are colloquially referred to as 
‘research institutions’ and ‘teaching colleges’.  The motivation for this study was rooted in the 
notion that the culture at teaching institutions might be better suited to adopt non-lecture 
practices based on the widely-held belief that lack of research demands at these universities 
affords the instructors time to hone their teaching and thoroughly develop their courses. 
Additionally, instructors surrounded by faculty and administrators who similarly value teaching 
might be more likely to have the necessary support for experimenting with new pedagogy.  Our 
literature review showed support for this broad characterization. Differences between teaching 
and research institutions are real and cannot be attributed to merely academic folklore. 

  At both types of institutions there are expectations for quality teaching and scholarly 
research; however, the emphasis can and does vary widely.  Professors at research universities 
are judged and rewarded based on their research; conversely, teaching (or comprehensive) 
universities “do not effectively accrue status through research” (Henderson, 2009, p. 11). Not 
surprisingly then, the vast majority of research is produced by faculty at research institutions. A 
2003 study of research productivity across higher education found staggering differences in the 
publication rate of faculty at R1 institutions as compared with Bachelors-granting schools: a 2.04 
publication/faculty ratio at the former as compared with a paltry .06 (weighted average across 
categories) for the latter (Toutkoushian, et al., p. 139). Karen Webber explains this discrepancy: 
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“especially at research universities, publications and extramurally-funded grants are central to 
the institutional image and pocketbook, and thus strongly affect individual promotion and 
tenure” (2011, p. 110).When the most important consideration in tenure decisions is research 
productivity, it stands to reason that, “teaching is, at best, a secondary obligation” (Vest, 1994). 
In a 1984 study, Katherine Kasten put forth hypothetical candidates for tenure review with vitaes 
reflecting varying degrees of research and teaching quality. The statistical analysis, confirmed by 
interview data, demonstrated that research is the most important consideration indicating that 
“excellent scholarship … counterbalances virtually anything else except dereliction of duty” and 
there exists a “threshold for research below which no degree of teaching…can provide 
compensation” (p. 506).   

In comparison, at teaching institutions, the ‘publish or perish’ ethos has yet to establish a 
strong foothold. Henderson (2009) explains that while traditional research holds the highest 
status, “other forms of publication have always been given credit in the faculty reward 
system…department heads, deans, and provosts have always been happy when faculty members 
have published, no matter where or what they published” (p. 18). Scholarship is appreciated, but 
students and teaching are the central focus. At comprehensive universities, where the faculty is 
likely to be unionized (Henderson, 2009), the contract clearly defines faculty teaching loads and 
criteria for promotion. In one such example, the most recent collective bargaining agreement of 
the PA State System of Higher Education (composed of 14 teaching institutions) outlines the 
teaching load to be 24 credit hours in an academic year with a minimum requirement of 5 office 
hours per week, and allows for the assignment of up to three unique academic preps per term 
(APSCUF, p. 74). This document further lists the categories for performance review and 
evaluation as effective teaching, continuing scholarly growth, and service – in that order (p. 24). 
While the NCES (Cataldi, Bardburn, & Fahimi, 2004) has shown the average faculty workload is 
53.4 hours/week – a figure that does not differ significantly when considered by institution type 
– but the sort of work activities that occupy that time do vary significantly.  Instructors at 
Doctoral-granting institutions spend on average 25.3% of their time in research as compared with 
less than 1% (on average) across all other types of institutions. 

We believe that these institutional differences may lead to differences in the students’ 
educational experience.  On the one hand, diminished research expectations coupled with heavy 
teaching assignments would tend to suggest that these instructors are more likely to reflect upon 
and experiment with their pedagogical practice as compared with their research university 
counterparts. On the other hand, comprehensive universities are more likely to have scarce 
financial resources in part due to their disproportionate receipt of grant monies, which could 
limit participation in the types of professional development opportunities that introduce new 
pedagogical techniques or disseminate curricular materials and are less likely to find the time 
needed to make instructional changes due to the increased course loads common at teaching 
institutions.  Webber (2011) estimates that the time needed to prepare well for class may equate 
to three to five times the number of hours for each hour spent in the classroom (p. 113), 
representing a non-trivial increase in time commitment for each additional course an instructor is 
assigned.  Furthermore, faculty who are somewhat distanced from the research community, 
whether due to interest or circumstance, are perhaps less likely to be up to date on the literature 
advocating for pedagogical change when this work is being done by instructors who are neither 
their colleagues nor, in some circumstances, their peers. The purpose of the present study is to 
investigate whether there is evidence to support these suppositions regarding inclination for 
pedagogical change in the specific context of abstract algebra. 
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Data and Methods 

Survey Design  
In the previous study, we developed a survey designed to solicit information about the 

teaching practices, beliefs, and situational context of abstract algebra instructors. This survey 
was informed in part by both Henderson and Dancy’s physics-education survey (Henderson & 
Dancy, 2009) and the Characteristics of Successful Programs in College Calculus surveys1. Our 
survey had sections to assess each of the following types of information: basic demographics and 
course context, teaching practices, beliefs and influences (including perceived supports and 
constraints), and knowledge of and openness to non-lecture practices.  In this study, we wished 
to obtain the same information from a different population for the purposes of comparison.  For 
that reason, it was methodologically important that the items under investigation remain largely 
unmodified. We chose the subset of items we wanted to ask and kept the formatting the same as 
the previous survey.  Due to space constraints, sample items are not here, but a version of the 
survey can be found at the following link: pcrg.gse.rutgers.edu/algebrasurvey.   

Participants 
In the previous research, the initial sample consisted of 200 institutions from which 126 

completed surveys were received. In this follow-up, a random sample of 400 institutions was 
drawn from the IPEDS list, targeting specifically Bachelor’s-granting schools. From this, we 
received 112 responses, 91 of which were completed. For the purposes of this paper, all data has 
been combined into one data set and then disaggregated by terminal degree for all future 
analysis; 117 Type B = Bachelor’s, 59 Type M = Master’s, and 108 Type P = PhD – these 
designations will be used hereafter.   

Methods  
We first calculated basic descriptive statistics appropriate for each item and compiled 

demographic information. Where indicated, percentages were tabulated on the aggregate and for 
each identified sub-group. Group measures were compared using inference testing procedures 
such as ANOVA, Chi-Square test, or the Kruskal-Wallis Test as determined by the type of data 
under investigation.  When appropriate, the Holm-Bonferroni correction was applied to control 
for the family-wise error rate affiliated with multiple comparisons. Details as applicable to 
particular tests can be found in the Results section. In general, the objective was first to provide a 
characterization of the abstract algebra course (as reported by our participants), specifically 
determining who teaches it, what is being taught, and how it is being presented. The secondary 
analysis was designed to explain those findings based on instructors’ beliefs, resources, and 
constraints.   

Results 

In response to our first research question, Does the way that abstract algebra is taught vary 
by institution type?, the results indicate that in many regards it does, but there are some key 
characteristics that appear to be universal.  Instructors teaching abstract algebra are generally not 
new faculty; roughly 78% have been teaching for more than six years (i.e. post-tenure) and this 
does not vary significantly by institution type; however, the experience with teaching AA is quite 
varied. On the aggregate, there is nearly an even distribution of experience across the three levels 
                                                      
1 See www.maa.org/cspcc for more information about the CSPCC project and a copy of the surveys. 
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(1-4 times, 5-8 times, 8+ times), though this does not persist (Kruskal-Wallis test: χ2 = 6.667, df 
= 2, p = .036) when the data are dis-aggregated as the modal class rises proportionately with the 
type of institution.  At Type P institutions, the majority of faculty have taught the course upwards 
of 8 times, whereas at Type B institutions the majority of faculty have taught the course only 1-4 
times. Across institutions the predominant course structure was an undergraduate (61%) course 
for math majors; other responses included mixed audience courses and graduate courses. 
Approximately 9% of respondents reported teaching a “groups only” or “rings only” course, but 
the majority covered both topics in a “groups first” format and this was consistent across 
institution type. For nearly everyone surveyed, their algebra course is not taught as a capstone 
course and has a proof-writing prerequisite, although there are distributional differences by type 
with Type P being least likely to require this prerequisite course (57% as compared with 79% for 
Type B and 82% for Type M). The most significant, although unsurprising, differences were 
found in terms of follow-on courses. Type B schools were much less likely to require a second 
course (6.9%) than Type M (14%) or Type P schools (18.3%). 

Moving away from demographic characteristics, the analysis looked at more subjective and 
personal measures such as pedagogical style and teaching practices. Using the prompt, Have you 
ever taught abstract algebra in a non-lecture format?, we coded respondents as either self-
identified lecturers (hereafter referred to as “Lecturers”) for responding No or I have in the past, 
but I currently lecture; or as self-identified non-lecturers (hereafter referred to as “Non-
lecturers”) for responding I currently do.  Our findings support the notion that lecture is still the 
predominant mode of instruction in upper-division mathematics courses with 83% of our 
participants identifying as Lecturers; this represented 78% of Type B, 79% of Type M, and 91% 
of Type P instructors. On the one hand, it appears that our suggestion that instructors at teaching 
institutions would be less likely to lecture is supported (Z = 2.23, p = .026); however, a lecture 
rate of 78% does not indicate that sweeping pedagogical reform has occurred.   

In terms of teaching practices, again there were a few noticeable differences, but for the most 
part institution types were more alike than they were different. When asked to report frequency 
per term for the following activities: having students present proofs or counterexamples to the 
class, having students develop their own definitions, having student develop their own 
conjectures, having students develop their own proofs, and leading discussions in which students 
discuss why the material is useful and/or interesting, no significant differences in mean 
frequency were observed between institution types. Similarly, when asked to report frequency 
per class meeting for the following activities: I pause and ask students if they have questions, I 
use visual and/or physical representations of groups and group elements, I use diagrams to 
illustrate ideas, and I include informal explanations of formal statements, there were no 
significant differences in mean frequency observed between institution types. Only for two 
activities: I have students engage in small-group discussions or problem-solving (F = 7.984, p < 
.001) and I have students ask each other questions (F = 4.119, p = .018) were statistically 
significant differences found: Type B schools engage in these activities more often than Type P 
schools. (It is important to note that the average increase in mean frequency was approximately 
.3 which, given the scale used, translates into roughly one additional occurrence per class, or a 
difference of engaging in the activity once per class versus every other class.) 

In addition to reporting on frequency of certain activities, instructors were also asked to 
comment on the average percentage of class time devoted to certain pedagogical practices on a 
scale ranging from 0 (never) to 4 (75-100%) of class time. These included: showing students how 
to write specific proofs, having students work with one another in small groups, having students 
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give presentations of completed work, having students work individually on problems/tasks, 
lecturing, holding a whole-class discussion, and having students explain their thinking. On 
average, the approximate amount of class time devoted to these techniques was under 25%, 
across practices and institution type; the notable exception was lecturing which occupied, on 
average, more than 50% of class time. In support of our hypothesis, Type B/M schools tended to 
devote more time to student-centered pedagogical techniques with significant differences 
observed for having students work in small groups (F = 12.075, p < .001) and lecturing (F = 
12.493, p < .001). Each time, the mean difference between Type B/M and Type P schools was .5 
on average, roughly translating to about 12.5% of class time.   

Having found evidence suggesting that instructors at Type B schools self-identify as 
Lecturers less often and that the percentage of class time engaged in lecture for those who do is 
less than their Type P counterparts, our secondary analysis was focused on trying to explain 
these differences in terms of beliefs and resources/constraints. The instructors were asked to 
indicate degree of belief on a 4-point scale (-2 = disagree, -1 = slightly disagree, 1 = slightly 
agree, 2 = agree) in the following statements regarding teaching: I think lecture is the best way to 
teach, I think lecture is the only way to teach that allows me to cover the necessary content, I 
think there’s enough time for all the content I need or want to teach, When I last taught algebra, 
I had enough time during class to help students understand difficult ideas, and When I last taught 
algebra, I felt pressured to go through material quickly to cover all the required topics.  The 
instructors were consistent in terms of pressure and time concerns and really only differed in 
terms of evaluating the appropriateness of lecture. Type P instructors were significantly more 
likely on average to indicate that lecture was the only way to cover the necessary content (F = 
4.688, p = .01) reporting moderate agreement where the others reported disagreement. Belief that 
lecture is the best way to teach failed to be statistically significant2, but instructors at Type P 
schools did hold this belief more strongly than those at Type M and Type B schools as was 
expected.   

The instructors were also asked to indicate degree of belief on the same 4-point scale in 
statements regarding students. These included: I think students learn better when they do 
mathematical work in class, I think students learn better when they struggle with the ideas prior 
to me explaining the material to them, I think that all students can learn advanced mathematics, I 
think all students can learn abstract algebra, and I think students learn better if I first explain the 
material to them and then they work to make sense of the ideas for themselves. Interesting here 
was that Type P instructors were the most pessimistic about the ability of the students to learn 
either advanced mathematics in general or abstract algebra specifically (although these 
differences did not achieve statistical significance). Consistent with the reported lecture 
practices, Type B/M instructors held significantly stronger belief in the students’ need to do 
mathematical work in class (F = 5.568, p = .004). 

Looking at differences in professional activities, there was little that was unanticipated. 
When ranking interest on a 4-point scale ranging from 1 (very weak) to 4 (very strong), the 
following activities were considered: Discussing/reading about how students learn key ideas in 
abstract algebra, teaching abstract algebra, teaching other advanced classes, doing research in 
abstract algebra, and doing/reading research that could be considered the scholarship of 
teaching and learning. Type P instructors had greater interest in algebra research and less 

                                                      
2 Based on reported means of 0.5 for Type P, 0.3 for Type M, and 0.0 for Type B schools.  This resulted in an F 
value of 3.73 with p = .026 which failed to meet the more conservative  p < .0125 threshold for the Holm-Bonferroni 
correction for multiple comparisons.   
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interest in education research (reading or doing) and teaching. Significant differences were only 
observed for the research items (F = 7.295, p = .001 for algebra research; F = 4.407, p = .013 for 
educational research). Probably the most surprising finding here is that all faculty rated interest 
in teaching nearly a full point higher on average than either type of research activity 

Type P instructors were lecturing at significantly higher rates than Type B/M; however, the 
lecture rates for all three institution types was quite high. To investigate the propensity for 
pedagogical modification, the respondents were asked if they would consider teaching in a non-
lecture format and were directed to specific follow-up items investigating their reasons why they 
would not or why they have not. Type P instructors were significantly less likely (48%) to 
consider not lecturing as compared with Type B/M (65%) instructors (z = -2.196, p = .028). 
Those unwilling to consider a change were most likely to cite concerns over content coverage or 
a belief that it would go poorly (in that order), and surprisingly, this was consistent across all 
institution types.  A very small number of individuals (5) indicated that they would not have 
departmental support for such a change. For those willing to consider a change, the number one 
impediment was lack of time to redesign their course, independent of institution type. Secondary 
concerns were lack of materials and not knowing where to start. Interesting here is that there 
were 12 individuals who would like to switch but feel that they lack departmental support (6 of 
whom were Type P instructors).   

Discussion 

Overall, abstract algebra instruction looks fairly similar across institution types, there being 
many commonalities regarding course structure, class activities, and time use.  Virtually all 
instructors who hold Ph.D.s in mathematics receive degrees from research universities where 
lecture is the dominant paradigm.  It is perhaps to be expected, then, that their instructional 
decisions – influenced in part by their own experiences as students – might reflect the teaching 
culture in which they were raised. A difference appears among Type B faculty, though, who self-
report as Lecturers at lower rates than Type P (78% versus 91%, respectively) and who spend 
less (12.5%) class time lecturing than do Type P instructors.  Moreover, the fact that using small 
group discussions and asking students to inquire into one another’s thinking occurs 
approximately twice as often in Type B classes than in Type P further indicates a distinction in 
the day-to-day experience of students in these classes.  That a clear majority of Type B 
instructors still report conducting class primarily through lecture, however, indicates that 
reformers still have a long way to go in spreading student-centered practices in mathematics (at 
least in abstract algebra), specifically with regard to existing curricular materials. 

The current numbers should not detract from what may be a promising outlook: 65% of Type 
B/M Lecturers reported that they would consider switching to non-lecture pedagogies 
(significantly more than the 48% of Lecturers at Type P schools). The remaining 35% of 
Lecturers were most likely to cite concerns over content coverage or their belief that it would go 
poorly (in that order).  It is interesting therefore, that 81% of these same Lecturers also report 
feeling no departmental pressure to cover a fixed set of topics, making the issue of content 
coverage largely one of internal orientation.  Future directions for this research include 
examination of the actual content coverage by topic and its variance by institution type, the 
possible influence possession of a growth/fixed mindset plays in pedagogical decision-making, 
and researching the potential effect of the interaction between institution type and pedagogical 
style on the distribution of class time  
 

20th Annual Conference on Research in Undergraduate Mathematics Education 70420th Annual Conference on Research in Undergraduate Mathematics Education 704



References 
APSCUF. (2013). Agreement between Association of Pennsylvania State College and University 

Faculties (APSCUF) and The Pennsylvania State System of Higher Education (State 
System). Complete 2011-15 Faculty CBA. 

Cataldi, E., Bardburn, E., & Fahimi, M. (2005). 2004 National study of postsecondary faculty 
(NSOPF:04) Background characteristics, work activities, and compensation of 
instructional faculty and staff: Fall 2003. Institute of Education Sciences, National 
Center for Education Statistics. Washington, DC: U.S. Department of Education. 

CUPM. (2015). The Common Vision Committee on the Undergraduate Program in Mathematics. 
Retrieved from 
http://www2.kenyon.edu/Depts/Math/schumacher/public.html/Professional/CUPM/2015
Guide/Course%20Groups/abstractalgebra.pdf 

Eagan, K. (2016). More student-centered? An examination of faculty teaching practices across 
STEM and non-STEM disciplines between 2004 and 2014. Los Angeles: Higher 
Education Research Institute. 

Eagan, K., Stolzenberg, E., Lozano, J., Aragon, M., Suchard, M., & Hurtado, S. (2014). 
Undergraduate teaching faculty: The 2013-2014 HERI faculty survey. Los Angeles: 
Higher Education Research Institute, UCLA. 

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & 
Wenderoth, M. P. (2014). Active learning increases student performance in science, 
engineering, and mathematics. Proceedings of the National Academy of Science, 111(23), 
8410-8415. 

Fukawa-Connelly, T., Johnson, E., & Keller, R. (2016). Can Math Education Research Improve 
the Teaching of Abstract Algebra? Notices of the American Mathematical Society. 

Henderson, B. (2009). The work of the people's university. Teacher-scholar: The Journal of the 
State Comprehensive University. 

Henderson, C., & Dancy, M. (2009). The impact of physics eduation research on the teaching of 
introductory quantitative physics in the United States. Physical Review Special Topics: 
Physics Education Research, 5(2). 

Henderson, C., Beach, A., & Finkelstein, N. (2011). Facilitating change in undergraduate STEM 
instructional practices: An analytic review of the literature. Journal of Research in 
Science Teaching, 952-984. 

Kasten, K. (1984). Tenure and merit pay as rewards for research, teaching, and service at a 
research university. The Journal of Higher Education, 500-514. 

20th Annual Conference on Research in Undergraduate Mathematics Education 70520th Annual Conference on Research in Undergraduate Mathematics Education 705



Lambert, C. (2012, April). Twilight of the lecture. Harvard Magazine. 

Lockwood, E. (2015, Feb 10). Mathematics professors and mathematics majors' expectations of 
lectures in advanced mathematics. Retrieved from On Teaching and Learning 
Mathematics: http://blogs.ams.org/matheducation/2015/02/10/mathematics-professors-
and-mathematics-majors-expectations-of-lectures-in-advanced-
mathematics/#sthash.gnIwcnpO.Hx1zpU9u.dpbs 

(2012). Report to the president, engage to excel: Producing one million additional college 
graduates with degrees in science, technology, engineering, and mathematics. 
Washington, DC: Executive Office of the President, President's Council of Advisors on 
Science and Technology. 

Roth McDuffie, R., & Graeber, A. (2003). Institutional norms and policies that influence college 
mathematics professors in the process of chaging to reform-based practices. School 
Science and Mathematics, 331-344. 

Toutkoushian, R., Porter, S., Danielson, C., & Hollis, P. (2003). Using publications counts to 
measure an institution's research productivity. Research in Higher Education, 44(2). 

Vest, C. (1994, Spring). Learning in a research university. MIT Parents. 

Wagner, J., Speer, N., & Rosa, B. (2007). Beyond mathematical content knowledge: A 
mathematician's knowledge needed for teaching an inquiry-oriented differential equations 
course. Journal of Mathematical Behavior, 247-266. 

Weber, K. (2011). Measuring faculty productivity. In J. Shin, R. Toutkoushian, & U. Teichler 
(Eds.), University Rankings, Theoretical Basis, Methodology and Impacts on Global 
Higher Education (pp. 105-121). New York: Springer. 

What's working?: Hearings before the research subcommittee on Undergraduate Science, Math, 
and Engineering Education of the Committee on Science, U.S. House of Representatives 
(Testimony of Elaine Seymour). (2006, March 15). 

Yoshinobu, S., & Jones, M. (2012). The coverage issue. PRIMUS, 22(4), 303-316. 

 

20th Annual Conference on Research in Undergraduate Mathematics Education 70620th Annual Conference on Research in Undergraduate Mathematics Education 706



Mathematicians’ Evaluations of the Language of Mathematical Proof Writing at the 
Undergraduate Level in Three Different Pedagogical Contexts 
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This proposal discusses the extent to which mathematicians agree amongst themselves with 
regard to what are some of the linguistic conventions of mathematical proof writing. Data from a 
survey of 128 mathematicians are used to address this question. Participants were asked whether 
various excerpts highlighted in four partial proofs were unconventional in each of three different 
contexts: how proofs appear in undergraduate mathematics textbooks, what instructors write on 
the blackboard in undergraduate mathematics courses, and how students write proofs in these 
courses. These data point to a lack of agreement among mathematicians on the linguistic 
expectations of the proofs written by their students.  

Key words: Mathematical language, Proof, Mathematics Textbooks, Mathematics Lectures 

Research has shown that undergraduate mathematics students have difficulties when 
constructing (Weber, 2001), reading (Conradie & Frith, 2000), and validating (Selden & Selden, 
2003) mathematical proofs. Among several different reasons for why undergraduates struggle 
with constructing mathematical proofs, Moore (1994) included students’ unfamiliarity with the 
language of mathematical proof writing. However, there is a dearth of empirical and systematic 
research in the field of mathematics education on the language of mathematical proof writing at 
the advanced undergraduate level.  

In particular, how advanced undergraduate mathematics students and mathematicians 
understand and use the technical language of mathematical proof writing is largely unknown. 
Author (Year) showed that the mathematicians and undergraduate students who participated in 
their study did not agree on the extent to which one should attend to English grammar, the 
introduction of new objects in a proof, and the context in which a proof was constructed when 
considering the exposition of said proof. While the interviews provided a clearer picture of how 
some mathematicians and students perceived the language of mathematical proof writing, the 
present study investigated how a larger sample of participants evaluated parts of the same proofs 
via an online survey. 

This approach lends a quantitative perspective on how mathematicians and undergraduate 
mathematics students understand technical mathematical language. This work also further 
informs researchers’ and instructors’ understanding of both mathematicians’ and students’ 
expectations regarding the presentation of mathematical proofs at the undergraduate level. For 
the sake of brevity, this paper focuses solely on the results of the mathematicians’ survey. 
 

Related Literature and Theoretical Perspective 
 
Prior Work on the Language of Mathematical Proof Writing 

There is little systematic, empirical work on the language of mathematical proof writing. 
Konior (1993) studied over 700 mathematical proofs written in academic textbooks and 
mathematical monographs investigating the construction of mathematical proofs. He identified a 
common structure that framed the arguments of a proof by highlighting the plan of procedure 
and using cues to direct the reader through the proof. Burton and Morgan (2000) found that the 
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norms suggested in professional writing guides (e.g. Gillman, 1987; Krantz, 1998) are sometimes 
broken by mathematicians, especially by those who were highly regarded in the field. Selden and 
Selden (2014) also described seven features of the style in which mathematicians write proofs 
(e.g. not including the statements of entire definitions within written proofs).While these studies 
begin to further the understanding of mathematical proof writing at the professional level, 
research on the language of proof writing at the undergraduate level is lacking.  

As referenced above, a number of mathematicians (AMS, 1962; Halmos, 1970; Gillman, 
1987; Krantz, 1997; Higham, 1998) have written texts describing how to properly and effectively 
use the language of mathematics for professional purposes such as published journal articles, 
dissertations, and books. Meanwhile, since the suggestions provided in these guides for 
mathematicians were written based on the authors’ own assumptions and personal experiences, 
further work is necessary to investigate the extent to which these expectations of advanced 
mathematical proof writing are shared by the general population of mathematicians and how 
these conventions may apply to different contexts.  
 
Linguistic Conventions of Proof Writing in Different Contexts 

As a particular type of mathematical writing, we see mathematical proof as a particular genre 
of the language of mathematics. Mathematician Armand Borel (1983) equated mathematical 
proofs to the genre of poetry in natural language, saying, “our poems are written in a highly 
specialized language, the mathematical language […], unfortunately, these poems can only be 
understood in the original” (p .15). In this quote, Borel emphasized not only that the language of 
mathematics is distinct from the vernacular, but also that one must be knowledgeable in the 
language of mathematics in order to understand mathematical proofs. In this work, we assume 
that the genre of proof is a way of using mathematical language defined by both the formal 
properties and structures of language, as well as the communicative purposes of texts in 
particular contexts. This view of genre is consistent with the genre theory literature (Hyland, 
2002). Our consideration of proofs in this light is in the pursuit of helping students to understand 
and follow the linguistic conventions of the genre, as work has done in other genres and 
discourses (Hyon, 1996).  

In order to study the genre of mathematical proof writing, we sought to identify and validate 
the existence of linguistic conventions of mathematical proofs. We assume that conventions are 
rationally justifiable customs of practice to which members of that practice are expected to 
conform in the manner of Jackman (1998). Thus, we take linguistic conventions to be rationally 
justifiable customs of linguistic communication. Existing literature (AMS, 1962; Halmos, 1970; 
Gillman, 1987; Higham, 1998) has suggested possible conventions of writing mathematical 
proofs for professional contexts, such as correctly situating notation within a sentence according 
to proper grammar, and structuring the proof to guide a reader through the argument.  

Meanwhile, it is important to consider how the context of the proof might affect how these 
conventions are followed as suggested by the mathematicians in Author’s (2016) study. In 
particular, we investigate how mathematicians believe conventions of mathematical proof 
writing apply in the contexts of undergraduate textbooks, and in two classroom contexts: the way 
proofs are written on the board in class, and the ways in which proofs are written undergraduate 
students. The consideration of this variation of context within the genre of proof writing allows 
this work to highlight important similarities and differences in the contexts created by 
mathematical discourse, as Bondi (1999) had in her study of research papers, textbooks, and 
newspaper articles in the discourse of economics.  
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Researchers in higher education (Becher, 1987), linguistics (Hyland, 2004), and composition 
(Bizzell, 1982; Batholomae, 1985) have highlighted that different disciplines have characteristic 
discourse practices. Berkenkotter, Huckin, and Ackerman (1988) summarized the work of 
composition scholars Bizzell and Batholomae stating, “students entering academic disciplines 
must learn the genres and conventions that members of the disciplinary community employ. 
Without this knowledge, they contend, students remain locked outside of the community’s 
discourse” (p. 10). We extend this necessity to acquire specialized literacy to undergraduate 
students of advanced mathematics, who—we argue—must understand the genres and 
conventions of mathematical discourse which includes the genre of mathematical proof in the 
different contexts that pervade their undergraduate study. Given the fundamental role of proof in 
mathematical practice (Thurston, 1994; Wu, 1996; Rav, 1999) and in light of Borel’s (1983) 
quote above, understanding the language of mathematics in which proofs are written is of utmost 
importance for undergraduate students studying advanced mathematics.  

In the present study, we investigate the conventions of mathematical proof writing from the 
perspective of mathematicians – the most prevalent instructors and examiners of undergraduate 
students’ proof writing. As such, the present study investigates the following questions:   

• To what extent do mathematicians agree among themselves on what the linguistic 
conventions of mathematical proof writing are in the three contexts of textbook 
proofs, blackboard proofs, and student-produced proofs?  

- Do conventions exist for the language of undergraduate mathematical proofs?  
- Does the context of said proofs affect what conventions are upheld in 

mathematical proof writing? 
 

Methods 

In order to evaluate how mathematicians perceive linguistic conventions in mathematical 
proofs, the survey adopted the methodology of breaching experiments in the style of Herbst 
(2010) and Herbst and Chazan (2003).The survey asked participants to make evaluations 
regarding the language used in several partial proofs, which were based on student work, but 
truncated to discourage participants from focusing on the logical validity of the purported proof 
being evaluated. Four of the seven partial proofs used in Author’s (Year) study were included in 
the survey, each of the four proofs included in the survey presented three or four types of 
potential breaches of mathematical language. 

These breaches were identified by Author (Year) as common, potentially unconventional 
uses of mathematical language found in student-produced proofs from 149 exams at the 
introduction to proof level. The breaches were categorized based on suggestions from the 
mathematical writing guides discussed above and their personal experiences with proof writing 
at the undergraduate level. One of the partial proofs and potential breaches included in the survey 
is illustrated below. Figure 1 shows the marked partial proof exhibiting the use of the unspecified 
variable, z, and the explanation for why someone might think it’s unconventional, as presented in 
the survey. The explanations used in the survey are based on the mathematicians’ discussions of 
the same potential breaches and proofs in Author (Year).  

Each potential breach was presented on a separate page of the survey. On these pages, 
participants were provided a marked partial proof and an explanation of why a colleague might 
believe the corresponding proof excerpt had been written in an unconventional manner, as shown 
in Figure 1. Participants were then asked if they agreed that this proof excerpt was indeed 
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unconventional for the stated reason and to what extent it affected the quality of the proof. These 
questions were asked for each of the contexts of a textbook proof, a blackboard proof, and a 
student-produced proof.  
Marked Partial Proof Exhibiting the Potential 
Breach: Uses an Unspecified Variable 

Explanation of the Potential 
Breach 

 

A mathematician suggested that 
this is unconventional mathematical 
writing because the variable z 
should be introduced prior to its use 
in the proof. 
 
 
 

Figure 1. Example potential breach and explanation presented in the survey. 
 

Participants were recruited from 25 of the top mathematics departments in the United States 
through email solicitation through their department secretaries. Mathematicians were sent a link 
that directed those who chose to participate in the study to the survey website. In total, 128 
mathematicians (75 PhD students, 16 Postdoctoral fellows, and 37 faculty members) participated 
in the survey. 

 
Analysis 

The analysis for this study included investigating if the mathematicians answered the various 
aspects of the survey differently – in particular, whether they agreed or disagreed on the extent to 
which the potential breaches were unconventional in each of the three contexts (textbook proofs, 
blackboard proofs, and student-produced proofs). 

Descriptive statistics were first considered to provide a holistic view of the data sets before 
conducting a number of statistical tests. Table 1 presents some of the findings from this study, 
indicating the proportion of the sample that agreed that the proof excerpt was unconventional for 
the reason provided, for each of the three contexts. To evaluate if the proportions of agreement 
indicated a high agreement within the samples, 75% and 25% of the sample were set to be the 
thresholds of a high agreement that a potential breach was unconventional and was not 
unconventional within the samples, respectively. Chi-squared tests for equality of proportions 
were conducted to check for proportions p=0.75 and p=0.25 with a level of significance of 
α=0.05/42 (fourteen potential breaches in each of three categories). The results of these Chi-
squared tests are indicated with ++ and - -, respectively. When considering this binomial data 
throughout this paper, the proportions of agreement were categorized in the following ways: high 
agreement that the use is unconventional (significantly different from and greater than 75%), 
high agreement that the use is not unconventional (significantly different from and less than 
25%), or not shown to have high agreement within the sample.  

 
Results 

To what extent do mathematicians agree among themselves in these contexts? 
Survey results suggest a lack of agreement amongst participants in whether the potential 

breaches are unconventional of mathematical language for the reasons provided. As can be seen 
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in Table 1, the agreement percentages for fewer than half of all judgments made were 
significantly different from and above 75% or significantly different from and below 25%. 
However, both samples’ responses also showed more internal agreement in the context of 
textbook proofs. Figure 2 shows the percentage of mathematicians who agreed that the potential 
breaches were unconventional in each of the three contexts. Lines connect the agreement 
percentages for evaluations in the same context and the shaded sections indicate the percentages 
significantly different and greater than 75% or significantly different and less than 25%. This 
section of the proposal discusses the types of potential breaches for which participants’ responses 
showed high agreement and provides a post hoc analysis of the potential breaches for which the 
samples’ responses did not show high agreement. 

 

 
++ Significantly different from and greater than 75% of the sample, -- Significantly different from and less than 

25% of the sample (These tests were all evaluated with a level of significance α=0.05/42.) 

Table 1. Mathematicians’ responses indicating if they agree that the proof excerpt was 
unconventional for the reason provided in each context. 

  
Types of potential breaches for which the participants’ responses showed high agreement. 

Based on Figure 2, the mathematicians’ responses showed that they found eight of the fourteen 
types of potential breaches to be unconventional in the context of a textbook proof for the 
reasons presented in the survey with high agreement. Moreover, there is high agreement among 
mathematicians that the proof excerpts exhibiting the use of non-statements or overuse of 
variable names are unconventional in each one of the three contexts. These findings provide 
further evidence that these eight potential breaches of the conventions of mathematical language 
are indeed unconventional in the context of textbook proofs for the reasons provided. The partial 
proofs that overused variable names or used non-statements were also seen by the 
mathematicians as unconventional in the two classroom contexts.  

Finally, Figure 2 also shows the percent of mathematicians that agreed the inclusion of 
statements of definitions in a student-produced proof was unconventional is significantly 
different from and less than 25%. That is, there is a high agreement among the mathematicians 
that a proof excerpt including the statement of definitions is not unconventional in the context of 
a student-produced proof. Moreover, fewer than 42% of mathematicians agreed that the inclusion 
of statements of definitions was unconventional in any of the three contexts considered here. We 
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note that this is in contrast to claims by Selden and Selden (2014) that mathematicians do not 
include the statements of entire definitions within written proofs. While the scope of the present 
study focuses on proofs at the undergraduate level, we note that two of the contexts (textbook 
proofs and blackboard proofs) are written by mathematicians. Thus, it may not be the case that 
the features of proof writing described by Selden and Selden (2014) extend to different contexts 
of proofs written by mathematicians or to the context of student-produced proofs. 

  

 
Figure 2.  The mathematicians’ agreement percentage for each potential breach in each context. 

 
When the samples’ responses did not show high agreement. For 29 of the 42 judgments made 

by mathematicians (fourteen potential breaches in each of three categories), percentages of 
agreement did not cross the thresholds for high agreement, i.e. percentages were not significantly 
different from and higher than 75% or significantly different from and lower than 25%. Figure 2 
further shows that for five of the potential breaches, there was no high agreement among 
mathematicians in any of the three contexts, and that when we restrict the analysis to only the 
two classroom contexts (blackboard proofs and student-produced proofs), up to eleven of the 
fourteen types of potential breaches the results did not show high agreement. Finally, Figure 2 
highlights that a number of these agreement percentages are close to 50%. In particular, eight of 
the 42 judgments had percentage agreements between 40% and 60%, including two judgments in 
the context of textbook proofs. These findings suggest that beyond failing to give confirmation 
that many of these potential breaches were indeed breaches of linguistic conventions in 
mathematical proof writing, that the disagreement among mathematicians may be higher when it 
comes to the classroom contexts, and that for some specific types of potential breaches the 
disagreement amongst mathematicians may be particularly extreme, even in the context of 
textbook proofs.   

Moreover, it is clear that a larger percent of the mathematicians agreed that a potential breach 
was unconventional in the textbook context than when the same potential breach was assessed in 
either of the other contexts.  In fact, Figure 2 suggests that for some of the types of potential 

20th Annual Conference on Research in Undergraduate Mathematics Education 71220th Annual Conference on Research in Undergraduate Mathematics Education 712



breaches, the fewer mathematicians that agreed a proof excerpt was unconventional 
mathematical proof writing in the context of textbook proofs, the fewer that perceived that the 
same excerpt was unconventional in the classroom contexts.   

Conclusion 

The findings of this report highlight the existence of some potential breaches of mathematical 
language that mathematicians widely agree are unconventional in the context of textbook proofs. 
Specifically, mathematicians in our study widely agreed that including incomplete statements, 
overusing variable names for different mathematical objects, lacking proper punctuation and 
capitalization, carelessly mixing mathematical notation and text, failing to use connectives to 
bridge steps, using formal propositional language, using pronouns with unclear referents, and 
using an unspecified variable are all unconventional usage of mathematical language in textbook 
proofs. Moreover, mathematicians widely agreed on the specific rational justifications for why 
the proof excerpts breached linguistic conventions or mathematical proof writing on that context. 
On the other hand, mathematicians also widely agreed that one of the potential breaches studied 
(including full statements of definitions within proofs) was not unconventional in the context of 
student-produced proofs for the reasons provided, which suggests that Selden and Selden’s 
(2014) claim that mathematicians do not include definitions in their proofs may not extend to 
other contexts and to mathematicians’ expectation of how students write proofs. 

Meanwhile this report also gives insight on how these mathematicians differed in their 
evaluation of the language of mathematical proof writing in the classroom contexts at the 
introduction to proof level. In particular, the results suggest that it is unclear what 
mathematicians expect a student-produced proof to look like. The mathematicians’ responses did 
not indicate high agreement for twelve of the fourteen types of potential breaches in the student 
context, which may indicate the possibility that there is no shared understanding or expectation 
among mathematicians of how students should write proofs. 

If it is indeed the case that there is not a consensus among mathematicians of how their 
students in introduction to proof courses should write their proofs, then how are instructors of 
these courses presenting proof writing to their students? Discussions amongst mathematicians, 
especially those who teach introduction to proof courses, concerning their expectations for 
language usage in the writing of proofs by their students would be a useful step towards a shared 
understanding of linguistic conventions of proof writing in the context of student-produced 
proofs. Further research is necessary to understand these varied expectations amongst 
mathematicians and how to address students’ confusion when it comes to their professors’ 
expectations of their proof writing. In turn, better understanding of mathematicians’ expectations 
of their students’ writing could enable the creation of interventions and curriculum to help 
undergraduate students in their transition to abstract and advanced mathematics courses. 
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An Unexpected Outcome: Students’ Focus on Order in the Multiplication Principle 
 

Elise Lockwood  Branwen Schaub 
Oregon State University Oregon State University 

 
In an effort to better understand students’ understanding of the multiplication principle, 

which is a fundamental aspect of combinatorial enumeration, we had two undergraduate 
students engage in reinvention of a statement of the principle during an eight-session teaching 
experiment. In this presentation, we report on the students’ unexpected attention to the order in 
which they complete stages of counting process in a counting problem. We suggest that an early 
experience with a particular problem prompted them to think about order, and this way of 
thinking persisted throughout the experiment. The students’ reasoning about order sheds light on 
ways in which students may think about order and about the nature of multiplication in counting. 
We conclude with potential implications and directions for further research. 
 
Key Words: Combinatorics, Reinvention, Counting problems, Teaching experiment 

 
Introduction and Motivation 

The multiplication principle (MP), also known as “The Fundamental Principle of Counting” 
(e.g., Richmond & Richmond, 2009), is a foundational component of understanding of counting 
problems. The MP is the idea that for independent stages in a counting process, the number of 
options at each stage can be multiplied together to yield the total number of outcomes of the 
entire process (see Lockwood, Reed, & Caughman (in press) for a more in depth discussion of 
the MP; the statement by Tucker (2002) in Figure 1 is our preferred statement of the MP). This 
principle is often taught to students in discrete math classes and provides a basis for many 
counting formulas they are eventually taught.  

In order to better understand student thinking about the MP, we had a pair of undergraduate 
students reinvent a statement in their own words over the course of eight hour-long interview 
sessions. While we have previously reported on this overall reinvention (Lockwood & Schaub, 
2016), in this paper we focus on an unexpected feature of the MP to which the students attended. 
Specifically, the students’ regularly and repeatedly expressed a desire to include in their 
statement a clause that the order of stages in a counting process does not matter. This was an 
unexpected focus that emerged during the teaching experiment. In this paper, we seek to address 
the following research question: Why did the students in our study (unexpectedly) focus on order 
in their reasoning about and reinvention of the MP, and what does this suggest about the role of 
order in the MP?  

 
Background Review and Theoretical Perspective 

Research about the MP in Combinatorics Education Literature  
Previous work has demonstrated the importance the MP, and the lack of a well-developed 

understanding of the MP appears to be a significant problem and hurdle for students, particularly 
in terms of their ability to justify or explain formulas (e.g., Lockwood, Swinyard, & Caughman, 
2015). We have found anecdotally that students can easily assume that they completely 
understand the MP in counting because multiplication is a familiar operation for them. As a 
result, they use the operation frequently but without careful analysis, and they tend not to realize 
when simple applications of the operation are problematic. Lockwood et al. (2015) had students 
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reinvent basic counting formulas, and the students in that study did not appear to have a solid 
understanding of the MP. They worked with outcomes empirically but lacked the understanding 
of how those outcomes related to the underlying counting process involved with the MP. This 
work suggested the need for additional research that targets students’ understanding of the MP as 
a fundamental counting process. In addition, Lockwood and Caughman (2016) wrote about 
students who struggled on a particular kind of problem (set partition problems), and the authors 
attributed the struggles in part to confusion about clauses about ordered stages in the MP.  

Motivated by those two studies, Lockwood, et al. (in press) recently conducted a textbook 
analysis that examined statements of the MP in university combinatorics, discrete mathematics, 
and finite mathematics textbooks. This revealed a wide variety of statements of the MP (Figures 
1 and 2 reveal two very different formulations of the MP). From this textbook analysis, 
Lockwood, et al. identified three key mathematical aspects to which many statements attended: 
independence of options, dependence of option sets, and distinct composite outcomes. We note 
that order is an implicit aspect of the MP – so implicit that it was not one of the features 
emphasized in the textbook analysis, in part because we assumed that students would already 
understand that they completed a counting process in some pre-determined order. Order is 
certainly an important component of the MP, but it varies in how explicitly it is addressed. For 
example, in Figure 1, Tucker (2002) explicitly describes “m successive (ordered) stages,” while 
the order is implicit in the structure of k-tuples in Bona’s (2007) statement in Figure 2.  
 
The Multiplication Principle: Suppose a procedure can be broken down into m successive 
(ordered) stages, with r1 different outcomes in the first stage, r2 different outcomes in the second 
stage, …, and rm different outcomes in the mth stage. If the number of outcomes at each stage is 
independent of the choices in the previous stages, and if the composite outcomes are all distinct, 
then the total procedure has  different composite outcomes. 

Figure 1 – Tucker’s (2002) statement of the MP 
 
Generalized Product Principle: Let be finite sets. Then the 
number of k-tuples (x1, x2,…, xk) satisfying   is . 

Figure 2 – Bona’s (2007) statement of the MP 
 

We also draw on Lockwood’s (2013) model of combinatorial thinking, which emphasizes the 
relationships between counting processes, sets of outcomes, and formulas/expressions. We 
emphasize that a particular counting process can generate a set of outcomes with a certain 
structure, and different ways of structuring the set of outcomes may reflect different respective 
counting processes. In the following section we discuss the key issue of order in this paper. 
 
Order in the Multiplication Principle 

To appreciate this issue of order in the MP, we consider two problems. First, “How many 
ways are there to flip a coin, roll a 6-sided die, and pick a card from a standard 52-card deck?” 
In this problem, the outcome is simply a set of results of these three activities. If the problem said 
“first pick a card, then roll a die, then flip a coin” then the order is determined, but the problem 
does not specify this. However, when one goes to solve this problem, a natural approach might 
be to specify a process with a particular sequence of stages with a particular order. For instance, 
we might solve the problem by specifying we will first of pick a card, then roll a die, then flip a 

r1 × r2 ×...× rm

X1 × X2 ×...× Xk X1,X2,...,Xk  
xi ∈ Xi
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coin, but this is a different counting process than rolling a die, then flipping a coin, then picking 
a card. In the first case, the outcomes would be {card, number, coin} triples, where the first entry 
is a card, the second entry is from the set {1, 2, 3, 4, 5, 6} and the third entry is from the set {H, 
T}. The formula/expression to represent that counting process would be 52*6*2. On the other 
hand, a different process of first flipping a coin, then rolling a die, then picking a card still counts 
the same outcomes (and answers the counting problem), but the tuples are now slightly different 
– {H/T, number, card} triples with the final expression of 2*6*52. The answers are numerically 
the same, but in each case we specified a differently ordered process in order to solve the 
problem. Notably, though, either ordering represents a similar set of operations, and ultimately it 
would not matter much, in terms of effort or efficiency, which order of the stages we used. 

As a point of contrast, consider a slightly more complicated problem,“How many even five 
digit PIN numbers are there with no repeated digits (leading zeros allowed)?” Here, again, we 
can specify a counting process. If we specify our stages as considering the options for each 
position from left to right (first to last), we can run into a problem at the last position, which 
needs to be an even number. The number of options we have for that last position depends on 
how many of the previous numbers were even. It seems like we will need a complex case 
breakdown to address this, until we realize that we have the flexibility to specify the order of the 
stages in our process. Let us, as the first stage in the process, consider options for the last 
position (there are 5 even numbers, 0, 2, 4, 6, 8). Then, once that is specified we can return to the 
first position (or any other position) and there will be 9 options (everything except the digit used 
last), then 8, then 7, then 6. The answer is thus 5*9*8*7*6. Now, mathematically we could re-
write this as 9*8*7*6*5 as a numerically equivalent expression, but we lose the valuable 
information of the counting process with the specified order. In this problem, the ordered 
counting process is helpful. The point is that a person counting has flexibility with regard to what 
process is being implemented. A judicious ordering of stages facilitates an efficient solution.  

In terms of how order plays into statements of the MP, the MP specifies how to use 
multiplication to count, once a particular course of action (or a particular order of stages in a 
counting process) has been determined. As a result, the statement need not explicitly include a 
clause that allows for any order of stages, even though it is true that often multiple orders of 
stages is allowable (such as on the 2*6*52 problem). Rather, the point of the statement is to 
speak to when multiplication applies once a counting process is specified. Interestingly, because 
multiplication, as an operation, is commutative, the issue of order in the MP raises questions 
about how multiplication as an operation differs from multiplication in the context of counting. 
We briefly explore the commutativity of multiplication and how it relates to multiplication in 
combinatorial enumeration in the Discussion and Conclusion section. 
 

Methods 
For data collection, we conducted a teaching experiment (Steffe & Thompson, 2000) in 

which a pair of undergraduate students solved counting problems over eight hour-long sessions. 
The students were enrolled in vector calculus in a large university in the western United States, 
and we selected them because they had not been explicitly taught about the MP in their 
university coursework. The interviews took place outside of class time over a period of four 
weeks. Broadly, the students solved a series of counting problems, and they were asked to write 
down and characterize when they were using multiplication as they solved these problems. They 
wrote down several iterations of statements of the MP, and throughout the study the interviewer 
selected tasks to highlight various aspects of the MP and regularly asked clarifying questions.  
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The students engaged in three kinds of activities during the teaching experiment: solving 
counting problems that involve multiplication, articulating and refining a statement of the MP 
and evaluating given textbook statements of the MP. Although there was some overlap of 
activities in each session, Table 1 gives the overall structure of the teaching experiment by 
outlining the session number (and total number of tasks in each session), a sample task given in 
that session, and the predominant activity that occurred in each session. When designing tasks 
for the teaching experiment, we drew on the three key mathematical ideas presented in the 
textbook analysis (Lockwood, et al., in press). That is, when preparing for and implementing the 
reinvention, we designed tasks with the aim of addressing those three key mathematical issues.  
 

Session Sample Tasks for Each Session  Goal of Session 
1 – 2  
(11 total 
tasks) 

How many ways are there to place two different-colored rooks 
in a common row or column of an 8x8 chessboard?  
 

Solving 
counting 
problems  

3 – 5  
(9 total 
tasks) 

How many ways are there to flip a coin, roll a die, and select a 
card from a standard deck? 

Articulating a 
statement of the 
MP 

6 – 7  
(9 total 
tasks) 

How many 6-character license plates consisting of letters or 
numbers have no repeated character? 

Refining their 
statement of the 
MP 

8 
(7 tasks) 

Please read the following statement [such as Tucker’s (2002) in 
Figure 1]. How is it similar to or different from your own 
statement?  

Evaluating 
given textbook 
statements  

Table 1 – Overall structure of the teaching experiment 
 

For data analysis, we first videotaped and transcribed the interviews. For this paper we 
especially examined episodes in which the students talked about order in their statement of the 
MP. We developed and used a conceptual analysis of order in the MP, and we used that to better 
understand what the students might have been thinking about and emphasizing.  
 

Results 
In this Results section, we attempt to provide evidence for Pat and Caleb’s (pseudonyms, 

both students are male) emphasis on order. In particular, we first present the students’ work on a 
problem in which they first seemed to grapple with order. Then, we present three brief episodes 
that emphasize their repeated interest in order and highlight certain ways of thinking about order.  
Students initially reason about order  

During Sessions 1-2, the students were not yet articulating or refining statements of the MP 
but were solving initial counting problems involving multiplication. In Session 2 we gave them 
the problem, “How many ways are there to place two different-colored rooks in a common row 
or column of an 8x8 chessboard?” A possible solution to this problem involves thinking of 8 
options for the first rook row, 8 options for the first rook column, 2 options for whether the 
second rook is in the adjoining row or column, and lastly 7 options for the second rook’s specific 
square. Thus we have 8*8*2*7 = 896. The students gave the following answer, which explains a 
solution of 2*2*8*8*7: 
Pat:  You'll have two selections for color… So then you'll choose color, you'll choose if you're 

doing rows, putting them in the same rows or columns, then you'll have eight selections 
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for which row or column, and then you'll have eight selections for first placement, and 
then you'll have seven remaining options for the second placement. 

Here the students are inadvertently multiplying by an extra 2 for the first choice of rook 
color. Accounting for color is unnecessary, because placing a white rook in Square 1 and a black 
rook in Square 2 is the same as placing a black rook in Square 2 and then a white rook in Square 
1. If we also multiply by 2 for the rook color, we count every possible placement of rooks twice. 

We then discussed this issue for some time with the students. They realized that they were 
overcounting, but they also seemed attuned to order and the language of “first” and “second.” 
We see Pat’s exchange with the interviewer in the following conversation, and the underlined 
portion especially suggests that he was emphasizing that the order in which the rooks were 
placed should not be taken into consideration in the solution: 
Pat:  You could put white here first or white here second, black here first or black here second, 

white here first or white here second, as long as it ends up there with the other one 
ending up somewhere, the first place.  

Int.:  Okay. So you're talking about, kind of, this first and second language. 
Pat:  Yeah, yeah. So it doesn't matter which order they're placed, as long as they end up in the 

same position.  
They went on to say that there was no “temporal” element to the process, all that matters is 

the final outcome of two rooks on a chessboard. We feel that as a result of this experience, the 
students were later reluctant about making any commitments about the specific order in which 
stages in the counting process must occur. We contend that was an important episode for the 
students, as this seemed to the impetus for their focus on order in the teaching experiment.  
Students incorporate of clauses about order in their statements of the MP 

We now offer data examples that exhibit how the students’ interest in order arose in the 
context of their reinvention of a statement of the MP. These examples are meant to demonstrate 
the nature of the students’ thinking about order as a component of the MP. As noted above, 
because this was an unexpected aspect of their work, by examining it we can better understand 
how students perceive order, hopefully ultimately leveraging insights about such thinking to help 
students develop productive ways of thinking about the MP.  

The students had provided an initial statement (Use multiplication in counting problems 
when…there is a certain statement shown to exist and what follows has to be true as well), which 
we perceived as a first attempt that still needed significant refinement. We gave them more 
problems to investigate multiplication, and in Session 4, we gave the students the problem 
described above, How many ways are there to flip a coin, roll a die, and select a card from a 
standard deck? The students quickly gave the correct answer of 2*6*52, and we prompted them 
to try to explain their reasoning and potentially to connect their answer to their statement of the 
MP. The discussion that ensued suggested the students’ view that time and order no longer 
mattered. We hypothesize that their ways of thinking were affected by the experience of 
overcounting in the rook problem.  
Pat:  So I feel like, if there's no order in which the selections have to be made, I feel like there's 

multiplication.  
Int.:  Okay.  
Pat:  At least that's part of it. I feel like it's more complicated than that. But I feel like as long 

as we're just selecting a coin toss, a dice roll, and a card, it's the same number of 
outcomes no matter how you do that. And so if there's no order in which you have to 
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make your selection, I feel like that makes all the movements possible, if you put it in 
order it will still be the same number of outcomes but you can do it however you want, 
and you'll have the same number. So regardless of how you say where to start, you'll get 
the same number of possible outcomes. So it doesn't actually matter what order you do 
the selection that's, that would be mult... I don't know if that leads to multiplication or if 
it’s just multiplication reflects that fact.  

Caleb:  Yeah. I think it might be more of the second one.  
Pat:  Yeah.  

At the beginning of the statement (the first underlined portion), Pat articulates the idea that he 
will get the same number of outcomes no matter the order in which he does the three tasks. This 
is true, and for this problem in particular the order in which the three tasks are completed does 
not affect the total number of problems. However, note that in order actually to complete the 
multiplication and determine the solution, one must specify (and commit to) a particular order. 
That is, we could yield 2*6*52 or 6*52*2, or any other arrangement of the tasks, but in actually 
multiplying a specific sequence must be determined. In this particular problem, each ordering of 
the tasks yields essentially the same amount of work, and there is no clear benefit to doing tasks 
in any particular order. However, as we demonstrated with the PIN number problem above, 
sometimes it behooves a student to specify a particular order in which to complete stages of the 
counting process. So, Pat’s observation about order on this problem is correct, but order does not 
always behave in this same way on other counting problems. 

At the end of his statement (the second underlined portion), Pat reflects on whether the idea 
of order not mattering implies multiplication or if it is simply a reflection of multiplication. This 
is a noteworthy observation that highlights questions about the nature of multiplication and also 
the nature of a statement of the MP.  

Questions about order came out again in Session 4 when the students try to articulate 
multiple pathways (options) into their statement of the MP. Here we see that they did not want to 
incorporate into their statement how they order the stages in the counting process.  
Caleb:  But it has, it's more than just that because that really only talks about one outcome and 

one pathway. It has to do with all these, like how many times you multiply too, and when 
the whole, but I'm trying not to incorporate like how you order it.  

Int:  Ok. Great. Hang on, so you’re, real quick, so you're saying, so you're trying not to 
incorporate how you order it, and what do you mean by that? 

Caleb:  So I'm not saying like one comes first and then you multiply another and then another. 
I'm trying to just say there's a total number of pathways and a total number of options… 

As a final example of their reasoning about order in the MP, we share an episode when we 
gave them the relatively straightforward problem of How many ways are there to put four 
distinct people in a line? The students were easily able to identify a counting process and solve 
the problem correctly (they said that they had four option for which person goes in the first spot, 
then three options for who goes in the second spot, and so on), but they were reluctant to 
acknowledge a specific order in which they solved the problem. We asked them to list out all 24 
outcomes in a way that reflected their counting process, and they wrote an alphabetical list of the 
letters A, B, C, and D. Then, we asked them to list differently, in which the letter A was in the 
third position. To us, the two lists would reflect two different orders in which to complete the 
counting process, and we hoped it would help them realize that they could specify a certain 
order. As the exchange below shows, the alternative way of listing did not register for them, and 
in fact they saw no difference in the two orders that would produce two different lists. 
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Int.:   So then presumably you could also list out where C and D are in the third position right? 
Pat:  Yeah, you could.  
Int.:  I mean, you could get all 24. Does that seem like that matters at all to you, or is it just 

like –  
Caleb: No, it means absolutely nothing.  

From these three examples, we suggest that the first problem involving rooks had a deep 
impact on the students’ thinking about order in the MP. They were hesitant to enforce any sort of 
ordering on the problems, and they wanted to include a clause about order in their reinvented 
statement of the MP. Although in the end the students did create a cohesive and refined 
statement of the MP, this foray into order is to show an unexpected outcome of working on a 
reinvention of the MP, and it serves as a reminder that students often have robust and consistent 
ways of thinking that may differ from our (as researchers) initial expectations. 
 

Discussion, Conclusions, and Implications 
Perhaps because order is often treated implicitly in many textbook statements of the MP, it 

was not a feature that we expected students to discuss explicitly (as opposed to independence and 
overcounting, which we suspected would be key mathematical issues for students). However, 
order was one of the main issues to which Pat and Caleb students repeatedly returned, and this 
allows for a couple of important points of discussion.  

First, our findings indicate that the notion that multiplication in counting involves ordered 
stages is not always natural for students to consider. And yet, our results suggest that it is 
important for students to think carefully about order and the role it plays in the MP. More 
specifically, the fact that counting processes specify an order emphasizes that we as counters can 
have flexibility, and we can choose to complete stages in a counting process in a way that will be 
effective or efficient (as the PIN number problem suggests). This is an issue that we feel should 
be emphasized among students as they learn to count 

The results also highlight a potential distinction between multiplication as an operation 
(which is commutative over the nonnegative integers) and multiplication in a combinatorial 
context. The fact that different orders of stages might result in a better solution to a counting 
problem suggests that commutativity of multiplication may not be a key feature of multiplication 
we want to emphasize in combinatorial contexts. 

We acknowledge that since this is just one set of students, we cannot say for certain how 
other students will treat the same issue. And, we believe that this is likely a remnant of their 
work on one particular problem (rooks on a chessboard), and that the experience of solving that 
problem had a lasting impression on them. However, the fact that order was such an important 
feature of Pat and Caleb’s work suggests to us that it represents a strongly held mathematical 
idea, and we conjecture that other students might also think similarly about order in the MP.    

In further research we would like to do more teaching experiments that acknowledge student 
thinking about order in a more purposeful way. Due to the unexpected nature of this issue, we 
would like to create more problems and questions to help students become attuned to order in 
future teaching sessions. We strongly believe that having a well-defined understanding of order 
within the MP is a key mathematical aspect of understanding the when and why one can use 
multiplication when solving counting problems.  
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Computational Thinking in and for Undergraduate Mathematics: Perspectives of a 
Mathematician 
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We report on a mathematician’s perceptions and awarenesses related to incorporating 
problem-based activities requiring computational thinking into an upper level undergraduate 
mathematics course.  Computational thinking is understood as the thinking, strategies, and 
approaches for problem solving that parallel the design of computational algorithms which 
can be followed and executed by a computer.  Data from this case study is qualitative in 
nature, and seeks to present an in-depth account of one professor’s experiences developing 
and teaching computational thinking in and for mathematics.  Analyses highlight the 
similarities and differences amongst the values and opportunities perceived for 
computational thinking versus other more ubiquitous mathematical approaches, as well as 
the perceived tensions and challenges in trying to foster such values and opportunities. 

Key words: Computational Thinking; Undergraduate Mathematics; Awarenesses; 
Disciplinary Goals; Mathematics Professor 

This study reports on the case of a mathematician’s aims and objectives when 
incorporating a focus on computational thinking in an upper level undergraduate course 
focused on problem solving, simulations, and mathematical investigation.  Computational 
thinking can be loosely defined as the thinking involved in, and related to, computer 
programming.  This can include screen-based programming, paper-based or embodied 
pseudo-coding, as well as other approaches to problem solving that parallel the design of 
computational algorithms which could be followed by a computer (Aho, 2012; Wing 2006).  
While the idea of using computer programming in mathematics is not new (e.g., Feurzeig, et 
al., 1969; Howson & Kahane, 1986; King et al., 2001; Marshall et al., 2014a; Papert, 1980), 
research has been primarily focused on elementary or secondary school learning (e.g., Floyd 
et al., 2015; Gadanidis, 2014, 2015; Sneider et al., 2014) with recent attention turning 
towards ways computer programming can be used in undergraduate mathematics (Muller, et 
al., 2009; Marshall & Buteau, 2014).  However, purposes and best practices for 
computational thinking in undergraduate mathematics learning are far from well understood. 

This research is part of a broader research program that aims to address the what, why, 
and how of computational thinking in and for undergraduate mathematics learning.  In this 
paper, we focus specifically on the experiences and perceptions of a mathematician in his 
design and implementation of a mathematics course that sought to incorporate computational 
thinking as a key practice.  In particular, we address the following research questions: 

1. What does a mathematician teaching an undergraduate level problem solving course 
describe as the values and opportunities for student learning when incorporating 
computational thinking in and for mathematics? 

2. What challenges and tensions were experienced from a teaching perspective? 
We use a case study approach and qualitative analysis, which are suitable for collecting and 
interpreting in-depth stories of teaching and learning (e.g., Stake, 2000; Yin, 1994).  We use 
Mason’s (1998) framework of levels of awareness to analyze both the disciplinary and 
pedagogical values associated with computational thinking in and for mathematics, as well as 
our participant’s perceptions of opportunities, challenges, and tensions. 
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Background 

Research has highlighted an extensive set of skills and competencies that may be 
developed by incorporating computational thinking in mathematics learning.  These include, 
but are not limited to: self-motivation to do and explore mathematics; experimentation; 
development of mathematical intuitions and approaches; critical reflection; working with 
abstraction and different representations (Howson & Kahane, 1986; King et al., 2001; 
Marshall & Buteau, 2014; Marshall et al., 2014).  Addressing mathematics problems through 
the use of computer programming has also been described as transformative to learning 
(Papert, 1980), fostering learner-driven active engagement, as well as resilience and creativity 
in the face of new and challenging problems. 

Parallels between learning computer programming in general, and developing 
computational thinking for mathematics in particular, have been noted.  Wing (2008) 
observes that: “In computing, we abstract notions beyond the physical dimensions of time 
and space.  Our abstractions are extremely general because they are symbolic, where numeric 
abstractions are just a special case” (p.3717).  In considering higher levels of mathematics, 
abstractions become more complex than simply numeric abstractions and research has 
suggested that the more condensed an abstract object is, the more challenging it is to reason 
with (e.g., Hazzan, 1999).  For example, operating on a set of numbers is seen as a more 
abstract, and more complex, endeavor than operating on a single number.  As such, computer 
programming may offer a sort of scaffold in fostering abstract reasoning by increasing 
students’ experiences with abstraction while providing tangible and immediate feedback on 
how such abstractions may be operated upon. 

Weintrop et al. (2016) developed their taxonomy for computational thinking in 
mathematics and science by analyzing characteristic practices that were seen as the most 
important in meeting both the needs of students and the disciplinary practices of mathematics 
and science professionals. They cite their work as contributing a set of actionable guidelines 
for bringing computational thinking into mathematics and science classrooms quickly and 
effectively that can “serve as resource to address “what” and “how” questions that 
accompany the creation of new educational materials” (p.129).  Their taxonomy is depicted 
in Figure 1, with some elaboration of practices below.   

 

 
Figure 1: Computational thinking in mathematics and science taxonomy (Weintrop et 

al., 2016, p. 135) 
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As the professor participating in our study focused his course on problem solving and 
simulations, we take a moment to explicate some of the facets in the two corresponding 
dimensions of the taxonomy. Modeling and Simulation Practices focus on skills in using, 
analyzing, designing, and constructing computational models.  Models may be used “to test 
many different solutions quickly, easily, and inexpensively” (p.137), and understanding how 
the model relates to the phenomenon being represented can help students articulate the 
similarities and differences between the two.  Noticing similarities and differences is part and 
parcel to rich mathematical thinking (Mason, et al., 1982), and in the context of 
computational thinking can be fostered by questions such as “what assumptions have the 
creators of the model made about the world and how do those assumptions affect its 
behavior?” and “what layers of abstraction have been built into the model itself and how do 
these abstractions shape the fidelity of the model?” (Weintrop, et al, 2016, p.137).  
Computational Problem Solving Practices include interpreting and preparing problems for 
modeling, choosing between and assessing different tools and approaches, developing 
solutions, and debugging or revising.  Students must be aware of which problems can be 
effectively addressed through computational solutions as well as how to reframe a problem so 
that “existing computational tools – be they physical devices or software packages – can be 
utilized” (p.138).  Choosing amongst possible strategies, tools, or solutions, and developing 
modular approaches can foster critical mathematical thinking and logical deduction, while 
equipping students with a set of approaches that can be applied to larger, more complex 
problems.  Of interest in this research study is whether and which practices emphasized in the 
taxonomy are recognized, valued, and incorporated by the professor teaching a problem-
based mathematics course, and which practices may be seen as more challenging to 
incorporate. 

Theoretical Framework 

Mason’s (1998) article discusses the necessary levels of awareness which distinguish 
between a novice, an expert, and a teacher in the discipline of mathematics.  These levels of 
awareness are linked to the structure of attention, which “encompasses the locus, focus, and 
form of attention moment by moment” (p.250).  Through shifts of attention, awareness is 
broadened and an individual may move from novice, to expert, to teacher through his or her 
attention and sensitivity toward different aspects of the discipline.  Mason (1998, p.256) 
identifies and develops three forms of awareness: 

• Awareness-in-action: this is the awareness which focuses attention on what to do in 
the moment.  It is “highly personal and context specific” (p.256) and enables us to act, 
to know what to do in response to some stimulus.  Awareness-in-action includes the 
“power to select, distinguish, demarcate, discern, detect differences; … to see 
(construct) something as an example of something else… to abstract… to connect… 
to express… [and] to decide” (p.257). 

• Awareness-in-discipline: this awareness is awakened when one becomes aware of his 
or her awareness-in-action.  In other words, it is an awareness “which enables 
articulation and formalisation of awarenesses-in-action” (p.256).   Awareness-in-
discipline is broadened by the ability to formalize algebra and geometry, to appreciate 
how and why we act in the moment, to enact the “habits of thought, forms of fruitful 
questions, and methods of resolution of those questions” (p.259) applicable to the 
discipline of mathematics. 

• Awareness-in-counsel: this is the awareness required of teachers.  It is an awareness 
of awareness-in-discipline; the “self-awareness required in order to be sensitive to 
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what others require in order to build their own awareness-in-action and –in-
discipline” (p.256).  Awareness-in-counsel “provides access to sensitivities which 
enable us to be distanced from the act of directing the actions of others, in order to 
provoke them into becoming aware of their own awarenesses” (p.261). 

In Mason’s perspective (and we agree), teaching is not about telling students what to do, but 
rather it involves eliciting and fostering their ability to decide for themselves what to do.  In 
the context of undergraduate mathematics education, an instructor’s awareness-in-counsel is 
evidenced in his or her choices (and the expressed reasons behind these choices) of what 
content, practices, habits of minds to emphasize, as well as in the features of the problems or 
tasks chosen to elicit and support the shifts of attention that will help novice become expert. 

As an analytic lens, we use the construct of awareness to interpret and analyse a 
mathematician’s decisions and reflections regarding the values, opportunities, challenges, and 
tensions of teaching a problem-solving mathematics course with a focus on computational 
thinking.  We focus in particular on our participant’s awarenesses related to the taxonomy of 
computational thinking and practices developed by Weintrop et al. (2016) as they are 
associated with, or different from, mathematical thinking and practices more generally.  In 
particular, we examine what our participant identified as valuable ways of knowing and 
practicing mathematics with computational applications, what opportunities were envisioned 
or provided, what challenges emerged, and what tensions were felt in terms of realizing those 
values and opportunities in the face of the emergent teaching and learning challenges. 

Methodology 
Our participant was an experienced and well-received mathematics instructor, whom we 

shall refer to as Dr. Y.  Dr. Y has taught at the undergraduate level for over 25 years, and this 
was his third time teaching a course which emphasized computational thinking for 
mathematics problem solving.  Since this research focuses on an in-depth qualitative analysis 
of an individual’s experiences and decisions regarding teaching and learning, a case study 
approach (e.g., Stake, 2000; Yin, 1994) is appropriate.   Data include field notes taken during 
the course by one of the researchers, personal reflections and instructional materials provided 
by Dr. Y, as well as unstructured interviews conducted at the completion of the course. 

The course taught by Dr. Y was an undergraduate third year problem solving course for 
mathematics majors.  The main objectives of the course included enriching students’ existing 
content-based knowledge and enhancing their problem solving strategies and thinking.  
Classes were conducted in 50-minute blocks, and students spent the majority of class time 
working on problems, which they could choose to do individually or in small groups.  The 
problems were chosen to elicit or provide different perspectives on material that was covered 
in other courses, as well as to stimulate reflection on various new and familiar ways of 
engaging in solving problems.  Students were expected to discuss and justify their solutions 
with their peers and their instructor, and were required to present solutions to the class at 
various times throughout the semester.  Weekly assignments were assessed, as well as two in-
class tests and a final exam.  As part of his description of the course, Dr. Y emphasized (and 
this was confirmed via field notes) that very little of class time was spent on lecturing.  Dr. Y 
reported that lecturing was “done only to introduce a problem or a set of related problems, 
and provide context and motivation.  Students realize that the problems are not in any way 
‘randomly’ selected, but instead are tied to their previous knowledge and experiences.” 

Students in the course were described as “mathematically mature” – each had taken 
several second year courses, with experience working with theorems and proofs, and had 
“developed a critical attitude toward the level of rigour required of a proof”.  However, 
students’ computer programming background varied widely: some had no programming 
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experience beyond using one-line commands in Maple of Matlab, while others had taken 
computer science courses and / or had written programs in several languages.  Dr. Y 
indicated that as of Fall 2016 this would change, as students will be required to complete a 
new programming requirement by the end of their second year.  In this problem solving 
course, student learning objectives included “practicing math the way math researchers do” 
and “learning to write programs in Python and use them to investigate problems in math”.  At 
the time of this research, Dr. Y indicated that approximately 40% of class time and 
assessment was devoted to computational thinking, with an emphasis on the “basic building 
blocks” of coding such as conditional statements and loops.  Detailed course objectives were 
co-constructed throughout the course as students discovered and developed an extensive list 
of strategies for problem solving. 

Results and Analyses 

We organize this section around our two research questions, addressing respectively: 
1. Values and opportunities: we examine Dr. Y’s perceptions via his choices in 

pedagogical structures, such as features and affordances of exemplar tasks, as well as 
his expressed motivations and intentions for course activities and objectives; 

2. Challenges and tensions: we rely on field notes, reflections, and interview data to 
analyse Dr. Y’s experiences enacting his teaching agenda within institutional 
constraints and in response to student feedback. 

 
Values and opportunities 

As previously mentioned, Dr. Y spent minimal class time lecturing students and the value 
he placed on providing opportunities for students to “discover” and “develop” were made 
explicit in course objectives.  Exemplifying his awareness-in-counsel, he sought to foster 
students’ powers in selecting and distinguishing problem-solving strategies (awareness-in-
action) and to compel them to formalize this awareness via their articulation of (e.g.) which 
kinds of problems could be reformulated in such a way as to be solvable with programming 
(awareness-in-discipline).  To this end, students encountered a variety of problems and tasks 
which required reformulation, and in the cases where the problems could be fruitfully solved 
through programming, students were required to use, assess, and design computational 
models for solving – features of the modeling & simulation practices described by Weintrop 
et al. (2016).  One of the early examples of a programming activity to which students were 
exposed introduced the concept of a two-dimensional random walk and required students to 
construct a program which simulated N steps of the walk (start at the origin, and with equal 
chance move up, down, left, or right).   

Dr. Y described some of his reasons for using this problem: 
“The problem itself is not so difficult.  Most students have little or no problems 
writing and running the code. However, testing the code is a challenge, because there 
is a new element in it – randomness.  Students are familiar with testing a 
‘deterministic’ program, where they could predict the answer, run the program and 
see whether or not their answer agrees with the computer’s answer.  But how does one 
test a program whose output is based on randomness?  This is more difficult.  
Visualization helps, trial and error, tinkering with the code…  Eventually students 
have to figure out the distance between the initial and terminal points of a random 
walk with N steps, and then compute the average distance as the random walk is 
repeated many times.  Now they can compare the average distance they obtained to a 
theoretical result, thus having a way of checking that their code is correct.” 
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In this excerpt, we identify several points of interest.  First we note Dr. Y’s use of a “not so 
difficult” problem that increased in complexity through the practice of testing and verifying 
the code.  Following Papert’s (1980) lead, such a “low-floor / high-ceiling” approach requires 
minimal prerequisite knowledge yet offers opportunities to investigate more complex ideas, 
practices, and relationships.  Referring to Weintrop et al.’s (2016) taxonomy, we note 
opportunities for students to develop computational problem solving practices, such as 
preparing problems for computational solutions (“writing and running the code”), assessing 
different approaches / solutions (“testing the code”), and troubleshooting and debugging 
(“tinkering with the code”).  We interpret the selection of this problem as an instantiation of 
Dr. Y’s awareness-in-counsel, namely, the sensitivities required to direct novice students’ 
attention toward complex computational practices required for disciplinary expertise.   A 
second point of interest is Dr. Y’s acknowledgement of the complexities associated with 
random systems, and the role of visualization in helping to attain a theoretical result.  
Randomness can be challenging for mathematics learners to address, and novice strategies for 
dealing with randomness have included various ways of reducing its level of abstraction (e.g., 
Chernoff & Mamolo, 2015).  By contextualizing questions related to randomness within 
computational thinking, students may be provided with scaffolding for developing abstract 
reasoning – the tangible feedback given by the program they construct, test and adapt offers 
insight that may not be readily perceived in other contexts.  Similarly, the insights gained 
through the practice of visualization have been linked to conceptual development in higher 
mathematics (e.g., Tall, 2007), as well as achievement and understanding (e.g., Koehdinger, 
1992).  A final point we note is the connection, within this task, of mathematical disciplinary 
practices and content and computational practices.  The computational practices support 
mathematical ones and facilitate the development of mathematical content, while the act of 
verifying that students’ code is correct highlights an important difference between the two 
disciplines and their practices – specifically, as Dr. Y put it, that “providing evidence that a 
computer code is correct is different than a formal math proof!” 
 
Challenges and Tensions 

With respect to institutional constraints, some challenges were already mentioned – the 
diversity in students’ prior programming experience, the scheduling of three short classes per 
week, as well as the size of the course.  The course runs with 30-40 students in a regular 
classroom (rather than a computer lab), and students are required to bring their own portable 
devices in order to engage with class activities – while most students brought notebook 
computers, some tried to work on their phones and others had no devices.  A few of the 
observed challenges included syntactical differences in Python depending on what operating 
system was in use – for instance, the tab function will work for indenting in iOS but yields an 
error in Windows.  While not a major concern, such discrepancies needed to be negotiated 
during students’ peer-peer interactions and work.  A more significant issue that emerged 
occurred when students either did not own, or did not bring, their own portable computer.  
This led to group work that positioned some students at the periphery, while others were 
central to the activity.  Dr. Y expressed frustration at this imbalance, and noted that “students 
who watched someone else type and work on screen seemed to learn less, and were less 
confident in their coding.”  This was a particular challenge during problem-solving activities 
wherein students would go straight to on-screen programming solutions, without preliminary 
discussion or paper-work, making it difficult for other students (and the instructor) to follow 
their thinking.  Dr. Y also noted that the 50-minute classes were not ideal for his pedagogical 
approach.  The time limit constrained the types of problems selected for the course, stemmed 
peer-peer discussions, and inconvenienced students – Dr. Y remarked: “just as students get in 
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the ‘zone’ [problem-solving zone] tackling some rich mathematics, the class ends and they’re 
off to biology or physics or something completely different.”  Watson (2008) has touted the 
importance of extended experiences with mathematics, noting that it is more difficult to learn 
the subject when attention is constantly shifting from one task to another.  We see this as 
particularly relevant for computational thinking in mathematics problem solving, as the added 
need to reformulate a question in programming terms and to coordinate theoretical and 
computational solutions may require additional time, especially for inexperienced learners.  
In reflecting on these issues, Dr. Y’s attention seemed to shift from acknowledging the 
constraints to posing questions around how to better navigate them, suggesting a broadening 
of his awareness-in-counsel.  He raised questions around how to construct appropriate 
activities that include programming and which could be meaningfully tackled given the 
aforementioned constraints of time, class-size, and student access to computing devices. 

A notable tension that emerged for Dr. Y concerned the use of group work and how this 
impacted ways in which he was able to fairly assess students.  He noted that previous 
offerings of the course had relied primarily on take-home assignments that could be 
completed in groups, but were to be submitted individually.  Dr. Y noted “in a problem-
solving course, it makes sense to assess problem-solving and it’s difficult to do that in a 
midterm or exam.”  However, concerns emerged: “most students were handing in perfect, or 
near-perfect, solutions, often very similar to their peers’ solutions, and yet different from the 
kinds of work they were producing and presenting in class.  It was obvious that they did not 
take the course requirements seriously.”  In addition, Dr. Y identified challenges in assessing 
programming-based problem solving as “when students work on-screen, usually overwriting 
the code, it’s hard to follow their thinking.”  As a result, Dr. Y introduced a significant in-
class assessment component comprised of tests and exam, and accounting for 80% of the 
course grade.  Dr. Y lamented, “I’m not sure what else to do.” 

Concluding Remarks 

Despite the tensions and challenges which emerged, Dr. Y’s perceptions of the role of 
computational thinking in and for undergraduate mathematics were positive.  Dr. Y reflected:  

“Very often, when we teach math, we ‘forget’ how results, theorems, or definitions 
have been arrived at.  We present a proof, but rarely talk about how it was 
constructed, and in particular, we don’t talk about failed attempts!  By attempting to 
solve a problem, students experience some of that essential process of creating 
mathematics.  By writing a computer program, they can engage in rich mathematics, 
develop important habits of mind, and produce something tangible in the end” 

Dr. Y plans to increase the emphasis on computational thinking in future instances of the 
course, and we plan to extend this research following him through changes inspired by the 
shifts of attention and broadening of awarenesses that occurred during the course of this 
study.  With a growing emphasis on computational applications of mathematics, both in 
industry and education, there is a need to better understand the role that mathematics courses 
can play in fostering computational thinking.  Attention toward how the broad array of 
computational practices for mathematics may be developed is needed, particularly for those 
practices which closely relate to the mathematical habits of mind necessary for disciplinary 
expertise.  Yadav et al. (2014) noted that fewer than 15% of the pre-service teachers surveyed 
recognized critical thinking as part of computational thinking, and fewer than 10% viewed 
computational thinking as helpful in understanding the “why” behind problems, suggesting 
work is needed to raise awareness of what is computational thinking (in and of itself, as well 
as in connection to mathematics) and what are fruitful learning experiences for students. 
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“Explanatory” Talk in Mathematics Research Papers 
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In this paper we explore the ways in which mathematicians talk about explanation in their 
research papers. We analyze the use of the words explain/explanation (and various related 
words) in a large corpus of text containing research papers in both mathematics and physical 
sciences. We found that mathematicians do not frequently use this family of words and that their 
use is considerably more prevalent in physics papers than in mathematics papers. In particular, 
we found that physicists talk about explaining why disproportionately more often than 
mathematicians. We discuss some possible accounts for these differences. 

Key words: corpus linguistics, mathematical language, mathematical explanation. 

The notion of explanation in mathematics has received a lot of attention in both mathematics 
education and the philosophy of mathematics. In mathematics education, scholars have been 
particularly interested in proofs that explain mathematical theorems (i.e. proofs that provide an 
insight into why a mathematical claim is true) and their role in the mathematics classroom (e.g. 
Hanna, 1990). Philosophers of mathematics have discussed at length possible equivalents for 
mathematics of existing philosophical theories of scientific explanation (e.g. Steiner, 1978). 
Some of these discussions bring to bear the extent to which explanation is relevant to the actual 
practice of mathematicians and often cite individual mathematicians’ views on mathematical 
explanation (more often than not that mathematician seems to be Henri Poincaré, Paul Halmos, 
or William Thurston). In this report we explore the extent to which mathematicians talk about 
explanation in their research papers, and the ways in which they do so. 
 

Literature review 

In an influential paper in mathematics education, de Villiers (1990) argued that proof serves 
several different roles in mathematics, that proof is not only used in mathematics as a way to 
verify results, to provide conviction of the truth of those results (see also Bell, 1976). One of 
those other functions of proof was to explain mathematical results, to provide an insight or 
understanding into why these results were true, as opposed to just evidence in support of that 
result. Hanna (1990) made a similar distinction in the context of the teaching and learning of 
mathematics, discussing the idea that certain proofs fulfilled this explanatory function better than 
others, to the point that among the set of all proofs one could identify proofs that explain why a 
theorem is true, while others simply demonstrate that a theorem is true. Mathematics educators 
have generally suggested that in the mathematics classroom, mathematical explanation should be 
an important, if not the primary role of proof (de Villiers, 1990; Hanna, 1990; Hersh, 1993).  

This distinction between proofs that explain and proofs that demonstrate has a longer history 
in the philosophy of mathematics. Steiner (1978) put forward a model of mathematical 
explanation, arguing that a mathematical proof could be better defined in terms of what he called 
a characterizing property of a concept in the theorem, as opposed to other alternative defining 
characteristics such as the abstractness or the generality of the proof. Steiner’s top-down 
approach to modeling mathematical explanation by providing a general definition of explanatory 
proof (and thus creating an absolute distinction between explanatory and non-explanatory 
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proofs) has been criticized by other philosophers of mathematics. In particular, Hafner and 
Mancosu (2005) argued that ascribing explanatoriness to specific proofs should be done based on 
practicing mathematicians’ evaluations, not philosophers’ own intuitions (such as Steiner’s). The 
extent to which practicing mathematicians not only agree with philosophers’ characterization of 
mathematical explanation, but simply talk about explanation in their practice plays an important 
role in the general argument for the existence of explanation in mathematics (which not all 
philosophers believe). As such, it is not uncommon for a discussion of mathematical explanation 
to mention how much mathematicians talk about it. For example, Steiner claimed that 
“mathematicians routinely distinguish proofs that merely demonstrate from proofs which 
explain” (p.135), and Hafner and Mancosu (2005) supported their claim that mathematicians 
seek and value explanation in mathematics by presenting several examples of what they called 
“explanatory” talk in mathematical practice: passages of research mathematics papers in which 
the authors explicitly discuss the role of explanation in their own work. However, we do not 
currently have empirical evidence, other than these small selections of introspective accounts, 
about the extent to which talk about mathematical explanation is part of mathematical discourse. 
We believe one of the reasons this has not been studied at a larger scale may be methodological: 
a researcher would have to be able to process and analyze a large number of mathematical 
research papers or conversations among mathematicians. 

One method of studying mathematical discourse at such a scale is to use the techniques of 
corpus linguistics, a branch of linguistics that statistically investigates large collections of 
naturally occurring text, known as corpora. Methods developed by corpus linguists can be used 
to investigate many different types of linguistic questions. Here, we report a study that employs 
some of these techniques to address the following questions: to what extent do mathematicians 
discuss explanation in their research papers, how does it compare to the extent to which they 
discuss other important related notions (such as showing or proving given mathematical results), 
and how does it compare to discussions about explanation in other types of scientific discourse? 
 

Theoretical perspective 

Discussions about mathematical explanation tend to differentiate between explanations of other 
mathematics (i.e. mathematics X explains mathematics Y, or X is an explanatory proof of 
theorem Y), and explanations of physical phenomena (i.e. mathematics X explains physical 
phenomenon Y). Colyvan (2011) refers to these two types of explanation as intra-mathematical 
and extra-mathematical, respectively. Here we focus on intra-mathematical explanations.  

Hafner and Mancosu (2005) further differentiated between two uses of intra-mathematical 
explanations: those that are “instructions” on how to master the tools of the trade (as in 
explaining how to employ a certain mathematical technique), and those that “call for an account 
of the mathematical facts themselves, the reason why” (p. 217). While Hafner and Mancosu 
considered the latter to be a “deeper” use of mathematical explanation, which is also the focus of 
the larger philosophical discussion around explanatory proofs, others have emphasized the 
importance of the former type of explanation in mathematical practice. For instance, Rav (1999) 
insisted that one of the main reasons mathematicians read proofs is because of all the 
mathematical know-how embedded in them, emphasizing the mathematical methodologies and 
problem solving strategies/techniques contained in proofs. According to Rav, “proofs are for the 
mathematician what experimental procedures are for the experimental scientist: in studying them 
one learns of new ideas, new concepts, new strategies—devices which can be assimilated for 
one's own research and be further developed.” (p. 20) Indeed, there is empirical evidence (from 
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both small scale interview studies and large scale surveys) that mathematicians maintain that one 
of the main reasons they read proofs is to gain insights into how they can solve problems that 
they are working on (Weber & Mejía-Ramos, 2011, Mejía-Ramos & Weber, 2014). 

An interesting question related to the specific ways in which mathematicians talk about 
explanation in their papers, relates to these two types of “explanatory” talk: to what extent do 
mathematicians discuss explanations of why a certain mathematical statement is true, compared 
to their talk about explanations of how to do something in mathematics?  

 
Methods 

One of the main ways in which mathematicians around the world communicate about 
mathematics is through research papers stored in the ArXiv. The ArXiv is an online repository of 
electronic preprints of scientific papers in the fields of mathematics, physics, astronomy, 
computer science, quantitative biology, quantitative finance, and statistics. These papers 
constitute a large corpus of scientific text that can be used to analyze mathematical discourse. 

We downloaded the bulk source files (mostly TeX/LaTeX) and converted the source code to 
plain text, which we could then analyze using standard software packages for corpus analysis. 
We then sorted these articles based on their primary and secondary subject classification (Alcock 
et al., 2017, discussed the details about the processing of these source files). All analyses 
reported here are based on a proper subset of this corpus, containing all mathematics and physics 
articles (based on their primary subject classification) uploaded in the first four months of 2009. 
This left us with 6988 mathematics papers (30,892,695 words) and 14861 physics papers 
(58,859,660 words). 
 

Results 

Frequency of explicit “explanatory” talk in mathematics papers 
Table 1 shows the frequencies of all words linguistically related to the word explain 

(henceforth explain-words) in our corpus of 6988 mathematics papers. Explain-words showed up 
4871 times in this set of papers, or approximately once every 1.4 papers. While this certainly 
provides an existence proof of explicit “explanatory” talk in this corpus, it is not very surprising 
(it would very rare if no word based on the word explain showed up in these many mathematics 
papers). In order to get a sense of the extent to which these frequencies were high or low in this 
type of mathematical discourse, we compared them against the frequencies of words related to 
other important mathematical activities. 

Tables 2 presents the frequencies of words linguistically related to the notions of showing, 
solving, and proving, which were chosen based on their relevance in mathematical explanation. 
Measured against these other frequencies, mathematicians used explain-words rather 
infrequently. Indeed, mathematicians used explain-words in their papers approximately 11 times 
less frequently than show-words or solve-words and nearly 23 times less often than prove-words. 

One possibility is that explain-words are simply not used much in this kind of scientific 
discourse in general. Thus, even though the importance of scientific explanation is so obvious 
that it does not need to be justified by looking at “explanatory” talk in science, it could be the 
case that this type of talk is not that common in scientific research papers either. In order to test 
this hypothesis we studied the use of explain-words in the 14861 physics papers in our corpus 
(Table 3). Explain-words showed up 21305 times in this set of papers, approximately once every 
0.7 papers, or twice as often as they showed up in the mathematics papers. Thus, based on the 
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comparison of the use of explain-words in mathematics and physics papers, it seems that 
mathematicians discussed explanations more infrequently than physicists. 

 
Explain-words Frequency 
explain 1827 
explained 1690 
explanation 498 
explains 484 
explaining 175 
explanations 119 
explanatory 51 
unexplained 22 
unexplainable 4 
explainable 1 

Total 4871 
Table 1. Frequency of words related to explanation appearing in the mathematics papers 

 
Show-words Frequency 
show 31691 
shows 12890 
shown 10235 
showed 2414 
showing 2129 

Total 59359 
  

 

 
 

Solve-words Frequency 
solution 25845 
solutions 15956 
solve 2204 
solving 1717 
solvable 1618 
solved 1342 
solves 1071 
solvability 429 
solver 145 
unsolved 95 
solvers 56 
nonsolvable 39 
unsolvable 32 
cosolvable 29 
equisolvable 18 
unsolvability 12 

Total 50608 

Prove-words Frequency 
proof 56452 
prove 29481 
proved 12842 
proves 4160 
proofs 3892 
proving 2661 
proven 1902 
provable 159 
reprove 58 
disprove 43 
provability 29 
reproved 29 
disproved 17 
unprovable 13 
unproven 12 
reproving 11 
disproving 10 
reproves 10 
prover 7 
unproved 7 
subproof 5 
disproof 4 

Total 111804 
 

Table 2. Frequencies of words related to showing, solving, and proving appearing in the 
mathematics papers 
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Explain-words Frequency 
explain 7768 
explained 6513 
explanation 3564 
explains 1601 
explaining 914 
explanations 675 
unexplained 177 
explanatory 62 
explainable 23 
unexplainable 8 

Total 21305 
Table 3. Frequency of words related to explanation appearing in the physics papers 

 
Finally, the search for explain-words may be thought of as requiring an extremely explicit 

discussion of explanation, one that would leave unnoticed a significant amount of the 
“explanatory” talk in these papers. Hafner and Mancosu (2005) offered a list of eight 
expressions that they had found to be commonly used in the mathematics and philosophy of 
mathematics literature to describe the search for explanations. Table 4 presents these expressions 
along with the specific concordance search we made to investigate their prevalence in both the 
mathematics and physics papers, and the frequencies with which these alternative expressions 
appeared. We note that the total number of occurrences of these expressions is only about 10% 
of the total amount of explain-words in each set of papers (with disproportionately more 
occurrences of these expressions in the physics papers than the mathematics ones) and thus this 
analysis does not affect the finding made by only investigating the use of explain-words. 

 
Alternative expression Concordance search Mathematics  Physics 
"the deep reasons" deep* reason* 5 16 
"an understanding of the essence" understand* the essence 0 5 
"a better understanding" better understand* 161 767 
"a satisfying reason" satisfy* reason 0 0 
"the reason why" reason* why 312 924 
"the true reason" true reason 3 1 
"an account of the fact" an account of the fact 0 0 
"the causes of" cause* of 16 609 

 
Total 497 2322 

Table 4. Frequencies of alternative expressions of related to “explanatory” talk 

Explaining why vs. explaining how 
In order to investigate mathematicians’ discussion of explanations of why a certain 

mathematical statement is true (Hafner and Mancosu’s “deep” explanation), in comparison to 
their talk about explanations of how to do something in mathematics (related to Rav’s notion of 
mathematical know-how), we created a concordance of the corpus of papers and identified every 
instance an explain-word had been immediately followed by the words why or how (e.g. 
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unexplained why, explanation how). We did this by searching the concordance for *expla* why 
and *expla* how, and checking that all results were indeed uses of explain-words. We then 
repeated the process with the corpus of physics papers. As, shown in Table 5, there is a clear 
difference between the ways that explain-words show up in the mathematics and the physics 
research papers. 

 

 
Mathematics Physics 

*expla* why 247 952 
*expla* how 458 353 

Total 705 1305 
Table 5. Frequencies of explain-words immediately followed by the words why or how in the 

mathematics and physics research papers 
  
We note that when taken together the total of *expla*-why and *expla*-how expressions 

were roughly as common in math papers as they were in physics papers, with approximately one 
of these expressions showing up every 10-11 papers in the corresponding set, and also a 
relatively small subset of the wider use of explain-words (roughly 14% and 6% of explain-word 
usage in mathematics and physics, respectively). However, the distribution of these two different 
types of expressions in the two sets of papers was significantly different (Fisher’s exact test, p < 
.001), with mathematicians using nearly twice as many *expla*-how expressions than *expla*-
why expressions, and physicists on the other hand using a little under three times as many 
*expla*-why expressions than *expla*-how expressions. 
 

Discussion 

Our analysis of “explanatory” talk in a large sample of mathematics papers does not offer 
support for a claim often made in the philosophy of mathematics: that this type of talk is 
prevalent in mathematical discourse. When compared to explicit discussion of other related 
mathematical practices (showing results, solving problems, and proving theorems), 
mathematicians do not seem to discuss explanation nearly as much. Furthermore, when 
compared to another scientific discourse, we found that mathematical discourse contains only a 
fraction of “explanatory” talk as research papers in physics. Indeed, we believe these findings 
suggest that the prevalence of “explanatory” talk in mathematical discourse has been widely 
exaggerated. 

Furthermore, by analyzing the frequency with which variations of the expressions explain 
why and explain how occur in mathematics and physics research papers, we found that, to the 
extent to which they engage in “explanatory” talk, mathematicians seem to be much more 
interested in discussing explanations of how to do something in mathematics, than in 
explanations of why things are the way they are in mathematics. In physics we found the 
situation to be the opposite. This is particularly interesting given mathematics educators’ and 
philosophers’ of mathematics preoccupation with the type of intra-mathematical explanations of 
the form X explains why Y (where X and Y are mathematical assertions), and particularly with 
the notion of explanatory proofs (in which proof X explains why theorem Y is true). This focus 
may have been inherited from the more traditional study of the notion of scientific explanation, 
which is not only naturally concerned with this type of explanations (the desire to explain the 
real world is full of why-questions), but according to our findings may also be more commonly 
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discussed in scientific discourse in terms of answers to why-questions. However, our findings 
suggest that this focus may also be misguided for those interested in studying the notion of 
mathematical explanation as it more commonly occurs in the discourse of professional 
mathematicians. Indeed, as suggested by Rav (1999), it seems that when it comes to proofs and 
explanations, mathematicians are primarily interested in learning how to solve other problems, 
possibly over learning the reasons why some mathematical results hold true. 

Now, one must be careful about several inferential jumps made in this kind of analysis. First, 
while the ArXiv may well be the largest, most widely used repository of this type of preprints 
and postprints in the world, we have analyzed a very specific type of mathematical discourse, 
leaving open the possibility that studies of mathematical discourse in others settings 
(conversational or other digital communications) could lead to contrasting findings. Second, we 
have analyzed these research papers for a limited type of “explanatory” talk, one required to 
contain explain-words or a limited number of alternative, related expressions. While this was an 
obvious place to start to investigate “explanatory” talk in mathematical discourse, it is certainly 
possible that the analysis of other expressions related to mathematical explanation may skew our 
results. These limitations of the present study indicate clear avenues for future empirical research 
on mathematical explanation. 
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Managing Tensions Within a Coordinated Inquiry-Based Learning Linear Algebra 
Course: The Role of Worksheets 

 
Vilma Mesa, Mollee Shultz, Ashley Jackson 

How do nine instructors teaching a linear algebra course at a research university 
manage tensions that emerge because of the requirement of teaching the course with an 
Inquiry-Based Learning approach within a coordinated system? Using Herbst’s practical 
rationality framework (Chazan, Herbst, & Clark, 2016; Herbst & Chazan, 2011) we identify 
features of the course organization that contributed to tensions between professional 
obligations that were resolved via the production of worksheets that teachers gave to the 
students. We noted differences in how these tensions were handled, and provide some 
evidence that such differences might be related to the research orientation the instructors 
brought and to their status in the institution. We formulate some hypotheses that can shed 
light on how to assist in changing post-secondary instructional practices.  

Key words: Linear algebra, Inquiry-Based Learning, Professional Obligations 

Objectives 

Promoting change in instructional practices in undergraduate mathematics education has 
been an important concern for over three decades. The calculus reform from the 80s and 90s 
resulted in key changes to the calculus curriculum, more prominently by bringing more 
contextualized and representation-rich problems that could capitalize on new hand held 
technologies (Douglas, 1986; Ganter, 1999; Harver, 1998). Federal support for calculus 
innovation through grants by the National Science Foundation increased as these were seen 
as a vehicle for making science, technology, engineering, and mathematics (STEM) fields 
more appealing to students. The need for instructional change was fueled by reports that 
mathematics teaching was one of the main reasons why students left STEM fields (Seymour, 
1995, 2002; Seymour & Hewitt, 1997). Women in particular indicated feeling unwelcome in 
science and mathematics courses.  

Changing instructional practices is a difficult enterprise, however, as documented by 
decades of research in teacher training in the K-12 system and as noted by Henderson, Beach, 
and Finkelstein’s (2011) seminal literature review on change strategies in undergraduate 
STEM education. Henderson and colleagues noted that part of the problem relies on the 
change strategy that institutions use. They note that “developing and testing ‘best practice’ 
curricular materials and then making these materials available to other faculty” (p. 952) is 
ineffective in generating the anticipated change that would happen because of the availability 
of new materials and documents. They also noted that the second typical approach, “‘top-
down’ policy-making meant to influence instructional practices” (p. 952) is equally 
ineffective as it generates arguments that usually threaten and affect collegiality so necessary 
for departments to function well. They note instead that the most effective strategies are 
aligned with or seek to change the beliefs of the individuals by involving them over a long-
term process that promotes an understanding a college or university as a complex system, 
thus making the changes to be fully compatible with the given environment.  

What happens when such approach to change is implemented in a department? This study 
contributes to answering that question by documenting the tensions that emerged as a 
department chose to implement inquiry-based learning methods (IBL) of instruction in a 
linear algebra course that involved about 300 students and 11 instructors. IBL is an approach 
that “invites students to work out ill-structured but meaningful problems… [and] construct, 
analyze, and critique arguments… present and discuss solutions alone at the board or via 
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structured small-group work, while instructors guide and monitor this process” (Laursen, 
Hassi, Kogan, & Weston, 2014, p. 407).  We followed the implementation with two goals in 
mind: first, to understand how the faculty operationalized teaching with inquiry-based 
learning methods and second, to document and understand how they managed the need to 
cover the prescribed content allowing at the same time free exploration of the ideas to comply 
with the spirit of IBL. Having information about what happens when a department seeks to 
institute teaching changes in a key mathematics course such as linear algebra is informative 
for departments interested in pursuing similar moves. This study primarily contributes to the 
literature on teaching change in undergraduate settings. 

Theoretical framework 

We assume that teaching and learning are phenomena that occur among people enacting 
different roles—those of teacher or students—aided by particular resources, and constrained 
by specific institutional requirements. We are neither concerned with the knowledge, beliefs, 
or attitudes of the individual teacher who enacts a particular instructional approach nor with 
the knowledge, beliefs, or attitudes of the students of those teachers. Rather, we seek to 
understand how the people in these roles navigate their obligations as teachers and students to 
ensure that the purposes for which they are gathered together are fulfilled. 

Herbst and colleages (Chazan, Herbst, & Clark, 2016; Herbst & Chazan, 2011), using the 
notion of practical rationality, have proposed that teachers respond to four distinct 
professional obligations while teaching and that some of these create tensions that put 
teachers in a double-bind as they make decisions in the classroom. In this study we attended 
to the disciplinary and the institutional obligations. The disciplinary obligation refers to the 
expectation that teachers will represent the knowledge and practice of mathematics 
appropriately (e.g., precise ideas, correct language). This may include the responsibility of 
checking the mathematical quality of tasks, textbooks, or other resources provided to 
students. The institutional obligation refers to the expectation that teachers will fulfill their 
role as a part of larger organizations (e.g. the department, university, etc.). It involves 
following regimes such as official pedagogies, policies, and assessment that exist 
independently of teachers’ individual preferences. Thus the obligation to a given course’s 
curriculum is a manifestation of the institutional obligation, while the disciplinary obligation 
can “oversee[s] and question[s] the quality of the representation of the discipline offered by 
the curriculum” (p. 1067). We describe key tensions within the IBL linear algebra course as a 
clash between these two obligations precisely because of the need to teach the course using 
IBL.  

Methods 

This qualitative study took place in a coordinated linear algebra course of 11 sections 
taught at a research university. Two major goals for the course are stated in the syllabus 
as:  “to learn linear algebra and to learn how to write a rigorous mathematical proof. 
Students should leave this course prepared to use linear algebra as well as to succeed in 
further theoretical courses in mathematics.” The syllabus also states that the course is difficult 
and names two alternative courses offered to those interested in the “computational side of 
linear algebra.”  

Participants in the study were all the nine faculty members who taught the course in Fall 
2015 at this university. The participants included four post-doctoral fellows, four tenured 
faculty, and one tier-three lecturer. Instructors were further classified as applied or non-
applied mathematicians based on their background and current research interests. There 

20th Annual Conference on Research in Undergraduate Mathematics Education 74020th Annual Conference on Research in Undergraduate Mathematics Education 740



were four applied (Bethany, Ed, Henry, and Miles1), four non-applied (Laura, Lewis, 
Thomas, and Ulrich), and one self-described non-applied mathematician with research 
interests in applied fields. Three of the instructors (Bethany, Ed, and Henry) had taught the 
course in the year immediately before the semester in which we collected the data and had 
developed enough material for the course; three instructors (Ed, Laura, and Lewis) taught 
the course in the semester following the data collection term (See Table 1). 
Table 1: Characteristics of study participants. 

We collected several types of data: interviews with instructors, field notes from about half 
of the course planning meetings, observations and focus groups with students, instructor and 
student surveys on instructional practices, bi-weekly logs about the course from some of the 
faculty, and various documents: the textbook, the pacing chart, worksheets, quizzes, syllabus, 
and exams. We analyzed the interviews thematically by question, seeking to identify threads 
that were relevant to the institutional and disciplinary obligations that instructors responded 
to. We performed an analysis of the textbook to identify the elements that were more 
prominently discussed during planning meetings contrasting its content with the content 
present in a non-IBL textbook. We created a matrix with initial assertions, identifying the 
faculty to which the assertion applied to and the different sources that corroborated the 
assertion, in this way engaging in a cross-case analysis and triangulation of the data sources.   

In order to corroborate our interpretations, we sent a summary of our findings to our 
participants so that they could verify or rectify what we have found. Three of eight 
participants (Bethany, Henry, and Laura) responded making specific suggestions about the 
textbook analysis (part of a longer version of this paper) and corrected some factual 
information regarding the context of the course. Given their comments and who responded 
we have reason to believe that our interpretations accurately reflect the situation that we are 
about to describe. 

There are two limitations to our study. First, we are still in the process of collecting 
student performance data. As of now, we have data from focus groups on student perceptions 
of how IBL supported their learning, but we do not have access to student final grades in the 
course or in subsequent courses. Thus, although we could talk about impact of the change we 
are in no position to do so. Additionally, this study seeks only to document processes of 
change not the impact of the change on students. The students were quite satisfied with the 
learning they were experiencing, but self-report data is hardly sufficient as a tool to convince 
administration of the appropriateness of a programmatic instructional change. In a subsequent 
phase we plan to perform a historical analysis of data to study impact of the implementation 

                                                 
1 Names are pseudonyms.  

Participant Status Research  Terms teaching Linear Algebra with IBL 

Bethany Post-doc Applied Winter 2015, Fall 2015  

Ed Post-doc Applied Winter 2015, Fall 2015, Winter 2016 

Henry Clinical faculty Applied Winter 2015, Fall 2015 

Laura Tenured faculty Non applied  Fall 2015, Winter 2016 

Lewis Tenured faculty Non applied Fall 2015 

Miles Post-doc   Applied Fall 2015, Winter 2016 

Monica Tenured faculty Both Fall 2015 

Thomas Tenured faculty Non applied Fall 2015 

Ulrich Post-doc Non applied Fall 2015 
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of IBL. Second, the first and third authors were involved as evaluators in a training grant that 
involved the participating faculty. The goal of the grant was to increase the number of 
undergraduate students in the lower division courses experiencing IBL. As evaluators, their 
role was to document how the IBL training strategies were deployed and to assess which ones 
were perceived by the faculty as beneficial in helping them understand how to teach with 
IBL. As such, some of the data collected sought to providing feedback to faculty rather than 
provide data for our research questions. For that reason, data related to faculty feedback 
(observations and focus groups) play a secondary, albeit important role, that of triangulation, 
in this analysis.  

Results 

The department had put in place a number of mechanisms to ensure that all the students in 
the 11 sections of the course were exposed to similar content and experiences. These 
mechanisms came in the form of the pacing chart, that indicated the sections of the textbook 
to cover each day; the textbook itself that students had to use to do their daily reading quiz 
and that instructors should use to design worksheets; the homework, which was the same for 
all students in the course; and the exams (two midterms and a final) which were also common 
and graded with a common rubric. Two tensions emerged from the need to fulfill the 
obligations while adhering to those mechanisms. The first tension expressed itself through 
complaints regarding the presentation of content in the textbook required by the department 
that differed from what some faculty thought should be the definitions that should be used, an 
evidence of their allegiance, or obligation towards upholding the knowledge in the discipline. 
This tension is especially interesting to observe in an IBL setting because instructors 
distribute supplementary material in the form of worksheets where they can choose to support 
or deviate from the textbook.  

The second tension emerged from the two explicitly stated goals of the course, “to learn 
linear algebra and to learn how to write a rigorous mathematical proof” and what instructors 
saw was the best way to approach the linear algebra content, either by exemplifying notions 
through concrete examples that then get formalized or by starting with definitions that are 
then exemplified with concrete examples. We saw the faculty resolving this tension in their 
worksheet production by either emphasizing applications of concepts or by increasing the 
level of abstraction and development of mathematical theory. We believe that their choices 
were related to their research interests. We expand on the first tension here. 

According to Henry, the selection of Brestcher as the textbook for the course was 
predicated on the desire to choose a book that helped develop intuition. This was the book he 
felt students could best learn from. Henry chose the textbook after reviewing various options 
and, after having given it “a try,” found it sufficiently readable and usable by the students. 
His perception was that the problems were “decent” and sufficient for helping students 
develop the needed intuitive understanding of linear algebra ideas, despite its shortcomings 
regarding the definitions used for linear independence and linear transformations, and the 
particular ordering of the chapters. During the first semester in which all the sections used 
IBL with Bretscher the faculty heatedly discussed these shortcomings during the weekly 
course planning meetings.  

Confirming those discussions, the interviews with faculty suggested that nearly all 
instructors (7 out of 9) recognized problems with the mathematics in the required textbook 
(e.g., “This book is almost like not having a book. It has good problems and historical 
treatment, but doesn’t have the definitions that mathematicians use,” Thomas). Instructors 
with applied backgrounds handled this problem differently than instructors with non-applied 
background. The former group sought to maintain consistency of content and pacing across 
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the different sections of the course, making an effort to align the content with the required 
readings. For example, Bethany, a professor with an applied background, said,  

A lot of it came down to how much we should rely on the book versus how much you 
should rely on what you think is convention. From my perspective, this is the book 
that students read, and we should try our best to provide them a consistent picture. I’ll 
sacrifice nonstandard definitions for the sake of that consistency.  

Similarly, Ed said that once the textbook is chosen, he sticks to it even if it is not ideal. 
He figured he could be creative with the worksheets and be more rigorous if he wanted to. He 
also said that Bretscher’s definitions (e.g., linear transformations) were good for conceptual 
understanding but not for theory. Henry, who choose the textbook for the course, was also an 
applied mathematician. In contrast, faculty with a non-applied background prioritized 
mathematical development. Lewis did not require students to read the book because he was 
unhappy with the sequence of topics: “The book was awful on many counts, even their 
definitions were suspect.” Monica, while unhappy with the textbook, did not deviate from it. 
She said, “Certain things were in the wrong order,” for example, the way the book introduced 
vector spaces. She liked the use of examples to develop students’ intuition, “...but then the 
book stays with the example of Rn and if that’s the first time you hear about a vector space, 
which is really an abstract concept, …it does harm [if] that’s all we know.”  Like Ed, she 
found the worksheets to be a place that she could supplement the book. She tried to build an 
abstract conception of vector spaces and general structures in class and in the worksheets and 
also through lectures in parallel to the textbook’s examples in Rn.   

Henry and Lewis wrote the original worksheets that were used by most of the instructors: 
Bethany, Ed, and Miles used and revised Henry’s worksheets while Thomas and Laura used 
or referred to Lewis’. We noted that the first group includes all instructors with applied 
background, while the second group includes faculty with non-applied background. Henry’s 
worksheet (Figure 1) from the section on subspaces of Rn, bases, and linear independence 
(section 3.2) contains exercises that use of the term redundant, a term introduced by 
Bretscher (2013, p.125) to create an intuitive build-up to linear independence. However, the 
worksheet also contains a problem that walks students through a proof using the standard 
definition of linear independence.2 Lewis’s worksheet (Figure 2) on linear transformations 
(sections 2.1 and 2.2) begins, “Our definition will be a bit different than the one in the book 
but you will see that it is equivalent to the definition in the book.” His worksheet on linear 
independence, bases, spanning sets, and basis (section 3.2) begins with the standard definition 
of linear independence, span, and a basis, and briefly mentions redundant in his “Something 
to think about” section at the end of the worksheet. Thus, Henry started with the book’s 
definition and related it to the standard definition, while Lewis started with the standard 
definitions and related them back to the textbook. 

                                                 
2 A subset 𝑆 of a vector space 𝑉 is called linearly dependent if there exists a finite number of distinct vectors 
𝑢1, … , 𝑢𝑛 in 𝑆 and scalars 𝑎1, … , 𝑎𝑛, not all zero, such that 𝑎1𝑢1 + 𝑎2𝑢2 + ⋯ + 𝑎𝑛𝑢𝑛 = 0. In this case we also 
say that the vectors of 𝑆 are linearly dependent. A subset 𝑆 of a vector space 𝑉 that is not linearly dependent is 
called linearly independent. As before, we also say that the vectors of 𝑆 are linearly independent (Friedberg, 
Insel, & Spence, 2002, p. 36-37). 
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Figure 1. Sample of Henry’s worksheet from the section on subspaces. 

 

 
Figure 2. Sample of Lewis’ worksheet from the section on subspaces. 
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These examples illustrate the tension between the obligation to comply with the 
institutional requirement of using a textbook that will be consistently used across all sections 
of the course, and the disciplinary obligation to represent accurate mathematics when the goal 
is to foster proving and illustrate how instructors managed them through the writing of the 
worksheets, suggesting a possible explanation rooted on the research background of the 
instructors. This is speculative, as other factors (e.g., institutional status) might have played a 
role as well. 

Discussion and Implications 

The instructors were able to use the worksheets as a place to manage the tensions that 
arose from their institutional and disciplinary obligations. The instructors who were unhappy 
with the content of the textbook were able to provide supplementary material to their students 
that, in their opinion, displayed the mathematics more appropriately. In particular, we found 
instances where instructors preferred different yet equivalent definitions, and used the 
worksheets to connect them to the curriculum.  

All the instructors expressed deep commitments to their students, which indicates that 
these decisions reflected their interest in student success. Research on how courses are 
designed can help the research community build knowledge on what speaks to faculty 
teaching students in STEM environments. The preliminary evidence from this investigation 
suggests that the tensions that can emerge as mathematics departments seek to increase the 
number of students experiencing new ways of teaching can be navigated via a coordination 
system that allows faculty some space for exerting their professional commitments.  
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Function Sameness to “Function” Meaning 

 

Alison Mirin 
Arizona State University 

 
Exploring students’ conceptions of sameness is an avenue for exploring their understandings of 
the objects being compared. More specifically, finding what students think it means for functions 
to be identical can help us figure out what students think it means for something to be a function, 
since identity within a category (in this case the category of function) is inextricably tied to the 
defining aspect of that category. This paper has three primary aims: to illustrate the importance 
of using students’ assessments of sameness as a means to discover their concept images, to 
describe a particular student’s concept image of function and of function sameness, and to 
suggest that the math education research community develop a more refined understanding of a 
“process”(cf.,​  Breidenbach, Dubinsky, Hawks, & Nichols, 1992​ ) conception of function.  
  

 
Key words: ​ equivalence, function, concept image, sameness 

 
I designed this study on function sameness with the following research question in mind: 
(1) Which function representations do students view as representing identical functions? 
However, my research motivations go beyond the stated research question at the service of 

the larger question:  
(2) What do students think “function” means ​?   
Questions 1 and 2 are inextricably linked. Finding what students think it means for functions 

to be the same can help us figure out what students think it means for something to be a function, 
since identity is inextricably tied to what something ​is. ​ This paper uses a case study to illustrate 
the importance of using (1) to answer (2) and to suggest that the math education research 
community investigate what students with a process conception of function (cf., ​Breidenbach, 
Dubinsky, Hawks, & Nichols, 1992)​ view as representing the same process.  

It was natural to adopt ​Tall & Vinner’s (1981) ​ usage of ​concept image​  and ​concept 
definition​ , since these constructs capture the essence of my research question. Someone’s 
concept definition is the definition that he would give in words to that particular concept or string 
of words. A person’s concept image is anything he associates with a particular concept or string 
of words, including mental pictures, computational processes, and properties.  I will use the term 
“concept image” interchangeably with “understanding,” “conception,” and “meaning.”  We can 
reframe (1) as “what is a student’s concept image of sameness of function?” and (2) as “what is a 
student’s concept image of function?”.  

As mathematicians, we view functions ​f ​ and ​g ​ to be ​the same function ​ if and only if ​f ​ and ​g 
have the same domain and ​f(x)=g(x) ​ for all values of ​x ​ in the domain. A student, on the other 
hand, might have a different conception of function sameness. To a student, “ ​f​  and ​g​  are the same 
function” might not mean the same thing as “ ​f​ =​g​ ”; this would be unsurprising in light of the 
research that shows that students often view “=” as a command to calculate (Powell, 2012). I 
investigate what a student thinks it means for two representations of functions to be of the same 
function, disentangled from her assessment of whether or not “equals” means “the same as” in 
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the case of function. In other words, I investigate a student’s concept image of “function 
sameness,” ​not ​ her concept image of “function equality”. 

Research shows that many students have a weak conception of function ​(Bardini, Pierce, 
Vincent, & King, 2014; Breidenbach et al., 1992; Clement, 2001; DeMarois & Tall, 1996; 
Musgrave & Thompson, 2014; Oehrtman, Carlson & Thompson, 2008; Sfard, 1992; D. Tall & 
Bakar, 1992; Thompson, 1994; Vinner, 1983) ​. For example, ​ ​Clement (2001) ​ shows that a high 
percentage of precalculus students fail at completing basic tasks in assessing whether particular 
relations are functions and impose incorrect conditions on what it means to be a function.  In 
particular, several students classified a non-continuous relation (that happened to be a function) 
as a non-function on the grounds that it was non-continuous, even though when giving their 
concept definition of function, they did not mention continuity. ​The method that Clement (2001) 
uses to assess students’ concept images is a common way of investigating students’ concept 
image of “function”; several other researchers (e.g., ​Bardini et al., 2014 ​; ​Breidenbach et al., 
1992​; ​Clement, 2001 ​; ​Tall & Bakar, 1992 ​; ​Sfard, 1992 ​; ​Vinner, 1983 ​; ​Vinner & Dreyfus, 1989 ​) 
assess what students consider to be instances and non-instances of function. This method (of 
having students assess instances and non-instances of function) is useful because it helps 
researchers see beyond simply the student’s stated definition of function.  

 
 

 Subject and Methods 

 
I asked students to identify pairs of representations of functions as representing the same 

function or not. By finding what criteria students use to decide whether two functions are 
identical, we can begin to discern what students take functions to be, since the identity criteria 
for a class of things defines what those things are. Consider sets: if someone says that {2,3} is 
not the same set as {3,2}, then we can infer that this person believes that a set is something more 
than simply a collection of objects.  In the case of function, a student may hint that he thinks a 
function is simply an equation by indicating that different equations automatically indicate 
different functions. For example, ​Sfard (1988) ​ describes how some students revealed their views 
of functions as computational processes when they refused to view the functions  and f g  
defined on the natural numbers by  and ,  as the same(x)f = x2 (0)g = 0 (x ) (x) xg + 1 = g + 2 + 1  
function, despite acknowledging that they output the same values.  

The goal of my study, which takes the form of an hourlong semi-structured clinical 
interview, is to model the student’s concept image of function sameness through a series of tasks 
and accompanying questions, with an eye toward assessing the student’s concept image of 
function. The majority of the interview protocol consists of function comparison questions: the 
student is given two different descriptions or representations of possibly different functions and 
must determine if indeed these representations describe the same function. Four subjects were 
enrolled in the study, but here I discuss only one, Jane. At the time of interview, Jane was a 
senior microbiology major earning an A or a B in an upper-division transition-to-proof course.  

 
Jane’s Concept Images 

 
Jane began the interview with a mathematically correct concept definition of function 

sameness, but she soon began to think that more conditions are necessary. Throughout the 
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interview she talked about two possibilities for sameness: her original, mathematically correct 
notion, which she called “equivalence,”  and then something she considered an additional 1

possible criterion for sameness that would create a narrower definition. Jane clarified that 
equivalence was necessary for sameness but perhaps not sufficient. She said that there is another 
possible criterion for sameness, which she described as sameness of mathematical processes. So, 
Jane considered two possible characterizations of sameness of functions: sameness as 
equivalence, and sameness of mathematical processes together with equivalence. Her notion of 
mathematical process sameness as a criterion for function sameness fits with her concept image 
of “function,” which I will describe in detail later.  

 
Jane’s Concept Image of “Equivalence” 

As early as Task 2, Jane coined her term “equivalence” and stated that it was necessary, but 
perhaps not sufficient, for sameness of functions: 

Excerpt 1: Task 2: What does it mean for ​and ​to be the same function? I:f g  

Interviewer; J: Jane 

I What does it mean for  and  to be the same function?f g  

J I don’t know if a math function being the same is the same as it being 
equivalent...what I mean by equivalent is that if every x I put in through this 
function gives me the same y as every x that I put in...like… if x-sub-1 corresponds 
to y-sub-1 here...if I can put x-sub 1 into either of these equations and always get 
the same y, I would say they are equivalent. I don’t know if in math terms if they 
would be the same 

As the interview progressed, it became clearer that Jane’s notion of “equivalence” of 
functions was the mathematically correct conception of equality of functions. She continued to 
express that equivalence was necessary for sameness, articulating that the functions must have 
the same domain and must output the same value anytime they are given the same input. 
Whenever she could use equivalence to show that two functions were not the same, she did. For 
example, she argued that the functions defined by   are not equivalent and(x) /xf1 = x2 (x)  f2 = x  
hence not identical by virtue of having different domains, and she argued similarly for functions 
represented graphically (where one function was a subset of the other).  Moreover, when asked 
to give examples of functions that are not the same and prove that they are not the same, she 
described pairs of functions that differ on particular values. Jane stressed that she knew that the 
functions were not the same due to differing on a particular input value. She used the language 
“input” and “output” and avoided “independent variable” and “dependent variable”. For 
example, she described the function defined by  as at least equivalent to(x ) x )f + 1 = ( + 1 2  

 because “the here it’s still like, if you are gonna graph it and you get to 5, either(x)g = x2 (5)g  
way you are still going  to get (5,25), so ... if you could always put the same input in and get the 
same output. If there’s the same relationship between the points, I would say they are 
equivalent.” 

 
Jane’s Concept Image of Sameness of Mathematical Process 

1 I use “equivalence” to refer to what Jane calls “equivalence,” which is (in the case of function) what 
mathematicians would call “sameness”.  
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As mentioned earlier, Jane thought that it was possible that there was more to sameness than 
“equivalence”. In several instances in the interview, she described why two equivalent functions 
would not be the same, if in fact equivalence is not sufficient for sameness. She referred to this 
extra criterion as “the same mathematical process” and designated examples and non-examples 
of this criterion. In the remainder of this paper I discuss Jane’s notion of sameness under her 
hypothetical assumption that equivalence is not a sufficient criterion, and thus hone in on her 
notion of “same mathematical process”.  

At several points during the interview, Jane revealed her notion of “same mathematical 
process.” She said that the functions in Task 6 ( and  ) are equivalent but(x) x|h1 = | (x)h2 = √x2  
not the same, but that the functions in Task 8 (  and )  ​are ​ the(x)f = 5 (x) (0x )h = 1 + 5 + 5 − 5  
same (and thus also equivalent). She argued that the functions and were different by virtueh1 h2  
of doing different “mathematical things,” despite being what she calls “equivalent”.  

Excerpt 2: Task 6:   and   ​. Are ​and ​the same function? Why(x) x|h1 = | (x)h2 = √x2 h1 h2  

or why not? I: Interviewer; J: Jane 

I What part of sameness is it lacking? 

J Um, like, it’s not mathematically, like, I don’t know if mathematically it’s 
doing the same thing. 

I What do you mean? 

J Like, whereas this just takes the magnitude of it, this does a mathematical 
thing to it which comes up with the same answer. 

Yet, she argued that the functions  and  in Task 8 were “doing the same thing,” andf h  
further hinted that transformability may be a relevant property for determining sameness. She 
described a process of simplification and contrasted it with a situation in which standard 
algebraic transformation procedures would not apply. 

Excerpt 3: Task 8: Are and the same function? Are and(x)f = 5 (x) xg = 0 + 5 (x)f = 5  

the same function? I: interviewer; J: Jane(x) (0x )h = 1 + 5 + 5 − 5  

J You just have to simplify to like what does this mean or what’s the simplest 
terms we can put this function in. (...) But I feel like there’s some function 
where like, oh the sum from like k=1 to infinity of 2k+1 is equal to like, (n+1) 
squared or something... these are like mathematically different things you do to 
the numbers, it makes them equivalent, like at any k value ...or n value...those 
things are equivalent. So for me that’s equivalence. But for me this [points at 

] is about the same thing, because you just simplify it and you get(x) xg = 0 + 5  
.(x)f = 5  

I What about this one? [points at ](x) (0x )h = 1 + 5 + 5 − 5  

J Well for me, this now, it’s like you have your 5 and your negative 5 and those 
just cancel, and you multiply the 1 across and you still get 0x+5 which is just 0 
times whatever value this is so always 0 so always just 5. So like, I just feel like 
you can just simplify it, and if you can just simplify it, then it’s the same. 
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I Would you not say you could simplify this infinite sum to the formula ?n )( + 1 2  

J Yeah I guess you probably could...it just feels different to me….because like 
this (sum) is a different sort of structure...it’s like hey if we are taking all of 
these values and adding them up...you know...we get some value, and this 
(formula) is like what’s the value you put this one number in. ​This (sum) is still 

an input-output deal but like, it’s like a mathematically different process to 

get the output ​ but here [points to  and ]...these(x)f = 5 (x) (0x )h = 1 + 5 + 5 − 5  
feel like the same process. 

 
When Jane compared a piecewise function with a non-piecewise function, she yet again 

emphasized that, although the functions are equivalent, they differ because “you’re using a 
different tool to get to a place”. 

All the examples that Jane described as equivalent but not the same were not transformable 
via typical algebraic manipulations. However, this isn’t to say that transformability alone is 
sufficient for sameness in her eyes; she immediately identified the functions  and(x)f1 = x

x2  
 as being non-equivalent, and thus not the same, due to having different domains.(x)f2 = x  

Moreover, Jane described  and  as the same function, acknowledging(x)g = x2 (x ) x )f + 1 = ( + 1 2  
that not only are they equivalent, but also the same, with the explanation that “they are taking an 
input, and, um, making...mathematically doing the same thing to give an output. So in my mind 
those are the same function”. In light of this example, it seems that Jane believes that for 
functions to be the same, they must have some degree of similarity in what it is that they do to 
their input. For her, transformability via familiar algebraic procedures (“simplification”) 
indicates a sufficient degree of sameness of process. 

 
Jane’s Concept Image of Function  

When we consider Jane’s concept definition of function, her inclination to consider the 
sameness of process makes more sense: 

 

Excerpt 4: Task 1:​ ​What is a function? 
J Well, the sort of grade school way we get is like, a little box. We have an x go in, 

and a y go out. You have an input, ​do something to it​ and get a y out. Um, I 
uh, I don’t know uh...so uh...​you could have maybe different functions that 
could all allow you to put an x in and get that same y

 
 

I And those would be different functions?  

J They could all be different functions.  

 

  
20th Annual Conference on Research in Undergraduate Mathematics Education 75120th Annual Conference on Research in Undergraduate Mathematics Education 751



 

She describes this function machine and that it does something. If a function does something, 
how it does it seems to matter. For her, it seems that doing something to its input is not simply a 
matter of mapping to a particular value, but mapping to a particular value via a particular process 
- this makes sense in light of her saying “different tool to get to a place” (mentioned earlier).  

In Excerpt 4 she also seems to say that different functions can have the same inputs and 
outputs (second bolded portion), indicating that the process the function performs is an essential 
aspect of the function. Further, Jane’s assessment of  and   as defining(x ) x )f + 1 = ( + 1 2 (x)g = x2  
the same function illustrates her view that a function performs some process on its inputs. For 
her it is clear that “squaring” is a process regardless of what you name the input. However, 
taking the absolute value is a different process than squaring and then taking the positive square 
root (Excerpt 2).  

In summary, if we view Jane’s concept image of function as a process that accepts particular 
inputs and then gives outputs according to that process, then it makes sense that for her, 
sameness of functions involves having the same inputs and the same outputs for each input 
(equivalence) and ​also ​ having the same process.  

 
Classifying Jane’s Function Concept in the Action-Process-Object Framework 

 

 ​Breidenbach et al. (1992) ​ use the term “action conception” to refer to a conception about 
functions as methods to use to produce a result. ​Thompson (1994) ​ describes the student as 
viewing the function as a “recipe” for calculation. ​Breidenbach et al. (1992) ​ describes the student 
as having a process conception of function when the student views all of the steps of 
computation together as a process, where a process is “when the total action can take place 
entirely in the mind of the subject without necessarily running through all the specific steps” (p. 
249).  In other words, when a student is thinking of a process, she is not thinking of a 
step-by-step computation, but is instead thinking of the transformation as a whole. When a 
student sees a function as an object (e.g. a set of ordered pairs) and manipulates it as such, then 
she has an object or structural conception.  ​Sfard (1992) ​ additionally describes a 
pseudostructural​  conception of function as viewing a function as its representation, such as 
conflating a function with its equation or an image of its graph. 

Jane definitely does ​not ​ have an action conception of function. She does not seem to need to 
plug in specific values. She discusses the processes that functions perform without actually 
carrying out these processes herself (e.g., when she is comparing sameness of processes). When 
asked “What is a function?”, she does not give any of the descriptions that Breidenbach et al. 
(1992) associate with an action conception. It is evident that Jane does not have a 
pseudostructural understanding of function either; this is especially evident when we consider 
that she allows the use of different variable names and inputs to define the same function. 

Instead, it appears as if Jane has a process conception of function. Her description is similar 
to one of the descriptions ​Breidenbach et al. (1992) ​ associated with a process conception: “a 
function is some sort of input being processed, a way to give some sort of output” (p. 252). 
Additionally, she has the ability to discuss the general notion of a function’s output without 
having to compute it herself.  

 
Discussion 
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Jane considered transformable equations as representing the same process. Why this is the 
case is not clear, but one hypothesis is that through schooling, she reflexively “simplifies” any 
expression that she sees. She may think of, say, multiplying by 2, adding 3, and then subtracting 
3 to be the same thing as simply multiplying by 2, just more complicatedly expressed.  

If (to a student) a function is a process, then sameness of functions reduces to sameness of 
processes. A different student also considered transformability to be sufficient for sameness of 
process, but gave a different answer to Task 6: he argued that taking the absolute value is just an 
abbreviation of the process of squaring and then taking the radical. His rationale was that taking 
the absolute value is not a “mathematical process” and just a shorthand way of telling a function 
to square and then take a radical. Further investigation is required to see the rationale that 
students give for transformability and sameness of processes, possibly leading to a more refined 
notion of “process conception”.  

There is potentially interesting research that can be done regarding the historical 
community’s notion of sameness of processes. ​Sfard (1992) ​ discusses how, like with functions, 
the mathematical community considered fractions as representing a division or measuring 
process rather than numbers. Did mathematicians have anything to say about the similarity 
between the processes 1/2 and 2/4? Was there a sense in which the historical community 
considered them to be representing the same process?  

Using the notion of sameness of representations is useful in other mathematical education 
research settings. I am currently working on a project in which I ask students about the 
derivatives of the functions defined by  if ,   if ,  and   (x)f = x3 =x / 2 (x)f = 8 x = 2 (x) .g = x3

Some students claimed that and g are the same function with identical graphs but differentf  
derivatives, leading me to wonder what these students think it is that they are differentiating (an 
equation?).  Another student (Jane, in fact) claimed that despite the functions f and g having the 2

same graphs, they could not be the same function, since (according to her) she could use the 
power rule to find  but could not for .(2)g′ (2)f ′   

One of the goals of another research project I am involved in is to see what students think a 
“graph” is (and in particular, if students conflate “graph” in the sense of “set of ordered pairs” 
with “displayed graph” or “image of graph”). We used the notion of sameness to further this 
investigation by asking students to assess whether certain pairs of displayed graphs are indeed 
the same graph. For example,  we asked students if an image of with same-scale axes is ay = x2  
different graph than the image of with axes of different scale in order to learn if the studenty = x2  
thought that a graph is defined by more than its ordered pairs.  

The notion of sameness can potentially be useful in exploring students’ understanding of 
structures. Consider asking students about the groups and . These are different groups (Z2 /2ZZ

’s elements are integers, ’s elements are equivalence classes of integers). However, if aZ2 /2ZZ  
student thinks that they are the ​same ​ group, then we know that the student might ​not ​ think of a 
group as a set together with an operation (if he did, then different sets would imply different 
groups!). Similarly, we could learn about a student’s understanding of equivalence classes by 
asking him if [4], as a member of Z/2Z, is the same as [10].  

 
 

 

2 Harel and Kaput (1991) describe a similar phenomenon. 
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 Students’ Quantitative Reasoning in a Revenue Maximization Context 

Thembinkosi P. Mkhatshwa  Helen M. Doerr 
        Miami University     Syracuse University 

The purpose of this study was to investigate students’ quantitative reasoning when solving a 
multivariable problem in a revenue maximization context. We conducted task-based interviews 
with 12 pairs of business calculus students. Analysis of verbal responses and work written by the 
students revealed that in reasoning about the relationships among the quantities (sales, discount, 
and total revenue) in the problem, nearly all the pairs of students created new quantities. The 
creation of these quantities helped the students to reason about the effect of the discount on sales 
and total revenue. An important finding of this study is that the students took different 
approaches to the meaning of the discount and only five pairs of the students interpreted the 
discount as intended in the design of the problem. Directions for future research are discussed.  

Key words: quantitative reasoning, optimization problems, business calculus 

This study used Thompson’s (1993) definition of quantitative reasoning: analyzing a problem 
situation in terms of the quantities and relationships among the quantities involved in the 
situation. According to Thompson, what is important in quantitative reasoning is not assigning 
numeric measures to quantities but rather reasoning about the relationships between or among 
quantities. Quantitative reasoning, as used in this study, refers to how students described and 
represented relationships between or among quantities and how they created and used new 
quantities to solve the problem they were given. The term quantity has been defined and used in 
similar ways by several researchers (e.g., Ärlebäck, Doerr, & O'Neil, 2013; Moore & Carlson, 
2012; Thompson, 2011). This study used the definition of quantity proposed by Thompson 
(1990): “a quantity is a quality of something that one has conceived as admitting some 
measurement process” (p. 5). Examples of quantities in this study include sales, discount, and 
total revenue.  

Much research has investigated students’ reasoning about quantities in physical contexts such 
as in kinematics (e.g., Beichner, 1994; Bingolbali & Monaghan, 2008; Monk, 1992), heat and 
energy (e.g., Prince, Vigeant, & Nottis, 2012), temperature (e.g., Carlson, Jacobs, Coe, Larsen, & 
Hsu, 2002), and volume (e.g., Monk & Nemirovsky, 1994). However, we know very little about 
how students make sense of quantities in an economic context and how they reason about those 
quantities, which is the motivation of this study. This study examined business calculus students’ 
quantitative reasoning when solving an optimization problem that is situated in the context of 
revenue maximization. The following research question guided this study: What do business 
calculus students’ responses to optimization problems involving multiple covariates that are 
situated in the economic context of revenue maximization reveal about their quantitative 
reasoning? 

Literature Review 
Research on students’ quantitative reasoning at the undergraduate level is scarce: much of the 

existing research that has looked at students’ quantitative reasoning is at the elementary and the 
secondary levels (e.g., Lobato & Siebert, 2002; Thompson, 1993; Yerushalmy, 1997). A few 
studies (e.g., Moore, 2014; Moore & Carlson, 2012) have looked at students’ quantitative 
reasoning at the undergraduate level. Yerushalmy (1997) studied six Israeli secondary school 
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students’ reasoning while modeling a multivariable situation. The researcher investigated how 
the students related three quantities (cost, number of days, and number of kilometers driven) as 
well as how they described the various representations they used to relate the quantities. Over a 
period of four one-hour meetings, the students worked in two groups to determine the total cost 
of renting a car from a rental car company that charges its customers “1000 shekels for a day and 
an additional 5 shekels per kilometer” (p. 435). Yerushalmy reported that to represent the 
relationship among total cost, the number of days a car is driven, and the number of number of 
kilometers a car is driven, the students used real-valued algebraic functions of two variables, 
three-column tables, and a three dimensional graph. Yerushalmy argued that even though a 
majority of the students had difficulty using correct mathematical notation to represent the 
relationship algebraically, the use of three-column tables helped some of the students to correctly 
determine an algebraic equation relating the three quantities. Only one student attempted to 
represent the relationship in a three dimensional plane by combining a pair of two dimensional 
planes (total cost versus number of days a car is rented and total cost versus number of 
kilometers a car is driven). The findings of this study suggest that representing relationships 
among several quantities using algebraic equations and graphs in the context of renting a car is 
particularly difficult for students.  

Moore and Carlson (2012) examined how nine students, drawn from three sections of a 
precalculus course at a large public university, engaged in quantitative reasoning while reasoning 
about the volume of a box. The box was “formed by cutting equal-sized squares from each 
corner” (p. 51) of an 11 inch by 13 inch sheet of paper and folding the sides up. Each of these 
students participated in a task-based interview where they were asked to “write a formula that 
predicts the volume of the box from the length of the side of the cutout” (p. 51). Moore and 
Carlson found that, at first, a majority of the students did not recognize that the length and width 
of the box co-varied with the length of each square that was cut out from the sheet of paper. 
Consequently, the students conceived of the box as having a static base with dimensions 13 
inches (length) by 11 inches (width) instead of a dynamic base with dimensions (13-2x) inches 
by (11-2x) where x is the length of each square that is cut out from the sheet of paper. The 
students were eventually successful in creating a correct formula for the volume of the box. 
Moore and Carlson argued that “it was only after the students imagined the process of making 
the box and considered how the relevant quantities of the situation changed in tandem that they 
created a correct volume formula” (p. 57). Similar results were reported by Lobato and Siebert 
(2002) in the context of a wheelchair ramp. In general, the findings of Moore and Carlson (2012) 
and those of Lobato and Siebert (2002) show that covariational reasoning (Carlson, Jacobs, Coe, 
Larsen, & Hsu, 2002) is an essential understanding that students need if they are to be successful 
in relating co-varying quantities using algebraic equations. In the study reported in this paper, we 
examined how undergraduate students reasoned about relationships among co-varying quantities 
in a revenue maximization context. 

Theoretical framework 
This study draws on the theory of quantitative reasoning, an evolving theory in mathematics 

education whose origin can be traced to the early work of Thompson (1990). Thompson (2011) 
described three tenets that are central to the theory of quantitative reasoning. These tenets are: a 
quantity, quantification, and a quantitative operation. According to Thompson (1990), “a 
quantity is a quality of something that one has conceived as admitting some measurement 
process” (p. 5). Thompson added that a quantity is a mental construction. Thompson (1993) 
distinguished between a quantity and a numerical value: a quantity has a unit of measurement 
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and a numerical value does not. Thompson (1993) added that “quantities, when measured, have 
numerical values, but we need not measure them or know their measures to reason about them” 
(pp. 165-166). For example, we can think of Company A’s profit for a given trading period, 
Company B’s profit for the same trading period, and the amount by which Company A’s profit is 
bigger (or smaller) than Company B’s profit, without having to know the actual numerical values 
of the profit. According to Thompson (2011), quantification “is the process of conceptualizing an 
object and an attribute of it so that the attribute has a unit of measure, and the attribute’s measure 
entails a proportional relationship (linear, bi-linear, or multi-linear) with its unit” (p. 37). In a 
sense, the process of quantification entails assigning numerical values to the attributes of an 
object. A quantitative operation is the process of forming a new quantity from other quantities 
(Thompson, 1994b). Thompson (1993) stated that “comparing two quantities with the intent to 
find the excess of one against the other” (p. 166) is a specific example of a quantitative operation 
formed by comparing two quantities additively. In economics, for example, comparing (by way 
of finding the difference) total revenue and total cost with the intent to find the excess (profit or 
loss) of total revenue against total cost is a quantitative operation known as a quantitative 
difference.  

The design of our study was influenced by the theory of quantitative reasoning in three 
phases, namely task design, data collection, and data analysis. Drawing on the theory of 
quantitative reasoning as a theoretical framework for our study, we designed the mathematical 
task (shown in the methods section) that provided students with opportunities to reason about 
relationships between or among quantities. This task provided opportunities for students to 
reason about relationships among sales (number of computers sold), sales discount, and the total 
revenue generated when a business sells computers to a school. Our interview protocol allowed 
us to engage students in reasoning about relationships among quantities during the data 
collection process. Finally, a major part of the data analysis phase focused on looking for 
evidence for when students created new quantities (performing quantitative operations), how 
they used these quantities to reason about relationships between or among quantities, and 
whether or not these quantities helped the students to solve the problem posed in the task.  

Methods 
This qualitative study used task-based interviews (Goldin, 2000) with 12 pairs of business 

calculus students. There were four tasks in total (Mkhatshwa, 2016). In this paper, we report on 
how the students reasoned quantitatively about one of the tasks, adapted from Hughes-Hallet et 
al. (2002): 

The Smith family runs an electronics business in Southern California. The family is 
considering signing a contract to supply a small junior high school with laptops, the exact 
number to be determined by the principal of the school later. For any supply of up to 300 
laptops, the price per laptop will be $900. 

For any supply of more than 300 laptops, the school will receive a $2.50 discount per 
computer (on the whole order) for every additional computer over 300 supplied. 

The Smith family would like you to advise them whether or not to sign the contract. They 
want to make sure that they make the most amount of revenue possible from this contract. 
What advice can you give to the Smith family on whether or not to sign the contract and 
why? 
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This task was designed to examine students’ reasoning about the relationship among three 
quantities, namely sales (the number of computers ordered by a small junior high school), the 
discount offered on orders of over 300 computers, and the total revenue that is generated by the 
sales when the discount is taken into consideration. The discount was intended to be applied on 
the whole order for any order of more than 300 computers. For example, the selling price for 
each computer in an order of 301 computers would be $897.50, the selling price for each 
computer in an order of 302 computers would be $895.00, and so on. This means that the amount 
of the discount on every computer varies with the number of computers ordered. As we will 
show in our results below, half of the pairs of students did not interpret the discount as intended 
in the design of the task.  

Setting and participants 
 This study was conducted at a research university in the north-eastern part of the United 
States. The study participants were 24 undergraduate students who had recently completed a 
business calculus course. Twenty-two of these students were business majors (e.g., management, 
marketing, accounting) while the other two students were considering majoring in business-
related programs. Twelve students took business calculus in the spring semester of 2015 and the 
other twelve students took it in the fall semester of 2015. In addition to taking business calculus: 
(1) ten students had taken AP economics (AP microeconomics and AP macroeconomics) in high 
school, (2) twelve students had taken a high school course (AP or non-AP) in calculus, and (3) 
twenty-one students had taken at least one college-level economics or business class (e.g., 
intermediate microeconomics, managerial accounting) prior to participating in this study. At the 
time of conducting the study, fifteen of the study participants were sophomores and nine 
participants were freshmen.  

Data Analysis 
Data analysis was done in two stages. In the first stage, we used a priori codes. We carefully 

read through each interview transcript and coded instances where students reasoned about: (1) 
new quantities (e.g., diminishing marginal returns), (2) relationships between or among 
quantities (e.g., revenue decreases as more computers are sold at a discounted price), and (3) 
representations of relationships among quantities (e.g., using graphs and algebraic equations). In 
the second stage, we looked for patterns in students’ responses to the task. These patterns include 
common understandings or difficulties in students’ reasoning about the effect of the discount on 
sales and total revenue. The common understandings or difficulties in students’ reasoning found 
in the second stage of our analysis provided answers to our research question. 

Results 
Our analysis of the data revealed that eleven pairs of students created new quantities (e.g., the 

rate at which the revenue is increasing, the accumulation of the discount, and the point of 
diminishing marginal returns) which they used to reason about relationships among sales, the 
discount, and the total revenue generated. Of these eleven pairs of students, six pairs of students 
reasoned with the context of the task but not as intended in the design of the task. Instead, these 
six pairs of students applied the discount only to the additional number of computers over 300 
ordered and created a new quantity, the rate at which the revenue is increasing. This quantity was 
then used to reason about the relationship among sales (number of computers sold), the discount, 
and the total revenue generated. Another five pairs of students reasoned with the discount as 
intended in the context of the task: they applied the discount to the whole order. These students 
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created a new quantity, the accumulation of the discount, which they used to reason about the 
relationship among sales, the discount, and the total revenue generated. Abby and Shawna are 
the only pair of students who did not create any new quantity in this task. These students 
indicated that they needed to have the demand and supply equations (which were not given in the 
task) in order to solve the problem posed in the task. 

Applying the discount only to the additional computers over 300 ordered 
Kierra and Isaac are representative of the six pairs of students who applied the discount only 

to the additional computers over 300 ordered. These students created a new quantity (the rate at 
which the revenue is increasing) which they used to reason about the relationship among the 
quantities: sales, the discount, and the total revenue generated. Kierra and Isaac are the only pair 
of students (out of the six pairs of students) who created a graph (Figure 1) to show the 
relationship among these quantities. By applying the discount only to the additional computers 
over 300 ordered, Kierra and Isaac came to the conclusion that the relationship between the 
revenue and sales is such that the revenue will continue to increase as more computers are sold 
beyond 300. In the following excerpt, which occurred at the beginning of working on the task, 
Kierra and Isaac reasoned about the relationship between the number of computers that are sold 
and the total revenue.  

Isaac: Well I think it’s, I think, I kind of picture it as almost like a graph 
Researcher: How would it look like as a graph? 
Kierra: Like it would, for the first 300 [computers] it [revenue] would go up at the 

same rate like at one rate of $900 and then like once it hits that 300, like 
301, it slightly changes the slope of the line of going up of each laptop by 
$897.50 so I guess like, there is never gonna be a time when like they will 
be losing money. They will just be like slightly gaining money, nine 
hundred minus $2.50  

Researcher: You said something about the slope changing at like 300, right? 
Isaac: Yeah, because like anything above 300 is when they give that discount of 

$2.50  

 
Figure 1.  Isaac's graph of the relationship among the number of computers sold, the revenue, 
and the discount. 

Kierra mentally created a new quantity (the rate at which the revenue is going up) when she 
stated that the revenue “would go up at the same rate like one rate of $900.” Her statement that 
“there is never gonna be a time when like they will be losing money” suggests that she viewed 
the application of the discount on orders of more than 300 computers as insignificant in that the 
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revenue continues to increase no matter the size of the order. Kierra and Isaac recognized that 
graphically, the effect of applying the discount will be a slight change in the slope of the graph of 
the total revenue function after 300 computers as shown in Figure 1. When asked to elaborate on 
how the slope would change, Isaac created Figure 1. He also stated that the revenue “will go up 
like a steep rate” as more computers are sold up to 300, which suggests that he also created a 
new quantity, the rate at which the revenue will go up. Isaac continued to reason about this new 
quantity when he indicated that “the slope would be less steep” when he referred to how the 
revenue continues to increase as more computers are sold over 300 in Figure 1. At the end, 
Kierra and Isaac advised the Smith family to sign the contract for any number of computers 
ordered by the school, which was reasonable advice based on their understanding of how the 
discount is applied. 

Applying the discount to the whole order 
Yuri and Kyle are representative of the other five pairs of students who reasoned about the 

context of the task as intended, where the discount is applied to all of the computers ordered. 
This pair of students created a new quantity, the accumulation of the discount, when reasoning 
about the relationship among sales, the discount, and total revenue generated. In addition to 
verbalizing the relationship among sales, the discount, and the total revenue generated, Yuri used 
an algebraic equation shown in Figure 2 to represent this relationship and Kyle used a graphing 
calculator to graph Yuri’s revenue equation. Kyle’s graph was a concave down parabola. 

 
Figure 2. Yuri's algebraic representation of the relationship between the revenue and the number 
of computers sold. 

Yuri and Kyle described the discount as “cumulative.” They explained what a cumulative 
discount is by giving examples. Kyle indicated that “if you buy three hundred and two you get 
five dollars off each computer.” Yuri added that “if you sold three hundred and ten computers, 
you get twenty-five dollars discount per computer you sell.” Yuri and Kyle’s understanding of 
the discount as cumulative suggests that these students mentally constructed the accumulation of 
the discount as a new quantity. With the understanding of the discount as cumulative, Yuri and 
Kyle calculated the total revenue from selling 310, 350, and 400 computers respectively. They 
found that the revenue from selling 310 computers is the same as the revenue from selling 350 
computers and that the revenue from selling 400 computers is less than the revenue from selling 
310 computers. Yuri and Kyle then advised the Smith family to consider the size of the order 
placed by the school prior to signing the contract. They indicated that an order of “315 
computers” will generate more revenue “than if they sold 415 computers.” This suggests that 
Yuri and Kyle recognized that, in the long run, the accumulation of the discount will cease to 
increase the Smith family’s revenue and will, instead, result in loss of revenue. 
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After doing the work shown in Figure 2, Yuri concluded by saying that the Smith family 
business should sign the contract if the school orders at most 330 computers. He, however, did 
not talk much about the details of his work in Figure 13 such as when and why he took the 
derivative of the revenue function denoted by the letter 𝑟 in Figure 2. Kyle also concluded by 
advising the Smith family to sign the contract when the school orders 330 computers “since 
that’s the most money they can make on this deal [contract].” When asked how he arrived at this 
conclusion, he said [referring to the graph of the Yuri’s revenue function which he graphed on 
his calculator], “I did second calc max to find the maximum and the max quantity is three 
hundred and thirty for a revenue of two hundred and seventy-two, two hundred and fifty.” That 
is, Kyle used a graphing calculator to determine the revenue-maximizing quantity of 330 
computers. 

Discussion and Conclusions 
This study examined undergraduate students’ reasoning about the relationship among several 

quantities, namely sales (number of computers ordered), the discount offered, and the total 
revenue generated. An important finding of this study is that in reasoning about this relationship, 
the students took different approaches to the meaning of the discount and created new quantities. 
Six pairs of students did not interpret the discount as intended in the design of the task. These 
students applied the discount only to the additional computers sold over 300 and created a new 
quantity, the rate at which the revenue is increasing. Five other pairs of students interpreted the 
discount as intended in the design of the task. They applied the discount to the whole order and 
created a new quantity, the accumulation of the discount. The creation of these new quantities 
helped the students to make sense of the relationship among the quantities in the task especially 
the effect of the discount on number of computers sold and the total revenue generated in 
addition to helping them answer the problem posed in the task which is advising the Smith 
family business whether or not to sign the contract. Other research (e.g., Lobato &, 2002; Moore 
& Carlson, 2012) has shown that when engaged in reasoning about relationships among three 
quantities, students tend to talk about two quantities explicitly while treating the third quantity as 
an implicit quantity. Consistent with findings of this research, the students in our study tended to 
talk, explicitly, about the relationship between the number of computers sold and the total 
revenue generated while treating the discount as an implicit quantity. Previous research 
(Yerushalmy, 1997) has reported on students’ use of graphs and algebraic equations when 
representing relationships among several variables. In our study, only one pair of students (Isaac 
and Kierra) used a graph and only one student (Yuri) used an algebraic equation to represent the 
relationship among the three quantities in the task they were given. It might be important for 
future research to examine the opportunities for students to learn to reason about economic 
quantities such as sales discount presented in business calculus textbooks and classroom 
instruction. 
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Preservice Secondary Teachers’ Abilities to Transfer from Graphical to Algebraic 
Representations of Functions 

University of West Georgia 
Kyunghee Moon 

In this study, I examined 14 preservice secondary teachers’ abilities to transfer graphical to 
algebraic representations of functions. The analysis showed that the vast majority of the 
participants had problems in noticing critical behaviors of function graphs and in using them to 
construct algebraic forms. About half or fewer of the participants noticed qualities such as x-
intercepts, vertical asymptotes, slant asymptotes, and concavity/extrema, with only a few of them 
successfully using such qualities in constructing algebraic forms. Only a few noticed and used 
qualities such as horizontal asymptotes, point discontinuities, domain, and end behaviors in 
constructing algebraic forms. It is advisable that the teaching of the function concept 
incorporate transformational activities beyond algebraic to graphical transformations and focus 
more on the critical characteristics of functions.      

Keywords: Function, Concept image, Graph, Preservice secondary teacher 
 

Introduction 

Understanding concepts in multiple representations is critical in mathematics (Hiebert & 
Carpenter, 1992). Yet making connections among representations is not trivial. One should not 
only know how to transform within the same and across different forms of representations 
(Dufour-Janvier, Bednatz, & Belanger, 1987; Even, 1998), but also understand subconcepts and 
translate the meanings among multiple representations (Hitt, 1998; Lesh, Post, & Behr, 1987; 
Markovits et al., 1986).  

There are many studies that deal with individuals’ conceptions of functions related to 
graphical representations of functions. Several of these studies report that students and teachers 
tend to associate functions only with equations or with graphs of continuous functions (Carlson, 
1998; Hitt, 1998). However less frequently reported is research that concerns whether individuals 
can indeed relate function graphs to function equations. As such, in this study I investigate 
individuals’ abilities to transfer function representations that are related to equations. Such 
information would be beneficial not only to the understanding of individuals’ cognitive structure 
on the function concept but also to the teaching of the function concept. This study answers the 
research question: “What do preservice teachers notice and use when transferring from graphical 
to algebraic representations of functions?”  

 
Background 

Theoretical Framework 
The overarching framework of this study is the construct of concept image—“the total 

cognitive structure that is associated with the concept, which includes all the mental pictures and 
associated properties and processes” (Tall & Vinner, 1981, p. 152). The construct of concept 
image has been widely used to understand students’ cognitive structures of the function concept 
in association with the formal concept definition of function—“a relation between two sets A and 
B in which each element of A is related to precisely one element in B” (p. 154). Due to the nature 

20th Annual Conference on Research in Undergraduate Mathematics Education 76320th Annual Conference on Research in Undergraduate Mathematics Education 763



of this study, however, I focus on the characteristics of functions that are essential to the 
conversions between graphical and algebraic representations of functions, especially fractional 
functions f(x)/g(x) with f(x) and g(x) polynomial or radical functions. Fractional functions embed 
many of the important characteristics of functions. As such, students’ mathematical behaviors 
with fractional functions provide a good portrait of their understanding of function characteristics 
in general.   

In typical college algebra or precalculus textbooks, where manual representations of rather 
elaborate graphs of functions are handled with no aid of the calculus concepts, a graph of a 
function equation y = f(x) is sketched through the concepts such as domain/range, zero, and limit. 
The domain/range determine where the graph lies; zeros determine where the graph crosses the x 
axis, with f(0) determining where the graph crosses the y axis; and limits determine to which 
lines the graph is tangent—that is, the vertical/horizontal/slant asymptotes—as well as whether 
the graph has point discontinuities (holes) and what the end behaviors of the graph are like. Yet 
understanding functions and their graphs in relation to the above concepts is not trivial for many 
individuals. Included below are some studies that concern individuals’ understanding of 
characteristics of functions. 

Literature Review 
In general, many individuals have a limited concept image of functions. They associate 

functions to single equations or continuous functions and lack understanding of important 
characteristics of functions (Breidenbach et al., 1992; Even, 1998; Hitt, 1998).  

For the concepts of domain and range, studies show that students do not hold the concepts in 
their cognitive structure nor do they use it appropriately in problem solving. A college student in 
Aspinwall, Shaw, and Presmeg and Nenduradu ’s study (1997) showed a discrepancy between 
her image of second-degree polynomials and the domain of second-degree polynomial functions. 
The student thought that second-degree polynomials had vertical asymptotes, but at the same 
time she thought that the domain was all real numbers. Hitt (1998) also showed that many 
beginning secondary teachers could not articulate whether or not a curve represented by an 
algebraic form—circle or ellipse—was a function. The teachers also did not identify subconcepts 
of functions, such as domain and range, in graphical representations of functions. Williams’ 
study (1998) also showed that for the vast majority of 28 calculus students, the concept of 
domain and range was not present in their concept map of functions.  

For the concept of limit, most studies deal with students’ understanding of limit in 
association with the formal concept definition of limit. Only a limited number of studies concern 
individuals’ understandings of the limit concept related to graphs of functions—asymptotes, 
holes, and end behaviors. Even’ study (1998) showed that a prospective teacher had difficulty 
telling whether a discontinuous graph with holes was a function or not. Lauten, Graham, and 
Ferrini-Mundy (1994) showed that constructing a function that satisfies some conditions might 
not be easy for college students. When a student, Amy, was asked to provide an example of a 
function that satisfied given conditions of f(1) = 2, f(3) = 6, and f(5) = 9, Amy only attempted to 
find a single equation that met the conditions. Failing the attempt, she then moved to a graphical 
representation and provided a continuous curve by connecting three points she plotted. She also 
failed to distinguish between the roles of x and y when describing limits, making it difficult for 
her to see a function value as a vertical distance. Amy also did not use a calculator as a toolkit. 
She had minimal use of a calculator, mainly using it to find values through the trace keys when 
problems were accompanied with graphs. She however did not use a calculator independently to 
explore ideas before answering questions.  
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When the graphing technology is used properly, however, students could develop a sound 
understanding of the characteristics of functions related to the limit concept. Students in 
Yerusalemy (1997) graphed rational functions using computer software programs and 
constructed the definitions of asymptotes based on the graphs. They also created equations that 
have graphs lying between the rational function f(x) = (x2 – 1)/(x2 + 1) and its horizontal 
asymptote and investigated how asymptotes could be evaluated from the symbolic manipulation 
of algebraic equations.  

 
Methodology 

The participants of this study were 14 undergraduate mathematics majors in the secondary 
teaching track at a medium-sized state university in the Southeast. The levels of participants’ 
mathematics backgrounds varied—three taking Precalculus, one taking Calculus I, and the other 
ten taking Calculus II or above. The participants were individually interviewed twice, for about 
one-and-a-half hours each time, in the form of  semi-structured clinical interviews. The 
interviews were recorded with a video camera and were transcribed. Their written responses 
were also collected. 

The interview item relevant to this study is Q1 below from the second interview, which 
required graphical to algebraic representational transfers for 6 graphs that could be associated 
with fractional functions. Preservice teachers were asked to “think aloud“ during the interviews.   

 
Q1: For each of the graphs below, give an example of a function equation that can match the 

given graph: 
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For analysis, I used an open coding strategy (Strauss, 1987). I coded the characteristics and 
graphical behaviors of functions that participants noticed and used in the representational transfer 
as well as their understandings and difficulties shown in the transfers.  

 
Results 

Analysis showed that the preservice teachers had difficulty in constructing algebraic 
equations that could yield given graphs of functions. Most of them solely depended on their 
memory and randomly guessed the corresponding equations, or did not even attempt to guess, 
without careful inspections of graphs. Even in the cases in which they noticed certain 
characteristics or behaviors of graphs, they were incapable of constructing algebraic equations 
that could embed such qualities. Except for Graph (a) in which 9 out of 14 participants came up 
with a reasonable form of a parabolic equation, they struggled for all the other graphs. With 
Graph (b), which could be represented as a higher-order polynomial function, only 3 provided a 
correct algebraic form. For the other 4 graphs, which could not be represented as polynomial 
functions, only one teacher or none of the teachers was able to construct a correct equation (see 
Table 1).  

  
Table 1 Correct algebraic representation of graph 

 Graph 
(a) 

Graph 
(b) 

Graph 
(c) 

Graph 
(d) 

Graph 
(e) 

Graph 
(f) 

The number of 
participants who 
provided a correct 
equation 

9 3 1 0 1 1 

Note: Both y = x2 - 2, which was based on the y-intercept, and y = x2 - 4, which was based on 
the x-intercepts, were accepted as correct answers for Graph (a). 

 
 Preservice teachers’ ability to notice critical characteristics or behaviors of graphs was 

also very limited. Although many of them mentioned x-intercept/zeros (7), vertical asymptote 
(10), and slant asymptote (8) at least once, only a few of them mentioned horizontal asymptote 
(3), hole/point discontinuity (2), concavity/maximum/minimum (4), and domain (2). None of 
them mentioned the end behaviors of the function graph, which involved the limit concept (see 
Table 2).  

Their noticing of the characteristics or behaviors of graphs also did not lead to their using of 
the information in the graphical to algebraic transfer. They were able to use qualities such as x 
and y intercepts and concavity/extrema when constructing corresponding algebraic forms if they 
noticed the qualities. However, they could not embed graphical behaviors related to the concepts 
of limit and domain when constructing in algebraic forms even if they noticed them. The details 
follow. 

For the concept of the y-intercepts, 5 teachers noticed it in Graph (a) and 3 of them used it to 
construct algebraic form with success. The other two mentioned that they needed to shift the 
graph of y = x2 to have the y-intercept of -2 (which they thought was the value of the y 
coordinate of the y-intercept), but did not know how to modify the equation y = x2 to have its 
graph translated by 2 to the negative direction of y. For the concept of the x-intercepts, 6 teachers 
successfully used it at least once to construct an algebraic form for Graphs (a), (b), (d), and (e). 
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Three used it only for the Graph (a), two used it for the Graphs (a) and (b), and one used it for 
Graphs (a), (b), and (e). Out of reach for most preservice teachers was the Factor theorem—for a 
polynomial y = p(x), p(c) = 0 if, and only if, x – c divides p(x)—in relation to the graphs. 
Although they knew that the x-intercept of (c, 0) of the graph of y = p(x) would satisfy p(c) = 0, 
they could not use the Factor theorem to write p(x) as (x – c) times something. Instead, they 
performed a trial and error method to construct a form that would yield p(c) = 0. For example, 
for the Graph (a), they acknowledged that (2, 0) and (-2, 0) were the x-intercepts. However 
instead of creating the quadratic form (x - 2)(x + 2) by using the Factor theorem, they 
manipulated x2 + constant repeatedly until they came up with the form y = x2 – 4, which yielded 
the two zeros, 2 and -2. Many of them showed the same trait for the Graphs (b) and (e), with 
some of them failing to provide a correct form by doing so.  

 
Table 2 Characteristics or behaviors noticed or used at least once 

 
 Noticed  Used With 

Success 
The y-intercept 5 3 
The x-intercept or zero 8 6 
Vertical asymptotes 11 6 
Horizontal asymptotes  3 0 
Slant asymptotes 8 1 
Hole (point discontinuity) 3 2 
End behaviors, excluding horizontal and 

slant asymptotes 
0 0 

Concavity/maximum/minimum 5 5 
Domain  2 1 
Note: It is possible that an individual creates an incorrect equation even if she uses 

one or more characteristics in a correct way, if she fails to use other characteristics 
correctly.  

 
Preservice teachers also struggled to notice the graphical behaviors related to the concept of 

limit—vertical/horizontal/slant asymptotes, holes, and end behaviors—and/or to use them to 
construct algebraic equations. For the vertical asymptotes, although 11 teachers noticed vertical 
asymptotes in at least one of the Graphs (c), (d), (e), and (f), only 6 of them were successfully 
able to use them at least once to construct an algebraic form. Their performance was also 
inconsistent, indicating that they did not have a firm understanding of the idea that a vertical 
asymptote of a graph was related to a zero of the denominator of p(x)/q(x). Five of them 
successfully used the vertical asymptotes to construct an equation for the Graph (e), 3 for the 
Graph (d), and 1 for the Graph (f). 

In the case of the horizontal asymptotes, only 3 of them noticed it in the Graph (c). However, 
even those three teachers did not use the information to construct an algebraic form. One teacher 
came up with the equation y = 1/x by simply by using the vertical asymptote, without checking 
whether the equation had a horizontal asymptote of the x-axis; another teacher came up with the 
equation y = log (x); and the other teacher did not provide any algebraic form.   

Three teachers noticed the characteristic of point discontinuities, with only one of them 
successfully using it to construct an algebraic form. This teacher did not mention 
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vertical/horizontal asymptotes when he came up with his first equation y = 1/x from his memory. 
He then noticed the hole and changed the equation to y = (x - 1) / x(x - 1) by incorporating the 
hole at (1, 1). For the other two teachers, one came up with y = 1/(x – 1) as the answer without 
noticing the hole and the other came up with none. As for the slant asymptote, although 8 
teachers noticed it in Graph (f), only one teacher was able to use it to construct an equation. This 
one teacher came up with a correct equation y = (x2 + 1) / x, but his understanding of asymptotes 
was somewhat shaky. He mentioned that a rational function, p(x)/q(x), would have a horizontal 
asymptote of x = 0 if deg (q(x)) > deg (p(x)); a horizontal asymptote of x = the leading coefficient 
of p(x)/ the leading coefficient of q(x), if deg (q(x)) = deg (p(x)); and a slant asymptote if deg 
(p(x)) = deg (q(x)) + 1. Yet he came up with the equation y = x / (x2 - 1) for the Graph (d) by 
focusing on the zero and the vertical asymptotes, without realizing that his equation, y = x / (x2 - 
1), would yield a horizontal asymptote of y = 0, which the given graph did not have. He also 
said, “my problem is I don’t know how to get a slant asymptote,” after constructing a correct 
equation y = (x2 + 1) / x for the Graph (f). For the end behaviors of graphs, none of the teachers 
mentioned end behaviors of graphs that were not related to horizontal or slant asymptotes. 

 For the concavity/extrema/increase/decrease, of the 5 preservice teachers who noticed the 
characteristics, 4 used the information correctly to determine the degree of polynomial as 4. 
However, only 3 of them were able to use the information in conjunction with the zeros of the 
function to come up with a correct function equation.  

 For the concept of domain, preservice teachers in general did not pay attention to or use 
the concept of domain when constructing a function equation. For the Graph (d), for example, 
although many of them noticed that there were two asymptotes in the graph, only two of them 
specifically mentioned the graph was lying on the interval, (-1, 1). Further, those two teachers 
did not know how to use the domain information together with other characteristics of the 
function. One teacher came up with an algebraic equation of y = x2 with x 

€ 

∈ (-1, 1) even after she 
mentioned the graph had two vertical asymptotes of x = 1 and x = -1, influenced by the look of 
the graph that was similar to a parabola. The other simply guessed that the equation y = csc (x), 
would be an algebraic form for the graph by thinking that the interval of (-1, 1) was somehow 
related to trigonometric functions. Four preservice teachers, including one of the two above, 
came up with a variation of y = x2 as an answer for the Graph (d). Three teachers came up with y 
= x / (x2  - 1) or y = x2 / (x2 - 1) by reflecting the vertical asymptotes with or without considering 
the parabola figure in the graph. 

 
Discussion and Conclusions 

Prior research showed that many post-secondary students including secondary preservice 
teachers have misconceptions of functions and have a concept image of functions as continuous 
functions or associate them only with equations (Carlson, 1998; Even, 1998). However, there is 
little information about whether individuals indeed understand functions that are associated with 
equations. Here in this study, I attempted to answer part of this question and investigated 
preservice secondary teachers’ abilities to transfer graphical to algebraic representations. In 
particular, I focused on what behaviors of function graphs they noticed and used when 
transferring graphs to equations.  

The results showed that most teachers held only a few characteristics of functions in their 
concept image of function and had difficulty noticing and using them when transferring graphs to 
algebraic equations. Many preservice teachers noticed and used the concepts of x and y-
intercepts and vertical asymptotes, but most of them could not make use of the Factor theorem 
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efficiently to construct an equation. Although they knew that f(a) = 0 if (a, 0) was an x-intercept 
of the graph of y = f(x), they did not see (x – c) as a divisor of f(x) and write f(x) as (x – c) times 
something. 

Preservice teachers also had problems in noticing and using other concepts. For the concept 
of domain, as with the beginning secondary teachers in Hitt’s (1998) or Williams’ study (1998) 
who did not hold the concept of domain in their concept map of functions, preservice teachers 
did not consider the domains of functions when constructing function equations. Even in the case 
in which they acknowledged the domain of a function, they did not know how to construct an 
equation with that domain. As with a college student in Aspinwall, Shaw, and Presmeg’s study 
(1997) who had a conflicting understanding that second-degree polynomials had vertical 
asymptotes and at the same time the domain of all real numbers, one preservice teacher in this 
study also showed a discrepancy in dealing with a parabola-like graph. Although she noticed that 
the graph was defined on (-1, 1) with the vertical asymptotes of x = 1 and x = -1, she constructed 
the equation y = x2 with x 

€ 

∈ (-1, 1). 
For the concept of point discontinuities, Even’s study (1998) showed an example of a teacher 

who could not tell whether a discontinuous graph with holes was a function or not. In this study, 
only three out of 14 teachers noticed a hole in a graph, and of those, only one of them was able to 
embed the information when constructing an equation. It was also noticeable that none of the 
teachers mentioned the end behaviors of function, which is part of the limit concept, and only 
one teacher who noticed a slant asymptote was able to construct an equation with the slant 
asymptote.  

In light of the findings of this study, the teaching of critical concepts of functions might have 
to be handled with more care. In addition to the traditional, algebraic to graphical transfer 
activities that have been primarily used in classrooms, other activities that focus on the same 
concepts from different angles might have to be considered. The transformational activities such 
as those included in this study are an example. Instruction using graphic utilities such as 
Yerusalemy’s (1997), which was effective for the understanding of vertical asymptotes of 
rational functions, is another. As shown in Lauten, Graham, and Ferrini-Mundy (1994), students 
show different understandings of the function and limit concepts in different representational 
contexts, and further, the use of technology does not guarantee students’ understandings of the 
function characteristics. Only with well-designed activities that could offer students 
opportunities to explore critical ideas of the various function concepts is there a great possibility 
for students’ better understanding of functions. 
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Preservice Secondary Teachers’ Abilities to Use Representations and Realistic Tasks  
 

University of West Georgia 
Kyunghee Moon 

 
This study reports three preservice secondary teachers’ abilities and tendencies to use 
representations in problem solving as well as their abilities to use realistic tasks after taking 
mathematics content and methods courses that emphasized the roles of representations and 
realistic tasks. Qualitative analyses showed that the preservice teachers developed beliefs that 
representations and realistic tasks are important components of secondary education and used 
motivational tasks in their instruction. However, they used the tasks mainly as the application of 
learned facts rather than as the departure of students’ construction of mathematical ideas. They 
also showed tendencies to use algebraic approaches in problem solving for grade 5-12 level 
tasks and had difficulties connecting algebraic and geometric representations when solving high 
school level algebra problems.  

 Keywords: Representations, Teacher Education, Mathematical Tasks, Problem Solving 
 

Objectives 

The importance of representations in mathematical teaching and learning has been 
emphasized in many studies (Brenner et al., 1997; Hiebert et al., 1997; Leinhardt, Zaslavsky & 
Stein, 1990; Thomson, 1994ab). Yet studies have suggested that many teachers have less than 
optimal understanding of the roles of representations and have difficulties using them in their 
instruction and in their own problem solving. Nevertheless, not much is known about how and in 
what ways teachers, especially secondary teachers, develop conceptions or knowledge of 
representations. This study addresses this under-documented area. It examines in what ways a 
series of mathematics and mathematics education courses that emphasized the roles of 
representations and tasks helped preservice secondary teachers to develop their mathematical 
knowledge for teaching. In particular, this study answers the following two research questions:  
(RQ 1) How were preservice secondary teachers’ tendencies and abilities to solve problems 
using representations after taking courses that emphasized the roles of representations and tasks? 
(RQ 2) How were preservice secondary teachers’ abilities to use tasks in instruction after taking 
courses that emphasized the roles of representations and tasks? 
 

Framework and Literature Review  

This study was conducted under the premises that knowledge and external representations are 
closely related and that mathematics is a human activity—“the activity of mathematicians that 
involves solving problems, looking for problems, and mathematizing subject matter” 
(Gravemeijer, 2008, p. 285). According to Hiebert and Carpenter (1992), “mathematics is 
understood if its mental representation is part of a network of representations. The degree of 
understanding is determined by the number and the strength of the connections” (p. 67). When 
internal representations are connected, the connections produce networks of knowledge, which 
are structured hierarchically or as a spider’s web. These internal representations and their 
connections, however, cannot be observed. Under the assumption that there is a relationship 
between external and internal representations, learners’ knowledge is often viewed through their 
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abilities to use and connect external representations.  
On the other hand, representations play a central role in the Realistic Mathematics Education 

(RME). In RME, mathematics is viewed as an organizing activity that makes sense of the world, 
and learners are viewed as mathematicians who act as the reinventors of mathematics. By 
constructing, connecting, and evolving representations while being actively engaged in 
“realistic” contexts, learners construct or reconstruct mathematical ideas (Gravemeijer, 2008). As 
such, realistic tasks play a critical role in RME. Realistic tasks in RME are different from 
traditional word problems in that tasks serve as the start of knowledge construction instead of as 
the application of learned facts at the end of instruction. Realistic tasks have representations 
built-in, are truly problematic so that students have motivations to solve them, and are open 
enough so students can take various paths to solving the problems (Fosnot & Jacob, 2010; 
Gravemeijer, 2008).  

In this study, I use the lenses of representation and realistic task—the lens of representation 
for teachers’ problem solving tendencies and abilities, and the lens of realistic task for task 
design and implementation—to examine teachers’ knowledge. As the participants in this study 
took various courses, designed following some principles of RME, where representations and 
realistic tasks were particularly emphasized, these lenses served as appropriate analytic tools to 
look into their knowledge.  

I here begin with a brief literature review that regards secondary teachers’ tendencies and 
abilities to use representations in problem solving, as well as their conceptions about 
representations. The literature on teachers’ conceptions of or tendencies and abilities to use 
realistic tasks that is consistent with the RME description is rare at the secondary level, and I 
include two studies that show the effects of RME with Dutch secondary teachers. 

Teachers’ Conception, Use, and Understanding of Representations 
Studies have shown that many secondary teachers hold less than optimal conceptions or 

knowledge of representations in teaching and learning. They focus mostly on symbolic 
representations in teaching (Cunningham, 2005); they tend to use algebraic approaches in their 
own problem solving and favor students’ algebraic approaches over other approaches (Nathan & 
Petrosino, 2003); and they view non-symbolic representations as informal objects, not 
necessarily as mathematics itself (Stylianou, 2010). In Moyer’s study (2001), even after an 
intervention that emphasized the role of manipulatives and technology in instruction, many in-
service middle grade teachers used manipulatives mainly in teacher-directed ways in their 
instruction and viewed the use of manipulatives as playing, exploring, or changing of pace, but 
not necessarily as making sense of mathematical concepts or ideas.  

Many studies have also shown teachers’ lack of abilities to connect representations in 
problem solving. Hitt (1998) showed that many beginning secondary teachers were unable to 
articulate whether a curve represented by an algebraic form—circle or ellipse—was a function or 
not. Even (1998) showed that secondary teachers have difficulties in determining the number of 
zeros of an algebraic equation, y=ax2+bx+c, due to their inability to connect the equation to its 
graph. In Presmeg and Nenduradu (2005), a teacher used mostly tabular/numerical 
representations in solving problems. Even for a problem in which he used a graphical 
representation, he came up with a line graph in spite of his table showing a quadratic pattern.  

Teachers’ Conceptions of Realistic Tasks 
In the Netherlands, the RME theory has been used in teacher education programs to prepare 

preservice teachers, and there have been some reports attesting to positive effects from the 
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programs. According to Korthagen and Kessels (1999), a national evaluation study of all Dutch 
education programs showed that preservice secondary teachers who were trained within the 
RME framework had higher ratings than their counterparts. Wobbles, Korthagen, and Broekman 
(1997) also showed that a group of preservice teachers trained in RME not only was much more 
in favor of RME principles than was a random group of experienced inservice teachers, but also 
characterized their teacher education program favorably—as using mathematics in contexts, 
having an inquiry approach, using mathematics as an activity, and using different explanations. 
However, when asked about important characteristics of “high school” mathematics education, 
only a few of the 10 preservice teachers mentioned that using mathematics in “realistic” contexts 
or mathematics as an activity are important characteristics.  

As evidenced by research above, there is much to be done about secondary teachers’ 
conceptions of the roles of representations and realistic tasks and their abilities to use multiple 
representations in problem solving. Yet research documenting the kinds of interventions 
implemented and the effects of such interventions is very limited. This study concerns this 
under-documented area. The details of this study follow. 

 
Methodology 

Research Contexts 
The subjects of this study are three preservice secondary mathematics teachers—Jennifer, 

Kristal, and Shane (pseudonyms)—who took four mathematics content and methods courses. As 
undergraduates, the teachers majored in mathematics with an emphasis in secondary teaching 
and minored in mathematics education. In their junior year, they participated in the mathematics 
content courses, Math A and B (pseudonyms). After completing their undergraduate degrees, 
they entered a teacher education program, offered at the same university, to obtain secondary 
teaching credentials in mathematics. During the teacher education program, they had two 
mathematics education courses, ED A and B (pseudonyms). The three participants were 
specifically chosen for this study because they were the only teachers in the secondary teaching 
cohort who had taken Math A and B and Ed A and B. 

The Math A and B courses had two main goals: helping future teachers reconceptualize the 
key concepts of grade 5-12 mathematics through the analysis of student work and tasks, and 
providing them with opportunities to construct mathematical ideas themselves through the 
problem solving of college level mathematics. Throughout the courses, the roles of 
representations and tasks in teaching and learning were emphasized through reading, discussion, 
problem solving, and task analysis by using Young Mathematicians at Work: Constructing 
Fractions Decimals and Percents (Fosnot & Dolk, 2002), Making Sense: Teaching and Learning 
Mathematics with Understanding (Hiebert et al., 1997), and the Contexts for Learning series. 
College level tasks based on historical contexts, such as Euclid, Archimedes, and Omar 
Khayyam as well as the tasks based on literature, such as Thompson (1994a) and Carlson et. al 
(2004), were also used so that preservice teachers themselves would experience construction of 
mathematical ideas. Most of the tasks used in the courses were realistic and naturally embedded 
representations. It is noteworthy, however, that much of the materials used in the courses were 
either at the grade 5-8 level or at the college level, due to their focus on student mathematics 
thinking at the grade 5-12 level and a lack of professional materials at the high school level that 
followed principles similar to RME.  

The two graduate mathematics educations courses, Ed A and B (offered in the fall and winter 
quarters, respectively) focused mainly on grade 5-12 mathematics. The main activities for the 
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courses were problem solving and discussion of articles regarding many issues in mathematics 
teaching and leaning. The two major components of the courses were Young mathematicians at 
work, Constructing algebra (Fosnot & Jacob, 2010) and the Cookies unit from a reform based 
high school curriculum, Interactive Mathematics Program. Much of the class hours were spent 
on solving algebra problems and discussing students’ construction of ideas in algebra. As a final 
portfolio, they submitted 15-20 pages of writing on the Cookies unit in which they explained 
how the unit brought out mathematical ideas—such as equivalence, inequality, variation, the 
Cartesian connection, and optimization—in relation to representations—such as the number line 
model and the Cartesian coordinate plane.  

Data and Analysis 
Two different types of data were used for analysis: two individual interviews and the 

Performance Assessment for California Teachers (PACT) teaching events. The first interview 
lasted about an hour and was conducted after the participants finished the Ed A course. The 
second interview lasted about 2 hours and was conducted while they were taking the Ed B 
course. Interview questions included items that could measure participants’ problem solving 
tendencies and abilities, their conceptions of representations, and their student teaching 
experience and PACT. Both interviews were recorded with a video camera and were transcribed. 
Participants’ written responses on the interviews were also collected. The PACT teaching event 
was collected at the end of their teacher education program. 

There were 7 interview questions that regarded the first research question—“How were 
preservice secondary teachers’ tendencies and abilities to solve problems using representations 
after taking courses that emphasized the roles of representations and tasks?” The questions were 
similar or identical to items in the MKT survey (Hill et al., 2008) or tasks in Dufour-Janvier, 
Bednarz, and Belanger (1987), Even (1998), and Knuth (2000). For the grade 5-8 level, included 
were three problems related to a division of fractions, 2/3 ÷ 1/6; a multiplication of decimals, 1.5 
x .7; and an algebraic expression, (x+2)(x+3). For the high school level, included were four 
problems related to the number of solutions of x4 = x + 2; the number of solutions of 

€ 

x = x - 2; 
the solutions of an equation, ?x + 3y = -2, with a graph of the equation provided; and the signs of 
a, b, and c in y = ax2+bx+c, with a graph of the function provided. For analysis, I coded the kinds 
of approaches the participants used in problem solving and the correctness of their work.   

For the second research question—“How were preservice secondary teachers’ abilities to use 
tasks in instruction after taking courses that emphasized the roles of representations and tasks?”, 
PACT events as well as interview items that were relevant to task design and implementation 
were analyzed. Two interview items asked the participants to generate a task and to explain how 
they would implement the task for students who had little instruction on the mathematical topics 
of linear functions and of quadratic functions. Three interview items asked them to explain the 
roles of representations, the roles of realistic tasks, and their experiences in student teaching. The 
PACT event was a collection of instructional materials—video clips of teaching segments, 
students’ work samples, daily reflections on instruction, and commentaries—from a week-long 
learning segment of instruction during their student teaching. As such, it showed participants’ 
abilities to design and implement tasks in instruction. Among multiple tasks included in the 
PACT event, I selected major tasks for which the preservice teachers spent 30 minutes or longer 
of instructional time. Because an implementation of realistic tasks normally requires a 
considerable amount of time, those tasks had a better chance to show participants’ abilities to use 
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representations and realistic tasks. Jessica and Kristal had two tasks and Shane had one task that 
met the selection criteria.  

For the analysis of data related to the second research question, I modified the Context Scale 
of the Assessment of Facilitation of Mathematizing (AFM; Fosnot, Dolk, Zolkower, & 
Seignoret, 2006). The AFM Context Scale was a measuring tool, examining teachers’ abilities to 
use contexts in teaching on three levels based on teachers’ use of representations and tasks. 
Rather than classifying the tasks into three levels as in the AFM Scale, I classified the 
participants’ tasks into two levels. The discriminating factor between the two levels was how 
they used tasks in instruction: If a task was used as an application of learned facts, it was rated 
Level 1; if a task was used as a departure of students’ construction of mathematical ideas, it was 
rated Level 2. 

Results 

Tendencies and Abilities to Use Representations in Problem Solving 
Analysis showed that despite taking the courses that focused on multiple representations and 

the connections among representations, preservice teachers showed tendencies to use traditional, 
algebraic approaches in problem solving for both grade 5-8 and high school level problems when 
they were not prompted to use visual/geometric representations. In addition, when they were 
prompted to use visual/geometric representations, they were more successful on the grade 5-8 
level problems than on the high school level problems.  

As for their tendencies to use visual/graphical representations, for each of the three grade 5-8 
level problems, only one participant used a visual representation to answer the question when not 
prompted to do so. Kristal used an area model to explain why (x+2)(x+3) is equivalent to 
x2+5x+6, and Jennifer and Shane used the FOIL method to explain it. The same trait was shown 
for the questions regarding the division of fractions, 2/3 ÷ 1/6, and the multiplication of 
decimals, 1.5 x .7. Shane used number line models to explain both operations, but Jennifer and 
Kristal used the invert and multiply method for the fraction problem and the multiplication 
algorithm for the decimal problem. Their tendencies to use algebraic approaches on the three 
high school level algebra problems were higher than those on the grade 5-8 level problems. 
Except for the case where Shane used a graph to answer one of the three problems, all three 
participants used algebraic approaches to answer the high school level questions. All three used 
algebraic approaches and successfully found a solution of ?x + 3y = -2; Jessica and Shane used 
algebraic approaches and successfully determined the number of solutions of  

€ 

x = x – 2; Jessica 
and Kristal used algebraic approaches, but failed to determine the number of solutions of the 
equation, x4=-x+2.    

Despite having tendencies to use traditional, algebraic approaches for the grade 5-8 level 
problems, when they were prompted to use visual/geometric representations, they came up with 
representations to explain the grade 5-8 level problems. All three participants used area models 
to explain 1.5 x .7 and (x+2)(x+3) = x2+5x+6, and Kristal and Shane used a number line model 
and an area model to explain 2/3 ÷ 1/6. However, they were less successful in solving high 
school level problems using geometric representations, even with prompts. Although all three 
participants provided a solution successfully by examining the graph of ?x + 3y = -2, when 
prompted, they could not determine the number of solutions of 

€ 

x = x – 2 or of  x4=-x+2 by 
using graphs. A major obstacle for them was that they did not know where to start. Kristal and 
Jessica said that with no y present in the equations, they did not know what graphs had to be 
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considered. Yet when they were told that graphs of y=x4 and y=-x+2 could be considered, they 
sketched the graphs and explained using graphs that there were two real solutions of x4=-x+2. In 
the question where they had to determine the signs of a, b, and c in y = ax2+bx+c, using the given 
graph, none of them could determine the sign of b successfully. They could determine the sign of 
a from the concave down shape of the parabola graph, but they were unable to use the location of 
the vertex to determine the sign of b.  

It was noteworthy that they were unable to associate graphs to the equations, x4=-x+2 and 

€ 

x  = x – 2, after taking many courses that emphasized the connections among representations. 
It was also noteworthy that their positive conceptions of representations did not help them to 
solve the problems. They said in an interview: “Graphs are important since they are used in all 
sorts of things. But if you don’t understand what graphs mean, then the graph has no meanings 
and it can’t serve its purpose”; “a teacher’s knowing many ways of representing is important 
because students learn differently”; and “representing in many ways is important because there 
would be some students who might not understand in one representation.” However when they 
were given tasks in which they had to solve by connecting representations, they were unable to 
do so.  

Knowledge of Tasks 
Their abilities to design and use realistic tasks shown in the two interviews were quite 

satisfactory, with all of them rated Level 2. For the linear function topic, Jennifer used a money 
context that showed a constant rate of change of 5; Kristal used a paper-cutting context which led 
to the linear function y=2x; and Shane used a context involving two different constant rates of 
change of jumps. All of them also explained that they were using the contexts as the start of the 
construction of the ideas such as slope, rate of change, and the initial value, by connecting tables 
and graphs to the problem contexts. For the quadratic function topic, Jennifer used a square 
number sequence context of 1,4,9, … and emphasized that the differences in the steps formed a 
linear function; Kristal used y=x2 by connecting it to the linear function y=x and y=x2 + c graphs; 
and Shane used a tile context in which the nth step included n2 number of tiles. All of them 
explained that they were using the tasks as a departure of a meaning-making process, focusing on 
the development of concepts such as the rate of change of a quadratic function as a linear 
function or its connection to linear function by connecting tables, graphs, and problem contexts. 

The tasks in their PACT events were rated lower than those on the linear and quadratic 
function concepts. Jennifer had two word problem tasks on linear functions, rated Level 2, which 
were similar to the tasks she provided in an interview. Kristal had two hands-on activities on 
linear inequality, rated Level 1, which she used as a practice of learned rules. Shane had a hands-
on task on parallelogram, rated Level 1, which was basically a parallelogram constructing 
activity using the conditions of parallelogram learned in previous classes. Jennifer was the only 
one who used tasks as the departure of meaning-making process, and Kristal and Shane used the 
tasks as applications of learned facts. 

Some factors that contributed to the lower ratings on PACT tasks were their students’ 
academic levels (or their beliefs about how students with lower academic abilities should be 
taught) and their lack of understanding about realistic tasks. In Kristal’s case, for example, 
although she believed that students in general needed to be given opportunities to construct ideas 
themselves, she learned from her teaching that her low academic level students could not learn 
mathematics in that way. She thus adjusted her teaching style, following behaviorism principles, 
and used mostly skill-based or low-level tasks in her instruction. Another contributing factor was 
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their lack of understanding of “realistic” tasks. All three described realistic tasks as “real-life,”  
“hands on,”  “fun,” “interesting,” “something that made them engaged,”  “making them want to 
learn math,” and “incorporate something hands-on.” But none of them mentioned that the use of 
tasks as the starting point of constructing mathematical ideas was important in task 
implementation. As such, when they were asked in interviews to design tasks on the topics with 
which they were familiar through the intervention courses, such as linear function and quadratic 
function, they came up with tasks that were similar to the tasks used in the courses and explained 
in the ways that they would use the tasks as the departure of understanding. But when they were 
given a topic with which they were unfamiliar, such as parallelogram in Shane’s case, they 
focused on the fun, hands-on, interesting, and real-life part of tasks rather than on the use of tasks 
as the departure of construction of ideas.  

Discussion and Conclusions 

This study examined three preservice secondary teachers’ problem solving tendencies and 
abilities to use representations as well as their abilities to use tasks in instruction after taking a 
series of mathematics and mathematics education courses that focused on representations and 
realistic tasks. The results of this study are bi-fold. As for their abilities and tendencies to use 
representations, on the positive side, they were able to solve problems or to explain ideas using 
representations other than symbolic for the grade 5-8 level problems when they were prompted 
to do. On the negative side, however, they could not solve high school level problems by 
connecting algebraic and geometric representations as in the teachers in Gagatsis and Shiakalli 
(2004) and Presmeg and Nenduradu (2005), even when they were prompted to do so. Algebra 
problems requiring the connections between symbolic and graphical representations, such as 
those in Dufour-Janvier et al. (1987) and Even (1998), were very challenging to them. 
Furthermore, when they were not prompted to use visual/geometric representations or 
approaches, they still showed tendencies to use algebraic or traditional approaches as in teachers 
in Nathan and Petrosino (2003).   

As for their use of tasks in instruction, on the positive side, they developed beliefs that 
realistic tasks or multiple representations are important parts of learning. Unlike the grade 5-8 
teachers in Moyer (2002) and Stylianout (2010) or in Wobbles, Korthagen, and Broekman 
(1997), the preservice secondary teachers in this study believed that it was important to 
understand mathematical ideas in many representational contexts, that students’ construction of 
ideas was an important characteristic of secondary mathematics, and that realistic tasks were 
important. They also designed many tasks that embedded multiple representations that could 
potentially help students construct critical ideas. Yet on the negative side, they understood 
realistic tasks as tasks that were related to real-life, fun, and interesting, but not as tasks that were 
used as the departure of construction of ideas.  

This study suggests that preparing secondary teachers should be done with special care. 
Teachers need to be provided with opportunities to design or modify tasks using traditional 
mathematics curriculum or ill-designed tasks. As shown in this study, it is difficult for them to 
design and implement tasks that can lead to students’ construction of ideas on unfamiliar topics, 
if they learn the importance of tasks only with well-designed tasks. By having opportunities to 
discuss deficits in ill-designed tasks and to modify the ill-designed tasks into well-designed 
realistic tasks, they might develop knowledge of tasks that can be transferred into their teaching 
in various situations.  
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Preservice Elementary Teachers’ Understandings of Greatest 
Common Factor Versus Least Common Multiple 

 
Kristin Noblet 

East Stroudsburg University 
 
Little is known about preservice elementary teachers’ understandings of greatest common factor 
(GCF) or how they relate to their understandings of least common multiple (LCM). As part of a 
larger case study in which an emergent perspective (Cobb & Yackel, 1996) was used to 
investigate preservice elementary teachers’ understandings of topics in number theory, task-
based interviews elicited participants’ conceptions about modeling GCF and LCM using 
manipulatives, pictures, and story problems and the procedures for finding GCF and LCM using 
prime factorizations. Additional classroom data served to support findings. Participants held 
stronger understandings of modeling LCM than they did with modeling GCF. In contrast, 
participants’ understandings of the procedure for finding GCF were far more robust than their 
understandings of how to find LCM. 
 
Key Words: Number Theory, Preservice Elementary Teachers, Task-Based Interviews 
 

Number theory content is integrated throughout elementary and middle school mathematics 
education in the United States, ranging from learning about evens and odds in early elementary 
school to greatest common factor (GCF), and least common multiple (LCM) in 6th grade 
(National Governors Association Center for Best Practices & Council of Chief State School 
Officers, 2010). However, research suggests that preservice elementary teachers may not have 
the understanding of number theory (e.g., Zazkis & Liljedahl, 2004) necessary to increase U.S. 
elementary and middle school student achievement, which is currently unsatisfactory (U.S. 
Department of Education, 2015). Zazkis and colleagues contributed the bulk of what is known 
about (Canadian) preservice elementary teachers’ understandings of topics in number theory, 
such as even and odd numbers (Zazkis, 1998), multiplicative structure (Zazkis & Campbell, 
1996), and prime numbers (Zazkis & Liljedahl, 2004). Many of Zazkis et al.’s participants 
exhibited procedural understandings of the content and difficulty working flexibly with various 
number concepts. For instance, Zazkis (1998) found that participants struggled to associate 
“evenness” with “divisibility by two” and the presence of a two in the prime factorization.  

Brown, Thomas, and Tolias (2002) investigated preservice teachers’ conceptions of LCM. 
They found that their participants used one or more of three approaches for finding the LCM of 
two numbers. Two of these approaches required a great deal of brute force. The third and most 
efficient approach made use of the prime factorization of the two numbers, identifying the 
highest power of each prime factor. Of the participants that attempted to use the prime 
factorization method, not all were successful. Successful participants did not adequately explain 
why this method works, with the exception of one student. For students to possess a conceptual 
understanding of LCM, the researchers suggested that they first need a flexible understanding of 
prime factorization and how it relates to factors, multiples, and divisibility. Brown, Thomas, and 
Tolias also suggested that students require a connected understanding of LCM across 
representations, including prime factorizations and story problems.  

Greatest common factor and least common multiple are interrelated concepts, but little is 
known about preservice elementary teachers’ understandings of GCF or how they relate to their 
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understandings of LCM. This paper aims to illuminate this relationship using data from a 
qualitative case study that investigated the nature of preservice elementary teachers’ 
understandings of topics in number theory. An emergent perspective (Cobb & Yackel, 1996) was 
used to analyze and interpret multiple forms of data, including classroom observational notes, 
student coursework, and responses from two sets of one-on-one task-based interviews.  
 

Methods 
 

The emergent perspective (Cobb & Yackel, 1996) served as the lens for collecting and 
analyzing data. Through their empirical investigations, Cobb and Yackel identified certain 
aspects of classroom microculture and their corresponding psychological constructs that all 
contribute to the construction of student understanding at the classroom level. The researchers 
did not mean for “the classroom level” to be a physical location; instead it refers to the types of 
activity in which students are engaged. Cobb and Yackel claimed that researchers can use this 
framework to explain the social influences on the individual’s developmental understanding. The 
psychological perspective was the primary lens used in this study, because the bulk of the data 
represent individual conceptions. On the other hand, via the social lens, classroom norms, 
expectations, and experiences that framed participants’ perspectives on mathematics teaching 
and learning were explored and used to inform individual conceptions.  

This interpretive case study (Merriam, 1998) centered on preservice elementary teachers who 
were seeking a mathematics concentration and enrolled in a number theory course at a large 
doctoral-granting university in the western United States. This served as a bounded unit 
(Merriam, 1998). By seeking a mathematics concentration, participants could be certified to 
teach mathematics through 8th grade. All participants were Caucasian and female, typical of the 
elementary education major. While data for this study came from multiple sources, one-on-one 
task-based interviews with six participants (Brit, Cara, Eden, Gwen, Isla, and Lucy) served as the 
focus of the data analysis. Open thematic and constant-comparative coding (Corbin & Strauss, 
2008) were used as part of the coding process. Member and peer checking as well as data 
triangulation were used to ensure trustworthiness. 
 

Results 
 

The first three sections that follow outline specific tasks used to elicit participants’ 
understandings of GCF and LCM, and they synthesize participants’ responses. The fourth and 
final section informs participants’ individual conceptions by describing the coursework 
experiences that may have influenced their responses.  

 
Modeling Greatest Common Factor 

During the one-on-one task-based interviews, the interviewer asked participants to create a 
GCF story problem that would require someone to compute the GCF of 28 and 32. All 
participants (with the exception of Eden) eventually attempted to create a GCF story problem. 
Aside from Brit, who began her response by attempting to create a GCF story problem, 
participants engaged in different activities to help them respond to this task. Eden and Isla 
verbally recalled the basic definition of GCF; others began by using numerical methods to find 
the GCF of 28 and 32. The interviewer prompted participants to model the GCF using pictures or 
manipulatives if they did already use these models to create a story problem. 
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Participants modeled GCF using two distinct types of representations, similar to the two 
types of meanings or models of division. Ball (1990) referred to these as the measurement model 
and the partitive model of division. However, participants were familiar with the phrasing used 
in Beckmann (2008) from previous courses, the “How many groups?” model and the “How 
many in each group?” model. Beckmann’s language was adapted to account for the complexity 
of GCF structure. With “How many subgroups?” representations of the GCF, the groups of A 
and B objects are broken up into the same number of subgroups, and this number is maximized. 
In other words, to find the GCF of A and B, we find the largest number of subgroups that both A 
and B objects can be broken into. With “How many in each subgroup?” representations of the 
GCF, the groups of A and B objects are each broken into subgroups with an equal number of 
objects in each, and this number is maximized. In other words, to find the GCF of A and B, we 
find the largest number of objects in each subgroup of both A and B. Implicit in this language is 
that all of the objects are equally distributed amongst the subgroups without remainders. 

Cara and Lucy modeled or described how to model the GCF to assist them in creating story 
problems. They both drew from the “How many subgroups?” representation of the GCF. After 
finding the GCF of 28 and 32, Cara described how to break up 28 and 32 objects to show the 
GCF is four.  

Cara: So you would end up with four groups of a certain number in it. So for 28, you would 
have four groups of seven, and with 32 you would have four groups of eight. So the 
number in your groups would be different, but the amount of groups is the same, 
showing that that represents the [greatest] common divisor. 

Here, Cara first found the GCF numerically and used that number to model the GCF, rather 
than using the model to find the GCF. Cara went on to create a “How many in each subgroup?” 
representation of the GCF, and she used it to assist in creating a second story problem. Cara 
compared her model using this representation to the one she described using the “How many 
subgroups?” meaning of GCF, again emphasizing how one of the factors of 28 and 32 was 
immaterial. Cara was the only participant to demonstrate flexibility with these meanings of GCF. 

Cara: So if we wanted, we could do it the opposite way. Where the groups are even, or the 
amount in the groups are even, but then the amount of groups might not be even in 
this case. So you would put 4 in each group. 

Gwen also used a “How many in each subgroup?” representation of the GCF to assist in creating 
a story problem. Brit and Isla attempted to create “How many in each subgroup?” story problems 
first, rather than start with a visual model. However, Isla felt her story problem needed further 
explanation, and she explained using a visual model.  

In her attempts to model GCF, Eden demonstrated a conflated understanding of the two 
meanings of GCF. She wanted both the number of subgroups and the number of objects in each 
subgroup to be maximized and equal. She was the only participant to not produce a valid visual 
model of GCF. However, not all participants demonstrated a strong understanding of how to 
model GCF visually; only a few participants successfully explained how to use manipulatives or 
pictures to find the GCF of two numbers. Instead, participants appeared more comfortable 
calculating the GCF using numerical means and using it to model breaking up the two quantities. 

In contrast to their relative success in modeling GCF using manipulatives and pictures, none 
of the participants created a valid GCF story problem. As the only participant to unsuccessfully 
model GCF visually, Eden did not attempt a story problem. The other participants’ story 
problems had a variety of flaws. Cara and Gwen did not include a statement that required the 
reader to maximize the quantity in question, essentially asking for a common factor rather than 
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the greatest common factor. Gwen, Isla, and Lucy did not successfully contextualize the GCF 
structure in their story problems; instead, they referred to “objects” and “things.” Many of the 
participants also struggled to pose an appropriate question. For instance, Isla’s question did not 
specify that each group of “things” needed to be subdivided equally. 

Isla: You had 28 things and your friend had 32 things. How could you each group your 
things where you have the same number in your largest group, but you couldn't have 
remainders left over? 

Brit’s scenario was the most successful, but the wording of her story problem was not concise or 
clear; it required reorganization and clarification. 

Brit: OK, so if I have 28 dinosaur stickers and 32 flower stickers and I want to group the 
dinosaur stickers and the flower stickers together… and I want to give them to 
individual students. So I want to know what is the greatest… how many, how many 
dinosaur stickers and flower stickers am I going to need in each group? I want to use 
all of them in an equal amount of groups. So I want to know how many stickers are 
going to be in each group. 

 
Modeling Least Common Multiple 

The interviewer also asked participants to create LCM story problems that would require 
someone to compute the LCM of six and eight. Unless participants also modeled LCM using 
manipulatives or pictures, the interviewer later prompted them to do so. Every participant 
successfully modeled LCM visually, using pictures, manipulatives, or both. And all six 
participants explained how to use their visual models to find the LCM of two numbers. 

Participants were less successful at creating LCM story problems. The most common 
struggle with modeling LCM story problems was that most participants posed a question asking 
for any common multiple, rather than the least common multiple. However, participants were 
overall more successful in modeling LCM story problems than GCF story problems. Two 
participants began with visual models or the meaning of multiplication before suggesting an 
LCM story problem. For example, Brit started by modeling the LCM of six and eight using 
Cuisenaire rods. She determined that the dark green rod was six units long and the brown rod 
was eight units long. Then she created one-color trains using the rods. Brit presented her solution 
in terms of what she would have students do, even though the question was not phrased in that 
context. 

Brit: What I would have kids do… is line up the blocks until they match, which 
turns out to be three brown ones and four green ones. Then they would do 
three times eight is 24 and six times eight is 24, would be the least common 
multiple.  

Brit explained that it was a “really good way to visually see it… All you have to do is line up the 
blocks in a row and connect it back to the math.” Brit used this representation to help her 
organize her story problem. While initially wordy, Brit produced a relatively successful LCM 
story problem.  

Brit: So I have a nice society where my only money is $6 coins and $8 coins… I 
only have those two amounts. So I want to know what amount I can make 
using the $6 coins, just the $6 coins, can make the same amount as just the $8 
coins. And I want the least, because I don’t want to carry around that many 
coins in my pocket at the same time. So I want the least amount that I can 
make with $6 coins that is the same as what I can make with $8 coins.  
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In contrast to Brit, Cara reminded herself that the LCM of six and eight was 24, which is four 
times six and three times eight, or four groups of six and three groups of eight, in order to create 
her story problem.  

Cara: So if you have six chocolate chips in this cookie, how many cookies with 
eight chocolate chips would you need to have the same amount of chocolate 
chips… er, how many cookies of six do you need, or six chocolate chips, and 
how many cookies of eight to equal the same amount of chocolate chips? 

Like Brit, Cara chose an appropriate context, and interpreting the problem in terms of the 
meaning of multiplication (i.e., a × b means a groups of b objects) appeared to help with her 
development of the problem. However, her question concerning the number of cookies was not 
asking for the LCM of six and eight. Rather, it asked the reader to find factors by which we 
would need to multiply six and eight in order to obtain a common multiple. Cara also did not 
qualify this multiple. She simply stated that the total number of chocolate chips needs to be the 
same, not necessarily the least number of chocolate chips.  

Eden started the interview task by generating a story problem. “The microwave timer will go 
off every six minutes and the oven timer will go off every eight minutes. When will both timers 
go off at the same time?” While this was an appropriate context, it is necessary to have a 
statement comparing the two timelines; it is unclear when the microwave and the oven timers 
last went off at the same time. Additionally, Eden did not specify that we want the next time the 
two timers will go off, which would imply the least common multiple rather than any multiple. 
Isla and Lucy also posed story problems using the context of time, and they ran into similar 
issues with phrasing. Gwen generated a new type of story problem. She referred to a single 
quantity and described how to arrange the quantity into even groups of six and also rearrange it 
into even groups of eight. In other words, this quantity is both divisible by six and divisible by 
eight.  
 
Using Prime Factorizations 

The interviewer posed a series of tasks involving prime factorizations to each participant, 
including one modeled after a task from Zazkis and Campbell’s (1996) study concerning 
preservice elementary teachers’ understandings of multiplicative structure. Given the prime 
factorization of a number, , participants discussed whether M is divisible by two, 
seven, nine, 11, 14, 15, 26, and 63. Participants in this study accomplished this with ease, which 
differed from Zazkis and Campbell’s participants, many of whom struggled. As a follow-up 
question, participants were presented with a second prime factorization, , 
and asked to find the GCF and the LCM of M and N. All participants determined the GCF with 
ease and successfully reasoned through how to find the GCF (identify the common prime factors 
and the largest prime powers that they have in common, and multiply). Because participants gave 
well-reasoned accounts for why the procedure for finding the GCF using prime factorizations 
works, their explanations were coded as demonstrating conceptual reasoning. 

Participants were less successful in identifying and reasoning about the LCM of M and N. 
Eden and Gwen immediately and accurately found the LCM of M and N, which was 

. Eden was not sure why the procedure for finding the LCM works; “that’s 
just what we do.” Gwen recognized, however, that the LCM must have all of the prime factors of 
M and N in order for the LCM to be divisible by M and N. Gwen did not discuss the powers in 
the factorization. 

! 

M = 33 " 52 " 7

! 

N = 2 " 32 " 53 "13

! 

2 " 33 " 53 " 7 "13

20th Annual Conference on Research in Undergraduate Mathematics Education 78320th Annual Conference on Research in Undergraduate Mathematics Education 783



Brit and Cara initially found incorrect values of the LCM, but could not reconcile their 
answers with what they knew to be true about the LCM. This led them to rethink how they found 
their LCMs and eventually find the correct value. Brit initially thought the LCM to be 

, because it is “what’s left over” once you divide M and N each by their GCF 
and multiply. However, Brit was convinced that the product of M and N was equal to the product 
of their LCM and GCF (a fact participants explored in their number theory class), which was not 
true for her LCM. “In this case, [N], [the LCM] has to include at least two 3s, at least three 5s, 
and a 13. And for here, [M], it includes the three 3s, at least two 5s, and a 7.” This observation 
helped Brit find the correct LCM, but she was not confident in her answer. It was not until she 
multiplied M and N, then divided by the GCF, and found the same value for the LCM that she 
trusted her answer. Cara initially could not decide whether the LCM was  or 

. She eventually decided on the latter, reasoning that all of M and N’s prime 
factors need to be represented in the LCM of M and N. When she tried to explain her reasoning 
further, Cara brought up the example of 6 and 8, which caused a conflict because the product of 
their prime factors, , was not equal to their LCM, 24. By figuring out how to use the prime 
factorization of 6 and 8 to find their LCM, Cara was able to correctly find the LCM of M and N. 

Neither Isla nor Lucy were successful in finding the correct LCM of M and N. Isla insisted 
that the LCM was , because it accounts for all of the prime factors of M and 
N, and it takes the smallest of the exponents. Isla could not explain why that made sense. Lucy 
acknowledged that you multiply M by something to get the LCM of M and N, and you also 
multiply N by something to get the same number. When prompted to explain what that meant for 
the prime factorizations, she suggested that we take the prime factors that M and N have in 
common and multiply them, which would give her 15. This seemed completely unrelated to the 
valid conception she had only moments before. When Lucy was reminded of what she had said 
about having to multiply M by something, she immediately realized that 15 could not possibly be 
the LCM, but she could not think of a way to find it. In short, four participants eventually arrive 
at the correct LCM for M and N, but only Brit demonstrated a relatively complete understanding 
of why the procedure for finding LCM works.   
 
Course Experiences 

Observational notes and participant coursework revealed that participants had a number of 
experiences in their number theory course that may have contributed to their responses to the 
interview tasks. Data revealed that participants did not have an opportunity to create, or even 
answer, GCF story problems in their number theory class. They were, however, given the 
opportunity to briefly explore visual and story problem representations involving LCM. 
Participants were asked to create and analyze an LCM problem for elementary or middle school 
students to solve as part of a homework assignment. Some participants designed tasks that 
required students to use Cuisenaire rods to find the LCM of two numbers (a procedure 
introduced in their number theory course) while others wrote story problems involving LCM in 
other ways. Later in the course, participants also solved and created story problems related to the 
Chinese Remainder Theorem. Gwen’s LCM story problem was phrased similarly to the Chinese 
Remainder Theorem problems that participants worked with in class. 

Participants worked with prime factorizations quite a bit in their number theory class, and 
they consistently demonstrated a great deal of success with them. They found prime 
factorizations on homework assignments and tests in order to determine the GCF and the LCM 
of two numbers. The reasoning behind these procedures was discussed at length in class. 

! 

2 " 3 " 5 " 7 "13

! 

2 " 7 "13

! 

2 " 3 " 5 " 7 "13

! 

2 " 3

! 

2 " 32 " 52 " 7 "13
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Participants also had to use the properties of exponents to fully factorize numbers such as 

€ 

a =108 × 305 . Implicit in all of participants’ work with prime factorizations was the idea that 
numbers are divisible by their prime factors and by the products formed by subsets their prime 
factors.  

 
Discussion 

 
Given the interrelated nature of GCF and LCM, one might expect preservice teachers’ 

understandings of these topics to be similarly robust or weak, depending on the individual. 
However, data suggest this is not the case. Participants demonstrated significantly less difficulty 
when modeling LCM visually and with story problems than they did when modeling GCF. The 
opposite appeared to be true when participants attempted to find the LCM and the GCF of two 
numbers procedurally using prime factorizations. All six participants used and explained the 
GCF procedure with ease. Only two participants immediately and accurately found the LCM, but 
the other four participants had failed attempts at finding the LCM, with two eventually 
succeeding. Only one participant successfully explained the reasoning behind the procedure.  

As Brown, Thomas, and Tolias (2002) suggested, a flexible understanding of prime 
factorization is necessary for a robust understanding of LCM. However, as the data in this report 
suggest, it is not sufficient. The reasoning that participants used for determining the GCF of two 
numbers given two prime factorizations was similar to the reasoning that they used to determine 
the divisibility of M, however. This may suggest why participants demonstrated a stronger 
understanding of GCF with prime factorizations than they did of LCM. Additionally, from a set 
theory perspective, the GCF of two numbers is obtained by finding the intersection of their sets 
of prime factors, whereas the LCM of two numbers is obtained by finding the union of their sets 
of prime factors. Finding the union of two sets is a more complex process than finding the 
intersection of two sets. Also, allowing for some duplicate prime factors but not others, 
especially in the case of finding the LCM of two numbers, further complicates the procedure. 
This could explain participants’ struggle with the procedure for finding LCM. 

In contrast, it is curious that participants demonstrated significantly more success when 
modeling the LCM of two numbers visually and with story problems than finding the LCM using 
prime factorizations. It is also interesting that the opposite was true of GCF. It is possible that 
participants’ number theory course experiences enabled them to be more successful in modeling 
the LCM than modeling the GCF of two numbers, because they had done so in class and on 
assignments. However, participants also found the LCM and the GCF of two numbers using 
prime factorizations in class multiple times. And course experience did not necessarily lead to 
success in finding the LCM. The reasoning behind these procedures was also discussed in class, 
and participants only consistently recalled the reasoning for the procedure for finding the GCF.  

It is important that preservice elementary teachers have robust understandings of the concepts 
that they could one day teach (e.g., Conference Board of Mathematical Sciences, 2012). Further 
investigation is warranted to determine the necessary interventions to ensure these future 
teachers have a flexible understanding of GCF and LCM, and their relationship. However, the 
additional success that participants demonstrated modeling LCM, as opposed to modeling GCF, 
does suggest that number theory courses designed for preservice elementary and middle school 
teachers provide more opportunities for students to model GCF using manipulatives, pictures, 
and story problems. 
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There has been a substantial increase in mathematics education research in how proof-oriented 
university mathematics courses are traditionally taught. In this paper, we focus on the questions 
that lecturers pose to students. Specifically, we audio-recorded 11 proof-oriented mathematics 
lecturers and analyzed all of the questions they asked their students. We categorized each of the 
1,031 questions according to a coding system we describe as well as identified wait time and 
subsequent speaker. We describe trends across all 11 lecturers, highlighting the limited 
opportunities students had to engage in important mathematical practices, and identify variances 
between how different lecturers used questions. We present qualitative data highlighting 
common and uncommon questioning techniques and conclude with a discussion of our results. 

Key words: Questioning, Proof-oriented mathematics courses, mathematical responsibility  

In recent years, there has been a substantial increase in mathematics education research in 
how proof-oriented university mathematics courses are traditionally taught (e.g., Fukawa-
Connelly, 2012; Fukawa-Connelly & Newton, 2014; Lew et al., 2016; Mills, 2014; Pinto, 2013; 
Weber, 2004; Weinberg et al., 2016). Our work differs from the cited literature in two ways. 
First, previous research in this area has tended to focus on the information that mathematics 
professors convey to their students and how they choose to convey this information. In the 
current study, we focus on the questions that lecturers pose to their students. Second, previous 
investigations into mathematicians’ pedagogy of advanced mathematics are largely comprised of 
case studies that describe a single mathematicians’ pedagogy. In the current study, we examine 
the pedagogical practices of 11 mathematicians, from which we can analyze consistencies and 
differences across our sample. The goal of this paper is to make three points: (1) Although 
teacher questioning was common in our sample of lecturers, students’ opportunities to participate 
in lectures were usually limited. (2) There was substantial variation in the types of questioning 
that mathematics lecturers used, which suggests that lecturing in advanced mathematics is not a 
uniform pedagogical practice. (3) Although it was not common in our data set, some lecturers 
used questioning to engage students in important mathematical practices. 

 
Literature Review 

Teacher questioning can serve many purposes. Teachers can use questions to elicit student 
thinking (e.g., Martino & Maher, 1999), set the stage for future investigation (e.g., Boaler & 
Brodie, 2004), generate discussion (e.g., Stein & Smith, 2011), focus students’ attention (e.g., 
Lew et al., 2016), and promote mathematical discourse in general (e.g., White, 2016). We focus 
on one specific role -- inviting student participation (e.g., Martino & Maher, 1999; Mesa, 2010). 

According to White (2016), mathematics education researchers examining questioning have 
aimed to characterize teacher questioning in three different ways: First, some researchers have 
investigated patterns of teacher questioning. A notable example of this type of research is 
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Wood’s (1998) funneling and focusing patterns of questioning. Second, other researchers 
focused on the cognitive level of questions that were asked, such as how teachers’ questions 
relate to Bloom’s taxonomy (e.g., Emerson, 2011). In the third category of research, “question 
types have generally been provided in broad categories to elicit students’ thoughts and 
participation” (White, 2016, p. 20). The current paper fits into this third category of research; we 
categorize teacher questions by what types of mathematical products they are designed to elicit. 

From our perspective, one way that we can characterize the extent that instruction is student-
centered is by identifying the extent to which the teacher and the student are responsible for 
generating the mathematical content in the course. Rasmussen and Marrongelle (2006) claim that 
one end of this continuum would be “pure discovery,” in which students are responsible for 
generating all of the mathematical ideas. The other end of this continuum is “pure telling”—a 
lecture with no teacher-student interactions. A weakness of a classroom based on “pure telling” 
is that the instructor is responsible for supplying nearly all of the mathematics in the classroom, 
including how concepts are defined and represented, the procedures that are used, and whether a 
solution is correct or not. Consequently, students are denied the opportunity to engage in 
important mathematical practices such as defining, conjecturing, and representing (Weber et al., 
2010). However, few lectures in advanced mathematics consist of “pure telling.” Professors 
usually make some attempt to elicit ideas from students, and the most common means to do so is 
via teacher questioning. The goal of this paper is to understand what types of mathematics are 
solicited in the questions that professors ask and the extent to which students are given genuine 
opportunities to participate in the advanced mathematics lectures that they attend. 
 

Methods 

We first describe our participants, including how we recruited participants and the content of 
their courses. We then describe data collection methods. We conclude by describing how we 
coded the lessons. 

Participants. We recruited participants by sending e-mails to every lecturer at three 
institutions teaching a proof-oriented course in advanced mathematics. We asked if we could 
observe, take notes on, and audio record one of their lectures. Lecturers were not told the 
purpose of the study. Eleven lecturers agreed with at least three instructors from each institution. 
The course content included Number Theory, Real Analysis, Linear Algebra, Abstract Algebra, 
Geometry, and Differential Geometry.  

Data collection. For each lecturer, a member of the research team attended a class in which 
an exam was not given. The researcher audio-recorded the lecture while transcribing everything 
that the lecturer wrote on the blackboard into the researcher’s notes using a LiveScribe pen (i.e., 
a pen that one can use to simultaneously audio record and take notes so that the timing of the 
notes is coordinated with the audio-recording).  

Coding the lectures. Each lecture was transcribed. Then a member of the project team 
flagged every instance in which a lecturer asked a question or provided an invitation for students 
to participate. We first categorized the content of each question as either mathematical (What is a 
ring?) or non-mathematical (e.g., Do you have any questions about the syllabus? Do you know 
when your exam is?). Questions that were non-mathematical were excluded from subsequent 
analysis. In what follows, we discuss how we coded the remaining 1,031 questions. For each 
question, we listened to the audio-recording and recorded the number of seconds that passed 
before the lecturer or a student spoke. We also noted who spoke next, the lecturer or a student.  
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In the next phase of analysis, we sought to categorize questions by the types of mathematics 
elicited from the students. We formed categories of teacher questioning using a semi-open 
coding scheme, drawing on grounded theory in the style of Strauss and Corbin (1998). Our initial 
coding scheme was adapted from the framework that Fukawa-Connelly (2012) developed to 
account for lecturers modeling of mathematical behavior in advanced mathematics (which was 
informed specifically by the work of Selden and Selden (2009) and Alcock (2010)). The 
categories included the selection of proof frameworks (Selden & Selden, 2009), choosing a next 
step in an argument, justifying or warranting a step in a proof (e.g., Weber & Alcock, 2005), and 
exemplifying a concept or step in a proof (Alcock, 2010). However, not surprisingly, these initial 
categories did not capture many of the questions that we encountered. In many cases, these 
questions were easily captured by existing categories described in the literature, including checks 
for understanding (Mills, 2013), verbal tics (e.g., adding "right?" at the end of sentences) (Mesa, 
2010), and eliciting facts (Viirman, 2015). When these occurred, we expanded our list of 
categories to include these categories. Some questions did not fit into our initial categories or the 
categories from the extant literature. When this occurred, we created new categories and 
descriptions to account for these questions.  

With the final coding scheme, each lecture was assigned to one of the original four coders for 
final coding of the questions. The codes, descriptions of the codes, and examples of each code, 
are provided in the results section. Subsequently, a second coder re-coded a randomly chosen 20-
minute segment of each 80-minute lecture (approximately 25% of the duration of the lecture), or 
258 questions. The coders agreed on 236 of the codes (91.47% agreement, Cohen’s Kappa = 
.90), representing a very high level of agreement.  

 
Results 

We first present our final codes, descriptions, and examples of each code. We then present 
data highlighting how these question types were used across the lectures and how there was 
variation in individual lecturers use of questions. We then present qualitative data highlighting 
how we coded the lectures and notable questioning techniques we observed.  

Coding and Categories. Table 1 details the final coding scheme agreed upon by the team.  
Table 1 
Descriptions, and example questions by code. 
Code Description Example Question(s) (Source) 
Check for 
Understanding (C) 

Questions or invitations that ask if students 
are okay, understand, or are with the lecturer. 

“Alright, any questions about this 
calculation?” (L4) 

Tic (T) Statements formulated as a question that are 
habitual and frequently repeated throughout a 
lecture. 

“No matter where I am on the cylinder I am 
going to fall on one of the [student: circles] 
circles and one of the lines, yeah?” (L11)  

Fact, 
Computation, or 
Recall (F) 

Questions or invitations that ask for specific 
pieces of information (e.g. definitions, 
computations, theorems, etc.). 

“So what is f plus g?” (L5) 

“[…] what was the identity element in Zn?” 
(L9) 

Big Idea (B) Questions or invitations that address broad 
concepts that are explored throughout or 
across lectures. 

“[…] in fact, the question was […] how can 
we characterize what’s coming here?” (L9) 

 Next Step (NS) Questions or invitations that ask students to 
recommend a course of action that would 
continue the logical progression of a proof or 
example. 

“(Student name)? What can we do with this 
information?” (L2) 
“Therefore, now what?” (L7)  
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Proof Framework 
(PF) 

Questions or invitations that address higher 
level logical structures of a proof. 

“What would I need to prove in order to make 
this relevant to the Euler Phi function?” (L6) 

Warrant (W) Questions or invitations that ask for a 
justification for a statement or claim.  

“How do I know that (Student name)?” (L2) 

Evaluate a Claim 
(E) 

Questions or invitations that provide a truth-
value for a statement. 

“Does x minus two divide this function?” (L5) 

Addressing a 
Convention or 
Notation (CV) 

Questions or invitations that address a 
convention or notation 

“How do you write the identity in cycle 
notation?” (L5) 

Clarifying Student 
Responses (CS) 

Questions or invitations that seek 
clarification of students’ ideas or restate what 
students say 

“You're asking […] once it stabilizes from one 
step to the next is it stable all the way?” (L4) 

Other (O) Questions or invitations that do not fit into 
the other categories 

“Are ideals that contain 1 very interesting?” 
(L2) 

 
Examining findings across all lectures. We coded 1031 questions providing an average of 

93.7 questions per lecture. Collectively, Table 2 highlights the limited opportunities lecturers 
provided their students to engage in important mathematical practices. For example, lecturers 
most often provide students with opportunities to address factual questions (F, 26.4 per lecture) 
followed by next step questions (NS, 10.5 per lecture). Excluding checks for understanding and 
tics, lecturers asked all other question types an average of 22.6 times per lecture.  

Because we do not consider Checks for Understanding or Tics to be genuine invitations, we 
omit these categories from further analysis. Without these two question categories there are a 
total of 654 questions or 59.5 questions per lecture. Table 2 also provides the number of 
questions per lecture within each wait time category by question type. This data highlights the 
limited time students had to hear, consider, and respond to a lecturer’s question. For instance, 
students had less than 3 seconds to respond on over 80% of questions. Only 4.5 questions per 
lecture had a wait time of more than five seconds. Although in many cases a student responded 
to questions in less than 3 seconds, we note that less than 3 seconds is likely not enough time for 
all students to hear, consider, and respond to a question.  
Table 2 
Total number of questions (N) and wait time (0 s. - >5 s.) per lecture by Question Type.  
Question Type N 0 s. 1-2 s. 3-5 s. >5 s. 
Check for Understanding 10.5 -- -- -- -- 
Tic 23.8 -- -- -- -- 
Fact, Computation, or Recall 26.4 13.1 6.8 4.0 2.5 
Big Idea 1.4 1.1 0.1 0.2 0.0 
Next Step 10.5 4.8 3.8 1.4 0.5 
Proof Framework 2.8 1.5 0.9 0.3 0.2 
Warrant 5.6 2.8 1.7 0.5 0.6 
Evaluate a Claim 3.1 2.0 0.6 0.4 0.1 
Addressing a Convention or Notation 2.5 1.2 0.9 0.3 0.1 
Clarifying Student Responses 3.2 2.6 0.5 0.0 0.1 
Other 4.0 2.1 1.3 0.3 0.4 
	 	 	 	 	 	
Total 93.8 31.2 16.6 7.4 4.5 
 

Students responded to an average of 24.1 questions per lecture. Further, whereas Table 2 
highlights that lecturers infrequently gave students opportunities to participate in important 
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mathematical practices (e.g., providing a warrant), Table 3 shows that, when given the 
opportunity, students addressed most question types with about the same relative frequency. 
Hence, students were willing to engage in important mathematical practices during a lecture but 
were not given significant opportunities to do so.  

We defined a question as a genuine invitation to participate if the question was not a Check 
for Understanding or Tic and either a student responded or the lecturer provided more than five 
seconds of wait time. On average there were 26.6 genuine invitations to participate per lecture. 
Of the questions that meet the genuine invitation criteria, factual questions and next step 
questions accounted for 16.3 questions per lecture. In contrast, there were relatively few genuine 
invitations to provide warrants (2.7 questions per lecture), give insight into a proof’s framework 
(1.5 questions per lecture), or evaluate a claim (1.1 questions per lecture).  
Table 3 
Number of questions (N), student responses (S), teacher responses (T), and genuine invitations 
(GI) per lecture (and as a percent) by Question Type. 
Question Type N S  (%) T  (%) GI  
Fact, Computation, or Recall 26.4 10.5  (39.7) 15.9  (60.3) 12.0 
Big Idea 1.4 0.00 (0.0) 1.4 (100.0) 0.0 
Next Step 10.5 4.1 (38.8) 6.5 (61.2) 4.3 
Proof Framework 2.8 1.4 (48.4) 1.5 (51.6) 1.5 
Warrant 5.6 2.5 (43.5) 3.2 (56.5) 2.7 
Evaluate a Claim 3.1 1.0 (32.4) 2.1 (67.6) 1.1 
Addressing a Convention or Notation 2.5 1.0 (40.7) 1.5 (59.3) 1.0 
Clarifying Student Responses 3.2 2.5 (77.1) 0.7 (22.9) 2.5 
Other 4.0 1.3 (31.8) 2.7 (68.2) 1.5 
       
Total 59.5 24.3 (40.5) 35.5 (59.5) 26.6 
 

Identifying differences across lecturers. Although lecturers generally limited students’ 
opportunities to engage in mathematical practices, there was variance in regards to how lecturers 
used questions. As a way to compare this variance, consider Table 4. We note that 25 of the 31 
proof framework questions and 78 of the 117 next step questions came from two lecturers, L2 
and L8, and that a majority of the lecturers provided students with little (3 or less questions) to 
no opportunities to engage in the practice of writing proofs. We also note the wide variance in 
the number of genuine invitations per lecture, from as few as 0 (L2) to as many as 66 (L8).  
Table 4 
Number of instances of each Question Type and Genuine Invitations (GI) by Lecturer 
Lecturer C T F B NS PF W E CV CS O GI 
L1 4 1 12 3 4 2 4 4 11 1 4 10 
L2 1 28 21 1 23 12 10 1 1 3 12 54 
L3 12 6 29 0 8 0 12 2 1 11 1 29 
L4 7 0 41 0 8 0 1 1 3 1 1 43 
L5 9 0 18 0 1 0 3 7 2 5 1 23 
L6 3 0 7 0 3 3 5 0 0 2 0 12 
L7 32 80 64 3 5 0 5 4 1 10 5 47 
L8 28 56 81 4 55 13 19 9 7 2 14 66 
L9 13 31 8 2 6 0 2 2 1 0 5 2 
L10 1 35 0 2 0 1 1 0 0 0 0 0 
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L11 5 25 8 0 4 0 0 4 0 0 1 7 
 
Examples of lecturers’ questioning. In this section, we provide qualitative data for two 

purposes: (1) to highlight how we coded questions within a lecture and (2) exhibit examples of 
common and uncommon questioning techniques we observed. For each question, we provide the 
question code and wait time using the convention [Code; WT (Wait Time): Number of seconds]. 
We annotated the transcripts for readability without changing the overall flow of the interaction. 

A common questioning phenomenon we observed involved a lecturer posing a question to 
students without providing a genuine invitation to participate. In these cases, we often observed 
that lecturers responded to the question on their own, asked a follow-up question, or moved on 
without addressing the question. As an example of this, we present an excerpt from L8 
discussing that any ring element is in the ideal I when the element 1 is in the ideal.  

 
[1] L8: All right, here’s a first question, okay, if R is a ring with 1, say R is commutative with 1 

and I, an ideal in R. Okay? [T; WT: 1]. Is 0 in the ideal? [NS; WT: 1]. Yeah, how do I 
know that [S1]? [W; WT: 0]. 

[2] S1: The zero set is an ideal.  
[3] L8: Yeah, but how do I know it has to be in there to begin with? [W; WT:0]. The zero set is 

an ideal, zero absorbs things. In particular, an ideal is what? [F; WT: 1]. 
[4] S2: A subring. 
[5] L8: A subring. It has to have zero, right? [T; WT: 0]. I has zero. Does 1 have to be in I? [F; 

WT: 2]. Not necessarily. What if 1 is in I? [F; WT: 5]. What can you say? [NS; WT: 1]. 
Well 1 is what? [F; WT: 0]. The multiplicative identity, so what does that mean [S3]? [F; 
WT: 1]. 

[6] S3: That I is a ring with identity? 
[7] L8: Yeah, but what does it mean for 1 to be the identity? [F; WT: 0]. What’s the property 

of the multiplicative identity? [F; WT: 1]. 
[8] S3: An element times that [the multiplicative identity] is itself. 
[9] L8: An element times that is itself. So r times 1 is? [F; WT: 2]  
[10] S3: r. 
[11] L8: r, okay? [T; WT: 0] But if 1 is in I, where is r times 1? [F; WT: 1]. 
[12] S3: In I as well in R. 
[13] L8: Yeah. So what can I say about I? [NS; WT: 1]. It’s all of R. Do you guys see that? [C; 

WT: 0]. If 1 is in I, then I is actually equal to R.  
 

L8 posed several questions in this excerpt that she then answered herself ([1], [3], [5], [13]) 
or followed with another question ([1], [5], [7], [11]). In each of these cases, L8 provided little or 
no wait time. Of the 18 questions present in the excerpt, only 6 questions were genuine 
invitations to participate. Additionally, this excerpt exemplifies the high number of factual 
questions lecturers ask; nine of the eighteen questions in this excerpt were coded as factual.  

Although generally lecturers did not provide students with significant opportunities to 
participate, this was not true across all lecturers. For example, L2, a real analysis instructor, 
provided students many genuine opportunities to participate by calling on students in a particular 
sequence, without the students necessarily volunteering to answer questions. The following 
excerpt shows the lecturer using his questioning technique to engage students in a proof of the 
fact that multiplying a converging series by a constant generates a series that also converges.  
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[1] L2: [S1 name], you want to start, how do you prove this one [writing “Proof of 1” on the 
board]? [PF, WT: 1] 

[2] S1: Start with what you know.  
[3] L2: Always a good strategy. What do you know? [PF; WT: 1].  
[4] S1: We know that uh, an converges to A.  
[5] L2: [Writes “Given that {SN} converges to A, where SN =a1+…+aN”] Okay, [S2 name]. 

That’s what we know. [NS, WT: 1].  
[6] S2: Uhh, cSn equals the [inaudible].  
[7] L2: [L2 indicates there are too many “S” letters on the board and decides to change his 

notation from SN to TN and writes “Need to show that {TN} converges to cA, where 
TN=(ca1) +…+ (caN)”] Okay, so. Write what you know. Write what you’re going to show. 
Now [S3 name], I guess you’re next. So this is what you know, this is what you’re trying to 
show. What would you do next? [NS, WT: 1].  

[8] S3: I’d grab a c from each of the terms.  
[9] L2: [Writes “TN=cSN”] Like that? [CS, WT: 0]. 
[10] S3: Yeah.  
[11] L2: So what is true then? [NS, WT: 1].  
[12] S3: It converges.  
 

Overall, we noted that L2’s technique of sequentially calling on students provided students 
with many genuine invitations to participate (54 across the lecture). Whereas on average there 
were only 2.82 proof framework questions per lecture, L2 asked two such questions ([1], [3]) in 
this interaction alone. L2 also used a clarifying question [9] to verify that he accurately 
represented what the student intended to convey in his board work. 

 
Discussion 

In this study, we examined the questioning techniques of 11 lecturers in advanced 
mathematics courses at three institutions. Recall that we defined a genuine invitation to 
participate as questions that were not Tics or Checks for Understanding that either a student 
answered or the lecturer allowed greater than five seconds of wait time. This data highlights that 
generally invitations for students to participate in advanced mathematics classes are limited. 
Further, on average, the vast majority of invitations for students to participate require students to 
cite facts, perform computations, recall previously covered material, or provide the next step in 
proof or example. Lecturers infrequently used questions to prompt students to consider or discuss 
a proof’s framework or provide warrants.  

Although we draw some generalizations by looking across all lectures, we also highlight that 
there is variance in how individual lecturers use questions. This variance can be seen both with 
respect to the use of certain question types and to the number of genuine invitations lecturers 
provided. Hence, we must be careful when making generalizations about lecturers questioning 
activities as our data suggests that lecturing in advanced mathematics is not a uniform 
pedagogical practice. 

We also note that in some instances, lecturers used questioning to engage students in 
important mathematical activities. As presented, L2 was unique in calling on students in some 
order to answer questions, which resulted in providing students many genuine invitations to 
participate. Such novel questioning techniques that elicited genuine invitations to participate also 
highlight the variance in lecturer questioning in advanced mathematics. 
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Transitioning to Proof with Worked Examples 
 

Dimitrios Papadopoulos 
Drexel University 

In this study, I explored the use of a worked-examples-based proof-writing framework as a 
pedagogical tool to improve undergraduate students’ ability to construct proofs. Over the course 
of three months, I ran a series of three workshops with five undergraduate students who had no 
prior experience with formal mathematical proof. In each workshop, participants worked 
through worksheets containing completed worked examples of mathematical proofs, followed by 
partially completed worked examples of proofs (to be completed by the participants), and, lastly, 
exercises. I collected and coded participants’ written work and reflections and explored changes 
in student proof-writing across workshop sessions. In this paper, I describe themes across 
student work and provide qualitative data supporting the benefits of incorporating the use of 
such a worked-examples-based proof-writing framework when introducing students to 
mathematical proof.  

Key words: proof, worked examples, proof-writing framework 

This study is motivated by the ongoing difficulties that students have in learning 
mathematical proof. As Moore (1994) points out, the transition from computational/procedural 
courses, such as calculus and differential equations, to proof-based courses is particularly 
difficult for undergraduate students. These difficulties are myriad and complex, and based on the 
experiences of both students and faculty, the traditional lecture-based classroom falls short of 
helping students overcome these difficulties. Fortunately, there is a growing body of knowledge 
on alternative methods of instruction such as guided reinvention, flipped classrooms, and worked 
examples. The purpose of this study is to explore the use of a worked-examples-based proof-
writing framework as a pedagogical tool, implemented in a series of introductory workshops on 
mathematical proof-writing, to improve students’ ability to construct proofs.  

Literature Review 
The instructional practice at the center of this research is that of worked examples. In 

mathematics education, the word “example” has several interpretations. The word example can 
refer to a particular instance of a concept (e.g. 7 is an example of a prime number). Alternatively, 
the word example can refer to the demonstration of technique as the written solution to a 
particular problem/exercise, a worked-out example – or simply worked example; worked 
examples are typical of undergraduate mathematics textbooks (Weber, Porter, & Housman, 
2008). Lithner (2003) found that in procedure-oriented courses students “almost always” make 
use of worked examples in completing their homework and that this approach was used by 
students of varying mathematical ability. Other recent studies suggest that undergraduate 
students in proof-based courses might use worked examples to inform their construction of 
proofs (Weber, 2004). While Lithner (2003) expressed concern that the use of worked examples 
leads to students completing homework assignments without developing conceptual 
understanding, cognitive psychologists have emphasized the merits of having students use 
worked examples in problem solving (e.g., Zhu & Simon, 1987; Atkinson, Derry, Rankl, & 
Worthman, 2000).  

20th Annual Conference on Research in Undergraduate Mathematics Education 79620th Annual Conference on Research in Undergraduate Mathematics Education 796



As pedagogy, the worked examples model has, in recent years, received considerable 
attention from researchers and educators, especially in mathematics, physics, and computer 
science. While the defining features of the worked examples pedagogical model are subject to 
debate, the common thread is the goal of providing the novice (student) with an expert’s problem 
solving framework, which is to be emulated in the interest of gaining conceptual understanding 
(Atkinson, Derry, Renkl, & Wortham, 2000). Three factors moderate the effectiveness of 
teaching by worked examples (Atkinson et al., 2000):  

• Intra-example features – e.g. use of multiple modalities, clarity of substructure goals, 
completeness/incompleteness  

• Inter-example features – e.g. example’s proximity to matched problems, multiple 
examples per problem type  

• Students’ individual differences in processing examples – e.g. social incentives, self-
explanation 

In this study, I made use of findings in the worked examples literature to develop a proof-
writing framework as well as a methodology for using that framework in a series of introductory 
workshops on mathematical proof-writing. In doing so, I took into consideration the inter- and 
intra-example features of successful worked-examples-based pedagogical models to create 
worksheets that deconstructed the proof-writing process according to that framework. This 
framework - that is, the specific way in which proof-writing is broken down into a series of 
subgoals - will be referred to as a worked-examples-based proof-writing framework.  
 

Methods 
Participants. The participants for this study were five second-year undergraduate students 

majoring in engineering, all with the very similar mathematical backgrounds. All of them had 
completed the first-year calculus sequence and were enrolled in an ordinary differential 
equations course at the time of the workshops.  None of these students reported having any 
experience with mathematical proof, beyond high school geometry.  

Materials. The theorems and exercises used in the workshops were drawn from introductory 
texts on mathematical proof-writing to reflect the material one would typically encounter in a 
transition to proofs course. For each session, worksheets were prepared which contained 
introductory information, such as definitions and descriptions of proofs types, fully worked-out 
examples, partially worked-out examples, and exercises. 

Structure of Worked Examples. The structure of the worked examples was intended to 
decrease the cognitive load of the proof-writing process by encouraging students to deal with the 
various aspects of proof, as defined by Selden and Selden (2009), separately. These aspects of 
proof form the “conceptually meaningful chunks” or subgoals of the worked examples. The 
structure outline is as follows: 

1. Proof construction 
a. Breakdown of problem/theorem statement into hypothesis and conclusion 
b. Brainstorming 

i. Identifying relevant and related definitions, axioms, and theorems 
ii. Identifying the end goal by considering the next-to-last step of the proof 

c. Translating the problem/theorem statement into hypothesis and conclusion into 
appropriate mathematical terminology and notation 

d. Application of definitions, axioms, and theorems to hypothesis 
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e. Experimentation (attempts to connect definitions, axioms, and theorems logically 
or algebraically) 

2. Formal proof write-up/presentation 
3. Reflection (Only for Sessions 2 & 3) 

As Catrambone (1994, 1996) argues, explicitly labeling subgoals improves the effectiveness of 
the worked examples. Furthermore, the subgoals of part (1) – the proof construction - are 
expected to elicit directed self-explanation from students. Part (1) of the worked examples 
corresponds primarily to Hierarchical Structure, Construction Path, and the Problem-Centered 
part of the proof, while part (2) – the formal write-up of the proof - corresponds primarily to the 
Formal-Rhetorical and Proof Framework parts of the proof.  

Hierarchical Structure refers to “knowing what the proof has to accomplish and coordinating 
any sub-proofs or constructions” (Fukawa-Connelly, 2012, p. 328). By rewriting the 
problem/theorem statement in if-then form (assuming the original statement has not been 
presented in this way), the worked example identifies what the proof has to accomplish 
(conclusion) and the conditions under which this must be accomplished (hypothesis). For 
example, in Worked Example 1, the statement “Prove that the sum of two odd integers is even” 
is rewritten as “If two integers are odd, then their sum is even.”  

The brainstorming part of the worked examples addressed the Hierarchical Structure and the 
Problem-Centered part of the proof.  Here, the goal of the proof is further clarified, key ideas are 
determined, and “the ‘right’ resources” are brought to mind. In Worked Example 1, the 
definitions of an odd integer and an even integer are called upon. The next-to-last step (x + y = 
2N) is also written, further clarifying the goal of the proof.  

In translating the proof statement into appropriate mathematical notation and terminology, 
the worked example introduces the Formal-Rhetorical part of the proof. This requires “primarily 
behavioral knowledge to complete” (Fukawa-Connelly, 2012). In worked example 1, the 
statement “If two integers are odd, then their sum is even” is rewritten as  

!"	$, &	 ∈ ℤ, )ℎ+,	$ + &	./	+0+,. 
The Application of definitions, axioms, and theorems to the hypothesis addresses the 

Hierarchical Structure and Formal-Rhetorical parts by “coordinating any sub-proofs or 
constructions” and “coordinating aspects of the proof”(Fukawa-Connelly, 2005). 

The experiment phase of the worked example addresses the Construction Path and Problem-
Centered parts of the proof. Here, a viable construction path is sought by exploring logical and 
algebraic connections between all aforementioned definitions, axioms, and theorems. During the 
presentation of this portion of the worked examples, I encouraged students to practice self-
explanation. 

Finally, having established a viable construction path, the formal write-up/presentation of the 
proof is focused on Formal-Rhetorical, Construction Path, and Proof Framework parts of the 
proof. 

Data Collection & Analysis. In an interpretive qualitative study such as this, data is typically 
collected through interviews, observations, and document analysis (Merriam, 2002). In place of 
conducting individual interviews with participants, in Sessions 2 and 3 students were prompted 
to write written reflections for each problem. I coded their work and reflections for emergent 
themes, first on a granular level, then grouping those codes according to the five aspects of 
proof. Data collection methods are summarized in the following table: 
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Data Collection Method Description 
Written Reflections For the Partial Examples in Sessions 2 & 3 students were 

asked to provide written responses to the following 
questions:  

1. Why did you choose to prove this statement via 
direct proof/contraposition/contradiction? 

2. What parallels can you draw between this proof and 
the examples above? 

3. Which parts of our proof framework were most 
useful in working on this proof? 

4. If you were unable to complete this proof, what 
gave you difficulty? 

Observations Each seminar session was audio recorded. Students were 
observed as they worked during each seminar. 

Document Analysis 
 

All student written work and reflections were collected 
and scanned at the end of each session.  

 
Results 

There were several notable themes in the ways in which students’ proof writing changed over 
the course of the three workshop sessions. The most notable changes took place during the first 
session. Student work varied significantly on the Pretest, but, with only a small number of 
exceptions, no valid formal mathematical proofs were submitted by any of the students.  

However, following the introduction of the work examples, all of the students were able to 
write at least one complete and valid proof on the Session 1 worksheet, with most doing so for 
more than one example/exercise. In the following table we see that the number of correct and 
mostly correct proofs increased significantly between the Pretest (PT) and Session 1, and that the 
number of incorrect proofs remained relatively low over the next two sessions. Here, “Mostly 
Correct” refers to proofs with minor errors or omissions, such as leaving variables undeclared 
and minor algebraic or arithmetic errors. Furthermore, while most of the proofs submitted on the 
Pretest were empirical or colloquial in nature, all of the proofs (or proof attempts) submitted after 
the introduction of the worked examples were deductive.  
 

Session Correct 
Mostly 
Correct  Incorrect Incomplete 

Empirical or 
Colloquial 

Deductive 
Proof 

Out 
of 

PT 1 1 20 2 17 7 24 
1 9 9 4 3 0 25 25 
2 5 9 2 2 0 18 18 
3 6 6 7 0 0 19 19 

 
Below are Rasa’s and Paul’s solutions for the same exercises on the Pretest and the Session 1 

worksheet. The task in this case was to prove that for integers a,b, and c, if a|b and b|c, then 
a|(b+c). 
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 Pretest Session 1 

Rasa 

  

Paul 

  
 
Rasa’s proof on the pretest was primarily colloquial in nature, but her proof on the Session 1 

packet was almost entirely correct, with the exception of undeclared variables, m and n. 
Modeling the formal write-ups in the worked examples, her proof followed mathematical 
convections such as use of notation, separating and labeling algebraic work, and writing in 
complete sentences. Paul, who attempted to operationalize the definition of divides on the 
Pretest, also wrote a correct proof on the Session 1 worksheet. Like Rasa, he wrote in complete 
sentences, indented his algebraic work, and clearly stated his conclusion. 

In addition to correctness, on a more granular level, the formal-rhetorical features of 
students’ proofs continued to evolve over the course of the three sessions. In particular, all of the 
students included conventional notation and language, and declared all primary and secondary 
variables in the partial examples in Session 1. Here, primary variables refer to those which are 
used to represent quantities referenced in the hypothesis/assumptions of a given statement to be 
proven, and secondary variables refer to those used to operationalize a definition. In most cases 
students became less consistent with declaring secondary variables in the later sessions. The 
following table compares the total number of variables declared by all students in each session 
with the minimum number of variables required to construct correct proofs on those exercises. 
To establish these minima, I wrote out proofs for each example and exercise and had several 
mathematicians look over that work to determine if I had used the minimum number of variables 
possible to construct valid proof.  

 

Example/Exercise 
Primary Variables 
Total / Minimum 

Secondary Variables 
Total / Minimum 

Pretest Summary 27 / 40 = 67.5% 10 / 45 = 22.2% 
Session 1 Summary 33 / 37 = 89.2% 33 / 45 = 73.3% 
Session 2 Summary 17 / 20 = 85.0% 22 / 38 = 57.9% 
Session 3 Summary 32 / 38 = 84.2% 25 / 48 = 52.1% 
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On average, students made and maintained significant progress after the Pretest in declaring 
primary variables, from 67.5% declared on the Pretest to 89.2% on the Session 1 worksheet and 
then maintaining roughly 85% for the last two sessions. However, in declaring secondary 
variables, there was a significant increase from the Pretest to Session 1, but then a decline in the 
final two sessions.  

Finally, by Session 3, most students had begun to demonstrate a strategic approach to proof-
writing, engaging in brainstorming and experimenting prior to attempting to write formal proofs. 
Consider, for example, Heather’s work in Session 2 (left) and Rasa’s work from Session 3 
(right):  

 
 
While Heather was unable to write an entirely correct proof for any of the exercises in this 
session, she did experiment with several statements to determine which might be most easily 
solved as either direct proof or proof by the contrapositive. In doing so, she started each proof 
and made notes regarding what “might work” and whether to use contraposition or not. For 6a, 
she did in fact write a mostly correct proof, although once again, variables were not properly 
declared. Rasa began her work on Exercise 1 in Session 3 by rewriting the given claim according 
to the three proof methods covered in these workshops, prior to selecting proof-by-contradiction 
and attempting to construct a proof. The work of both students here indicates planning as a 
separate activity from the formal writing-up of a proof.  

In their written reflections, students most frequently identified brainstorming and 
experimenting as being the most valuable features of the worked-examples-based proof-writing 
framework. The following examples highlight some of their reasons for saying so: 

 
Student Response 

Nadia Definitely brainstorming is very important to understand what we are trying to proof 
but experimenting was important to fully understand the process. 

Heather There is NO way to know if the statements work w/ out experimentation. 

Rasa Experimenting and thinking which process would work best beforehand helped the 
most. 
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Paul Experimenting and brainstorming are the easiest, without a plan to do the proof you 
cannot experiment to find answers and do trial and error methods. 

Overall, these responses suggest that students found these steps useful because they allowed 
them to make sense of what the proof required prior to attempting a formal write-up.  

 
Discussion 

Most undergraduate mathematics students in the United States typically encounter formal 
mathematical proof-writing for the first time in a transition (or introduction) to proofs course. 
Such courses tend to following computation-centered courses, such as the typical freshman level 
calculus courses, and typically span only one semester. Because formal mathematical proof plays 
such a central role in advanced mathematics courses, it is important that we take full advantage 
of these transition courses to equip students with tools and experiences that will allow them to 
succeed in later proof-based courses. In this study, I aimed to explore the ways in which a 
worked-examples-based proof-writing framework could support students during this 
transitionary period.  

This study was conducted independently of any transition to proofs course in order to focus 
on the ways in which this worked-examples-based proof-writing framework would affect novice 
students’ proof-writing. However, the implications of this study for instruction lie primarily in 
the potential use of this type of framework as a tool to supplement instruction in an introductory 
course to proof. Worked examples are by their nature supplementary and of primary value to the 
novice.  

 Lithner (2003, 2004) expressed concern that in relying too heavily on worked examples 
to solve problems, students sacrifice opportunities to build on their conceptual knowledge and 
problem-solving strategies. For this reason, this study treats worked examples as a means to 
“provide an expert’s problem-solving model for the learner to study and emulate” (Atkinson et 
al., 2000, pp. 181-182) and as a means to prompt guided exploration. As has been found in much 
of the worked examples literature, without examples to study, students may develop, and over 
time reinforce, novice strategies that ignore deeper structures in problem-solving activities 
(Weber et al., 2008).  

The keys findings of this study suggest that a worked-examples based framework can both 
help novice students develop some of the basic proficiencies necessary for constructing and 
formally writing up mathematical proofs, and over time, facilitate productive habits, such as 
brainstorming and experimenting prior to attempting a proof write-up. These basic proficiencies 
include declaring variables, operationalizing definitions, using conventional mathematical 
language and notation, and structuring proofs in an organized, readable way. By encouraging 
brainstorming and experimenting, using this framework may help students develop some of the 
strategic knowledge required for mathematical proof-writing. 

Regarding implementation, more research (see future research recommendations below) may 
be required to determine how one might best incorporate this framework into a standard 
transition to proofs course. However, given that the students who participated in this study 
received little instruction, and instead learned to construct proofs primarily by modeling worked 
examples, it may be that worksheets such as those used in this study could be used as 
supplementary materials in an introductory course on proof. Of course, they could be tailored to 
suit the specific content of the course and the needs of the instructor and students. The advantage 
to this type of purely supplemental use of the proof-writing framework is that little or no change 
is required of the instructor in terms of preparation or preferred teaching style.   
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Approaches to the Derivative in Korean and the U.S. Calculus Classrooms 
 

Jungeun Park 
University of Delaware  

 
This study explored how one Korean and one U.S. calculus class defined the word 

“derivative” as a point-specific object through the limit process on the difference quotient, and as 
a function on its domain. The analysis using Commognitive approach showed that both class used 
similar visual mediators for the limit process/object, but addressed different components of the 
definitions; Discussion of the derivative as a function before it was defined were frequently found 
in the U.S. class but rarely found in the Korean class; Words for the derivative at a point, and 
words for the derivative as a function explicitly differed in the Korean class compared to the U.S. 
class; and the derivative was first defined as a function through correspondence between x-value 
and the derivative value in Korean class, but through expansion of x values from a number to 
variable and corresponding changes in the U.S. class.  

 
Keywords: commognition, calculus, derivative, language, teaching.   

 
Introduction 

 
Calculus is considered as a first college level mathematics course that students encounter in 

the United States (U.S.). However, they often learn Calculus in high school as a form of 
Advanced Placement (AP) or a regular course. Similarly, in South Korea, most high school 
students who are on the college track learn basic calculus concepts because they are included in 
the national curriculum. This study looks at calculus lessons about the derivative from South 
Korea and the U.S. to explore how language specific terms for “the derivative at a point,” and 
“the derivative of a function” are discussed in their lessons. In contrast to the English terms, both 
of which include “derivative,” the corresponding terms in Korean, “Mi-bun-Gye-Sum” 
(translated to “differential coefficient”) and “Do-ham-su” (translated to “leading function”), do 
not include a common term. Specifically, this study addresses the following research question:  

How is the derivative realized as an object at a point and an object on an interval in one high 
school class in South Korea, and one AP calculus class in the United States?  

This study adopted Sfard’s (2008) commognitive approach as an analytical tool. The purpose 
for the analysis was not to compare the way the derivative is taught in two countries, but to apply 
the same analytical lens in mathematical discourse involving two languages, focusing on how the 
two terms were addressed as a number or a function in each language.  

 
Theoretical Background 

 
Various studies considered languages as a factor for students’ mathematical thinking. Some 

studies explored the relationship between specific language features and students’ performance 
in mathematics in Chinese (e.g., Wang & Lin, 2005), Korean (e.g., Kim, Ferrini-Mundy, & 
Sfard, 2012), and Irish (e.g., Ni Riordain, 2013). Others considered cultural differences including 
languages in teaching and learning such as indigenous non-native English speaking students’ 
learning, whose teachers were native English speakers (e.g., Favilli, Maffei, & Peroni, 2013; 
Russell & Chernoff, 2013); they revealed that the language difference was a main factor of 
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teachers’ decision on the content and the level of difficulty for the class, and teachers’ 
knowledge about their students’ native language was a key component of the teacher’s 
knowledge for teaching mathematics. The current study also explores teaching mathematics in 
different languages, but also takes other means of communication into consideration such as use 
of visuals while exploring discussions of “derivative” in Korean and English by adopting the 
commognitive approach (Sfard, 2008) as a discourse analysis framework. It combines cognition 
and communication, and explains mathematical thinking through one’s discourse through the 
four characteristics: word use, visual mediators, routines, and endorsed narratives (Table 1).  

Table 1.  
 
Features of Mathematical Discourse in Commognitive Approach   

Feature Descriptions Further Descriptions 
Word use Use of words 

signifying 
mathematical objects 

Different speakers can use a word differently. It is an 
"all-important matter" because "it is responsible to a great 
extent for how the user sees the world" (Sfard, 2008, p. x).  

Visual 
Mediators 

Non-verbal means of 
communication  

Because ways people attend to visuals depend on contexts, 
mediators need to be viewed as part of the thinking process, 
not auxiliary means of pre-existing thought.  

Routines Well-defined 
repetitive patterns 

Patterns can be found in speakers' use of words and visuals, 
or in the process of creating and endorsing narratives.  

Endorsed 
Narratives 

Utterances that 
speakers endorse as 
true  

Students' endorsed narratives are often different from what 
the professional mathematics community endorses as true 
(e.g., “Multiplication makes bigger” changes to 
“Multiplication can make smaller.”). 

Note. Adopted from Park (2015, p. 234) 
The first two characteristics are also considered as realizations. Sfard (2008) defined 

realizations of a signifier (either a word or visual mediator) as perceptually tangible entities that 
share Endorsed narratives, and mathematical object as a collection of these realizations. For 
example, a word “function” can be realized with a word, “mapping” or “relation,” graph, 
equation, or gesture for a curve or straight line. With these four discursive characteristics, the 
development of various mathematical objects has been examined (e.g., Kim et al., 2012; Sfard, 
2008). The current study addresses the development of “the derivative” through its realizations – 
words and visual mediators – in discourse from a Korean and an American calculus class.  

The derivative, which is commonly mediated with symbols, is realized as a number (e.g., 

) and as a function (e.g., ). The realization of “the 

derivative” includes several process and object transitions. First, for “the derivative at a point,” 
the difference quotient (DQ) is considered as an initial object, and then the process of the limit 
over smaller and smaller intervals is applied, and then the final object from this process is be the 
derivative at a point. The limit process is often mediated with graphs of multiple secant lines; 
symbols for the limit; words such as “as h approaches 0, the DQ approaches...”; numbers for DQ. 
Through this process, the “derivative” is objectified as a number. Then, for “the derivative 
function,” the derivative at a point is considered as an initial object, and the derivative process of 
finding the derivative at every point is applied. This process can be mediated with several 
tangent lines; several dots on an x-y plane; symbols including different letters (e.g., x); multiple 
numbers for the derivative. The derivative of a function would be objectified from this process.  

f '(a) = lim
h→0

f (a+ h)− f (a)
h

f '(x) = lim
h→0

f (x + h)− f (x)
h
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Method 
 
The purpose of this study is to explore mathematical discourse about the derivative from one 

Korean and one American calculus classroom. To this end, lessons for the derivative were 
videotaped 7 times for the U.S. classroom and 10 times for the Korean classroom when the 
teachers started the derivative unit. The video camera was located in the back of the classroom to 
minimize the interruption, and field notes were taken. The two instructors also participated in a 
30-minute interview about what they believe as important to teach in their class. The interviews 
were also videotaped and used as a complementary data for the classroom data.   

 
Participants 

One Korean high school teacher, Mrs. Kim, and one U.S. AP calculus teacher, Mr. William 
(pseudonyms) (Table 2) were recruited via email sent to the group of teachers recommended by 
mathematics education professors at the researcher’s institution.  

Table 2. 
 
Teachers’ backgrounds and classes 
 Mrs. Kim Mr. William 
First language Korean English 
Degrees BS in Mathematics BS and MS in Mathematics 
Teaching experience 13 years 10 years 
Calculus teaching  3 times 7 times 
Number of Classes/week  Three 50-minute classes Five 90 minute classes  
Teaching method Blackboard and chalk SmartBoard, interactive graphs 
Number of Students  34 32 

 
Coding Scheme 

Videos from each class were transcribed, and then the excerpts including realizations of the 
derivative were selected. Excerpts for “the derivative at a point” were coded as a) Initial Object: 
Location where the initial object was defined; b) Initial Object where the limit process was 
applied; c) Limit Process:Location where the limit process was applied; d) Limit process:Change 
in the object; e) Limit object from the limit process, and f) Limit Object:Location: where the limit 
object was defined. Table 2 shows an example for such realizations. The first column shows 
codes for the limit process/object. The first row shows Mrs Kim’s words or visual mediators.  

Table 3. 
 
Words and visual mediators in episode about limit process/object 

Codes Mrs. Kim’s Words Graph [Fig. 2] 
Initial Object ARC [is] the slope of the line Top secant line  
Initial Object: location Passing through two points apart.    (a, f(a)), (b, f(b)) 
Limit Process: location How do we move the points?  Closer, closer… → a  
Limit Process: Change What happens to the slope? It’s getting smaller and 

smaller (drawing three secant lines and arrows)  
Three secant 
lines, arrow 

Limit Object We see the slope, the differential coefficient, and 
the instantaneous rate of change.  

Tangent line  

Final Object: location At one point A point a 
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Figure 1. Realization of the differential coefficient with graphs  
The excerpts about the derivative as a function were coded as a) Limit Object: the initial 

object where the derivative process was applied (e.g., the derivative at a point x=a); b) 
Derivative Process-location: x on the derivative process (e.g., as a vary); c) Derivative 
Process-change:  change in the object (e.g., multiple numbers); d) Final object: the final object 
from the derivative process (e.g., graph or equation). The derivative process was categorized by 
five types: (a) Expansion, when excerpts expands from a number to a universal value on the 
location (e.g., “a certain point” to “any points”) and/or the change (e.g., multiple tangent lines); 
(b) Correspondence, when excerpts map x values to the derivative function; (c) Variation, when 
excerpts include description of how the derivative varies on an interval (e.g., increasing); (d) 
Universality, when excerpts include explicit realization of the derivative defined at every point 
where the original function is differentiable; and (e) Specification, when excerpts include a 
transition from the derivative of a function to the derivative at a point (e.g., substitution). 

 
Results 

 
The results present realizations of “differential coefficient” and “leading function” in Mrs. 

Kim’s class, and “the derivative at a point” and “the derivative of a function” in Mr. William’s 
class. Only one of the visualizations for these cases was presented here due to the limited space.     

 
Limit Process and Object in Mrs. Kim’s Class 

Among 44 episodes in Mrs. Kim’s lessons about the differential coefficient, 25 of them 
included the limit process. The realizations for the limit process included words with symbols 
(11 of 25), symbols (7), words with graphs (5), and words (2) (Figure 2). These realizations 
highlighted the limited visual mediation of the limit process, but consistent use of words for the 
initial and final objects. First, most episodes only included the realization of the locations of the 
limit process with dynamic words or points on the curve without the change for the limit process. 
The change was addressed only once with graphs of secant lines. Second, uses of different visual 
mediators for the limit process were not consistent; two points on the curve were used for the 
location of the limit process, which was not consistent with the two x values in the symbol ( lim

x→a
). 

Third, in most cases involving symbols, both the location and change of the limit process were 
implicit; in the episodes about evaluating “differential coefficient” using the definition (e.g., 
Let f (x + y) = f (x)+ f (y)+3xy,  f '(0) = 3. Find f '(−4). ), she transitioned from the difference quotient 
to the differential coefficient only with symbols ( lim

x→a
) without other explicit mediation of the 

limit process. It should be also noted that, Mrs. Kim consistently used the term “the differential 
coefficient” for the derivative as a point-specific object throughout the derivative lessons 
including the ones about the derivative process (e.g., the slope of a linear function, and the slope 
at any point on a graph). In most episodes, words mediating the initial and final objects were 
consistent (e.g., “slope” for both, or “average rate of change” and “the rate of change”). The term 
“differential coefficient” was defined synonymously with the terms for the final object.  
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Figure 2. Realization tree for limit process/object in Mrs. Kim’s class 
 

Derivative Process and Object in Mrs. Kim’s Classroom  
Among 20 episodes about the leading function in Mrs. Kim’s lesson, 17 addressed the 

derivative process, consisting of correspondence and expansion (6), computation (6), 
specification (4), and universality (1). Realizations of “the leading function” highlighted the 
limited use of visual mediators for the derivative process, and explicit word use of “differential 
coefficient” for the initial object, and “leading function” for the final object. First, the transition 
from the differential coefficient to the leading function was explained with symbols and words 
for the derivative process as correspondence; a diagram mapping a specific x value to “the 
differential coefficient,” which was first realized as a “function” and then “the leading function.” 
The two terms, “the differential coefficient” and “the leading function” were not directly related 
until “the differential coefficient ” was computed as a value of “the leading function” with 
symbols (i.e., specification). “The differential coefficient” and “the leading function” were 
realized as the “same,” only through symbols. Graphs were not used in any types of derivative 
process. Mrs. Kim mainly computed the leading function mainly following the limit 
process/object without mentioning any types of the derivative process. Her word use separating 
“the leading function” and “the differential coefficient” was also found. For example, she first 
described “the differential coefficient” of a linear function as “same” “always,” and then used 
“the leading function” for the constant function. Also, she used “the leading function” for the 
equation, and “the differential coefficient” for its value at a point. 

 
Limit Process and Object in Mr. William’s class 

Among 17 episodes in Mr. William’s lessons about the derivative at a point, 11 of them 
included the limit process. The limit process was mediated with words (3), graphs, gestures and 
words (3), and symbols and words (5). Different components of the limit process/object was 
included in the discussion when the different types of realizations were used. First, when words 
and graphs were used, realizations included both the location and change for the limit process. 
However, when the symbols were used, the realization mainly included the location for the limit 
process besides one case where the words for the computation process mediated both the location 
(e.g., “substitute,”) and the change (e.g., “zero over zero”). Second, the ways the limit process 
was discussed also differed across different mediators. The location for the limit process was 
mediated with words, gestures, and dynamic graphs for the values on the x-axis (e.g., “ two x 
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values,” horizontal hand gestures, and “h” with numbers approaching 0), which corresponded to 
the limit notation in symbols (e. g. , lim!→! ). However, on the stationary graph, his gestures for 
the location were mediating two points on the curve, not on the x-axis. Third, mismatches among 
realizations with different visual mediators were observed. Specifically, his gesture mediating 
the location for the limit process on a graph was not consistent with what is drawn on the graph. 
Also, the letter for a moving point included in a dynamical graph (e.g., (x+h) approaching x) 
differed from the letter included in symbols (e.g., x approaching a) that the graph mediated. 
Regarding word use, words for the initial object, the process for the limit process, and the final 
object were consistent in most cases (e.g., ARC and IRC; the slope for both the initial and final 
objects). However, there were several cases, the word “slope” was inconsistently used to mediate 
only either the initial object, the process for the limit process, or the final object. In some cases, 
secant lines and tangent lines mediated the limit process/object without word “slope.” 

 
Derivative Process and Object in Mr. William’s Classroom  

Among 16 episodes about the leading function in Mr. William’s lesson, 15 addressed the 
derivative process, consisting of correspondence and expansion (1), variation (2), 
correspondence (2), universality (3), computation (4), and specification (3). He mainly used 
gestures and graphs to transition from the derivative as a value to a function. First, the location 
for the derivative process was mediated with his gesture of drawing and moving a tick mark on 
the board horizontally, and the change was mediated with multiple tangent lines. Second, the 
differentiability and velocity were addressed as specification after those words were realized as a 
function with graphs. “Differentiability” was addressed as a specification of the derivative at 
“every point” on its graph, and “velocity” at a point was realized as a specification of the 
velocity over time (e.g., gestures for the tangent lines on a curve, and then a hitting gesture for 
one point on the board). Similarly, the word “derivative” was used as a function after the graph 
of the derivative was drawn, and compared to the use of the same word “derivative” as a number, 
but the graphs for the “derivative” as a number (e.g., a tangent line, a point on the derivative 
graph) were not directly compared to the graphs of the derivative function. Regarding word use, 
transitions from the realization of the derivative as a point-specific object to a function were 
mainly made with the word “slope.” The word “derivative” was not explicitly used in the 
derivative process. Although Mr. William specified two uses of “derivative” as a number and as 
a function several times while comparing the limit and derivative objects, he did not used the 
word in the derivative process through which he objectified the “derivative” as a function.  

 
Discussion and Conclusion 

 
The analysis of realizations of “derivative,” in one Korean and one American calculus class 

led to 4 observations regarding word use and visual mediation. First, similar visual mediators 
were used in the realization of the limit process/object in both classes, but different components 
were included in the realizations in each class. While using words and graphs for the limit 
process, Mrs. Kim mainly mediated the location for the limit process, but Mr. William always 
mediated both location and change. Mrs. Kim’s use for words and visuals for the initial object, 
limit process, and final object were consistent (e.g., “slope,” “rate of change”), but Mr. William’s 
words and visuals often varied (e.g., “the slope of a secant line” for the process and symbols for 
the final object without “slope”). They used the terms (“the derivative at a point” and “the 
differential coefficient”) only for the final object mediated with symbols. Second, the realizations 
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of the derivative as a function before it was defined were frequently found in Mr. William’s class 
but rarely found in Mrs. Kim’s class. Mr. William used “velocity” “acceleration” and “force,” 
with the phrase “always changing,” but Mrs. Kim never used “the leading function” before it was 
defined, or the synonyms for the “derivative” (slope, rate of change) as a function. Similarly, the 
word “differentiability” was realized as existence of “differential coefficient” at a point in Mrs. 
Kim’s class, but was realized as a specific case of “the derivative function,” in Mr. William’s 
class. Similarly, the notation !’(!) was used both classes, but only Mr. William used the word 
“any” for a before the derivative of a function was defined. Third, the words realizing the 
derivative at a point and the words realizing the derivative as a function explicitly differed in 
each class. The words differentiating the derivative as a point-specific object from the derivative 
as a function were nouns in Mrs. Kim’s class. She explicitly used “the differential coefficient” 
for the derivative as a number, and “the leading function” for the derivative as a function, 
especially when discussing the relation between these two terms. In contrast, words realizing the 
derivative as a number or a function were often attached phrases to the “derivative,” adjectives or 
adverbs, in Mr. William’s class (e.g., “slope every point along x,” for the derivative function and 
“individual slope” for the derivative at a point). Fourth, the types of the derivative process 
through which the derivative was first defined as a function was different in each class: the 
correspondence between x values and the differential coefficients in Mrs. Kim’s class, and the 
expansion of the derivative at multiple points in Mr. William’s class. In Mrs. Kim’s class, there 
was no direct transition from the term “the differential coefficient,” to “the leading function.” 
Instead, the word “function” was used between the terms “the differential coefficient,” and “the 
leading function.” In Mr. William’s class, the main visual mediator for the expansion was graphs 
and the word “slope” throughout the initial object, derivative process, and the final object.  

Although the differences in realizations between the two classes listed above seem related to 
their different use of words, the analysis does not imply such differences are caused by the two 
different words for the derivative as a point-specific object and the derivative as a function in 
Korean and English. However, the realization of the derivative as a function or the transition 
from the derivative at a point to the derivative function seems related to the key words mediating 
those objects. Considering the initial motivation of this study, the differences in language related 
terms, this study shows that Mr. William’s use of words were more consistent while realizing the 
relation between the derivative at a point and the derivative of a function (e.g., use of “slope,” or 
“velocity” throughout the initial object, derivative process, and the final object), than Mrs. 
Kim’s. With the consistent use of words and corresponding visual mediators, the nouns realizing 
the derivative at a point and the derivative of a function were used in a more coherent way (e.g., 
one tangent line, multiple gestures for several tangent line, and then the graph of the derivative) 
in Mr. William’s class. Their uses of words and visuals were also different when they 
transitioned from the derivative at a point to the derivative of a function, and when other related 
terms were realized (e.g., “differentiability” in each class), when and how the terms synonymous 
to “the derivative” was visually mediated (e.g., “rate of change” was realized as a function first, 
and then realized at a point in the flea example). Mr. William’s consistent use of same words and 
visuals mediating both the derivative at a point and the derivative function, and Mrs. Kim’s 
separate use of words for “the differential coefficient,” and “the leading function” may not have 
been affected only by the different terminology. However, the differences in realizations of the 
derivative at a point and the derivative of a function seem consistent with the use of the word 
“derivative” for both objects in English, and use of two different terms, which does not show the 
relation between the two objects, in Korean.   
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Learning to Notice and Use Student Thinking in Undergraduate Mathematics Courses 
 

Anna E. Pascoe        Shari L. Stockero 
Michigan Technological University  Michigan Technological University 

This study evaluated the outcomes of an intervention focused on developing mathematics 
graduate teaching assistants’ (GTAs’) skills of noticing and effectively responding to instances of 
student mathematical thinking that have significant potential to further students’ learning. Four 
GTAs participated in a semester-long intervention that included individual analysis and group 
discussion of video of undergraduate mathematics lessons. The MOST Analytic Framework 
(Stockero, Peterson, Leatham, & Van Zoest, 2014) was introduced to aid in these activities. The 
GTAs also completed a pre- and post-interview to document their real time noticing and an 
assessment of common content knowledge. Results indicate that the intervention was successful 
in improving the GTAs’ noticing skills in a variety of ways and in their ability to propose 
student-centered responses.  

Key words: Graduate Teaching Assistant Training, Teacher Noticing 

Research has shown that student-centered instruction leads to more effective learning for 
people of all ages (National Research Council, 2005). Higher education has been slow or 
unsuccessful in implementing student-centered instruction (Barr & Tagg, 1995; Felder & Brent, 
1996), however, with transmissive instruction (i.e., lecturing) still prominent (Ramsden, 2003; 
Svinicki & McKeachie, 2014). Challenges for adopting student-centered instruction include 
student resistance, instructor comfort level, and the time needed to see results (Felder & Brent, 
1996; Seymour, 2002). Some researchers suggest promoting changes in higher education 
teaching methods through GTA training (e.g., Cano, Jones & Chism, 1991). Since effectiveness 
of GTAs typically affects undergraduate students in their early years of study, GTA training is 
also important in student retention (Cano et al., 1991; Speer, Gutmann, & Murphy, 2005). With a 
workforce shortage in science, technology, engineering, and mathematics (STEM) fields 
(President’s Council of Advisors on Science and Technology, 2012), student retention is crucial 
in university STEM departments (Seymour & Hewitt, 1997; Suchman, 2014).  

At the K-12 level, a teacher’s ability to notice aspects of instruction as it unfolds has been 
recognized as important in the implementation of student-centered instruction. Many studies 
have found that professional noticing of [students’] mathematical thinking—defined to include 
attending to, interpreting, and deciding how to respond to students’ strategies and understanding 
(Jacobs, Lamb, & Philipp, 2010)—can be learned and improved through teacher education (e.g., 
Jacobs et al., 2010; McDuffie et al., 2014; Sherin & van Es, 2009; Stockero, Rupnow, & Pascoe, 
2015). Although teacher noticing interventions are not widely practiced in higher education, the 
gains made with K-12 mathematics teachers suggest that similar results may be possible. 

Also foundational to effective mathematics teaching are the six domains of mathematical 
knowledge for teaching proposed by Ball, Thames, and Phelps (2008). Critical to this study is 
common content knowledge (CCK), the mathematical understanding and proficiency used in 
diverse contexts not exclusive to teaching. Without CCK, a teacher could not adequately guide 
students in building such knowledge. In addition, mathematics teachers would not likely be able 
to determine which instances of students’ mathematical thinking are important to notice without 
a strong command of CCK. Because both noticing skills and CCK are important for effective 
mathematics teaching, it would be of interest to investigate if and how these factors are related.  
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This work examines the outcomes of a GTA training intervention focused on analyzing 
undergraduate mathematics lesson videos with a teacher noticing framework as a means to 
support GTAs’ use of student thinking more effectively, and thus the enactment of student-
centered instruction in their classrooms. Of particular interest is measuring the effectiveness of 
the intervention in improving GTAs’ noticing of mathematically significant pedagogical 
opportunities to build on student thinking (MOSTs) (Leatham, Peterson, Stockero, & Van Zoest, 
2015) and in supporting their ability to propose student-centered responses to such instances. 
This work seeks to answer the following research questions: (a) How effective is the intervention 
in improving GTAs’ noticing of MOSTs?; (b) How effective is the intervention in supporting the 
GTAs’ ability to propose in-the-moment student-centered responses to instances they identified 
in video?; and (c) What is the relationship between the GTAs’ CCK and their noticing skills? 
 

Theoretical Framework 
 

With the goal of improving GTAs’ use of student mathematical thinking in undergraduate 
mathematics classrooms, this study used the MOST Analytic Framework (Leatham et al., 2015) 
to characterize instances of student mathematical thinking that are not only important to notice, 
but also the most fruitful to discuss in a lesson to support students’ mathematical learning. 
MOSTs—Mathematically Significant Pedagogical Opportunities to Build on Student 
Thinking—are defined as “instances of student thinking that have considerable potential at a 
given moment to become the object of rich discussion about important mathematical ideas” (p. 
90). To be a MOST, a moment must satisfy three characteristics: student mathematical thinking, 
mathematically significant, and pedagogical opportunity. To satisfy these characteristics, the 
student mathematics must be inferable and related to a mathematical point, the mathematical 
point must be appropriate to the learning level of the students and a central goal for student 
learning, the student mathematics must create an intellectual need for students to understand the 
mathematical point, and it must be the right time to address the intellectual need at that moment.  

 
Methodology 

  
Participants and Intervention 

The participants were four mathematics GTAs from a Midwestern U.S. university. They had 
completed one to two years of graduate study and taught for one to six semesters. They had all 
completed training required by the mathematics department: one week of GTA orientation prior 
to their first semester of study, a course entitled Teaching College Mathematics, and a six-week 
seminar during their first semester of teaching. Participation in the study was voluntary. 

The GTAs engaged in a ten-week intervention facilitated by the first author in fall 2015. The 
goal was to improve the GTAs’ skills in attending to, interpreting, and responding to MOSTs in a 
student-centered manner. The intervention design was adapted from Stockero and colleagues’ 
work with prospective secondary mathematics teachers (Stockero, 2014; Stockero et al., 2015). 
Pre- and post-intervention, each GTA completed a one-on-one, video-recorded interview in 
which they watched an undergraduate mathematics lesson video clip, stopped the video if they 
thought a mathematically important moment that the instructor should notice (MIM) occurred, 
and then described why they selected the moment and what they might do if it had happened in 
their own classroom. A MIM definition was not given to the GTAs to establish baseline data.  

In each week of the intervention, the GTAs used video analysis software to individually 
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analyze an undergraduate mathematics lesson video in preparation for a weekly group meeting. 
In the first three weeks, the GTAs tagged MIMs and described in text what they noticed and why 
they chose each instance. After three weeks, the GTAs read a paper that defined the MOST 
Analytic Framework (Stockero, Peterson, Leatham, & Van Zoest, 2014). In that week, they 
reexamined two videos they had already analyzed and chose instances that they believed were 
MOSTs. In the remaining six weeks of the intervention, the GTAs were prompted to tag and 
describe MOSTs in new classroom videos. They were provided a text prompt to specifically 
address each MOST criterion in their written responses in the last five weeks of the intervention. 

The researcher analyzed the same videos as the GTAs for MOSTs—the types of instances 
that were the goal for noticing. The researcher examined the GTAs’ video timelines, compared 
their instances and the researcher-identified MOSTs, and selected instances to discuss at the 
group meeting. A variety of instances were selected, including those marked by multiple 
GTAs—both MOSTs and non-MOSTs—as well as MOSTs that were not noticed by the GTAs.  

In the group meetings, the researcher pushed the GTAs to articulate what an instructor would 
have to notice in each moment and why it was mathematically important. The GTAs first worked 
toward building a definition of MIMs in group discussion. Later, discussion focused on whether 
instances fit the MOST criteria. In the last three weeks, the GTAs proposed building moves in 
response to the MOSTs discussed—a teacher move that engages students in collaboratively 
discussing the significant student mathematical thinking that is present in the instance (Stockero 
et al., 2014). These moves would use student mathematical thinking to further the learning of all 
students, which aligns with effective student-centered mathematical instruction (NCTM, 2014). 
The GTAs then proposed building moves in their subsequent video analyses. 

At the conclusion of the intervention the GTAs completed the Calculus Concept Inventory 
(CCI) (Epstein, 2013) to understand whether there was a relationship between GTA performance 
on the CCI (a measure of their mathematical CCK) and their noticing of MOSTs. 
 
Data Collection and Analysis 

The data for this study included the CCI results and the video timelines produced by the 
GTAs, both during the intervention and the interviews. The CCI results were scored for 
correctness. The score of each GTA was then compared to the rest of the group to see if there 
were any obvious differences in scores that could account for differences in noticing skills. 
 Each instance identified by a GTA was coded to examine changes in the GTAs’ noticing. 
First, like in the work of Stockero and colleagues (2015), each was coded according to agent 
(who or what was noticed) and mathematical specificity (the way in which the mathematics was 
discussed). Instances that had a student agent were also coded for focus (what about the 
student(s) was noticed). See Figure 1 for descriptions of coding categories and codes. Second, 
like Stockero, Rupnow, and Pascoe (under review), each instance was coded according to 
whether it was a MOST and whether the reasoning provided by the GTA was consistent with the 
MOST criteria. A GTA instance was coded as a MOST if it occurred at the same time in a video 
as a MOST identified by the researcher. In a consistent MOST, the GTA also identified the 
characteristics of the instance that qualified the instance as a MOST according to the framework. 

Because a goal of this intervention was that the GTAs propose more student-centered 
responses, the pre- and post-interview instances were also coded according to whether the GTA-
proposed response to each instance was student- or teacher-centered. A student-centered 
response is one in which the teacher would involve one or more students in responding to the 
instance, whereas a teacher-centered response would only involve the teacher. 
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Coding Categories and Descriptions Codes 

Agent: Who or what was noticed 
Teacher 

Teacher/ Student 
Student/ Teacher 

Student Group 
Student Individual 

Math 

Mathematical Specificity: Whether and 
how the mathematics was discussed 

Non-Math 
General Math 
Specific Math 

Focus: For instances with a student agent, 
what about the student(s) was attended to 

Affective Interaction 
General Understanding 

Mathematical 
Interaction 

Noting Student 
Mathematics 

Analyzing Student 
Mathematics 

Figure 1. Noticing coding scheme. Adapted from Stockero et al. (2015; under review). 
 

After the coding was complete, the data were summarized to look for changes in GTAs’ 
noticing and responding throughout the intervention, focusing on the components of noticing 
(agent, mathematical specificity, and focus), MOSTs, and how the GTAs might respond to the 
moments they selected. To provide a common unit of measure, percentages were calculated for 
each code out of each GTA’s and the group’s total number of instances in each video. The data 
was then split into three stages—early, middle and late in the intervention—and summarized 
accordingly. In this analysis, baseline refers to the first three videos of the intervention before the 
introduction of the MOST framework. Middle stands for the three videos immediately following 
the introduction of the MOST framework, and final refers to the last three videos of the 
intervention. Data from the interviews were analyzed separately due to the difference in the 
nature of the interviews, in which the GTAs engaged in in-the-moment video analysis where 
repeated viewings and lengthy deliberation about instances were not possible. 

 
Results 

 
Components of Noticing 

Agent. Because the goals of the intervention placed an emphasis on students and their 
mathematical thinking, changes were examined in the GTAs’ noticing of instances in which 
students were the primary agent (i.e., Student/Teacher, Student Individual, and Student Group 
agents). Table 1 provides the percentages of such instances in each stage of the intervention and 
the pre- and post-interviews. It can be seen that both individually and as a group the general 
trend was an increase in the GTAs’ noticing that had a primary student agent from stage to stage. 
Impressively, the majority of GTAs averaged 100% and the group averaged 94% of primary 
student noticing in the final data. The table also shows improvement in the GTAs’ noticing of 
instances with a primary student agent from pre- to post-interview, with GTAs 1 and 2 showing 
the most growth in this type of noticing.  Most notably, 100% of the GTAs’ noticing in the post 
data was primarily on students, indicating that they developed the ability to focus their noticing 
on students over the teacher or the mathematics itself in their in-the-moment analysis of video. 

Mathematical Specificity. With mathematical significance and student mathematical 
thinking being two of the characteristics of a MOST, a possible indicator of improvement in 
noticing of MOSTs is the ability to speak about the mathematics of an instance in a detailed 
manner, aligning with the Specific Math code. Table 2 shows that baseline data percentages for 
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Table 1 
Noticing of Primary Student Agent by Stage and Interview 

Participant Baseline Middle Final Pre Post 
GTA 1 41% 100% 100% 29% 100% 
GTA 2 50% 89% 100% 41% 100% 
GTA 3 63% 100% 100% 75% 100% 
GTA 4 28% 67% 75% 80% 100% 
Group 46% 89% 94% 56% 100% 

 
Specific Math were rather high for all GTAs with the exception of GTA 4. The middle data 
showed an increase in mathematical specificity for all GTAs, with the most considerable increase 
of 77% being that of GTA 4. Perhaps most important is that all of the GTAs exhibited 100% 
Specific Math noticing in the final data. Table 2 also indicates improvement in Specific Math 
noticing from pre- to post-interview. GTA 1’s Specific Math noticing was maximized and 
maintained from pre- to post-interview. GTA 4 showed the most improvement from 40% in the 
pre-interview to 100% in the post-interview data. Like the final data, the post-interview data 
demonstrated 100% Specific Math for all participants. Thus the GTAs not only discussed the 
mathematics with a high level of detail when they had time to reflect and write about each 
instance, but also in a real time video-based interview setting. 
 
Table 2 
Specific Math Noticing by Stage and Interview 

Participant Baseline Middle Final Pre Post 
GTA 1 97% 100% 100% 100% 100% 
GTA 2 85% 100% 100% 59% 100% 
GTA 3 81% 100% 100% 75% 100% 
GTA 4 6% 83% 100% 40% 100% 
Group 67% 96% 100% 69% 100% 

 
Focus. The focus code most aligned with the goals of the intervention was Analyzing 

Student Mathematics, since the MOST Analytic Framework requires that an inference be made 
about what the student is saying mathematically. While the focus code only applied to instances 
with a student agent, the reported percentages are out of all instances identified by the GTAs to 
reflect an overall sense of their noticing. Table 3 indicates that Analyzing Student Mathematics 
was absent or low in the baseline data, both individually and as a group. By the middle data, 
substantial increases were made by all GTAs, with GTAs 1, 2, and 3 improving by 72% to 84%. 
GTA 3 reached 100% in the final data. The pre- and post-interview data exhibited remarkable 
growth for in-the-moment noticing with this focus. GTA 4 demonstrated the largest growth at 
100% from pre to post, while increases for the other GTAs ranged between 75% to 87%. 
Interestingly, GTA 4 exhibited Analyzing Student Mathematics much more in the post-
interview, an in-the-moment context, than in the final data. It is possible that GTA 4 more 
completely communicated what they noticed with spoken word in the interview than in written 
word in the text that accompanied their video timelines. In general, these results suggest that the 
intervention was successful in developing the GTAs’ ability to focus on and interpret student 
mathematical thinking both when analyzing video individually and in an in-the-moment context. 
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Table 3 
Analyzing Student Mathematics by Stage and Interview 

Participant Baseline Middle Final Pre Post 
GTA 1 16% 100% 94% 14% 100% 
GTA 2 0% 72% 67% 0% 75% 
GTA 3 24% 96% 100% 13% 100% 
GTA 4 0% 33% 47% 0% 100% 
Group 10% 75% 77% 7% 94% 

 
MOST Analysis 

Changes were examined in the GTAs’ noticing of consistent MOSTs, the main goal of the 
intervention. Like the other analyses, the percentages presented were calculated out of the total 
set of instances marked by the GTAs. Table 4 shows that all GTAs improved in their noticing of 
consistent MOSTs in each stage of the intervention, with the group’s average percentages 
increasing from a baseline of 19%, to 73% in the final data. The pre- and post-interview data 
showed considerable increases in the GTAs’ in-the-moment noticing of consistent MOSTs, with 
increases ranging from 26% to 80%. However, the raw percentages in the post-interview data are 
not overwhelmingly high. It is worth recalling that the prompt for both the pre- and post-
interview was to identify MIMs, which may explain why there was not a higher percentage of 
MOSTs identified in the post-interview. An idea underlying the intervention was that the MOST 
Analytic Framework would provide a way to characterize mathematically important moments 
that the instructor should notice, but perhaps the connection between MIMs and MOSTs was not 
seen by the GTAs. Still, the data suggests that the intervention was successful in improving the 
GTAs’ ability to notice MOSTs and reason about them in accordance with the MOST Analytic 
Framework, both when analyzing video individually and in an in-the-moment context. 
 
Table 4 
Noticing of Consistent MOSTs by Stage and Interview 

Participant Baseline Middle Final Pre Post 
GTA 1 24% 61% 87% 14% 40% 
GTA 2 19% 36% 76% 11% 50% 
GTA 3 25% 57% 78% 13% 67% 
GTA 4 8% 33% 53% 20% 100% 
Group 19% 47% 73% 14% 64% 

 
Responses 
 Another goal of the intervention was to increase the amount of student-centered responses 
that were proposed to instances identified in video. Table 5 indicates the percentage of instances 
in which the GTAs proposed a student-centered response. Substantial increases in the percentage 
of such responses were made from pre- to post-intervention for all GTAs. In fact, with the 
exception of GTA 4, 100% of the responses provided by the GTAs were student-centered in the 
post data. These results suggest that the intervention was successful in improving the GTAs’ 
skills in proposing student-centered responses in an in-the-moment context. 
 
CCI Scores 

 The GTAs’ performances on the CCI assessment, both as a raw score and as a percentage, 
were quite similar to one another. Raw scores ranged from 17-19 out of 22 possible points, with 
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an average of 18; percentages ranged from 77-86%, with an average of 82%. Because all of the 
GTAs had about the same aptitude for calculus concepts, there was no evidence that differences 
in mathematical content knowledge accounted for differences observed in their noticing. 
 
Table 5 
Student-centered Responses by Interview 

Participant Pre Post 
GTA 1 0% 100% 
GTA 2 57% 100% 
GTA 3 83% 100% 
GTA 4 33% 50% 
Group 43% 88% 

 
Discussion 

 
Results showed that the intervention was successful in improving the GTAs’ noticing in a 

number of ways and in two different video analysis contexts. The GTAs greatly increased in 
their noticing of instances primarily focused on students, the percentage of instances in which 
they discussed the mathematics of an instance in a specific manner, their focus on analyzing the 
student mathematics of an instance, and their noticing of consistent MOSTs. These results add 
support to the successes of interventions in K-12 mathematics education that use video and a 
defined framework to improve the noticing skills of mathematics teachers (e.g., McDuffie et al., 
2014; Schack et al., 2013; Stockero et al., 2015, under review) and suggest that such 
interventions can be successful at the undergraduate level as well. 

The intervention was also successful in improving the GTAs’ skills in proposing student-
centered responses. This finding builds upon those of existing studies (Jacobs, Lamb, Philipp, & 
Schappelle, 2011; Jacobs et al., 2010; Schack et al., 2013) that suggest that professional 
development structured around noticing students’ mathematical thinking in video and classroom 
artifacts can develop teachers’ abilities in not only attending to and interpreting [students’] 
strategies and understandings, but also the skill of deciding how to respond (Jacobs et al., 2010). 

While the results of this study suggest that similar interventions could be successful in 
training GTAs in noticing student mathematical thinking, the small number of participants is a 
limitation. Future work could involve replicating this study with more GTAs, at other 
universities, or with another set of videos. Limitations aside, the findings suggest that the 
intervention was a step in the right direction for advancing student-centered instruction in 
undergraduate mathematics courses. The development of noticing skills, while achieved in a 
professional development setting, has the potential to improve classroom instruction and thus the 
retention of first- and second-year undergraduate students (Cano et al., 1991; Speer et al., 2005). 
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Attention to Detail: Norms for Proof Evaluation in a Summer Mathematics Program 
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In this study, we explore the norms by which students and undergraduate mentors in a summer 
mathematics program evaluate proofs of theorems in number theory. By utilizing cognitive 
interviews during which students and mentors evaluate number theory proofs written by a 
hypothetical student, we find that for students as well as mentors, “rigor” is a dimension of 
mathematical acceptability of proofs distinct from, though related to, proof validity. Additionally, 
we find that both students and mentors frequently adhere to strict unwritten norms that govern 
how they believe proofs should be constructed and presented, and that these norms may be more 
rigid than the intended proof-writing norms of the mathematicians who teach in the summer 
program. This study suggests some potential challenges associated with the growing practice of 
asking undergraduate student graders to evaluate proofs written by students in introduction-to-
proof courses. 

Key words: Proofs, Proof Validation, Cognitive Research, Informal Mathematics Education 

One of the goals of a typical undergraduate program in mathematics is to instill in students an 
understanding of mathematical proof: the purposes for which mathematicians use proof, the 
process by which mathematicians prove results, and the ways in which we decide whether an 
argument is valid and should be accepted by the mathematical community. However, students 
learn about disciplinary norms governing proofs in varied and sometimes idiosyncratic ways. An 
instructor in an undergraduate mathematics course may rule a proof produced by a student 
acceptable or unacceptable according to rules that have not been made fully explicit for students. 
For example, an instructor in an introduction-to-proofs course may suggest that a proof of the 
formula for the sum [1 + 2 + 3 + … + n] using induction is more “rigorous” than the classic 
reordering argument that pairs this with the sum [n + (n – 1) + (n – 2) + … + 1]. An instructor who 
says this may intend to signal to students that in formal mathematics, we are reluctant to accept 
reasoning that is hidden “behind” the ellipses in these expressions without careful investigation; 
however, students may infer from the instructor’s choice that in formal mathematics, rigid proof 
schemata such as induction are more “rigorous” than arguments that use flexible reasoning. As a 
result of exchanges such as these, students may develop the belief that the acceptability of a proof 
is determined more by the manner in which an argument is written rather than by the logical 
coherence of the argument itself. In this study, we investigate ideas about “rigor” and proof 
acceptability co-constructed by faculty, mentors, and students in a summer mathematics program, 
and document some cases in which students demonstrate norms for proof evaluation that may be 
inconsistent with those that the faculty who teach in the program intend to convey. 

 
Background 

There is a growing body of literature on proof validation, the process of deciding whether a 
proof is valid, as performed by mathematics students and instructors. Validation of proofs is an 
intellectually complex process requiring many different types of reasoning, including the 
construction of formal and informal deductive arguments and example-based reasoning (Weber, 
2008). Harel and Sowder (1998) suggest that many students, by the time they begin learning 
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about formal mathematical proofs in college, have developed external conviction proof schemes 
in which validity derives from the “ritual of the argument presentation”; that is, degree to which 
a proof structurally resembles a formal argument scheme. Additionally, many students have 
empirical proof schemes and may be convinced of the validity of a conjecture by testing specific 
cases. These non-analytical proof schemes may interfere with students’ ability to assess the 
validity of nonstandard arguments. Selden and Selden (2003) suggest that exclusive attention to 
surface features of a proof, or failure to attend to the global logical structure of a proof, may 
cause students to make incorrect judgments about the proof’s validity. 

Mathematicians use a variety of socially-determined criteria when evaluating a proof, such as 
whether they understand the concepts embedded in the proof, whether the argument is 
convincing, and whether the theorem being proven is consistent with the existing body of 
accepted mathematical results (Hanna, 1983). Courses that introduce students to proof-writing in 
mathematics often have the dual aims of helping students develop the ability to identify and 
produce valid arguments, and enculturating students into practices and disciplinary norms 
regarding the writing and evaluation of proofs that are typical among professional 
mathematicians. While several studies have addressed the mental processes involved in 
distinguishing valid proofs from invalid ones, relatively few have studied how students’ 
judgments of proof validity interact with their (possibly separate) assessments of whether a proof 
is acceptably presented. While mathematicians do not share a single common standard for 
evaluating the validity and presentation of proofs (Inglis et al., 2013), we view the instructor of a 
proof-writing course as an exemplar of a particular set of norms and practices that the course is 
intended to transmit, in part or in full, to its students, and are interested in the various 
pedagogical forces that influence how students assimilate these norms themselves. 

In this study, we aim to address the following research questions: 
1. What criteria, other than proof validity, do students who are learning to read and write 

formal mathematics use to judge proofs? 
2. To what degree are novice proof writers able to distinguish flaws that make a proof less 

readable or less complete from those that render a proof invalid? 
3. To what degree do novice students’ and their mentors’ norms for evaluating proofs 

conform to those of the community of professional mathematicians, as embodied by the 
instructors teaching their courses? 

 
Setting of Study 

Our study took place at a summer mathematics program for talented high school students in 
the United States. Students in the program are recruited from all geographic regions of the 
United States; while most enter the program with no prior formal experience in undergraduate 
mathematics, a few have learned to write proofs by participating in high school mathematics 
competitions. 

During the program, students learn how to write mathematical proofs while taking a course 
in number theory; some students return to the program in subsequent summers and take other 
courses in undergraduate mathematics. Students are assigned to study groups, with each group 
supervised by a mentor who has attended the program for several years. Most mentors are 
undergraduate STEM majors at leading research universities, though some mentors are senior 
high school students. 

Students in the program attend classes each morning and afternoon; during the evenings, they 
participate in extended study sessions with their groupmates, supervised by their mentors. They 
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write proofs of theorems in number theory and submit these proofs for “grading” by their 
mentors. Although these proofs do not receive numerical grades, mentors provide feedback on 
the proofs’ correctness and style, and sometimes recommend that students revise work that is 
incorrect or incomplete. 

 
Method 

We conducted a survey of the first-year students in the program, their mentors, and the 
mathematician faculty member who teaches the number theory course to determine whether 
participants in the program were familiar with the use of the word “rigor” as a criterion used to 
evaluate proofs, and to what extent participants view “rigor” as distinct from proof validity. 
When asked to agree or disagree with the statement, “When we talk about proofs, the word 
‘rigorous’ has the same meaning as the word ‘valid,’” 6 respondents strongly disagreed, 13 
moderately disagreed, 13 moderately agreed, and 4 strongly agreed. The instructor of the number 
theory course was among those who strongly agreed. When asked to explain the distinction 
between validity and rigor, if they believed such a distinction exists, many respondents suggested 
that validity points to whether a proof is correct, while rigor deals with the level of detail in a 
proof and the extent to which the argument explicitly states and justifies each step. 

Based on the survey results, we selected two study groups in the summer program for follow-
up interviews. We invited students and mentors from these two study groups, along with the 
mathematician who taught the number theory course, to participate in cognitive interviews in 
which they evaluated several proofs written by a hypothetical student. Because we selected 
interview subjects from study groups in which multiple students shared the view that a proof is 
rigorous if and only if it is detailed, we make no claim that the interview results are 
representative of the proof-evaluation norms of the entire student body of the summer program. 
However, we conjecture based on the results of the preliminary survey that the views of rigor 
and proof validity demonstrated by the students and mentors we interviewed were shared by 
many other students and mentors in the program. 

In the interviews, we asked six students, their two mentors, and the mathematician instructor 
to review the first theorem shown in Table 1 on the next page, either produce a proof of the 
theorem or write some notes on the main ideas of the proof, and then evaluate three hypothetical 
student proofs of the theorem on three dimensions – validity, rigor, and understandability – each 
on a scale of 0 to 3. We then repeated this routine with the second theorem below. In asking 
interview subjects to rate these proofs, we hoped to gain additional insight about whether 
students and mentors made distinctions between validity and rigor in their evaluations of specific 
arguments, and about whether students’ and mentors’ overall evaluations of proof quality were 
consistent with the norms the instructor intended to set. 

 
Results 

Students’ and mentors’ responses to the proofs given in the interview, and in particular their 
assessments of the rigor of these proofs, varied considerably. Table 2 on the next page shows the 
ratings the interview subjects gave the three proofs of Theorem 1 for Validity, Rigor, and 
Understandability, along with the proof each subject rated the best overall and the most rigorous. 

 
  

20th Annual Conference on Research in Undergraduate Mathematics Education 82320th Annual Conference on Research in Undergraduate Mathematics Education 823



Table 1: Descriptions of Hypothetical Student Proofs 
 

Theorem Proof Description of Proof 
If a, b, and n are integers 
such that a < b and n > 0, 

then an < bn. 

1A Detailed argument that omits essential step 
demonstrating that difference between bn and an is a 
natural number 

1B Correct argument that omits names of algebraic 
properties that justify steps 

1C Correct and detailed argument by induction on n 
If a, b, q, and r are integers 
with b > 0 and a = bq + r, 

then GCD(a, b) =  
GCD(b, r). 

2A Correct argument carefully using definition of GCD 
2B “The common divisors of a and b are the same as the 

common divisors of b and r” argument 
2C Argument that makes incorrect inference 

 
Table 2: Interview Subjects’ Ratings of Proofs of Theorem 1 

 
Subject Proof 1A Proof 1B Proof 1C Best M Rig 

 V R U V R U V R U   
Student X1 3 2 2 2 1 2 3 3 2 1A 1C 
Student X2 3 2 2 2 1 1 3 2 2 1A 1A 
Student X3 3 2 3 3 3 3 3 3 2 1B 1B 
Student X4 3 3 2 2 1 2 2 2 3 1A 1A 
Mentor X 2 3 1 2 1 2 2 1 2 1A 1A 

Student Y1 3 3 3 3 1 2 3 2 3 1A 1A 
Student Y2 3 3 2 3 2 2 3 3 2 1B 1C 
Mentor Y 2 1 2 3 2 3 3 1 1 1B 1B 
Instructor 2 2 3 3 3 3 3 3 3 1B 1B/1C 

 
We asked each subject to explain his or her ratings after evaluating each proof. Several 

themes emerged during these explanations, suggesting discrepancies between proof-evaluation 
norms of students and those of their mentors, or discrepancies between norms of students and 
mentors and those of the mathematician teaching the number theory course. 

Level of Detail Versus Essential Reasoning: The Case of Proofs 1A and 1B 
We constructed Proofs 1A and 1B to differ in two essential ways. The first is that Proof 1A 

obfuscates its argument slightly by introducing a new variable t that is equivalent to n, while 
Proof 1B is more direct. The second is that while Proof 1A is more generous in including names 
of algebraic properties used in the argument, such as the substitution principle, Proof 1B is the 
only argument that uses the class’s definition of “less than” (that x < y if there exists a natural 
number k such that x + k = y) to establish that an < bn. (Proof 1A states that because at + kt = bn, 
we have at < bn, without stating or showing that kt is a natural number.) Thus while Proof 1A 
includes an overall greater level of detail, Proof 1B arguably gives more attention to the most 
crucial step of the argument. 

While both mentors and the instructor noted the key omission in Proof 1A and rated the 
proof’s validity accordingly, all six students rated the proof’s validity a 3, and five of the six 
rated Proof 1A more rigorous than Proof 1B. Most of these five students stated that they rated 
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Proof 1A more rigorous because it more consistently stated reasons for the algebra steps in the 
proof and named the algebraic properties used. However, Student X3 mentioned specifically that 
while Proof 1B left out a greater number of details overall, Proof 1A left out reasoning that 
seemed more essential. This suggests that Student X3 had a way of thinking about proof quality 
that took into account the relative importance of various details. 

Rigidity in Methods and Styles of Proof: The Case of Proof 1C 
We constructed Proof 1C in order to see how interview subjects would respond to the 

hypothetical student’s use of induction to prove a theorem that can be proven directly using the 
definition of “less than” and the distributive property. The ratings and interviews suggested that 
while some students found Proof 1C to be the most rigorous of the three (despite preferring one 
of the other proofs), others considered the proof less rigorous than others in part because of the 
specific induction language used in the argument. Student X4, who gave this proof a rating of 2 
for rigor, said, “It’s kind of like, why are you using induction for something that probably could 
save you some time?” She later clarified that the use of induction was not the reason for her 
rating, but rather that the author of the proof might have written a better argument had he or she 
chosen a different method. Mentor X also took issue with some of the language used in the 
induction proof; most of her concerns revolved around the fact that the argument, at various 
times, specified a value for n (e.g., for the base case) and proceeded to make statements based on 
that assumption rather than writing these statements in conditional form. For example, the base 
case assumed that n = 1 and later said that an < bn; of this, Mentor X said, “That’s not like… 
that’s just not true… you would say, maybe, ‘thus, when n = 1, an < bn,’ right. That language 
sort of implies that they don’t understand what a base case does, what the significance of a base 
case is.” It seems that in this case, Mentor X read the claim that “an < bn” at the end of the base 
case as a general claim rather than as an instantiated claim about the case n = 1. These 
comments, along with her other markings on the proof, suggested that Mentor X had adopted a 
rigid way of reading induction arguments that had some difficulty accommodating differences in 
how students might represent the inductive logic of a proof. 

In addition, Student X3 expressed concern that parts of Proof 1C had been written as 
indented chains of algebraic steps rather than in paragraph form. When pressed on this, subjects 
suggested that some mentors in the summer program encouraged students to write proofs in 
paragraph form, rather than block-indenting sequences of calculations. This is one of several 
stylistic choices about proof-writing that students in the program may infer to be norms of the 
mathematical community, but that in fact are artifacts of the program culture and of the way 
mentors grade proofs. We have collected scanned images of the graded proofs of students in the 
summer program and hope to perform a more in-depth investigation of the norms for 
mathematical writing that mentors in the program convey to students. 

“Logic” Versus Chains of Axiomatic and Definitional Reasoning: The Case of Proof 2B 
We constructed Proofs 2A and 2B to differ in only one significant way. While Proof 2A 

explicitly uses the formal definition of greatest common divisor given in class (that d is the GCD 
of a and b if d is a natural number; d divides both a and b; and if c divides both a and b, then c is 
less than or equal to d), Proof 2B proves Theorem 2 by showing that a and b have precisely the 
same common divisors as b and r, and thus concluding that these two pairs must have the same 
GCD. Under the surface lay a structural difference that, in our preliminary investigations, 
seemed to have some import for students and mentors in the program: while Proof 2A proceeds 
through a sequence of steps, most of which can be directly justified using axioms or definitions 
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from the number theory course, Proof 2B ends with a verbal argument that appeals to the notion 
of GCD as the maximum of the set of common divisors of two integers, and attempts to persuade 
the reader that if two pairs of integers have the same set of common divisors, they must have the 
same GCD. The latter approach departs slightly from the norm of precise definitional reasoning 
to which students become accustomed early in the number theory course, though the number 
theory course itself includes a number of theorems (such as Fermat’s Little Theorem) whose 
proofs contain steps that appeal to nonlinear, ad hoc reasoning rather than axioms. 

Of the five students and one mentor who finished reviewing the proofs of Theorem 2, only 
two students rated Proof 2B as entirely valid. Two students rated the proof’s validity a 2, and 
Student X4 and Mentor X rated the proof’s validity a 1. Student X1 rated the proof a 3 for 
validity but only a 2 for rigor; when asked to explain his ratings, he said, “some of the steps 
aren’t explained clearly, such as the end, where it says that… it’s sort of just explaining logic 
instead of using any theorem or previous axiom.” In the preliminary survey, two other 
respondents, including Student Y1, mentioned the use of “logic” as a possible source of 
disagreement among students and mentors over whether a proof is rigorous; one respondent 
stated that “sometimes our [mentors] tell us to use more algebra instead of just logic and 
assuming.” 

Student X3, whose interview responses suggested the least commitment to rigid, style-based 
norms for proof acceptability among those students interviewed, rated the proof a 3 for both 
validity and rigor, but rated it a 2 for understandability. She suggested that the author of the 
proof should have constructed the set of common divisors of a and b and the set of common 
divisors of b and r, and shown that these two sets are equal. Responses to Proof 2B suggest that 
the students interviewed were not entirely comfortable with arguments that depart from chains of 
reasoning based on axioms and previously proven theorems and that include steps for which the 
justification is fluid and unfamiliar. 

Norms of a Professional Mathematician: The Case of the Course Instructor 
After we completed interviews of students and mentors, we interviewed the instructor of the 

number theory course using the same protocol. Prior to rating any proofs, the instructor stated his 
position that “validity” and “rigor” are not separate constructs, and expressed concern that 
students might believe that rigor is a separate or stronger standard for proofs than validity. When 
rating each proof, he assigned the same rating for both validity and rigor. 

The instructor initially rated each of the three proofs of Theorem 1 a 3 in all three categories; 
he changed his validity and rigor ratings for Proof 1A to 2 only after considering that the author 
of the proof made, in his view, two mistakes: failing to use the substitution principle correctly, 
and failing to observe that kt is a natural number. He expressed little hesitation in giving ratings 
of 3 for Proofs 1B and 1C, and showed little concern about the justification steps skipped in 
Proof 1B. 

When the instructor was given the opportunity to review Theorem 2 prior to seeing the 
proofs, he noted that he is familiar with two different approaches; he then described the 
approaches used in Proofs 2A and 2B. When shown Proof 2B, he expressed amusement that he 
had foreshadowed the argument given, and rated the proof a 3 in all three categories, as he had 
with Proof 2A. 

We can envision two different hypotheses to explain the fact that the instructor awarded 
higher ratings for most of the proofs in the interview than the students and mentors did. One 
possible explanation is that the instructor’s extensive experience teaching number theory has 
familiarized him with the arguments provided and desensitized him to possible errors in logic 
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that may reveal unclear thinking on the author’s part. Another hypothesis is that the instructor, 
when rating a proof, was more interested in whether the author had a complete chain of 
reasoning linking the hypotheses to the desired conclusions than in issues of how the proof is 
written. At various points in the interview, the instructor pointed out instances of writing that he 
did not consider optimal, but openly dismissed these as inessential to the central issue of whether 
the proof under review was valid, in contrast with mentors and students who considered some of 
these issues (such as the explicit naming of axioms about the algebraic structure of Z) crucial in 
evaluating the validity and especially the rigor of proofs. This contrast suggests a disparity 
between the proof-evaluation norms of students and mentors in the summer program and those of 
professional mathematicians as embodied by the instructor of the course. 

 
Discussion and Implications 

The interview results suggest that some students in the summer mathematics program had 
criteria for “rigor” or completeness of proofs distinct from the criteria they used to evaluate the 
validity of proofs. In some responses to interview questions, students rated proofs as valid, but 
indicated that they believed that their mentors may not find these proofs entirely acceptable. In 
some cases, students indicated that they themselves did not consider certain proofs (such as 
Proofs 1A and 1B) totally acceptable despite finding them entirely valid. 

We conjecture that in some introduction-to-proof courses, instructors pay explicit attention to 
issues of style and detail in proof-writing in the belief that strict attention to these issues supports 
the development of students’ ability to read and write proofs. We make no claim that our study 
sheds light on the validity of this particular belief. However, we observe that in most of the 
interviews conducted in this study, subjects did not always make clear distinctions between flaws 
in a proof that render it more difficult to read or follow and flaws that render a proof invalid. 
Although the instructor of the number theory course gave little direct instruction on norms for 
writing and evaluating proofs in class, mentors provided regular feedback on students’ proofs 
and, based on a preliminary analysis of their markings, sometimes advised students to rewrite 
proofs in ways that would have yielded at most negligible improvements in their readability. We 
hope to ascertain through follow-up interviews of the subjects of this study whether the mentors’ 
feedback instilled in students norms for writing and reading proofs that are more rigid than those 
shared by most of the community of professional mathematicians. We also hope to conduct a 
more thorough analysis of the graded proofs we collected over the duration of the program to 
develop a more precise inventory of the norms that governed the mentors’ evaluations of proofs. 

We believe that our study has implications for the teaching of undergraduate mathematics in 
light of the growing practice of appointing relatively inexperienced students to grade papers in 
courses that involve proofs, borne of funding decreases that have forced mathematics 
departments to shift some of this intellectually challenging work from graduate teaching 
assistants to undergraduate graders. At minimum, we suspect that some undergraduate graders 
tasked with grading proofs may benefit from professional development that encourages 
flexibility in evaluating different approaches and styles of proof presentation. We acknowledge, 
however, that such professional development may not mitigate the intellectual demands 
associated with evaluating whether unfamiliar arguments are mathematically valid. 
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Student Mathematical Connections in an Introductory Linear Algebra Course 
 

Spencer Payton 
Washington State University 

In an introductory linear algebra course, students are expected to learn a plethora of new 
concepts as well as how these concepts are connected to one another. Learning these 
connections can be quite challenging for students due to the vast number of connections and 
student inexperience with mathematical logic. The study reported here consisted of an 
investigation into how inquiry-oriented teaching methods could be employed in an attempt to 
create opportunities for students to develop mathematical connections in an introductory linear 
algebra course. 

Key words: linear algebra, mathematical connections, inquiry-oriented teaching 

Introductory linear algebra courses have traditionally been quite challenging for students. 
There are several reasons for this, including the fact that students are introduced to a plethora of 
brand new concepts and terminology. Further, many of these concepts are connected to one 
another in various ways, and students are expected to learn these connections as well. While 
many researchers and teachers would agree that students should be able to make mathematical 
connections, the phrase “mathematical connection” is often loosely defined. This study considers 
one particular type of mathematical connection in an introductory linear algebra course: logical 
implication connections. Relationships between various linear algebraic concepts are often 
summarized in theorems of logical equivalence such as the Invertible Matrix Theorem (IMT) 
(Lay, 2011). The statements in this theorem are all logically equivalent, meaning any statement 
in the theorem logically implies another (and vice versa). Thus, the logical implications present 
in the IMT could be described as logical implication connections. 

While the IMT provides a convenient presentation of logical implications in introductory 
linear algebra, it is somewhat restrictive due to the fact that it only applies to square coefficient 
matrices (as only square matrices can be invertible). However, subsets of the logical implications 
inherent in the IMT could be applied to non-square matrices. The IMT could actually be divided 
into two “sub-theorems,” which will hereby be known as the First and Second Theorems of 
Logical Equivalence; these theorems are presented in Figure 1. 
 

 
Figure 1:  Unlike the Invertible Matrix Theorem, these theorems of logical equivalence are not 
restricted only to the case of square matrices. 
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As learning these mathematical connections can be challenging for students, it would be 
beneficial to improve the teaching of these connections. The study described in this report was 
part of a larger study that attempted to determine how inquiry-oriented teaching methods could 
be implemented in an introductory linear algebra course that, due to considerations such as large 
class size and limited amount of class time, would not lend itself to the traditional demands of 
inquiry-oriented teaching. Regarding the teaching of mathematical connections, one goal of this 
study was to answer the following research question: How do students take advantage of inquiry-
oriented teaching to make connections in an introductory linear algebra class? 
 

Literature Review 

It is not uncommon for students to know that two linear algebraic concepts are connected but 
not understand why they are connected. This issue was well described by Harel: 

So if a student thinks of ‘linear independence’ to mean ‘the echelon matrix which results 
from elimination has no rows of zeros,’ without being able to mathematically justify this 
connection, then he or she does not understand the concept of linear independence. (Harel, 
1997, p. 111) 

This issue of the quality of student understanding has been previously discussed by Skemp 
(1987) in his description of instrumental and relational understanding. The understanding 
presented in Harel’s example is instrumental understanding; that is, knowing what to do but not 
why. According to Skemp, true understanding of a concept involves relational understanding, 
which is “knowing both what to do and why” (Skemp, 1987, p. 153). This characterization of the 
quality of understanding could be applied to mathematical connections. Thus, a student has made 
an instrumental connection if the student has formed a connection but does not understand why 
that connection exists; similarly, a student has made a relational connection if the student has 
formed a connection and understands why that connection exists. For example, a student could 
present relational understanding of a logical implication connection if he or she can form a chain 
of logical implications beginning with one statement in a theorem of logical equivalence and 
ending with another. Unfortunately, students at this level often struggle with mathematical logic, 
and in particular, many students struggle to form these chains of reasoning (Dorier & Sierpinska, 
2001).  

Regarding inquiry-oriented teaching, there are several ways to define inquiry depending on 
the context or academic subject. Rasmussen and Kwon (2007) characterize student inquiry in a 
mathematics class through Richards’ (1991) definition of mathematical inquiry, which is the 
mathematics of mathematically literate adults. Thus, mathematical inquiry involves participating 
in mathematical discussion, solving new problems, listening to mathematical arguments, and 
proposing conjectures. With this interpretation of mathematical inquiry, inquiry-oriented 
teaching involves creating opportunities for students to engage in mathematical inquiry.  
 

Setting and Methods of Analysis 
 

This study was conducted through an action research methodology that began with a pilot 
study in the summer of 2015 and continued into the fall of 2015 and spring of 2016. Each of 
these action research cycles consisted of research in an introductory linear algebra course that 
was taught by the researcher. While the results of the pilot study and fall 2015 research cycle 
informed the spring 2016 research cycle, this report will primarily focus on the spring 2016 
cycle.  
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In the spring of 2016, the researcher taught an introductory linear algebra course at a large 
state university in the Pacific Northwest. The class consisted of sixty students; the majority of 
these students were engineering majors, while others were mainly math and computer science 
majors. The course was a two credit course, which placed considerable time constraints on the 
instructor. As a result of these constraints, inquiry-oriented teaching activities were largely 
reserved for concepts closely related to logical implication connections. In particular, students 
worked on several activities focusing on span and linear independence, as these concepts play 
parallel roles in the first two theorems of logical equivalence; two of these activities are 
presented in Figure 2. 

Data on student mathematical connections was largely collected from interviews with nine 
students from the aforementioned class. These interviews were conducted shortly after the 
Invertible Matrix Theorem had been covered in class. Each interview was approximately an hour 
in length and consisted of students finding the solution set of a linear system, a vector equation, 
and a matrix equation. Each problem lent itself to a different theorem of logical equivalence. For 
example, the coefficient matrix corresponding to the linear system had a pivot position in every 
row, thus making every statement from Theorem 1 true for that coefficient matrix. Similarly, the 
vector equation lent itself to Theorem 2 and the matrix equation lent itself to the IMT. After an 
interviewee completed one of the problems, the interviewee was asked to describe his or her 
work. The researcher would then present the interviewee with a list of vocabulary terms that had 
been discussed in class. The interviewees were asked to discuss as many of the vocabulary terms 
as they could and how they relate to each problem. The interviewer would often ask for 
justification of particular claims that the interviewee had made and would sometimes directly ask 
the interviewee whether he or she could discuss a particular vocabulary term. This was all done 
in an attempt to determine what logical implication connections the interviewees could evoke 
that incorporated some of the familiar terms involved in the theorems of logical equivalence. 

In analyzing the interviews, the researcher attempted to determine what mathematically 
correct logical implications corresponding to the three theorems of logical equivalence each 

 

 

Figure 2: Each of these activities were designed as opportunities for students for explore span 
and linear independence in ways that would allow them to develop logical implication 
connections involving span and linear independence.   
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interviewee evoked. Evidence of logical implication connections took several forms. Many 
logical implications involved words such as if, then, means, because, and so. For example, “The 
vectors, if a linear combination of those produce every single vector in that space, then they span 
that space” would be considered a logical implication connection. While many logical 
implications were evoked entirely by the interviewees, some logical implications were evoked as 
a result of an interviewee responding to a question asked by the interviewer. After determining 
what logical implications the interviewees evoked, the researcher then attempted to determine 
which of these connections were relational connections; this was largely accomplished by 
determining which logical implication connections a student was able to justify. 
 

Results 
 

In general, the interviewees tended to evoke more connections relevant to the second theorem 
of logical equivalence than they did the first. This is in itself not entirely surprising; the theorems 
presented in Figure 1 were the versions of the theorem discussed in class, and the second 
theorem contains more statements than the first. As the concept of invertibility and the IMT were 
still new to the interviewees, they tended to evoke relatively few connections exclusive to the 
IMT. Due to this, the results reported here will primarily focus on connections that are not 
exclusive to the IMT. 
 
Logical Implication Connections Relevant to the First Theorem of Logical Equivalence 

In evoking connections relevant to the first theorem of logical equivalence, the interviewees 
tended to reference span, pivot positions, and linear combinations. Interestingly, several 
interviewees presented interpretations of span that were likely consistent with the formal 
definition of span, but interviewees rarely explicitly referenced the formal definition. That is, 
several interviewees were able to provide geometric interpretations of span or were able to 
describe span via linear combinations without explicitly saying the phrase “linear combinations.” 
For example, consider Will’s explanation of why two particular vectors span ℝ": 

Will: Because these two aren't scalars of each other, they're going in different directions. 
They each have their own #$ and #" components. If they were the same, they'd just end up 
looking like that.  

Seth provided an explanation that incorporated both matrix and geometric interpretations of 
span: 

Seth: If you had a matrix, let's take this one [Seth draws the 2×2 identity matrix], then this 
one would span all of ℝ" because no matter how you rearrange this, you can create – uh, I'll 
expand it [Seth then changes his matrix to the 3×3 identity]. So uh, this one can create, 

 

 
Figure 3: Will provided a geometric description of what it means for two vectors to span ℝ". The 
illustration on the left represents an example Will provided of two vectors that span ℝ", while the 
illustration on the right represents an example Will provided of two vectors that do not span ℝ". 
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because you can multiply this by infinitely many scalars outside for each row, you can create 
infinitely many planes, like, if you think about this geometrically, planes in any coordinate 
system.  

Jimmy appeared to allude to linear combinations, but also referenced a geometric interpretation 
of span: 

Jimmy: Well, for spanning, you want, uh. Every direction to be covered, every direction on 
the plane to be covered by some scale, er, some combination of those vectors, I think.  

Jason explained that three particular vectors span ℝ( because “they go in different directions. 
They’re not, uh, linear combinations of each other.” While Jason referenced linear combinations, 
it was not in reference to the formal definition of span, but rather, as a description of what must 
be true of a set of vectors in order to span an entire space. Bill heavily alluded to linear 
combinations but did not explicitly reference linear combinations: 

Bill: Span is having the ability to make any vector within a space. You can, like I said, 
manipulate any piece of the outcoming vector. You can change it by changing one of the 
more, one of the scalar multiples along there, not scalar multiple, scalar weights along the 
way you go. In this case we did at #$, #", #(. If you could change each of those to then 
manipulate one of the vectors in the overall value within the system, you could then change 
the outcome. That goes into the span. If you can do that then it does span ℝ(, it does span ℝ 
whatever. It has the ability to reach any vector, any point within that space. 

Bill’s description of scalar weights and manipulating vector may provide evidence that he is 
describing linear combinations, although he does not explicitly reference linear combinations. 
Thus, Bill’s interpretation of span is likely consistent with the formal definition of span, even if 
he cannot provide the formal definition.  

It should be noted that while several students provided geometric descriptions of span, 
geometric interpretations were not heavily emphasized in class. They were briefly referenced 
from time to time, but concepts were never defined from a geometric perspective. Further, prior 
to span being defined, the class had discussed the problem of determining whether any vector in 
an ℝ* space can be expressed as a linear combination of a particular set of vectors. However, 
when span was formally defined, it was defined more generally as the set of all linear 
combinations of a set of vectors. Despite this, several interviewees appeared capable of 
determining whether a particular set of vectors spans an ℝ* space by determining whether the 
vectors were linearly independent, linear combinations of each other, or go in different 
directions. Thus, it is likely that students developed these alternative, yet mathematically correct, 
interpretations of span as a result of the inquiry-oriented activity previously described.  

 
Logical Implication Connections Relevant to the Second Theorem of Logical Equivalence 

Many of the connections the interviewees evoked relevant to the second theorem of logical 
equivalence involved pivot positions, linear independence, and basic and free variables. The 
interviewees tended to refer to basic and free variables in their logical implications more than 
any other concept; this was particularly interesting, as the interviewees from the previous 
semester tended to refer to pivot positions more than any other concept. The interviewees also 
appeared to have serious misunderstandings of the homogeneous equation. For example, Fred 
appeared to believe that any homogeneous equation can only have the trivial solution:  

Interviewer: If I had given you zeroes here instead of 3 and 2, would that still have a 
solution? That homogeneous linear system? 
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Fred: Yes, because homogeneous equation always have at least one solution, which is the 
trivial solution.  
Interviewer: And what was the trivial solution again? Can you remind me one more time, 
what was that? 
Fred: Trivial solution is +, = ., so zero is always the solution, for example 00  

Jason appeared to hold a similar view: 
Interviewer: Can you define homogeneous equation for me? What does that mean? 
Jason: It means there's only one solution. I can't remember what it was. 

Seth appeared to confound the trivial solution with the homogeneous equation: 
Interviewer: Do you remember what the trivial solution is? 
Seth: Uh, it's when +, = .. 

Cecily, who was incredibly close to relational understanding of the connection between pivot 
positions and linear independence, made a similar mistake: 

Interviewer: Why is it that not having a pivot position in every column tells you that these 
columns cannot be linearly independent? 
Cecily: Because if there's not a pivot position in every column, then it can have infinitely 
many solutions. And for it to be linearly independent, it can only have the trivial solution.  
Interviewer: Okay. So what can only have the trivial solution? 
Cecily: The matrix, the linear system. 
Interviewer: Okay. So what is the trivial solution? 
Cecily: That's +, = ., right? 

I reminded Cecily that she was describing the homogeneous equation before asking her what the 
trivial solution is; she claimed she did not know. As these interviewees had misconceptions 
about the homogeneous equation, it is likely that any connections evoked that involved the 
homogeneous equation could only be instrumental; further, it suggests that these several 
interviewees have misunderstandings of the formal definition of linear independence. Indeed, 
similar to span, some students provided geometric descriptions of linear independence; Bill, for 
example, claimed that a particular set of vectors was linearly independent “because they can all 
point in different directions.” Others essentially appeared to instead interpret linear independence 
through basic and free variables instead of the homogeneous equation. For example, consider 
Seth’s explanation of linear independence: 

Interviewer: How, how come if it has no free variables, that means it's linearly independent?  
Seth: Well if it has no free variable, that means that there was a pivot in every column, which 
would mean that it would have no free variables, because there wouldn't be, like, say a 2 out 
here. And, uh. This vector would always have a solution.  

Seth’s response was not unique. Several other interviewees tended to refer to basic and free 
variables often in their descriptions of linear independence, as did many students on one of the 
class exams.  

It should be noted that when we discussed the homogeneous equation in class, we did not do 
this through an inquiry-oriented activity; I believed that the concept did not warrant such an 
activity, as students in the pilot study and fall semester appeared to understand the homogeneous 
equation fairly well through a mixture of lecture and whole class discussion. Looking back at the 
day that we discussed the homogeneous equation in the spring semester, I noticed that we 
concluded our initial coverage of the homogeneous equation with the following discussion of a 
homogeneous matrix equation that only had the trivial solution: 

Instructor: So, could I have free variables? 
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Student: No. 
Instructor: Kay. I can't have any free variables. Why not? Why can't I have free variables? 
Student: You'd have infinitely many solutions. 

As this was how we concluded our initial coverage of the homogeneous equation, it is possible 
that some students essentially replaced the concepts of trivial and nontrivial solutions with basic 
and free variables. That is, students made an instrumental connection between the homogeneous 
equation and basic and free variables, and as they did not quite understand what the 
homogeneous equation is and when it has nontrivial solutions, they instead considered when the 
homogeneous equation would have free variables. Then, when the formal definition of linear 
independence was provided in terms of the homogeneous equation, they tended to view linear 
independence in terms of basic and free variables instead of the homogeneous equation. Thus, 
many students in this semester relied on their instrumental connection between the homogeneous 
equation and free variables in order to compensate for their lack of understanding of the 
connection between the homogeneous equation and linear independence, thus interpreting linear 
independence largely through basic and free variables. This was likely exacerbated by the 
aforementioned linear independence activity, in which students could refer to the familiar 
concept of basic and free variables to determine whether the sets were linearly independent or 
not. Students who had not come to rely as heavily on free variables likely developed more 
geometric interpretations of linear independence as a result of the linear independence activity, 
as the sets in the activity were in ℝ" and ℝ(, which can be easily visualized. Once these students 
had developed a more geometric interpretation of linear independence, they may have felt that 
the formal definition was no longer necessary for an understanding of linear independence.  
 

Conclusions 
 
In light of the results from the interviews, it appears as though the inquiry-oriented activities 

that focused on span and linear independence were successful in creating opportunities for 
students to develop their own interpretations of span and linear independence. The role of 
geometric descriptions in the class was limited, yet several students developed interpretations of 
span that appeared to be more geometric in nature; further, these interpretations often heavily 
alluded to linear combinations while not explicitly referencing linear combinations in an 
algebraic sense. Regarding linear independence, the activity allowed students to reinforce 
interpretations of linear independence that heavily relied on basic and free variables; it also 
allowed students to develop geometric interpretations of linear independence that relied on the 
notion that linearly independent vectors are not linear combinations of each other.  

While the inquiry-oriented activities were successful in creating opportunities for students to 
form their own interpretations of span and linear independence and how they relate to other 
concepts, the implementation of these activities could be improved. Students appeared to replace 
their understanding of the formal definition of span and linear independence with the 
understanding they developed as a result of the activities. This may have limited the students’ 
ability to form logical implication connections involving these concepts and their formal 
definition. In retrospect, the instructor should have devoted time to exploring how these student 
developments relate to the formal definitions of span and liner independence. Investigating how 
the inquiry-oriented activities could be improved in this regard remains an avenue for future 
research. 
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Mathematicians’ Collaborative Silences 
Matthew Petersen 

Portland State University 
  

In this paper I re-analyze the transcripts from Smith (2012) to investigate silence in 
mathematicians’ collaborative work. I provide an existence proof that silence, at times, forms a 
significant aspect of mathematicians’ embodied work. Based off a discussion of the nature of 
embodied interaction, the paper concludes that it is likely that silence forms a significant aspect 
of mathematicians’ collaborative work, more generally, both in discovering new mathematics, 
and in ordering the mathematicians together toward the task of discovering new mathematics. 
Because this use of silence is different from that of everyday conversation, this raises important 
pedagogical questions regarding students’ apprenticeship into the mathematics profession. 

 
Key words: [Silence, Ethnography, Mathematical Practice, Habitus] 

 
It may seem paradoxical to study the use of silence in mathematical activity—to study, as it 

were, the times when mathematicians are not doing something. However, as St. Ambrose notes, 
we are at least as likely to err due to inopportune speech as to silence—for instance, we all can 
remember blurting out a comment that derailed a productive and interesting conversation, when 
we should have listened carefully, and held our tongue. Indeed, we often “speak because [we] do 
not know how to be silent” and are “rarely silent, even when nothing is gained by speech.”  
Therefore “it is more difficult to practice silence than speech,” and “we ought to learn silence, so 
we can speak well” (De Officiis, I.5). 

The appropriate uses for silence, like the appropriate uses for speech, however, are context 
specific. Not only must we learn how to be silent, we must learn how to be appropriately silent, 
in the various activities and interactions we undertake. For instance, in English, silence following 
an invitation can communicate a rejection of the invitation (Liddicoat, 2011); and this fact needs 
to be learned by second language learners. Or, both teachers and students learn to respond to the 
silence at the end of a designedly incomplete utterance (Koshik, 2002) which marks that a 
teacher’s statement has been left incomplete and so transformed into a question. Or, to take an 
extreme example, in some Apache interactions, silence is the predominate form of 
communication, and speaking during the silence would be disruptive (Basso, 1970). 

Mathematical collaboration, is, like all concerted activity, coordinated and accomplished 
through perceptible non-linguistic actions (e.g. eye-gaze, speech rhythm), including silences, 
through which people position themselves and their colleagues around the tasks they undertake, 
and direct themselves and their colleagues together toward achieving common goals 
(McDermott, Gospodinoff, & Aron, 1978; Liddicoat, 2011). Because actions have this social 
function the bodily actions mathematicians use in their collaboration, even when those actions do 
not signify mathematical realities, are important aspects of mathematical collaboration. 

In learning to be a mathematician, then, it is important to learn not only the disciplinary 
norms regarding kinds of speech and reasoning, but to learn when speech would be inopportune 
and disruptive; and to learn to respond appropriately to a colleague’s silence. One can investigate 
empirically whether mathematicians employ silence in their collaborative activity. Moreover, 
because silences longer than a second are unusual in everyday conversation, and communicate 
the need for someone to speak (Liddicoat, 2011), if silences are used more extensively than in 
everyday conversation, that fact is pedagogically important. 
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Theoretical Perspective 

 
In an influential essay (1973 [1935]) Marcel Mauss, a leading French Anthropologist, 

developed the concept of technique or technology of the body. This concept continues to be 
employed in leading anthropological works (e.g. Asad, 2003; Mahmood, 2005; Strhan, 2015), 
literary theory (e.g. Allan, 2016, though he doesn’t explicitly use the term; Saussy, 2016), and 
theories of embodiment (e.g. Saussy, 2016). Without an analysis of the techniques of the body, 
an anthropological investigation of technology is incomplete (Mauss, 2007). 

Mauss defines a technique as “an action which is effective and traditional” (p. 75), that is, 
learned. A technique of the body, then, is an effective, learned action which employs the body as 
an instrument for achieving a goal. Because the French, like the English, terms that could be 
employed to describe a technique of the body do not quite convey the correct sense, Mauss used 
the Latin term habitus to refer to a technique of the body, a usage which has been carried over 
into the English writings that draw off his work. 

Mauss used the concept of technology of the body to explore diverse activities like walking, 
swimming, sleep, sexual positions, child-birth, etc. and argued that in fact all our bodily 
techniques that, as adults, we employ in our day-to-day activities are technologies of the body; 
that is, in part psychological, in part physiological, and in part learned. For instance, the human 
body is well suited for walking, but the particular gait we employ is culturally specific, and so 
learned. 

It is the learned aspect of habitus that makes his notion educationally relevant. In addition to 
learning to know particular ways of reasoning, and particular facts, there are particularities of 
habitus that we learn as we apprentice into various professions. Because mathematicians are, like 
all of us, embodied, the work of doing mathematics includes a particular habitus and in their 
course of studies, students are apprenticed into this habitus. 

Though the concept is widely used and valid, one shortcoming of Mauss’ description of 
techniques of the body is that he doesn’t adequately attend to the spatial and interactional aspects 
of our habitus (Crossley, 1995). Techniques of the body not only achieve goals like walking 
across a room or proving a mathematical theorem, they accomplish what McDermott, et al. 
(1978) call positionings, the ongoing, in the moment, work of orienting a group of people 
together toward a common activity. 

Two aspects of positionings are worth mentioning. First, the guestures involved in 
positionings are often not overt, macro gestures like “look over there”, but the whole panoply of 
subtle cues like eye-gaze, body posture, and sort of speech (or lack of speech) particular 
members of a group use. Indeed, all the perceptible gestures potentially contribute to the 
positioning, and cannot be, over the long-term, opposed to the over-all configuration the group 
has taken up. The gestures are not contrary to the order because of the second aspect worth 
mentioning: When people depart from an order, the group may nevertheless maintain that order. 
They do so when the departure treated as a breach of the order, and the person who departed, 
directed (through overt or covert means) to return. 

The perspective sketched here is similar to the one employed by Nemirovsky, Kelton and 
Rhodehamel (2013), which “propose[s] that mathematical knowing is constituted by—not 
dialectally related to—embodied tool use.” However, it differs in two key ways. First, it 
recognizes that, as Muass states, our “first and most natural technical object, and at the same 
time technical means, is [the] body” (p. 75), so that the body itself is a tool. This addition 
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facilitates an attention to the ways learned embodied actions constitute mathematical knowing, 
even in the absence of, or in abstraction from, other technologies. Second, my approach is more 
attentive to the ways we use our bodies not only as a tool for doing mathematics, but as a tool for 
positioning each other in a given mathematical task, and so using our bodies in concert. An 
emphasis on the habitus also has the potential to make an explicit link with examinations of the 
Politics of mathematics education and so and critically interact with Foucauldian, Bordieuan, and 
perhaps even Marxist examinations of mathematics education (Burkitt, 2002; Asad, 2003; 
Mahmood, 2005; Bang, 2014; for the Politics of mathematics education, see e.g. Pais & Valero, 
2012;  Kollosche, 2016). 

 
Literature Review 

 
There has been relatively little anthropological or sociological investigation of the materiality 

of doing mathematics, and the face-to-face communicational practices indigenous to the 
mathematics community. Indeed, sociological investigations of doing mathematics at all are rare 
(Greiffenhagen, 2006; Greiffenhagen & Sharrock, 2005). 

Those studies that have investigated the doing of mathematics have tended to focus on the 
linguistic aspects of doing mathematics. For instance, Weber (2008) and Weber and Mejia-
Ramos (2011) investigated the techniques mathematicians use to evaluate proofs. Their 
investigations, however, focused on the types of reasoning (e.g. formal or informal) and the goals 
of reading proofs; but not on the techniques of the body the mathematicians used to undertake 
those styles of reasoning and reading, and to achieve their goals. 

On the other hand, sociological investigations of the embodied nature of abstract 
mathematical reasoning—that is, of mathematical habitus—though few in number, do establish 
that mathematics is not a purely mental phenomenon, but that the doing of mathematics employs 
various bodily and material techniques and technologies. For instance, Greiffenhagen (2006; 
2014) demonstrates the importance of the blackboard, and its spatiality, in doing a mathematics 
proof, particularly through the facilitation of particular gestures which embody mathematical 
activity. For instance, when attempting to create “space” between two numbers in order to prove 
an inequality, a mathematician may orient him, or her, self to that metaphorical space by 
gesturing along the blank spaces created by blackboard inscriptions. 

Smith (2012) also investigated the material practice of doing mathematics. He found that 
when mathematicians struggle with mathematics, their actions and perceptions make use of 
particular material and bodily aspects of their world. For instance, several mathematicians he 
studied exhibited what he called proximal inhibition, in which they are both drawn toward a 
physical representation of the mathematics, and yet, because of a lack of knowledge of where to 
approach the symbolized mathematics, are held back. 

These three studies establish that mathematicians use various habitus in their doing 
mathematics—mathematics is not a purely mental operation, rather, like a harp player, or 
someone walking across the room, mathematicians employ their body as an instrument for 
accomplishing their work. However, the analysis of this habitus has never attended to silence. 

Silence also tends to be a neglected, but important, aspect of communication (Saville-Troike, 
1989, p. 148) and of habitus (Acheson, 2008). Furthermore, communities have specific 
communicational norms regarding the toleration of silence in interaction, the meaning of 
silences, and the function of silences in achieving various goals, and so an investigation of the 
functions and uses of silence in a particular community is pedagogically relevant: If silence 
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Table 1 

 
forms a part of the habitus mathematicians employ in their work, in positioning themselves and 
their colleagues around the (symbolized) mathematics, and so orienting themselves to the task at 
hand and achieving the goal of discovering new mathematics, that use of silence is learned. 

This leads to the research question addressed in this paper: Is silence an aspect of the habitus 
cultivated by mathematicians, that is, an aspect of their body technique employed both in their 
collaborative work of doing mathematics, and in their positioning themselves and their 
colleagues in relation to their task of doing mathematics. 

  
Methodology 

 
For this study, I reanalyzed the transcripts included in Smith’s doctoral dissertation (2012). 

Smith’s research question was “What are some ways in which mathematicians structure their 
experiences of struggle while working in pairs in person on a current problem?” (p. 46) To 
answer this question, he recorded ten total hours of collaboration between practicing 
mathematicians (Matt & Bart), and between PhD students nearing their defense and their major 
professor (Joseph & Bill and Fay & Martha). (I use the pseudonyms Smith used.) He included 
the latter two pairs based on a judgment that their collaboration was sufficiently similar to the 
collaboration of mathematicians to answer his research question but also regular enough to 
schedule video-recording. After collecting the data, he narrowed his investigation to 9 episodes, 
between 1:09 and 4:01 long, 21:43 total, that were particularly salient for his research question. 
Joseph and Bill’s activity was analyzed in 5 episodes, Matt and Bart’s in 3, and Fay and 
Martha’s in 1. 

Smith (2012) includes a transcript of all the episodes in appendices. These are intended to 
allow the reader to verify the results of his in depth microethnography (Erickson, 1996). The 
transcript consists of 1,029 screen shots—0.79 frames per second—time stamps, arrows 
indicating motion, and transcriptions of speech (see Figure 1 for a sample). If the participants 
were silent for all or part of the time recorded in a screen-capture, the transcript says [pause]. 309 
frames (30%) record pauses, though the length of many of these pauses is unmeasurable (I 
assume it is less than 1 s. for this analysis). The only text accompanying a number of frames, 
however, is [pause], and the length of these silences can be measured by recording the initial 

 Episode name in 
Smith, (2012). 

Total 
time (s) 

Joseph 
& Bill 

Tubes 70 
Chain Map 241 
Odd Scalars 158 
Indexical Map 120 
Finger Moves 140 

Matt & 
Bart 

Bart Pushed Back 67 
Inverted Pyramid 183 
Adjusting a 
Triangle 

167 

Fay & 
Martha 

Graph Confining 158 

Figure 1: A page of Smith's (2012) transcript (p. 261), 
taken from episode 3 (Joseph & Bill). The top frame 
includes an unmeasurable silence, the bottom contains 
the first half second of a 5 second silence (at the 
beginning of the episode). 

20th Annual Conference on Research in Undergraduate Mathematics Education 84020th Annual Conference on Research in Undergraduate Mathematics Education 840



   

time-stamp of the frame the silence starts on, and the final time-stamp of the frame the silence 
ends on. When the length of a silence can be measured, I call it a measurable silence. 

To determine how prevalent silence was in these mathematicians’ cooperative work, I 
recorded the length of all the measurable silences by noting the initial and final time stamps for 
any pauses in their speech. In five frames there was only a very small amount of text (for 
instance, one letter), but the rest of the text was recorded as [pause]. I included these frames as 
parts of measurable silences, though I adjusted the total time of the slide slightly. For this 
analysis I did not attend to their gestures, but it is worth noting that any time was spent writing 
on or erasing the board in only three silences, all under five seconds. 

Some very short pauses were measurable, and, because Smith was not attending to silences, 
we cannot conclude that pauses shorter than a particular time are measurable—Fay and Martha’s 
session in particular includes a number of silences that would be unmeasurable in the transcripts 
of other groups’ works. In order to have a relatively uniform grain-size, and because silences 
shorter than 1 second are common in American English (Liddicoat, 2011), only silences longer 
than one second are included in this analysis. Silences shorter than one second are assumed to be 
a part of the natural rhythms of speech, and not a separate phenomenon. 

Because ten two second silences may be very different from one twenty second silence, to 
get more information about the length of the silences, I also collected data on silences longer 
than 5, and 10, seconds. 

Table 1 lists the names Smith (2012) gave to the episodes he analyzed, and the total length of 
each episode. The episodes are ordered, first, based on participants, and then, within each 
category, on percentage of time spent in 1+ second pauses. Throughout this paper, episodes are 
listed in the same order as in Table 1. In Figure 4, where the episodes are arranged vertically, the 
same top-to-bottom order is preserved. In Figure 2 and 3, the episodes are arranged horizontally, 
and the top-to-bottom order is preserved left-to-right in those Figures. 

 
Results 

 
The results are summarized in Figures 2-4. Figure 2 presents the percentage of time in each 

episode spent in silences longer than one, five, and ten seconds, respectively. In five of the nine 
episodes, four of them involving Joseph & Bill, the mathematicians spent more than 20% of the 
episode silent; in two of the episodes, more than 50% was silence. In four of the nine episodes, 
more than 20% of the time was spent in 5+ second silences. In three of nine episodes, more than 
15% of the time was spent in silences longer than ten seconds, and in a fourth, 13.4% of the time 
was spent in silences longer than 10 seconds. In two episodes, more than 35% of the time was 
spent in silences longer than 10 seconds. 

Figures 3 and 4 help visualize that use of silence. Figure 3 displays all the silences longer 
than 1 second in each episode. Because the episodes are not all the same length, the total time of 
each episode is displayed as a secondary category. Figure 4 contains a timeline of each episode. 
Time in which both mathematicians were silent are symbolized with a line, time in which either  
spoke, or the silence was shorter than a second, are displayed by blank space. An inspection of 
Figure 4 suggests that the mathematicians’ work may be divided into periods in which silence is 
common and periods in which silence is rare; however, there is not enough data here to address 
that conjecture. 
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Figure 4: Percentage of time, per episode, in 1+, 
5+, and 10+ second silences  

 
 

Discussion 
 
It would, obviously be invalid to try to generalize these findings statistically. The 

significance lies in the fact that, in episodes that a researcher selected as an interesting example 
struggle with mathematics, without any reference to silence, the researcher still selected episodes 
containing a very large amount of time in lengthy, mutual, silences. These are not times of 
inactivity, but of intense activity. Moreover, the fact that the mathematicians engaged in lengthy 
silences implies that these silences are a part of efficient, learned, bodily mathematics activity. 
That is, they form an aspect of the habitus of four of the mathematicians whose work was 
analyzed in Smith’s dissertation. (Fay and Martha are not seen employing it much.) 

Furthermore, in American English, silences of over a second are often treated as a lack of 
speech (Hepburn & Bolden, 2013), and people orient to the silences themselves. Contrary to the 
usual expectation, the mathematicians whose work is analyzed here are not only silent for long 
periods of time, they are silent together. That the silences are co-produced is important for two 
reasons. 
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Figure 3: Length of each silence, in seconds, in 
each episode. The subcategories on the 
horizontal axis list the total time of each episode. 

Figure 2: Timelines of the episodes analyzed 
in Smith (2012). Silences of over one second 
are represented with a line, times when the 
mathematicians were speaking are left blank. 
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First, this provides evidence for the generalizability of the episodes analyzed here. In not 
quickly breaking the silences, and attempting to redress the breach of the conversation, the 
mathematicians treated the lengthy silences as an entirely normal element of their work. That the 
silences are treated as normal indicates that while silence may not be a universal feature of the 
habitus of mathematicians, it is a relatively common aspect of the mathematical habitus. 

Second, because in all our activities we are engaged in positionings of the people we are 
interacting with, and because silences are usually noticeable, it seems likely that silence was an 
element of their mutual positioning—that is, that the mathematicians oriented each other to the 
task at hand, in part, through their silence. 

 
Conclusions 

  
In these episodes, silence was an important aspect of the mathematical habitus, that is, both 

in its orientation to solving a mathematical conundrum, and critically, in positioning a peer 
toward the same goal. The mutual tolerance for silence is in contrast to findings regarding silence 
in student group-work. In student work, silence is sometimes an aspect of the effective embodied 
practices students employ to answer vexing mathematical problems; however, other students 
often read the silence as a problem, and attempt to rectify the problem by eliciting a response 
(Petersen, 2015; Petersen, under review). 

It may, at first glance, be that mathematicians use silence more extensively in their attempts 
to resolve vexing questions than students do, or they may use it roughly the same amount. 
However, they have learned not to treat the silence as a breach of group work, and a lack of 
speech needing rectified, but to respond to it, at least sometimes, by silently engaging with the 
mathematics. This response to silence is pedagogically relevant, because it differs sharply from 
student responses, and from the use of silence in every-day conversation. 

We can also, perhaps, conclude form this response that in fact, mathematicians incorporate 
silence into their work more extensively than students do—if they did not, they would treat the 
silences like students have tended to—though there may also have been specific gestures 
accompanying the silence that communicated the quality of the silence, and its use. 

The difference between the mathematicians’ use of silence and the students’ use raises 
several questions for future research: Is there something specific to the practice of mathematics 
that mathematicians utilize silence in their work, and this use of silence needs to be learned as 
students are initiated into doing mathematics? Was there something specific about the gestures 
that accompanied the silence in these episodes that communicated that the silence was a 
potentially productive, active silence, not an awkward pause, or lapse in the work? How do 
various teaching styles help students to learn to use silence as mathematicians do, and how do 
they inhibit that learning? If these silences were accompanied by gestures that communicated the 
potential productivity of the silence, how are we teaching our students to subconsciously notice 
those gestures, and to be positioned toward engagement with the mathematics, or at least, to 
recognize that their peers are actively working, even if not speaking? And finally, are there 
technological aspects to these silences—do different external technologies provide affordances 
or hindrances to employing silence like these mathematicians did? Further fine-grained analyses 
of student and professional mathematical practices are needed to address these questions. 
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Graduate Student Instructors learning from peer observations 
 

Daniel L. Reinholz 
San Diego State University 

 
Graduate Student Instructor (GSI) professional development addresses an urgent need to 
improve STEM retention. This paper focuses on a semester-long professional learning 
community in which six mathematics GSIs engaged in regular cycles of peer observation, 
feedback, and reflection. In contrast to most GSI development work, this approach emphasized 
that GSIs give, not just receive, peer feedback. Analyses of post-semester interviews indicated 
that all GSIs enhanced their noticing of students. Moreover, insight into peer feedback was 
developed along three dimensions: (1) the importance of being an objective observer, (2) the 
impact of working with equal-status peers, and (3) the value of critical feedback. 
 
Keywords: Graduate Student Instructors (GSIs); Graduate Teaching Assistants (GTAs); 
Professional Development; Noticing; Reflection 
 

Introduction 
Introductory college calculus is a major barrier for students pursuing STEM careers (Bressoud, 
Carlson, Mesa, & Rasmussen, 2013); low student success rates in calculus contribute to a lack of 
persistence, which has become an issue of national concern in the US (PCAST, 2012). 
Fortunately, a growing body of evidence highlights the positive impact of student-centered 
teaching practices (Freeman et al., 2014), particularly in improving student persistence (Kogan & 
Laursen, 2014). Despite this evidence, college mathematics classrooms are still dominated by 
instructor-centered teaching (Lutzer, Rodi, Kirkman, & Maxwell, 2005). Thus, there is an urgent 
need to improve instruction in introductory undergraduate mathematics courses in the US.  
 Graduate Student Instructors (GSIs) play a crucial role in teaching these introductory 
mathematics courses. Yet, GSIs typically receive little professional development (Austin, 2002). 
To implement student-centered teaching practices, GSIs need to learn to attend to and respond to 
student thinking (Franke, Carpenter, Levi, & Fennema, 2001; Sherin, Jacobs, & Philipp, 2011). 
Accordingly, this paper explores how peer observations help GSIs enhance their noticing of 
student thinking. In contrast to observations by faculty or more experienced GSIs (Miller, 
Brickman, & Oliver, 2014), peer observation supports noticing through giving, not just 
receiving, feedback. It also helps alleviate the costs of scaling and sustaining traditional methods 
of observations, which may create an undue burden on faculty members and more experienced 
graduate students. In the present study, six mathematics GSIs met regularly in a professional 
learning community (PLC; Stoll, Bolam, McMahon, Wallace, & Thomas, 2006) and engaged in 
cycles of peer observation, feedback, and reflection through the PLC. 

This paper addresses two research questions: (1) how was GSI noticing impacted by peer 
observation? and (2) which features of peer observation supported or inhibited noticing? 
Analyses of post-semester interviews indicated that all six GSIs felt more reflective about their 
teaching. Moreover, they described: the importance of being an objective observer, the impact of 
working with equal-status peers, and the challenges of providing critical feedback. Based on 
these results, this paper argues that peer observations provide a number of additional learning 
benefits that extend beyond traditional observations of GSIs. 
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Theoretical Framing 
 

 Enacting student-centered pedagogies requires GSIs to build on the resources that 
students bring to the classroom. To build on these resources, GSIs need to engage in three related 
processes: attending to, making sense of, and responding to student thinking (Jacobs, Lamb, & 
Philipp, 2010). The study of such decision making comprises the field of teacher noticing 
(Sherin et al., 2011). The goal of the present work was to help GSIs enhance their noticing of 
students, rather than focusing primarily on themselves. 

PLCs can enhance noticing, as instructors reflect on their practice with peer support (van 
Es & Sherin, 2008). PLCs are communities of continuous inquiry and improvement, with five 
key features: (A) shared values and vision, (B) collective responsibility, (C) reflective 
professional inquiry, (D) collaboration, and (E) group, as well as individual, learning (Stoll et al., 
2006). In this study, the PLC gave GSIs opportunities to provide feedback, not just receive it. 
Given the benefits of peer assessment (Reinholz, 2015c), it was hypothesized that this would 
enhance noticing more than simply receiving feedback from others. Recognizing that not all 
feedback is equal (Hattie & Timperley, 2007), GSIs were helped to provide critical, supportive 
feedback to their peers. When feedback focuses on processes, it is more likely to draw attention 
to student thinking, in contrast to feedback focused on people, which will draw attention to the 
GSIs themselves (Reinholz, 2015b). Person-focused feedback, such as praise, actually inhibits 
learning (Hattie & Timperley, 2007; Mueller & Dweck, 1998). 

Providing feedback position GSIs as competent (Engle & Conant, 2002), and there is 
evidence that individuals may learn as much from providing feedback as receiving feedback 
(Reinholz, 2015c). Thus, conducting observations rather than just being observed provided GSIs 
with opportunities for enhanced noticing. In particular, it allowed GSIs to enter the classroom as 
a third party without the cognitive load of teaching. This paper adds to the study of noticing and 
GSI professional development by elaborating these opportunities for improved noticing.  
  

Method 
Participants 
 Six GSIs teaching either calculus 1 or 2 at a large research-intensive university 
participated in the study. The calculus classes were comprised of (each week): (a) three 50-
minute lectures, (b) one 50-minute recitation, and (c) one optional 100-minute workgroup. The 
GSIs each taught a combination of 3-4 recitations or workgroups. The recitations consisted of 
GSIs: answering homework questions, completing examples, providing short worksheets, and 
administering quizzes. The workgroup sessions were collaborative problem solving sessions, 
modeled on the Emerging Scholars Program (ESP; Treisman, 1992). A key insight from the ESP 
was that providing students with additional challenge, rather than remediation, was a more 
effective way to support their success in calculus. The collaborative groupwork sessions were 
also designed to promote community and collaboration amongst the students. 

GSIs received no incentives for participation in the PLC; all four calculus 2 workgroup 
instructors participated as a part of the department’s efforts to improve instruction, and two 
calculus 1 instructors were chosen by the department to participate. There were four female and 
two male GSIs, five domestic GSIs and one international GSI, and the GSIs had a variety of 
teaching backgrounds; the four female GSIs were in their first year of teaching in the department, 
and the male GSIs had been teaching for a number of years.  
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Design 
 The GSIs in the study met as a PLC and conducted regular peer observations during a 
single semester. The PLC was facilitated by a mathematics educator, who shared videos, articles, 
and feedback on teaching with the GSIs. The facilitator also assigned short “homework 
assignments,” which required GSIs to implement active learning strategies in their recitations or 
workgroups. The PLC typically met every other week, for a total of seven one-hour sessions. 

To help GSIs develop a shared vision (PLC principle A), GSIs reflected on and discussed 
their prior experiences as learners during the first PLC meeting. To support collective 
responsibility (principle B), reflective professional inquiry (principle C), and collaboration 
(principle D), the facilitator refrained from providing “answers” to the GSIs, instead creating 
opportunities for collective reflection and discussions of teaching. To support individual and 
group learning, GSIs had one-on-one conversations with their peers after observation, and the 
observations were later discussed collectively in the PLC (principle E). To create a safe space for 
these public conversations, the facilitator promoted a culture of sharing: each meeting began with 
a debrief on GSI experiences during the past two weeks. Moreover, the PLC discussed norms of 
giving feedback and normalized struggle as a part of learning.  
 The GSIs each completed 5-6 peer observations total, with three of their peers (two 
observations per peer). These observations were based on Peer-Assisted Reflection (Reinholz, 
2015a). Each observation involved: (1) the GSI setting goals for the observation, (2) a peer 
observing and video recording the session, (3) a debrief conversation between the two GSIs after 
they both observed each other, and (4) a whole-group debrief during the next meeting.  

To support feedback and reflection, the GSIs each completed peer feedback forms. The 
observed GSI began by listing their goals for what they wanted a peer to pay attention to. Then 
the peer provided specific examples to answer three questions: (1) What opportunities did 
students have to talk about mathematics?; (2) What opportunities did students have to work with 
other students?;  and (3) What else did you notice, both related to the instructor’s goals and 
otherwise?  
 
Data Sources and Analysis   
 Pre and post interviews were conducted with the GSIs. In addition, all group meetings 
were audio recorded, and peer observation forms were copied. The pre-interviews provided 
context and background on the GSIs; the post-interviews were used as the basis for the analyses 
that follow. The post-interviews focused on the following areas: teaching philosophy, Peer-
Assisted Reflection, experiences exchanging feedback, and beliefs about feedback. The goal of 
the interviews was to holistically understand how the GSIs experienced exchanging peer 
feedback, including: how they felt, what they learned, and what challenges they encountered.  

All interviews were transcribed and coded by the researcher. The goal of coding was to 
understand how GSI noticing was impacted by peer observation. Drawing from techniques in 
grounded theory (Glaser & Strauss, 1967), a first pass of coding was conducted to identify 
emergent themes. These themes were: (1) objective observers, (2) equal-status peers, and (3) 
critical friends. Once these themes were identified, the researcher completed a second pass of 
coding to look for the prevalence of themes across the six post-interviews. The presentation of 
results that follows is illustrative, intended to highlight important areas for future research. All 
names below are pseudonyms.  
 

Results 
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Objective Observers 
All six GSIs discussed how they became more reflective about their teaching and improved their 
noticing of student thinking as a result of observing their peers. For example, Leo contrasted his 
years of prior experience with his engagement in the PLC, 
 

I didn't really think that much about teaching. I would sort of hope my students did well 
on the tests and give me good [ratings], but thinking about the process is something that 
I've really gotten out of this, and to really try to empathize a little and put yourself in the 
students' shoes and ask what is this teacher doing, or what should this teacher be doing. 

 
Leo describes that teaching was something he did for many years, but “didn’t really think that 
much about.” In contrast, the PLC provided Leo with time and space to reflect on his teaching, 
learning to put himself in “students’ shoes.” Leo described the importance of observations, 
which allowed him to be in a classroom unburdened with the responsibilities of teaching,  
 

Well when you're not constantly running around helping people with math, it's really easy 
to tell when groups have sort of lost focus. You also get a better feeling for, I think, the 
dynamic between people, seeing how certain groups view their teacher… 

 
In other words, peer observations supported Leo to improve his noticing of students, because 
they provided him with an opportunity to focus only on students, rather than all of the other 
responsibilities associated with teaching. Similarly, Tina described enhanced noticing resulting 
from being an observer,  
 

I was able to pay more attention to students' interactions in other workgroups. I guess I 
learned something about how the students interacted...I feel like there were the different 
groups. There was the group that had a ringleader that would get everyone going and 
would lead everything, and then there were some groups that would just not be working, 
and then there were groups that would be working pretty well together. 

 
Broadening from the specifics of student-student interactions, peer observations allowed the 
GSIs to compare the different types of classroom environments that their peers created. For 
instance, Celeste reported on insights developed by comparing three different peer classrooms, 
 

I knew that I have some problems with my recitations, I knew that I'm not as good as I 
should be. And observing Tina and Tara and Elayne I saw, OK, this one's not working so 
probably I should not do it, and this one is working. 

 
Celeste describes noticing what was “working” and “not working” in her peers’ classrooms, 
which informed what she herself would do as a teacher. In this way, being present in a variety of 
peer classrooms allowed Celeste to see various gradations in teaching practices, which is a key 
aspect of identifying a high-quality performance (Sadler, 1989).  
 The observations also provided GSIs with concrete instances of student-centered 
teaching. For example, Elayne emphasized the value of watching Edgar teach, who focused on 
“guiding students” rather than just “giving them the answer,”  
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Well I learned a lot about just the whole guiding students to the answer instead of giving 
them the answer, just watching other people- like I keep bringing up Edgar, because I 
think he was one of my favorite people to observe because he would literally just ask 
questions the whole time and not give any answers. 

 
Elayne further described how such observations changed her views on teaching, 
 

A big role that I found this semester was just learning to ask the right questions and 
having patience… if the student is able to get to the answer on their own instead of you 
just giving them the answer, it builds their confidence and they retain it longer. Even 
though it might take three times as long for the student to get there instead of you just 
showing it to them, in the end they're going to do better in the class and be able to learn 
the math better if you allow them to get to it eventually. 

 
As the above interview excerpts highlight, observing their peers provided opportunities for the 
GSIs to notice new things in the classroom. Although changes in GSI teaching practices were not 
analyzed, prior research showed that working with GSIs in the same department in a similar 
setting resulted in measurable changes in practices (Reinholz et al., 2015). 
 
Equal-Status Peers 
An important feature of the PLC was that the GSIs observed peers of relatively equal status. This 
contrasts approaches that focus on “experts” (experienced GSIs or faculty members) observing 
or being observed by “novices” (new GSIs). This allowed the GSIs to form community with their 
peers. As Leo noted, the PLC helped him shift from competition to collaboration, 
 

It was kind of a nice supportive environment. I really liked our group meetings where we 
sort of realized we're all in the same fight. Sometimes there's a little bit of competition, at 
least in my mind, between [GSIs], because you really want to have good [student ratings] 
and that's sort of only measured relative to a baseline. So you're like I want to be the best, 
I want my students to love me the most. But really more interesting are these questions of 
how do we prepare our students, all of our students, the best, and how do we teach the 
best. It was good to have actual regular meetings with other teachers in a way that... I 
don't know. It was a good emphasis on pedagogy, reminding myself why I'm actually 
there. It's not to get high scores, it's to teach kids math.  

 
The GSIs also discussed the culture of mathematics and the pressure to understand all of the 
mathematics that they were teaching at a deep level. When the GSIs observed their peers and 
realized that their peers also found aspects of the mathematics challenging, it was reassuring for 
them. Even Edgar, who was a relatively experienced GSI, noted that the peer observations 
helped him overcome aspects of his imposter syndrome,  
 

[T]hey're also not crazy experts with the material. In learning that I felt more 
comfortable…There were instances where I was like I know how sequences and series 
work, and then I'd try and teach somebody how sequences and series work and I'd be like 
ah, fair enough, I don't know how sequences and series work…just seeing that [other 
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GSIs] were also struggling with that is reassuring, that I shouldn't feel the imposter 
syndrome or anything like that. 

 
Edgar’s comments speak to broader cultural issues around mathematics, in which mathematics is 
often equated with intelligence (Nasir & Shah, 2011) and there is great pressure for the GSIs to 
act as authorities in the discipline. In observing Tina, Edgar noticed that she would often look at 
the solutions to problems during in the middle of workgroup sessions, and he realized that it was 
all right for him to do the same thing, 
 

So I was like, OK. I've always kept the solutions in my back pocket, so then it feels weird 
to, like, here are the solutions right in front of the group. Leaving and saying work on this 
and then refreshing privately, so to speak, so you maintain the aura of knowledge. 

 
Here Edgar describes a concrete strategy, leaving and looking at answers away from the group, 
that allowed him to maintain what he perceived as his necessary authority as an instructor, while 
“refreshing” his understanding of the mathematics.  

The idea of an “aura of knowledge” speaks strongly to narratives tying mathematics and 
intelligence (Nasir & Shah, 2011) and the perception of authority that GSIs felt that they had to 
maintain. Related to these narratives, Tara expressed anxiety in being observed, 
 

I mean sometimes the students would ask really hard questions and I wasn't completely 
sure of the answer, so I was worried that I'd be judged for being stupid by the other [GSI] 
basically. 

 
As Tara expressed, the GSIs felt pressure to be experts. Addressing this “anxiety” has potential 
to support GSIs through peer observation and in GSI development more generally.  
 
Critical Friends 

All six GSIs stated that they found critical feedback to be more helpful than praise. For 
instance, Celeste discussed how overly positive feedback did not support her learning,  
 

Tina and Tara…they were always happy with the things that I wanted them to look at and 
I don't think that's very accurate…I think they wanted to be encouraging, like keep doing 
that, it's good. But I kind of liked Elayne's [feedback] the best because she actually 
provided actual things that I have to improve. 

 
Upon receiving this not-so-helpful feedback, Celeste recognized that when she provided the 
same types of feedback to her peers it must also not be so helpful for them. As such, she altered 
the feedback she provided to peers to be more critical, 
 

I know that at the beginning I was like everything's great, nice, you're doing good. So I 
did that, and I know I did it. I didn't know them or what they would think, how they 
would react, would they get angry, so I wanted to be positive. But after Elayne I 
understood that's not the point. I knew when we talked that that's not the point, but it's 
different when you actually experience it. After that I tried to be more critical. 
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Celeste describes the initial barrier to providing critical feedback; she did not want to hurt the 
feelings of her peers or be judged by them. Yet, as she received critical feedback from Elayne, 
she realized that this was an important part of supporting her peers to grow, and changed her 
feedback accordingly. Edgar similarly described critical feedback as supportive, 
 

It’s kind of like if I have to write a cover letter for my next job application and I hand it 
to my good friend Joe, and Joe says this is awesome, well done, I think you’re going to 
get the job, you’re a cool person, I would hire you. I’m like thanks Joe, you’re nice. And 
then I give it to my good friend Stephanie – and I don’t have any friends named Joe or 
Stephanie, these are made up names – and she says well, you know, it’s passable. I’ve 
seen cover letters like this, I’ve written cover letters like this. It’s good, but you could do 
better. There’s this and this. I write like this, so when I read your handwriting doesn’t 
make any sense to me. Take it or leave it, because when people read my handwriting they 
say the same thing to me. Tonal choices. This whole paragraph, what does it mean? It 
doesn’t mean anything, I didn’t get anything from it. What were you saying with that 
paragraph? It’s like thanks Stephanie, I feel like I’m going to get the job now because I’m 
going to get rid of that paragraph and write something useful. 

 
Here Edgar contrasts being “nice” with being “supportive.” Edgar describes two imaginary 
friends, Joe and Stephanie giving him feedback on a cover letter. Joe is nice because he provides 
encouragement, but Stephanie is supportive because she provides critical feedback that can be 
used as fodder for improvement. In this professional context, Edgar emphasizes that support is 
more useful than niceness, and will actually help him get a job.  
 

Discussion 
 

The present paper provides evidence that peer observation can enhance noticing. In 
particular, when GSIs are positioned as competent to provide meaningful feedback to their peers, 
they can learn through observing others and form meaningful community with equal status peers. 
As such, equal-status peer observation can improve GSI professional development. For instance, 
it offers a low-cost alternative to observations conducted by faculty or experienced peers, 
because the very process of observing GSIs becomes a learning experience for the observer 
rather than a “cost” for the observer in service of another GSI’s learning. Moreover, it gives GSIs 
an opportunity to interact with students in a different capacity, increasing their understanding of 
their students. Despite the benefits, peer observations can be inhibited by the inter-personal 
challenges of GSIs criticizing other GSIs who they view as friends or colleagues. Addressing this 
issue requires building an environment that supports supportive, critical exchange. 

This paper also suggests new directions for research in teacher noticing. While peer 
observation as a tool for noticing appears promising, further research is required. In particular, 
the mechanisms through which peer observation can support individual reflection need to be 
further elaborated. Moreover, further research is required to understand how this type of 
reflective community practice impacts the actual teaching of GSIs in the classroom. These are 
promising avenues to continue this work. 
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McNuggets, Bunnies, and Remainders, Oh My! 
 

Nina C. Rocha & Jennifer R. Zakotnik-Gutierrez 
University of Northern Colorado 

 
Given its applications in computing, coding, and cryptography, the Chinese Remainder Theorem 
is a worthwhile, accessible, and unexplored area of number theory. The purpose of this 
qualitative case study was to investigate strategies and reasoning that students exhibited while 
solving problems chosen to elicit thinking in elementary number theory topics related to the 
Chinese Remainder Theorem. We interviewed pairs of students from three different courses in 
order to investigate the similarities and differences that may occur as a result of varying 
mathematical backgrounds and partner dynamics. We identified a range of strategies including 
manipulating final digits, listing multiples while accounting for remainders, and implementing 
divisibility rules. This paper presents a portion of our findings discussing strategies for two of 
our three cases on several tasks from our interviews.  
 
Key words: Chinese Remainder Theorem, Frobenius Problem, Pre-Service Teachers 

Objectives and Background 

Although many mathematicians would agree that knowledge of elementary number theory 
helps students to build a firmer foundation upon which other mathematical knowledge is based, 
the area remains relatively unexplored in mathematics education research. For instance, several 
studies have revealed the difficulties that undergraduates have with divisibility, prime 
factorization and remainders (Campbell, 2002; Zazkis, 1998). However, authors have yet to 
investigate students’ understanding of subjects including the Chinese Remainder Theorem and 
Frobenius Problem. We believe these areas deserve further study, given students may be able to 
develop an intuitive understanding of the Chinese Remainder Theorem by exploring concrete 
problems that elicit the concept of modular arithmetic. 

The purpose of our research was to investigate the strategies and reasoning that students 
exhibit while solving problems chosen to elicit thinking in elementary number theory topics. We 
interviewed pairs of students from three different courses—Mathematics and Liberal Arts, 
Fundamental Mathematics II, and Calculus 1—in order to investigate the similarities and 
differences that may occur as a result of partner dynamics and varying mathematical 
backgrounds. More specifically, our aim was to investigate the following: What strategies do 
students in the different undergraduate mathematics courses use when attempting to solve the 
Frobenius problem and Chinese Remainder Theorem tasks? Additionally, we explored the extent 
to which partner dynamics influenced the strategies that were used. 

Existing literature on elementary number theory has centered around students’ understanding 
of divisibility, parity, and primality. We identified two areas within elementary number theory in 
which the research has shown students struggle: preference for procedural demonstration over 
conceptual demonstration of knowledge, and general difficulty with rational and whole number 
division and remainders (Brown, Thomas & Tolias, 2002; Campbell, 2002; Kaasila, Pehkonen, 
& Hellinen, 2010; Zazkis & Campbell, 1996). Students at all levels have demonstrated difficulty 
in these areas, and these findings had bearing on the strategies that our participants used. 

A recurring issue from the literature revealed a preference for performing algorithms and 
processes over utilizing conceptual knowledge as a source of certainty with division. Zazkis and 
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Campbell (1996) found that rather than investigate the prime factorization of a number, 
preservice elementary teachers preferred to multiply all of its factors and then divide that result 
by the possible composite factor. The students lacked both understanding of prime factorization 
and the confidence that comes with a more conceptual understanding. Brown, Thomas and 
Tolias (2002) note that participants concentrated on “the role of division and a consistent 
tendency to choose to perform procedures rather than making inferences” (p. 51). For example, 
students referenced the specific action of dividing and “seeing if it would go evenly” to justify 
identifying the factors of a given integer (p.52). Participants in Campbell’s (2002) study were 
determined to perform long division in order to verify the remainder of a prime decomposed 
number, instead of identifying the remainder in terms of the remaining factors. 

Undergraduate mathematics majors showed similar difficulty in a number theory course, 
understanding the concept of congruence operationally rather than relationally (Smith, 2006). 
Specifically, they viewed a congruence statement in terms of a completed operation, instead of as 
a relationship between two equivalent quantities. Additionally, students would often solve linear 
congruences using complicated memorized procedures rather than the properties of the 
congruence relation. While our students did not work directly with congruence, we found that 
they encountered similar difficulties and very much relied on procedural manipulation over 
conceptual.  

Students at all levels also demonstrate issues with whole number and rational division, 
specifically in that students attempt to apply ideas from whole number division to rational 
number division, and are thus unable to correctly identify remainders. Campbell’s (2002) study 
exposed this issue by allowing participants the use of a calculator during tasks. Not a single 
participant was able to correctly identify the whole number remainder from the rational quotient 
displayed on a calculator, though many attempted a fractional approach. For example, students 
would calculate 68/3, which would display as 22.666..., and claim the remainder was 6. Given 
that whole number division provides an answer with two parts, the quotient and the remainder, 
participants experienced cognitive conflict with interpreting the responses from their calculators. 
These preservice teachers struggled to incorporate their intuitive knowledge of remainders with 
their decimal representation as part of a rational number. 

In a wider-reaching study, Kaasila, Pehkonen, and Hellinen (2010) found that roughly 55% 
of preservice teachers and 63% of upper secondary students were unable to correctly represent 
the remainder of an abstract division problem. The subjects either recognized that the result of 
the division problem should not be an integer but could not determine the remainder, or 
completely ignored the remainder and responded with an integer answer.  

The Chinese Remainder Theorem is built upon these aforementioned concepts of divisibility 
and remainders. Prior to our research, we anticipated that our participants would encounter 
difficulties similar to these discussed, but we were hopeful that they would be able to develop 
strategies to construct solutions to the problems. Our study yielded both of these results. 

Theoretical Perspective 

Merriam and Tisdell (2016) describe the goal of qualitative research as determining how 
people make sense of their lives and construct meaning. Thus, the role of the researcher is to 
both interpret and narrate these meanings and experiences. Given our stance that the individual 
learner is inseparable from “the realm of the social,” this research is framed by the theory of 
social constructivism (Ernest, 2010, p. 43). A major tenet of social constructivism is the notion 
that “human beings are formed through their interactions with each other as well as by their 
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individual processes” (Ernest, 2010, p. 43). With this perspective in mind, we sought to explore 
the strategies of our individual participants, as well as how the dynamic of working with a 
partner influenced or altered their approaches to our tasks. The structure of our project lent itself 
to collective problem-solving as well as solo work. However, the assumptions of social 
constructivism were still applicable in the instances of individual problem solving, as individual 
thought originates through internalized conversation. Implementing this framework allowed us to 
address the social influence that the presence of another participant had on the construction of 
knowledge. 

Methods 

As mentioned above, participants were undergraduate students recruited from three 
undergraduate mathematics courses: Mathematics and Liberal Arts, Fundamental Mathematics 
II, and Calculus I. We chose these three courses because we feel that each has a student 
population that differs from the others, which we thought might result in the use of different 
strategies and allow us to perform a comparative case study analysis of the data.  

Three 60-minute video-recorded interviews were conducted, each with a pair of students 
from one of the target classes. The semi-structured clinical interviews began with general 
information regarding the students’ majors, previous math classes, and mathematical 
experiences. The main focus of the interview was to have participants solve a set of problems 
that we chose in order to reveal cognitive resources for understanding elementary number theory 
concepts, including the Frobenius problem and the Chinese Remainder Theorem (see Findings 
for descriptions of tasks). Participants were encouraged to work together, discussing problem 
solutions and sharing their reasoning aloud, and follow up and clarifying questions were asked as 
needed. Each participant had access to a graphing calculator and was instructed to think aloud 
when performing different procedures or checking various solutions. Lastly, artifacts recording 
student work were collected at the end of the interviews. Students were not asked to delineate 
their strategy entirely on paper, though several participants opted to do so.  

We chose to analyze the data as three cases: the three partner groups defined from the three 
different mathematics courses. Due to the nature of the experience that students in each of these 
courses have, we believe that the strategies that students used when attempting our tasks were 
somewhat dependent upon the mathematical backgrounds from which they came, including 
which mathematics course they were taking. In addition, each pair exhibited different partner 
dynamics which likely contributed to the choices of strategies used.   

We used a grounded theory approach to analyze the data, including interview video 
transcripts, artifacts, and interview notes. The literature informed the open coding process that 
we used for the first pass individually (Miles & Huberman, 1994). We then used a constant-
comparative method, individually and in collaboration with each other, to identify the strategies 
that participants used in solving the tasks (Strauss & Corbin, 1990). Following the individual 
passes through the transcripts, we met to address any differences in coded strategies until we 
reached a consensus. Two distinct themes were of interest from the video-recorded data: student 
strategies and partner dynamics. Our final list of codes included 9 distinct student strategies, as 
well as a code for identifying student issues with remainders. Field notes and transcripts were 
simultaneously coded and discussed for the distinct working relationships of the partners in each 
interview, including isolated individual work and pairs working in unison. Finally, we compared 
the student strategies across our three cases to identify similarities and differences discussed 
below.  
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Findings 

The remainder of this paper will focus on two of the three cases from our study. Yolanda1, a 
freshman theater and history major, and Rose, a freshman secondary history education major, 
were both enrolled in Mathematics and Liberal Arts, although they came from separate sections 
of the course. This appeared to affect the manner in which the two approached working together. 
Yolanda was typically the leader in her classroom group, taking charge and delegating work. 
Rose’s classroom group, however, generally approached problems as a whole unit, talking 
through strategies and steps together. These differences caused some tension throughout the 
interview as the students negotiated the activity of working together. Their collaboration did 
increase as the interview progressed, with Yolanda assuming the role of the leader, but this was 
not without its faults. This was particularly evident during Task 3, when Rose mentioned that she 
did not want to solve the problem using guess and check, and Yolanda replied “Well, that’s what 
we’re doing. We don’t know how to do your equations, we’re gonna have to do something else.” 
Rose shrugged and proceeded to follow Yolanda’s lead.  

Our second case was Marie and Fiona, who are both elementary education majors and 
enrolled in the same Fundamental Mathematics II course, the second in a three-course sequence 
of mathematics content for preservice education majors. All three of the courses in this sequence 
are student-centered courses with a heavy emphasis on collaboration and problem solving within 
small groups. This training was evident while the two were working on the interview tasks, as 
they consistently shared ideas and fed off of each other’s results. The two took turns taking the 
lead on tasks. In addition, Marie and Fiona were the only group of the three to persevere and find 
a solution to Task 3, which may be the result of their prior experience in problem solving and 
group work. 

We present our analysis of three of the five tasks, giving first an overview of the task and 
then the students’ solution strategies.  

Task 1: McNuggets (Contextual Frobenius Problem) 
Task 1 required students to determine the number of boxes of size 6, 9, & 20 needed to buy 

53 McNuggets. Rose and Yolanda began the task separately. Yolanda used an additive strategy 
that transitioned into a multiplicative strategy, starting by subtracting six from 53 twice to get 41. 
Then she subtracted nine, and noticed that the result, 32, was not divisible by 6, but that if she 
subtracted twenty, that result would be divisible by 6. Her strategy was based on guessing, and 
she started by subtracting six because it was listed first in the problem.  

 
 
 
 

 
 

Figure 1: Rose’s work showing the groups of 10s created from 9s and 6 
Rose immediately decided to work with ensuring a 3 was in the ones place, because “getting 

to the 50, [she felt], would be easier after getting to the 3.” She decided to work with the nines: 
“well, I was thinking, like, a 9, a 9, and a 9, ‘cuz if you do a 6, then it breaks up into like 3 and 

                                                
1 All student names are pseudonyms. 
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those 3 go into those three 9’s, and then you have 3 left over for the 53.” By breaking a box of 6 
into a 3 and three ones, Rose noted she was making the nines into groups of ten and getting the 
three leftover (See Figure 1). At this point, she knew she had thirty-three McNuggets and needed 
only to add a box of twenty to finish. We argue that Rose was more strategic in her process, and 
her use of the ‘groups of nine’ shows a progression toward a multiplicative strategy rather than 
an additive one.  

Fiona and Marie began Task 1 by dividing 53 by each of the possible box sizes and 
determining if either that box size or a combination of that box and a single box of another size 
would work. They then used a strategic guess and check method, starting with the largest 
number: “subtracting 20. And then I got 33. Then I did 33 divided by 9 and got 3 even boxes of 9 
and then you’d have 27, so then there was 6 left, ‘cuz 33 minus 27 is 6.” Their strategy had 
elements of both multiplicative reasoning (“33 divided by 9 and got 3 even boxes”) and additive 
reasoning.  

Tasks 3 and 5: Bunnies and Construction with Remainders (Chinese Remainder Theorem) 
The Bunnies task proved to be the most challenging for all of the pairs. The intent of the 

problem was to introduce the concept of division with remainders through the context of 
grouping bunnies for various activities on a ranch that would allow students to construct a 
number satisfying specific constraints. Participants were asked to find a number of bunnies that 
satisfied divisibility by 5 with remainder 4, by 8 with remainder 6, and by 9 with remainder 8.  
 

Figure 2: Rose’s attempt at solving a system of equations (left) and Marie & Fiona’s first 
attempt at multiples of 9 (right). 

Yolanda and Rose utilized mainly guess and check. At first, Rose wrote a system of 
equations, but when the two were unable to solve the equations (Figure 2), Yolanda took the lead 
suggesting that they try 249, since it was “less than 250.” The two then checked whether 249 
yielded the correct remainders when divided by 5, 8, and 9. When 249 did not work, they 
examined 248 in the same manner. Here Yolanda recognized that in order for the number to have 
a remainder of 4 when divided by 5, it would have to end in a 4 or a 9, limiting the possible 
numbers that they would need to check. This was a good example of a guessing strategy that 
became more strategic and incorporated an understanding of divisibility rules. Unfortunately, the 
problem proved too challenging and the pair decided to move on.  

Marie and Fiona were the only pair to persist to a solution for Task 3. They immediately 
recognized that the number cannot be evenly divisible by 5, 8, or 9, and they used divisibility 
rules to note that it would not end in 0 or 5. They started with 249, which helped them recognize 
that the number would “have to be 4 away from a multiple of 5.” This particular understanding 
of the remainder proved problematic, because the students treated numbers that ended in a 1, 
which would be four less than a multiple of five, as a number that would satisfy the condition of 
having a remainder of 4 when divided by 5. Later, the students used a similar reasoning to justify 
the inclusion of numbers ending in 6 (again, four less than a multiple of 5). Their primary 
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strategy on the task was to create a list of multiples of 9 and systematically check those multiples 
based on their rules for division by 5. They were left with a much smaller list on which to verify 
the remainder requirement when dividing by 8 (Figure 2). 

It is interesting to note that both students were attentive to remainders when considering 
division by 5 and by 8, but neither recognized an initial mistake of not attending to remainders 
when divided by 9. Once they recognized this error, the students created a new list of the 
multiples of 9, adjusting for the remainder of 8. They then listed multiples of 8 adjusted for the 
remainder of 6, and multiples of 5 adjusted for the remainder of 4. 

Task 5 was a decontextualized Chinese Remainder Theorem task similar to Task 3. All pairs 
identified the similarity of this task with “the bunny problem.” Pairs were asked to find a number 
that satisfied divisibility by 3 with remainder 2, by 4 with remainder 1, and by 5 with remainder 
3. Marie and Fiona used the same strategy of listing multiples of the divisors and adding the 
remainder to each multiple in order to identify a number common to all three lists.  

Similarly, Yolanda and Rose chose to explore the final digits of each of the divisors and 
adjusted the digits for the remainder each time. Yolanda first noted that the desired number could 
not end in a 0 or a 5 as that would make it divisible by 5. Rather, she claimed that the number 
should end in a 3 or an 8 by adding the remainder of 3 to each final digit. The pair listed the ones 
digits of multiples of 3 and then added 2 to each digit to account for the remainder (Figure 3).  
 
 
 
 
 
 
 
 

Figure 3: Yolanda and Rose’s solution for Task 5 identifying the ones digit.  
They then repeated this process for the ones digit of multiples of 4 until they saw that 3 

appeared in all three lists. Yolanda concluded that she and Rose only needed to check the 
“decades that end in 3” until they found a number that satisfied all of the requirements. Once 
again we found a preference from our participants to begin with the divisibility rule for 5 and 
build a strategy from this starting point, because this rule depends only on the ones digit.  

 
Conclusion 

We found nine different strategies, six which were exhibited by these two groups while they 
completed the number theory tasks: guess and check, divisibility rules, use of equations, 
consideration of final digit, additive reasoning, and multiplicative reasoning. We note that 
participants often incorporated multiple strategies on each problem, making it difficult to attach a 
single label to certain tasks or groups. For example, we saw that guess and check was often a 
starting point, but the strategy evolved into a more sophisticated use of additive or multiplicative 
reasoning. 

We were also interested in comparing the strategies used across our cases in order to 
investigate the possible effects of participants’ background and partner dynamics on choice of 
strategy. While our data set is small, we did see some differences. Marie and Fiona were perhaps 
the most flexible in strategy use. When they ran into roadblocks, they pushed through the 
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frustration and tried something new. They were unafraid to be incorrect, despite the fact that 
their teacher was in the room with them. We believe that this was largely due to the problem-
solving mathematics environment that they were used to. They were accustomed to collaborating 
equally with others and encountering difficult problems.  

Although Yolanda and Rose were somewhat accustomed to working in groups, we saw that 
they had different conceptions of what group work looks like, which caused difficulties for them. 
Working together did serve them well, however, as they were able to push each other past areas 
where they struggled on the tasks and they exhibited different strategies as a result. We believe 
that the evident success of working together on Task 5 would have likely led to success on Task 
3 had the participants chosen to revisit it.  

The results of this study gave us some insight into what cognitive resources students rely 
upon in order to understand the Chinese Remainder Theorem and Frobenius Problem, which can 
be applied to their understanding of modular arithmetic. This is important to those who teach 
number theory courses, as these basic strategies can provide a foundation upon which to build 
more formal topics. We also found that these topics are accessible to a number of different 
populations, independent of mathematical background. This provides an avenue through which 
to investigate preservice teachers’ understanding of division and remainders in general, which 
can inform classroom instruction on divisibility.  

Limitations and Areas for Future Consideration 
We chose to present contextualized problems before decontextualized problems in order to 

provide students with problems that appeared more applicable to their own lives. However, we 
noticed that participants frequently fixated on minute details of the wording of the problems, 
making comments about animal hoarding and the absurdity of wanting to purchase exactly 53 
McNuggets, derailing their solution process. It may have been beneficial to present 
decontextualized problems first for this reason.  

We note that the students in both partner groups were enrolled in classes taught by the 
authors. In order to minimize reactivity, we structured the interviews so that students were not 
interviewed directly by their instructor, although she did remain present in the room and 
responsible for operating the video camera. In both interviews there were moments when the 
participants would look toward their instructor for a sign of approval or disapproval regarding 
their work on the tasks. Although each researcher attempted to remain expressionless and limit 
comments regarding clarification to any of the strategies, we recognize that this still likely had an 
impact on the participants’ responses.  

Furthermore, we acknowledge the choice in soliciting individual students rather than pairs. 
Marie and Fiona had been working together in their math class, but Yolanda and Rose were 
paired together from different classes. Having never collaborated before, the partnership was 
somewhat inauthentic as the two had different conceptions of what working together would look 
like. For future extensions, it would be worth attempting to solicit pairs of students that would 
sign up together rather than individual students.  

We are disappointed that we did not have enough time to fully investigate the effect of 
classroom culture on our interviews, as was initially intended. We had also hoped to see some 
models of student strategies that resembled the Chinese Remainder Theorem in our interviews. 
Although this was not a result in this study, we believe that constructing a design experiment 
would be a worthwhile endeavor. One could also explore participants’ previous mathematical 
knowledge and how they transfer these experiences into a number theory class, adopting actor-
oriented transfer as a theoretical framework (Lobato, 2003).  
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Students’ Conceptions of Mappings in Abstract Algebra 
 

Rachel Rupnow 
Virginia Tech 

 
In an effort to understand ways students approach constructing homomorphisms and 
isomorphisms between groups, six undergraduate math and engineering students in a lecture-
based introductory abstract algebra course were interviewed. These students experienced varied 
success in creating isomorphisms and homomorphisms, which allowed both successful 
techniques for map creation and stumbling blocks to map creation to emerge from the data. 
Some successful techniques for determining if groups were isomorphic included checking the 
orders of the groups, looking for invertible maps between groups, and determining the identity 
element and orders of elements of each group. Successful strategies for approaching the creation 
of homomorphisms included checking if the groups were isomorphic, seeing if a proposed map 
would preserve closure, and using strategic trial and error. Stumbling blocks included the 
inappropriate use of definitions, an inability to interpret definitions, and misunderstanding the 
distinction between the names and roles of elements in different groups. 
 
Key words: Abstract Algebra, Homomorphism, Isomorphism, Qualitative 

 
Purpose and Background 

Experts have identified isomorphism and homomorphism as two of the most central topics to 
abstract algebra (Melhuish, 2015). Yet though some research has been done on how students 
approach isomorphism, including designing an inquiry-oriented curriculum that addresses 
isomorphism (Larsen, Johnson, & Bartlo, 2013), research explicitly on students’ understanding 
of homomorphism has been scarce. Thus, the purpose of this study is to examine students’ 
approaches to finding both isomorphisms and homomorphisms and what prevents students from 
finding appropriate mappings between groups. 

A homomorphism between groups is defined as follows: “Let (!,⋆) and (!,⊡) be groups. A 
map !:!! → ! such that !: (! ⋆ !) = !(!)⊡ !(!) for all !,! ∈ ! is called a homomorphism” 
(Dummit & Foote, 2004). Thus a homomorphism is a map that preserves the structure of the 
original group in the second group. It does not require the groups to have the same cardinality; 
group ! may be larger or smaller than group !. There is always at least one homomorphism 
between groups; namely, the trivial homomorphism, in which every element of ! is mapped to 
the identity in !. Further, an isomorphism between groups is defined as follows: “The map 
!:!! → ! is called an isomorphism and ! and ! are said to be isomorphic or of the same 
isomorphism type, written ! ≅ !, if!! is a homomorphism, and ! is a bijection” (Dummit & 
Foote, 2004). Thus isomorphisms are a specific type of homomorphism in which the cardinalities 
of both groups are the same. For example, !, the Klein four-group, is isomorphic to ℤ!×!ℤ!. 
However, ℤ!×!ℤ! is not isomorphic to ℤ! because the homomorphism property is not satisfied. 

Previous studies have examined isomorphism in different ways. Early studies mostly 
provided students with two Cayley tables or stated two groups and asked if they were isomorphic 
or how they could tell they were isomorphic. The Dubinsky, Dautermann, Leron, and Zazkis 
(1994) study indicated that when students considered isomorphisms between groups, they 
considered the cardinality of each group, but not whether the homomorphism property was 
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satisfied. Leron, Hazzan, and Zazkis (1995) also noted students’ tendency to check the 
cardinality of a group, but their students continued to test multiple other properties by finding the 
identity element (in Cayley tables), the orders of individual elements (the smallest positive 
integer m such that am is the identity for each element a), the number of elements of given orders 
in each group, whether a group is generated by a single element, and if it is commutative. 
Despite the many factors to check, students would still struggle if more than one way to 
construct an isomorphism existed, demonstrating a “craving for canonical procedures” (p. 168). 

Other studies have considered isomorphism in the context of proof. In related studies, Weber 
and Alcock (2004) and Weber (2002) asked undergraduate and doctoral students to prove a 
number of theorems related to isomorphism and to prove or disprove specific groups were 
isomorphic. While both doctoral and undergraduate students were able to prove the initial simple 
propositions, the doctoral students continued to be successful in proving the remaining five 
propositions, while collectively only two (of twenty) proofs of the remaining propositions given 
by undergraduates were successful. Much like in Dubinsky et al. (1994), these difficulties largely 
related to undergraduates’ tendency to form arbitrary mappings once they had ascertained that a 
bijection between groups could be formed. They would not apply other properties of the groups 
when trying to find or disprove the existence of an isomorphism. 

Recent studies on isomorphism have shifted the focus to how to develop local instructional 
theories that could be transformed into an inquiry-oriented curriculum that included topics such 
as isomorphism. In the process of examining how students used their existing ways of reasoning 
to engage with mathematically rich tasks, other student views of isomorphism have come to 
light. In 2009, Larsen recorded a teaching experiment in which participants were expected to 
generate a definition of isomorphism. In that study, participant Jessica noted that the definition of 
isomorphism should include bijection because “…it has to go both ways” (p. 133). Her statement 
brought to light another approach to isomorphism: invertible mapping. Later, Larsen et al. (2013) 
noted that the homomorphism property was more challenging for students to unpack than the 
bijection property. Additionally, Larsen (2013) noted, “students’ use of the homomorphism 
property is usually largely or completely implicit” (p. 722). Thus a number of tasks in his 
curriculum engage students in forming an explicit homomorphism in order to help students 
formulate the definition of homomorphism and, later, isomorphism.  

In these isomorphism studies, some research has been conducted on homomorphism in the 
process of researching isomorphism. However, a few studies have examined homomorphism 
more closely in the context of proof. Nardi (2000) noted students’ struggles in proving the First 
Isomorphism Theorem for Groups stemmed from three major sources: an inability to recall 
definitions or a lack of understanding of definitions, poor conceptions of mapping (such as 
thinking a homomorphism was an element of a group), and not realizing specifically what each 
part of the proof was proving. Weber (2001) observed that despite undergraduates’ ability to 
recall relevant theorems, they struggled to move past syntactic, “definition unpacking” 
techniques when trying to prove theorems related to isomorphism and homomorphism, such as 
proving a group was abelian given the map was a surjective (onto) homomorphism. He also 
noted doctoral students had a tendency to use conceptual knowledge to formulate proofs more 
strategically and experienced more success in proving.  

Methods 

The participants for this study were six sophomore or junior university students in a lecture-
based introductory abstract algebra course. Four were mathematics majors and two were 
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engineering majors considering double majoring in math or transferring into the math program. 
Students’ college math backgrounds other than introductory calculus and a proof course varied 
but included courses in combinatorics, discrete math, vector geometry, linear algebra, 
multivariate calculus, differential equations, operational methods, and real analysis.  

Students were recruited from two instructors’ courses with one student coming from 
Instructor A’s section (denoted participant A1) and five from Instructor B’s section (denoted 
participants B1, B2, B3, B4, and B5). Instructor A had taught both group and ring 
homomorphisms earlier in the semester and his students, including A1, had been tested on that 
material. Instructor B had just begun teaching about homomorphisms and isomorphisms when 
his students were interviewed. Four of his students were interviewed after learning about 
isomorphisms but before learning about homomorphisms in class (B1-B4), and one student was 
interviewed after learning about both isomorphisms and homomorphisms (B5). 

Participants were recruited in two ways. The author asked for an announcement to be sent to 
Instructor A’s students with interested students sending the author a message. In Instructor B’s 
section, the author visited the class and asked interested students to provide their email address in 
order to be contacted. Students were given their preference of $10 or an hour of tutoring to avoid 
biasing the sample towards strong or weak students.  

Each participant engaged in a semi-structured interview (Fylan, 2005) lasting approximately 
one hour. The interview questions were drawn from those in Figure 1, but time and students’ 
backgrounds prevented some students from seeing certain questions. However, all students 
answered questions 4, 10, 11, and 12. The interviews were all audio-recorded and five of the six 
were video-recorded. Participants’ written work was also collected. To analyze the data, 
participants’ interviews were transcribed and open coded for students’ problem solving strategies 
regarding isomorphism and homomorphism. This coding generated themes, which were verified 
by utilizing multiple iterations of coding (Anfara, Brown, & Mangione, 2002). 

 
Results 

Participants’ approaches to mappings fell into three major categories: successful methods of 
determining if a map was an isomorphism or if such a map could be generated between groups; 
successful methods of determining if a map was a homomorphism or if such a map could be 
generated between groups; and stumbling blocks to success. 

Isomorphisms 
 Students exhibited a variety of successful strategies when trying to determine if two groups 

were isomorphic or if a given map could be an isomorphism. Because a one-to-one and onto 
mapping must exist for a bijection to exist, groups must have the same cardinality to be 
isomorphic. Thus, one strategy students used was to check if the groups were the same size. Four 
of the participants (A1, B2, B3, and B5) utilized this strategy at some point with three of them 
checking this characteristic first when faced with any of problems 11-17. For example, in 
response to the isomorphism part of question 11 (ℤ! → 5ℤ), B2 answered, “I don’t think, um, I 
can form isomorphism between them because, um, I don’t think it is bijective, um, because I 
think this group [points to 5ℤ] is larger than this one [points to ℤ!].” 

Another successful strategy was to look for an invertible map between given groups or to 
note that a previously stated map was invertible. A1, B1, and B2 all utilized this strategy, with 
B1 using this as her main approach. For example, consider the following exchange when asked 
the isomorphism part of question 16.  
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B1: I believe so. Like, to get from ℤ to 2ℤ, you just multiply by 2. To get from 2ℤ to ℤ, you 
just divide by 2.  
I: You said ℤ to 2ℤ, multiply by 2. Is that an isomorphism? Homomorphism?  
B1: Well that in itself is, that’s only a one way mapping. Its inverse also exists so paired 
together, isomorphism, I’d say. 
When pressed on details of the inverse map, namely explaining why it was acceptable even 

though division was not the operation defined for ℤ and !! was not an element of ℤ, she said it did 
not matter because “1 isn’t in 2ℤ. There is nothing that will get you to a non-integer. If it’s 
written as 2 times something, dividing by 2 just gets rid of that.” She realized that the maps she 
had defined were one-to-one and onto. In reference to the same problem, A1 noted 2ℤ to ℤ was 
“the same one. Since they were isomorphic before, it works the other way.” He realized that 
when an isomorphism exists, the mapping between the groups can be inverted so each group is 
the domain of an isomorphic mapping to the other. 

  
Figure 1. Interview protocol for semi-structured interviews. 

B2 and B4 considered another potential strategy for determining if groups were isomorphic: 
creating a Cayley table for each group. Additionally, B2 recognized this was only a feasible 
option for small groups. In question 5, when asked how to determine if a group was an 
isomorphism, he said he would like to make a Cayley table if possible, but if the group was too 
big, it would be challenging: “a Cayley table will be 16x16 and I cannot make it, but, you know, 
4x4, that would be fine, so kind of [a] small example.”  In the reverse situation, when presented 

1. What is a homomorphism? 
2. How do you determine if [a map or whatever used above] is a homomorphism? 
3. What is an example of a homomorphism? 
4. What is an isomorphism? 
5. How do you determine if [a map or whatever used above] is an isomorphism? 
6. What is an example of an isomorphism? 
7. Is the homomorphism example you gave also an isomorphism? 
8. Is the isomorphism example you gave also a homomorphism? 
9. Interpret the following definitions of homomorphism and isomorphism. 

Definition: Let (!,⋆) and (!,⊡) be groups. A map !:!! ! → ! such that !: (! ⋆ !) = !(!)⊡ !(!) 
for all !, ! ∈ ! is called a homomorphism.  
Definition: The map !:!!! → ! is called an isomorphism and ! and ! are said to be isomorphic or of 
the same isomorphism type, written ! ≅ !, if  

             !! is a homomorphism, and ! is a bijection. 
For each of the following pairs of groups in 10-17, is it possible to form an isomorphism between them? Why or 
why not? Is it possible to form a homomorphism between them? Why or why not? 
 

10.  
 
 
 
 
 
 
 
 

 
11. ℤ! → 5ℤ 
12. ℤ! → ℤ/5ℤ 
13. ℤ! → ℤ! 
14. ℤ! → ℤ! 
15. ℤ! → ℤ! 
16. ℤ → 2ℤ 
17. 2ℤ → ℤ 

 

∗ a b c d 

a a b c d 

b b a d c 

c c d a b 

d d c b a 

 

+ a b c d 

a b a d c 

b a b c d 

c d c a b 

d c d b a 
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with the Cayley tables in question 10, A1 and B1 also compared the orders of elements or 
mapped the identities of each group to each other without being prompted to do so.  

Homomorphisms 
The most straightforward argument given for determining if a mapping was a 

homomorphism stemmed from determining it was an isomorphism. Because all isomorphisms 
are homomorphisms, if a student determined an isomorphism could be formed between groups, a 
homomorphism could automatically be formed too. A1, B1, and B5 clearly recognized this 
property, making statements similar to what A1 said: “It’s part of the definition to be isomorphic: 
you have to have homomorphism in there.” The other three participants may have also 
recognized this concept based on their explanations of the definitions of isomorphism and 
homomorphism, but they never directly used this concept to answer other questions. 

Closure (associated with cardinality arguments) was a property students used to check if a 
map they proposed could be a homomorphism. This idea was especially used to rule out maps 
they had created in response to questions 11 and 13.  Five of the students successfully used this 
strategy, with B4 making a typical response as shown in Figure 2. She used her work with 
Cayley tables that would not close (on the mid-right and bottom right of Figure 2) to conclude 
she could not map all of the elements in ℤ! (pictured on the mid-left) to distinct elements in 5ℤ 
and have a closed group result. From this, she concluded that she could not create a 
homomorphism or isomorphism. Note that although her conclusion that she could not form an 
isomorphism was valid, her conclusion that there was no possible homomorphism was flawed 
because the trivial homomorphism, !:!ℤ! → 5ℤ such that ! ! = 0!∀!! ∈ ℤ!, would be possible. 
In fact, only A1 recognized the trivial homomorphism would be a homomorphism without being 
prompted to consider it. He and other participants who successfully generated homomorphisms 
appeared to notice patterns in the orders of the groups, which allowed maps to be generated 
quickly. For example, when looking for a map from ℤ! to ℤ!, B1 noticed the 0’s should 

Figure 2. Work sample from B4 examining possible maps between ℤ! and 5ℤ. 
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correspond and that {0,2,4} acted just like ℤ!. Similarly, B2, who had successfully answered 
question 15 before being asked question 13, noted a non-trivial homomorphism could not be 
created between ℤ! and ℤ! because “3 divides 6 right? So, like, it should have something 
important about mapping….” 

Although most students attempted to use one of the strategies above first, most students 
eventually resorted to trial and error to look for homomorphisms. Some students used pure trial 
and error techniques, such as B5, who attempted to map elements of ℤ! to ℤ! in seemingly 
random order and then check if the homomorphism definition was satisfied (i.e. mapping 
0,3,4 → 0, 1,2 → 1, 5 → 2). Both he and B3, who used this seemingly random approach, 

stated that they thought these problems were “trick questions” because there was no obvious 
technique to apply. Participants who had more success in finding suitable maps and in ruling out 
incorrect maps tended to use their knowledge of the orders of the groups to narrow possible 
choices for mappings, such as in B1’s comparison of {0,2,4} to ℤ!.  

Stumbling Blocks 
A number of participants struggled to recall and utilize definitions effectively. Although most 

students defined an isomorphism as a bijective mapping or one-to-one and onto mapping that had 
the property ! ! ∗ ! = ! ! !(!) (or similar statements), some students struggled to unpack 
what “one-to-one” or “onto” meant. For example when B3 was asked what one-to-one meant, 
she first attempted to give the formal definition but could not recall it. When asked just to state 
what she thought about one-to-one and onto, she replied that in a one-to-one mapping “one 
[element] maps to one [element]” as she drew a set diagram illustrating a mapping. However, she 
still could not explain what onto meant, even in the context of her diagram. When asked to 
interpret the definition of homomorphism given in question 9, B2 claimed, “It should be 
abelian….Because you can switch these two, x and y, and then it just, isn’t it automatically 
saying if you say yx, it’ll just be y and x?” Additionally, students B2 and B5 attempted to map 
elements to multiple locations, thus violating the function relationship implicit in the definitions.  

Although all participants attempted to use the formal definitions of homomorphism and 
isomorphism at times, some struggled to move past that point to interpret what they meant. 
Consider the following exchange after B4 was asked to give the definition of isomorphism. 

B4: I don’t even know if this is right. [Writes ! ∘ ! = ! ∘ !.] I don’t know what the circles 
are, but it’s when it’s preserved under the same something—I know it but I can’t tell you. 

I: Ok, well I feel like you’re trying to give me the formal definition….Do you have just an 
intuitive sense of what it is? 

B4: It’s when two things are multiplied or something under !, say the mapping is !, if you 
do map of ! ⋅ ! is equal to map of ! ! ⋅ !(!) under, yeah, and it’s onto and one-to-one, 
I think. 

I: Ok. So you’ve given me a nice definition. Do you have any sense of, like in practical 
terms, what that might look like? 

B4: No. 
I: Ok, so if I asked you for an example you would say… 
B4: Would probably give it to you in math terms. I don’t know a real example. Yeah. 
Some students also struggled to distinguish between the roles and the names of elements.  

This issue especially arose with the 4x4 Cayley tables in question 10, when students frequently 
assumed they had to map element a to element a because it was the same letter rather than 
determining the identity of each group or utilizing other techniques. This tendency to map 
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similarly named elements to each other appeared in later problems as well. For example, in 
question 13, every participant first tried to map!0 → 0,… , 4 → 4, and all but A1 and B5 
concluded that there could not be any homomorphism between the groups because the map 
matching similarly named elements did not work. Even when presented with the trivial 
homomorphism as a possible solution to question 13, B3 struggled to accept the mapping 
because she did not know what to do with the other elements in ℤ! (i.e., 3+4=2 is mapped to 0, 
but 3+4 = 1 in ℤ! “isn’t going anywhere”). 

Even when students identified the roles of elements in different groups, they did not always 
know how to create a mapping from this information. For instance, B2, who in response to 
question 5 had stated that creating Cayley tables could be useful in determining if an 
isomorphism existed between groups, struggled when presented with the tables of question 10. 
He successfully located the identity element of each group, but he was unsure what to do with 
this information until being prompted to consider mapping the identity elements to each other. 
 

Conclusion 

In this study, like Larsen et al. (2013), students were more comfortable working with the 
bijective property than the homomorphism property. This seems plausible given that because the 
cardinality of a group can be determined rapidly, determining if a bijection exists between two 
groups is most likely not as difficult as determining if the homomorphism property holds for all 
pairs of elements of a group. Although the homomorphism property allows specific maps to be 
tested quickly, students had to rely on trial and error (albeit strategic trial and error) to create 
reasonable maps to be tested. Additionally, students with limited concept images (Tall & Vinner, 
1981) of one-to-one, onto, function, and homomorphism were at a disadvantage when trying to 
create homomorphisms and isomorphisms. Students A1 and B1, who both attempted and solved 
the most problems, both utilized the concept of a mapping being invertible if it is an 
isomorphism and demonstrated the ability to use strategic trial and error to find homomorphisms 
quickly, indicating a robust concept image of maps, much as the successful doctoral students 
utilized their knowledge of theorems strategically to write proofs (Weber, 2001).  

Like other studies, students considered the cardinalities of the groups to determine if they 
could be isomorphic (Dubinsky, et al., 1994; Leron, et al., 1995; Weber & Alcock, 2004; Weber, 
2002). Despite literature indicating that comparing orders of elements of groups when trying to 
determine if a map is an isomorphism was a common technique (Leron, et al., 1995), only two 
participants utilized the technique in this study; however, this may be due to the limited number 
of questions in which both groups were finite and had the same cardinality.  

Future studies should use a larger sample of students who have all been exposed to 
homomorphism and isomorphism before being interviewed. Additionally, more questions with 
isomorphic groups should be explored to see if students utilize techniques like considering the 
orders of elements and creating invertible maps when faced with more groups of the same 
cardinality. Because of the dearth of studies on homomorphism, it would be illuminating to 
conduct teaching experiments examining how to enhance students’ concept images of these 
mappings. This might help students consider mapping elements that look different to one another 
despite elements of similar appearance being present in the other group (e.g., map 1 → 2 instead 
of 1 → 1 when generating a homomorphism from ℤ! → ℤ!). Finally, comparing how other 
content areas, such as linear algebra and graph theory, create and use homomorphisms and 
isomorphisms could provide insights into the role of mappings throughout mathematics. 
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A Success Factor Model for Calculus: The Relative Impact of and Connections between 
Factors Affecting Student Success in College Calculus 
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What factors (in terms of the student) contribute to success in college calculus, and what are the 

relationships between and relative importance of these factors? This study addresses these 

questions by building on the Academic Performance Determinants Model (Credé and Kuncel, 

2008).  A new model called the Success Factor Model for Calculus was developed using semi-

structured and task-based interviews with fourteen first-semester college calculus students.  The 

data suggests that creative mathematical reasoning and knowing-why are not required for success 

on college calculus tests.  Alternatively, motivation is a determining factor in success in that 

students can perform well on exams by being motivated to know how to solve specific types of 

problems.  Motivation is decreased by some course-specific factors, such as lack of structure and 

accountability, and its effect on success is decreased  sometimes by a lack of study skills and habits. 

Key words: Calculus, Creative Mathematical Reasoning, Success Factor Model, College Success 

Approximately 300,000 students enroll in college calculus in the United States each year 
(Bressoud, 2015).  With calculus being a gateway course to science and engineering disciplines, it 
is concerning that an estimated 25-30% of these students are not successful in the course and that 
both student confidence and enjoyment of mathematics decreases significantly between the 
beginning and end of the college calculus course (Bressoud, Carlson, Mesa, & Rasmussen, 2013).  
To address the challenges of teaching calculus and determine directions for future research, a 
comprehensive picture of the factors that lead to or prevent student success in the course is needed.  
As part of a larger study, this research used a comparative analysis of data from fourteen student 
interviews to address the following research questions:  

1. What factors contribute to or hinder student success in college calculus?   
2. What are the relationships between and relative importance of those factors?  

 
Framework and Review of Literature 

The Academic Performance Determinants Model 
Student difficulty in calculus may arise from design aspects of the course, such as the types 

of questions asked on tests and ultimately what type of reasoning is required to be demonstrated 
on exams.  It also may also be impacted by student-specific characteristics such as background 
knowledge, level of effort or motivation, or knowledge of how to study appropriately.  Credé and 
Kuncel (2008) suggest that some of these factors mediate the effects of others on student 
performance.  Their model of Academic Performance Determinants (see Figure 1) shows 
relationships between these determinants and illustrates how some affect performance more 
directly than others.  Their model is not specific to mathematics or any other discipline.  It was 
used in this study as a starting point for developing a similar model that is specific to the learning 
of calculus. 

Credé and Kuncel distinguish between study motivation and study skills and habits.  Study 
motivation refers to a student’s willingness to study and the “sustained and deliberate effort” 
they exert in studying (p. 428).  In Anthony’s (2000) survey of college instructors and students, 
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both groups indicated that a student’s level of motivation was the most important factor that 
contributes to student success.  However, there is a discrepancy in the amount of practice that is 
expected from instructors and the amount that students believe is necessary (Cerrito & Levi, 
1999, Bressoud, 2015).  
 

 
 Figure 1. Academic Performance Determinants Model from Credé and Kuncel, 2008. 

 
 

The Academic Performance Determinants Model suggests that study skills, habits and 
attitudes impact performance through the acquisition of certain kinds of knowledge.  Note that 
since this model was not developed specifically for mathematical problems, certain types of 
knowledge or reasoning may not be accounted for in this model. For example, procedural 
knowledge means something different in mathematics. To aid in the need to consider 
mathematical knowledge and reasoning, we utilized two additional sets of definitions described 
next. 
 
Types of Knowing and Reasoning 

Building on the work of Ryle (1949) and Skemp (1979), Mason and Spence (1999) 
distinguish between four types of knowing – knowing-that something is true, knowing-how to do 
something, knowing-why you do something or why something is true, and knowing-to do 
something in a particular situation. They explain that while there are certainly connections 
between the types of knowing, and often one can facilitate another, they are distinct, in that one 
does not guarantee or precede another.  Mason and Spence claim that classroom education 
focuses on teaching knowing-that, how, and why which amounts to knowing about a subject, but 
that this does not equate to knowing-to.  Knowing-to is often a significant barrier in solving non-
routine problems. 

Lithner and his colleagues (Lithner, 2006; Palm, Boesen, & Lithner, 2006) have developed a 
conceptual framing that addresses the issue of solving non-routine type problems.  They 
distinguish between creative and imitative mathematical reasoning. Creative mathematical 
reasoning (CMR) requires learners to produce a solution method they have never seen or have 
forgotten. Imitative reasoning, in contrast, is devoid of “attempts at originality” (Palm, Boesen, 
& Lithner, 2006, p. 6).  Imitative reasoning can be further categorized as either memorized or 
algorithmic reasoning. Memorized reasoning (MR) requires simply recalling information to 
produce a complete solution, such as a facts, definitions, or even proofs.  That is, it requires 
knowing-that.  Algorithmic reasoning (AR) requires knowing-to use a particular procedure and 
knowing-how to use that procedure.  Knowing-to in problems that can be solved using 
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algorithmic reasoning is simplified by triggers or surface features from previously studied similar 
problems.  In a problem that requires creative mathematical reasoning, knowing-to is 
significantly more challenging because of the absence of these surface similarities.   
 

Methods 
 

Participants and Data Collection 
This report outlines one piece of a larger study that examined the impact of AP Calculus on 

students who repeat Calculus 1 in college.  Ninety-minute interviews were conducted in the fall 
semester of 2012 between mid-October and early December.  Fourteen interview participants 
were chosen from two small private and four large public universities in two states in the 
southeast. These six universities were on the semester system and students were recruited 
anywhere from 8-14 weeks into the 16-week semester. Participants were first-year students 
enrolled in a Calculus I course who had taken AP Calculus and taken the AP Calculus exam.  
Participants were required to have made a C- or lower on a recent exam.  

A semi-structured, conversational interview process (Drever, 1995, Smith, 1995) was used 
for the first 45 minutes. The interview protocol consisted of 17 open-ended questions and was 
influenced by the Academic Performance Determinants Model. The second portion of the 
interview was task-based (Kelly & Lesh, 2000) and was diagnostic.  Its purpose was to 
determine whether imitative reasoning (see above for description) could have been used to solve 
each missed test problem.  To make this determination, test problems were compared to 
problems from other course resources, such as examples from class notes or the textbook or 
assigned homework problems. Participants were asked to identify whether they were able to 
solve the similar problems prior to the test and also to attempt the test problem in the interview 
after reviewing how to solve similar problems from the resources.  
 
Analysis 

Analysis of Part I of the interviews led to the emergence of 17 themes relating to students’ 
experiences in calculus. We used open coding to identify experiences among participants and 
axial coding to group codes into themes (Strauss & Corbin, 1997).  A theme was eliminated if it 
was not mentioned by at least three participants.   

Analysis of the second portion of the interviews involved writing summaries for each 
student’s attempts at solving missed test problems and determining what type of reasoning could 
have been used to solve these problems. After reading each interview transcript, we wrote a 1-2 
paragraph description of the student’s problem solving process for the attempted test problems 
and similar problems. These descriptions included the following three items: 1) whether the 
participant was able to solve the similar problem without assistance, 2) whether the participant 
was then able to solve the test problem after learning to solve the similar problem, and 3) if not, 
what barrier(s) the student encountered in solving the test problems (such as insufficient pre-
requisite mathematical knowledge). Item 1 spoke to the student’s preparation for the test, while 
item 2 revealed whether imitative reasoning could have been used to solve the problem. Item 3 
for each problem was compared across participants and commonalities were noted. 

The summaries from the Interview Analysis Part II were combined with some of the results 
from Interview Analysis Part I to develop a Success Factor Model for College Calculus. The 
model captured all observed factors affecting success on Calculus exams for the fourteen 
participants and the relationships between these factors. Themes from Part I were included only 
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if we saw a consistent relationship between the factor and student success. For example, while 
participants consistently claimed that increased course structure led to greater motivation and 
subsequently greater performance, smaller class size (while desirable) did not present such a 
consistent impact.   

We initially used certain success factors and terminology while leaving out others that we 
had no data to support or evaluate. We developed the initial draft of the Success Factor Model 
after examining individually and comparing the summaries of four participants.  As we examined 
additional transcripts and summaries, we began to change the proximity of some factors to 
success, add additional factors and remove others, as well as add and remove connections 
between factors. This was an iterative process that involved going back and forth between the 
overall model and the individual participants’ experiences.  

Once the model was complete with its factors and pathways, we set out to determine the 
relative importance or impact of each factor using a meta matrix and subsequently used the meta 
matrix to create case-ordered matrices (Miles & Huberman, 1994). That is, we sorted the 
participants by certain variables and then looked across the other categories for similarities 
amongst cases with the same characteristic, to determine which variables might be associated 
with others. We grouped students by their relative success in college calculus. Doing this 
allowed us to identify which factors were consistent for successful students and which factors 
varied, or were not essential. This process illuminated the different pathways students could take 
to success in Calculus (on exams) and the common factors that hindered other students’ progress.  
 

Results 
The Success Factor Model below depicts the factors of success and the relationships between 

the factors.  Results also include the relative impact of the factors on student success in calculus.   
 

 
      Figure 2. Success Factor Model for College Calculus. 

 
Arrows connecting factors A and B indicate an impact of factor A on factor B. Bold arrows 

indicate a direct relationship; an increase in the factor A positively impacts factor B. A dashed 
arrow indicates an inverse relationship; that is, an increase in factor A results in poorer results for 
factor B. Distance of a factor from success on the diagram does not determine relative impact of 
that factor; larger distance merely shows that there is a mediating factor that determines how 
much of an impact that factor will have on success. Due to space restrictions, only selected 
factors, relationships, and their relative importance will be discussed. 
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The Relative Impact of the Direct Factors of Success 

We first discuss the direct factors of success, displayed on the right-hand side of the Success 
Factor Model, and their relative importance for students’ success on their exams.  While any one 
of these three factors may be required to solve a particular problem, some were more frequently 
required and/or posed more frequent barriers for the participants than others.   

One of the direct factors of success is knowing-to using CMR.  Ten of the participants 
needed to apply some degree of CMR to successfully complete at least one of their discussed test 
problems, but no student had enough CMR required on his or her test so as to prevent passing the 
test without it. This result is consistent with that of Bergqvist (2007) who found that 15 of 16 
Swedish calculus tests could be passed using only imitative reasoning.   

Additionally, very few of the problems required CMR for calculus material; rather, most 
elements of problems requiring CMR dealt with pre-requisite knowledge or skills. For example, 
when Blake (all student names are pseudonyms) was asked to find the absolute minimum and 
maximum of a function, he was able to take a derivative and knew to set it equal to zero, but was 
then unable to solve the equation. In a limited number of cases, the element requiring CMR came 
at the beginning of the problem and did prevent the student from being able to continue, thereby 
costing the students all or most of the points for the problem. These cases were limited, however.  

As with knowing-to using CMR, difficulties involving knowing-that were almost all limited 
to pre-requisite knowledge.  While some participants did lose points for not knowing-that on one 
or two of the discussed problems, this was not a primary issue for any of the participants. 

Twelve of the 14 participants were able to make more progress on at least one of their two 
discussed test problems during the interview than they had made during the test after first 
learning to solve a similar problem from their resources. Very little variation was found in the 
directions for the problems from the tests and class resources; therefore, recognizing the problem 
type did not prove to be problematic for the majority of participants. The implication is that 
students who missed test problems that could be solved by knowing-to and knowing-how with 
AR could have improved their grade on the test by having worked similar problems prior to 
taking their test. For these students, lack of success stemmed from either inadequate study 
motivation or study habits, both of which will be discussed.  

 
Knowing-why Is Not a Direct Factor of Success 

Knowing-why was not essential for solving any of the problems students had missed that 
were discussed during the interviews and was certainly not essential for passing the test.  
Knowing-why did prove to be helpful to some students, while other students opted to bypass 
understanding by using AR.  Two students, Frank and Michael, were unable to solve a test 
problem that asked for the location of a function’s horizontal tangent line.  When initially 
reviewing this problem in the interviews, Frank and Michael studied the same similar example 
from the textbook. Frank focused on the textbook’s discussion rather than the solution. After 
approximately thirty seconds, he quickly attended to the explanation that the derivative is equal 
to zero when the tangent line is horizontal. He did not proceed to study the provided solution and 
therefore did not need to use AR. Frank demonstrated an understanding of the connection 
between the concept of a horizontal tangent line having a slope of zero and the process of setting 
a derivative equal to zero. He no longer needed an association with a particular type of problem 
or set of instructions to be able to solve his test question; he now knew-to because he knew-why. 
In contrast, when Michael looked at the textbook, he focused on the solution rather than the 
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discussion. He explained that in the provided solution, “they would set it equal to zero and get 
their x values. They then plugged those back into the original equation to get the y’s.” When 
asked why they did that, he replied, “I’m not exactly sure why.” However, this did not prevent 
him from being able to then solve the corresponding test question. This finding supports the 
claim of Mason and Spence (1999); understanding is related to, but not dependent on or 
necessary for knowing-to. “You can ‘understand’ but not know-to act,…you can know-to act and 
yet not fully understand” (p. 140). This finding raises questions about the type of knowing 
instructors most value and test.  

One important distinction mentioned by several participants was that their college calculus 
course emphasized knowing-why but their AP Calculus course had not. Katelynn described her 
college course as significantly more challenging because of this knowing-how component. She 
stated, “I’d definitely say the big difference I’ve noticed then to now – [in high school] we 
learned more the how to do things as opposed to why you do them. Like I remember learning 
like sin x over x equals one, but I had to learn how to derive it this year. That was a lot harder.” 
Other participants made reference to the material in college going more “in depth.”  

 
The Impact of Study Motivation is Mediated by Study Skills and Habits 

The data suggests that the need for good study motivation and habits may in many cases be 
circumvented by other factors, but also that having strong study motivation and habits can be the 
deciding factor in whether some students succeed. Students at four of the six institutions could 
have been making A’s on tests by learning to solve specific problems from their resources prior 
to the exam and then using AR. Students at the other two institutions were limited somewhat by 
the presence of multiple problems requiring CMR. However, even these students could have 
improved their exam scores to at least a B- by making improvements only with AR.  

The impact of study motivation on knowledge acquisition for the participants was mediated 
by their study habits.  That is, the effect of a student’s willingness or effort to study was either 
amplified or tempered by the student’s ability to study appropriately. Maggie, for example, had 
very high study motivation, but poor study habits. When asked if she would be able to make at 
least a C in the course, she declared, “I’ll MAKE it happen!” But when she was asked to describe 
how she would do this, she referred only to doing more of the same activities she had already 
been doing that had not led to success. For example, she said “I will probably read my whole 
textbook, if I have to.” For Maggie, high motivation did not automatically translate into greater 
knowledge acquisition that produced results. 
 
Structure, Accountability, and Relationships Impact Motivation 

The participants’ study motivation was impacted by the amount of structure of their course 
and the amount of accountability provided by their instructors, as well as the relationships they 
had with their instructors.  The most commonly discussed element of course structure was the 
grading of homework, or lack thereof. Most participants had no regularly graded assignments in 
high school, but did have this in college, and most claimed it being graded was the only factor 
that would motivate them to complete it. This was an exception to an important pattern - in most 
cases, participants described their high school course as much more structured and indicated this 
was a positive aspect of the high school course. College instructors were not thought to have 
many expectations of students. Albert explained, “her job is to teach us, not make sure we care 
about class.” Maggie’s comments echoed this sentiment. She said, “I think it’s like, we’re 
supposed to do it, be responsible for ourselves. It’s college, so…” Students seemed to understand 
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and validate the responsibility put on them in the college environment, but they offered no 
evidence that it made them more successful. In contrast, Katelynn discussed her AP teacher 
“staying on top of [the students]” and claimed she would not have passed the course if he hadn’t. 
AP courses tended to provide more regular examination, frequent reminders from teachers, and 
accessibility of help from teachers.  

The relationship between teachers and the participants was one of the most widely discussed 
differences between high school and college calculus courses. Some participants indicated that 
their relationship was not just academic but also personal – one student had attended the wedding 
of his teacher and another described his teacher as “involved and relatable, explaining “I actually 
went out to dinner with him after I graduated, like me and four friends.” Several participants had 
taken previous courses with their AP Calculus teacher. One explained that “it was almost like we 
had become a family because everyone had had [this instructor] for so long.” The impact of these 
relationships was significant because the students did not want to “let down” their teachers. 
Multiple participants increased their amount of studying simply because of their relationship 
with their teacher. Jeffrey and Frank went so far as to say they would have been content with a B 
in their AP courses, but they did not want their teachers to think they weren’t trying, or that he or 
she was a bad teacher, so they put it the extra effort to get an A.  

There was a glaring void of these kinds of stories from the college courses. Just as the 
relationship motivated the students in high school, the lack of relationship in the college course 
was demotivating. Haley explained, “I don’t know him as well [as my high school teacher] so 
I’m not motivated to do as well because I know him. It’s terrible to get bad grades, but not 
because I know him and I’ll be embarrassed.” When students had a relationship with their 
teacher, they were motivated to work harder because of how their teacher would perceive them; 
when the relationship was absent, so was the extra motivation.  
 

Conclusions and Implications 
  

The Success Factor Model presented in this study highlights the need for larger scale studies 
that assess the relative impact of the success factors and their connections.  It also challenges us 
to ask which of the factors of success are currently being taught or impacted by instructors, and 
moreover, which could be.  For example, some have suggested that the best place to teach study 
skills and habits is in the classroom, rather than divorcing it from content (Taylor & Mander, 
2003, Wingate, 2006).  This will lead to a discussion of not only what is effective in increasing 
student success, but how certain recommendations for aspects of course design, such as 
increased structure or accountability, are perceived by college instructors and how attitudes and 
resource limitations may challenge such recommendations.  Similarly, how do instructors’ 
beliefs about what is important align with how they test students?  For example, our findings 
suggest that students can be successful in college calculus without knowing-why, but this may 
not be the instructors’ intent.  The ability or inability to work non-routine problems may have 
little to do with a strong conceptual understanding, and instructors may be testing for one when 
desiring the other (Selden & Selden, 2013, Tallman, Carlson, Bressoud, & Pearson, 2016).  
Finally, we need to know the potential impact of emphasizing and developing each particular 
factor on students’ success in subsequent courses.  For example, if calculus courses become more 
structured, will students find later, less structured courses more challenging, or could the 
development of CMR in Calculus I lead to greater success in Calculus II?   
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With this research, we seek to find theoretical constructs that correlate with participants’ neural 
activity that occurs as they are presented slides of mathematical proofs. We first asked three 
graduate student participants to complete two graduate level proofs (one each of abstract 
algebra and real analysis) using a LiveScribe pen. We then generated slides of their written work 
and researcher-generated proofs that we used during electroencephalography (EEG) trials. 
Having coded the slides along 22 theoretical categories, we used step-wise model selection to 
determine suitable models for variance in neural activity. Preliminary results indicate that the 
best code-based models at a given instant can account for between 25 and 50 percent of the 
variance in electrical activity near the EEG electrode for that model when participants observe 
their own proofs and between 33 and 75 percent during researchers’ proofs. 

Keywords: Proof, Electroencephalography, Insight, Mathematical Creativity 

Throughout the mathematics education literature, researchers and mathematicians reference 
moments of insight during problem solving (e.g., Burton, 1999; Hadamard, 1945), which are also 
described as AHA moments (e.g., Liljedahl, 2004). And, although this notion is a common 
colloquialism among mathematicians and mathematics educators, little empirical research has 
focused on evidence beyond self-reported accounts of individuals’ moments of insight as they 
develop formal proofs (Savic, 2015). To investigate and move beyond the self-reported moments 
of insights, we draw on neuroscience methodologies to provide hard data for exploring insight 
during proof. Through an experimental methodology using electroencephalography (EEG), 
coupled with an extended taxonomy created for local proof comprehension (Savic, 2011), we 
aim to identify and explore neural activity related to proof. Specifically, we seek to identify 
which theoretical constructs coded for a written proof might be used to model variance in 
participants’ neural activities as they read their own and others’ proofs. Ultimately, we are 
motivated by a broader investigation exploring the possibility of identifying neurological 
evidence of theoretical constructs related to proving, specifically whether we can identify neural 
correlates to moments of insight, an aspect of the creative process (Wallas, 1926). 
 

Background Literature/Theoretical Framework 

Wallas (1926) outlined four stages of creativity: preparation, incubation, illumination, and 
verification. Subsequent literature has drawn on these categories and used them to explore the 
creative process, beginning with mathematicians’ reflecting on their own creativity (e.g., 
Hadamard, 1945; Poincare, 1946; Borwein, Liljedahl, & Zhai, 2014) and moving towards 
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qualitative research relying on participants’ subjective recollection of moments of insight (e.g., 
Burton, 1999; Liljedahl, 2004; 2013). However, Liljedahl (2004) conceded that there might be 
more that can be done to investigate insight, admitting, “Upon reflection, I now see that the 
clinical interview is not at all conducive to the fostering of such phenomena [insight]...” (p. 49). 
With this research, we aim to provide an additional approach exploring moments of insight. 

Mathematicians and mathematics educators alike discuss moments during proof production 
in which a prover gains a clearer sense of why the conjecture they have set out to prove is true 
(e.g., Burton, 1999; Raman, 2003). Although researchers draw on varying perspectives and 
language to describe such moments and the psychological processes involved, these moments 
seem to occur during which the prover develops a sense of a “key idea” of the proof. We use 
Raman’s (2003) definition of key idea as something that “gives a sense of understanding and 
conviction. Key ideas show why a particular claim is true” (p. 323). Liljedahl (2004) stated that 
“At the moment of insight, in the flash of understanding when everything seems to make sense 
and the answer is laid bare before you, you know it, and you call out – AHA!, I GOT IT!” (p. 1).  

There have been many neuroscience studies dedicated to insight during problem solving 
(e.g., Bowden & Jung-Beeman, 2003). Kounios et al. (2006) found that “greater neural activity 
was observed for insight than for non-insight preparation in bilateral temporal cortex (left more 
than right, in both experiments)” (p. 887). Finally, insight has been correlated with phenomena 
such as P300 “positive deflection occurring 300 ms after stimulus presentation,” and N200 - 
“negative deflection 200 ms post stimulus onset” (Dietrich and Kanso, 2010, p. 824). However, 
the prompts used in these psychology experiments are often remote association tasks, in which 
three words are given (e.g., electric, high, and wheel) and the participant is supposed to come up 
with a fourth word (e.g., chair) that can form an association among those three words (i.e., by 
being able to modify each word). Such tasks, while perhaps generating a moment of insight, may 
not afford the incubation time that people might need while proving theorems (Savic, 2015). 

Researchers from several neuroscience domains – including memory, vision, and motor 
control – have demonstrated strong evidence supporting the notion that by either remembering or 
imagining an event or action individuals tend to generate neural activity that is similar to the 
activity generated during the actual event or action (e.g., Farah, 1988; Stavrinou et al., 2007). 
Our central hypothesis is that when subjects re-experience their proofs (i.e., see their proofs 
during the experiment), they might experience similar thinking to that which occurred during the 
moment of insight that produced a critical step for completing the proof. So, it stands to reason 
that the neural activity generated during this “re-living” experience will be similar to the brain 
activity generated during the production of the proof.  
 

Methods 

Our experimental methodology combines both theoretical and neuroscience components. We 
used a modified taxonomy for local proof comprehension (Savic, 2011) to generate codes for 
each slide of a slideshow that each participant watched during the EEG trial. In the first phase 
(days 1-2), three graduate mathematics majors (Marshall, Francis, and Buzz) were provided with 
a Livescribe pen to record his or her proving process, which we call “original” proofs. This pen 
is able to record the participant’s written work and in real-time, allowing each pen stroke to be 
timestamped (to the second) and synchronized with the participant’s verbal utterances during 
their proof. The pen also allows the participants’ work to be saved as digital images. They were 
provided with two theorem statements (Figure 1), one in abstract algebra and the other in real 
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analysis. We selected theorems that a senior-level abstract algebra and real analysis should 
reasonably be expected to prove. 

 
Task 1: Prove that no group is the union of two of its proper subgroups. 
Task 2: Prove that, if ! ∈ ℝ and !:ℝ → ℝ and !:ℝ → ℝ are functions continuous at !, then 

!":ℝ → ℝ is continuous at !. [Here !" ! = ! ! !(!). Note that !" ≠ ! ∘ !.] 
Figure 1: Theorem statements to be proven by participants 

 
In the second phase (days 3-4), each participant’s digitized proofs were chunked and 

converted into uniform-sized digital images (700x700 pixels). In addition to the two proofs 
created by the participants, we generated two pre-written proofs of related, but different, 
conjectures which we call “canned” proofs. We generated these proofs to be concise, 
mathematically correct (not misleading) proofs of proximal difficulty as the assigned proofs for 
the participants to allow us to compare brain activity for a proof generated by the participant with 
one that was not. 

In the third phase (day 5), participants came to the laboratory and were fitted with a 128-
channel net, where the EEG data was obtained. Participants were instructed to watch the 
slideshows of the “canned” proofs and try to follow along with the argument as they would in a 
lecture or reading a text. For the “original” proofs, we instructed them to try and remember their 
thought processes as they generated each proof, focusing on their reasons for writing the content 
of each slide. The canned abstract algebra proof was shown first in its entirety, followed by their 
own abstract algebra proof, and then the canned real analysis proof, and finally their own real 
analysis proof. Each slide was shown for three seconds with a subsequent one-second break to 
blink, and all four groups of slides were shown in one sitting. Following the presentation of the 
last proof, participants were interviewed, with the entire interview taking between 15 and 45 
minutes. This semi-structured interview inquired about academic history (e.g., mathematics 
courses completed) and demographic data. We also asked each participant to explain what s/he 
thought it meant to be the key idea of a proof. We then provided each participant with paper 
copies of their own proofs and the researcher-generated canned proofs, and asked him or her to 
identify the most important part(s) of the proof.  
 

Variables and analyses 
 

After data collection, at least two researchers from the team separately coded the collections 
of slides according to the modified proof comprehension taxonomy (Figure 2) and met to 
compare codes. Discrepancies between codes were resolved through discussion between the 
coders. We also generated an additional code of “student-reported potential for insight” (SRPFI) 
based on the slides corresponding to parts of the proof that the participant identified as important 
during the post-EEG interview. For the EEG data, for each time point (every 4 milliseconds 
between 0 ms and 1500 ms) in every slide across the four trials, we regressed the measured 
amplitude of the EEG electrode with the theoretically coded variables, choosing the final model 
through stepwise regression. In this process, we chose the electrode with greatest predicted total 
proportion of the variance (R2) explained using the fewest coded variables. Here, variance in a 
given electrode is identified as the difference across all slides between the voltage of measured 
electrical activity by that electrode for a fixed time elapsed after first seeing each slide. We 

20th Annual Conference on Research in Undergraduate Mathematics Education 88120th Annual Conference on Research in Undergraduate Mathematics Education 881



selected these models at each time point to generate a spatial and temporal description of the 
evolution of the modeled neural activity induced by the slides of the proofs. 

 
Assumption (A), Contradiction statement (CONT), Delimiter (D), Exterior reference (ER), 
Interior reference (IR), Relabelling (REL), Statement of intent (SI), Similarity in a proof (SIM), 
Algebra (ALG), Conclusion statement (C), Definition of (DEF), Formal logic (FL),  
Use of exterior reference (UE), Use of interior reference (UI). 

Figure 2: List of Codes from modified local proof comprehension taxonomy (Savic, 2011) 
 

Results 

Our preliminary analysis indicates that the theoretical codes are able to account for between 
20% and 75% of variance (!-axis in Figure 3) in modeled neural activity, though the codes 
accounted for around 35% to 50% of variance in neural activity for the majority of the time (!-
axis). As one might infer from Figure 3, the current data do not show a conclusive difference 
between the potential for the theoretical codes to explain (or predict) variance between the 
canned and original proofs.  
 

 
(a) Marshall 

 
(b) Francis 

 
(c) Buzz 

Figure 3: Graphs of the proportion of total variance predicted by the model of best fit along time  
 

We have also generated maps of the progression over time of the EEG electrodes with most 
variance explained (Figure 4). The figures below display the placement of the 128 nodes from 
the neural net. The highest nodes in quadrants 1 and 2 are located under the eyes. The origin 
corresponds with the top-most, center part of the participant’s head, quadrant I corresponds with 
the right frontal lobe; quadrant II corresponds with the left frontal lobe, quadrant III corresponds 
with the left occipital lobe, and quadrant IV corresponds with the right occipital lobe. Initial 
comparisons between the maps of the participants’ responses to the researcher-generated 
“canned” proofs and their responses to their own proofs indicate that the participants’ react to the 
two types of proofs differently. For instance, the modeled electrodes during Marshall’s reaction 
to the “canned” proof (Figure 4a) initially concentrated in and around the parietal lobe and shift 
to the temporal and frontal lobes. This implies that Marshall’s initial reaction to a slide from the 
“canned” proofs tended to rely initially on visual processing before shifting to critical processing 
areas in the brain.  
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(a) (b) 
Figure 4: Progression of neural activity with best model fit for Marshall’s canned proofs (a) and 
original proofs (b). 
 

In contrast, when Marshall was presented with “original” slides, the neural activity modeled 
in our regression takes place almost entirely in the temporal and frontal lobes (Figure 4b). Since 
his dominant electrodes were not in the visual processing area (occipital lobe), this supports the 
notion that Marshall is relying on his prior experiences as he observes the “original” slides. In 
other words, Marshall is likely engaged in some level of “re-living” his own proof. Finally, we 
see bilateral movement between left and right hemispheres on both 4a and 4b, which is “essential 
for complex mathematical reasoning” (Dehaene et al., 1999; cited in Desco et al., 2011, p. 282). 

We found that all three participants had the code SRPFI (student-reported potential for 
insight) included in many of the regression models, seen in Figure 5, where the !-axis is 
microvolts squared and the !-axis is time. This indicates a potential link between student-
reported insight and neural activity. However, due to the preliminary nature of the findings and 
sample size, we only hope to expand our research on that link. 

 

 
(a) Marshall 

 
(b) Francis 

 
(c) Buzz 

Figure 5: Graphs of the microvolts2 of variance influenced by SRPFI  
 

Future Research 

We hope to extend our current findings by (1) exploring interpretations of our current data 
and the theoretical implications this might have on the codes we use to model neural activity, (2) 
collecting data with more participants, and (3) exploring different neural data collection 
techniques (e.g., alternative brain-computer interfaces such as fNIRS – functional near-infared 
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spectroscopy). We expect that further analysis of the data collected to this point will help inform 
future work by raising questions of which theoretical constructs are able to better predict 
variance in neural activity, in turn narrowing our focus with respect to the existing theoretical 
codes and also informing our selection of potential codes to use in the future. Can we, with only 
coding, predict when a person has an insight in his or her proving process? Finally, since the 
codes considered local proof comprehension, we plan on using other coding schemes for holistic 
proof comprehension. 
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Emerging Insights from the Evolving Framework of Structural Abstraction in Knowing 
and Learning Advanced Mathematics 

 
Thorsten Scheiner Márcia M. F. Pinto 

University of Hamburg, Germany Federal University of Rio de Janeiro, Brazil 
   

Only recently ‘abstraction on objects’ has attracted attention in the literature as a form of 
abstraction that has the potential to take account of the complexity of students’ knowing and 
learning processes compatible with their strategy of giving meaning. This paper draws 
attention to several emerging insights from the evolving framework of structural abstraction 
in students’ knowing and learning of the limit concept of a sequence. Particular ideas are 
accentuated that we need to understand from a theoretical point of view since they reveal a 
new way of understanding knowing and learning advanced mathematical concepts and have 
significant implications for educational practice.  

Keywords: Limit Concept; Mathematical Cognition; Sense-Making; Structural Abstraction  

Introduction 

Theoretical and empirical research shows the existence of differences in knowing and 
learning concerning different kinds of knowledge (diSessa, 2002). A general framework on 
abstraction cannot encompass the whole complexity of knowing and learning processes in 
mathematics. Rather, in investigating the nature, form, and emergence of knowledge pieces, 
various micro-genetic learning theories may be developed, which will be quite specific to 
particular mathematical concepts, individuals, and their underlying sense-making strategies. 
As a consequence, the complexity of knowing and learning processes in mathematics cannot 
be described or explained by only one framework. Instead, we acknowledge that 
comprehensive understanding of cognition and learning in mathematics draws on a variety of 
theoretical frameworks on abstraction. 

The literature demonstrates significant theoretical and empirical advancement in 
understanding ‘abstraction-from-actions’ approaches, particularly the cognitive processes of 
forming a (structural) concept from an (operational) process (Dubinsky, 1991; Gray & Tall, 
1994; Sfard, 1991). Abstraction-from-actions approaches take account of a certain sense-
making strategy, namely what Pinto (1998) described as ‘extracting meaning’. However, only 
recently ‘abstraction on objects’ has attracted attention as a form of abstraction that provides 
a new way of seeing the complex knowing and learning processes compatible with students’ 
strategy of what Pinto (1998) described as ‘giving meaning’.   

The purpose of this paper is to provide deeper meaning to a recently evolving framework 
of a particular kind of ‘abstraction from objects’: structural abstraction. The structural 
abstraction framework is evolving in the sense that the framework functions both as a tool for 
research and as an object of research (Scheiner & Pinto, submitted). In more detail, we use 
the structural abstraction framework retrospectively as a lens through which we reinterpret a 
set of findings on students’ knowing and learning of the limit concept of a sequence. This 
reinterpretation is an active one in the sense that the framework serves as a tool to analyze a 
set of data, while the framework is also refined and extended since the reinterpretation 
produces deeper insights about the framework itself. Especially, these more profound insights 
are what we need to understand from a theoretical point of view since they have relevance for 
significant issues in knowing and learning advanced mathematical concepts.  
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We begin by providing an upshot of our synthesis of the literature on abstraction in 
knowing and learning mathematics. Our synthesis is to suggest an orientation toward the 
evolving framework of structural abstraction as an avenue to take account of an important 
area for consideration – that is, drawing attention to the complex knowing and learning 
processes compatible with students’ ‘giving meaning’ strategy. The structural abstraction 
framework constitutes the foundation of the second part of the paper providing emerging 
insights in knowing and learning the limit concept of a sequence. These insights offer 
theoretical advancement of the framework and deepen our understanding of knowing and 
learning advanced mathematics.  

 
Mapping the Terrain of Research on Abstraction in Mathematics Education 

Abstraction seems to have gained a bad reputation because of the criticism articulated by 
the situated cognition (or situated learning) paradigm, and, as a consequence, has almost 
disappeared. This criticism rests primarily on traditional approaches considering abstraction 
as decontextualization and often confusing abstraction with generalization. The recent 
contribution by Fuchs et al. (2003) shows that such classical approaches to abstraction still 
exist:  

“To abstract a principle is to identify a generic quality or pattern across instances of the 
principle. In formulating an abstraction, an individual deletes details across exemplars, 
which are irrelevant to the abstract category […]. These abstractions […] avoid 
contextual specificity so they can be applied to other instances or across situations.” (p. 
294) 

However, scholars in mathematics education argued against the decontextualization view of 
abstraction. Van Oers (1998, 2001), for instance, argued that removing context must 
impoverish a concept rather than enrich it. Several other scholars have reconsidered and 
advanced our understanding of abstraction in ways that account for the situated nature of 
knowing and learning in mathematics. Noss and Hoyles (1996) introduced the notion of 
situated abstraction to describe “how learners construct mathematical ideas by drawing on 
the webbing of a particular setting which, in turn, shapes the way the ideas are expressed” (p. 
122). Webbing in this sense means “the presence of a structure that learners can draw up and 
reconstruct for support – in ways that they can choose as appropriate for their struggle to 
construct meaning for some mathematics (Noss & Hoyles, 1996, p. 108). Hershkowitz, 
Schwarz, and Dreyfus (2001) introduced the notion of abstraction in context that they 
presented as “an activity of vertically reorganizing previously constructed mathematics into 
new mathematical structure” (p. 202). They identify abstraction in context with what Treffers 
(1987) described as ‘vertical mathematization’ and propose entire mathematical activity as 
the unity of analysis. These contributions demonstrate that research on abstraction in 
knowing and learning mathematics has made significant progress in taking account of the 
context-sensitivity of knowledge.  

Several other contributions shape the territory in mathematics education research on 
abstraction. Scheiner (2016) proposed a distinction between two forms of abstraction, namely 
abstraction on actions and abstraction on objects. This distinction has been further refined in 
Scheiner and Pinto (2014) arguing that the focus of attention of each form of abstraction 
takes place on physical objects (referring to the real world) or mental objects (referring to the 
thought world) (see Fig. 1).    
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Fig. 1: A frame to capture various kinds of abstraction (reproduced from Scheiner & Pinto, 2014) 

We consider this distinction as being productive in trying to capture some of the variety of 
images of abstraction in mathematics education (for details see Scheiner & Pinto, 2016). It 
acknowledges Piaget’s (1977/2001) three kinds of abstraction, including pseudo-empirical 
abstraction, empirical abstraction, and reflective abstraction, that served as critical points of 
departure in thinking about abstraction in learning mathematics. Research on abstraction in 
mathematics has long moved beyond classifying and categorizing approaches in cognition 
and learning. For instance, Mitchelmore and White (2007), in going beyond Piaget’s 
empirical abstraction and in drawing on Skemp’s (1986) conception of abstraction, described 
abstraction in learning elementary mathematics concerning seeing the underlying structure 
rather than the superficial characteristics. Abstraction in learning advanced mathematics, 
however, is almost always defined in terms of encapsulation (or reification) of processes into 
objects, originating in Piaget’s (1977/2001) idea of reflective abstraction. Reflective 
abstraction is an abstraction from the subject's actions on objects, particularly from the 
coordination between these actions. The particular function of reflective abstraction is 
abstracting properties of an individual's action coordination. That is, reflective abstraction is a 
mechanism for the isolation of specific properties of a mathematical structure that allows the 
individual to construct new pieces of knowledge. Taking Piaget’s reflective abstraction as a 
point of departure, Dubinsky and his colleagues (Dubinsky, 1991; Cottrill et al., 1996) 
developed the APOS theory describing the construction of concepts through the 
encapsulation of processes. Similar to encapsulation is reification – the central tenet of 
Sfard’s (1991) framework emphasizing the cognitive process of forming a (structural) 
concept from an (operational) process. In the same way, Gray and Tall (1994) described this 
issue as an overall progression from procedural thinking to proceptual thinking, whereas 
proceptual thinking means the ability to flexibly manipulate a mathematical symbol as both a 
process and a concept. Gray and Tall (1994) termed symbols that may be regarded as being a 
pivot between a process to compute or manipulate and a concept that may be thought of as a 
manipulable entity as procepts. 

Scheiner (2016) revealed that the literature shows an unyielding bias toward 
abstraction on actions as the driving form of abstraction in knowing and learning advanced 
mathematics. This almost always exclusive view arises directly from the trajectory of our 
field’s history; originating in Piaget’s assumption that only reflective abstraction can be the 
source of any genuinely new construction of knowledge. While abstraction-on-actions 
approaches have served many purposes quite well, they cannot track detail of students’ 
knowing and learning processes compatible with the strategy of giving meaning. The recently 
evolving framework of structural abstraction has attracted attention as a promising tool to 
shed light into the complexity of students’ knowing and learning processes compatible with 
their strategy of ‘giving meaning’.  
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The Evolving Framework of Structural Abstraction 

The evolving framework of structural abstraction (Scheiner, 2016) further elaborates 
Tall’s (2013) conception of this particular kind of abstraction. The crucial aspect lies in the 
argument that structural abstraction takes account of two processes: (1) complementizing 
meaningful aspects and structure underlying specific objects falling under a particular 
concept, and (2) promoting the growth of a complex knowledge system through restructuring 
various knowledge pieces. Several assumptions guide the evolving framework of structural 
abstraction assumptions:  
 
Concretizing through Contextualizing 

Structural abstraction takes place on mental objects that, in Frege’s (1892a) sense, fall 
under a particular concept. These objects may be either concrete or abstract. Concreteness 
and abstractness, however, are not considered as properties of an object but rather as 
properties of an individual’s relatedness to an object in the sense of the richness of a person's 
representations, interactions, and connections with the object (Wilensky, 1991). From this 
point of view, rather than moving from the concrete to the abstract, individuals, in fact, begin 
their understanding of (advanced) mathematical concepts with the abstract (Davydov, 
1972/1990). The ascending from the abstract to the concrete requires a concretizing process 
where the mathematical structure is particularized by looking at the object in relation with 
itself or with other objects that fall under the particular concept. The crucial aspect for 
concretizing is contextualizing, that is, setting the object(s) in different specific contexts. 
Different contexts may provide various senses (Frege, 1892b) of the concept of observation.  

  
Complementizing through Recontextualizing 

The central characteristic of the structural abstraction framework is that while, within the 
empiricist view, conceptual unity relies on the commonality of elements, it is the 
interrelatedness of diverse elements that creates unity within the approach of structural 
abstraction. The process of placing objects into different specific contexts allows 
particularizing essential components. Structural abstraction, then, means attributing the 
particularized meaningful components of objects to the mathematical concept. Thus, the core 
of structural abstraction is complementarity rather than similarity. The meaning of advanced 
mathematical concepts is developed by complementizing diverse meaningful components of 
a variety of specific objects that have been contextualized and recontextualized in multiple 
situations. This perspective agrees with van Oers’ (1998) view on abstraction as related to 
recontextualization instead of decontextualization.  

 
Complexifying through Complementizing  

The structural abstraction framework takes the view that knowledge is a complex system 
of many kinds of knowledge elements and structures. Complementizing implies a process of 
restructuring the system of knowledge pieces. These knowledge pieces have been constructed 
through the above-mentioned process or are already constructed elements coming from other 
concept images, which are essential for the new concept construction. The cognitive function 
of structural abstraction is to facilitate the assembly of more complex and compressed 
knowledge structures. Taking this perspective, we construe structural abstraction as moving 
from simple to complex knowledge structures, a movement with the aim to build coherence 
among the various knowledge pieces through restructuring them. 
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 Emerging Insights from the Structural Abstraction Framework 

In this section, we summarize emerging insights we gained, and still gain, by using the 
evolving framework of structural abstraction retrospectively as a lens through which findings 
on students’ (re-)construction of the limit concept of a sequence were reinterpreted. The study 
by Pinto (1998) provides the context in which she identified mathematics undergraduates’ 
sense-making strategies of formal mathematics. From a cross-sectional analysis of three pairs 
of students, two prototypical strategies of making sense could be identified, namely 
‘extracting meaning’ and ‘giving meaning’: 

“Extracting meaning involves working within the content, routinizing it, using it, and 
building its meaning as a formal construct. Giving meaning means taking one’s personal 
concept imagery as a starting point to build new knowledge.” (Pinto, 1998, pp. 298-299) 

The literature on abstraction-from-actions provides several accounts of how students 
construct a mathematical concept compatible with their strategy of ‘extracting meaning’; 
however, there are almost no accounts of how students construct a concept compatible with 
their strategy of ‘giving meaning’. It is important to note that the evolving  framework of 
structural abstraction is problem driven, that is, addressing the need of bringing light into the 
complexity of students’ knowing and learning processes compatible with their strategy of 
‘giving meaning’, rather than filling a theoretical gap just because it exists. The 
reinterpretation of empirical data on students’ strategies of giving meaning in the light of the 
theoretical framework of structural abstraction proved to be particular fruitful  - not only to 
provide deeper insights into the strategy of giving meaning but also as a way to deepen our 
understanding of the phenomenon of structural abstraction that revealed to new theoretical 
development (Pinto & Scheiner, 2016; Scheiner & Pinto, 2014). In the following pages, we 
highlight the main theoretical advancements.    

The idea of complementizing meaningful components underlying the structural 
abstraction framework reflects the idea that whether an individual has ‘grasped’ the meaning 
of a mathematical concept depends on the specific context where the objects falling under the 
particular mathematical concept have been placed in. This supports Skemp’s (1986) 
viewpoint that “the subjective nature of understanding […] is not […] an all-or-nothing state” 
(p. 43). The reanalysis of the data indicates that the object of researchers’ observation should 
be directed to students’ partial constructions of the limit concept. These partial constructions 
may be specific and productive to particular contexts but may remain not fully connected and 
may be unproductive in other contexts (for instance, in making sense of the formal 
definition). The empirical data shows that, in the case of the students who give meaning, 
several meaningful elements and relations in understanding the limit concept of a sequence 
are involved, although a few elements are missing (or distorted). However, some students are 
able to (re-)construct some meaningful components at need by making use of their partial 
constructions, while others are not able to do so.  

The reanalysis indicates that some students have developed resources that enable them to 
(re-)construct the limit concept of a sequence at need. Scheiner and Pinto (2014) presented a 
case where a student developed a generic representation of the limit concept of a sequence 
that operates well in several, although not all, contexts and situations. This particular 
representation, however, allows the student to (re-)construct the limit concept in other 
contexts and situations. The reinterpretation of the data sheds light on the phenomenon that 
individuals may do not ‘have’ all relevant meaningful components, but, rather, they may have 
resources to generate some meaningful components and make sense of the context at need. In 
that sense, the ‘completeness’ of the complementizing process cannot ever be taken as 
absolute.   
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Several scholars suggested exposing learners to multiple contexts and situations. An 
important insight from using the structural abstraction framework retrospectively is that 
exposure to multiple contexts is at least important for particularizing meaningful components: 
various objects falling under a particular mathematical concept have to be set into different 
specific contexts in order to make visible the meaningful components or mathematical 
structure of these objects. In so doing, the objects may be ‘exemplified’ through a variety of 
representations, in which each representation has the same reference (the mathematical 
object); however, different representations may express different senses depending on the 
selected representation system (see Fig. 2). The distinction between sense and reference has 
been specified by Frege (1892b) in his work Über Sinn und Bedeutung, indicating both the 
sense and the reference as semantic functions of an expression (a name, sign, or description). 
In short, the former is the way that an expression refers to an object, whereas the latter is the 
object to which the expression refers. According to Frege (1892b), to each representation 
correspondents a sense; the latter may be connected with an idea that can differ within 
individuals since people might associate different senses with a given representation. Though 
multiple contexts and situations are needed, a new context that does not provide a new sense 
will unlikely to be productive for the concept construction. The framework indicates that the 
nature of the contexts the objects are set is determinative of their value toward the 
complementizing process.  
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Fig. 2: Reference, sense, and idea  

Research also indicates that students may have difficulties with the relationships between the 
sense and the reference as well as difficulties in maintaining the reference as the sense 
changes (Duval, 1995, 2006). Thus, based on the insights we have gained from reanalyzing 
the data (Pinto & Scheiner, 2016; Scheiner & Pinto, 2014), we can assume that these 
difficulties may (at least partly) be overcome by providing students a particular resource 
(such as a generic representation of the mathematical concept) that serves as a guiding tool in 
complementizing the meaningful components indicated in the different senses. From this 
perspective, a ‘representation for’ is a tool that provides theoretical structure in constructing 
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the meaning of the concept of observation. It necessarily reflects essential aspects of a 
mathematical concept but can have different manifestations (Van den Heuvel-Panhuizen, 
2003). Concerning the learning of the limit concept of a sequence, the reinterpretation of the 
data indicates that a slightly modified version of a student’s representation (see Fig. 3) may 
support the complementizing process when the limit concept is recontextualized. 

N

2ԑ L

 
Fig. 3: A generic representation for learning the limit concept of a sequence  

Notice that this generic representation for learning the limit concept of a sequence takes 
account of several students’ common conceptions identified in the research literature, 
including those as (1) the limit is unreachable, (2) the limit has to be approached 
monotonically, and (3) the limit is a bound that cannot be crossed (see Cornu, 1991; Davis & 
Vinner, 1986; Przenioslo, 2004; Tall & Vinner, 1981; Williams, 1991). 

The reanalysis of the empirical data gained from Pinto’s (1998) study has shown that 
students giving meaning built a representation of the concept and, at the same time, used it as 
a representation for recognizing and building up knowledge – the reconstruction of the formal 
concept definition, for instance. The analysis shows that these students consistently used 
representations of mathematical objects to create pieces of knowledge; or, in other words, the 
representations were actively taken as representations for emerging new knowledge and 
making sense of the context and situation. This shift from constituting a representation of the 
limit concept to using this representation as a representation for (re-)constructing the limit 
concept in other contexts can be described in terms of shifting from a model of to a model for 
(Streefland, 1985) – a shift from an after-image of a piece of given reality to a pre-image for 
a piece of to be created reality. This mental shift from ‘after-image’ to ‘pre-image’ indicates a 
degree of awareness of the meaningful components and the complexity of knowledge 
structure that allows the transition from a ‘representation of’ as a result of various 
representations expressing specific objects set in different contexts to a ‘representation for’ 
constructing and reconstructing the limit concept, inter alia, in formal mathematical 
reasoning. We suggest that a generic representation, as presented in Fig. 3, may provide an 
instructional tool that supports raising the awareness of meaningful components in learning 
the limit concept of a sequence. In other words, such a generic representation may direct 
students’ perception of meaningful components.    
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Physics Students’ Use Of Symbolic Forms When Constructing Differential Elements  
In Multivariable Coordinate Systems 

 
 Benjamin P. Schermerhorn  John R. Thompson  
 University of Maine University of Maine 
 
Analysis of properties of physical quantities represented by vector fields often involves 
symmetries and spatial relationships that are best expressed in three dimensional non-Cartesian 
coordinate systems. Many important quantities, both scalar and vector in nature, are determined 
by paths, areas, or volume integrals of multivariable functions. The differential quantities in 
these systems are not trivial for students to understand and implement correctly. As part of an 
effort to investigate physics students’ understanding of the structure of non-Cartesian coordinate 
systems and the associated differential elements when using vector calculus in Electricity and 
Magnetism (E&M), we interviewed four pairs of students in the junior-level E&M course. In one 
particular task, students were asked to construct differential length elements for an 
unconventional spherical coordinate system. A symbolic forms analysis (Sherin, 2001) of student 
reasoning revealed both known and novel forms, and found that student difficulties with vector 
differential quantities were primarily conceptual rather than symbolic. 
 
Key words: Coordinate Systems, Symbolic Forms, Physics, Differential Elements, Vector 
Calculus 
 

Introduction 
The equation is a fundamental construct that appears ubiquitously in physics as a means to 

provide a mathematical description of physical situations, from the analysis of opposing forces 
on an object at the introductory level to the use of non-Cartesian vector elements in electricity 
and magnetism (E&M). The equation becomes a translation across the mathematics-physics 
interface that students are expected to routinely navigate. The ability to work with mathematical 
systems, equations, and expressions becomes especially relevant in upper-division coursework, 
in which the mathematics and physics increase in sophistication. In many cases the use of 
mathematics includes accounting for underlying physical symmetry, extracting information from 
physical situations for calculation, or interpreting the results of calculation physically, all of 
which are cited as areas of student difficulty in upper-division E&M (Pepper et al., 2012).  

Our work seeks to address students’ understanding of differential vector elements used to 
solve various vector calculus problems in E&M, specifically answering the following research 
question: How do students construct differential vector elements in a given coordinate system?  

Sherin’s (2001) symbolic forms is one method of analysis developed to understand how 
students interpret and construct equations. We use the symbolic forms framework to provide 
insight into how upper-division students develop the structure of differential vector elements and 
determine how each component is represented in the final equation. 
 

Background 
In upper-division E&M, students reason about physical symmetries of electric and magnetic 

fields and interpret physical scenarios to construct and implement differential elements into 
calculation. In the majority of cases, these differential elements begin as vector quantities, having 
a particular direction, where students are summing up the dot products of various vector fields 
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over specific lines or surfaces. To add complication, field symmetries in E&M often dictate the 
use of a non-Cartesian coordinate system, meaning the differential elements take on a different 
form than the traditional    or     , a line element and area element both in the    direction.  

In cylindrical and spherical coordinates, motion along curved surfaces results in differential 
length elements that are arc lengths and include scaling factors (i.e.,           for spherical 
coordinates in physics). Area elements are constructed by determining which variables are 
changing and which are constant, and then multiplying the differential length elements 
associated with the change(s). Therefore an understanding of the differential length vector across 
each coordinate system emerges as a fundamental mathematical construct in the application of 
vector calculus in our upper-division electricity and magnetism courses.  

Previous studies have assessed student understanding of integration and differentials 
(Doughty et al., 2014; Hu & Rebello, 2013; Nguyen & Rebello, 2011) and have addressed 
calculation, understanding, and application of gradient, divergence, and curl in both mathematics 
and physics settings (Astolfi & Baily, 2014; Bollen, et al., 2015). Other studies have identified 
difficulties in applying Gauss’s and Ampère’s Laws, to common aspects of an E&M course that 
involve a surface integral and line integral, respectively (Guisasola, et al., 2008; Manogue, et al., 
2006; Pepper et al., 2012). However, little work has explored student understanding of the 
differential vector element as it appears in the non-Cartesian systems used in associated physics 
problems.    
 

Theoretical Perspective 
Based on the knowledge-in-pieces model (diSessa, 1993), a symbolic forms analysis affords 

the opportunity to investigate students’ thinking about equations (Sherin, 2001). Symbolic forms 
began in a third-semester physics course, where students were provided with several word 
problems modeling physical situations common to introductory physics. The development of a 
symbolic forms analysis provided a critical lens for the investigation of students’ construction 
and sense-making of equations at the introductory level.  

The specific nature of a symbolic form comes from the combination of a symbol template 
with a conceptual schema. A symbol template, such as ��� �� , is an externalized structure of 
an equation. Each box contains variables and/or numbers depending on what a student deems fit. 
A student’s conceptual schema is the sum of internalized ideas students use to determine and fill 
in the template. For example, ��� ��  would appear in a students’ equation if the student 
decided they needed to sum multiple quantities. The symbolic form associated with this 
particular template-schema pair is known as parts-of-a-whole (Sherin, 2001). Additionally a 
student would be able to read information out of an equation, such as relationships between 
quantities, by interpreting the templates used to construct an equation.  

Work with symbolic forms has since expanded into the upper division and to explore 
integration in mathematics. Meredith and Marrongelle (2008) adapted the conceptual aspects of 
symbolic forms to describe what features of electrostatics problems cue students to integrate. 
They found students using the dependence form when eliciting the reliance on a particular 
variable and the parts-of-a-whole form when summing up multiple components. The symbolic 
forms framework has been used to analyze physical chemistry students’ use of partial derivatives 
in thermodynamics (Becker & Towns, 2012). The ideas of symbolic forms were used to address 
calculus students’ ideas when making sense of integrals (Jones, 2015); students’ exposed 
conceptual understandings often included graphical representations of given functions.  
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Figure 1. (a) Conventional (physics) spherical coordinates; (b) an unconventional spherical 
coordinate system given to students, for which they were to construct differential length and 
volume elements. The correct elements for each system are in (c) and (d), respectively. 
 

Methods 
In order to investigate student construction of differential length vectors, a task was 

developed in which students were asked to reason about an unconventional spherical coordinate 
system, which we call “schmerical coordinates” (Figure 1). By developing an unconventional 
coordinate system, we could determine students’ abilities to work with the underlying conceptual 
ideas, rather than their ability to recall a memorized answer.  

Clinical think-aloud interviews were conducted with four pairs of students (N=8) following 
the first semester of a two-semester, junior-level E&M sequence. Students were asked whether 
the given coordinate system was feasible and to determine and verify the differential line and 
volume elements. Pair interviews facilitated a more authentic interaction between students and 
minimized the input and influence of the interviewer. Groups are identified as AB, CD, etc., 
signifying pairings of students A and B, and so on.  

Interview data were transcribed and analyzed using open coding to identify common actions 
and recurring ideas across interview groups. Initial analysis categorized these ideas as aspects of 
students’ concept images (Tall & Vinner, 1981) and building actions. Concept image aspects 
include component and direction, dimensionality, differential, and projection. Building actions 
involved recall of and mapping to other coordinate systems, as well as grouping of specific 
terms. Subsequently, we addressed the sequence these ideas and actions arose in the construction 
and checking of the differential vector elements (Schermerhorn & Thompson, 2016).  

A secondary, finer-grained analysis investigated how students developed, implemented, and 
filled known and novel symbol templates as part of a symbolic forms analysis.  

 
Results 

Analysis of student work resulted in the identification of symbolic forms related to the 
construction of non-Cartesian differential length vectors (Table 1). Some invoked symbolic 
forms match those established by Sherin (2001): parts-of-a-whole, no dependence, and 
coefficient. In addition, other, novel template-schema combinations were common across all 
student groups, emerging due to the vector nature of this context and the increased mathematical 
sophistication of the upper-division content. We labeled these forms magnitude-direction and 
differential.   

This report focuses on students’ initial attempt at construction before they were asked about 
the differential volume element. At this stage of construction no group was able to successfully 
determine the differential length element due to inattention to certain ideas, such as projection, or 
overreliance on recalling spherical coordinates (Schermerhorn & Thompson, 2016). 

(b) (c) (a) 

(d) 
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Previously identified symbolic forms 

Students’ attention to the overall structure of the differential length vector led them to 
recognize the need for multiple components coupled with motion in each of the three spatial 
directions, consistent with Sherin's parts-of-a-whole. Student F demonstrated an appropriate 
conceptual schema when starting construction: 

F: There are three different   ’s. There is    with respect to  ,    with respect to   and 
   with respect to  . 

Group EF worked on each component independently; student E then summed these components 
to express their full (incorrect) vector differential: 

E: You sum them, so        is those added together                 . 
Group CD recognized the need for each part by leaving space to write the components into the 
expression (Fig. 2).  

Students also used language consistent with the no dependence symbolic form: 
A: [writes    ] For  ? [sweeps arm up and down] Yeah, for  , it doesn’t have any 

dependence on this other angle over here.  
The arm motion was made by A to trace out how the angle   is changing. Here student A 
reasoned about the geometrical space to recognize that the differential length element resulting 
from a change in   is independent of  .  

As students made determinations about the scaling factors (e.g., the       associated with 
the          ) they commonly used language associated with Sherin's coefficient symbolic 
form. As the coefficient form is typically coupled with additional forms in equation building, the 
invocation of this form will be discussed later. 
 

 
Figure 2. Beginning stages of construction for C and D showing the coupling of the parts-of-a-
whole and magnitude-direction symbolic forms. 

Table 1. Symbolic forms identified in students’ construction of a differential length element. 
Symbolic Form Symbol Template Conceptual Schema 

Parts-of-a-whole ��� ��  
Accounts for multiple components that contribute to a  
larger whole (Sherin, 2001). 

No dependence  [...]  
Indicates an expression is independent of, or not a 
function of, a specific variable. The expression is 
therefore absent of the variable (Sherin, 2001). 

Coefficient ...][�  
Quantities or variables put in front of an expression; 
Seen as just  numbers or constants, possibly having units 
(Sherin, 2001). 

Magnitude-
direction  �� ˆ  

Used to denote a vector expression including the 
magnitude of a quantity (having units) paired with a unit 
vector to indicate a specific direction. 

Differential  �d  
Represents taking a small amount of or infinitesimal 
change in a quantity. 
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Newly identified symbolic forms 
Given the relevance of mathematics associated with vectors and differentials in this task, this 

work has identified new template-schema pairings, the magnitude-direction and differential 
symbolic forms, emerging from students’ constructions. 

When constructing differential length vectors, students must attend not only to the magnitude 
of the length component but also the direction in which the length is taken. All groups 
recognized the need to include unit vectors in their full expressions. From this we identify the 
magnitude-direction symbolic form, which in a larger context accounts for students recognizing 
the need to multiply a quantity, representing a magnitude, by a unit vector denoting the direction 
associated with that particular quantity.  

While the magnitude-direction symbolic form is similar to the scaling and coefficient 
symbolic forms (Sherin, 2001), these existing forms are insufficient to describe the constructed 
vector expressions. Consider a vector representing a distance of 5 meters north. In two 
dimensions we could represent this as       . The coefficient form is not applicable in that the 
magnitude of a vector expression has specific meaning, especially in physics. The scaling form is 
used to describe unitless or dimensionless quantities that attenuate the size of what follows, and 
thus contradictory given the emphasis on the vector describing a length. Therefore, the 
magnitude-direction symbolic form is more applicable to describe the choices of our students. 

As students determined the expressions for the magnitudes of each component, they discussed 
the inclusion of differential terms. Student C exemplifies common reasoning: 

C: You have a change in your    is going to be your   , it's your change in your  . 
From this and similar statements we identify the differential symbolic form, which is used to 
signify a small change in or small amount of a given quantity, a conceptual schema consistent 
with students’ ideas of differentials as identified in the literature (Artigue et al., 1990; Hu & 
Rebello, 2013; Roundy et al., 2015; Von Korff & Rebello, 2012). The form itself is similar to 
what appears in graphically oriented symbolic forms for integration (Jones, 2013) but here, the 
differential is a standalone quantity with its own attached schemata. Distinction is also made 
from Sherin’s (2001) base±change form, where the change is seen as being applied to a quantity 
or as a correction term dependent upon the base quantity (i.e.,      ).  
 
Student invocation and combination of symbolic forms 

Overall, each group invoked and combined symbolic forms in a similar sequence (Fig. 3). At 
the beginning of construction, there was almost an immediate nesting of the magnitude-direction 
symbolic form into each box of the parts-of-a-whole form, specifically accounting for the vector 
components. Group CD explicitly develops this structure by writing out the three needed units 
vectors and leaving space to write in the magnitude of each component (Fig. 2). 

Students often paired the coefficient and differential terms when the necessity of appropriate 
dimensions dictated it, as seen in the following two (independent) excerpts: 

A: …This doesn’t have any units of length, so it needs to have some M term. 
C: …So, if it’s going to be some trig thing but sine of something isn’t a length so we’re 

going to have to also have something else in there.  
The determinations of the coefficients of each term occurred at multiple stages of construction 
for a variety of reasons, including recall and mapping to spherical coordinates to a geometric 
argument that recognized M as the radius of a differential arc length. We see the reasoning about 
dimensionality, in particular, as an abstracted use of the dependence symbolic form, where  
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Figure 3. The general flow of students’ use and combination of symbol templates during the 
interview task.  
 
instead of the dependence of the expression being on a specific variable, it is driven by 
dimensional analysis. C and D paid particular attention to dimensionality and even returned to 
their expression later in construction with concern about whether the angles carried any units of 
length. The dependence on units of length sometimes appeared early in construction with the 
pairing of magnitude-direction and parts-of-a-whole: 

E: So, we're going to have components right... each one has to have units of length. 
This often resulted in most students recognizing they did not need to attach a coefficient to 
  since it already possessed the necessary units.  

As part of students’ conceptual schema during construction, many groups paired the 
differential variable and the corresponding unit vector (i.e.,      ,      , and       ). Groups 
AB and GH did this automatically during construction (Fig. 4). Other groups initially tried to 
forcefully insert a differential into their expression. After recognizing       was a projection 
into the xy-plane, CD wrote a “d” in front of the whole expression (Fig. 5). Attempting to insert a 
trigonometric function into the expression, student F tried to express an infinitesimal arc length 
as       . After fixing this, group EF focused their construction on having a differential length 
component in a particular direction containing a differential with that variable:  

E: So you’re going to have a length component in the  -hat direction…so, basically we’re 
going to need…an  …so it’s   times some  , I think it’s M times   , a small  , 
because it’s like if you take r times its small   then that is the arc length (Fig. 6). 

 

                 
Figure 4. Students G and H before (a) and after (b) recognizing the need to include unit vectors.  
 

 
Figure 5. Students C and D incorrectly incorporating the idea of a differential. 

 

                          
Figure 6. Students E and F constructing the beta component of the differential length, initially 
leaving space to write the needed coefficient and unit vector (a). After discussion they include a 
coefficient which lacks the needed projection term     . 
 

(a) (b) 

(a) (b) 
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Here we see E and F including the differential element appropriately and using the idea of arc 
length to fill in the preceding space that was left intentionally blank, similar to C and D with the 
larger structure (Fig. 3). For E and F, this resolved into the length component,              , 
which still lacked the needed trigonometric term. As the groups appropriately connected the unit 
vector with the variable in the differential symbolic form, they accounted for the larger pieces of 
the differential length vector and focused efforts on determining the coefficient terms.  

 
Conclusions 

Applying a symbolic forms analysis to student construction of a differential length vector 
enabled us to see what students think the vector expression should look like as well as what 
concepts they use to construct the vector elements. The vector context and the increased 
mathematical sophistication of the upper-division content led to the recognition of existing 
symbolic forms as well as the identification of new forms. Further analysis identified a typical 
sequence of invocation of these forms during construction.  

Sherin’s symbolic forms framework was developed to frame some student difficulties with 
physics equations as related to the symbol template in addition to or rather than their conceptual 
understanding. However, our symbolic forms analysis found that students were able to recognize 
the general structure needed for the equation and invoke the correct template. Difficulties 
constructing the differential length element were primarily related to conceptual schemata, e.g., 
students constructed an appropriate expression for the  -component in terms of dimensional and 
differential considerations, but neglected the projection that introduces the      term.  

Results also suggest that attention to dimensionality was significant to students’ choices 
during construction, yet some students struggled to determine the units of certain terms. This is 
an especially important finding, as previous research on symbolic forms neglects how students’ 
attention to units impacts their problem solving (Sherin, 2001). 

Geometric reasoning was prominent in students’ construction. In many cases students would 
attempt to visualize the lengths traced by the vector as small changes were made to individual 
variables. Students attended to the multiple components needed to express the differential length 
vector and properly connected the differentials to unit vectors of the same variable. In cases 
where this proved difficult for students, recall mediated expression construction, similar to 
upper-division physical chemistry findings dealing with partial derivatives (Becker & Towns, 
2012). In our study, however, recall of spherical coordinates during construction led students to 
expressions that incorrectly included a      ) term (Schermerhorn & Thompson, 2016).  

These findings suggest that instructional changes should focus on the concepts associated 
with the building of the differential, specifically on the determination of the coefficients for the 
angle components. Subsequent efforts include the development of student-centered instructional 
materials to be used in E&M and/or mathematical methods of physics courses. In particular, we 
are developing and piloting a more scaffolded version of the interview task as an instructional 
activity that guides students through the construction of components of the differential length 
vector, construction and checking of the volume element, and construction and choice of 
differential area vectors in schmerical coordinates. Given the importance of the differential area 
element in E&M calculations (e.g., to determine electric and magnetic flux), current 
investigations explore how students reason about and construct differential area elements. 
Additional efforts will investigate the effectiveness of the instructional activity on student 
understanding of differential length and area vectors. 
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A Comparison of Calculus, Transition-to-Proof, and Advanced Calculus Student 
Quantifications in Complex Mathematical Statements 

 
Morgan Sellers, Kyeong Hah Roh, Erika David, and Kody D’Amours 

Arizona State University 

Abstract: This study investigates Calculus, Transition-to-Proof, and Advanced Calculus 
students’ meanings for quantifiers in conditional statements involving multiple quantifiers. Three 
students from each course participated in clinical interviews. Students were presented with the 
Intermediate Value Theorem (IVT) and three other statements whose sentence structure was 
similar to the IVT except for reordered quantifiers and their attached variables. The results 
reveal that Advanced Calculus and Transition-to-Proof students made distinctions between the 
different statements more often than Calculus students. Several student meanings for 
quantification were found to be necessary for making distinctions between each of the four 
statements. We also address student quantifications that emerged for the phrase “Suppose f is a 
function.” 

Key words: Student Quantification, Undergraduate Students, Comparative Analysis, 
Intermediate Value Theorem (IVT), Logic 

The teaching and learning of Calculus is important for all STEM programs. Many studies 
have investigated students’ meanings for important Calculus concepts such as limits, 
differentiation, and integration, and how these concepts are presented to students (Carlson et al., 
2002; Martin, 2013; Oehrtman, 2009; Orton, 1983; Thompson, 1994; Vinner & Dreyfus, 1989; 
White & Mitchelmore, 1996; Zandieh, 2000). However, little attention has been paid to the 
language in which mathematicians express Calculus ideas in textbooks and discourse.  

In this paper, we focus on students’ meanings for quantifiers in complex mathematical 
statements. By complex mathematical statements, we mean statements that have both if-then 
structure and multiple quantifiers. The Intermediate Value Theorem (IVT) is one example of 
such a statement: “Suppose that f is continuous on the closed interval [a, b] and let N be any 
number between f(a) and f(b), where . Then, there exists a real number c in (a, b), 
such that f(c)=N” (Stewart, 2003, p. 131). Similar to the IVT, many Calculus theorems can be 
classified as complex mathematical statements, even though the topic of quantification is not 
addressed in popular Calculus textbooks (Bittinger, 1996; Larson, 1998; Stewart, 2003). 
Quantifier words such as “for all,” “there exists,” and “unique” may have different student 
meanings than mathematical ones (Dawkins & Roh, 2016; Dubinsky & Yiparki, 2000; Epp, 
1999; Epp, 2003). Students at different mathematical levels, including Calculus, may interpret 
these words differently than mathematicians. Although some studies have investigated students’ 
and teachers’ understandings for quantifiers, many of these studies have dealt with a single 
quantifier or statements outside of mathematical context (Dubinsky & Yiparaki, 2000; Epp, 
2009; Piatek-Jiminez, 2010; Tabach et al., 2010; Tsamir et al., 2009). On the other hand, studies 
that have dealt with multiple quantifiers in mathematical contexts have placed more emphasis on 
Transition-to-Proof and Advanced Calculus students’ understanding of quantification than 
Calculus students’ understandings of quantification (Dawkins & Roh, 2011; Dawkins & Roh, 
2016; Roh & Lee, 2011, 2015, Selden & Selden, 1995). This study explores the following 
question: What meanings do students at various mathematical levels have for quantifiers in 
complex mathematical statements from Calculus? 

f (a) ≠ f (b)
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Theoretical Perspective 
 

Previous studies show that students often do not problematize the distinction between “for 
all… there exists” ( ) and “there exists… for all” ( ) statements, and that  statements 
are more frequently misinterpreted than  statements (Dubinsky & Yiparaki, 2000; Piatek-
Jiminez, 2010). Previous studies also note that students may reorder the variables attached to the 
quantifiers in their explanation of a complex mathematical statement because they do not 
necessitate the independence of the first variable and dependence of the second variable 
(Dawkins & Roh, 2016; Roh & Lee, 2011, 2015). For example, in the IVT, one must consider 
each value of N before finding the associated c that depends on each N.  

Student quantifications1 for various  and  statements and relationship between 
variables attached to the quantifiers may change if we consider different moments. Our goal is to 
describe our best perception of each student’s own meanings for quantifiers at different 
moments. We thus utilize the phrase “student meaning” throughout this paper the same way in 
which Piaget views that each individual constructs his own meanings by assimilation to schemes 
(Thompson, 2013). Students’ meanings for quantifiers in the moment are preferred because some 
meanings may be stable, but other meanings may be “meaning(s) in the moment” (Thompson et 
al., 2014). Thompson et al. (ibid) describe a meaning in the moment as “the space of implications 
existing at the moment of understanding” (p. 13), so students could be assimilating information 
in the moment and forming new meanings. A student’s thoughts may begin to emerge or 
different meanings may be elicited in different moments. Thus, we consider several different 
moments of interaction for each student because different moments of interaction may result in 
different types of student quantification.  

In this study, we identified two types of quantifiers in complex mathematical statements—
explicit and implicit quantifiers, and we seek to understand student meanings for both of these 
types of quantifiers. Explicit quantifiers are directly worded in a mathematical statement. The 
IVT wording “for all” explicitly states a universal quantification, while “there exists” explicitly 
states an existential quantification. Implicit quantifiers (Durand-Guerrier, 2003) are intended in a 
mathematical statement but are not conveyed through direct phrasing such as “for all” and “there 
exists.” In the the IVT statement, the hypotheses “Suppose that f is a continuous function” has a 
hidden universal quantifier because this statement is, in a mathematical convention, a generalized 
statement and thus f stands for all continuous functions.  
 

Methods 
 

Two-hour long clinical interviews (Clement, 2000) were conducted with nine undergraduate 
students during the spring and summer of 2016 at a large southwestern university in the United 
States. Students were placed in a category based on the highest course they had already 
completed. These students had various STEM majors and completed these courses with a variety 
of different instructors. Three students volunteered from each mathematical level: Calculus I, 
Transition-to-Proof, and Advanced Calculus. All four authors of this paper participated in data 
collection (as either interviewer, camera operator, or witness) and analysis. 

Interview Tasks. Students were asked to explain their understandings of the four statements 
shown in Table 1 and to evaluate the truth-values of each of the statements. (Only the statements 
in the left-hand column of Table 1 were presented to students.) The four statements in Table 1 
                                                
1 In this paper, quantification refers to the process by which students quantify variables.  

∀∃ ∃∀ ∃∀
∀∃

∀∃ ∃∀
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exhaust all combinations for ordering explicit quantifiers and their attached variables. The 
symbolic representations of the explicit quantifiers found in the conclusion of each statement are 
also shown beside each statement in Table 1. Three of the statements are false. Statement 2 is the 
IVT, and the only true statement. The variety of statements allowed us to analyze students’ 
comparisons and contrasts amongst the explicit quantifiers.  

 
Statements	 Symbolic	

Representations	
Statement 1: Suppose that f is a continuous function on the closed interval [a, b], where f(a)≠ 
f(b).  Then, for all real numbers c in (a, b), there exists a real number N between f(a) and f(b), 
such that f(c)=N.  

such	that	
	

Statement 2: Suppose that f is a continuous function on the closed interval [a, b] where f(a)≠ 
f(b).  Then, for all real numbers N between f(a) and f(b), there exists a real number c in (a, b), 
such that f(c)=N.  

such	that	
	

Statement 3: Suppose that f is a continuous function on the closed interval [a, b], where f(a)≠ 
f(b).  Then, there exists a real number N between f(a) and f(b), such that for all real numbers c 
in (a, b), f(c)=N.  

such	that	
	

Statement 4: Suppose that f is a continuous function on the closed interval [a, b] where f(a)≠ 
f(b).  Then, there exists a real number c in (a, b), such that for all real numbers N between f(a) 
and f(b), f(c)=N.  	

such	that	
	

Table 1. Statements presented in the clinical interviews. 
 

Data Analysis. Our analysis was conducted in the spirit of grounded theory (Glaser & 
Strauss, 1967) using videos of the student interviews as well as the students’ written work. 
Hence, the categories that describe students’ meanings for quantifiers emerged from our data and 
not from previously created categories. Each interview was analyzed moment-by-moment to 
identify moments where distinctions could be made about a student’s meanings for the 
quantifiers. A new moment began when a student was presented with a new question or task, 
changed their evaluation of a statement, or if the student provided a new description of the 
quantifiers in a given statement. Thus, we separated each student interview into moments where 
we found evidence for his or her quantifier meanings as our unit of analysis. Once the difference 
in explicit and implicit quantifications was noticed, students’ meanings were re-organized and 
separated into one of these two categories. In the final stage of data analysis, each interview was 
re-coded moment-by-moment with different types of explicit and implicit quantification. We 
counted the number of moments that occurred in each category amongst all students. Moments 
were tagged by the interviewee’s mathematical level so that we could make comparisons about 
student meanings of quantifiers for each group.  

Results 

The students in this study often provided various truth-values for the statements, and their 
meanings for the quantifiers also varied. Advanced Calculus students all concluded that the four 
statements had distinct meanings throughout their interviews, but there were moments with 
Transition-to-Proof and Calculus students where they said some or all of the statements were 
equivalent in meaning. Students often had moments where they explained Statements 2-4 in the 
same ways mathematicians would reason about Statement 1 ( ).  

Student Meanings for Explicit Quantifiers 
Our findings include several meanings for explicit quantification that are necessary for 

students to have in order for them to interpret the four complex mathematical statements in our 

∀c∃N
f (c) = N

∀N∃c
f (c) = N

∃N∀c
f (c) = N

∃c∀N
f (c) = N

∀c∃N
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task set.  We noticed that students with correct truth-values and thorough explanations of the 
statements were able to distinguish between meanings for different types of quantifiers. These 
students articulated distinctions for single quantifier words “for all” and “there exists,” as well as 
distinctions for the order of quantifiers “for all… there exists…” and “there exists… for all…” 
They also recognized and explained the importance of the order of c and N in the statements.   

Distinguishing “For all” and “There exists.” Some students exhibited distinct meanings that 
differed for each of the phrases “for all” and “there exists.”  Some moments involved student 
specification of the meanings of these phrases in their own words, such as describing “for all,” as 
“for each one of these,” or clarifying “there exists” as “I can find at least one.” Other student 
moments were characterized by an interchange or alteration of the meanings for these phrases. 
Even though the phrases “for all” and “there exists” were used in the statements, students’ 
explanations sometimes included using universal quantifier language such as “every,” and “all” 
for the variable attached to the existential quantifier. Likewise, during some moments, students 
used phrases such as “I can find an” or “there is a” for the variable attached to the universal 
quantifier. Such student utterances indicate that in these moments, students did not have 
distinguishable meanings for the singular universal and existential quantifiers.   

Hannah was a Calculus student who did not distinguish between “for all” and “there exists” 
in some moments. Hannah stated that Statement 4 ( ) had the same meaning as another 
previous statement. She also claimed in this moment, “anywhere you choose c to be, there is a 
value of N that's a real number because the function is continuous.” Hannah said we could 
choose c-values anywhere, which indicates that she was treating the existential quantifier as if it 
were a universal quantifier. She also said that we could find a value of N, even though the 
statement says that we need to find a c that works for all values of N. This dialogue indicates that 
in this moment she was also treating the universal quantifier as if it were an existential quantifier.  

Distinguishing “For all… there exists…” and “There Exists… for all…” Statement 1  
( ) and Statement 3 (∃N∀c ) both have “there exists” with N and “for all” with c, but the 
ordering of these quantifiers is different. Statement 2 ( ) and Statement 4 ( ) also 
reorder in a similar fashion. Some student moments included explanations of why each statement 
in these pairs had a distinct meaning. Other student moments were classified by student views 
that these pairs were equivalent in meaning. Our findings are similar to those of Dubinsky and 
Yiparaki (2000), who showed that students may view reordering quantifiers, with variables 
attached, as inconsequential. Mike, a Transition-to-Proof student, explained why he thought 
Statement 1 and Statement 3 are similar: 

[Statement 3] and [Statement 1] are saying the same thing and [Statement 2] and 
[Statement 4] are saying the same thing. These two (Statements 1 and 3) are saying that 
there is only one output for all the inputs. But [for] Statement 1 and 3, I could assume 
this… for all real numbers c in the interval (a, b) I could assume that's true.  

Mike acknowledged that he believed Statement 1 and Statement 3 are equivalent in meaning and 
Statement 2 and Statement 4 are equivalent in meaning. His classification insinuates that he did 
not distinguish between these quantifier distinctions. We have further evidence of his lack of 
distinction because he stated that both Statements 1 and 3 are about one output and all c’s. Mike 
recognized that these pieces of the quantification are the same. However, since he emphasized 
the singular quantifiers and concluded that the statements are equivalent, we claim that he did not 
distinguish the difference in the order of the quantifiers in the statements. 

Variable Ordering and Dependence. We also found a difference in how students treated the 
ordering of the variables c and N in the statements. All but one student mentioned that the 

∃c∀N

∀c∃N
∀N∃c ∃c∀N
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ordering of the variables was different in some of the statements. However, during some 
moments, students claimed that the reordering the variables had no effect on the statement 
meanings. Zack, a Calculus student, explained why he thought Statement 2 ( ) was 
different, but equivalent, to Statement 1 ( ) in this moment: 

Um, so I mean obviously this [N] is now flipped with c, at least in [Statement 2]. I don't 
know how this [switch] necessarily affects [the statement]. So, when I explained it on the 
last one, I thought that N was a dependent value depending on what c is… Such that f(c) 
is equal to N… I don't think that, I'm sorry. So it's like that… I'm interpreting [Statement 
2] the same, that it's just saying that really for any real value of N's there exists a value of 
c, but c is still the value. Like… this (points to c in f(c) in statement) is the independent 
value versus this (points to an N in the statement) is the dependent value.  

We claim that Zack recognized the variable order in Statement 2 in this moment, but he did not 
treat the first variable, N, as being chosen independently of the c-values. Zack mentioned that c is 
an independent variable and N is a dependent variable in the function in both statements. Zack 
appeared to choose c-values first because he thought that independent variables should be chosen 
first. However, he did not seem to connect the variable order in the quantification to his own 
choice for which variable should be held independent of the other. 

Many student moments were different than Zack’s moment; in these moments, students 
noticed the order of the variables and also displayed an understanding of the ramifications of this 
variable switch in different statements. Jay, an Advanced Calculus student, explained why 
Statement 1 ( ) and Statement 3 ( ) are different:  

For this one [Statement 1] all of the... like the values for individual c’s can be different. 
So like given c, I give you an N, but that doesn't have to be the same N as some other c. 
But for here [Statement 3] that's not true. There exists a real... so I give you N before you 
give me c, meaning I know what the answer is before I even know what c is.  

Jay was not only aware of the variable order in this moment, but why the variable ordering 
affects the statements’ meanings. Jay contrasted the order in which the first person gave a c or N 
and the other person gave a variable in return. His contrast suggests that he understood that the 
first variable was to be thought of independently of the second variable. He also used the first 
variable’s information to give information about the second variable, which indicates that he 
considered that the second variable is dependent on the first. 

Explicit Quantifier Distinctions Across Mathematical Levels. The four different meanings in 
Table 2 were more prevalent amongst the more advanced students interviewed. The results of 
this comparison of percentages from each of the three groups are shown in Table 2: 

 
Explicit Quantifier Meanings  
(by % of Relevant Moments2) 

Calculus Transition-to-
Proof 

Advanced 
Calculus 

Distinguished “for all” and “there exists” 4/17 (23.53%) 21/22 (95.45%) 17/17 (100%) 

Distinguished “for all… there exists…” and “there 
exists… for all…”  

0/8 (0%) 7/12 (58.33%) 6/6 (100%) 

Recognized Variable Order  10/13 (76.92%) 4/4 (100%) 5/5 (100%) 

First Variable Independent & Second Variable 
Dependent 

4/19 (21.05%) 14/15 (93.75%) 11/11 (100%) 

  Table 2. Comparison of students’ explicit quantifier meanings. 

                                                
2 We define a relevant moment as any moment where a student explained his meaning for the specified construct. 

∀N∃c
∀c∃N

∀c∃N ∃N∀c

20th Annual Conference on Research in Undergraduate Mathematics Education 90720th Annual Conference on Research in Undergraduate Mathematics Education 907



Table 2 summarizes that higher-level mathematics undergraduates exhibit more moments with 
distinctive meanings for explicit quantifiers. The Advanced Calculus students had a greater 
percentage of moments where they exhibited each of these four meanings than Calculus students. 
Calculus student moments not only showed students’ confounded meanings of “for all… there 
exists…” and “there exists… for all…,” but they also revealed Calculus students’ tendencies to 
confound the singular quantifiers “for all” and “there exists” as well. While the Transition-to-
Proof students had a higher percentage of moments than Calculus students for distinctions 
between “for all” and “there exists,” there were still several moments where they confounded 
meanings of “for all… there exists…” and “there exists… for all…” Calculus student moments 
were most similar to their advanced peers in their comprehension of recognizing variable order, 
but the variable dependency moments revealed that this recognition was not associated with 
students’ understanding for why variable ordering is important to statement meanings. 
 
Students’ Implicit Quantifications 

Calculus students had fewer moments where they distinguished between different types of 
explicit quantifiers and their attached variables than their advanced peers. However, meanings 
for implicit quantifications varied amongst the groups. The phrase “Suppose f is a continuous 
function” elicited ambiguity in some student moments. All four statements in Table 1 are written 
with the intent that readers will apply each statement to all continuous functions. We found three 
ways that these students implicitly quantified f: universally, existentially, or case-by-case.  

Universal Implicit Quantification. Some students did quantify the phrase “Suppose f is a 
continuous function” as intended. Students used words such as “arbitrary” or the phrase “any 
continuous function” to describe their meanings of the statements.  

Case-by-case Implicit Quantification. Three students considered that some of the statements 
that we were giving them were not firmly true or false for some moments. They preferred to 
evaluate some statements as “sometimes true” or “sometimes false” instead of strictly true or 
false. Their reasoning for this choice was made apparent when we offered them graphs and they 
considered that the statement was true for some functions, and false for some functions. Zack 
claimed in one moment, “No, I still agree that this statement [Statement 1] would be sometimes 
true… because in my mind this graph (points to what we would consider the counterexample 
graph) proves it… proves that I can't say the statement is true one hundred percent of the time.” 
These students are classified as “Case-by-Case” because they were considering the if-then 
statement as having a variable truth-value instead of being firmly true or false. Our evidence 
supports Durand-Guerrier’s (2003) finding that students tend to think of a conditional as an open 
statement which may be true or false, depending on the case at hand.  

Existential Implicit Quantification. Ron, a Transition-to-Proof student, interpreted the phrase 
“Suppose f is a continuous function” with an existential quantification. He described his lack of 
certainty about the intent of the statement, and described his conclusions in this moment: 

I am not sure if f is limited to there being an existence of a continuous function or it's 
“suppose that any function.” So because the wording is ambiguous in my mind I am not 
sure. I am just gonna keep it true for now because I am going to assume that “Suppose f is 
a continuous function” is going to be equivalent to the wording being “Suppose that there 
is an existence of a continuous function f on the closed interval a to b.” 

Ron’s implicit quantification of “Suppose f is a continuous function” affected the rest of his 
arguments because he believed he only needed one function to make each statement true. He also 
thought that proving each statement false required exhausting all functions.  
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Implicit Quantification Across Mathematical Levels. The summary of all the students’ 
meanings in the moment for implicit quantifiers is shown in Table 3: 

 
Implicit Quantifications  
(by % of Relevant Moments) 

Calculus Transition-to-
Proof 

Advanced 
Calculus 

Universal 6/8 (75%) 4/8 (50%) 7/8 (87.5%) 
Case-by-Case 2/8 (25%) 3/8 (37.5%) 1/8 (12.5%) 
Existential  0/8 (0%) 1/8 (12.5%) 0/8 (0%) 

 Table 3. Comparison of students’ quantifications for “Suppose f is a continuous function” 
 

As shown in Table 3, the majority of moments when students were implicitly quantifying f 
were distinguished by universal quantification in all three groups of students. However, there 
were some student moments from all three mathematical levels that exhibited a case-by-case 
quantification of “Suppose f is a continuous function.” Universal quantification was more 
frequent amongst Calculus and Advanced Calculus students than Transition-to-Proof students. 
This phenomenon is addressed in the discussion. Our only existential implicit quantification 
moments originated from one Transition-to-Proof student, Ron.  
 

Discussion  
 

This study indicates that students had several different meanings for explicit and implicit 
quantifiers when reading the IVT. Based on our findings, students need to distinguish the 
singular quantifiers “for all” and “there exists,” and they need to distinguish “there exists… for 
all…” and “for all… there exists…” They also need to recognize when variables are ordered 
differently across a set of statements before they focus on how this reordering alters the 
meanings of the statements. These explicit quantifier meanings are foundational to understanding 
the explicit quantifiers in complex mathematical statements, and the Calculus students in this 
study had fewer moments with each of the explicit quantifications necessary for statement 
coherence than the Transition-to-Proof and Advanced Calculus students. Yet, we teach Calculus 
theorems with quantifiers that need these meanings for theorem comprehension.  

Even though there were more moments where Transition-to-Proof and Advanced Calculus 
students exhibited distinct meanings for different types of explicit quantifiers, truth-values still 
varied from student to student. There were moments from students of all three levels who 
implicitly quantified “Suppose f is a continuous function” in different ways than the authors of 
the statements intended for the statements to be quantified. The quantitative data may seem to 
indicate that students decrease their abilities in a Transition-to-Proof course. This is not meant to 
indicate that Transition-to-Proof is harmful for students. This may mean that students are now 
exposed to new mathematical quantifications, but have yet to reflect on when and how to apply 
all of these types of quantification.  

These results should be considered when making curriculum and instructional decisions for 
all mathematical courses, but particularly for Calculus and Transition-to-Proof courses. Further 
research needs to investigate how students come to learn appropriate meanings for both explicit 
and implicit quantifiers for many different theorems. Our study was limited to the IVT, but was 
also limited to nine students. Studies that involve a larger number of students in each academic 
level are suggested to more accurately measure the prevalence of each meaning amongst each 
group of students. 
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IRUPV�WR�VWXGHQWV¶�LQWHUSUHWDWLRQV�RI�WKH�GHILQLWH�LQWHJUDO��FODVVLI\LQJ�WKHLU�UHDVRQLQJ�LQWR�
FDWHJRULHV�VXFK�DV�DUHD�XQGHU�D�FXUYH��IXQFWLRQ�PDWFKLQJ��DQG�DGGLQJ�XS�SLHFHV���-RQHV��������
ODWHU�UHILQHG�KLV�GHVFULSWLRQ�RI�WKH�DGGLQJ�XS�SLHFHV�V\PEROLF�IRUP�DQG�GHVFULEHG�D�
PXOWLSOLFDWLYHO\�EDVHG�VXPPDWLRQ��0%6��FRQFHSWLRQ�WKDW�ZDV�³KLJKO\�SURGXFWLYH´�LQ�HQJDJLQJ�
VWXGHQWV�LQ�ERWK�WKH�PDWKHPDWLFDO�VWUXFWXUH�RI�WKH�GHILQLWH�LQWHJUDO�DV�ZHOO�DV�LQ�PRGHOLQJ�IRU�
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SK\VLFV�EDVHG�FRQWH[WV��7KLV�5LHPDQQ�VXP�LQWHUSUHWDWLRQ�RI�WKH�GHILQLWH�LQWHJUDO׬� ݂ሺݔሻ�݀ݔ௕
௔ �

IRFXVHV�RQ�DGGLQJ�XS�PDQ\�WHUPV�GHULYHG�IURP�D�PXOWLSOLFDWLYH�UHODWLRQVKLS�EHWZHHQ�D��SRVVLEO\��
YDU\LQJ�LQWHJUDQG�݂ሺݔሻ�DQG�VPDOO�RU�LQILQLWHVLPDO�GLIIHUHQWLDO�݀��7ݔKH�SURGXFWV�LQ�WKLV�FRQFHSWLRQ�
PXVW�EH�DEVWUDFWHG�IURP�D�SDUDOOHO�PXOWLSOLFDWLYH�UHODWLRQVKLS�LQ�ZKDW�ZH�FDOO�D�³EDVLF�PRGHO´�
EHWZHHQ�D�FRQVWDQW�TXDQWLW\�F�DQG�D��SRVVLEO\��ODUJHU�YDOXH�X��UHVSHFWLYHO\��6XFK�GHFRPSRVLWLRQV�
WR�WKH�5LHPDQQ�VXP�VWUXFWXUH�KDYH�EHHQ�VWUHVVHG�E\�PDWK��HQJLQHHULQJ��DQG�SK\VLFV�HGXFDWLRQ�
UHVHDUFKHUV�DV�HVVHQWLDO�IRU�67(0�VWXGHQW�VXFFHVV��LQFOXGLQJ�PDWKHPDWLFV�PDMRUV��'RXJKW\��
0F/RXJKOLQ��	�YDQ�.DPSHQ��������-RQHV��������������0HUHGLWK�	�0DUURQJHOOH��������5HGLVK�
	�6PLWK��������6HDOH\��������6KHULQ����������

0HUHGLWK�DQG�0DUURQJHOOH��������PDGH�WKH�DSW�SRLQW�WKDW�D�SURGXFW�VWUXFWXUH�GHULYHG�IURP�D�
EDVLF�PRGHOܨ� ή ܺ�WR�JHQHUDWH�WHUPV�RI�WKH�IRUP�݂ሺݔሻ ڄ ȟݔ�LQ�D�5LHPDQQ�VXP�LV�RQO\�DGHTXDWH�IRU�
PRGHOLQJ�DFFXPXODWLRQ�RI�D�TXDQWLW\�ZKHQ�WKH�LQWHJUDQG�LV�D�UDWH�RI�FKDQJH�RU�GHQVLW\��\HW�PDQ\�
FRQWH[WV�GR�QRW�QDWXUDOO\�GHFRPSRVH�LQWR�WKLV�TXDQWLWDWLYH�VWUXFWXUH��SS������������2HKUWPDQ�
�������VKRZHG�WKDW�DQ�0%6�LQWHUSUHWDWLRQ�ZDV�LQVXIILFLHQW�IRU�VWXGHQWV�FRQVWUXFWLQJ�PRUH�
FRPSOH[�GHILQLWH�LQWHJUDOV�IURP�EDVLF�PRGHOV�WKDW�DUH�QRW�D�VLPSOH�SURGXFW��7R�FODULI\�UHDVRQV�IRU�
VWXGHQWV¶�VXFFHVV��2HKUWPDQ�DOVR�DQDO\]HG�WKH�V\PEROLF�IRUPV�VWXGHQWV�DSSOLHG�WR�WKH�EDVLF�
PRGHO��KRZ�WKH\�WUDQVIHUUHG�WKDW�TXDQWLWDWLYH�UHDVRQLQJ�WR�WHUPV�RI�D�5LHPDQQ�VXP�RU�WKH�
GLIIHUHQWLDO�IRUP�RI�D�GHILQLWH�LQWHJUDO��DQG�KRZ�WKRVH�V\PEROLF�IRUPV�LQWHUDFWHG�ZLWK�WKH�
VWXGHQWV¶�V\PEROLF�IRUPV�IRU�WKH�LQWHJUDOV��7KXV��RQO\�LQYHVWLJDWLQJ�WKH�0%6�FRQFHSWLRQ�RI�WKH�
GHILQLWH�LQWHJUDO�OHDYHV�D�SRWHQWLDOO\�VLJQLILFDQW�JDS�LQ�RXU�XQGHUVWDQGLQJ�RI�WKH�TXDQWLWDWLYH�
UHDVRQLQJ�UHTXLUHG�IRU�VXFFHVVIXO�PRGHOLQJ�ZLWK�GHILQLWH�LQWHJUDOV�DQG�LQWHUSUHWDWLRQV�RI�
GLIIHUHQWLDO�IRUPV�DSDUW�IURP�D�JHQHUDOL]HG�SURGXFW�RI�LQWHJUDQG�DQG�GLIIHUHQWLDO��2XU�VWXG\�VHHNV�
WR�IXUWKHU�H[SORUH�WKH�ZD\V�LQ�ZKLFK�VWXGHQWV�FRQFHSWXDOL]H�GHILQLWH�LQWHJUDOV�WKDW�GR�QRW�PDWFK�
WKH�WUDGLWLRQDO�݂ሺݔሻ ή ��PXOWLSOLFDWLYH�VWUXFWXUH�DQG�LGHQWLI\�NH\�DVSHFWV�RI�WKHLU�UHDVRQLQJݔ݀
ZKLFK�OHDG�WR�SURGXFWLYH�UHVXOWV��6SHFLILFDOO\��ZH�SRVH�WKH�UHVHDUFK�TXHVWLRQ��

:KDW�LQWHUSUHWDWLRQV�RI�D�GHILQLWH�LQWHJUDO�DQG�EDVLF�PRGHO�DUH�SURGXFWLYH�DQG�
XQSURGXFWLYH�IRU�VWXGHQWV�DV�WKH\�SURJUHVV�WKURXJK�LQFUHDVLQJO\�FRPSOH[�GHILQLWH�LQWHJUDO�
PRGHOLQJ�WDVNV"�

�
7KHRUHWLFDO�3HUVSHFWLYH�	�0HWKRGV�

�
$V�WKLV�VWXG\�VHHNV�WR�LGHQWLI\�KRZ�VWXGHQWV�HQJDJH�LQ�DQG�RYHUFRPH�GLIILFXOWLHV�PRGHOLQJ�

GHILQLWH�LQWHJUDOV�EH\RQG�WKH�SURGXFW�VWUXFWXUH�WKH\�W\SLFDOO\�ILUVW�OHDUQ��ZH�FKRVH�WR�HPSOR\�-RKQ�
'HZH\¶V�WKHRU\�RI�LQTXLU\��'HZH\��������+LFNPDQ��������WR�WKHLU�SUREOHP�VROYLQJ�HIIRUWV��
'HZH\�FKDUDFWHUL]HG�NQRZOHGJH�DV�D�SURGXFW�RI�WKH�DFWLYLWLHV�D�VWXGHQW�DFWLYHO\�HQJDJHV�LQ�ZKHQ�
HQFRXQWHULQJ�QRQ�URXWLQH�SUREOHPV��7KHVH�DFWLYLWLHV�LQYROYH�VWUDWHJLFDOO\�LGHQWLI\LQJ�PHQWDO�
WRROV�ZLWK�ZKLFK�WR�PDNH�VHQVH�RI�WKH�SUREOHP��WHVWLQJ�WKDW�WRRO�LQ�WKH�FRQWH[W�RI�WKH�SUREOHP��
DQG�XWLOL]LQJ�WKH�WRRO�WR�FODULI\�WKH�SUREOHPDWLF�VLWXDWLRQ�LQ�VRPH�ZD\�IRU�WKH�VWXGHQW��1HZ�
NQRZOHGJH�HPHUJHV�WKURXJK�WKH�GLDOHFWLF�LQWHUSOD\�EHWZHHQ�DSSOLFDWLRQ�RI�WKH�WRRO�DJDLQVW�WKH�
SUREOHP�DQG�HYDOXDWLRQ�DQG�UHILQHPHQW�RI�WKH�WRRO�DJDLQVW�WKH�SHUFHLYHG�SURJUHVV��:LWK�WKLV�
LQWHUSUHWDWLRQ�RI�OHDUQLQJ�LQ�PLQG��ZH�ZLOO�FODVVLI\�DQ�LQWHUSUHWDWLRQ��L�H��WRRO��RI�WKH�GHILQLWH�
LQWHJUDO�DV�SURGXFWLYH�LI�LW�LV�SHUFHLYHG�E\�WKH�VWXGHQW�LQ�DGYDQFLQJ�WKHLU�SURJUHVV�WRZDUGV�
UHVROYLQJ�D�SUREOHPDWLF�VLWXDWLRQ��:H�QRWH�WKDW�D�SURGXFWLYH�LQWHUSUHWDWLRQ�QHHG�RQO\�FODULI\�WKH�
VLWXDWLRQ�IRU�WKH�VWXGHQW�DQG�GRHV�QRW�KDYH�WR�EH�FRQVLVWHQW�ZLWK�WKH�UHVHDUFKHUV¶�RZQ�YLHZV�IRU�
UHVROYLQJ�WKH�SUREOHP��
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)RXU�SDLUV�RI�VWXGHQWV�ZHUH�VHOHFWHG�WR�SDUWLFLSDWH�LQ�DQ�KRXU�DQG�D�KDOI�ORQJ�LQWHUYLHZ�
IRFXVLQJ�RQ�SK\VLFV�DSSOLFDWLRQV�RI�WKH�GHILQLWH�LQWHJUDO��7KH�FKRLFH�WR�ZRUN�ZLWK�SDLUV�UDWKHU�
WKDQ�LQGLYLGXDO�LQWHUYLHZV�ZDV�PDGH�VR�VWXGHQWV�FRXOG�GLVFXVV�WKHLU�LGHDV�ZLWK�HDFK�RWKHU��UDWKHU�
WKDQ�DQ�DXWKRULW\�ILJXUH��7KH�VWXGHQWV�ZHUH�HQFRXUDJHG�WR�GLVFXVV�WKHLU�WKLQNLQJ�DORXG�ZKLOH�
ZRUNLQJ�WKURXJK�SUREOHPV�RQ�D�ZKLWHERDUG�XQWLO�WKH\�ZHUH�VDWLVILHG�ZLWK�WKHLU�VROXWLRQ��DIWHU�
ZKLFK�WKH�LQWHUYLHZHUV�ZRXOG�DVN�IROORZ�XS�TXHVWLRQV�WR�FODULI\�DQ\�QRWHV�PDGH�GXULQJ�WKH�
HQFRXQWHU���

%HFDXVH�RXU�VWXG\�VHHNV�WR�XQGHUVWDQG�VWXGHQWV¶�SURJUHVV�EH\RQG�DQ�LQWHJUDQGuGLIIHUHQWLDO�
TXDQWLWDWLYH�UHODWLRQVKLS��LW�ZDV�LPSRUWDQW�WR�UHFUXLW�VWXGHQWV�ZKR�ZHUH�OLNHO\�DOUHDG\�IDPLOLDU�
ZLWK�WKH�0%6�FRQFHSWLRQ�GHVFULEHG�E\�-RQHV��$V�VXFK��*URXS�&�FRQVLVWHG�RI�D�VHQLRU�
XQGHUJUDGXDWH�DQG�VHFRQG�\HDU�PDVWHUV�VWXGHQW�ZKR�KDG�UHFHQWO\�WDNHQ�DQ�$GYDQFHG�&DOFXOXV�
FRXUVH��ZKLOH�WKH�UHPDLQLQJ�WKUHH�JURXSV��$��%��DQG�'��ZHUH�UHFUXLWHG�IURP�D�VHFRQG�VHPHVWHU�
FDOFXOXV�FRXUVH�LQ�ZKLFK�WKH�LQVWUXFWRU�XWLOL]HG�D�FDOFXOXV�FXUULFXOXP�HPSKDVL]LQJ�WKH�5LHPDQQ�
VXP�DSSURDFK�IRU�GHILQLWH�LQWHJUDOV�LQ�FODVVURRP�ODEV��2HKUWPDQ���������$IWHU�RXU�LQLWLDO�URXQG�
RI�LQWHUYLHZV��*URXS�%�ZDV�DVNHG�EDFN�IRU�D�VHFRQG�RQH�KRXU�LQWHUYLHZ�GXH�WR�WKH�VWUHQJWK�RI�
WKHLU�FROODERUDWLRQ�DQG�TXDOLW\�RI�GDWD�SURYLGHG��7KHVH�LQWHUYLHZV�ZHUH�YLGHR�WDSHG�DQG�ODWHU�
WUDQVFULEHG�IRU�FRGLQJ���

(DFK�JURXS�ZDV�ILUVW�DVNHG�WR�GLVFXVV�WKHLU�JHQHUDO�LQWHUSUHWDWLRQ�RI�D�GHILQLWH�LQWHJUDO��
IROORZHG�E\�D�VHULHV�RI�WDVNV�FKRVHQ�WR�UHYHDO�WKHLU�UHDVRQLQJ�ZKLOH�PRGHOLQJ�GHILQLWH�LQWHJUDOV�DV�
WKH\�SURJUHVVHG�IURP�VLPSOH�UDWHuWLPH�FRQWH[WV�WR�VLWXDWLRQV�WKDW�REVFXUH�WKH�SURGXFW�VWUXFWXUH�RI�
D�GLIIHUHQWLDO�IRUP��)LJXUH�����7KH�LQWHQW�ZDV�WR�WUDFN�WKH�VWXGHQWV¶�RSHUDWLYH�LQWHUSUHWDWLRQV�RI�
WKH�GHILQLWH�LQWHJUDO��WKH�FRPSRQHQWV�WKDW�FRPSULVH�WKH�LQWHJUDO��WKH�TXDQWLWDWLYH�UHODWLRQVKLSV�
LQYROYHG�LQ�WKH�EDVLF�SK\VLFV�IRUPXODV��DQG�WKH�VWXGHQWV¶�SHUFHSWLRQ�RI�WKH�LQWHUFRQQHFWLRQ�
EHWZHHQ�WKHVH�FRQFHSWV��:H�DQWLFLSDWHG�PDQ\�VWXGHQWV�ZRXOG�DSSURDFK�VRPH�RI�WKH�VLPSOHU�
SUREOHPV�KHXULVWLFDOO\��DYRLGLQJ�UHDVRQLQJ�TXDQWLWDWLYHO\��EXW�WKDW�WKH�SURJUHVVLRQ�RI�WDVNV�ZRXOG�
UHTXLUH�DQ�HYHQWXDO�VKLIW�WR�DGGLQJ�XS�SLHFHV�LQ�SURJUHVVLYHO\�VRSKLVWLFDWHG�ZD\V�LQ�RUGHU�WR�EH�
VXFFHVVIXO��

�� :KHQ�IXOO\�ZRXQG��D�WR\�FDU�ZLOO�WUDYHO�LQ�D�VWUDLJKW�OLQH�IRU�MXVW�RYHU�ͳ͹�VHFRQGV��,WV�VSHHGݐ��VHFRQGV�DIWHU�LW�LV�UHOHDVHG�LVݒ�ሺݐሻ ൌ
͵ ��� ቀ ௧మ

ଵ଴଴ቁ݉ȀݏǤ�:ULWH�DQ�LQWHJUDO�WKDW�JLYHV�WKH�GLVWDQFH�WKH�IXOO\�ZRXQG�FDU�ZLOO�WUDYHO�GXULQJ�WKH�ILUVW�ͳͲ�VHFRQGV�LW�WUDYHOV��
�

�� /LQHDU�GHQVLW\�LV�D�PHDVXUH�RI�DQ�REMHFWV�PDVV�SHU�XQLW�OHQJWK��7KLV�PHDQV�IRU�H[DPSOH�LI�DQ�REMHFW�KDV�OHQJWK�͵Ǥʹ�IW�DQG�FRQVWDQW�
OLQHDU�GHQVLW\�RI�Ǥ ͷ�݈ܾȀ݂ݐ�LW�ZLOO�KDYH�D�WRWDO�PDVV�RI�ሺ͵ǤʹሻሺǤͷሻ ൌ ͳǤ͸������
.LQJ�$UWKXU
V�ODQFH�LV�ͳͲ�IHHW�ORQJ�DQG�KHDYLHU�DW�RQH�HQG��GHFUHDVLQJ�IURP�ͳǤʹ�݈ܾȀ݂ݐ�DW�WKH�EDVH�WR�ͲǤʹ�݈ܾȀ݂ݐ�DW�WKH�WLS��7KDW�LV��
WKH�OLQHDU�GHQVLW\ݔ��IHHW�IURP�WKH�EDVH�LVߜ�ሺݔሻ ൌ ͳǤʹ െ ͲǤͳݔ��:ULWH�DQ�LQWHJUDO�WKDW�JLYHV�WKH�PDVV�RI�.LQJ�$UWKXU
V�ODQFH��
 

�� :KHQ�SROOHQ�IURP�D�UHG�FHGDU�WUHH�LV�UHOHDVHG�IURP�WKHLU�FRQHV�LW�WUDYHOV�WKURXJK�WKH�DLU��3ROOHQ�IURP�D�PDWXUH�WUHH�VHWWOHV�RQ�WKH�
JURXQG�ZLWK�DQ�HVWLPDWHG�GHQVLW\�RIߜ�ሺݎሻ ൌ ଷ଻

ଵ଴ା௥ ݃Ȁ݉
ଶ�D�GLVWDQFHݎ��PHWHUV�IURP�WKH�WUHH���

:ULWH�DQ�LQWHJUDO�WKDW�JLYHV�WKH�PDVV�RI�SROOHQ�GLVWULEXWHG�ZLWKLQ�ͳͲͲ�PHWHUV�RI�D�PDWXUH�WUHH��
 

�� &RXORPE
V�ODZ�VD\V�WKDW�WKH�IRUFH�EHWZHHQ�WZR�HOHFWULFDOO\�FKDUJHG�SDUWLFOHV�LVܨ� ൌ ݇௘ ௤భ௤మ௥మ ��ZKHUH�݇௘�LV�&RXORPE
V�FRQVWDQW�
ሺ݇ଶ ൌ ͺǤͻͻ ൈ ͳͲଶଵܰ ڄ ݉ଶȀሺܥߤሻଶሻݍ��ଵ�DQGݍ�ଶ�DUH�WKH�FKDUJHV�RI�WKH�SDUWLFOHV�LQ�PLFURFRXORPEV�ሺܥߤሻ��DQGݎ��LV�WKH�GLVWDQFH�
EHWZHHQ�WKH�FKDUJHV��&RXORPE
V�ODZ�RQO\�GLUHFWO\�DSSOLHV�WR�WZR�SRLQW�FKDUJHV���

:ULWH�DQ�LQWHJUDO�WKDW�JLYHV�WKH�HOHFWURVWDWLF�IRUFH�EHWZHHQ�D�XQLIRUPO\�GLVWULEXWHG�FKDUJH�RI����PLFURFRXORPEV�RQ�D�URG�RI�OHQJWK�
��PHWHUV�DQG�D�SDUWLFOH�ZLWK�FKDUJH�RI���PLFURFRXORPEV���PHWHUV�IURP�WKH�URG�DORQJ�LWV�D[LV��
�

�� 7KH�HQHUJ\�PHDVXUHG�LQ�MRXOHV�WR�OLIW�DQ�REMHFW�VWUDLJKW�XS�K�PHWHUV�LVܧ� ൌ ܯ ڄ ݃ ڄ ݄��ZKHUHܯ���LV�WKH�PDVV�RI�WKH�REMHFW�PHDVXUHG�
LQ�݇݃��DQG�݃�LV�WKH�JUDYLWDWLRQDO�IRUFH�PHDVXUHG�LQ�݉Ȁݏଶ���
6XSSRVH�D����PHWHU�FKDLQ�ZLWK�D�WRWDO�XQLIRUP�PDVV�RI�ͳͷ݇݃�LV�IUHHO\�KDQJLQJ�IURP�WKH�URRI�RI�D�EXLOGLQJ��:ULWH�DQ�LQWHJUDO�WKDW�
UHSUHVHQWV�WKH�WRWDO�HQHUJ\�UHTXLUHG�WR�OLIW�WKH�FKDLQ�WR�WKH�WRS�RI�WKH�EXLOGLQJ� 

Figure 1��7DVN�6HTXHQFH� 
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*URXS�$�ZDV�RQO\�DEOH�WR�SURJUHVV�WKURXJK�WDVN����ZKLOH�WKH�UHPDLQLQJ�WKUHH�JURXSV�ZHUH�
DEOH�WR�DGYDQFH�WR�WKH�IRXUWK�WDVN�ZLWK�YDU\LQJ�OHYHOV�RI�VXFFHVV��7DVN���ZDV�FKRVHQ�DV�D�
VXSSOHPHQWDO�TXHVWLRQ�IRU�*URXS�%�WR�ZRUN�WKURXJK�GXULQJ�WKHLU�VHFRQG�LQWHUYLHZ�VHVVLRQ�DQG�
ZDV�QRW�SUHVHQWHG�WR�DQ\�RWKHU�JURXS���

7KH�YLGHR�WUDQVFULSWLRQV�ZHUH�FRGHG�XVLQJ�RSHQ�DQG�D[LDO�FRGLQJ�PHWKRGV�RI�JURXQGHG�
WKHRU\��6WUDXVV�	�&RUELQ���������%HFDXVH�ZH�ZHUH�LQWHUSUHWLQJ�WKLV�GDWD�WKURXJK�WKH�OHQV�RI�
'HZH\¶V�WKHRU\�RI�LQTXLU\��WKH�LQLWLDO�FRGLQJ�SDVV�VRXJKW�WR�LGHQWLI\�SUREOHPDWLF�VLWXDWLRQV�IRU�
VWXGHQWV��LQ�WKH�VHQVH�RI�QRQ�URXWLQH�HQJDJHPHQW�DQG�UHFLSURFDO�LQIOXHQFHV�RI�WKHLU�HYROYLQJ�
FRQFHSWLRQV�IRU�GHILQLWH�LQWHJUDOV�DQG�EDVLF�PRGHOV�ZLWK�WKHLU�XQGHUVWDQGLQJ�RI�WKH�PRGHOLQJ�
WDVNV��$IWHU�WKHVH�LQVWDQFHV�ZHUH�LGHQWLILHG��HDFK�ZDV�EURDGO\�FRGHG�IRU�DOO�FRJQLWLYH�WRROV�
XWLOL]HG��REYLRXV�UHODWLRQVKLSV�WR�SUHYLRXV�UHVHDUFK��DQG�DQ\�VSHFLILF�WRROV�ZKLFK�OHDG�WR�
SURGXFWLYH�UHVXOWV��6XEVHTXHQW�FODVVLILFDWLRQV�ORRNHG�WR�LGHQWLI\�DVVRFLDWLRQV�EHWZHHQ�WKHVH�
FRGHV�ERWK�WKURXJKRXW�D�VSHFLILF�LQWHUYLHZ��DV�ZHOO�FRPPRQ�WKHPHV�DPRQJVW�WKH�GLIIHUHQW�JURXSV�
WR�GHYHORS�D�QDUUDWLYH�UHJDUGLQJ�VWXGHQWV¶�FRQFHSWXDOL]DWLRQV�RI�WKHVH�GHILQLWH�LQWHJUDOV��&RPPRQ�
SUREOHPDWLF�VLWXDWLRQV�DQG�WRROV�ZKLFK�OHG�WR�SURGXFWLYH�UHVXOWV�ZHUH�LGHQWLILHG�DQG�WKH�
LQIRUPDWLRQ�ZDV�V\QWKHVL]HG�LQWR���GHILQLQJ�FKDUDFWHULVWLFV�RI�SURGXFWLYH�PRGHOLQJ�RI�WKH�
GHILQLWH�LQWHJUDO��$GGLQJ�XS�3LHFHV��4XDQWLWDWLYH�5HDVRQLQJ��DQG�8WLOL]DWLRQ�RI�³QHDUO\�FRQVWDQW�´��
ZKLFK�ZLOO�EH�GLVFXVVHG�LQ�WKH�IROORZLQJ�VHFWLRQ��
�

5HVXOWV�
�

$GGLQJ�XS�3LHFHV�
(FKRLQJ�SUHYLRXV�UHVHDUFK��RXU�ILQGLQJV�VXJJHVW�WKDW�FRQFHSWXDOL]LQJ�D�GHILQLWH�LQWHJUDO�DV�D�

VXPPDWLRQ�DOORZV�IRU�VWXGHQWV�WR�PRGHO�SK\VLFV�HTXDWLRQV�LQ�D�ZD\�FRQVLVWHQW�ZLWK�ERWK�
PDWKHPDWLFDO�DQG�SK\VLFV�HQJLQHHULQJ�FRQVWUXFWV��+RZHYHU��RXU�LQWHUSUHWDWLRQ�RI�DGGLQJ�XS�
SLHFHV�GLIIHUV�VOLJKWO\�IURP�WKDW�RI�SUHYLRXV�UHVHDUFK�DV�ZH�DOORZ�IRU�LQWHJUDWLRQ�RI�TXDQWLWDWLYH�
UHODWLRQVKLSV�PRUH�FRPSOH[�WKDQ�WKH�WUDGLWLRQDO�݂ሺݔሻ ڄ ��VWUXFWXUH��'XH�WR�WKH�QDWXUH�LQ�ZKLFKݔ�
ZH�UHFUXLWHG�RXU�VXEMHFWV��DOO�SDLUV�GHPRQVWUDWHG�DW�OHDVW�VRPH�XQGHUO\LQJ�5LHPDQQ�VXP�VWUXFWXUH�
IRU�WKH�GHILQLWH�LQWHJUDO��*URXS�$�VKRZHG�WKH�ZHDNHVW�FRUUHODWLRQ�EHWZHHQ�5LHPDQQ�VXPV�DQG�
GHILQLWH�LQWHJUDOV��RIWHQ�UHO\LQJ�RQ�DUHD�XQGHU�WKH�FXUYH�V\PEROLF�IRUPV�RU�JUDSKLFDO�
LQWHUSUHWDWLRQV��DOWKRXJK�ZKHQ�SUHVVHG�WKH\�FRXOG�GHVFULEH�WKHVH�LQWHUSUHWDWLRQV�LQ�WKH�FRQWH[W�RI�
UHSUHVHQWDWLYH�UHFWDQJOHV��-RQHV������������D���7KLV�ZHDN�FRQQHFWLRQ�WR�DGGLQJ�XS�SLHFHV�SOD\HG�
D�UROH�LQ�*URXS�$�RQO\�FRPSOHWLQJ�WZR�RI�WKH�WDVNV��DQG�RQO\�WKH�ILUVW�FRPSOHWHO\�FRUUHFWO\��
�
4XDQWLWDWLYH�5HDVRQLQJ��

$VLGH�IURP�WKH�DGGLQJ�XS�SLHFHV�FRQFHSWXDOL]DWLRQ��TXDQWLWDWLYH�UHDVRQLQJ�LV�SHUKDSV�WKH�
PRVW�FUXFLDO�DVSHFW�RI�PRGHOLQJ�GHILQLWH�LQWHJUDOV��7KRPSVRQ��������������7KRPSVRQ�	�
6LOYHUPDQ���������:LWKLQ�WKH�FRQVWUXFW�RI�D�GHILQLWH�LQWHJUDO�ZKLFK�LV�FRPSULVHG�RI�D�QRQ�URXWLQH�
TXDQWLW\��WKHUH�DUH�PXOWLSOH�OD\HUV�RI�TXDQWLWDWLYH�UHDVRQLQJ�D�VWXGHQW�PXVW�QDYLJDWH��)LUVW��WKH�
VWXGHQW�PXVW�DWWHQG�WR�WKH�TXDQWLWDWLYH�UHODWLRQVKLS�RI�WKH�GHILQLWH�LQWHJUDO�LWVHOI��:LWKLQ�WKDW�
VWUXFWXUH�WKH�VWXGHQW�PXVW�DOVR�DWWHQG�WR�WKH�UHODWLRQVKLS�EHWZHHQ�WKH�LQWHJUDQG�DQG�GLIIHUHQWLDO��
&HUWDLQ�FRQWH[WV�OHQG�WKHPVHOYHV�WR�REYLRXV�UHODWLRQVKLSV��VXFK�DV�7DVNV���DQG����KRZHYHU��WKH�
PRUH�FRPSOLFDWHG�VWUXFWXUHV�KDYH�\HW�DQRWKHU�TXDQWLWDWLYH�UHODWLRQVKLS�OD\HU��KRZ�WKH�GLIIHUHQWLDO�
LV�VLWXDWHG�ZLWKLQ�D�TXDQWLWDWLYH�IRUPXOD��,Q�7DVN���WKLV�H[WUD�FRQVLGHUDWLRQ�GLG�QRW�SURYH�RYHUO\�
GLIILFXOW�IRU�PRVW�JURXSV��KRZHYHU��LQ�7DVN���LW�FDXVHG�QXPHURXV�SUREOHPDWLF�HQFRXQWHUV�IRU�WKH�
VWXGHQWV�DQG�UHTXLUHG�VLJQLILFDQW�HIIRUW�WR�UHVROYH��:H�QRWH�WKDW�WKHUH�DUH�RIWHQ�PXOWLSOH�ZD\V�WR�
UHDVRQ�DERXW�WKH�EDVLF�PRGHO�ZLWKLQ�D�GHILQLWH�LQWHJUDO�TXDQWLWDWLYHO\��)LJXUH���GLVSOD\V�WKUHH�
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GLIIHUHQW�ZD\V�LQ�ZKLFK�JURXS�%�FRQFHSWXDOL]HG�7DVN���GXULQJ�WKHLU�VHFRQG�LQWHUYLHZ��WKH�WRS�
WZR�ZHUH�VLPXOWDQHRXVO\�PRGHOHG�E\�HDFK�VWXGHQW�LQGLYLGXDOO\�ZKLOH�GLVFXVVLQJ�WKH�SUREOHP�
UHODWLYHO\�IOXHQWO\�ZLWK�RQH�DQRWKHU��,Q�OLJKW�RI�WKLV�HQFRXQWHU��ZH�FRQMHFWXUH�WKDW�VWXGHQWV�QHHG�
QRW�FRQFHSWXDOL]H�WKH�TXDQWLWDWLYH�UHODWLRQVKLS�ZLWKLQ�D�EDVLF�PRGHO�LQ�D�VSHFLILF�ZD\�WR�EH�
SURGXFWLYH�LQ�PRGHOLQJ�D�GHILQLWH�LQWHJUDO��5DWKHU�WKH�LPSRUWDQFH�OLHV�LQ�DWWHQGLQJ�WR�WKH�
TXDQWLWLHV�WKDW�FRPSULVH�D�JLYHQ�IRUPXOD�DQG�LGHQWLI\LQJ�WKHLU�UHODWLRQVKLS�WR�HDFK�RWKHU�LQ�D�
PHDQLQJIXO�ZD\��ZKLOH�VLPXOWDQHRXVO\�FRQVLGHULQJ�DQ\�XQGHUO\LQJ�LPSOLFDWLRQV�RI�WKH�EDVLF�
PRGHO��VXFK�DV�WKH�PXOWLSOLFDWLYH�VWUXFWXUH�GLVWDQFH� �VSHHG�u�WLPH�LV�RQO\�YDOLG�ZKHQ�VSHHG�LV�
FRQVWDQW���
�
8WLOL]DWLRQ�RI�³1HDUO\�&RQVWDQW´�

�,Q�HDFK�RI�WKH�SUREOHPV�SUHVHQWHG�WKHUH�LV�DQ�XQGHUO\LQJ�EDVLF�PRGHO�ZKLFK�KROGV�IRU�

FRQVWDQW�YDOXHV��(YHU\�JURXS�XVHG�WKHVH�IRUPXODV�DV�D�SDUW�RI�WKHLU�ILQDO�LQWHJUDO�VWUXFWXUHV��

DVVHUWLQJ�WKDW�WKH�UHDVRQ�\RX�PXVW�LQWHJUDWH�LV�WKDW�DW�OHDVW�RQH�RI�WKH�TXDQWLWLHV�LQ�TXHVWLRQ�LV�
Figure 3��*URXS�&�GLVFXVVHV�³QHDUO\�XQLIRUP´�GHQVLW\�LQ�7DVN��� 

Figure 2��7KUHH�TXDQWLWDWLYH�UHODWLRQVKLSV�GHPRQVWUDWHG�E\�JURXS�%�LQ�7DVN��� 

%��6R��EHFDXVH�WKH�GHQVLW\�RI�SROOHQ�LV�QRW�XQLIRUPO\�GLVWULEXWHG�\RX�KDYH�
WR�ILQG��\RX�KDYH�WR�ILQG�ZKDW�WKH�GHQVLW\�LV�SROOHQ�LV�DW�HYHU\�GLIIHUHQWݎ���
$QG�LW
V�UHDOO\��LW
V�VLPLODU�ZKHUH�WZRݎ�
V�DUH�UHDOO\�VLPLODU��6R�\RXU�݀ݎ�LV�
\RXU�FKDQJH�LQ�WKDWݎ���DQG�ZLWKLQ�WKLV�UDQJH�WKH�GHQVLW\�LV�JRQQD�EH�UHDOO\�
VLPLODU�EXW�LI�\RX�MXVW�VD\�PXOWL��SXW�WKDW�SOXJJHG�LQ�WR�����\RX
G�EH�
DVVXPLQJ�XQLIRUP�GHQVLW\�RYHU�WKH�ZKROH�FLUFOH�ZKLFK�ZRXOG�EH�
LQFRUUHFW���
�
$��<HDK��
�
,��$OULJKW�VR�HDUOLHU�\RX�VDLG�WKH�ʹݎߨ�LV�WKH�FLUFXPIHUHQFH��6R�ZK\�
FLUFXPIHUHQFH"�,W�KDV�DUHD�XQGHUQHDWK�LW��VR�ZK\�FLUFXPIHUHQFH"�
�
%��8K��VR�\RX�KDYH�WKH�FLUFXPIHUHQFH�EHFDXVH�WKDW
V�WKH�GLVWDQFH�DURXQG�
WKH�FLUFOH��ZKLFK�ZKHQ�\RX�FXW�WKH�FLUFOH�DQG�VSUHDG�LW�RXW�DQG�PDNH�LW�
LQWR�D�UHFWDQJOH�WKDW�ZRXOG�EH�WKH�OHQJWK�RI�WKH�UHFWDQJOH��%XW�LQ�RUGHU�WR�
JHW�DQ�DUHD�\RX�KDYH�WR�PXOWLSO\�D�UHFWDQJOH�OHQJWK�WLPHV�LWV�ZLGWK��$QG�
\RXU�ZLGWK�ZRXOG�EH�\RXU�݀ݎ�ZKLFK�LV�\RXU�FKDQJH�LQݎ��ZKLFK�LV�D�YHU\�
VPDOO�QXPEHU�ZKHUH�WKH�GHQVLW\�LV�QHDUO\�XQLIRUP��
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YDU\LQJ��(YHU\�SDLU�DUWLFXODWHG�VRPH�IRUP�RI�MXVWLILFDWLRQ�IRU�ZK\�WKH\�XVH�WKH�IRUPXOD�IRU�D�
³QHDUO\�FRQVWDQW´�VHJPHQW��DV�VKRZQ�LQ�)LJXUH�����

)RU�PDQ\�SDLUV��LQVHUWLQJ�WKH�JLYHQ�IRUPXOD�LQWR�WKH�LQWHJUDO�GXULQJ�WKH�ILUVW�IHZ�WDVNV�ZDV�D�
URXWLQH�SURFHGXUH�WKDW�RQO\�EHFDPH�SUREOHPDWLF�DQG�VXEVHTXHQWO\�MXVWLILHG�ZKHQ�TXHVWLRQHG�E\�
WKH�LQWHUYLHZHUV��7KLV�ZDV�HVSHFLDOO\�HYLGHQW�LQ�7DVN����ZKHUH�HYHU\�JURXS�PDGH�UHIHUHQFH�WR�WKH�
UHODWLRQVKLS�WKDW�YHORFLW\�LV�WKH�GHULYDWLYH�RI�SRVLWLRQ��+RZHYHU��ZKHQ�SUHVVHG��PRVW�JURXSV�ZHUH�
DEOH�WR�LGHQWLI\�WKDW�RYHU�D�VPDOO�GXUDWLRQ�RI�WLPH��VSHHG�ZDV�EDVLFDOO\�FRQVWDQW��ZKLFK�DOORZHG�
IRU�D�FRQILGHQW�H[SODQDWLRQ�RI�WKH�UROH�RI�WKH�GLIIHUHQWLDO�ZLWKLQ�WKH�LQWHJUDO��7KLV�MXVWLILFDWLRQ�RI�
SURFHVV��ZKLFK�ZDV�HYLGHQW�LQ�HDUO\�WDVNV��ZDV�QRW�DV�SUHYDOHQW�LQ�WKH�GDWD�IRU�7DVN����,QVWHDG�
WKHUH�ZDV�D�VKLIW�RI�IRFXV�WR�³ZKDW¶V�FKDQJLQJ�´�ZKLFK�OHG�WR�PDQ\�XQSURGXFWLYH�HQFRXQWHUV�DQG�
LQ�RQH�FDVH�OHG�WR�GLYLGLQJ�E\�WKH�GLIIHUHQWLDO��)LJXUH������

*URXS�%�GHPRQVWUDWHG�D�VWURQJ�DGGLQJ�XS�SLHFHV�FRQFHSWLRQ�DQG�TXDQWLWDWLYH�UHDVRQLQJ�VNLOOV�
LQ�DOO�SUHYLRXV�WDVNV��DQG�ZHUH�IOXLGO\�VSHDNLQJ�DERXW�EUHDNLQJ�XS�WKH�URG�LQ�7DVN���LQWR�
VHJPHQWV�DQG�DGGLQJ�IRUFHV�WRJHWKHU�WR�REWDLQ�D�WRWDO�IRUFH��6R�LQ�DOO�RWKHU�DVSHFWV�WKH\�ZHUH�
FRQFHSWXDOL]LQJ�WKLV�GHILQLWH�LQWHJUDO�LQ�ZD\V�FRPSDWLEOH�ZLWK�FXUUHQW�UHVHDUFK��+RZHYHU��WKH�
GHVLUH�WR�ILQG�WKH�PRYLQJ�SDUW�RI�WKH�HTXDWLRQ�SHUPHDWHG�WKHLU�UHDVRQLQJ��KLQGHULQJ�DGYDQFHPHQW��
$OWKRXJK�YHU\�SUREOHPDWLF�IRU�WKH�VWXGHQWV��WKH�UHVROXWLRQ�RI�WKLV�LQWHUSUHWDWLRQ�ZDV�RQO\�SRVVLEOH�
WKURXJK�DQ�LQWHUYLHZHU¶V�LQWHUYHQWLRQ��,W�LV�SRVVLEOH�WKDW�DQ�H[WUD�OD\HU�RI�DEVWUDFWLRQ�SURYLGHG�
DGGLWLRQDO�GLIILFXOWLHV�IRU�WKLV�SDLU��DV�WKHLU�LQLWLDO�SUREOHP�FRQWDLQHG�QR�VSHFLILF�TXDQWLWLHV��
1XPHULFDO�TXDQWLWLHV�ZHUH�SURYLGHG�KDOIZD\�WKURXJK�WKHLU�HQFRXQWHU�ZLWK�WKLV�SUREOHP�DQG�WKH�
WDVN�ZDV�XSGDWHG�WR�UHIOHFW�VSHFLILF�YDOXHV�IRU�IXWXUH�LQWHUYLHZV���

�
�
�
�
�
�
�
�
�
�
��
�
)DPLOLDULW\�RI�FRQWH[W�

$OWKRXJK�QRW�FKDUDFWHUL]HG�DV�SURGXFWLYH��DQG�SHUKDSV�XQVXUSULVLQJ��WKH�XQIDPLOLDU�FRQWH[W�
DQG�TXDQWLWLHV�RI�HOHFWURVWDWLF�IRUFH�SURYHG�SUREOHPDWLF�IRU�WKH�VWXGHQWV�LQ�WKLV�VWXG\��(YHU\�
JURXS�WKDW�DWWHPSWHG�WKLV�WDVN�UHTXLUHG�DW�OHDVW�VRPH�FODULILFDWLRQ�RI�&RXORPE¶V�ODZ���7KH�PRUH�
WURXEOHVRPH�FRPSOLFDWLRQ�DURVH�ZKHQ�WKH�JURXSV�WULHG�WR�FRQFHSWXDOL]H�WKH�DGGLQJ�XS�SURFHVV�
WKDW�ZRXOG�QHHG�WR�WDNH�SODFH�LI�WKH\�ZHUH�WR�LQWHJUDWH��8QIDPLOLDU�ZLWK�WKH�SULQFLSOH�RI�
VXSHUSRVLWLRQ��WZR�RI�WKH�JURXSV�HQYLVLRQHG�WKH�LQWHJUDO�QHHGLQJ�WR�DFFRXQW�IRU�IRUFHV�
FRPSRXQGLQJ�XSRQ�RQH�DQRWKHU�DV�WKH�LQWHJUDQG�UDQJHG�RYHU�LWV�GRPDLQ��$Q�H[DPSOH�RI�WKLV�LV�
VKRZQ�LQ�)LJXUH����

%HFDXVH�VWXGHQWV¶�ODFN�RI�IDPLOLDULW\�ZLWK�VXSHUSRVLWLRQ�RI�IRUFHV�ZDV�QRW�LQWHQGHG�WR�
LQWURGXFH�FRPSOLFDWLRQV��RQH�RI�WKH�LQWHUYLHZHUV�VWHSSHG�LQ�WR�SURYLGH�WKH�VXSSOHPHQWDU\�
H[SODQDWLRQ��7KLV�ILQGLQJ�HFKRHV�0HUHGLWK�DQG�0DUURQJHOOH¶V������DVVHUWLRQ�WKDW�³XQGHUVWDQGLQJ�
RI�WKH�SK\VLFDO�VLWXDWLRQ�LV�QHFHVVDU\��EXW�QRW�VXIILFLHQW�IRU�VWXGHQWV�WR�XVH�WKHLU�PDWKHPDWLFDO�
UHVRXUFHV´���

-��$QG�WKHQ�ZH�KDYH���RYHUݏ�ଶǡ�WKDW
V�ZKDW�LV�FKDQJLQJݏ��ଶ"�
�
0��<HDK��
�
-��6R�ZH�QHHG�WR�FKDQJH�WKDW�WR�ሺݏ ൅ ݈݀ሻଶ��
�
0��<HV��FDXVHݏ��LV�WKH�GLVWDQFH�DQG�WKH�IRUPXOD�MXVW�KDV�GLVWDQFH�
VTXDUHG��,�WKLQN�WKDW
V�LW��EXW����WKDW�GRHVQ
W�ORRN�OLNH�DQ�LQWHJUDO�WR�PH��
�
-��<HDK��݈݀
V�GRZQ�WKHUH�DQG�LW
V�VTXDUHG��7KDW
V�QRW�QRUPDO��

Figure 4��*URXS�%�GLYLGLQJ�E\�WKH�GLIIHUHQWLDO�LQ�7DVN��� 
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�

�
'LVFXVVLRQ�

�
7KH�UHVXOWV�RI�WKLV�VWXG\�LOOXVWUDWH�WKUHH�NH\�LQWHUSUHWDWLRQV�RI�WKH�GHILQLWH�LQWHJUDO��DGGLQJ�XS�

SLHFHV��TXDQWLWDWLYH�UHDVRQLQJ��DQG�DWWHQWLRQ�WR�WKH�TXDQWLW\�ZKLFK�LV�QHDUO\�FRQVWDQW��ZKLFK�ZH�
KDYH�LGHQWLILHG�DV�FUXFLDO�IRU�VXFFHVVIXO�PRGHOLQJ�RI�QRW�RQO\�PXOWLSOLFDWLYH�EDVLF�PRGHOV�EXW�
DOVR�PRUH�JHQHUDO�EDVLF�PRGHOV�IRXQG�LQ�PDQ\�SK\VLFV�DQG�HQJLQHHULQJ�FRQWH[WV��:KLOH�
GLVFXVVHG�VHSDUDWHO\��WKHVH�GLIIHUHQW�WKHPHV�DUH�RIWHQ�LQWHUUHODWHG�DQG�UHTXLUH�WKH�VWXGHQW�WR�
FRRUGLQDWH�VXEWOH�LQWHUSOD\�EHWZHHQ�WKHP��)RU�H[DPSOH��WKH�GHFLVLRQ�WR�EUHDN�D�VLWXDWLRQ�LQWR�
PXOWLSOH�SLHFHV�WR�FUHDWH�D�5LHPDQQ�VXP�LQWHUDFWV�ZLWK�WKHLU�FRQFHSWLRQ�RI�YDULDEOH�DQG�FRQVWDQW�
TXDQWLWLHV�LQ�WKH�EDVLF�PRGHO�DQG�ZLWK�WKHLU�FRQFHSWLRQV�RI�WKH�GHILQLWH�LQWHJUDO��$V�LQ�SUHYLRXV�
UHVHDUFK��ZH�IRXQG�WKH�DGGLQJ�XS�SLHFHV�FRQFHSWLRQ�RI�WKH�GHILQLWH�LQWHJUDO�KLJKO\�SURGXFWLYH�IRU�
VWXGHQWV��KRZHYHU��ZKHQ�SDLUHG�ZLWK�WKH�PRUH�FRPSOH[�EDVLF�PRGHO�WKHUH�DUH�DGGLWLRQDO�OD\HUV�RI�
WKLV�FRQVWUXFW�IRU�WKH�VWXGHQW�WR�ZRUN�WKRXJK��,W�PD\�EH�FOHDU�WKDW�WKH�LQWHJUDO�ZLOO�DGG�XS�VPDOO�
FKXQNV�RI�WKH�EDVLF�PRGHO�WR�REWDLQ�WKH�GHVLUHG�WRWDO��ZKLOH�WKH�TXDQWLWDWLYH�UHDVRQLQJ�EHKLQG�
EUHDNLQJ�XS�WKH�SK\VLFDO��RU�DEVWUDFW��VLWXDWLRQ�WR�REWDLQ�WKHVH�VPDOO�FKXQNV�FDQ�UHPDLQ�
SUREOHPDWLF�IRU�VWXGHQWV��7R�RYHUFRPH�WKLV�GLIILFXOW\��VWXGHQWV�PXVW�EH�DEOH�WR�DWWHQG�WR�KRZ�WKH�
FRQFHSW�RI�D�VPDOO�FKXFN�EHLQJ�³QHDUO\�FRQVWDQW´�DOORZV�IRU�WKH�XVH�RI�LQWHJUDWLRQ�RI�WKH�EDVLF�
PRGHO��ZKLFK�FDQ�VXSSRUW�WKHLU�GHFLVLRQ�RI�KRZ�DQG�ZK\�WKH\�DUH�EUHDNLQJ�XS�WKH�VLWXDWLRQ�LQWR�
VPDOOHU�FRQVWUXFWV���

%DVHG�RQ�WKH�GDWD�FROOHFWHG�LQ�WKLV�SDSHU��DQG�WKH�FDOO�IRU�PRGHOLQJ�RI�GHILQLWH�LQWHJUDOV�LQ�WKH�
RWKHU�67(0�ILHOGV��LW�LV�RXU�FRQWHQWLRQ�WKDW�-RQHV¶������D��0%6�FRQFHSWLRQ�RI�WKH�GHILQLWH�
LQWHJUDO�FDQ�EH�SURGXFWLYHO\�H[WHQGHG�WR�D�4XDQWLWDWLYHO\�%DVHG�6XPPDWLRQ�FRQFHSWLRQ��4%6��
IRU�WKH�GHILQLWH�LQWHJUDO��RI�ZKLFK�WKH�0%6�FRQFHSWLRQ�ZRXOG�EH�DQ�RIWHQ�XWLOL]HG�VXEVHW���6LPLODU�
WR�WKH�0%6�FRQFHSWLRQ��WKLV�LQWHUSUHWDWLRQ�RI�WKH�GHILQLWH�LQWHJUDO�LQ�D�4%6�LV�LQFRUSRUDWHG�LQWR�D�
5LHPDQQ�VXP�DSSURDFK�WR�WKH�GHILQLWH�LQWHJUDO��EXW�UHTXLUHV�IRFXV�RQ�WKH�ULFK�TXDQWLWDWLYH�
UHDVRQLQJ�DERXW�WKH�EDVLF�PRGHO�DQG�WUDQVIHUUHG�LQ�IOH[LEOH�ZD\V�WR�WKH�GLIIHUHQWLDO�IRUP�IRU�WKH�
GHILQLWH�LQWHJUDO��� �

-��)URP�ZKDW�,�FDQ�XQGHUVWDQG��WKH�IXQFWLRQ�WKDW�WKH\�JDYH�XV��݂��OLNH�WKLV�LV�MXVW�RQH�PHPEHU�WKDW�ZH�ZRXOG�JHW��7KLV�LV�WKH�IRUFH�
EHWZHHQ�WKHVH�WZR�SDUWV�>SRLQWV�WRZDUGV�D�GLDJUDP�H[SODLQLQJ�&RXORPEV�/DZ@��2YHU�KHUH�ZH�KDYH�D�IRUFH�EHWZHHQ�WKHVH�WZR�SDUWV��DQG�
WKHQ�D�IRUFH�EHWZHHQ�WKHVH�WZR�SDUWV��DQG�D�IRUFH�EHWZHHQ�WKHVH�WZR�SDUWV��DQG�ZH
UH�DGGLQJ�DOO�RI�WKRVH�IRUFHV�WRJHWKHU��
�
0��8KKK����
�
-��,W
V�NLQG�RI�OLNH�WKH�RWKHU�RQHV�ZH�ZHUH�GRLQJ��LW
V�OLNH��WKH�WKLQJ�WKDW
V�FKDQJLQJ�LV�WKH�IRUFHV�DQG�WKDW
V�ZKDW�ZH
UH�DGGLQJ�WRJHWKHU��
�
0��<HDK���>ODXJKV@�EXW����,�GRQ
W�NQRZ��,W�GRHVQ
W�PDNH�VHQVH�WR�PH�WKDW�LW�GRHVQ
W�OLNH�FRPSRXQG��\RX�NQRZ"�
�
-��&RPSRXQG"�
�
0��:HOO�FDXVH�ZRXOGQ
W�WKH�FKDUJH�RI�WKLV�EH�OLNH��OLNH�ULJKW�KHUH�KDYH�WKDW�SOXV�DOO�RI�WKLV�>SRLQWV�WR�WKH�IDU�HQG�DQG�WKHQ�PRWLRQV�DFURVV�
WKH�IXOO�OHQJWK�RI�WKH�URG@��:RXOGQ
W�WKDW�KDYH�����
�
-��2KKKK� �
�
0��7KDW
V�ZK\�,�ZDV�VD\LQJ�LI�LW�ZDV�PRYLQJ�LW�ZRXOG�EH�HDVLHU��%HFDXVH�WKHQ�\RX
UH�ORRNLQJ�
DW�WKLV�DQG�WKHQ�QRWKLQJ�EXW�VSDFH��%XW�\RX
UH�ORRNLQJ�DW�WKLV�>SRLQWV�WR�WKH�WKLUG�VXEVHFWLRQ@�
DQG�WKHQ�OLNH�WKDW�OLWWOH�SDUW�>PRWLRQV�WR�WKH�WZR�VXEVHFWLRQV�SUHFHGLQJ�WKH�WKLUG�VXEVHFWLRQ@��
�
-��,�JHW�ZKDW�\RX
UH�VD\LQJ��6R�LV�LW�OLNH�D�GRXEOH�LQWHJUDO"��
�
0��>ZKLVSHUV@�,�GRQ
W�NQRZ���

Figure 5��*URXS�%�GLVFXVVLQJ�FRPSRXQGLQJ�IRUFH��
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$FNQRZOHGJPHQW�
�
7KLV�PDWHULDO�LV�EDVHG�XSRQ�ZRUN�VXSSRUWHG�E\�WKH�1DWLRQDO�6FLHQFH�)RXQGDWLRQ�XQGHU�
*UDQW�1XPEHUV�������������������DQG����������

�
5HIHUHQFHV�

�
'HZH\��-����������Logic-The theory of inquiry��5HDG�%RRNV�/WG��
'RXJKW\��/���0F/RXJKOLQ��(���	�YDQ�.DPSHQ��3����������:KDW�LQWHJUDWLRQ�FXHV��DQG�ZKDW�FXHV�

LQWHJUDWLRQ�LQ�LQWHUPHGLDWH�HOHFWURPDJQHWLVP��American Journal of Physics, 82������������������
+LEEHOHU��5����������(QJLQHHULQJ�0HFKDQLFV�'\QDPLFV��8SSHU�6DGGOH�5LYHU��1-��3HDUVRQ�3UHQWLFH�+DOO��
+LFNPDQ��/��$����������John Dewey's pragmatic technology��,QGLDQD�8QLYHUVLW\�3UHVV��
-RQHV��6��5����������8QGHUVWDQGLQJ�WKH�LQWHJUDO��6WXGHQWV¶�V\PEROLF�IRUPV��The Journal of Mathematical 

Behavior, 32���������������
-RQHV��6��5����������7KUHH�FRQFHSWXDOL]DWLRQV�RI�WKH�GHILQLWH�LQWHJUDO�LQ�PDWKHPDWLFV�DQG�SK\VLFV�FRQWH[WV��

Proceedings of the 17th special interest group of the Mathematical Association of America on 
research in undergraduate mathematics education. Denver, CO���

-RQHV��6��5�������D���$UHDV��DQWL�GHULYDWLYHV��DQG�DGGLQJ�XS�SLHFHV��'HILQLWH�LQWHJUDOV�LQ�SXUH�PDWKHPDWLFV�
DQG�DSSOLHG�VFLHQFH�FRQWH[WV��The Journal of Mathematical Behavior, 38���������

-RQHV��6��5�������E���Promoting student's construction and activation of the multiplicatively-based 
summation conception of the definite integral.�3DSHU�SUHVHQWHG�DW�WKH�3URFHHGLQJV�RI�WKH���WK�
DQQXDO�FRQIHUHQFH�RQ�UHVHDUFK�LQ�XQGHUJUDGXDWH�PDWKHPDWLFV�HGXFDWLRQ��3LWWVEXUJK��3$��

0HUHGLWK��'��&���	�0DUURQJHOOH��.��$����������+RZ�VWXGHQWV�XVH�PDWKHPDWLFDO�UHVRXUFHV�LQ�DQ�
HOHFWURVWDWLFV�FRQWH[W��American Journal of Physics, 76���������������
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We report a qualitative analysis of 14 undergraduate students’ experience in a semester long 
introduction to proof course. Half were mathematics majors. Our research aims to characterize, 
conceptually and empirically, students’ transition from a focus on computation to proof in 
mathematics. Our analysis focused on how students saw the course as different from prior 
courses, how they described their work in it, and whether being successful in the course required 
new or different learning activity of them. This approach—targeting students’ overall experience 
of the course—differs from prior research that has tracked students’ challenges, focused on their 
work on specific proof problems, and explored how to support and improve their work (e.g., 
Selden & Selden, 2003). Our work has promise for informing the design of transition to proof 
courses and how those courses are organized and taught. 

Key words: transition to proof, proof reasoning, students’ experience, qualitative analysis 

The Transition to Proof and Proving 

Many undergraduates experience difficulty in learning to prove mathematical propositions, 
including those who major in mathematics (Baker & Campbell, 2004; Moore, 1994; Selden, 
2012). For many, experience with proof prior to college is quite limited (Anderson, 1994; Jones, 
2000). Students’ prior competence (and interest) in mathematics is typically centered on 
producing accurate answers to easily recognized tasks—“exercises” in Schoenfeld’s terms 
(1992). That work involves recognizing specific types of such “problems” quickly and applying 
well-practiced procedures to solve them. These abilities do not support, and may interfere with 
students’ work to conceptualize, write, or evaluate proofs. In addition to differences in the 
didactical contract between computation-heavy courses like calculus and proof-intensive courses, 
Selden (2012) reports that students encounter many difficulties, including mastering logic and 
definition, generating and using examples and counterexamples, understanding concepts and 
theorems, and evaluating the arguments of others. In short, the transition to proof is complex and 
challenging, and much of students’ prior ability appears inadequate, if not problematic for 
addressing these challenges. 

Many mathematics departments have recognized this problem and experimented with 
different curricular and instructional approaches to support students’ entry into proof, including 
dedicated “transition to proof” courses. These typically focus on precision of language and 
notation, reasoning, and proof and sample accessible statements from numerous content domains 
to prove or disprove. But designing these courses is not a trivial task, and they have often shown 
limited positive effects (Selden & Selden, 2003; 2014). A crucial limitation effecting course 
design is that research has not systematically focused on the experience of students. Instead, 
course design and instructional decisions have often been shaped by assumptions about students, 
the kinds of challenges they face, and structures that support their learning. To begin to address 
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this limitation, we explored how students describe their experiences in one such “transition to 
proof” course. 

 
Conceptual Framework 

To explore students’ experience of the shift in mathematics work from producing answers to 
composing proofs, we drew on prior work in conceptualizing “experience” and “transition.” 
Smith and Star (2007) proposed that precollege students’ mathematical experience could be 
composed into four dimensions: Achievement, disposition, differences between prior and current 
mathematics work, and learning activity. Assessing change on these dimensions in turn 
supported grounded judgments of the significance/depth of students’ transitions. The present 
study built on this work in its focus on the following dimensions of students’ experience of the 
introduction to proof course: (1) The nature of the course and how it differed from prior courses, 
(2) the reasoning involved in proving, and (4) the learning activities that support success. The 
first and third dimensions correspond closely to Smith and Star’s (2007) dimensions of 
differences and learning activity. It also drew on that study’s use of student-constructed graphs to 
assess changes in students’ confidence.  

In analyzing the data we collected, we also found the constructivist focus on how prior 
resources are recruited to cope with new challenges productive, whether those resources prove 
effective or not (e.g., Smith, diSessa, & Roschelle, 1994). This perspective provided a frame for 
understanding how components of students’ experience and skill developed in more 
computationally-oriented mathematics work may be applied and reworked or adapted in the 
efforts to succeed in the quite different mathematical work of proof and proving. 
 

The Course & The Participants 

The 14 participants in the study were all graduates of a multi-section semester course 
designed to introduce them—both mathematics majors and not—to proof and proving. The 
mathematics department hoped that the course would support the success of both groups of 
students in upper-division courses that emphasize proof. The course introduces appropriate 
syntax and notation, basic concepts, and proof techniques before proof of “entry-level” 
statements from various content domains (e.g., linear algebra, real analysis, and number theory). 
The course pedagogy is not lecture-based. Instead instructors give short presentations and 
present proofs (or parts of proofs) before students spend substantial time working on proof tasks 
themselves, often in small groups. The course also includes elements of “flipped classrooms;” 
students read and answer basic comprehension questions prior to working on problems in class 
that draw on that content. Evaluation was primarily based on homework and exam grades (n = 3 
before the final). Students were required to use LaTeX to post their solutions to homework tasks, 
but their solutions on all exams were hand-written. 

We interviewed students in the summer after they completed the course. We invited all 110 
enrolled students from the prior semester to participate; 17 (~15%) responded positively, and 14 
(~13%) completed an hour-long interview about their experience, which were audiotaped for 
analysis. Nine students were male and five were female; three were international students. The 
sample was diverse by major. Six were mathematics majors; two others were majoring in 
actuarial science. In addition, we interviewed mechanical engineering, chemistry, packaging, 
biology, and economics majors. Two of those were pursuing dual majors. Most of the other 
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“non-math” majors were pursuing minors in mathematics where the course was a requirement. 
Table 1 provides an overview of the sample, including their final grades. 

 
Table 1. Overview of Participants 

a“Standing” reflects the amount of university coursework; in some cases, standing exceeds the 
number of years at the university. bS5 and S9 were strongly considering a mathematics minor but 
had not decided. 

 
We focused our interview questions on understanding students’ experience of the course in 

their terms, relative to their prior work in high school and college mathematics. We first secured 
basic information about them (e.g., major, standing, section/instructor, minor, and prior and 
intended math courses). Then we asked about their sense of the nature of the course (in contrast 
to their prior courses), their sense of success (or not) in it, what they did to be/become successful, 
and specifically how their view of and work on proof tasks may have changed in the course. As  
complement to seeking their verbal responses, we also asked them to graph their confidence in 
the course across the semester. These Confidence Graphs (Figure 1) often surfaced new 
information about our focal issues, as students explained the shape and location of their graphs. 

We also asked about their sense of their instructor’s view of the course, whether the course 
experience influenced their understanding of calculus, and whether they expected to be 
successful in any subsequent math courses. Finally, we asked what they would tell incoming 
students about the course. We also regularly observed (about twice per week) the classroom 
teaching and interactions in one section of the course for most of the semester—the section 
taught by the course coordinator. Observers took field notes in an observation template. These 
observations proved essential in preparing for the interviews, interpreting and responding to 
student responses, and in the analysis of the resulting data.  
  

Student Gender Home Major(s) Standinga Minorb Grade 
1 F US Mathematics 1  3.0 
2 M US Actuarial Science 2  3.5 
3 M US Mechanical Engineering 4 Math 4.0 
4 M US Chemistry 3 Math 3.0 
5 M US Actuarial Science 1 Math 4.0 
6 M Intl Mechanical Engineering 3 Math 4.0 
7 M Intl Computational Mathematics 3  4.0 
8 F US Mathematics 1  3.0 
9 F US  Packaging 2 Math 2.5 

10 F US Mathematics 2 Act Sci 3.0 
11 M US Human Biology 3 Math 3.5 
12 M Intl Mathematics 3  4.0 
13 F US Economics & Statistics 2  4.0 
14 M US Economics & Mathematics 2  4.0 
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Figure 1. Confidence Graph (reduced in size). Each participant drew a graph of confidence over 
the course of the semester. The X-axis represents time, from just before the course began through 
the final exam. The Y-axis represents their confidence in doing well in the course. 
 

Analysis of the Interviews 

Our analysis was qualitative, “bottom-up” (though guided by our foci), and cyclical in nature. 
The results of initial analyses led to more detailed and focused rounds of analysis around specific 
issues. First, immediately after each interview, interviewers posted detailed summary 
descriptions of their interviewee’s responses. All members of the research team then read 
carefully and discussed the similarities and differences evident in those summaries. Next, the 
audio records were transcribed verbatim, and particular passages were examined to check our 
summary descriptions and provide exact wordings. We analyzed the Confidence Graphs for their 
general graphical properties (e.g., initial sense of confidence and where slopes of the graphs were 
greatest, positively and negatively) and particularly for points in the semester when students’ 
confidence dropped. Many students described the reasons for these drops and actions they took 
in response. In response to our questions about activities in their classrooms, students described 
some differences in instructors’ teaching methods. But because we observed in only one section, 
we could not assess the accuracy of their claims or the magnitude of instructional differences 
across sections. This is an important issue that we have to address in our on-going work.  

 
Results 

We report results in four main components. First, we present our summary of how the 
students described the course in comparison to prior mathematics courses. Second, we discuss 
one aspect of that comparison—how students used the terms “problem” and “answer” in 
describing their course work. Third, we characterize how students described their reasoning in 
solving proof tasks. Finally, we describe how the students viewed and evaluated their success in 
the course and the learning activities that they engaged in. 
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The Different Nature of the Course 
Students were quite articulate about how the course differed from their prior mathematics 

course experiences, but their focus and emphasis varied. We found three main characterizations 
of difference: (1) Work in the transition to proof course explained why mathematics worked the 
way it did, where prior work had focused mainly on producing answers, (2) the course valued 
process over answers, and (3) the course changed students’ conceptions about proof and writing 
in mathematics. Very few students reported substantial prior experience with proof, in either 
high school or college. Those who cited two-column proof in high school geometry were largely 
dismissive of that work as irrelevant. 

 Most frequently, the students stated that the course explained mathematics, “why things are 
the way they are,” much more than prior courses. More than half of the students said it explained 
“the rules” or “where things come from.” S14 and S6 cited derivatives and operations with 
matrices, respectively, as examples of learning why procedures from prior courses actually 
worked. This result indicates that the course served an explanatory purpose for students, 
providing conceptual understanding over and above their learning about language, notation, and 
proof techniques. This is a central function of proof in mathematics (e.g., Thurston, 1994), but it 
was pleasing to hear students articulate it.  

Second, students contrasted the computational, answer-focused nature of their work in prior 
courses (e.g., calculus) to the process- or argument-focused work in the transition to proof 
course. As we note below, numerous students described the course in terms of what it was not: 
Writing proofs was not straightforward or step-by-step (S2, S11) and did not involve applying 
formulas or solving equations (S6, S12, S14). About a quarter of the sample stated that the 
course valued the process of reasoning more than the result.  

Third, about half of the students talked explicitly about the new focus on proof and the 
dramatically increased focus on writing. They commented on changes in how they perceived 
mathematical writing and noted how much more writing was required in the course. Some 
realized that proofs can include words, not just symbols (S12, S13); others came to new 
understandings about the importance of accurate grammar in writing compelling proofs (S2, S3). 
They saw that mathematical terms have much more specific meanings than do words in everyday 
language and communication and that that specificity was important. 

New Meanings for “Problem” and “Answer” 
In characterizing their work in the course, students often used terms that typically describe 

work in more computationally-oriented courses, particularly “problem” and “answer.” Most 
participants used the term “problem” to describe the proof tasks they were assigned, in class and 
for homework. More standard mathematical terms (i.e., “statement” and “proposition”) were 
rarely used; only one subject did so consistently. In part, this use of “problem” reflected the 
language of the classroom; the course assigned “homework problems,” and the instructor we 
observed also used this term to refer to the proof tasks he presented. But it also represents a 
strong connection with students’ prior work in mathematics. We found a similar pattern for 
“answer.” There was no consistent pattern in how students described the form of successful 
solutions to proof tasks. References to “proofs” were relatively common, but so were references 
to “answers.” S1 spontaneously used that term to describe her solution to “problems,” but then 
sounded embarrassed when the interviewer asked her how “answers” fit with proof problems. 
S10 indicated that an important difference in the course was that problems now often led to “a 
whole set of answers, not just one.” We interpret students’ use of these terms as indicating that 
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their meanings for task and solution were in the process of change yet still retained some 
connection to the computationally-focused past. 

Reasoning in Proof 
A central objective of our work has been to characterize how students saw and carried out the 

reasoning required to produce acceptable proofs. By reasoning, we include: (1) Their thinking 
and notating prior to writing any well-formed statements, (2) their proof composing on paper, 
and (3) their final expression of their proofs in LaTeX. Though students saw and described their 
work in the course as different from their prior experience, many struggled to describe their 
reasoning on proof tasks and how it was different from prior work of applying procedures and 
computing answers.  

Students’ responses to questions about the nature of their proof reasoning fell into four main 
patterns. One set of student responses focused on what their reasoning was not like—that is, that 
the prior pattern of first recognizing the task, applying the appropriate procedure or approach, 
and then completing it step by step did not work. Most (S3, S6, S8, S11) recognized that they 
could not use their instructors’ proofs as model solutions for other problems and that no general 
procedures for “solving” a wide variety of proof tasks existed. But one student (S7) did report 
that he tried to adapt his instructor’s proofs to new problems, and another (S13) inspected model 
solutions to make sure that her proofs included relevant features and details she saw in them. A 
second set of students emphasized the first phase of “reasoning” above—that they could not 
begin their proof without first understanding the concepts involved and how they were related. 
One student (S12) emphasized the importance of conceptual understanding in terms of knowing 
how to use concepts in proof writing beyond just memorizing definitions of those concepts. A 
third set offered some characterization of reasoning common to proof tasks, but their descriptions 
were difficult to follow. For example, S11 described the work of proving as looking forward 
across a large number of steps (not just one) to assess if the approach looks as if it would work. 
S10 characterized that proof writing involved “working backwards,” from the consequent back 
to the premises. A smaller fourth set described their reasoning in more standard terms as the 
search for a proof technique (e.g., proof by contradiction, induction, or contrapositive) that 
would “work” on the task at hand.  

For the final step in their proof reasoning, most students spoke about the mandated use of 
LaTeX on assigned homework, either positively or negatively. Those who were more positive 
indicated that LaTeX forced them to be more careful and explicit with the mathematical 
language in their proofs. They seemed to accept the positive effect of that coercion. Those who 
were more negative cited the additional time required to submit via LaTeX or questioned the 
importance of or the need to improve the “neatness” of their work. 

Specific Challenges, Sense of Success and Learning Activities 
When we asked about students’ sense of success in the course, most responded in terms of 

their final grade. Less frequently, they assessed their satisfaction with understanding the content 
or their sense of having mastered that content. For example, S7 stated that he felt he mastered 
“90% of the course content.” As Table 1 indicates, half of the students received final grades of 
4.0, and only one student received a 2.5. S1 reported that her 3.0 grade missed being a 3.5 by a 
single point. So overall, despite the new demands of the course, most of the students were 
successful by the traditional measure of final grades.  

Most students described the work required to be successful in the course as more demanding 
than prior courses. Some were primed for challenge by characterizations offered by friends who 
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had already taken it. Once in the course, they found that the homework carried substantial value 
in the grading scheme and that completing it took more than it did in prior courses—often much 
more time. Most students offered estimates of 7 to 10 hours for each weekly homework set, 
compared to 1 to 2 hours in prior courses. For students who composed their proofs completely on 
paper, translation into LaTeX added significantly to the time required.  

All but two students explained that they employed different practices in completing their 
homework than they had in prior courses. In response to the demands of frequent and 
challenging homework, most indicated that they responded by starting earlier in the week and/or 
distributing the work across days. Four communicated with peers via e-mail, worked with a 
classmate, or asked questions in class for the first time in mathematics. Twelve described the 
importance of using the university’s math learning centers—many for the first time—in 
interesting and diverse ways. Some cited the availability of tutors to answer their questions; 
others simply sought a physical space to go and work alone; others emphasized collaborative 
work with other students in the space designated for this course. For some (e.g., S10), productive 
discussion and community building happened with students from other sections of the course. 
That said, the use of social and peer resources was not universal; some students (e.g., S5) simply 
worked on their own, even as they worked harder and longer. 

 
Conclusions, Limitations, & Next Steps 

Our research is on-going, and subsequent steps will help refine our characterization of 
students’ experience of the course. But this first round of research has been revealing, in 
expected and unexpected ways. First, we have found that successful graduates of the course are 
developmentally “in motion” between the prior focus on computation and the new focus on 
proof. Second, how they describe their learning in the course is also significant. Some offered 
relatively argument-focused descriptions that cited language, notation, and proof techniques, but 
others described their focus on learning why the mathematics they had learned before worked the 
way it did. These students described how proving made them focus on concepts and relationships 
and thereby explained mathematics in much more precise ways than before.  

This study complements prior work that has focused on students’ reasoning on specific 
problem-based tasks—typically proof construction and evaluation. In targeting students’ 
experience, we have focused on broader and more general themes, especially what is different in 
elementary proof work and how students reorganize their learning to meet the challenge. These 
issues are important foci for all efforts to assist students in understanding the new challenges and 
supporting their own in addressing them. 

Our next steps are two-fold. First, we plan to recruit and interview students who are currently 
taking the course in the early weeks of the semester to refine our view of the difference and 
challenge in the course and reach some students who are or will soon struggle. Second, we intend 
to interview course graduates who are enrolled in their first semester of proof-intensive 
coursework to learn whether and how their experience in the transition to proof course is 
supporting their work and success in those courses (or not). 
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Researchers have demonstrated the importance of covariational reasoning for students’ 
development of various mathematical ideas. Several researchers have also argued that creating 
and sustaining multiplicative objects is a necessary mental action to reason covariationally. In 
this report, we describe task-design principles we have found to be productive for investigating 
and supporting students’ construction of multiplicative objects and their covariational 
reasoning. Drawing on our research investigating students’ covariational reasoning, we include 
data that highlights how these principles have been productive in our research and teaching.  

Key words: Task Design, Covariational Reasoning, Multiplicative Objects 

Researchers have identified that quantitative and covariational reasoning are important to the 
development of mathematical ideas such as rate of change and function (Carlson, Jacobs, Coe, 
Larsen, & Hsu, 2002; Confrey & Smith, 1995; P. W. Thompson, 1994), with students’ abilities 
to develop images of quantities’ magnitudes being critical to their reasoning covariationally 
(Carlson et al., 2002; Saldanha & Thompson, 1998). Specifically, these images afford students 
opportunities to construct multiplicative objects; this notion of covariation involves an individual 
sustaining an image of two quantities’ magnitudes such that the two quantities are coupled so 
that she “tracks either quantity’s value with the immediate, explicit, and persistent realization 
that, at every moment, the other quantity also has a value” (Saldanha & Thompson, 1998, p. 
299). Researchers examining students’ covariational reasoning have designed tasks to provide 
students opportunities to reason covariationally—City Travels (Saldanha & Thompson, 1998), 
Power Tower (Moore, Silverman, Paoletti, & LaForest, 2014), Over and Back (A. G. Thompson 
& Thompson, 1996; P. W. Thompson, 1994), and adaptations of the Bottle Problem (Carlson et 
al., 2002; Johnson, 2015; Zeytun, Cetinkaya, & Erbas, 2010). From our ongoing work in 
developing models of students’ thinking and our interpretations of these researchers’ works, we 
describe task-design principles that we have found productive in investigating and supporting 
students’ construction of multiplicative objects and their covariational reasoning in small group 
and whole-class research and teaching settings. Our task-design principles are (a) avoid using 
quantities that are time or monotonic in the situation, (b) use shapes strategically to match or not 
match the graphical shape, (c) use different representational systems or orientations, and (d) use 
varying segment magnitudes to represent a quantity’s magnitude in a situation. 

Background 

In this paper, we draw on P. W. Thompson’s (2011) and Thompson, Hatfield, Yoon, Joshua, 
and Byerley’s (2016) extension of the definition of covariational reasoning offered by Saldanha 
and Thompson (1998). We note that covariation is not an inherent feature of a situation, graph, 
table, etc.; a student must conceive of a situation, graph, table, etc. as constituted by covarying 
quantities (P. W. Thompson, 2011). Thompson (2011) characterized covariational reasoning in 
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terms of an individual conceiving two quantities’ magnitudes (or values), x and y, each varying 
(by intervals of size ε) over conceptual time, t. He used ordered pair notation, (x(tε), y(tε)), to 
denote the cognitive uniting of these two magnitudes, the result of which is a multiplicative 
object. Thompson’s use of multiplicative object stems from Piaget’s notion of “and” as a 
multiplicative operator (Inhelder & Piaget, 1958). The creation of such a multiplicative object is 
essential for conceiving displayed graphs as constituted by covarying quantities, and Thompson 
et al. (2016) explained that an individual’s conception of a multiplicative object is not restricted 
to or contained in a displayed graph. Instead, a graph is one way to represent a constructed 
multiplicative object. Thus, as we present our task-design principles, we focus on students’ 
construction of multiplicative objects primarily, but not exclusively, in the context of graphing.  

With regard to previous recommendations on task-design principles, our tasks follow 
Gravemeijer and Doorman’s (1999) recommendation that tasks be experientially real—tasks 
involve a situation that students can imagine and understand in order to support conceptions of 
varying quantities. Additionally, our tasks include simplified versions of common situations, 
often in the form of dynamic videos or applets (Johnson, 2013, 2015; Saldanha & Thompson, 
1998; P. W. Thompson, 1994). Both aforementioned principles are mentioned in Carlson, 
Larsen, and Lesh’s (2003) list of principles they used to structure covariational reasoning within 
a model-eliciting task. Lastly, although Johnson (2015) recommended sequencing tasks that 
support students in progressing from numerical to non-numerical reasoning, we avoid providing 
numbers in our tasks because quantitative reasoning is fundamentally non-numeric in nature 
(Smith III & Thompson, 2008). Moreover, we do not explicitly include non-numeracy in our task 
design principles because quantitative reasoning is principally non-numeric.  

Task Background 

Because of space limitations, we illustrate the task-design principles using two tasks: Going 
Around Gainesville (GAG) and Which One? (WO?). GAG is a modification of Saldanha and 
Thompson’s (1998) City Travels task. A student watches an animation of a car traveling around 
Gainesville on the way from Atlanta to Tampa (Figure 1). After we ask the student to describe 
the situation, we ask her to create a graph relating the car’s total distance traveled and distance 
from Gainesville during the trip (Part I). After the student addresses Part I, in which she chooses 
her axes orientation, we request a graph relating the car’s distance from Gainesville and distance 
from Atlanta on a given set of axes (Part II) (see Figure 1 for a normative solution to Part II). 

 
Figure 1: The Going Around Gainesville task and animation. 

 
The WO? task (Figure 2) is an adaption of the Ferris Wheel task (Moore & Carlson, 2012). 

In this task, we present a student with an animation of a Ferris wheel rotating counterclockwise 
at a constant speed with a rider starting at the three o’clock position (see screenshot of animation 
in Figure 2a). We ask the student to describe the relationship between the height above the 
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horizontal diameter of the wheel and the arc length the rider has traversed. We then present the 
student with a simplified version of the Ferris wheel situation with the position of a single rider 
indicated by a dynamic point on a circle. Beside the situation, there are seven directed horizontal 
line segments. We inform the student that the topmost line segment (shown in blue) represents 
the arc length the rider has traveled counterclockwise from the initial three o’clock position. 
Students can change the length of this topmost segment by dragging point B or by clicking the 
‘Vary’ button. As the position of the point on the circle (i.e., the rider) moves, the length of the 
topmost segment varies appropriately. We then ask the student to determine which of the six red 
segments (labeled in Figure 2b for the reader), if any, accurately represent the rider’s height 
above the horizontal diameter of the Ferris wheel as the rider’s arc length traveled varies. The 
design of these six segments is in Table 1; segment 1 is a normative solution to the task.  

 
 
 
 
 

 
             (a)                (b) 

Figure 2: (a) Ferris wheel animation (b) WO? animation with segment numbers. 
 

Table 1  
Behavior of red magnitudes with respect to B, the arc length traveled; all values relative to 
radius. 
Seg. 0 ≤ B ≤ π/2 π/2 ≤ B ≤ π π ≤ B ≤ (3π)/2 (3π)/2 ≤ B ≤ 2π 
1 Increasing from 0 to 1 

at a decreasing rate 
Decreasing from 1 to 0 
at a decreasing rate 

Decreasing from 0 to –
1 at an increasing rate 

Increasing from –1 to 
0 at an increasing rate 

2 Increasing from 0 to 1 
at a decreasing rate 

Decreasing from 1 to 0 
at a decreasing rate 

Increasing from 0 to 1 
at a decreasing rate 

Decreasing from 1 to 
0 at a decreasing rate 

3 Decreasing from 1 to 0 
at a decreasing rate 

Decreasing from 0 to –
1 at an increasing rate 

Increasing from –1 to 0 
at an increasing rate 

Increasing from 0 to 
1 at a decreasing rate 

4 Decreasing from 1 to 0 
at a decreasing rate 

Increasing from 0 to 1 
at an increasing rate 

Decreasing from 1 to 0 
at a decreasing rate 

Increasing from 0 to 
1 at a decreasing rate 

5 Increasing from 0 to 1 
at a constant rate 

Decreasing from 1 to 0 
at a constant rate 

Decreasing from 0 to –
1 at a constant rate 

Increasing from –1 to 
0 at a constant rate 

6 Increasing from 0 to 1 
at a constant rate 

Decreasing from 1 to 0 
at a constant rate 

Increasing from 0 to 1 
at a constant rate 

Decreasing from 1 to 
0 at a constant rate 

Task-Design Principles and Illustrations 

In this section we provide a description of each of the design principles and examples of 
student activity highlighting the productivity of these principles. The students were pre-service 
secondary mathematics teachers at a large university in the southeastern U.S. and were enrolled 
in or had completed a content course in a secondary mathematics education program. All 
students had completed a calculus sequence and at least two additional mathematics courses 
(e.g., linear algebra, differential equations, etc.) with at least C letter grades. We collected data 
using semi-structured task-based clinical interviews (Clement, 2000; Goldin, 2000) and teaching 
experiments (Steffe & Thompson, 2000), a methodology in which task design is critical and 
rooted in developing models of student thinking and seeking to engender shifts in student 
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thinking based on those models; one’s hypothetical models of student thinking and shifts in 
student thinking drives her or his design of tasks. The purpose of this paper is to report on our 
task-design decisions, and thus we point the reader to our other works for more information 
about our methods in the context of particular studies (e.g., Moore, Paoletti, & Musgrave, 2013; 
Moore, Paoletti, Stevens, & Hobson, 2016). 

Avoid using quantities that are time or monotonic in the situation 
One of the key features of considering a graph as representing a multiplicative object is to 

understand a coordinate point simultaneously represents two magnitudes (oriented orthogonally 
in the normative Cartesian system); this construction is non-trivial (Thompson et al., 2016). 
Complicating the matter, researchers (Carlson, Larsen, & Lesh, 2003; Johnson, 2015; Leinhardt, 
Zaslavsky, & Stein, 1990) have argued that students often reason uni-variationally when creating 
graphs, particularly if time is one of the quantities under consideration (i.e., students consider 
changes in one quantity without explicitly coordinating a second quantity). In our work, we have 
identified that students have a propensity to reason about a quantity varying with respect to 
experiential time if the second quantity under consideration varies monotonically (Paoletti, 
2015), especially if this quantity is represented on the Cartesian horizontal axis; due to the 
monotonic variation of the second quantity, the student need not maintain explicit attention to its 
variation. Hence, our first task-design principle is to prompt students to consider quantity pairs 
such that neither quantity is time or varies monotonically.  

In GAG Part II, we ask the student to create a graph using distance from Gainesville on the 
horizontal axis and distance from Atlanta on the vertical axis; distance from Atlanta is equivalent 
to total distance traveled until the car reaches Tampa, at which point distance from Atlanta 
begins to decrease as the car travels back towards Atlanta. This part of the task asks students to 
represent two quantities that are not varying monotonically, which has enabled us to determine 
the extent to which students sustain an explicit coordination of the two quantities under 
consideration (i.e., the extent to which students maintain understanding their graph as a 
multiplicative object) or if they (tacitly) represent another quantity (i.e., total distance traveled or 
time) during their construction of the graph in Part II.  

To illustrate, throughout her activity in GAG Part II, Alicia accurately described the 
relationship between distances from the two cities. However, as she graphed the relationship she 
accurately described, she drew a graph that monotonically increased with respect to both axes 
(Figure 3a); we infer Alicia tacitly imagined the quantity on the horizontal axis as increasing. 
With respect to the situation Alicia understood that neither quantity varies monotonically, but to 
represent graphically the relationship she perceived in the Cartesian coordinate system, Alicia 
needed to create and sustain a multiplicative object of both distances. Alicia eventually did 
conceive her graph as representing a multiplicative object, evidenced by when she pointed to the 
bottom-left segment in Figure 3a and stated, “our distance from Gainesville should be getting 
smaller instead of bigger”, and she was eventually able to adjust her graph (Figure 3b-3c) so that 
it represented the covariational relationship she understood to constitute the situation. 

 
        (a)          (b)     (c) 

Figure 3: (a)-(c) Three stages of Alicia’s solution to GAG Part II. 

20th Annual Conference on Research in Undergraduate Mathematics Education 93120th Annual Conference on Research in Undergraduate Mathematics Education 931



Use shapes strategically to match or not match the graphical shape 
Several researchers (Clement, 1989; Leinhardt et al., 1990; Monk, 1992) have reported on 

students incorporating conceived iconic elements (i.e., visual features) of a task situation into 
graphical representations. We highlight that, in that moment, a student is not constructing and 
sustaining a multiplicative object of the form we discuss. Rather, the student is forming 
figurative associations between a perceived situation and graph (P. W. Thompson, 2016). Hence, 
as a second task-design principle, we design tasks such that perceived shapes in the situation do 
match perceived shapes of normative graphs, do not match perceived shapes of normative 
graphs, and a combination of the two. 

For instance, in GAG, the simplified road is composed of linear segments and a semicircle. 
While the car travels on the straight paths, the car’s distances from the two cities changes at a 
constant rate resulting in straight segments in the graph; while the car travels on the semicircular 
arc, however, the car’s distance from Atlanta is changing while the distance from Gainesville 
remains constant, resulting in another linear segment in the graph. Including these different 
components in the situation allows us to gain insights into whether a student is reasoning with 
quantitative relationships or engaging in iconic translations. Further, we incorporate the 
aforementioned combination to examine whether students generalize such associations (e.g., 
“shapes always match graph” or “shapes never match graph”).  

To highlight the utility of this task-design principle, consider Alicia’s activity in GAG Part I. 
After accurately describing the relationship between the car’s distances from the two cities when 
drawing the segment from the vertical axis, Alicia engaged in an iconic translation as she drew a 
semicircular arc in her graph (Figure 4a). It was after creating the graph that Alicia thought about 
the result of that activity as a multiplicative object; she indicated that, to her, there was an 
increase and decrease in the distance from Gainesville while traveling along the semicircular 
path. Alicia then put concerted effort into justifying this part of her graph by comparing this 
claim with her image of the situation. Only when carefully attending to the car’s distance from 
Gainesville in the situation, measuring it with a ruler (Figure 4c), did she conceive that this 
quantity did not change on the semicircle and replaced the arc in her graph with a straight 
segment (Figure 4b). She stated, “They’re all the same! Why did I think it was changing? That’s 
the radius…. So, we should be the same distance from Gainesville”. Thus, Alicia compared the 
relationship she conceived her graph as representing to the relationship she constructed in her 
image of the situation, which resulted in her conceiving the same relationship as constituting 
both the graph and situation.   

 

   
                      (a)                 (b)               (c) 

Figure 4: Two stages of Alicia’s solution to GAG Part I (a-b) and her measurement work (c).  
 
Use different representational systems or orientations 

Previous researchers (e.g., Moore et al., 2016; Moore et al., 2014; P. W. Thompson, 2016) 
have illustrated that students’ ways of thinking for graphs are often dominated by figurative 
activity (e.g., graphs “pass the vertical line test” or graphs are drawn left-to-right). This outcome 
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can be explained by students having infrequent opportunities to construct images of covarying 
quantities and their having repeated, and possibly exclusive, experiences with graphs that have 
those figurative attributes (Carlson et al., 2002; Moore et al., 2016; Smith III & Thompson, 
2008). Thus, for our third task-design principle, we suggest having students use various 
orientations of coordinate systems (e.g., changing axes orientations) or entirely different 
representational systems (e.g., alternative coordinate systems and representational systems like 
the ones described in the next principle). This design principle has supported us in gaining 
insights into the extent that students’ actions are dominated by figurative activity or coordinating 
quantities. Moreover, we have been able to gain insights into the extent that students construct 
and sustain multiplicative objects across a variety of representational systems.  

To illustrate, students may, from our perspective, be reasoning covariationally about two 
quantities in GAG Part I, but when given GAG Part II, they hesitate to draw a vertical line (see 
Figure 1) because they claim graphs cannot “look” like that. Other examples from GAG included 
students having difficulty constructing a relationship that is represented by a graph drawn “right-
to-left”. We have shown such issues to be problematic for students as they create graphs, 
particularly if the students do not persistently focus on covarying quantities (Moore et al., 2016). 
Further, we have found that using a multitude of coordinate systems supports students in 
reasoning covariationally in order to conceive graphs in different coordinate systems as 
representing an invariant relationship between quantities (Moore, Paoletti, & Musgrave, 2013). 
Hence, like the other principles, using different coordinate systems or orientations supports us in 
differentiating students who are conceiving of graphs as representing a multiplicative object 
versus those whose thinking is dominated by figurative thought; when changing coordinate 
systems or orientations, figurative aspects of a function’s graph typically change.  

Use varying segment magnitudes to represent a quantity’s magnitude in a situation 
The three preceding task-design principles have been helpful in allowing us to have a sense 

of the students who are reasoning covariationally within and across situations and graphical 
representations. As previously mentioned, constructing a multiplicative object does not require a 
coordinate system (P. W. Thompson et al., 2016). By working with varying magnitudes instead 
of prompting a student to create a graph (e.g., WO?), we gain insights into students’ reasoning 
while minimizing the influence of the ways of thinking they have developed for graphs (e.g., 
iconic translations, issues of function/dependency, ways of thinking based in figurative thought). 
Specifically, we are able to gain insights into the extent that a student constructs and sustains a 
multiplicative object with respect to a situation and the displayed magnitudes. Moreover, we are 
able to gain related insights into students’ ways of reasoning about graphs by scaffolding tasks to 
support students in orienting the segments orthogonally, constructing a coordinate point, and 
imagining a trace representing all instantiated pairs of the covarying magnitudes (as seen in the 
“finger tool” explained in Lima, McClain, Castillo-Garsow, and P. W. Thompson (2009); P. W. 
Thompson (2002)). 

Consider Lydia’s reasoning in the WO? task. When referencing the first quarter rotation of 
the Ferris wheel (Figure 2a), she explained, “[A]s the arc length is increasing… [the] vertical 
distance from the center is increasing… but the value that we’re increasing by is decreasing.” 
After providing this accurate description of the situation, Lydia moved to select the appropriate 
segment in the WO? task (Figure 2b). She eliminated all segments except 1 and 5 (Figure 2b). 
Focused on the top of the Ferris wheel, Lydia said, “I think it is [segment 5], because it is 
decreasing at the same rate that I am increasing [referring to her moving the blue segment].” 
Despite having potential constraints from a graphing task removed, Lydia reasoned about the 
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segments in a way that was not consistent (from the researchers’ perspective) with her reasoning 
about the quantities in the situation. Lydia’s contradictory statements in this task illustrate 
students’ difficulties with constructing and sustaining a covariational relationship across 
representational systems that do not necessitate also constructing a coordinate point.  

As Lydia continued in her teaching experiment, having repeated opportunities to reason 
about magnitudes in non-graphical situations was beneficial in her coming to understand graphs 
as representations of multiplicative objects. For instance, on GAG Part II, Lydia could not 
initially construct a graph as requested. However, she then imagined horizontal segments 
representing the varying magnitudes of each of the distances. As the animation played, Lydia 
used her pen tips, both oriented horizontally, to indicate how each quantity’s magnitude varied 
(Figure 5a). Then, she engaged in the same activity but with her pen tips oriented orthogonally 
(Figure 5b); this activity supported her imagining and drawing a trace of the graph that she 
understood as uniting the two magnitudes into a point and trace (i.e., a multiplicative object) à la 
the “finger tool”). 

 
          (a)    (b) 

Figure 5: Lydia reasoning with (a) horizontal magnitudes and (b) orthogonal magnitudes on 
GAG Part II. 

Discussion 

We presented several task-design principles intended to afford students opportunities to 
reason covariationally as they construct, maintain, and represent multiplicative objects in various 
representational systems. We have found that tasks designed with these principles provides 
students repeated opportunities to construct and compare relationships between quantities across 
a multitude of representational activities. Moreover, these design principles afford teachers 
opportunities to gain insights into their students’ propensities to reason covariationally as well as 
to perturb students who engage in reasoning that is not attentive to covariational relationships. 
Hence, we believe that tasks designed using these principles will provide students with 
intellectual need (Harel, 2007); students will find covariational reasoning to be productive when 
engaging in these tasks. We conclude by emphasizing that we have found the last design 
principle most productive in our work with undergraduate students, particularly because of 
students’ propensity to reason about graphing in ways that do not entail quantitative or 
covariational reasoning.  
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Common Algebraic Errors in Calculus Courses 
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College mathematics instructors often view the final problem solving steps in their respective 
disciplines as “just Algebra”, but in reality, a weak foundation in Algebra may be the cause of 
failure for many college students. The purpose of this paper is to identify common algebraic 
errors students make in college level mathematics courses that plague their ability to succeed in 
higher level courses.  The identification of these common errors will aid in the creation of a 
model for intervention.  
 
Keywords: algebra, common errors, calculus 
 

 Introduction 
As early as 1910 common errors related to arithmetic and rational number computation and the 
difficulties students were facing in learning mathematics were noted by De Morgan. Since then 
other researchers have catalogued common errors in computation and algebra (Ashlock, 2010; 
Benander & Clement, 1985; Booth, Barbieri, Eyer & Paré-Blagoev, 2014).  Benander and 
Clement (1985) catalogued errors students made in basic arithmetic and algebra courses. Their 
work involved classroom observations and resulted in 11 categories of common errors including,  
basic problem solving skills,  averages, whole numbers, fractions, decimals, percents, integers, 
exponents, simple equations,  ratios and proportions, geometry, and graphing.  Ashlock (2010) 
focused on the mathematics work of school-aged children and on helping instructors thoughtfully 
analyze their students’ work in order to discover patterns in their errors for the purpose of 
improving instruction. Ashlock suggests that as students learn about mathematical operations and 
methods of computation, they often develop and adopt misconceptions and procedural errors. 
Teachers who understand that this occurs and are able to identify these problems in their 
students’ work can develop strategies to help students.  In a more recent study, Booth, et al. 
(2014) focused on the errors in algebra with school-aged students and identified errors that were 
“persistent and pernicious” given their predictive ability for student difficulty on standardized 
test items. Their study involved an in-depth analysis of students’ errors during problem solving 
at different points during the year and resulted in the classification of these errors which include: 
variable errors, negative sign errors, equality/inequality errors, operation errors, mathematical 
properties errors, and fraction errors. 
  
Drouhard and Teppo’s (2004) work presented the idea of denotation and suggests that it is a 
developed sense about what one is writing and a lack of sense regarding denotation creates 
significant problems for students.  They note “that students with poor capabilities to recognize 
this aspect of the meaning of an expression often make endless calculations because they do not 
know in what direction to go and when to stop” (p. 235). Harel, Fuller, and Rabin (2008) further 
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comment on the idea of meaning and denotation indicating that students often cancel within 
problems without attending to the quantitative meaning of their action. For example, Harel et al. 
(2008) states “it is not uncommon for students to manipulate symbols without a meaningful basis 
that is grounded in the context in which the symbols arise; for instance, a student might write: 
(log a + log b)/log c = (a + b)/c” (p. 116). In this case, students may be overgeneralizing their use 
of the distributive property and cancel “log” without considering the quantitative meaning of 
their action. Harel (2007) suggests that the lack of emphasis on mathematical meaning that 
students, and perhaps their teachers, apply to mathematical symbols creates what is referred to as 
a non-referential symbolic way of thinking and that this way of thinking can be tied to a myriad 
of algebra errors. Sfard and Linchevski (1994) believe that students must be motivated “to 
actively struggle for meaning at every stage of learning” (p. 225). They are concerned that “if not 
challenged, the pupil may soon reach the point of no return, beyond which what is acceptable 
only as a temporary way of looking at things will freeze into a permanent perspective” (p. 225). 
Mason (2002) in his framework: Manipulating-Getting-a-sense-of-Articulating, emphasizes that 
students must be given opportunities to make sense of situations. He believes that “students 
want, indeed need, confidence-inspiring familiar objects to manipulate and on which to try out 
new ideas so that they can literally ‘make sense’ of them” (p. 187). In Harel and Sowder’s (2005) 
opinion “instruction (or curriculum) that ignores sense-making, for example, can scarcely be 
expected to produce sense-making students” (p. 46).  
 
 Although, research on students’ difficulties with algebra in school has been well documented 
(e.g. Kieran, 1992; Hoch & Dreyfus, 2004; Stacey, Chick, & Kendal, 2004), studies on 
occurrence of these errors in college level mathematics courses is scarce. In response to this need 
a pilot study conducted by Stewart and Reeder (2017) revealed how the unresolved high school 
algebra misconceptions and shortcomings may create major complications in college 
mathematics courses.  Figure 1 demonstrates the progress and complexities of mathematical 
ideas as students approach the calculus courses (Stewart, 2017, p. vii).  

  
Figure 1. The unresolved issues with fractions compound as students confront limits in calculus. 
  
While it appears that many students follow the theories that are introduced in calculus courses, in 
many cases not having a rich algebra background prevents students from completing basic tasks. 
Many students become particularly frustrated as they realize that the fast pace of college 
mathematics lectures and new material are not going to wait for them to catch up. On the other 
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hand, the instructors become disappointed with students’ performances as they note instances of 
algebra errors that should have been resolved years ago in high school. 
The aim of this study was to identify and categorize students’ common algebra errors in entry 
university mathematics courses. This paper does not deal with the question of why students are 
making such errors and continue to make them, but rather seeks to identify the type of errors that 
are most commonly made. 
 

Method  
Our research team included two mathematics educators working with three graduate students and 
a cognitive psychologist who specializes in children’s algebra thinking process as our consultant. 
Informed by the previous work and findings from their pilot study, this research team collected 
data from entry level college mathematics courses from a university in the Southwest United 
States. Data were gathered from approximately 600 students’ final exams and tests from the 
following mathematics courses: College Algebra; Pre-Calculus for Business, and Calculus and 
Analytical Geometry I during a single semester. For the purposes of this study, only the results 
from the Pre-Calculus for Business course will be discussed.  Given the data for this research 
project were exams for actual college mathematics courses, the data had ecological validity. 
While the use of actual test and exam questions provided validity to the study in that participants 
were doing the mathematics they are and will be asked to do in their college level mathematics 
courses rather than working through problems developed for the purpose of the study that might 
invoke or invite certain errors, this created challenges for coding and predicting the kinds of 
errors students might make. The ecological nature of the data called for a process of open coding 
and examination of codes and coding again.  
 
As in the case of Booth et al. (2014) we anticipated that the errors would be concept driven. For 
example, certain errors were present at the beginning of the semester and did not appear again 
until near the end of the semester. However, we were interested to see if the errors persisted and 
showed up again in the final exam. Hence, we collected data from students’ tests 1, 2, 3 and the 
final examination, de-identified students’ names and gave each student a number as well as their 
instructor’s name in order to monitor their progress. For example, Jane Smith from Mr. 
Thomas’s class was coded as: “SP16 Course Number Thom 1”.  
 
The data were scanned, and organized in a shared Dropbox for easy access by the members of 
the research team. The team met to review the findings of the pilot study and to discuss possible 
codes for common errors in student work. In order to ensure that the research team could work 
effectively to identify student errors, one set of exam questions was assigned to the group to 
analyze independently.  The research team met the following week to discuss the coding 
categories and themes that emerged in an effort to determine an initial list of codes. This resulted 
in a list of the first nine codes Table 1.  Further, the team agreed that beyond the initial nine 
codes, each person would add codes as needed. The data were then assigned to five members of 
the research team such that each set of test questions were analyzed independently by two 
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researchers. Each exam question was analyzed independently and coded using the nine pre-
established codes combined with a process of open-coding. Following this analysis and coding, 
the team met to discuss the codes and establish what word would represent the kinds of errors 
that were emergent in the data (Rossman & Rallis, 2012) and what was collectively understood 
when that code was used. This discussion resulted in the addition of several new codes and the 
further definition of some of the codes already in use. Following this discussion, the team once 
again analyzed the data to re-code where necessary and open code as needed.  This process 
resulted in the coding list presented in Table 1. When the coding process was complete, 4,328 
test and final exam questions had been analyzed from students (N=163) in two instructors’ 
sections of Pre-Calculus for Business.  Table 1 represents the percentage of each of those 
identified errors by code or error type. The results revealed that Simplifying, Sign Errors, Log 
Properties followed by Distributing, Isolating Variable and Exponents were the six highest 
percentages of the errors.  
 
Table 1. Percentage of errors by coding type. 
 

Code and Description % Code and Description % 

1. Isolating Variable (Balance point) - Students 
are unable to correctly work with variables on 
both sides of an equation. 

 9.09 
11. Substitution - Students substitute variables or 
values incorrectly, 

 1.67 

2. Simplifying - Students are unable to simplify 
or do not simplify when needed. 

 12.86 12. Absolute Value - Student do not interpret 
absolute value correctly. 

 0.12 

3. Exponents - Mistakes are made with 
exponents. 

 9.03 13. Function Notation - Students do not interpret 
function notation correctly. 

 4.08 

4. Sign Errors - An error made with signs. 
 10.76 14. Mystery Zero - Students replace a variable 

with zero. 
 1.61 

5. Fractions - Mistakes with computations with 
fractions or with working with variables within 
fraction notation. 

 1.55 
15. Quadratic Equation - Unable to solve a 
problem using the quadratic equation. 

 1.55 

6. Distributing - Misuse of or ignoring the 
distributive property. 

 9.96 16. Computational Error - Simple addition or 
other computation mistake. 

 1.36 

7. Cancelling - Cancelling when it is not 
appropriate. 

 3.83 17.  ln/e Conversion - Students convert between 
logarithmic and exponential forms of an 
equation incorrectly. 

 2.97 

8. Radicals - Misuse of the radical sign or 
inability to convert the radical sign to an 
exponent representation. 

 8.97 
18.  Log properties - Students incorrectly 
combine or expand logarithmic properties.  

 10.95 
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9. Factoring - Incorrect factoring by not 
removing the greatest common factor or only 
factoring from some but not all terms. 

 3.53 

19.  Miscellaneous 

 6.00 

10. Inequalities - Mistake with inequality or 
with changing signs when dividing or 
multiplying across an inequality. 

 0.12 20.  DNS-Student did not sit the exam (maybe 
T1, maybe T2, T3 and Final; maybe T3 and 
Final; maybe just Final).  

  

  
The followings (see Table 2) are a sample of questions from tests 1, 2, 3 and the final exam. The 
questions were unified across all the sections and   designed by the course coordinator. The tests 
and final exams contained multi-choice questions as well as long-answer questions. For the 
purpose of finding the algebraic errors, we only considered the long-answer questions. 
 
Table 2. Sample Questions from Tests/Finals. 
 

Tests & 
Final 

Sample Questions 

T1 

 

T2 

 

T3 

 

Final 
 8)  Find the complete solution set for this equation:         

 
 Results 

The result of this research show that college students carry with them misunderstandings and 
challenges related to algebra from their high school years into their entry level college 
mathematics courses. The types of errors they made varied and yet making errors was persistent 
and plagued the students’ abilities to learn new mathematics concepts throughout the semester 
from Test 1 to the Final examination.  This study revealed that while algebra related errors are 
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evident in student work throughout the semester, the type of errors made are often dependent on 
the type of mathematics problems they are asked to solve.  For example, errors with fractions 
may appear to be resolved as the semester moves along but it may well be that students are 
simply not asked to work problems that involve fractions near the end of the semester. Figures 2 
and 3 below are examples of some of the error types resultant from this study. Figure 2 
highlights the kind of error that was coded as Isolating Variable given that the student struggled 
to isolate the variable on one side of the equation. Nearly 10% of the errors found in this study 
were of this type. Figure 3 below provides an example of a students’ error with function notation. 
 

 
Figure 2. Isolating Variables (Balance Point). 
 

 
Figure 3. Function Notation. 
 
 

Discussion and Concluding Remarks  
This study investigated test and exam questions performed by 163 Pre-Calculus for Business 
students, and examined more than 4000 problems, in order to categorize the most common types 
of algebraic errors that college mathematics students make. Although, it is perceived that the 
type of exam questions posed, invited certain types of errors, the frequency of errors is persistent 
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throughout the semester regardless of problem type. The students consistently make mistakes 
and errors with algebra from Test 1 to the final examination. 
 
While analyzing the data, we witnessed over and over again how algebra errors rapidly 
terminated the flow of the problem solving sequence for many students and resulted in incorrect 
solutions or no solutions. Many mathematics instructors believe that it is not our responsibility to 
teach or re-teach school algebra in college level courses. Realistically, going over algebra 
misconceptions is not a possibility and we have no time to repair them. Many of the errors found 
in this study reflect Drouhard et al.’s (2004) finding that students make endless calculations 
when they do not know what direction to go and Harel’s (2007) point about non-referential 
symbolic way of thinking.  Booth et al. (2014) suggests that “the misconceptions underlying 
specific persistent errors are not corrected through typical instruction and may require additional 
intervention in order for students to learn correct strategies.” (p. 21).  

 
Future research 
Although, it is believed among many instructors that these types of algebraic errors should have 
been resolved years ago in high school and maybe nothing can be done at this stage, we believe 
that pinpointing the type of errors will help in creating interventions that remedy the algebraic 
errors. We continue to refine our common error types as more data become available from 
College Algebra and Calculus and Analytical Geometry I courses. Our next steps are to 
interview the instructors who taught these courses and seek more information from them in order 
to create the most effective interventions to help future calculus students.  
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Completeness and Sequence Convergence: Interdependent Development in the Context of

Proving the Intermediate Value Theorem

Steve Strand

CSU Chico

As a part of a larger RME-based instructional design project for advanced calculus, this paper 

reports on two students’ reinventions of formal conceptions of sequence convergence and the 

completeness property of the real numbers in the context of developing a proof of the 

Intermediate Value Theorem (IVT). Over the course of ten, hour-long sessions I worked with two 

students in a clinical setting, as these students collaborated on a sequence of tasks designed to 

support them in producing a proof of the IVT. Along the way, these students conjectured and 

developed a proof of the Monotone Convergence Theorem. Through this development I found 

that student conceptions of completeness were based on the geometric representation of the real 

numbers as a number line, and that the development of formal conceptions of sequence 

convergence and completeness were inextricably intertwined.

Key Words: RME, instructional design, real analysis, limit, completeness

Introduction

The transition from lower-division mathematics courses, where the emphasis is often on 

calculational approaches, to upper-division courses, primarily concerned with proof and more 

abstract mathematics, is a challenging one for many undergraduate students. There has been 

growing interest in developing research-based, student-centered curricula for undergraduate 

mathematics to support students in making this transition in the areas of abstract algebra 

(TAAFU: Larsen, 2013; Larsen & Lockwood, 2013), differential equations (IO-DE: Rasmussen 

& Kwon, 2007), geometry (Zandieh & Rasmussen, 2010), and linear algebra (IOLA: Wawro, et 

al., 2012). The data presented in this paper comes from early efforts at similarly-motivated 

instructional design efforts for advanced calculus. One of the central ideas underpinning all areas

of advanced calculus is that of limits and convergence. One of the features of the real numbers 

that makes limits and convergence so important (indeed, possible) is that of completeness. While

a large body of research exists about how students think about limits and how that thinking 

develops in formality, there is a dearth of research dealing directly with students’ conceptions of 

the completeness of the real numbers.

This paper reports on student strategies that anticipated the concept of completeness, as those

strategies emerged in the context of a teaching experiment. This experiment was part of an 

instructional design effort to develop the proof of the Intermediate Value Theorem (IVT) as a 

starting point for inquiry-oriented advanced calculus. The students in the teaching experiment 

began by approximating the (irrational) root of a polynomial using the principles behind the IVT.

They developed a sequence of approximations by looking for the sign change of the function on 

smaller and smaller intervals. As the IVT (and many other facets of convergence) implicitly 

depend on the completeness of the real numbers, I expected that investigations of these kind 

would give insight into students’ informal conceptions of completeness, as well as insight into 

how students might be supported in reinventing formal characterizations of completeness.

In this paper I will detail how early student justifications anticipated the Monotone 
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Convergence Theorem (MCT)1, and how the proof of that theorem became a powerful context 

for the interdependent development of more formal conceptions of sequence convergence and 

completeness.

Literature Review

A great deal of research has investigated student understanding of the concept of limit. The 

focus of these investigations has shifted over the last few decades. Initially, a large number of 

studies sought to describe the difficulties students encountered when trying to work with limits 

(Bezuidenhout, 2001; Cornu, 1991; Davis & Vinner, 1986; Moru, 2009; Sierpińska, 1987; 

Szydlik, 2000; Tall, 1980; Tall & Schwarzenberger, 1978; Williams, 1991). Gradually, more and 

more studies have investigated how student conceptions might develop in formality (Cottrill, et 

al., 1996; Oehrtman, 2009; Oehrtman, Swinyard, & Martin, 2014; Swinyard & Larsen, 2012). 

One important feature of formal work with limits, first given prominence by Swinyard & Larsen 

(2012), is the shift from finding limits to verifying limit candidates. While limit problems in 

calculus are often centered around the use of algebra to find limits, formal activity with limits is 

usually centered around using formal definitions to prove that a limit exists or to prove general 

properties about limits. What has received almost no study is what the process of developing 

such formal definitions of limits looks like in the context of proving, or what role completeness 

plays in this process of formalization. While the research reported here informs both of these 

topics, this proposal will focus on the latter.

While Cauchy is widely recognized as one of the fathers of real analysis, his proofs 

conspicuously lack any mention of the completeness of the real numbers (Grabiner, 1981; 

Lützen, 2003). In fact, one of the first explicit treatments of the completeness2 of the real 

numbers was Dedekind’s “Continuity and Irrational Number” essay, originally published in 1872

(1901), over fifty years after Cauchy’s Cours d’Analyse. However, it is a critical component of 

the proof of the Intermediate Value Theorem, and so identifying student strategies that anticipate 

formal conceptions of completeness in this context will be critical in developing instruction for 

advanced calculus using this context as a starting point.

As such, the specific questions that guided this component of this design research project 

were the following:

1. In the context of proving the IVT, what student strategies anticipate the concept of 

completeness?

2. In what ways do the developments of completeness and sequence convergence support 

one another?

Theoretical Framework

The instructional design heuristics of RME have guided the development and implementation

of this design project. They have also been indispensable as tools for analyzing student thinking 

and activity. In particular the heuristic of emergent models provides language and tools for 

describing students’ activity at the informal level and also for describing the development of their

activity toward greater formality and rigor. In RME, these models emerge from student activity, 

in the sense that the models provide a way for a teacher/researcher to describe student activity 

(Larsen & Lockwood, 2013).

1 MCT: If {an} is a bounded, monotonic sequence, then it converges.

2 The German word that Dedekind used was the word for “continuity”, but it is clear that he was describing the 

modern concept of the completeness of the real numbers.
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In emergent models, the model-of/model-for transition captures large, significant 

developments in student activity and thinking (Gravemeijer, 1999). For describing more local 

development of these models, Rasmussen and Marrongelle described the construct of a 

transformational record (2006). Such a record is an inscription or notation recorded by the 

students, or used by the teacher to capture student thinking, that later is used by the students for 

further mathematical development. This construct can be particularly useful for teachers in 

supporting the development of emergent models. In the Results section I will illustrate how I 

used a transformational record to support students in developing a more formal understanding of 

sequence convergence.

Transformational records can also be described using the RME construct of record-of/tool-for

(Johnson, 2014; Larsen, 2004; Larsen, 2013). A record-of student activity generally refers to an 

inscription or notation that represents one form of the larger emergent model. This record-of 

becomes a tool-for when students use it for further mathematical development. This 

transformation of the record at a local level represents a development of the larger emergent 

model. A model-of students’ activity can be evidenced by many different forms. One way to 

describe the development of this model toward a model-for is through “students’ increasing 

ability to reason with various forms of the model” (Johnson, 2014). While not as significant as a 

model-of/model-for transition, which represents the students becoming aware of and using the 

model as a whole, these record-of/tool-for transitions nonetheless represent important 

developments in student activity.

In the study reported here, we will see how the concept of completeness emerged as a global 

model-of student reasoning about the convergence of an approximation algorithm. Later least-

upper bounds, as one form of that global model, emerged as a record-of student thinking. This 

form of the model then developed into a tool-for more formal activity as student used least-upper

bounds in two important developments: 1) formally defining a specific mode of sequence 

convergence, and 2) completing a proof of the Monotone Convergence Theorem. After 

describing the structure and implementation of the teaching experiment, as well as the manner in 

which I analyzed the data, I will briefly describe how completeness emerged as a model-of 

student activity, and how that model developed through the course of the teaching experiment.

Methods

As a part of the early stages of an instructional design project, I ran two separate teaching 

experiments over the course of a year, a little more than six months apart. Each teaching 

experiment consisted of 10, hour-long sessions with myself as teacher/researcher and a pair of 

students working at a chalkboard at the front of the room. These students were volunteers 

selected from courses that were direct prerequisites to advanced calculus/elementary real 

analysis courses, and who had expressed an intention to take advanced calculus in the near 

future. All four participants had completed the calculus sequence, differential equations, and at 

least one proofs-based course, prior to participating in the teaching experiment.

The data for this paper comes from the second teaching experiment, with students who will 

hereafter be referred to as Dylan and Jay. With the first teaching experiment, my attention was 

primarily focused on issues of convergence. It was not until retrospective analysis that I 

discerned the importance of the role that completeness could play in this context. For this reason 

I modified the task sequence for the second teaching experiment, which resulted in an abundance

of data relating to student understanding of completeness. For these reasons this paper focuses on

the experiences of Dylan and Jay.
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During the implementation of the teaching experiment there were anywhere from three days 

to an entire week between sessions. During that time I watched the videos of the previous 

session, creating written session summaries, and tried to identify student statements and 

strategies that begged for further investigation. For example, Dylan and Jay justified the 

convergence of a particular sequence by appealing to the fact that the sequence was increasing 

and was bounded. But it was not clear from their statements whether they thought such a 

sequence had to converge to the given bound. To start the next session I gave them exactly this 

conjecture and observed their discussion.

After the conclusion of each of the teaching experiments, I performed a retrospective analysis

of the data as a whole. I watched all of the videos again, transcribing segments I had flagged 

during the ongoing analysis, looking for student strategies that anticipated the completeness of 

the real numbers. For each of these I sought to explain what elicited these strategies. Finally, I 

followed these strategies through the data and using the design heuristics of RME I sought to 

explain how these strategies were leveraged to support the development of more formal ideas, or 

how they might be leveraged in future implementations of the LIT.

Results

In the context of developing their own proof of the IVT, I found that characterizations of the 

completeness of the real numbers emerged from Dylan and Jay’s activity. This suggested to me 

that completeness, as a collection of varied but equivalent characterizations, could be seen as a 

model-of students’ activity. Using primarily the emergent models design heuristic, I will describe

how completeness emerged as a model-of their thinking, and how aspects of this model became a

tool-for more formal reasoning about convergence.

Justifying Convergence

When tasked with approximating the root of a polynomial, Dylan and Jay used the sign-

change of the function over successively smaller intervals to construct a sequence of 

approximations to that root. The transcript excerpt below came from a conversation in which 

Dylan, Jay, and I were discussing how they knew that their algorithm would find a root of the 

function in question. They had recently established that, if the root were irrational, their Decimal-

Expansion algorithm would never give them the exact root.

I: So how do you know that there is such a number?

D: As long as we can recursively show that every time we step our function forward it 

gets a little bit closer to zero. This is how you do the limit in general: every time you 

step it forward, every time you know you move forward a little bit, you get closer to 

the number you think the limit is.

There are a few problems with Dylan’s characterization of a “limit in general”. For one, he is 

a describing convergence in a monotonic fashion, and so is not truly giving a general description.

Second he is characterizing the convergence of their sequence of approximations using the 

monotonicity of the outputs of the function. This held true of the specific polynomial with which 

their investigations had started, but it was not necessary in general for their algorithm to work.

While there were many details to be worked out, Dylan’s statement represented very 

promising reasoning. Here we can see that the concept of completeness, taking the form of the 

Monotone Convergence Theorem, served as a model-of Dylan and Jay’s explicit justifications for

the convergence of their sequence of approximations. More specifically, his statement suggested 

that he believed an increasing sequence, that was bounded above, should converge. Whether or 
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not he really believed that this characterized limits in general was immaterial at that moment. 

This emergent model suggested that codifying and analyzing Dylan’s justification could be very 

fruitful.

On the board Dylan had written:

f(xi) < f(xi+1) < 0 (1)

In an attempt to draw their attention away from the outputs for a moment, I asked Dylan and Jay 

whether a similar statement could be made about the inputs. I did this because I wanted to have 

them analyze Dylan’s statement, but I did not want considerations about the behavior of the 

function to muddy the water. Without any discussion, Dylan wrote:

xi < xi+1 < xx (2)

(where xx was the conjectured root). Then he and Jay explained why the second compound 

inequality might be preferable.

Jay: We're controlling this [gestures at (2)] more than we're controlling this [gestures at 

(1)]. We can't control the outputs, but we can control the inputs.

Dylan: Right. I guess we just observe this [gestures at (1)] for this particular function.

With Dylan and Jay in agreement with the statement about the monotonicity and 

boundedness of the inputs, we were ready to consider their justification as a conjecture. 

Completeness, manifested as the Monotone Convergence Theorem, was an even clearer model-

of their thinking about the convergence of their sequence of approximations. In order to support 

the development of their thinking, I set Dylan and Jay tasks that would have them engage in 

vertical mathematizing, by having them reflect on and analyze their own reasoning about 

convergence.

Least-upper Bounds

Another important development arose when Dylan and Jay considered conditions under 

which a bounded, monotonic sequence would converge to an upper bound. Dylan put forth the 

following explanation:

“Because if you can pick a value, some a, between xi+1 and b...and...xi+1 passes every 

value of a...like every possible value of a...and passes b...wait, if this is true, so it doesn't 

pass b. So worst case scenario it converges to b.”

It appeared that what Dylan described was essentially a characterization of b as the least-

upper bound of the sequence. He seemed to suggest that if we could choose a to be any arbitrary 

value less than b, and then we knew that a value of the sequence {xi} passed that value of a, then 

the sequence would have to converge to b. So there was no value of a less than b that was also an

upper bound for the sequence.

This condition, that the sequence passes every value of a less than b, but never passes b, 

proved to be pivotal in Dylan and Jay’s developments of both completeness and convergence. A 

short while after this, I incorporated this condition as an added hypothesis to their MCT and had 

them consider it; in this way it became a record-of their thinking, and also represented one form 

of the larger completeness model. Subsequent to that discussion Dylan explicitly leveraged the 

condition to define "decreases to zero".
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A Transformational Record

A little later Dylan and Jay set about to define formally what it meant for a sequence to “decrease

to zero” (Figure 1).

In the following exchange Dylan explained the genesis of their definition.

Jay: How'd you get that?

Dylan: Basically going from our last idea that if a number converges to...to b, I guess. 

So, ...this is kind of formally writing out that...for every b that's less than a, or- 

which is zero in this case, I guess- is between where we're starting and the 

boundary.

Dylan made a connection back to their work with a previous conjecture: that if a monotonically 

increasing sequence was bounded by b, but passed every a less than b, then it must converge to 

b. Though the roles of the variables have been reversed, Dylan has described adapting their idea 

of “passes every a less than b” to this case of a sequence monotonically decreasing to zero.

Dylan went on to explain his definition in more detail.

“So the boundary we know we want is zero. So we're going to talk about all the numbers 

that aren't zero, above zero...So we know this [sequence] is always getting smaller. Down 

to some...you know, whatever. It goes off to somewhere. But do you know it goes to zero? 

And you do as long as you can pick any of these [positive real] numbers and just keep 

going through until you find some k [sic] that's smaller than it.”

Here we see the results of the students successfully leveraging a transformational record. 

Earlier in the experiment, when reasoning about the conditions under which a monotonic 

sequence might converge to its bound, Dylan’s made the statement “passes every a less than b”. 

A little later I recorded this reasoning, presenting it back to the students as an additional 

hypothesis to their MCT; in this way this characterization of least-upper bounds served as a 

record-of their thinking. And above we saw how this record became a tool-for solving the 

problem of defining the convergence of a sequence decreasing to zero. In this way an informal 

strategy of the students developed into a tool-for reasoning more formally about limits. More 

specifically, my presentation of their strategy as a conjecture acted as a transformational record, 

which they used to solve the problem of defining a sequence decreasing to zero.

Discussion

In the context of developing a proof of the Intermediate Value Theorem, the informal 

strategies of two students anticipated formal characterizations of completeness. The Monotone 

Convergence Theorem (MCT) emerged as the students considered the convergence of their 

Figure 1: Students' definition of a sequence "decreasing to zero"
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(monotonically increasing, bounded) sequence of approximations to a root. Initially the 

convergence of such a sequence was intuitively clear to them. Digging deeper into why that 

might be the case led to the investigation and development of a proof of this idea. Least-upper 

bounds also emerged from their activity, for the first time as they tried to identify what 

conditions would guarantee that a monotonically increasing sequence would converge to an 

upper bound. Dylan and Jay subsequently utilized this idea to define what it meant for a 

sequence to converge to zero. Finally, though not detailed in this proposal, in constructing a 

proof of the MCT Dylan and Jay debated the existence of least-upper bounds, ultimately 

accepting their existence as a consequence of the real number line. The existence and properties 

of least-upper bounds were the key ideas in the ultimate completion of their proof of the MCT.

One way to frame this development is using the RME construct of emergent models. In 

justifying the convergence of their sequence of approximations, the students’ thinking could be 

modeled by the larger concept of the completeness of the real numbers. Dylan and Jay were 

eventually able to use aspects of this model as a tool-for reasoning more formally about 

convergence. The development of this model was inextricably tied up with the development of 

their understanding of convergence. It was in the process of defining sequence convergence that 

least-upper bounds emerged as a record-of their thinking. Through the process of reflecting on 

and formally defining “maximum” (which helped them solidify their definition of sequence 

convergence), completeness, specifically as signified with least-upper bounds, began to transition

to a tool-for the students to reason more formally about convergence and to complete a proof of 

the MCT. In this way the development of their understanding of completeness supported and was

supported by the development of their understanding of sequence convergence.

Future research will investigate further the nature of this interdependent concept 

development in this context. For example, in my first teaching experiment, the pair of students 

considered a sequence of nested, shrinking intervals, rather than a sequence of approximations to

a root. This thinking could also be modeled by the larger concept of the completeness of the real 

numbers, as it is essentially the Nested Interval Property. From an instructional design 

perspective, it will be important to investigate the constraints and affordances of developing a 

proof of alternative characterizations of completeness. This research suggests a promising 

instructional design approach, and knowing more about how these two concepts develop together

would be invaluable for these efforts.

This proposal contributes to our understanding of how students think about the completeness 

of the real numbers. Specifically in the context of the Intermediate Value Theorem, there is 

strong evidence that completeness can be a powerful model, first as a record-of student thinking 

about convergence, and then for use by the students as a tool-for developing more formal 

conceptions of sequence convergence and completeness itself. This further suggests that intuitive

notions of completeness could support students in developing their understanding of sequence 

convergence and completeness in other contexts, as well; for example, in an IBL (Inquiry-Based 

Learning) or even a traditional lecture-based advanced calculus course. There is also evidence 

that these informal student characterizations of completeness are rooted in representations of the 

real numbers as a number line; the historical development of completeness lends credence to this

idea (Dedekind, 1901). While there is still much to uncover about how students think about 

completeness and how that thinking might progress, it is evident that there are important 

connections between completeness and convergence in students’ minds.
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Angle Measure, Quantitative Reasoning, and Instructional Coherence: The Case of David 
 

Michael A. Tallman 
Oklahoma State University 

This paper reports findings from a study that explored the effect of a secondary mathematics 
teacher’s level of attention to quantitative reasoning on the quality and coherence of his 
instruction of angle measure. I analyzed 37 videos of an experienced teacher’s instruction to 
characterize the extent to which he attended to supporting students in reasoning quantitatively, 
and to examine the consequences of this attention (or lack thereof) on the quality and coherence 
of the meanings the teacher’s instruction supported. My analysis revealed that the incoherencies 
in the teacher’s instruction were occasioned by his inattention to quantitative reasoning. This 
study therefore demonstrates that when teachers do not possess a disposition to attend to 
quantities and their relationships, the circumstances are ripe for instruction that emphasizes 
inconsistent, incoherent, and sometimes incompatible, mathematical meanings. 

Key words: Mathematical Knowledge for Teaching, Quantitative Reasoning, Angle Measure, 
Radical Constructivism, Pre-Service Teacher Preparation 

Introduction 

Thompson (2013) argued that the quality of mathematics instruction in the United States 
suffers from “a systemic, cultural inattention to mathematical meaning and coherence” (p. 57). 
While a number of empirical studies demonstrate that Thompson’s accusation applies to a 
spectrum of mathematics courses and topics (e.g., Ma, 1999; Stigler & Hiebert, 1999), several 
researchers have noted that pre- and in-service teachers’ personal understandings of 
trigonometry, as well as their instruction, tend to be particularly lacking in coherence and 
conceptual meaning (Akkoc, 2008; Moore et al., in press; Tallman, 2015; Thompson, 2008; 
Thompson, Carlson, & Silverman, 2007). Others have observed that trigonometry is a 
notoriously difficult subject for students (Moore, 2012, 2014; Weber, 2005). Identifying the 
factors that contribute to widespread incoherent instruction of trigonometry is therefore a priority 
for improving students’ learning of the subject. 

A growing body of research (e.g., Castillo-Garsow, 2010; Confrey & Smith, 1995; Ellis, 
2007; Moore, 2012, 2014; Moore & Carlson, 2012; Oehrtman, Carlson, & Thompson, 2008; 
Thompson 1994) has identified quantitative reasoning (Smith & Thompson, 2007; Thompson, 
1990, 2011) as a powerful way of thinking that supports students in constructing a meaningful 
understanding of a wide variety of mathematics concepts. Several researchers have noted that 
quantitative reasoning is especially foundational for supporting students’ conceptual learning of 
angle measure and trigonometric functions (Hertel & Cullen, 2011; Moore, 2012, 2014; Tallman, 
2015; Thompson, 2008). However, the instructional consequences of teachers’ attention to 
quantitative reasoning (or lack thereof) are less frequently documented. By instructional 
consequences, I do not mean the understandings students construct while engaged in 
instructional experiences that emphasize (or fail to emphasize) quantitative reasoning. I am 
instead referring to the characteristics of the instruction itself, namely the nature of the 
understandings it promotes as well as its coherence. 

Discerning how teachers’ attention to quantitative reasoning affects the quality and 
coherence of their trigonometry instruction has the potential to inform instructional and 
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curricular innovations that seek to improve the quality of this instruction, both in the United 
States and internationally. For this reason, I designed the present study to achieve such 
discernment. Specifically, I explored the effect of a secondary mathematics teacher’s level of 
attention to quantitative reasoning on the coherence of the meanings of angle measure his 
instruction supported. 

 
Quantitative Reasoning 

I leveraged Smith and Thompson’s (2007) and Thompson’s (1990, 2011) explicit 
formalizations of quantitative reasoning in the design of this study and in my analysis of its data. 
Quantitative reasoning is a characterization of the mental actions involved in conceptualizing 
situations in terms of quantities and quantitative relationships. A quantity is an attribute, or 
quality, of an object that admits a measurement process (Thompson, 1990). One has 
conceptualized a quantity when she has identified a particular quality of an object and has in 
mind a process by which she might assign a numerical value to this quality in an appropriate unit 
(Thompson, 1994). It is important to emphasize that quantities do not reside in objects or 
situations, but are instead constructed in the mind of an individual perceiving and interpreting an 
object or situation. Quantities are therefore conceptual entities (Thompson, 2011; Thompson et 
al., 2014). 

Conceptualizing a quantity does not require one to assign a numerical value to a particular 
attribute of an object. Instead, it is sufficient to have a measurement process in mind and to have 
conceived, either implicitly or explicitly, an appropriate unit of measure. Quantification refers to 
the mental actions involved in conceptualizing an appropriate unit of measure as well as a 
measurement process, and results in an understanding of “what it means to measure a quantity, 
what one measures to do so, and what a measure means after getting one” (Thompson, 2011, p. 
38). I emphasize that one need not measure an attribute of an object to have quantified it, but 
must have in mind a process by which she might do so (Thompson, 1994). 

The quantities one might construct upon analyzing a situation are not limited to those whose 
numerical values are attainable from direct measurements. Defining a process by which one 
might measure a quantity often involves an operation on two or more previously defined 
quantities. In such situations, we say that the new quantity results from a quantitative 
operation—its conception involved an operation on other quantities. Quantitative operations 
result in a conception of a single quantity while also defining the relationship between the 
quantity produced and the quantities operated upon to produce it (Thompson, 1990, p. 12). It is 
important to draw attention to the distinction between a quantitative operation and a numerical or 
arithmetic operation. Arithmetic operations are used to calculate a quantity’s value whereas 
quantitative operations define the relationship between a new quantity and the quantities 
operated upon to conceive it (Thompson, 1990). 

 
Methods 

The sole participant for this study was an experienced secondary mathematics teacher, David, 
who taught Honors Algebra II at a large suburban high school in the Southwestern United States. 
David used the Pathways Algebra II (Carlson, O’Bryan, & Joyner, 2013) curriculum materials in 
this course. The Pathways Algebra II materials are organized into modules, each of which 
contains a number of investigations that students are expected to work on in small groups during 
class sessions.  
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I collected data throughout David’s instruction of Module 8 of the Pathways Algebra II 
curriculum. This module focuses on a variety of ideas related to trigonometric functions 
including angle measure, the output quantities and graphical representations of various periodic 
functions, periodic function transformations, and inverse trigonometric functions. In this paper, I 
present only the results of my analysis of David’s instruction of angle measure. I do not discuss 
in detail my analysis of David’s instruction of other topics addressed in Module 8 of the 
Pathways Algebra II curriculum since the conclusions I drew therefrom are consistent with those 
I present below. 

David taught two sections of Honors Algebra II every weekday during the spring semester of 
2014. I video recorded both classroom sessions over a seven-and-a-half-week period of this 
semester, which resulted in 37 videos of David’s instruction. The only class sessions that I did 
not videotape were those during which students were testing or those in which David was 
teaching content unrelated to trigonometric functions. In addition to the video recordings of 
David’s instruction, I generated field notes during the class sessions that focused on 
characterizing the extent to which David supported students in reasoning quantitatively, and on 
documenting the mathematical meanings David’s instruction promoted.  

The procedures I used to analyze the video data are consistent with Strauss and Corbin’s 
(1990) and Corbin and Strauss’s (2008) grounded theory approach. I began my analysis of these 
videos by making an initial pass of open coding during which I identified instances that David 
conveyed some way of understanding. I coded these occasions for the specific category of 
understanding David communicated. I then made a pass of axial coding in which I verified and 
refined my initial codes. After having coded the 37 videos of David’s classroom teaching, I 
produced a 57-page document entitled, “Post-Analysis Memos” wherein I summarized each 
coded instance of the videos and included selective transcriptions of what appeared to be 
particularly revealing moments of David’s instruction. These memos also focused on 
characterizing for each coded instance the extent to which David supported his students in 
reasoning quantitatively. In particular, I documented the degree to which David’s instruction 
supported students in: (1) identifying quantities, (2) attending to units of measure, (3) 
constructing quantitative relationships, and (4) interpreting mathematical symbols and 
expressions as representing the values of quantities. I carefully read through these memos and 
organized the coded segments of video into themes. I then examined the data within each theme 
and characterized the extent to which the quality and coherence of the meanings David’s 
instruction promoted was facilitated/impeded by his level of attention to supporting students in 
reasoning quantitatively. 

 
Results 

Meaningfully assigning numerical values to the “openness” of an angle requires that one has 
identified a quantity to measure and has specified a unit with which to measure it. David’s 
instruction was often inconsistent with regard to the quantity one measures when assigning 
numerical values to the “openness” of an angle. On some occasions David supported students in 
conceptualizing angle measure as the length of an arc the angle subtends, while on other 
occasions he explained that measuring an angle involves determining the fraction of the circle’s 
circumference subtended by the angle. These meanings are not the same. Understanding the 
fraction of a circle’s circumference that an angle subtends as a measure of subtended arc length 
involves conceptualizing the circle’s circumference as a unit of measure for the length of the 
subtended arc. Specifically, one must recognize that the resulting fraction represents a 
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multiplicative comparison of the quantity being measured (subtended arc length) and the unit of 
measure (circumference). For example, to say an angle subtends 59/360ths of the circumference 
of a circle centered at its vertex is to say that the length of the subtended arc has a measure of 
59/360 in units of one circumference. The two meanings of angle measure David conveyed were 
distinct since he did not support students in conceptualizing the circumference of the circle 
centered at the angle’s vertex as a unit of measure for the length of the subtended arc. Due to 
space limitations, the following paragraphs illustrate only two occasions in which David’s 
instruction supported inconsistent meanings of angle measure (from my perspective). I 
emphasize that the events discussed here are representative of several instances from David’s 
teaching in which he promoted discrepant meanings. 

Lessons 1 and 2 
David began the first lesson of Module 8 by asking a student to draw two angles on the 

whiteboard. The student drew one angle above the other. David then explained that the measure 
of the angle on top is larger than the measure of the angle on bottom because, if one were to 
construct two circles of equal radii respectively centered at the vertex of each angle, the angle on 
top would subtend an arc that is longer than the arc subtended by the angle on bottom. 
Immediately following this explanation, David asked the question in Line 1 of Excerpt 1. 

Excerpt 1 
1. David: When we measure an angle what are we really measuring? I mean it’s not like 

we’re measuring a length, right? How would we describe the thing that I’m 
measuring when I just look at these two angles? …  

2. Student: The openness of the angle. 
3. David:  Yeah. Which is weird. How do you measure openness? … I’m not measuring 

length. … We have to think about what we are actually measuring. 
While David previously compared the openness of two angles by attending to the respective 

arc lengths these angles subtend, he claimed in Lines 1 and 3 of Excerpt 1 that quantifying the 
openness of an angle does not involve measuring a length. Following the dialogue in Excerpt 1, 
David explained that two angles have the same measure if “the length of the [subtended] arc is 
the same, as long as I made the circle have the same radius and it was centered at the vertex.” 
David therefore supported contradictory meanings of angle measure during the first lesson; he 
pronounced that measuring an angle is not a process of measuring a length and then proceeded to 
compare the openness of two angles, as well as define what it means for two angles to have the 
same measure, by attending to the arc lengths the two angles respectively subtend. In other 
words, when speaking of angle measure David did not consistently reference the same quantity 
being measured.1 

A few minutes after David’s remark in Line 3 of Excerpt 1, he projected the image displayed 
in Figure 1 on the whiteboard and asked his students the question in Line 1 of Excerpt 2. 

                                                
1 Understanding angle measure quantitatively involves conceptualizing a specific attribute to measure as well as 
identifying an appropriate unit with which to measure it. When measuring an angle, the attribute one measures is the 
length of the arc the angle subtends. This subtended arc length must be measured in units that are proportionally 
related to the circumference of the circle that contains the subtended arc so as to make the size of this circle 
inconsequential to the measure of the angle. It is important to note that this condition on the unit of measure does not 
change the quantity being measured: subtended arc length. 
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Figure 1. Angle measure as a fraction of the circle’s circumference 

Excerpt 2 
1. David: So the angle subtends 1/8th of the circumference of the circle. (Pause) Now do 

units matter here? … Why do units not matter here? 
2. Student: ‘Cause you’re using a proportion. 
3. David: Why does that matter? … 
4. Student: Because even though you’re making the radius larger you’re also making the 

whole circle larger. 
5. David: So what happens when you do your proportion? Think in science class. (Long 

pause) ‘Cause we’re comparing it to our circumference, right? We’re comparing 
arc length to circumference? What would happen to the units then? (Long pause) 
So lets just say for the sake of argument 1/8th could be a circumference of, uh, a 
circumference of 16, that would mean that the arc length would be two, if it’s an 
eighth. So two inches divided by 16 inches is? 

6. Student: One-eighth.  
7. David: One-eighth. What are the units now? (Long pause) What happens when you put—

and again think in terms of science class—what happens when you put two inches 
divided by 16 inches (writes “2in/16in”), your science teacher would say that’s 
1/8th. What are the units? 

8. Student: It doesn’t matter.  
9. David: It does matter. What are the units? 
10. Student: Inches. 
11. David: Inches divided by inches give you inches? 
12. Student: No. 
13. David: What does it give you? 
14. Student: One-eighth. 
15. David: What are the units? 
16. Student: It doesn’t have units. 
17. David: It doesn’t have units? Why not? 
18. Student: Because the inches cancel. 
19. David: ‘Cause inches cancel inches! … ‘Cause I’m not just measuring arc length. What 

am I measuring? I’m measuring arc length and comparing it to what? 
20. Student: Circumference. 
21. David: Circumference! How am I comparing them? 
22. Student: By length. 
23. David: By length? What operation is going on here? Am I subtracting the circumference? 

(Pause) It’s division! We’re creating a ratio! Then do the units matter? 
24. Student: No. … 

1/8 of the
circumference
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25. David: What happens when we do the ratio? The units stop mattering, right? Because the 
units end up canceling. We’re interested in the ratio. We’re not interested in the 
units from the ratio because the units are going to reduce. 

After acknowledging in Line 1 of Excerpt 2 that the angle in Figure 1 “subtends 1/8th of the 
circumference of the circle,” David exclaimed that the measure of the angle is a value without 
units. In particular, David explained that if one measured the subtended arc length and 
circumference in inches, the ratio of these quantities is unit-less because the inches “cancel” as a 
result of the division. Moreover, by claiming, “I’m not just measuring arc length. What am I 
measuring? I’m measuring arc length and comparing it to what? … Circumference!” David did 
not support his students in seeing the ratio of subtended arc length to circumference as the length 
of the subtended arc measured in units of the circumference. Generally speaking, David’s 
statements and questions in Excerpt 2 did not provide students with an opportunity to interpret 
the ratio of subtended arc length to circumference as a quantitative operation but rather as an 
arithmetic operation; that is, he did not communicate the division of these quantities as a measure 
of subtended arc length in units of circumference but simply as the ratio of two lengths. Such an 
emphasis is necessary if one is to support students in conceptualizing angle measure 
quantitatively (i.e., as a measure of some attribute in some unit). Therefore, while David’s 
instruction during the first lesson overtly emphasized angle measure as a fraction of the circle’s 
circumference subtended by the angle—and implicitly conveyed angle measure as the length of 
the subtended arc—he did not encourage students to see the former meaning as an application of 
the latter by failing to support them in conceptualizing the ratio of subtended arc length to 
circumference as a quantity that represents the length of the subtended arc measured in units of 
the circumference. In fact, David suggested that these meanings were incompatible by 
continually asserting that the process of measuring an angle is not one of measuring length. 

David’s instruction of angle measure did not consistently support students in conceptualizing 
the quantity one measures when assigning numerical values to the openness of an angle. On 
some occasions David conveyed that the process of measuring an angle is one of determining the 
length of the arc an angle subtends, while on other occasions he explained that measuring an 
angle involves determining the fraction of a circle’s circumference subtended by the angle. 
While in certain circumstances one of these ways of understanding might be more natural than 
the other, David did not support his students in making the connection between these ways of 
understanding. In other words, David did not provide opportunities for students to see these 
meanings as two instantiations of the same quantification process (measuring the length of the 
subtended arc in units proportional to the circumference of the circle containing the subtended 
arc) because he did not support students in conceptualizing the circumference of the circle 
centered at the angle’s vertex as a unit of measure for the length of the subtended arc. 

Summary of Lessons 1-9 
While David’s instruction during the first lesson emphasized the understanding of angle 

measure as the fraction of the circle’s circumference subtended by the angle, he also discussed 
angle measure as the length of the arc an angle subtends, but then suggested that these two 
meanings are incompatible by explaining that the process of measuring an angle is not one of 
measuring a length. The majority of David’s instruction during Lessons 2 and 3 emphasized 
angle measure as the fraction of the circle’s circumference subtended by the angle. Specifically, 
David’s teaching promoted the mental imagery of imagining the circumference of the circle 
centered at the vertex of the angle being split into a number of equal pieces, and then attending to 
the ratio of the number of these pieces subtended by the angle to the number of these pieces 
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contained in the circumference of the circle. However, on several occasions during Lessons 4-9, 
David discussed angle measure as the length of the subtended arc measured in units of the radius 
of the circle containing the subtended arc. Moreover, David’s instruction throughout Lessons 4-9 
was often contradictory in that he encouraged meanings that on other occasions he did not accept 
and devalued meanings that he elsewhere endorsed. 

 
Discussion 

The results of this study demonstrate that a secondary mathematics teacher’s (David) 
inattention to quantitative reasoning contributed to his conveying incoherent meanings of angle 
measure and trigonometric functions. In particular, by not maintaining a consistent emphasis on 
supporting students in: (1) identifying quantities, (2) attending to units of measure, (3) 
constructing quantitative relationships, (4) interpreting mathematical symbols and expressions as 
representing the values of quantities, and (5) performing quantitative—rather than arithmetic—
operations, the ways of understanding David’s instruction promoted were often inconsistent and 
even incompatible. Moreover, the meanings David supported varied by context because they 
were not consistently governed by, or in the service of promoting, a particular way reasoning. 
These findings suggest implications for secondary mathematics teacher preparation.  

While the well-documented affordances of quantitative reasoning on students’ conceptual 
mathematics learning are enough to justify its emphasis in pre- and in-service teacher education, 
the results of the present study provide an additional incentive for mathematics educators to 
engage teachers in experiences that advance their ability to reason quantitatively, as well as 
support them in leveraging quantitative reasoning in their teaching of specific concepts. 
Specifically, the results of this study suggest that teacher educators should design instructional 
experiences that allow pre- and in-service teachers to develop the disposition to support students’ 
identification of quantities and quantitative relationships, and their interpretation of mathematical 
symbols and expressions as representations of a measure of an attribute of some object in some 
unit, particularly in the difficult context of trigonometry. Equipped with such a disposition, 
teachers’ instructional actions may consistently be in the service of leveraging a powerful way of 
reasoning to support students’ learning of various mathematical ideas while simultaneously 
promoting the way of reasoning itself. The results of the present study demonstrate that when 
teachers do not possess a disposition to attend to quantitative reasoning, the circumstances are 
ripe for instruction that emphasizes inconsistent, incoherent, and sometimes incompatible, 
mathematical meanings. 
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Virtual Manipulatives, Vertical Number Lines, and Taylor Series Convergence:  
The Case of Cody 
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University of Central Arkansas 

 
Evidence from recent Taylor series studies suggests that well-designed virtual manipulatives can            

support calculus students in developing an understanding of Taylor series convergence           

consistent with the formal pointwise convergence definition. In particular, virtual manipulatives           

depicting convergence along vertical number lines (VNLs) provide graphical representations of           

quantities necessary for pointwise convergence. We detail one student’s reasoning about Taylor            

series convergence before and after a VNL was revealed in a Taylor series graph. Prior to the                 

VNL the student had produced very accurate Taylor polynomial graphs based on visually             

perceptual clues but had omitted notions of pointwise convergence. After a VNL was revealed,              

the student’s reasoning now included quantities along the vertical as he responded to             

approximation tasks. We believe that such reasoning can later support the student in developing              

an understanding of pointwise convergence.  

 

Keywords: ​ Taylor series, virtual manipulatives, quantitative reasoning, calculus, approximation 
 

A recent survey collected from 225 students suggests that well-designed virtual           
manipulatives (VMs) can help students in developing an understanding of Taylor series            
convergence consistent with notions from pointwise convergence (Martin, Thomas, & Oehrtman,           
2016). In particular, survey results found that students from classes using VMs were significantly              
more likely than students from classes not using VMs to draw Taylor polynomial graphs with the                
correct shape, observing general trends indicative of Taylor polynomials becoming better           
approximations for increasing degrees and Taylor polynomials drawn tangent to the function            
being approximated. Furthermore, this study observed gains in the number of students            
mentioning convergent behavior for particular values of the independent variable, ​x​ . It is the              
attention to convergence for particular values of ​x that is especially important when considering              
the formal pointwise convergence definition. Graphically, Taylor series convergence for          
particular values of ​x can be conceived along vertical number lines (VNLs) to indicate attributes,               
such as “estimates” and “error,” of pointwise convergence. In particular, these attributes are             
quantities (Thompson, 1994, 2011) of a VNL that the student can anticipate as having values               
(magnitudes) that can be compared using approximation and error analysis. We ask the question,              
just because students from VM classes were drawing more accurate graphs depicting Taylor             
series convergence, does this mean that they were reasoning about Taylor series convergence in              
a way that was consistent with pointwise convergence, such as reasoning about needed             
quantities? 

In this paper, we expand upon the analysis of the survey and detail one student’s reasoning as                 
he interacted with multiple images of Taylor series convergence, including images containing a             
VNL and a VM. While not necessarily representative of all calculus students, we found that that                
this student demonstrated similar patterns of understanding displayed by many students from our             
small sample of interviewed students. His story provides an example of a possible progression of               
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reasoning as he interacted with a VNL and subsequently identified quantities related to pointwise              
convergence in the context of Taylor series convergence. We use this student to detail possible               
ways that VNLs might support students in conceiving of and relating relevant quantities related              
to pointwise convergence and identify how a VM might further support such reasoning. 

Taylor Series Literature 
 
A Taylor series for an infinitely differentiable function, ​f​ , centered at ​x​ = ​a​ is given by                

. If ​f is real analytic, then for all ​x within the interval of(x )∑
∞

k=0
k!

f (a)(k)
− a

k        (x) (x )f = ∑
∞

k=0
k!

f (a)(k)
− a

k        

convergence. Taylor series convergence is an example of pointwise convergence where a Taylor             
series converges to ​f over an interval of convergence ​I iff , , there is some natural           x∈I∀  ε∀ > 0      
number such that for all natural numbers . While we do not see a N > 0       , f(x) (x)|n > N | − T n < ε        
need for a calculus student to be able to quote the formal definition of pointwise convergence,                
our ideal first-year calculus student is a student who can meaningfully discusses Taylor series              
convergence in a way that exemplifies both symbolically and graphically the quantities and             
relationships seen within the formal pointwise convergence definition.  

Studies investigating students’ reasoning about Taylor series repeatedly document student          
struggles to comprehend this topic (e.g. Champney & Kuo, 2012; Kidron & Zehava, 2002; Kung               
& Speer, 2010; Martin, 2013; Martin & Oehrtman, 2010). Lack of attending to particular values               
of the independent variable distinguishes student understanding from expert understanding          
(Martin, 2013). In addition, students tend to focus on isolated facts and formulaic procedure              
when reasoning about Taylor series (Martin, 2013). When viewing graphical representations,           
students often attend to general behavior indicated by the most salient of visually perceptual              
clues lacking reference to quantities necessary for pointwise convergence (Habre, 2009; Kidron,            
2004; Kidron & Zehavi, 2002; Martin, 2013). For example, students might describe Taylor             
polynomials as “getting closer” to the approximated function without alluding to any meaning of              
“close” as a measurable distance. In some cases, these perceived attributes are inconsistent with              
pointwise convergence. For example, while viewing Taylor series graphs, students have been            
observed noting that a Taylor polynomial and the approximated function were identical over an              
interval since the two graphs were visually “touching,” Oehrtman (2009) referred to this             
perception as a collapse of error. Instead, a model of limit where Taylor polynomials evaluated at                
particular values of the independent variable, ​T​

n​ ( ​x​ ), are viewed as approximations to ​f​ ( ​x​ ) with an               
associated error, , and bound on the error can focus student reasoning on those f(x) (x)|| − T n             
quantities related to pointwise convergence (Martin & Oehrtman, 2010; Martin, Oehrtman, Roh,            
Swinyard, & Hart-Weber, 2011; Oehrtman, 2009). 

 
Virtual Manipulatives (VMs) and Taylor Series 

Creating Taylor series graphs can be especially time consuming during class. We believe that              
interactive computer representations, which we call VMs, show potential for not only supporting             
first-year calculus students in making sense of Taylor series but VMs might also alleviate some               
of the time constraints felt by instructors attempting to provide their students a much needed               
graphical understanding of Taylor series. 

VMs have already been shown to provide students with a tool to explore and develop               
mathematical understanding (Moyer-Packingham & Westenskow, 2013). In particular, it has          
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already been demonstrated that VMs can reinforce quantitative relationships that students can            
recall months later (Cory & Garofalo, 2011). Yet, as already noted concerning graphical images              
of Taylor series, VMs not using VNLs seem to have little impact on and may reinforce students’                 
persistence in using visually perceptual clues ungrounded in quantitative reasoning (Habre, 2009;            
Kidron, 2004; Kidron & Zehavi, 2002). We hypothesize that well-designed VMs with VNLs             
coordinated with approximation tasks can move students away from merely attending to            
perceptual clues and include reasoning about quantities along the vertical. 

 

 
Figure 1.​  Screenshot of Taylor series VM 

 
Since very little has been done to investigate the effects of VMs on student learning beyond                

6​th grade (Moyer-Packingham and Westenskow, 2013), research into video lectures provides           
additional detail that can inform on how to design VMs well. For example, irrelevant details               
should be removed (Harp & Mayer; 1998; Mayer, Griffith, Jurkowitz, & Rothman, 2008),             
conceptual difficulties can be explicitly addressed (Boesdorfer, Lorsbach, & Morey, 2011;           
Muller, 2008; Muller, Bewes, Sharma, & Reimann, 2007), and a series of still frames are               
preferable over animations in certain situations (Mayer, Hegarty, Mayer, & Campbell, 2005).            
The VM’s provides the student control to show and hide relevant and irrelevant details, to               
progress through “still frames,” and the zoom ability of the VMs was included to explicitly               
combat a collapse notion of error. 
 

Methods 
 
Cody was one of 225 students who participated in a Taylor series survey (Martin, Thomas, &                

Oehrtman, 2016), and one of five students who participated in two task-based individual             
interviews lasting around 60 minutes each. Cody was from a class using VMs to investigate               
Taylor series convergence during group (referred to as labs) and individual homework            
approximation exercices (Oehrtman, 2008). Our analysis revealed that in many cases, Cody’s            
reasoning typified the group of interviewed students. For the purpose of this report, we focus               
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exclusively on Cody’s evolution of ideas as he progressed through the interview tasks (Figure 2)               
during the first interview.  
 
1) Using the graph of sin(​x​ ) below, on the same axes sketch three different Taylor polynomials for sine. [included 

a graph of ​y=​ sin(​x​ ) over the interval [-4π,4π]] 
2) Using the graph of sin(​x​ ) below, on the same axes sketch the Taylor series for sine. ​[included a graph of 

y=​ sin(​x​ ) over the interval [-4π,4π]] 
3) The following graph represents a function ​f​ (​x​ ). [see bottom graph in Figure 4] 

Graph the first, second, and third degree Taylor polynomials of ​f​ (​x​ ) centered at ​x​ =2. If ​n​  is the degree of the 
polynomial you are graphing, label it ​T​

n​ (​x​ ). (E.g. ​T​ 1​(​x​ ) is the degree one polynomial). 
4) What might ​T​ 1000​(​x​ ) look like? Add this to the graph above and label correctly. ​[used same graph as Task 3] 
5) What if the series was centered at ​x​ =0? On the graph below, graph three Taylor polynomials for the Taylor 

series centered at ​x​ =0 and label correctly.​ [included a reproduction of the graph seen in Task 3] 
6) Explain in detail what it means for a Taylor series to converge.  
7) List all the ways in which Taylor series convergence is related to sequence convergence and series 

convergence if at all. Make sure your explanations reference 
a. Formulas when appropriate and 
b. Includes a graphical explanation that highlights sequences and/or series on your graph. (That is, add to the 

graph to appropriately highlight sequences and/or series convergence as it relates to Taylor series 
convergence.) 

8) [Given graphs including a sequence of Taylor polynomials] The Taylor series for (x) n x  g = l  
 centered at ​x​ =2 is given by  

n 2 (x ) n 2 (x ) (x ) (x ) ∓⋅⋅⋅ l + ∑
∞

k=1 k⋅2k

(−1)k+1
− 2 k = l +  1

1⋅2 − 2 − 1
2⋅4 − 2 2 + 1

3⋅8 − 2 3  

and the degree ​n​  Taylor polynomial is given by 
(x) ln 2 (x ) n 2 (x ) (x ) ±⋅⋅⋅ (x )  Tn =  + ∑

n

k=1 k⋅2k

(−1)k+1
− 2 k = l +  1

1⋅2 − 2 − 1
2⋅4 − 2 2 +

n⋅2n

(−1)n+1
− 2 n  

a. The radius of convergence of this Taylor series is (0,4]. Speculate on why it diverges beyond this radius. 
b. Use the graph to explain ​T​

n​ (3.98). 
c. Use the graph to approximate ln (3.98). 

Figure 2​ . Sample interview tasks.  
 

Question 1. What are you approximating? 
Question 2. What are your approximations? Which are overestimates? Which are underestimates? 
Question 3. What is the error for any one approximation? 
Question 4. What is error bound? 
Question 5. Can you find an approximation accurate to within 0.04 of what you are approximating? 

Figure 3​ . Common approximation question repeated throughout images. 
 

Prior to Task 8, Cody only produced graphs, but during Task 8, Cody was provided graphs as                 
he advanced through static, animated, and VM depictions of Taylor series convergence while             
responding to approximation questions adopted from Oehrtman (2008) (Figure 3). In addition,            
Cody first viewed three static images, starting with a standard Taylor series graph and progressed               
through two more images with VNLs (one without error and one image with error depicted).               
Likewise, the VM did not initially show a VNL but Cody had the option to make a VNL visible.                   
While viewing each depiction, Cody was repeatedly asked to “show” the interviewer on the              
image his responses to the approximation questions. The data was coded for indicators of              
quantitative reasoning and changes in how Cody was reasoning were tracked relative to the type               
of depiction (e.g., VNL or no VNL) he was viewing. In addition, commonalities and differences               
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in reasoning employed by Cody between the VNL depicted on the sequence convergence VM              
and the any VNL depicted in Taylor series convergence was noted.  

Results 

Thinking Prior to VNL and VM 
When first encountering the Taylor series’ tasks,       

Cody’s actions were dominated by often unfruitful       
attempts to remember facts and relationships from       
class. His remembrances were frequently peppered      
with comments expressing uncertainty, such “I      
guess” or “I’m not really sure.” When graphing        
Taylor polynomials, Cody consistently produced     
linear, quadratic and polynomial shapes (Figure 4).       
He noted general trends, such as even and odd degree          
Taylor polynomials alternate between being “above”      
and “below” the the approximated function or that as         
“as you go further on in the exponents [while making          
a rightward chopping motion gesture with right hand]        
you start to, you add a curve each time [...]” 

For Cody, convergence was achieved by Taylor       
polynomials “approaching” the approximated    
function via two methods: a vertical transformation       
and an increasing interval over which polynomials       
become more accurate. Thus, small degree Taylor       
polynomials need not be tangent to the approximated        
function (note the Task 3 Image in Figure 4) but as           
degree increases, a vertical transformation causes the the larger degree polynomials to better             
approximate the given function. For example, for ​T​ 1000 Cody drew a polynomial that traced the               
approximated function over a large interval. It should be noted that throughout the early              
interview tasks, Cody did not attend to convergent behavior for particular values of ​x​ . When               
explicitly asked to explain what it meant for a Taylor series to converge, he expressed confusion                
about the object to which the Taylor series converges, “Taylor series converging is, I guess,               
when it’s approaching one certain...not a point...but it’s approaching a number.” Although he             
seemed to indicate convergence to a point, at no moment were his references explicitly              
coordinated with particular values for ​x​ , and his later choice to use “line” as a reference to the                  
function instead of “point” or “number” suggests that his uses of “point” and “number” were               
purely metonymic. “As you go further and further, you go up to infinite number, or infinite                
powers you would start approaching that number that you’re ideally trying to estimate, or the line                
that you’re trying to estimate.” Without any vertical number line visible, he continued to describe               
Taylor series convergence using general graphical trends. 
 
Introducing the VNL in a Static Image 

Once a VNL was visible, Cody’s reasoning became structured by the vertical as evidenced              
by his gestures becoming almost entirely restricted to either points or quantities contained within              
the VNL. When presented with the first static image displaying a VNL, Cody immediately              
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identified the VNL as providing vertical distances from the graph of ln( ​x​ ). He then began to                
indicate points as answers to previous tasks. For example, “I guess this is, this point right here                 
[pointing to where ln( ​x​ ) and the vertical number line intersected] is ln(3.98). I guess we are                
approximating just that point.” When asked how to determine numerical values for the             
approximations, he connected the formula to the graphical representation by first gesturing            
vertically between the appropriate points on the VNL and saying “as you have more of these                
terms involved [points to the formula] it becomes closer and closer, you’d eventually will get               
pretty damn close, but I can’t tell exactly what the point is here [gesturing horizontally from the                 
point (2, ln 2) to the location of ln 2 on the ​y​ -axis].” He continued with his horizontal gestures as                    
he indicated approximations as points on the vertical number line paired with values on the               
y​ -axis. 

When prompted to discuss error, he immediately stated that error was the “distance between              
the approximation and the actual” and then included a graphical quantity by pointing at the point                
(3.98, ln(3.98)) on the graph and described error as the distance between that point and “any of                 
these points,” gesturing towards all the other points on the VNL. When asked whether it would                
be possible to approximate the value of ln(3.98) to within 0.04, Cody responded that one could                
“keep adding” terms, gesturing to the right to indicate a formula growing as if he were appending                 
terms, causing the Taylor polynomials to “get closer and closer” while gesturing vertically over              
the vertical number line. While tracing a curve, Cody said “I guess, for it to converge it would                  
have to approach the equation you are trying to estimate or for the point to approach, [now                 
focusing on the vertical number line] the point you’re, so yeah, to approach the point you’re                
trying to estimate. So as these get closer and closer, [waving over the approximation points on                
the VNL] and that would be the convergence for the series as it opposed to that [referring to his                   
previous answers on Tasks 5 and 6].” 
 
Introducing the VM 

Once Cody was interacting with the VM, he began exploring by clicking through the check               
boxes and then changing the degree of the Taylor Polynomial. He changed the ​x​ -value for the                
VNL to 3.98 and changed the value for the error bound (but not initially to 0.04). He later                  
zoomed in on the graph at ​x​ = 3.98, and then changed the value for the error bound again, this                    
time to 0.2. He expressed concern about the error bound, saying that he didn’t “know how you                 
determine...the length of the orange line.” After more investigation, he became more comfortable             
with the orange line, noting “that it helps gage how far apart some of these are,” essentially                 
describing an error bound despite his discomfort with the notion of an error bound as anything                
other than a difference between an overestimate and an underestimate. When asked whether he              
could find an approximation to within 0.04, without hesitation he changed the value in the error                
bound to 0.04, and pointed to the points within the boundaries set by the value of the error                  
bound. 

Earlier in the interview while looking at a static image containing a VNL, Cody’s language               
seemed indicative of a collapse of error, but when explicitly asked by the interviewer if the                
Taylor polynomial ever became the approximated function, Cody clearly stated that           
approximations “never fully reach” the exact value and that nonzero error remainded. Later,             
Cody used Geogebra ability to zoom with images of large degree Taylor polynomials to visually               
justify that error remained. 
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Revision of Definition of Convergence 
On his own initiative, Cody revisited his explanation to what it meant for a Taylor series to                 

converge, Task 6. Cody now attempted to reconcile function convergence with his emerging             
notion of VNL convergence.  

 
“I guess, for it [tracing over ​y​ = ln( ​x​ )] to converge, it would have to approach the                 
equation you are trying to estimate, or for the point to approach [focusing on the VNL]                
[...], to approach the point you’re trying to estimate. So as these get closer and closer                
[waving over the approximation points on the VNL], and that would be the             
convergence for the series, as it opposed to that [Taylor series]. [Cody added a VNL to                
a Taylor series graph he produced when first responding to Task 6.]”  
 

Instead of repeating prior explanations, Cody indicated function convergence as approaching           
“the point you’re trying to estimate” and made a change from a horizontal gesture of tracing over                 
y​ = ln( ​x​ ) to a vertical gesture for convergence at a point by waving over approximation points on                  
the VNL. In addition, his use of “the point you’re trying to estimate” might be indicative of a                  
recognition that different values of the independent variable, ​x​ , would influence convergence.            
Furthermore, Cody related convergence to a point with merely a “series” and not a Taylor series,                
indicating that he was conceiving of graphical, and not merely symbolic, connections between             
series and Taylor series. 

Discussion 

After seeing the VNL, Cody framed his thinking in terms of the visible “dots” on the VNL.                 
Even when his gestures included horizontal movements to the ​y​ -axis, his gestures began with the               
approximating “dots.” While Cody was indicating the corresponding ​y​ -values for these “dots,”            
there was no evidence that he was thinking of these locations as quantities in the sense of being a                   
vertical distance from the ​x​ -axis. Vertical distances appeared in the context of error and error               
bound as Cody described “distances” from the graph of ​y = ln( ​x​ ) to the “dots” on the VNL. And                   
although Cody had not indicated these “dots” as vertical distances, the “dots” served a references               
for establishing quantities.  

In addition to using the zoom feature to combat collapse, the impact of the VM on Cody’s                 
conception of convergence became clear in the second interview when Cody was asked to find               
an approximation to within 0.04 of the actual value while viewing a static image. Cody               
responded that he could, if he had a “slider.” While his description of Taylor series convergence                
had clearly improved, in that moment, the VM was a part of his mental image of convergence. 

Cody’s experiences with the VNL and VM provide complementary evidence to that            
presented previously by Martin, Thomas, & Oehrtman (2016). While this work indicated that             
students in classrooms with VMs were more likely to answer questions about Taylor series              
convergence correctly, Cody’s experiences give us some notions of how these VMs may be              
transforming the students’ conceptions of convergence. While Cody’s reasoning has room to            
grow, he provides insight into the kinds of positive learning experiences that can be fostered               
using these VMs. 
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Developing Students’ Reasoning about the Derivative of Complex-Valued Functions with 
the Aid of Geometer’s Sketchpad (GSP) 

 
 Jonathan Troup 

University of Oklahoma 
 

In this paper, I share results of a case study describing the development of two undergraduate 
students’ geometric reasoning about the derivative of a complex-valued function with the aid of 
Geometer’s Sketchpad (GSP). My participants initially had difficulty reasoning about the 
derivative as a rotation and dilation. Without the aid of GSP, they could describe the rotation and 
dilation aspect of the derivative for linear complex-valued functions, but were unable to generalize 
this to non-linear complex-valued functions. Participants’ use of GSP, speech, and gesture assisted 
with discovering function behavior, generalizing how the derivative describes the rotation and 
dilation of an image with respect to its pre-image for non-linear complex-valued functions, and 
recognizing that the derivative is a local property. 
 
Keywords:  Amplitwist, Complex-valued function, Derivative, Dynamic Geometric 
Environments (DGEs), Gesture 
 

Introduction 
 

In the calculus reform era, a main goal was to develop students’ conceptual understanding of 
calculus by integrating algebraic and geometric reasoning (Asiala, Cottrill, Dubinsky, & 
Schwingendorf, 1997; Lauten, Graham, & Ferrini-Mundy, 1994; Meel, 1998). While similar 
research has been conducted in other mathematical content domains, there is less research in 
complex analysis, which allows potential for geometric reasoning. The purpose of this research 
was thus to address two research questions: What is the nature of students’ reasoning about the 
derivative of complex-valued functions, and what role does GSP play in developing students’ 
geometric reasoning about the derivative of complex-valued functions (i.e., the amplitwist)?  
For my work, I adopted the National Council of Teachers of Mathematics’ (NCTM, 2009) 
reasoning definition, which is “the process of drawing conclusions on the basis of evidence or 
stated assumptions” (p. 4), and is categorized as algebraic or geometric. Algebraic reasoning 
involves symbolic manipulation, and geometric reasoning involves spatial elements. I also refer 
to inscriptions, which Roth and McGinn (1998) define as “signs that are materially embodied … 
and because of their material embodiment, inscriptions (in contrast to mental representations) are 
publicly and directly available, so that they are primarily social objects” (p. 37). 
 

Literature Review 
 

In this section, I summarize literature on students’ reasoning in the realm of complex analysis, 
and the benefits of DGEs on students’ reasoning. As these domains draw on gesture as evidence 
for reasoning, I conclude this section by synthesizing related gesture research. 
 
The Teaching and Learning of Complex Numbers 
There has been a recent increase in educational studies focusing on complex numbers 
(Danenhower, 2006; Harel, 2013; Karakok, Soto-Johnson, & Anderson-Dyben, 2014; 
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Nemirovsky, Rasmussen, Sweeney, & Wawro, 2012; Panaoura, Elia, Gagatsis, & Giatilis; 2006; 
Soto-Johnson, 2014; Soto-Johnson & Troup, 2014). The results of these studies show that 
participants struggle to reason geometrically about complex numbers. In brief, Panaoura et al. 
found that high school students had difficulty transitioning between algebraic and geometric 
reasoning, while Danenhower showed undergraduate mathematics majors could not convert 𝑎+𝑖𝑏

𝑐+𝑖𝑑
 

to exponential or Cartesian form. Applying Sfard’s (1991) duality principle. Karakok et al. saw 
that teachers displayed a process/object duality of the Cartesian form, but only an operational 
level of the exponential form. Harel (2013) noted that teachers were unable to attach a geometric 
meaning to the addition and multiplication complex numbers. 
However, reasoning via embodied cognition may help students reason geometrically about 
complex analysis. Nemirovsky et al. (2012) observed that through the usage of a “floor tile” 
representation of the complex plane and stick-on dots and string to represent complex numbers, 
pre-service teachers discovered multiplying by 𝑖 corresponds to a rigid 90° rotation. Soto-
Johnson and Troup (2014) also found that undergraduates integrated their algebraic and 
geometric reasoning while drawing a representative diagram.  
 
Dynamic Geometric Environments 
In contrast with complex analysis research, research on educational technology is abundant. 
Some suggest that technology can cause harm by promoting overgeneralizations (Clements & 
Battista, 1992; Olive, 2000) or an over-reliance on technology (Salomon, 1990). Alternatively, 
technology can help students and teachers refine mathematical ideas (Arcavi & Hadas, 2000; 
Barrera-Mora & Reyes-Rodríguez, 2013; Heid & Blume, 2008; Hollebrands, 2007; Jones, 2000; 
Olive, 2000; Tabaghi & Sinclair, 2013; Vitale, Swart, & Black, 2014) without relying on 
mathematical authorities such as teachers or textbooks. DGEs such as Geogebra have been 
shown to help develop concepts related to real-valued differentiation (Hohenwarter, 
Hohenwarter, Kreis, and Lavicza, 2008; Ndlovu, Wessels, and De Villiers, 2010). Salomon 
(1990) suggested that DGEs may help students by providing multiple representations of 
mathematical objects. Hollebrands (2007) and Olive (2000) contend that GSP makes abstract 
ideas appear more concrete, which could help students ground reasoning in the physical 
environment. For example, Tabaghi and Sinclair (2013) found that while interacting with an 
eigenvector sketch in Sketchpad, students reasoned via gesture.  
 
Gesture 
Many (Alibali & Nathan, 2012; Goldin-Meadow, 2003; Keene, Rasmussen, & Stephan, 2012; 
Roth, 2001) believe “gestures can be used as a window into what students in a classroom are 
thinking” (Keene et. al., p.367). Others suggest diagrams and gestures inform each other 
(Chȃtelet, 2000; Chen and Herbst, 2013). For example, a vector could express the result of the 
multiplication of two complex numbers and a flick of the wrist could convey the associated 
rotation and dilation (Soto-Johnson & Troup, 2014). Some also state gesture and speech form a 
single, integrated system to support both visual and verbal content (Alibali & Nathan, 2012; 
Goldin-Meadow, 2003; Keene et al., 2012; Roth, 2001). For example, Goldin-Meadows found 
gesture aids memory and the ability to describe it, while restricting gesture hampers this ability.  
Some literature suggests gesture can transform over time from primarily representative to 
primarily pointing as students become more familiar with mathematical procedures (Alibali & 
DiRusso, 1999; Soto-Johnson & Troup, 2014; Garcia & Engelke, 2012; Marrongelle, 2007; 
Soto-Johnson and Troup, 2014). Garcia and Engelke (2012) also noticed that their undergraduate 
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participants gestured more frequently when they were stuck on a task. Vitale et al.’s (2014) 
participants initially gestured to remind themselves of a geometric concept, but transitioned into 
using gesture as a validation tool. The students additionally interacted with virtual 
representations of spatial gestures, which resembled their “real” gestures. 
Given that gesture may result from explorations with technology (Tabaghi & Sinclair, 2013) and 
that gesture can arise organically, it was critical to adopt a framework that would be sensitive to 
this phenomenon. Thus, I employed embodied cognition as my theoretical perspective, which 
allowed me to interpret my participants’ reasoning via gesture and actions taken within a DGE. 
In the next section I summarize my interpretation of embodied cognition. 
 

Theoretical Perspective 
 

Embodied cognition is mainly concerned with the relationship between reasoning and actions 
within the physical environment (Anderson, 2003), though the nature of this relationship differs 
between researchers. While some suggest embodied cognition is a tool for mental cognition, 
(Alibali & Nathan, 2012; Lakoff & Nuñez, 2000; Wilson, 2002), others dispense with mental 
models entirely by equating reasoning with body-based activity, such as is found in 
Nemirovsky’s (2012)  fluid “realm of possibilities.” Under the second view, bodily experience is 
itself an inextricable part of the learning process.  So, one view is concerned with mental models 
influenced by embodied action, while the other focuses on personal experience. These views do 
not seem entirely incompatible; an impersonal description of pain as “the firing of C-fibers” 
(Nemirovsky et al., 2012, p. 2) neither invalidates nor takes precedence over someone’s personal 
experience with pain. Similarly, postulations about the cognitive way the mind responds to 
bodily actions may not be contradictory to inferences made about a learner’s experience. I align 
more closely with this second viewpoint. Similar to Soto-Johnson and Troup (2014c), I interpret 
embodied cognition to include bodily actions taken within the physical environment. I believe 
perceptuo-motor activity (including DGE activities) can influence reasoning and that reasoning 
can influence bodily actions. Rather than postulate any cognitive mechanisms, I simply suggest a 
relationship between how my participants utilized DGEs, gestures, and inscriptions. Particularly, 
participants reasoned with GSP via construction and manipulation of geometric inscriptions and 
via the production of virtual gesture through mouse movement. Thus, I take this reasoning and 
participants’ usage of GSP, gestures, and inscriptions to be inseparable.  
 

Methods 
 

This report is a summary of my Ph.D. thesis. Thus, in this section, I describe some of the aspects 
of research performed, including participant selection, task design, and data analysis. 
 
Setting and Participants 
To help with participant selection and triangulation, I attended complex analysis class sessions 
related to the derivative. I video-recorded these classes and took notes paying particular attention 
to gestures employed. Four students agreed to participate in my study, who I refer to as 
Christine, Zane, Edward, and Melody. I conducted two sets of interviews, one with Christine and 
Zane, and another with Melody and Edward. Each group worked on tasks over four non-
consecutive days. Each interview lasted two hours.  
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Concept Analysis of Amplitwist 
Within the context of real-valued functions, the derivative function has a well-recognized 
geometric interpretation as the slope of a tangent line. However, as the graph of a complex-
valued function is four-dimensional, the generalization of this concept is not straightforward. To 
help overcome this problem, one can represent the graph of a complex-valued function as two 
sets of axes: one for domain and one for range. Thus, graphing a complex-valued function can be 
represented as a transformation 𝑓: 𝐶 → 𝐶. In describing the derivative of a complex-valued 
function geometrically, Needham (1997) considers how a complex-valued function maps an 
extremely small circle centered about the point 𝑧 in the domain. “The length of 𝑓′(𝑧) must be the 
magnification factor, and the argument of 𝑓′(𝑧) must be the angle of rotation,” (p. 196) a 
concept that Needham refers to as an amplitwist. Needham further elaborates that the derivative 
of a complex-valued function provides a linearization that locally approximates the function, as 
“‘expand and rotate’ is precisely what multiplication by a complex number means” (p. 196).  
  
The Tasks 
The overall goal of the tasks I developed for my interview sequences was to encourage reasoning 
about the derivative of a complex-valued function as described by Needham’s (1997) concept of 
an amplitwist. I utilized tasks developed from a previously conducted pilot study. 
In Tasks 1 and 2, students followed instructions on a lab worksheet to construct the function 
𝑓(𝑧) = 𝑧2  and 𝑓(𝑧) = 𝑒𝑧 with the aid of GSP and predict how the function maps points, lines, 
circles, and the complex plane (see Appendix B). The goals of this task were for participants to 
establish proficiency with GSP and determine the mapping of circles under a complex-valued 
function. For Task 3 I prepared the linear complex-valued function 𝑓(𝑧) = (3 + 2𝑖)𝑧 with a 
complex-valued derivative in order to reduce the likelihood that students reasoned that the real 
part of the derivative is a dilation factor and the imaginary part of the derivative is a rotation 
factor. I asked participants to describe their geometric reasoning about the derivative of a 
complex-valued function both with and without GSP, and to use 𝑓(𝑧) = (3 + 2𝑖)𝑧 to 
demonstrate. I re-introduced GSP later to allow them to test their conjectures and continue to 
explore their reasoning. The purpose of this task was to help participants relate the magnitude 
and argument of the derivative to the way the linear function dilates and rotates a circle. In Task 
4, I asked participants to generalize their reasoning from Task 3 to the functions from Tasks 1 
and 2 as well as the functions 𝑓(𝑧) = 𝑧2, 𝑓(𝑧) = 𝑒𝑧, and 𝑓(𝑧) = 1

𝑧
. The goal of this exercise was 

to support students’ efforts to generalize the geometric reasoning they developed in Task 3 to the 
general case. Finally, in Task 5, I asked students to determine the value of a derivative at a 
particular point for the rational transformation 𝑓(𝑧) = (2𝑧+1)

(𝑧+𝑖)(1−𝑧)
. I gave them only geometric 

information about a rational transformation, and asked them to use this information to 
reconstruct the algebraic formula. The goal of this task was to encourage students to develop 
reasoning about the derivative as a local property and to develop reasoning about points of non-
differentiability as they relate to the amplitwist concept. 
 
Data Collection and Analysis 
To obtain data, I video-recorded class sessions the instructor deemed relevant. I recorded all 
interviews with both a camera to capture gesture and screen-capture software to record actions 
taken with GSP. My analysis began by watching the videos in conjunction with the screen-
captured GSP recordings to determine where the participants appeared to be making progress 
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toward a conception of the derivative of a complex-valued function as a local linearization. I 
transcribed all recorded gesture, speech, and usage of inscriptions, after which I coded lines as 
algebraic or geometric based on this data. Then, I wrote summaries of each day for each set of 
participants wherein I detailed the progression of selected events.  
Finally, I performed both a cross-case and within-case (Merriam, 2009; Patton, 2001) analysis on 
the written summaries, referencing both the Excel spreadsheet and the actual raw data as needed. 
 

Results and Discussion 
 

My findings suggest that GSP helped my participants generalize how the derivative describes the 
rotation and dilation of an image with respect to its pre-image for non-linear complex-valued 
functions. Furthermore, asking participants to construct an algebraic formula from geometric 
data served as a reminder that the derivative is a local property. 
For the first two tasks, I did not ask the participants anything about the derivative. Rather, I 
asked them to construct the function 𝑓(𝑧) = 𝑧2 for Task 1, and 𝑓(𝑧) = 𝑒𝑧. In the process, I 
answered their questions about how to use GSP, and asked them questions about how the 
function mapped various circles. During this questioning, both groups noted that circles mapped 
to other roughly circular shapes, and recalled that t points “rotate” and “dilate” or “stretch” when 
multiplied by a complex-valued function. They did not appear to say anything about rotation and 
dilation in conjunction with the derivative of a complex-valued function, however. Rather, 
Christine states simply, “I don’t know like what slope means in complex world,”  
When participants reasoned about the geometry of a linear complex-valued function 𝑓(𝑧) =
(3 + 2𝑖)𝑧 in Task 3, they verbalized that the function maps a circle to another circle which is 
rotated by the argument of 3 + 2𝑖) and dilated by |3 + 2𝑖| with respect to the original circle. 
While Melody and Edward made this observation in Task 3, Christine and Zane did not verbalize 
this same point until Task 4, although they did mention that the “stretch” and “rotation” factors 
do not change (see Error! Reference source not found.(a)). Melody and Edward observed, “the 
derivative is rotating this consistently wherever it is and then it’s expanding it out whatever the 
length of the derivative is. I guess we can see if that’s true” (see 1(b)). 

 (a)  (b) 

Figure 1: 𝒇(𝒛) = (𝟑 + 𝟐𝒊)𝒛 transforms green input circle and spokes to blue output circle and 
spokes of corresponding color (a) and Edward transforms a circle under 𝒛 → 𝟐𝒛 (b). 

 Later, during Task 4, Melody adds gesture to their description:  

Melody: Like the center (points at (2,0)) would be at 2? So the center of the circle doesn't 
necessarily depend on the derivative. Like where the output one is located doesn't depend on the 
derivative (curls fingers slightly into claw (see Figure 2(a)), beats toward screen while moving 
arm counterclockwise in an upper circular arc) The output one is just the size (hand makes claw 
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shape, extends fingers outward and back in) of it and (twists hand first clockwise like a 
doorknob (see Figure 2(b)) then back counterclockwise) the rotation not the, like the location 
would depend on the z squared. 

 (a)  (b) 

Figure 2: Melody produces a “claw-like” gesture for dilation (a) and produces a “doorknob” 
gesture for rotation (b). 

One of the most interesting findings resulted from Task 5, wherein participants utilized 
geometric data to construct an algebraic formula for a rational function. In this task, Edward and 
Melody explicitly connected strange output behavior to non-differentiable points, stating, “that 
can’t be differentiable there…It’s weird” (see Figure 3). At this point, Edward was able to 
verbally reason geometrically about what made a point differentiable, by stating, “okay, so to 
know if this is differentiable, we want to kind of know when, where, goes to, small circle goes to 
small circle.” This utterance is an atypically precise geometric description of the fact that the 
derivative is a local property. It was during this task that participants most precisely 
characterized the derivative as a local property. Note that only Edward and Melody 
accomplished this task, as Zane and Christine progressed more slowly through the tasks.  

 
Figure 3: Edward and Melody zero in on a non-differentiable point. 

Overall, I answer the two research questions listed above in the following ways. To answer the 
first, I argue that my participants reasoned about the derivative of a complex-valued function via 
embodied cognition in three distinct ways. In particular, they grounded their algebraic and 
geometric inscriptions via gesture and speech as in Goldin-Meadow (2003) (see leftmost cycle in 
Figure 4), integrated their algebraic and geometric reasoning methods via these inscriptions as in 
Soto-Johnson and Troup (2014) (see center cycle in Figure 4), and grounded these reasoning 
methods in both the real and virtual environments as in Hollebrands (2007), Olive (2000), and 
Tabaghi and Sinclair (2013) (see rightmost cycle in 4. To answer the second question, I detail 
three developments in reasoning which arose during their work with GSP, and seemed critical to 
my participants’ reasoning about the derivative. 
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Figure 4: Integration through Embodied Cognition. 

These three developments are as follows. First, my participants recognized a need for a 
geometric characterization of linear complex-valued functions, which was supported by 
grounding algebraic and geometric inscriptions via gesture and speech. Many of these 
inscriptions were displayed by GSP. This development allowed participants to begin extending 
their reasoning about real-valued functions to the complex-valued case. Second, my participants 
reasoned geometrically that linear complex-valued functions rotate and dilate every circle by the 
same amounts 𝐴𝑟𝑔(𝑓′(𝑧)) and |𝑓′(𝑧)|, respectively. Finally, the participants observed small 
circles map to small circle-like objects under any complex-valued function. 
 

Concluding Remarks 
 

Thus, it appears that in my case study, gesture, DGEs and speech really did work together to aid 
students in developing reasoning about the derivative of complex-valued functions. I conclude 
by describing some possible teaching implications and directions for future research. 
 
Teaching Implications 
The findings described above suggest a few implications for teaching the derivative of a 
complex-valued function. First, it demonstrates potential learning trajectory for students seeking 
to develop their geometric reasoning about the derivative of a complex-valued function. In 
particular, my students first developed reasoning about the geometry of lines in ℂ, then reasoned 
geometrically about a constant derivative in terms of rotation and dilation, and finally reasoned 
about the need to reason specifically about small circles. Second, it suggests that my students 
worked beneficially with DGEs when placed in pairs and allowed some opportunity for free 
exploration of related algebraic and geometric reasoning, as in Olive (2000). Finally, my 
research suggests that it may be helpful to direct students’ focus to key points over the course of 
their mathematical investigations, even when aided by a dynamic geometric environment (DGE). 
 
Future Research 
One possible direction for future research is to increase the breadth of these results by 
implementing dynamic geometric environments (DGEs) on a large scale in real classrooms and 
collecting quantitative data on student performance on tasks related to reasoning about the 
derivative of a complex-valued function as an amplitwist. Such research would theoretically 
allow these or related results to achieve some level of generality. Another possible direction is to 
increase depth of the results in this case study by iterating on the last task specifically. My 
participants reported beneficial effect from constructing algebraic information from exclusively 
geometric information from GSP, so further research on the effects of similar tasks for other 
students could prove highly interesting. 
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Calculus Students’ Reasoning about Slope as a Ratio-of-Totals  
and its Impact on Their Reasoning about Derivative  

Jen Tyne 
University of Maine 

Although studies have shown that students have difficulty with slope and derivative concepts, 
little is known about connections between these difficulties. In this study, written surveys and 
clinical interviews were used to examine students’ understanding of both slope and derivative in 
real-life contexts. The dominant incorrect reasoning was thinking of slope as the ratio-of-totals 
!
"  instead of the ratio-of-differences ∆!

∆" . This incorrect thinking about slope influenced 
students’ understanding of derivative. Thinking of slope as a ratio-of-totals implies that all linear 
relationships are directly proportional. Students interpreted slope as something that can be used 
to calculate values of dependent variables (by multiplying them by the value of the independent 
variable). As a result, they often interpreted the derivative as something that could be used to 
find the value of dependent variables (by multiplying the derivative by the value of the 
independent variable), implicitly using the incorrect relationship $	(') = $* ' ∗ '. 

Key words: Calculus, Application of Derivative, Rate of Change, Slope, Student Understanding  

Introduction and Research Questions 

A robust understanding of derivatives and instantaneous rates of change in calculus requires 
understanding slope and average rate of change (Hackworth, 1994). Calculus students may not 
have the robust understanding of slope and rate of change that instructors assume, which has 
consequences for their learning. It is thus important for instructors to be alert to students’ 
understanding of slope coming into calculus so derivative instruction can be designed that 
expands on that knowledge. Furthermore, students must understand not only instantaneous rates 
of change but also continuously changing rates. This covariational reasoning is essential for 
interpreting dynamic function situations (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002).  

My work builds on research about student understanding of slope and rate of change (Barr, 
1980, 1981; Orton 1984; Stump, 2001); rates of change involving and not involving time 
(Stump, 2001); derivatives (Bezuidenhout, 1998; Ferrini-Mundy & Graham, 1994; Zandieh, 
2000); rates of change of linear and non-linear functions (Orton, 1983), and how students’ 
knowledge of rate of change was affected by derivative instruction (Hackworth, 1994). Findings 
from these studies indicate that students have difficulty understanding slope as a constant rate of 
change and derivative as an instantaneous rate of change.   

This study investigates students’ interpretation and use of slope and derivative in real life 
contexts. Such applications problems require students to translate from the context to the abstract 
level of calculus and then back to the context, a process that requires conceptual knowledge 
(White & Mitchelmore, 1996). Educators have emphasized the utility of these sorts of problems, 
noting that “not only do real-world situations provide meaningful opportunities for students to 
develop their understanding of mathematics, they also provide opportunities for students to 
communicate their understanding of mathematics” (Stump, 2001, p. 88).   

There has not been much research on students’ interpretation of the derivative as a rate of 
change, students’ interpretation of slope as a constant rate of change, or students’ understanding 
of the differences in making predictions involving constant and instantaneous rates of change. 
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Knowing more about students’ understanding of slope and derivative as rates of change can help 
improve our instruction by helping educators build better derivative instruction based on 
students’ knowledge of slope.  Improving instruction is one way to retain more STEM majors, an 
overall goal of the mathematics education community (Holdren & Lander, 2012) 

Building on prior research on students’ difficulties with slope and derivative, this study 
focuses on the connections between students’ verbal interpretation of slope and their verbal 
interpretation of the derivative. It also probes students’ abilities to critique the reasoning of 
others, a Standard of Mathematical Practice in the Common Core (National Governors 
Association Center for Best Practices, 2010). These were assessed with questions focusing on the 
appropriate use of rate of change to make a prediction. Both are new research areas at the college 
level, and led to the following research questions: 

• Is there a relationship between calculus students’ understanding of slope and their 
understanding of derivative? Specifically, do students’ abilities to correctly interpret the 
slope as a constant rate of change make them more likely to be able to interpret the 
derivative as an instantaneous rate of change?  

• Given predictions based on slope and derivative, can students appropriately critique the 
reasoning used to make the predictions? 

 
Methodology 

I collected written solutions from 69 students enrolled in differential (i.e., first semester) 
calculus classes at a public university in the northeast. Students were approximately 80% through 
the course. I then performed follow-up clinical interviews (Hunting, 1997) with thirteen students 
during the first half of second-semester calculus; eight had completed the written survey the 
previous semester. My research approach, an analysis of student understanding gained from 
direct students responses, is consistent with a cognitive theoretical perspective and is well 
established in the mathematics education community (Byrnes, 2000; Siegler, 2003).   

The survey and interview questions were based on linear and non-linear one-variable 
relationships, concepts likely familiar to first-year calculus students. Sample questions are shown 
in Figure 1. The questions about linear relationships were posed to gain insight into students’ 
knowledge of predictions based on linear change. These questions were adapted from a general 
education textbook written to emphasize conceptual understanding (Franzosa & Tyne, 2010). To 
answer these questions, students must understand linear change as a constant rate of change. The 
questions about nonlinear relationships were more complex, and were adaptations from 
Calculus, 6th edition (Hughes-Hallet et al., 2013). To answer these questions, students must 
understand the derivative as an instantaneous rate of change that can be used to predict marginal 
change, and that the derivative cannot be used to make predictions at other input values.  

Answers were coded as correct or incorrect. To investigate possible relationships between 
performance on linear and non-linear questions, 2x2 contingency tables were used to examine 
combinations of right and wrong answers. A sample table is shown in Table 1, which presents 
the survey data comparing the critiquing linear questions and the critiquing non-linear questions.  

The focus in the contingency tables is on the shaded diagonal cells, namely those students 
who got exactly one of the questions correct. I performed McNemar’s test on each table, testing 
whether there was an asymmetry in the success levels of students (Agresti, 2007). The outcome 
of this test reveals relationships between correctness on the two questions. In the case of the 
example in Table 1, the significant McNemar test results signify that students performed 
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significantly better on the linear slope critiquing questions as compared to the non-linear 
derivative critiquing questions. After performing McNemar’s test, I then used a modified 
Grounded Theory approach (Strauss & Corbin, 1990) to categorize common incorrect responses 
from the unit, interpretation, and critiquing questions (Figure 1). The categories that emerged 
from this analysis formed the basis of my interview questions.   

Figure 1. The interview instrument. 
Non-Linear	Context	

Lin
ea
r	

Co
nt
ex
t	 		 Correct	 Incorrect	 Total	

Correct	 30%	 39%	 69%	
Incorrect	 3%	 28%	 31%	
Total	 33%	 67%	 N=69	

Table 1. 2x2 contingency table for the critiquing questions, McNemar’s test significant 
(p<0.001) 	

For certain drugs, the amount of dose given to a patient, D (in milligrams), depends on the 
weight of the patient, w (in pounds).  

A. Assume that D(w) is a linear function with a slope equal to 2 (m = 2).  
0. On the graph below, give a rough sketch of what the function D(w) looks like. Label the 

axes, but no need to scale them. 
1. What are the units on the slope, m = 2? 
2. Explain what this slope (m = 2) means in the context of the problem.  
3. Using the slope (m = 2), Nurse Jodi predicts that a patient’s dose will increase by 2 mg 

when the patient’s weight changes from 140 pounds to 141 pounds. How much 
confidence do you have in her reasoning? (circle one and provide explanation) 

Very Confident  Somewhat Confident   Not Confident 
4. Nurse Jodi accurately doses a 140-pound patient using the model.  Her next patient is 

twenty pounds heavier and she reasons that she must increase the dose by 40 mg (2 mg 
for each pound of weight).  How much confidence do you have in her reasoning? (circle 
one and provide explanation) 

Very Confident  Somewhat Confident   Not Confident 
B. Now, assume D(w) is a non-linear function.  

0. On the graph below, give a rough sketch of what the function D(w) might look like. 

1. What are the units on ? (also known as ) 

2. Explain the meaning of the statement in the context of the problem.  
3. Using the fact that , Nurse Jodi predicts that a patient’s dose will increase by 2 

mg when the patient’s weight changes from 140 pounds to 141 pounds. How much 
confidence do you have in her reasoning? (circle one and provide explanation) 

Very Confident  Somewhat Confident   Not Confident 
4. Nurse Jodi accurately doses a 140-pound patient using the model.  Her next patient is 

160-pounds and she reasons that since , she must increase the dose by 40 mg 
(2 mg for each pound of weight).  How much confidence do you have in her reasoning? 
(circle one and provide explanation). 

Very Confident  Somewhat Confident   Not Confident 
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Based on findings from the analysis of survey data and on pilot interviews, I created 
questions to explore students’ understanding of the appropriateness of using the slope and 
derivative to make predictions. In differential calculus, students are taught what the derivative 
represents, but rarely are asked when it is appropriate to use the rates of change to make 
predictions. During the interviews, which were recorded with LiveScribeTM technology, students 
were asked to “think out loud” while they worked through problems. Interviews allowed me to 
probe student thinking more deeply, especially focusing on the themes that emerged during the 
survey data analysis. Analysis of interview data was done using both the categories developed 
from the survey data analysis and techniques from Grounded Theory when additional category 
identification was needed. A major goal of the analysis was to further illuminate students’ 
reasoning about slope, derivative and how they are used and interpreted.  

 
Results 

With regard to research question #1, in both the surveys and interviews, students who 
interpreted the slope correctly were no more likely to interpret the derivative correctly than those 
who did not interpret slope correctly (questions A2 and B2; Figure 1). Success rates were low for 
interpreting both the slope and derivative (Table 2).   

 
 Slope Interpretation Derivative Interpretation 

Surveys (N=69) 17% 13% 
Interviews (N=13) 31% 38% 

Table 2. Comparison of success rates for the survey and interview interpretation questions 
 
For the slope interpretation, the dominant incorrect method was a ratio-of-totals approach 

!
" , implying a directly proportional relationship of the form , = -' with a y-intercept of zero 

(Table 3). For example, Missy and Jackie were asked the meaning of a slope of 2 mg per pound 
and both gave a ratio-of-totals response.  Missy said, “You multiply [the weight] by 2 to get the 
dosage.”  Jackie said “it means that for every pound, 2 milligrams of the dose.” The correct 
response is “for each additional pound of weight, the patient would need 2 additional mg of 
drug.” Characteristic of this type of response, neither Missy nor Jackie included “additional” in 
their response.  

 
 Ratio-of-Totals Approach 

Surveys (N=69) 39% 
Interviews (N=13) 54% 

Table 3. Rates of incorrect ratio-of-totals reasoning for the slope interpretation questions  
 
It is important to note that the difference between the correct answer and a “ratio-of-totals” 

answer is very subtle but it appeared that students were not just inadvertently leaving out the 
word “additional.” Most students who interpreted the slope incorrectly as a ratio-of-totals 
interpreted the derivative similarly as $(') = $* ' ∗ '. That is, they treated the derivative as 
something that could be used to find the value of the dependent variable. For example, when 
asked what .* 140 = 	2 meant, Dawn answered using ratio-of-totals, stating, “it would tell you 
how much drug to get. So, if it is 2 mg/pound, with a 140-pound patient, your dosage would be 2 
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times 140, or 280 mg.” In the interviews, six of the seven students who interpreted the slope as 
the ratio-of-totals went on to interpret the derivative similarly (as a rate of change that can be 
used to calculate the total). Students’ ways of thinking about this appear to be quite stable and 
four of the five students who did interpret slope correctly went on to interpret the derivative 
correctly. Rates of the ratio-of-total approach for derivative interpretation questions are shown in 
Table 4. 

 
 $(') = $* ' ∗ ' Approach 

Surveys (N=69) 16% 
Interviews (N=13) 54% 

Table 4. Rates of incorrect 3(4) = 3* 4 ∗ 4 reasoning for the derivative interpretation questions  
 
With regard to research question #2, most students had difficulty critiquing others’ reasoning 

about slope and derivative predictions. Considering that students were not particularly successful 
interpreting slope and derivative, it is not surprising that students struggled with critiquing the 
reasoning of others, many showing little understanding of the covarying nature of the derivative. 
In particular, they had difficulties with the idea that the derivative is an instantaneous rate of 
change whose value changes depending on its input. Students applied the dominant incorrect 
way to interpret the slope and derivative (ratio-of-totals) to the critiquing questions, where many 
concluded that they could calculate the total by using the derivative (e. g. , $(') = $* ' ∗ '). 
Seven of the thirteen interviewed students said that they did not agree with Nurse Jodi because 
they needed another derivative (the derivative at 141 or 160 pounds) to calculate the total dosage 
(multiplying the derivative times the weight to yield total dosage). Six of these seven students 
had interpreted slope as a ratio-of-totals, thus extending their incorrect ratio-of-totals 
interpretation to derivatives and concluding that $ ' = $* ' ∗ '.  Table 5 shows a comparison 
of success in critiquing for the surveys and interviews.  
 

 Correct Need another derivative 
Surveys (N=69) 16% 14% 
Interviews (N=13) 31% 62% 

Table 5. Response rates for critiquing questions in the non-linear context for surveys and 
interviews  

 
Discussion  

The findings related to research question #1 support prior research that showed that rates of 
change are hard for students (Carlson, 1998; Hackworth, 1994). The findings also extend 
findings about high school students’ difficulties with slope (Stump, 2001) to college students. 
Research question #2’s findings support prior research that highlighted students’ difficulties 
using calculus to analyze dynamic situations (Carlson, 1998) and students’ struggles with use of 
the derivative to approximate the function near a point (Asiala et al., 1997). These finding extend 
prior research by identifying students’ common incorrect use of the derivative as a ratio-of-totals 
to be used to calculate the function value.  

In summary, findings suggest one common incorrect way of thinking, anchored in students’ 
misunderstandings of slope as a ratio-of-totals. This influenced students’ thinking about calculus 
in that they incorrectly generalized it to the derivative.  
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Implications for Teaching  

Expanding on previous findings that have shown that students lack a solid understanding of 
rates of change in general (Hackworth, 1994; Orton, 1984), present findings suggest that students 
do not have a robust understanding of what slope and derivative mean as a rate of change in the 
context of modeling situations, nor do they understand appropriate uses of slope and derivative 
to make predictions. Findings also suggest that students’ incorrect interpretation of slope (as a 
ratio-of-totals which translates to a directly proportional relationship of the form $ ' = - ∗ ') 
seems to influence their incorrect interpretation and use of a derivative (as $ ' = $* ' ∗ '). 
These findings have instructional implications for calculus instructors and pre-service teachers.  

Calculus instructors could benefit from knowing what beginning calculus students’ 
understanding is of slope and their interpretation of slope in modeling contexts. By asking 
questions similar to those in this study, instructors can assess students’ initial understandings. 
Findings suggest that when students answer slope interpretation questions using a ratio-of-totals 
approach, they are not merely leaving out the word “additional.” These answers are symptomatic 
of their under-developed understanding of slope. To address these shortcomings, instructors can 
help students revisit the middle school concepts of slope, linear relationships, and directly 
proportional relationships (a subset of all linear relationships). Based on the results of this study, 
which showed a large percentage of the students having a ratio-of-totals approach, it may be 
valuable to take time at the start of our calculus course to help ensure that all students understand 
the differences between directly proportional relationships and other linear relationships, and 
how the interpretation of slope is different in each. This could be addressed when ideas of 
average rates of change are introduced. When interpretations of the derivative are addressed later 
on in the course, questions about linear equations and slope could be revisited, and distinctions 
made between the two to help combat students’ incorrect generalizations.  

Second, it could be productive to focus on not just what derivatives can be used for (linear 
approximation, marginal cost, etc.), but also stress their limitations in making predictions. 
Students could be given opportunities to compare the estimated values (from the derivative) with 
the actual value (from the original function), both by calculating the values and showing the error 
graphically. Discussions around how much error might be appropriate in different contexts could 
be beneficial.  

Findings from this study suggest that many calculus students do not know how to 
appropriately use a derivative to make an estimate. Opportunities to discuss the appropriateness 
of predictions are not extensive; instead students are asked to make estimates without being 
asked to consider how far away the input value is, or how rapidly the function is changing 
around the point of interest. It could be valuable to provide students with more opportunities to 
reflect on the appropriateness of their predictions. 

Concepts related to slope are addressed at the middle school level, and findings from the 
present study have several implications for the pre-service education of teachers. First, given the 
similarity in populations, pre-service teachers may have the same understandings about slope and 
rates of change as were displayed by participants in the present study. In addition, pre-service 
teachers could benefit from becoming aware of how ideas about directly proportional 
relationships can influence student understanding about slope and be given opportunities to 
consider ways of addressing this with their future students. For example, future teachers could 
provide more extensive opportunities for students to understand that directly proportional 
relationships are a subset of all linear relationships, and that not all linear relationships are of the 
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form $ ' = -'. For example, students could calculate both !" and ∆!∆" for linear relationships of 
the form	$ ' = -' and $ ' = -' + : and make conclusions about the slope based on the 
results. Extending to slope interpretation, students could be given the opportunity to interpret 
slope as a rate of change via questions similar to those from this study, but specifically focusing 
on interpreting slope of directly proportional relationships versus those that are not. By 
highlighting differences between directly proportional relationships and other linear 
relationships, students can have opportunities to understand how interpretation of slope differs.  

We also know that current curricula “provide little opportunity for developing the ability to: 
interpret and represent covariant aspects of functions, understand and interpret the language of 
functions, interpret information from functional events, etc.” (Carlson, 1998, p. 142). As a 
mathematics education community, we need to continue to improve our instruction and focus our 
attention on the topics (such as covariational reasoning and interpretation) that research points to 
as critical to student success.  

 
Implications for Future Research 

More research is needed on students’ interpretations of both slope and derivative as rates of 
change. Findings from the present study suggest that students’ most common incorrect 
interpretation of slope as a ratio-of-total (as !" instead of ∆!∆" ) is influencing their ability to 
understand the derivative. How early do these ways of thinking form? Student thinking about 
slope as a rate of change can be researched at the middle school level to see whether the ratio-of-
totals interpretation is prevalent in those early years. We know that “full concept development 
appears to evolve over a period of years” (Carlson, 1998. p.143). The concept of slope is first 
introduced in middle school, utilized throughout high school, and then expanded on in calculus 
with the introduction of the derivative. Research could examine how students’ understanding of 
slope evolves over these key years to further illuminate the role of this way of thinking.  

At the college level, one could also focus on the effectiveness of instruction that is 
specifically designed to address these issues via design or teaching experiments. Differential 
calculus students’ knowledge of slope as a rate of change could be assessed at the start of the 
course, and then instruction on slope and interpretation of slope (for linear functions of the form 
$ ' = -' + : and $ ' = -') could occur prior to starting derivatives. After instruction on 
derivatives, a post-test could measure student gains on interpreting both slope and derivative, to 
see whether the targeted instruction on slope aids in students’ understanding of derivative.  

Knowing more about students’ understanding of slope and derivative as rates of change can 
help improve instruction. The concept of slope is fundamental to the mathematics curriculum 
from the middle grades and on; we must do better to ensure that our students have solid 
conceptions of this rate of change. If we can help pre-service teachers support develop these 
understandings when the concept is first introduced in middle school, and address difficulties 
they bring forward to high school and beyond, we can ensure that students in our calculus course 
have the solid foundation necessary to understanding the complexities of the derivative.  
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Previous studies have explored student understanding of vectors in physics, engineering, or            

linear algebra settings, but there has been scant research on student understanding of vectors in               

a multivariable calculus context. In this study, we begin to explore how students think about               

vectors and cross products by analyzing student responses to open-ended questions from an             

online, conceptually-oriented multivariable calculus cross product activity. We identify several          

themes consistent with previous research on physics students including confusion between the            

cross product and its magnitude as well as difficulty identifying or communicating the direction              

of the cross product vector. This preliminary research begins to develop categories that could              

outline a conceptual model of student understanding of vectors and cross product. The analysis              

also informs several recommendations for improving the cross product activity. 
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In mathematics, engineering, and physics, vectors play a foundational role. Vectors are used 
extensively throughout physics and engineering within mechanics topics such as force, velocity, 
and acceleration, and in mathematics coursework vectors appear in multivariable calculus, 
geometry, linear algebra, and differential equations. While basic vector concepts, 
representations, and operations with vectors are presented in both high school and preliminary 
college mathematics, students often will not be introduced to vector dot and cross product 
operations until they undertake college-level calculus coursework. Despite the regular 
occurrence throughout the curriculum, students continue to have significant conceptual 
difficulties with vector concepts and manipulations.  

One approach conjectured to improve student understanding of three-dimensional topics is to 
improve students’ visualization skills using computer exercises (Sorby & Baartmans, 2000). 
CalcPlot3D is an online, freely available 3D-graphing applet that allows students to visualize and 
manipulate concepts including vectors, vector fields, parametric curves, surfaces, and gradients. 
In addition to the graphing calculator feature, CalcPlot3D offers discovery-learning activities for 
students to explore multivariable calculus concepts (Seeburger, 2016).  This study analyzes 
student responses to Seeburger’s cross product activity. 

The purpose of this study is to investigate students’ transitional conceptual understanding of 
vectors, and more specifically the cross product of vectors, as they work through an exploration 
activity with embedded questions while using the CalcPlot3D visualization tool.  This research is 
partially supported by the National Science Foundation under Grant Numbers 1524968, 
1523786, 155216. 
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Background Literature 

There is extensive literature that explores students’ misconceptions when confronted with 
problems involving force and motion (i.e., mechanics), both of which are represented by vectors 
(Aguirre & Rankin, 1989; Barniol, Zavala, & Hinojosa, 2013; Flores, Kanim, & Kautz, 2003; 
Hestenes & Wells 1992; Hestenes, Wells, & Swackhamer, 1992; Miller-Young, 2013). Both 
force and motion utilize vector concepts; however, the students’ misconceptions regarding vector 
concepts, properties, and fluency in vector operations are not explored directly.  Rather, these 
concepts are embedded within the application. For instance, Hestenes, Wells, and Swackhamer 
(1992) utilize a Force Concept Inventory to assess student understanding of Newtonian physics, 
but the inventory does not directly assess students’ understanding of vectors. 

Others (Barniol & Zavala, 2014; Knight, 1995; Nguyen & Metzler, 2003; Van Deventer & 
Wittmann, 2007; Wang & Sayre, 2010; Zavala & Barniol, 2010) provide more explicit 
consideration of students’ understanding of vector concepts, representations, and operations 
outside of a kinematic or mechanics context. Knight (1995) found that approximately 40% of 
students in an introductory calculus-based physics course had no idea what a vector was. About 
50% of the students could add vectors correctly; however, none of the students were able to 
evaluate a vector cross product.  Barniol and Zavala (2014), using their Test of Understanding of 
Vectors (TUV), examined the knowledge of university students who had completed an 
introductory calculus-based physics course. The TUV contains non-contextual multiple-choice 
problems covering vector properties and basic vector operations. Three of these problems 
address the cross product. Two are computations and the third asks the students to select an 
appropriate geometric interpretation of the cross product from a list of options. The percentage of 
students who could correctly answer this problem was 57% (Barniol & Zavala, 2014).  

Research on student understanding of vectors in college-level mathematics courses tends to 
focus on the transitional proof courses such as linear algebra and geometry. For instance, Stewart 
and Thomas (2009) developed a framework for vectors in linear algebra that combines an 
action-process-object schema (Dubinsky, 1991) for vectors with Tall’s (2004) categorization of 
three mathematical ways of thinking: embodied world, symbolic world, and formal world. Kwon 
(2013) presents a new framework for conceptualizing vectors in college geometry that identifies 
three representations of a vector: vector as a translation; vector as a point and point as a vector; 
and geometrical vector sum.  

 
Theoretical Framework 

While many studies highlight student misconceptions, this study focuses on students’ 
transitional conceptions, since understanding is not necessarily static. ​Transitional conceptions 
relate to students’ current notions of a concept that are cued by the task at hand and that may 
include what some would call misconceptions.  Transitional conceptions are not fully integrated 
in a coherent manner, and hence tend to be in flux. Yet, they do result from a sense-making 
activity even though they may only address some (but not all) aspects of the concept and may be 
productive in some (but not all) contexts. Studying transitional conceptions can potentially lead 
to a better or more accurate view, perhaps even to a conceptual model, of student understanding 
of the concept (Moschkovich, 1999). To understand students’ meaning-making processes, it is 
imperative that instructors consider the transitional conceptions that occur when students are 
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engaged in learning new concepts (Wolbert, Moore-Russo, & Son, 2016). Many have begun to 
consider college students’ transitional concepts (Chiu, Kessel, Moschkovich, & Muñoz-Nuñez, 
2001; Cho & Moore-Russo, 2014; Nagle, Casey, & Moore-Russo, 2015; Wolbert, Moore-Russo, 
& Son, 2016) in various areas of post-secondary mathematics. However, there is little research 
on transitional conceptions specific to vectors in multivariable calculus classes. This study aims 
to add to the existing body of knowledge, focusing, in particular, on students’ transitional 
conceptual understanding of the vector cross product. 

Conceptual understanding encompasses both “what is known (knowledge of concepts)...[and] 
the way that concepts can be known (e.g. deeply and with rich connections)” (Star, 2005, p. 408). 
It can be considered as “a connected web of knowledge, a network in which the linking 
relationships are as prominent as the discrete pieces of information” (Hiebert & LeFevre, 1986, 
p. 4). When concepts are first learned, students’ understanding can be fragmented and lack either 
organization or connections to related concepts (Schneider & Stern, 2009).  

Both intra- and inter-connections are possible for a concept. Tall and Vinner (1981) 
described an individual’s concept image as the entire cognitive structure related to a particular 
concept. Past research has considered the many “conceptualizations,” “notions,” or “connected 
components” associated with a particular concept in mathematics (e.g., work on slope by 
Moore-Russo, Conner, & Rugg, 2011; Nagle & Moore-Russo, 2013); these are the 
intra-connections for a single concept. There are also inter-connections between different topics 
(e.g., Zandieh and Knapp’s (2006) work that inter-relates rate, limit, and function to look at how 
students come to understand derivatives); however, this paper focuses only on intra-connections.  

Understanding is dynamic, and students’ conceptions regarding a topic are transitional. As 
students advance in mathematics, there are instructional expectations that they will develop 
internal networks that are rich in relationships where they are able to move flexibly among 
representations and notions of the concept as they advance in the learning of a topic. Assessment 
to confirm that students are making such intra-connections to form robust, flexible concept 
images is important since conceptual understanding, in combination with procedural fluency, is 
necessary for success in mathematics (Hiebert & Carpenter, 1992).  

 
Methods 

This study is situated within a larger research program to determine if student understanding 
of cross products can be enhanced through visual explorations. Before being able to assess the 
impact of visual explorations on student understanding, it is necessary to build a model of 
student understanding of the cross product. As a first step to this goal, we sought to begin to 
characterize students’ transitional conceptual understanding of cross products by examining their 
responses to four open-ended questions on a conceptually-oriented cross product assignment.  
 
Subjects and Setting 

The data analyzed were from electronic responses of 434 college-level multivariable calculus 
students to four open-ended questions from an online assignment. The data was collected over 
four years from students from community colleges, four-year private colleges, and four-year 
public colleges. Each student completed a pre-test, exploration assignment, and post-test.  

The exploration assignment consisted of 10 open-ended and 2 multiple choice questions 
about vectors and cross products. The students were directed to a visual applet that contained two 
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vectors (one red and one blue) along with their cross product.  The red and blue vectors were 
graphed with initial points situated at the origin in the ​xy​ -plane. Students could manipulate the 
length and direction of the two vectors on the ​xy​ -plane, and based on the students' input, the 
applet automatically redrew the cross product, computed the magnitude of the cross product, and 
indicated the angle between the two given vectors.  

Previous research on the pre- and post-test multiple choice questions indicate some 
knowledge gain on the relationships between the angle between two vectors or between the 
length of two vectors and their cross product through the use of the exploration (Seeburger, 
2009). Here we examine student responses to the first four open-ended questions embedded in 
the pre-existing exploration to gain a better view of how students understand cross product. The 
remaining questions will be examined in a follow-up study. The questions examined here are: 

Q1. What is the geometric relationship between the cross product vector and the two vectors 
that form it? (Hint: This is NOT a formula.) 

Q2. How is the cross product vector geometrically related to the two vectors that form it? 
(Hint: This is NOT a formula.) 

Q3. For vectors of fixed length, but varying the direction of one of the vectors, when is the 
magnitude of the cross product at a maximum? 

Q4. For vectors of fixed length, but varying the direction of one of the vectors, when is the 
magnitude of the cross product at a minimum? 

Analytical Method 
The items were examined for emerging themes through a general inductive analysis. 

According to this method, the researcher does not begin with a preconceived structure but allows 
categories to emerge from the data. The researchers utilize categories to make sense of what is 
observed (Thomas, 2006). To identify emerging categories, one member (the first author) of the 
research team began the task of reading all responses to the four items to note what was 
observed. These emerging categories were shared with another member of the research team (the 
fourth author) for general consensus. A third member of the research team (the second author) 
then read all the responses and tried to see if the initial categories could be collapsed into 
unifying topics. She shared her findings with the third author until consensus was reached; both 
agreed on all the identified categories, but refinements were made to the topic descriptions. The 
list of categories was then shared and discussed with the first author, who also agreed with the 
identified categories and then helped further refine the topic descriptions. All, but the 
miscellaneous incorrect category and the blank category, were coded on three levels: as not 
being present (0), being present but with a developing or transitional understanding (-), or being 
present with a correct or accurate (+), but perhaps not complete, understanding. Finally the first 
and second authors coded all the items using the category descriptions in Table 1. 

After coding was completed, interrater reliability statistics for each code were computed with 
ReCal (Freelon, 2013). With the exception of the miscellaneous category, all codes resulted in 
Krippendorff’s alpha above 0.80. The first and second authors then came to a consensus on the 
few instances in which they were in disagreement. 
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Table 1 
Categories and Codes with their Descriptions 

Category and Codes Description 

Angle between 
two vectors 

V+  angle must be between 0 and 180 degrees 

V- angle between two vectors can be negative or greater than 180 degrees 

Orthogonality O+ cross product vector is orthogonal/perpendicular/90 degrees from the two vectors that 
form it 

O- developing, but not correct/precise, statement about orthogonality 

Right-hand Rule R+ Mention of the right hand rule; Statement that correctly addresses the need to attend to 
orientation of one vector relative to another 

R- developing, but not correct/precise, statement about the right hand rule 

Parallelogram P+ magnitude of cross product is area of parallelogram formed by two vectors 

P- developing, but not precise, statement about parallelograms or area (e.g. “cross product 
forms a parallelogram.”) 

Formula for 
magnitude of the 
cross product 

F+ magnitude of cross product = ||axb||=|a||b| sinθ; correct statement involving sine and 
vectors 

F- incomplete or incorrect statement involving multiplication, sine, cosine, or other 
formulas. 

Angle impact on 
magnitude of the 
cross product 

A+ correct statement describing how the angle between vectors influences the magnitude of 
the cross product 

A- incorrect or vague statement about how changing the angle between two vectors will 
affect the length of the cross product (e.g. “cross product depends on the angle between 
the two vectors”) 

Length impact 
on magnitude of 
the cross product 

L+ correct statement describing how the length of the two vectors influences the magnitude 
of the cross product 

L- incorrect or vague statement about how changing the length of one of the vectors will 
affect the length of the cross product 

Other incorrect I incorrect statement involving x and y coordinates; vector addition; statement involving 
quadrants or planes; other nonsensical statements  

Blank B no response; “I don’t know” 

 
Table 2 
Number of Responses in Each Category Code for Questions 1-4 (Q1-Q4) of 434 Participants 
 Codes 

 V+ V- O+ O- R+ R- P+ P- F+ F- A+ A- L+ L- I B 

Q1   217 8 4 2 23 52 4 19 6 8  5 29 81 

Q2  7 256 10 10 4 30 40 4 15 25 17 1 6 14 56 

Q3 1 29    2    3 371 17  7 1 44 

Q4  29    5    4 348 37 6 1 7 44 

Tot. 1 65 473 18 14 13 53 92 8 41 750 79 7 19 51 225 
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Results 
 

In Table 2 we summarize the results of the coding by question for the 434 students. While 
some of the codes were rarely assigned (e.g. L+, L-), the complete data set contains responses to 
other questions in which these themes are more prevalent. The authors plan on applying the 
methods tested in this initial analysis to the remaining questions in the exploration in the next 
phase of research. 

Overall students evidenced some understanding of the cross product. The percentage of 
students providing a correct (+) response which may, or may not, be complete, for either Q1 or 
Q2 was 75% and for Q3 or Q4 was 88%.  Note that some of these students may have also 
indicated additional incorrect or transitional understanding (-) of another aspect of the cross 
product in their responses as well. 

Although the first two questions are nearly identical, some students answered them 
differently. Another theme we noted in Q1 and Q2 answers was that only 4% of all students 
referred to the right-hand rule or the orientation of the cross product to the two vectors that 
formed it (in either a correct (+) or transitional (-) way). The students who did describe the 
orientation of the cross product to the two vectors that form it appear to be recalling previous 
knowledge since the right-hand rule is not explicitly referred to in the exploration until later on. 
Nearly all of these students only quote it by name: “These vectors also form what is called the 
Right Hand Rule.” Only a few students made an attempt at describing the right-hand rule in their 
own words. For example:  
 

The direction of the cross product is found by using the right hand rule which involves 

placing your thumb on the first vector of the cross product and your forefinger on the 

second vector and seeing where your middle finger is pointing. The direction it is 

pointing is the same as the direction of the cross product. 
 

Furthermore, when considering the relationship between the two given vectors and their 
cross product, students more often only describe how the angle between the two given vectors 
impacts the length of the cross product, but do not consider how the length of the two given 
vectors would affect the magnitude of the cross product.  
 

Discussion 
 

Although concentrated to the analysis of four open-ended questions concerning the cross 
product, this study reveals difficulty in student understanding of cross products consistent with 
the literature.  In particular, students have difficulty with the right-hand rule, tend to rely on 
formulas, and confuse the cross product with its magnitude.  Further analysis of the remaining 
cross product exploration questions along with this preliminary study will inform 
recommendations for future versions of the CalcPlot3D concept exploration and provide insight 
into the intra-connections of vector cross products that students are and are not understanding.  

While 65% of students correctly stated that the cross product was orthogonal to the two 
vectors that form it in responses to the first two questions, only 4% of students made any 
reference to the right-hand rule, orientation, or noncommutativity of the cross product vector. 
Similar results are found in a physics context by Zavala and Barniol (2010) and by Scaife and 
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Heckler (2010).  Note, however, that in their research the students were required to compute the 
cross product while in our study the cross product was provided to the students graphically. 
Barniol and Zavala found that 44% of the students were able to interpret the cross product (AxB) 
as a vector perpendicular to both A and B, although only 22% of the students identified the 
correct direction.  In the context of magnetic force, Scaife and Heckler (2010) saw that in a series 
of four similar questions, 40% of students made a sign error for the cross product at least once. 
They conjecture this is due to confusion about the application of the right-hand rule and failure to 
recognize that the cross product is a noncommutative operation. 

Another theme found in our data was that 5% of the responses to Q1 and Q2 in our study 
included some (either correct or incorrect) reference to a formula, even though both questions 
explicitly state “Hint: This is NOT a formula.” This supports research of Zavala and Barniol 
(2010) who found 9% of third semester physics students studied referred to a formula for the 
cross product in their open-ended responses to interpret the cross product. This additionally 
advances the notion, witnessed by Miller-Young (2103) in the context of an engineering class, 
that students often rely on memorized equations and procedures, even when instructed not to do 
so. 

Zavala and Barniol’s (2010) analysis showed 32% of students did not distinguish the cross 
product magnitude from the cross product itself. In our data set, this same trend is present in 
many of the (P-) responses similar to “The area of the two vectors equals the cross product.” On 
the other hand 50% of students in our study focused on the direction of the cross product and did 
not describe its magnitude. This might suggest that students did not have a robust concept image, 
or they might not have seen the need to report on all connected components of the concept.  
 
Future Recommendations 

One of the limitations of the CalcPlot3D exploration is that the applet does not allow students 
to move the vectors off of the origin or off of the ​xy​ -plane.  This may have led to incorrectly 
over-generalized responses; for example, “[The cross product] point[s] in the z axis direction.” 
Marton and Booth’s Variation Theory suggests that activities be structured to ensure students 
experience a diversity of examples (Lo, 2012).  In this case students should experience vectors in 
a variety of orientations, not just those on the ​xy​ -plane. 

The exploration provides students the opportunity to communicate and describe the 
geometric features of vectors and their cross product. Some students had difficulties accurately 
and precisely describing these features which may contribute to only a limited understanding of 
the relationships. For instance, in Q4, 86% of the students who described the angle between 
vectors as negative or larger than 180 degrees also demonstrated only a transitional 
understanding of the relationship between the angle of the vectors and the length of the cross 
product. Adding more examples of verbal descriptions of the geometric features of vectors may 
provide students with scaffolding to better communicate mathematics in open-ended responses. 

The next step for the research team is to complete the analysis of all of the responses to the 
remaining exploration questions to gain more insight into what intra-connections of cross 
product are being made by the students and how the CalcPlot3D explorations can be improved to 
better address student difficulties. 
 
  

20th Annual Conference on Research in Undergraduate Mathematics Education 99720th Annual Conference on Research in Undergraduate Mathematics Education 997



References 

Aguirre, J. M., & Rankin, G. (1989).  College students’ conceptions about vector kinematics. 
Physics Education, 24​ , 290-294. 

Barniol, P., & Zavala, G. (2014).  Test of understanding of vectors:  A reliable multiple-choice 
vector concept test.  ​Physical Review Special Topics - Physics Education Research, 

10​ (1), 010121.  DOI:http://dx.doi.org/10.1103/PhysRevSTPER.10.010121 
Barniol, P., Zavala, G., & Hinojosa, C. (2013).  Students’ difficulties in interpreting the torque 

vector in a physical situation.  ​AIP Conference Proceedings, 1513​ , 58-61. 
Chiu, M.M, Kessel, C., Moschkovich, J., & Muñoz-Nuñez, A. (2001). Learning to graph linear 

functions: A case study of conceptual change. ​Cognition & Instruction 19​ (2), 215-252. 
Cho, P., & Moore-Russo, D. (2014). How students come to understand the domain and range for 

the graph of functions. ​MathAMATYC Educator 5​ (3). 
Dubinsky, E. (1991).  Reflective abstraction in advanced mathematical thinking. In D. O. Tall 

(Ed.) ​Advanced mathematical thinking​  (pp. 95-123). Dordrecht: Kluwer. 
Flores, S., Kanim, S. E., & Kautz, C. H. (2004).  Student use of vectors in introductory 

mechanics.  ​American Journal of Physics, 72​ (4), 460-468. 
Freelon, D. (2013). ReCal OIR: Ordinal, interval, and ratio intercoder reliability as a web 

service. ​International Journal of Internet Science, 8​ (1), 10-16. 
Hestenes, D., & Wells, M. (1992).  A mechanics baseline test.  ​The Physics Teacher, 30​ , 

159-166. 
Hestenes, D., Wells, M., & Swackhamer, G. (1992).  Force concept inventory.  ​The Physics 

Teacher, 30,​  141-158. 
Hiebert, J., &  Carpenter, T. (1992) Learning  and  teaching  with  understanding.  In D. Grouws 

(Ed.), ​Handbook of Research on Mathematics Teaching and Learning ​ (pp. 65-97), New 
York: Macmillan. 

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An 
introductory analysis. In J.. Hiebert (Ed.) ​Conceptual and procedural knowledge: The 

case of mathematics ​ (pp. 1-27). Hillsdale, NJ: Erlbaum 
Knight, R. D. (1995).  The vector knowledge of beginning physics students.  ​The Physics 

Teacher, 33​ , 74-78. 
Kwon, O. H. (2013).  Conceptualizing vectors in college geometry: a new framework for 

analysis of student approaches and difficulties. In S. Brown, G. Karakok, G. Hah Roh, & 
M. Oehrtman (Eds.),  ​Proceedings of the 16th annual conference on research in 

undergraduate mathematics education, 2​ , (pp. 555-565). Denver: RUME. 
Lo, M. L. (2012). ​Variation Theory and the improvement of teaching and learning​ . In 

Gothenburg studies in educational sciences: Vol. 323.  ​ Göteborg: Acta Universitatis 
Gothoburgensis. 

20th Annual Conference on Research in Undergraduate Mathematics Education 99820th Annual Conference on Research in Undergraduate Mathematics Education 998



Miller-Young, J. E. (2013).  Calculations and Expectations: How engineering students describe 
three-dimensional forces.  ​Canadian Journal for the Scholarship of Teaching & 

Learning, 4​ 9(1), 1-11. 
Moore-Russo, D., Conner, A., & Rugg, K. I. (2011). Can slope be negative in 3-space? Studying 

concept image of slope through collective definition construction. ​Educational Studies in 

Mathematics​ , ​76​ , 3-21. 
Moschkovich, J. N. (1999).  Students’ use of the x-intercept as an instance of a transitional 

conception.  ​Educational Studies in Mathematics 37​ , 169-197. 
Nagle, C., & Moore-Russo, D. (2013). Slope: A network of connected components. In M. 

Martinez, & A. Castro Superfine (Eds.) ​ Proceedings of the 35th annual meeting of the 

North American Chapter of the International Group for the Psychology of Mathematics 

Education ​ (pp. 127-135). Chicago, IL: University of Illinois at Chicago. 
Nguyen, N. L., & Meltzer, D. E. (2003).  Initial understanding of vector concepts among 

students in introductory physics courses.  ​American Journal of Physics, 71​ (6), 630-638. 
Seeburger, P. (2009) ​Student guided explorations/assessments​  [PDF document].  Retrieved from 

http://web.monroecc.edu/manila/webfiles/calcNSF/Poster/Poster-last%20page.pdf 
Seeburger, P. (2016). CalcPlot3D [Computer software].  Available from 

http://web.monroecc.edu/manila/webfiles/calcNSF/JavaCode/CalcPlot3D.htm 
Sorby, S. A., & Baartmans, B. J. (2000).  The development and assessment of a course for 

enhancing the 3-D spatial visualization skills of first year engineering students. ​Journal 

of Engineering Education, 89​ (3), 301-307+387-392. 
Scaife, T. M., & Heckler, A. F. (2010).  Student understanding of the direction of the magnetic 

force on a charged particle.  ​American Journal of Physics, 78​ (8), 869-876.  
Schneider, M., & Stern, E. (2009). The inverse relation of addition and subtraction: a knowledge 

integration perspective. ​Mathematical Thinking and Learning​ , ​11​ , 92–101. 
Star, J. R. (2005). Reconceptualizing procedural knowledge. ​Journal for Research in 

Mathematics Education​ , ​36​ , 404-411. 
Stewart, S. & Thomas, M. O. J. (2009).  A framework for mathematical thinking: the case of 

linear algebra.  ​International Journal of Mathematical Education in Science and 

Technology, 40​ (7), 951-961. 
Tall, D. O. (2004).  Building theories: The three worlds of mathematics.  ​For the Learning of 

Mathematics, 24​ (1), 29-32. 
Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with 

particular reference to limits and continuity. ​Educational Studies in Mathematics​ , ​12​ , 
151–169. 

Thomas, D. R. (2006). A general inductive approach for analyzing qualitative evaluation data. 
American Journal of Evaluation​ , ​27​ , 219–236. 

Van Deventer, J., & Wittmann, M. C. (2007).  Comparing student use of mathematical and 
physical vector representations.  In L. Hsu, C. Henderson, & L. McCullough (Eds ​.), 2007 

Physics Education Research Conference, Vol. 951​  (pp. 208-211). 

20th Annual Conference on Research in Undergraduate Mathematics Education 99920th Annual Conference on Research in Undergraduate Mathematics Education 999



Wang, T., & Sayre, E. C. (2010).  Maximum likelihood estimation (MLE) of students’ 
understanding of vector subtraction.  In C. Singh, M. Sabella, & S. Rebello (Eds.), ​AIP 

Conference Proceedings, Vol. 1289​  (pp. 329-332). 
Wolbert, R., Moore-Russo, D., & Son, J.-W.  (Forthcoming 2016).  Identifying students’ 

transitional conceptions regarding the bell curve. ​MathAMATYC Educator. 

Zandieh, M. J., & Knapp, J. (2006). Exploring the role of metonymy in mathematical 
understanding and reasoning: The concept of derivative as an example. ​The Journal of 

Mathematical Behavior​ , ​25​ (1), 1-17. 
Zavala, G., & Barniol, P. (2010). Students’ understanding of the concepts of vector components 

and vector products. In C. Singh, M. Sabella, & S. Rebello (Eds.), ​AIP Conference 

Proceedings, Vol. 1289​  (pp. 341-344). 
 
 
 

20th Annual Conference on Research in Undergraduate Mathematics Education 100020th Annual Conference on Research in Undergraduate Mathematics Education 1000



Variations in Precalculus Through Calculus 2 Courses  
Matthew Voigt, Chris Rasmussen, Naneh Apkarian, and the Progress through Calculus Team1 

San Diego State University 
 

In this paper we analyze variations in the structure of courses designed for the Precalculus 
through Calculus 2 (P2C2) sequence. We examine the nature of such variations, frequency 
nationally, and how DFW rates and instructional approach compare to the standard courses. 
While most identified variations in course structures have on average lower DFW rates when 
compared to the national average, a comparison within institutions indicates that these 
alternative course structures have higher DFW rates when compared to the standard P2C2 
sequence offered at the respective institution. In addition, we observed that course variations 
which allow for increased instructional time have greater amounts of active learning 
techniques as part of the instructional format. Results from these findings along with their 
implications for the next phase of the Progress through Calculus project are discussed.  

 
Keywords: Calculus, Precalculus, Curriculum, Course Variations 
 

There is abundant literature highlighting the importance of student success in introductory 
undergraduate mathematics courses, often pointing to how such courses are a hurdle for students 
intending to continue into STEM majors and future related careers. Even for those students who 
do not choose to major in a STEM field, success in entry-level undergraduate mathematics 
courses such as calculus can impact a student’s overall persistence in postsecondary education. 
Research examining students’ success in introductory mathematics courses consistently indicates 
that students are not learning the intended curriculum (Tallman, Carlson, Bressoud, & Pearson, 
2016; Thompson, 1994), resulting in lower preparation for subsequent courses (Carlson, 1998; 
Selden & Selden, 1994) and a marked decrease in their desire to pursue a STEM degree 
(Bressoud, Mesa, & Rasmussen, 2015; Ellis, Fosdick, & Rasmussen, 2016; Seymour & Hewitt, 
1997). These students often cite the poor instructional experiences in introductory level courses 
as the primary reason for their departure from the STEM fields.  

Institutions of higher education and departments of mathematics are becoming increasingly 
attuned to the particular challenges faced by these students and are seeking new ways of 
supporting student success in introductory mathematics courses. Rasmussen et. al (2016) found 
that most departments are aware and value characteristics of more successful calculus programs, 
yet they are not always successful at implementing these features at their institutions. As such, 
departments have responded in a number of ways to support student success in the P2C2 
sequence. Departments are utilizing local data to inform placement procedures, using active 
learning pedagogy techniques, creating course coordination systems, and developing or 
improving graduate teaching assistant training. Another departmental response, which is the 
focus of this report, is to offer alternative P2C2 course structures. An alternative course structure 
reimagines the “standard” P2C2 sequence, which we take to be three, one semester courses 
consisting of Precalculus, Calculus I, and Calculus 2. An example of an alternative course 
structure is to offer, in addition to the standard sequence, a “stretched out” Calculus 1 course that 
takes two semesters and infuses additional algebra and trigonometry in the context of the 
calculus. In this report we address the following research questions: 
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1. What variations to the standard P2C2 course sequence are currently in place and how 
common are they nationally? 

2. What are the relationships between variations to the standard P2C2 course sequence, 
instructional approach, and student success? 
 

Data for this analysis comes from a national census survey focused on the P2C2 course 
sequence. This census survey is Phase 1 of a five-year project which began in 2015, and was 
distributed to all mathematics departments that offer a graduate degree in mathematics. These 
institutions were selected because they produce the bulk of STEM graduates while often 
struggling to find a balance between the demands of research and teaching. Phase 2 will consist 
of longitudinal case studies of selected institutions.  

Theoretical Background 
We address our research questions and frame alternative P2C2 course offerings in terms of 

the intended, enacted, and assessed curriculum (Kurz, 2011; Porter, 2006; Webb, 1997). The 
intended curriculum refers to the knowledge and skill targets for students (Porter, 2006), in this 
case the course objectives for precalculus and mainstream calculus. In addition, this includes 
variations of the intended curriculum deigned as specialization for service disciplines 
(engineering, biosciences, etc.). The enacted curriculum refers to the knowledge and skills 
delivered during instruction which varies based on instructional time (allocated time for 
instruction), content coverage (amount and variety of academic standards), and instructional 
approach (Kurz, 2011). For example, a stretched out Calculus 1 course might be configured to 
allow for more active learning, but this is an empirical question and one that we address in this 
report. We also investigate how institutional response to the alignment between the intended and 
enacted curriculum affects the assessed curriculum. We use DFW rates (grades of F, drops and 
withdrawals) as a proxy for the assessed curriculum.  

Figure 1 captures how we make use of the intended, enacted, and assessed curriculum in this 
study. In particular, the survey data allows us to detail intended curriculum aspects such as 
course objectives and intended audience, and the enacted curriculum aspects such as 
instructional time, content coverage, and instructional approach. 
 

  
Figure 1. Observed components for the intended and enacted curriculum, and their relation on 
the assessed curriculum. 

Methods 
In the United States there are a total of 330 departments that offer either a Masters or PhD in 

mathematics. All 330 institutions (178 Doctoral and 152 Master’s) were surveyed yielding a 68% 
response rate. We designed the census survey to gather information on the implementation of the 

Intended Curriculum
•Course Objectives
• Intended Audience 

(Engineering, Bioscience, etc.)

Assessed Curriculum
•DFW Rates

Enacted Curriculum
• Instructional time
•Content coverage

• Instructional approach
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features of successful programs identified by the CSPCC project and to gain an understanding of 
the variety of P2C2 programs being implemented across the country, the prevalence of such 
programs, and what institutions are doing to improve their programs. The survey consisted of 
three main parts. Part I asked for a list of all courses in the mainstream P2C2 sequence. 
Mainstream refers to any course in this sequence that would be part of student preparation for 
higher-level mathematics courses such as a first course in differential equations or linear algebra. 
Part II asked about departmental practices in support of the P2C2 sequence. Part III asked for 
detailed information about each course in the mainstream P2C2 sequence, including enrollment 
data and details about course delivery.  

Survey responses were then cross-referenced and updated to the extent possible by a 
comprehensive search of publicly-available course catalogs and department websites. This led us 
to a collection of 1108 courses from 223 institutions, with details supplied for 895 of these 
courses by 205 institutions. We used a grounded theory approach (Corbin & Strauss, 2008) to 
code and categorize variations to the standard P2C2 course sequence. Based on this analysis, 11 
variants of the standard P2C2 courses were identified and are outlined below. We choose to 
highlight these variations since they demonstrate the response from institutions to support 
student of varying preparedness levels and interest.  

Results 
We present results according to the two research questions. We first describe existing course 

variations in terms of three main themes: intended audience, instructional time, and content 
coverage. We then provide a summary table (Table 1) specifying the frequency in which these 
variations are present. We then address the second research question by analyzing how course 
variations fare in terms of DFW rates and instructional approach. 
Intended Audience  

Several institutions have specialized their mainstream calculus sequence to tailor the 
intended curriculum to service different disciplines. The most common variation is calculus for 
the biosciences, which is a mainstream calculus course designed explicitly for students in 
biological or life science majors. Often time the course includes applied topics in biological 
modeling and investigation of real-life phenomenon. Calculus for engineering is another course 
variation on the mainstream calculus course that is intended for students in engineering majors. 
Often this course includes emphasis on physical applications to engineering and computational 
techniques. Seymour and Hewitt (1997) found that a disconnect between calculus content and 
intended major to be a major contributing factor in students’ decision to leave a STEM field. 
Such variations have the potential to address such concerns. 

In addition, we identified institutions that offered a mainstream calculus for another subject, 
which was specifically designed for students in a non-STEM major (e.g. Calculus for 
Economics). Mathematics departments often have to provide non-mainstream introductory 
mathematics courses for students in other disciplines, yet these students face a subsequent 
challenge if they intended to switch to a STEM intending degree. Some institutions have 
responded to this potential audience by providing a transition to mainstream course variation. 
This course serves as a bridge between a non-mainstream calculus course and a mainstream 
calculus course or upper-division mathematics course that has a lower credit load, and does not 
require the student to retake the entire mainstream P2C2 sequence.  
Instructional Time 

The most common course variation observed alters the standard curriculum by allowing the 
course content to be covered over a longer duration of time, which addresses another major 
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factor that students cite for leaving a STEM major – overpacked courses taught at too fast a pace 
(Seymour & Hewitt, 1997). For the preparation for calculus courses we observed institutions that 
offered the choice between a single course covering the requisite skills necessary for enrolling 
into calculus or a two (or more) course sequence, typically consisting of a course in trigonometry 
and a course in college algebra. We denoted these options as modular precalculus and modular 
stretched-out precalculus. We use the term modular since students are able to modularize or 
choose between the necessary sequence. In addition, we observed institutions that offered only a 
single course option or only a two course sequence as preparation for calculus. We denoted these 
options as standard precalculus and standard stretched-out precalculus .  

For single variable calculus we observed two unique course variations that allowed for the 
formal curriculum to be covered over an extended length of time. The stretched-out calculus 
course takes the traditional one-term course and stretches the content over a two-course 
sequence, often including additional requisite material when appropriate. This option is usually 
intended for students who would be at-risk in the traditional calculus sequence and would benefit 
from a slower paced delivery of the material. The stretched-out Calculus 1&2 is a variation on 
the stretched-out calculus where three courses, when taken together, are the equivalent to the 
standard two-course single variable calculus sequence.  
Content Coverage 

While some variations seek to allocate more time for course delivery by spreading the 
curriculum over extra courses or terms, another set of calculus course variations are designed to 
provide background content and requisite skills as supplements to course offerings. The most 
common variation in this category is calculus infused with precalculus, which is a single-term 
calculus course (typically with more credit hours) designed to include requisite pre-calculus 
topics covered throughout the course duration. A similar course variation, referred to as co-
calculus, is a one-term course taken concurrently with a single variable calculus course that 
covers selected precalculus topics, coordinated with the content of the calculus course. This 
course variation is intended for at-risk students who can be identified early in the term through 
low-course performance and subsequently enrolled in the co-calculus course to provide supports 
for study skills and the coverage of precalculus content.  

While the previous two course variations are typically intended to support students in the first 
course in single variable calculus (Calculus I), we also observed one course variations intended 
to specially support students in the second term of single variable calculus (Calculus 2). 
Accelerated calculus is a calculus course explicitly designed for students who have taken 
calculus in high school (usually with AP credit). These courses cover mainly material that would 
be considered Calculus 2, but also include Calculus 1 material that may not have been covered in 
sufficient depth in an AP course. All variations in the “content coverage” category involve 
strategies to supplement the mathematics content of regular course while keeping students on-
track in terms of time to graduate. 
Other 

In addition to previously mentioned variations we also observed several unique course 
offerings that failed to warrant their own code, but were identified as other unique course 
structures. This category included: courses (or course sections) explicitly designed for students 
who have not seen calculus before; a course designed to divert less-prepared students mid-term; 
precalculus courses which include a preview of calculus topics; courses designed for transfer 
students; applied courses in technology; courses offered only in summer as preparation; etc. 

20th Annual Conference on Research in Undergraduate Mathematics Education 100420th Annual Conference on Research in Undergraduate Mathematics Education 1004



Course Variation Summary 
Overall, 125 (56.3%) of the institutions have at least one course variation and excluding the 

most common variation, for modular precalculus and modular stretched-out precalculus, 75 
(33.8%) of the institutions have at least one calculus course variation. The frequency for which 
we observed each of the course variations at surveyed institutions is presented in Table 1. The 
remaining results present a descriptive account of the survey responses describing the enacted 
curriculum (instructional approach) followed by measures of the assessed curriculum (DFW 
rates) stratified by the observed course variations. The descriptive statistics are only provided for 
variations which had data from three or more observations. 

 
Table 1. Overview of course variations offered nationally 

Category Variation  Institution (n=223) Percent (%) 
Intended Audience Calculus for biosciences 15 6.8 

Calculus for engineering 14 6.3 
Calculus for other subject 3 1.4 
Transition to mainstream 3 1.4 

Instructional Time Modular Stretched-Out Precalculus/ 
Modular Precalculus 

62 27.9 

Stretched-out calculus 20 9.0 
Stretched-out calculus 1&2 7 3.2 

Content Coverage Calculus infused with Precalculus 11 5.0 
Co-calculus 3 1.4 
Accelerated calculus 14 6.4 

Other Other 10 4.5 
 
Course Variation DFW Rates and Instructional Approach 

For each of the P2C2 courses provided, respondents were asked to indicate the primary 
instructional format during the regular class meetings. The response options along with the 
percentage for which they occurred for each of the course variations is presented in Figure 2. We 
observed the highest amounts of active learning techniques implemented in course variations that 
increase the amount of instructional time, with the greatest observed amounts in the stretched-out 
Calculus 1&2 variation, followed by the stretched-out calculus variation. In addition, we 
observed greater amounts of computer based instruction in calculus for engineering and the 
stretched-out Calculus 1&2 course variation. 

Figure 2. Percentage of courses within 
each of the major calculus course 
variation that are administered with a 
given instrucational approach.  
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Respondents also indicated the typical drop, fail, or withdraw rate for each of the courses 
they listed as part of the mainstream P2C2 sequence. We observed that the DFW rates between 
the variations of the preparation for calculus courses (Figure 3) are markedly similar, with no 
significant differences.  

 
Figure 3. Box-and-whisker plot depicting 
DFW rates for the four major course 
variations of preparation for calculus along 
with the reported averages: modular two 
course (𝑛 60, 27.6%), modular one course 
(𝑛 = 47, 27.2%), standard two course (𝑛 =
34, 27.1% ), and the standard one course 
(𝑛 = 90, 27.5%). 

 
 
 
 

 
 

The DFW rates for course variations in mainstream calculus (Figure 4) however do show 
major differences when compared to the national average. We computed the average DFW rate 
for any standard calculus course (24.1%), but isolated those courses intended for honors students, 
as these courses are typically intended for high-achieving students. We observed that each of the 
course variations had on average lower DFW rates compared to the standard course structure, 
except stretched-out calculus which had a similar yet higher DFW rate (25.3%). Indicative of our 
qualitative descriptions the lowest DFW rates occurred in course variations intended for high 
achieving students with strong prior backgrounds (Stretched-out Calculus 1&2, and Accelerated 
Calculus).  

Figure 4. Box-and-whisker plot 
depicting DFW for the major course 
variations of calculus along with the 
reported averages:  
Standard (𝑛 = 383, 24.1%), Standard 
(honors) (𝑛 = 68, 9.6%), Accelerated 
Calculus (𝑛 = 8, 9.12%), Calculus for 
engineering (𝑛 = 16, 23.6%),  
Calculus for biosciences (𝑛 =
19, 22.0%), Calculus for other 
subjects(𝑛 = 3, 14.6%, ), Calculus 
infused with Precalculus (𝑛 =
14 18.9%), Stretched-out Calculus 
1&2 (𝑛 = 17, 11.0%), Stretched-out 
Calculus (𝑛 = 38, 25.3%). 

 
 

In addition to comparing DFW rates against the national average, we also analyzed the DFW 
rates for a given course variation against the DFW rates for the standard course sequence offered 
at that given institution (Table 2). While accelerated calculus has the same trend in comparison 
to the national average, the other course variations present an entirely different picture with 
regards to the DFW rates. We observed a larger amount of comparisons in which the alternative 
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course variation had higher DFW rates compared to the equivalent standard course sequence at 
that particular institution.  
 
Table 2. Institutional comparison of DFW rates for alternative and standard course sequences in 
single variable calculus.  

Course Variation  Avg. DFW 
rate for 
variation 

Avg. DFW 
rate for 
standard  

Institutional comparisons where 
DFW rates were higher for: 

Variation Standard Identical 
Accelerated Calculus 8.2 20 0 3 1 

Calculus for other subjects 10.2 8 2 2 2 

Calculus for Engineering 25.3 26.1 11 3 2 

Calculus for Biosciences 22.1 23.6 11 6 2 

Calculus infused with 
Precalculus 

19.0 13.1 7 3 1 

Stretched-out Calculus 1&2 12.8 11.6 5 0 0 

Stretched-out Calculus  22.4  19.6 7 3 2 

 
Conclusion 

Our project presents the first description of the variety (and frequency of) nonstandard 
curricular structures for P2C2 courses across the nation. In particular, we are able to paint a 
picture of how institutions across the country are attempting to address concerns about student 
success in introductory mathematics courses by addressing the intended and enacted P2C2 
curriculum. We note that relatively few departments across the country are experimenting with 
these innovations, but our results indicate that these innovative structures have some potential at 
impacting the assessed curriculum. Given that this information comes from Phase 1 of a multi-
year project, we find ourselves with the unique opportunity to further investigate the 
implementation of alternative course structures during Phase 2 of our case study analysis. The in-
depth institutional analysis will provide a richer understanding of the surrounding programs and 
context in which such structures support student success, and to explore more nuanced measures 
of success and student understanding. 

While Phase 2 of our research will reveal much more about the nature of alternative course 
structure, we can begin to comment on some of the potential advantages of these non-standard 
offerings. First, we note that many variations involve increasing the time dedicated to courses – 
be it stretched over extra terms or supplemented with co-requisite units. This increase in contact 
hours may free up class time in order to leverage active learning while alleviating concerns about 
content coverage. Secondly, many alternative course structures are aimed at supporting students 
who are underprepared for calculus. While the DFW rates in these courses tend to be higher than 
their non-standard counterparts, we expect this is related to the proportion of underprepared 
students in each – though further exploration is needed to conclude this with certainty. As failure 
in calculus is akin to an exit from STEM, supporting these students and bringing them up to 
speed with their peers may be an important piece of stopping the leaking pipeline.  
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Using Expectancy Value Theory To Account For Students’ Mathematical Justifications 
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There is a robust body of research demonstrating that when students are asked to justify a 
mathematical assertion, they will frequently generate empirical arguments to do so. They also 
sometimes claim a deductive argument does not supply them with certainty that the assertion is 
correct. Mathematics educators frequently attribute this to students having deficient standards of 
conviction. In this paper, we illustrate another theoretical account. Students might believe that 
they lack the cognitive capacity to produce a superior argument to an empirical argument or to 
verify that a deductive argument is correct.  

Key words: Expectancy value; Justification; Proof  

In this paper, we consider two robust findings from the research literature on proof. First, 
when students are asked to justify a mathematical assertion, they frequently do so by generating 
an empirical argument (e.g., Coe & Ruthven, 1994; Healy & Hoyles, 2000; Recio & Godino, 
2001). Second, when some students are presented with a valid deductive argument (i.e., a proof) 
in support of a mathematical assertion, they will claim not to be certain that the claim is correct 
(e.g., Chazan, 1993; Fischbein, 1982; Morris, 2002). The research questions addressed in this 
proposal question why is this the case. 

Theoretical Perspective 

The Proving as Convincing Research Paradigm 
According to Stylianides, Stylianides, and Weber (in press), much of the vast mathematics 

education on justification and proof uses the metaphor that proving is tantamount to convincing, 
in which a critical goal of the Proving as Convincing paradigm is to identify the types of 
arguments that students find convincing. A common methodology to do so is to provide students 
with justification tasks, classify the students’ justifications by the types of arguments that they 
use to support the assertion (e.g., empirical generalizations, logical deduction, appeals to 
authority), and then infer that students presented these arguments because those are the types of 
arguments that are most convincing to students. Consequently, when students justify claims by 
empirical arguments, these researchers infer that students gain certainty on behalf of empirical 
arguments, or at least that empirical arguments are students’ preferred mode of justification. 
Researchers find this inference undesirable on the grounds that mathematicians obtain conviction 
from deductive arguments or proofs, not from empirical arguments (c.f., Harel & Sowder, 2007). 
Another common methodology in the Proving as Convincing paradigm is to present students 
with a proof of an assertion and then see if they see if they behave as if they still harbor some 
doubt about that assertion. When students do, researchers also interpret this as undesirable 
because mathematicians, unlike these students, gain certainty from proof (c.f., Harel & Sowder, 
2007). 

Recently, the methodologies described above, as well as the epistemological assumptions 
that underpin them, have been challenged by some researchers. We briefly review some of the 
challenges here. First, the notion that mathematicians always gain certainty in mathematical 
assertions on behalf of proofs and that mathematicians never gain certainty on behalf of 
empirical arguments has been shown to be an oversimplification that does not accord with 
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modern mathematical practice (e.g., Weber, Inglis, & Mejia-Ramos, 2014). Second, studies in 
which students are interviewed by their purportedly non-normative judgments, such as claiming 
to be convinced by an empirical argument or retain doubts in a statement that has been proven, 
have found students to appear more sensible and mathematically normative than the common 
interpretations for the literature suggest (e.g., Bieda & Lepak, 2014; Stylianides & Al-Mourani, 
2010; Weber, 2010). Third, the results from some empirical studies have suggested that 
assertions that are difficult to prove questions were more likely to elicit empirical arguments 
because proofs might be too difficult for students to generate (e.g., Knuth, Choppin, & Bieda, 
2009; Stylianides & Stylianides, 2009). 
Our Alternative Expectancy Value Account 

In the educational psychology literature, expectancy value theories are broad theories of 
motivation that study the relationship of beliefs, values, and goals with action (Eccles & 
Wigfield, 2002). The central goal of this paper is to show how three central constructs in 
expectancy theories—values, costs, and likelihood of success—can be used to qualitatively 
account for students’ willingness or refusal to seek proofs of conjectures that they form.  

Before sketching out our theory, we highlight an important distinction made by Bandura 
(1997) on two different expectancy beliefs, a difference that until now generally has not been 
taken accounted for in the research literature on proof. Bandura distinguished between outcome 
expectations—beliefs that certain behaviors will lead to certain outcomes—and efficacy 
expectations—beliefs that whether one has the capacity to perform the behaviors to achieve these 
outcomes. When students produce an empirical argument, we argue that we need to distinguish 
between two accounts: (i) the student believes the empirical argument provides certainty and (ii) 
the student believes that he or she does not have the capacity to produce a better argument. (i) is 
an outcome expectation and (ii) is an efficacy expectation. As we noted earlier, (i) is a common 
inference in the literature and suggests that students are not aware of the limitations of empirical 
arguments. However, we will argue that (ii) is sometimes the more accurate account. Similarly, if 
students are not certain of a claim after reading a proof of the claim, two possible accounts are (i) 
the student does not think that proofs can provide certainty or (ii) the student questions whether 
he or she has the ability to be certain that a proof is correct. Again, researchers often infer (i), an 
outcome expectation, but we believe that (ii), an efficacy expectation, often provides a more 
accurate account. 

Value. When students are asked to justify a mathematical assertion, we assume that students 
want to achieve a high level of conviction for why an assertion is true. Our premise is that the 
value that students put on obtaining high levels of conviction will influence how hard students 
will work to obtain a better justification and whether they will settle for a non-optimal 
explanation as good enough. These values can be externally or internally imposed. Externally, 
submitting a false conjecture for an assignment (or a true conjecture that is not adequately 
supported) can result in the student receiving a negative outcome, such as a low grade for a 
course, or otherwise result in some other consequence that would hurt their academic or career 
goals. Eccles and Wigfield (2002) referred to this as Utility Value. Internally, students may wish 
to resolve a genuine curiosity as to whether a conjecture is true or false; Harel (1998) referred to 
as Intellectual Need. Also, a student may wish to avoid presenting a false conjecture to his or her 
peers or teacher as this would harm his or her mathematical self-image; Eccles and Wigfield 
(2002) referred to as Attainment Value. The higher the perceived value of determining the truth 
of a conjecture, the more likely a student is to work to produce a justification that bestows a high 
level of conviction. 
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Cost. Once a student has an imperfect justification for why a mathematical statement is true, 
the time spent searching for a superior justification, including a proof, is time that could be spent 
on other enjoyable activities, such as talking to friends. Here it is important to observe that the 
cost of searching for a proof may depend heavily on the individual and the situation. For many 
students, attempting to write a proof is a painful activity that brings up feelings of intellectually 
inferiority (e.g., Weber, 2008). Other students and mathematicians may enjoy seeking a proof, so 
engaging in the activity of proving is an end in and of itself—having what Eccles and Wigfield 
(2002) referred to as a high Intrinsic Value. In the latter case, individuals will avoid having 
someone else show them a proof because it would deny them the opportunity to search for that 
proof themselves. The higher the cost, the less likely it is that a student will work to produce a 
proof.  

Likelihood of success. In deciding whether to pursue an objective, students will make a 
subjective estimation of how likely they are to achieve that objective. If students have an 
imperfect justification for why a mathematical statement is true, they are unlikely to seek a proof 
unless they believe that there is a reasonable chance that their search will be successful. If 
students think it is highly unlikely that they can prove a statement, they may simply not seek one 
and settle for an empirical justification, even if they are aware that a proof, in principle, bestows 
more conviction than the empirical argument.  

Earlier, we argued that when a student submitted empirical arguments, researchers have often 
drawn the conclusion of that student having a limited epistemology. The researcher made the 
inference that the student believed that empirical arguments can bestow certainty, or at least 
more conviction than deductive arguments. Here we offer three other possibilities: (i) students 
might not be interested in being certain of the conjecture in question, (ii) they might find 
searching for a proof to be an unpleasant endeavor that is not worth the effort, or (iii) they might 
settle for the empirical argument because they believe that they lack the capacity to find a proof. 
 

Methods 

Rationale 
In this study, we asked prospective and inservice secondary mathematics teachers to work on 

challenging problems that invited students to use empirical reasoning to make conjectures. We 
asked participants to share with us both their answer to the problem and a justification for why 
they believed their answer was correct. Following Stylianides and Stylianides (2009), we also 
asked participants how confident they were in their answers on a scale of 0 through 100. In cases 
where participants gave a response of less than 100, we asked them why they retained doubt 
about their answer, what further evidence could give them more confidence that their solution 
was correct, and why they were not seeking that evidence. 

The goal of this study was twofold. The first is to argue that the Proving as Convincing 
research paradigm often does not offer an accurate account of why students will justify their 
conjectures with empirical arguments. Consistent with the research literature, in our study, we 
found that participants frequently justified their answers with empirical arguments. If participants 
were doing so because they held undesirable standards of conviction, we would expect the 
participants to have certainty, or at least a high degree of confidence, in their answers on behalf 
of these empirical arguments. At a minimum, the participants should aver that the empirical 
arguments provided them with at least as much confidence as a proof could provide. However, 
this is not what we observed. Second, we want to illustrate how our expectancy value model can 
explain why participants offered the empirical arguments that they did. Taking into account the 
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participants’ perceived value of obtaining complete conviction, cost anticipated in searching for 
a proof, and likelihood of success in finding a proof allows us to provide coherent accounts of 
why students produced and settled for empirical arguments. Indeed, we will further argue that in 
many cases when participants offer empirical arguments, participants are neither behaving 
irrationally nor inconsistent with mathematical practice. 
Research Context 

This study occurred at a large state university in the northeast United States. The data was 
collected in the first six weeks of a content-based course for prospective and practicing teachers 
of secondary mathematics focusing on problem solving. The aim of the course was for these 
teachers to develop the mathematical knowledge and dispositions to solve mathematical 
problems effectively and to enable these teachers to help their future students to do so. The 
course met weekly and was co-taught by the first two authors of this paper. 

For the first six weeks of the course, class meetings were comprised of the students solving 
challenging problems in groups for about one hour, presenting their solutions to the larger class, 
and then reflecting on how this experience related to the nature of mathematical problem solving 
and the teaching of mathematics. The data from the paper was collected in four of these six 
meetings. 

Our analysis focuses on the 11 prospective or practicing mathematics teachers who 
completed the course, all of whom claimed to have completed some courses in advanced 
mathematics. The students worked in four groups, which we call Group A, B, C, and D, which 
were mostly stable throughout the semester. 

Materials. The data was collected when the students worked on four problems, two of which 
have multiple parts. These problems were chosen such that the answer to the questions could be 
conjectured via empirical reasoning but each answer could also be justified by deductive 
argumentation or proof. Problems 1, 2, 3, and 4 were given in the first, second, fourth, and sixth 
week of the course, respectively. (The problems in week 3 and week 5 were a geometry and a 
modeling problem respectively. These were not included in our analysis because they did not 
permit empirical generalizations). 

Procedure. For the first six weeks of the semester, class began by having students work 
collaboratively on the mathematical problems. They were given one hour to work on the 
problems. If a group had agreed upon an answer to the problem, they could raise their hand to 
discuss the answer with one of the two course instructors. When this occurred, the instructors 
would interview the students about their solutions. Otherwise the instructors would circulate the 
room observing the students’ behavior and answering questions that the students may have had 
about the meaning or interpretation of the problem. The instructors would not, however, provide 
hints or assistance to the student or confirm that their answers were correct or that the students 
were on the right track. After 60 minutes had elapsed, if a group did not discuss their solution 
with the instructors (which was usually the case), the instructors would then go to each group 
and ask them to discuss the answer that they obtained. 

The interviews between each group of students and a course instructor were semi-structured 
and audiotaped. The instructor photographed the students’ written solution. The instructor first 
asked the student what their solution was and then asked the students to explain and justify their 
solution. At this stage, the instructor sometimes asked for clarification if he or she was not sure 
that she understood the students’ arguments. The interviewer then asked the students to state how 
certain their solution was correct on a scale of 0 through 100. If any students gave a response of 
less than 100, they were asked why they were not certain in their solution, what further evidence 
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could give them more confidence in their answer, and why they were not seeking this evidence. 
In these discussions, the interviewer carefully distinguished between students’ answers and their 
justifications. The interviewer would explicitly say that he or she wanted the students’ 
confidence about the correctness of the answer, not the correctness or permissibility of the 
justification. Interviews typically lasted between five and ten minutes. 

Problem 3 had two sub-questions and Problem 4 had three sub-questions. For these class 
meetings, each sub-question was treated as a separate problem. (i.e., the instructor would go 
through the protocol for each explanation that each group provided for one of the problems). 
Hence, each group was given the opportunity to supply seven answers—one for Problem 1, one 
for Problem 2, two for Problem 3, and three for Problem 4. For some problems, the groups 
disagreed on the answer and offered multiple justifications. In these cases, each answer was 
treated separately. In total, 31 answers were offered. 

Analysis. All of the audio-recorded data was transcribed. The analysis proceeded through 
three stages. In the first stage of the analysis, we categorized each justification as empirical or 
deductive. For the sake of brevity, we do not discuss how we assigned these codes here. In the 
second stage, we determined the confidence that individual students had in their group’s answer. 
In the third stage, we engaged in thematic analysis (Braun & Clarke, 2006) to categorize the 
reasons that (1) students expressed certainty in an answer, (2) why students expressed some 
doubt in their answer (i.e., gave a conviction score of less than 100), and (3) why they did not 
seek more evidence when they gave a conviction score of less than 100.  

 
Results 

Table 1 presents a summary of the arguments that students’ produced as well as how 
confident that the students were that the argument was correct. Table 1 reveals that the majority 
(18 of 31) of students’ justifications for their answers were empirical in nature, replicating the 
result from the research literature that students frequently justify by empirical arguments. 
However, when students justified their answer with an empirical argument, they usually retained 
some doubt about the correctness of their answer, giving a confidence rating of less than 100 in 
32 of their 39 (82%) of their ratings. Consequently, these data indicate that students’ propensity 
to justify their mathematical claims with empirical evidence does not imply they believe that 
empirical evidence can provide certainty that a mathematical claim was true. 
 Deductive Justification Empirical Justification 
Number of justifications 13 18 
Students with a confidence level 
of 100 for the justification 

27 7 

Students with a confidence level 
of less than 100 

6 32 

Average confidence level 99.4 68.9 
Table 1. Confidence level of students in deductive and empirical justifications. 

  
To understand why students gave the responses that they did, consider Group B’s solution 

and justification for Problem 1, where Billy offered the incorrect answer of ¾. 
Problem 1: Suppose there are a row of squares with each square numbered 1, 2, 3, and so on. 
You start on square 1. You flip a coin. If you get heads, you move up one space. If you get tails, 
you move up 2 spaces. You repeat this process indefinitely. What is the probability that, at some 
point, you are on square 25? 
[1] Int1: Okay. On a scale of 0 through 100, how confident are you that your solution is correct? 
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[2] Int2: That the answer is ¾. 
[3] Billy: ¾. [Laughter] 
[4] Int2: 75. Is that a fair number? 
[5] Bob: Wasn’t it like the same pattern when he worked it out with 3? So first he worked it out with like 
3 and then he tried from like 23 to 25 and then he got like the pattern was still continuing. So that kind of 
convinced me too. 
[6] Brenda: I’d say 98. 
[7] Bob: I’m confident. So I’d say 98 too. 
[8] Int2: So none of you said 100. So why didn’t you say 100? What doubts do you still have? 
[9] Billy: For me, I’m a little doubtful because I know like the long way of finding the answer of finding 
the exact, like the number of heads, the number of tails, the number of choices, blah, blah, blah, but that’s 
way too long. So I’m trying to shorten my way and find the answer. Which means I’m like eyeballing it 
to say. Because of that, I’m not 100% sure but I’m pretty confident that this is the right way.  
[10] Int2: So are you saying you are willing to take a slight risk that this might not be right to avoid the 
longer process… I’m sorry do you have anything that you would like to add to that Brenda? 
[11] Brenda: No, I mean, I’m pretty confident. I would say, because I don’t know, if this was a question, I 
would probably stop at that and be like, I’m going with this question. If it was like an exam and it was 
pass or fail, this would be my final answer. 
[12] Int2: Would there be any evidence or further work that would make you more confident? 
[13] Brenda: I guess like what Billy was saying, maybe doing the whole long way, going out but 
realistically, I don’t know. I’m kind of lazy in that aspect.  
[14] Int2: You started to answer this, but why wouldn’t you seek that evidence… 
[15] Billy: It’s too long.  
[16] Brenda: Yeah. 
In this excerpt, we again see the students claiming that they did not find the empirical argument 
to be fully convincing [lines 6-8]. Billy and Brenda said they would be more convinced by a 
deductive argument [9, 13] yet both said that they would not seek the deductive argument 
because it would not be worth the effort [15-16]. What is striking is that Billy claimed that he 
knew how to produce a proof [9] and he felt that the likelihood of obtaining a proof was high [9]. 
Even though Billy’s confidence in the answer that he offered was relatively low [3], he did not 
produce this proof. For Brenda and Billy, the value of raising his confidence level was not worth 
the cost of seeking a lengthy proof.  

Group B was told that their answer was incorrect and they were asked to continue working 
on the problem. Later, Group B obtained the correct answer, justifying it with a deductive 
argument (the one surveyed by Billy in [9]). 
[17] Int: Let me ask you the same question. How confident are you on a scale of 0 through 100 that that is 
correct? 
[18] Billy: [pause] I’ll go with 100 for this one.  
[19] Brenda: 100. 
[20] Bob: I’ll go with 99. 
[21] Int: 100. Why are you certain? 
[22] Billy: For no reason. [laughs] Because I worked, I calculated, I’ve come up with a formula then I 
applied it to getting to 3 from 1 and getting to 5 from 1 and it worked out.  
[23] Int: So you had the logic for your formula… 
[24] Billy: Yeah. 
[25] Int: And you checked it for small cases. 
[26] Billy: Yes.  
[27] Int: Bob, is there a reason that you still have a scintilla of doubt? 
[28] Bob: I don’t know. [pause] It’s just I’m kind of shaky about the whole choose thing. But the way he 
kind of presented it, I kind of like, did it in an old-fashioned kind of list and I got the same maximum of 
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like 24 and minimum of like 12 flips. So like I’m agreeing with what he’s saying. What’s kind of 
stopping me is the whole choose thing and then we’re assuming that order doesn’t matter, right? 

We observe two things in this transcript. First, Billy claims certainty in his answer [18], but 
this is not just because he verified the logic in his argument. It is also because he checked that his 
argument worked in the case of a simple example [22]. This was a common occurrence in this 
study. Second, Bob obtains a high degree of confidence but not certainty in Group B’s answer 
[20] even though he can follow Billy’s argument [28]. Our interpretation of the explanation in 
[28] is that Bob felt that he lacked the background in combinatorics (“I’m kind of shaky about 
the whole choose thing”) to ensure that there was not a mistake in Billy’s reasoning.  

In the full paper, we will illustrate that the themes discussed here—that students settled for 
empirical arguments due to a lack of motivation, that they obtained certainty in deductive 
arguments by coordinating them with empirical evidence, and that students who expressed doubt 
in a proven statement did so because they were not confident in their ability to verify a proof, 
were common occurrences in this study. 

 
Discussion 

In our study, we found that, consistent with the research literature, students often justified 
their mathematical assertions with empirical arguments and sometimes expressed doubt in a 
statement after reading (and accepting) a proof of that statement. The Proving as Convincing 
perspective in the mathematics education literature (as described by Stylianides, Styliandies, & 
Weber, in press) can account for some of these occurrences. There were instances in which a 
student genuinely appeared to gain certainty from an empirical argument. However, for most 
instances, the participants submitted empirical arguments because they lacked the motivation to 
seek a proof or doubted that they could produce a proof if they sought one. Consequently, we 
propose that our broader Expectancy Value framework can offer a more accurate account for 
why students offer the justifications that they do. One implication for mathematics education 
researchers is that they should ask students to express the level of confidence that they have in 
their solution after they supply a justification (e.g., Stylianides & Stylianides, 2009; Weber & 
Mejia-Ramos, 2015).  

As a final caveat, we note that our study occurred with mathematics teachers who had 
experience in proof-based mathematics courses. This population appears to differ from other 
populations in how they construct and evaluate justifications (e.g., Iannone & Inglis, 2010; 
Weber, 2010). Hence, we do not claim at this stage that our empirical findings will generalize to 
these populations, only that the theoretical account that we provide in this paper should be taken 
into account when conducting research with this population. 
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Expert vs. Novice Reading of a Calculus Textbook: A Case Study Comparison 
 

Emilie Wiesner, Aaron Weinberg, John Barr, & Nikki Upham 
Ithaca College 

We present case studies of a student and a non-mathematics professor reading an excerpt from a 
calculus textbook.  We use the ideas of sense-making frames and gaps and the implied reader to 
compare their reading experiences. In particular, we attempt to distinguish the role of calculus 
background knowledge from reading expertise in making sense of the text.  

Key words: calculus, textbooks, sense-making, implied reader, expert vs. novice  

Textbooks have long been a staple of mathematics classes, and recent trends toward blended 
instruction mean that students are increasingly expected to learn independently from a variety of 
text materials (e.g., Maxson & Szaniszlo, 2015). However, research has suggested that 
mathematics students struggle to read their textbooks effectively (e.g., Shepherd, Selden & 
Selden, 2012). Consequently, it is important to understand how students make sense of and learn 
from reading mathematics text materials. 

There has been relatively little research investigating how students read and comprehend 
mathematical texts. Osterholm (2006) found that students were less successful at interpreting 
passages that were written in “mathematical English.” Shepherd, Selden, and Selden (2012) 
found that undergraduate calculus and precalculus students struggled to read their textbooks 
effectively. Shepherd and van de Sande (2014) compared the reading practices of first-year 
mathematics students, mathematics graduate students, and mathematicians, and differentiated 
their reading strategies by background knowledge, self-monitoring, and resource use. 

This paper presents a case study of two people reading an excerpt from a calculus textbook. 
We build on prior research by investigating the sense-making practices of the readers and the 
interaction of these practices with the readers’ background knowledge. In order to highlight the 
different roles played by sense-making practices and background knowledge, we compare 
reading episodes for a calculus student and a non-mathematician STEM professor. 

 
Theoretical Framework 

To capture the interactive nature of the reading process as well as the constraints inherent to 
the text, we use two interpretive tools: sense-making frames and gaps (e.g., Dervin, 1983; Klein, 
Phillips, Rall, & Peluso, 2007) and the implied reader (e.g., Weinberg & Wiesner, 2011). 

Sense-Making Frames and Gaps 
During the reading process, a person experiences and seeks to organize a collection of 

phenomena. Based on prior knowledge and experience, the person selects a sense-making frame: 
“a mental structure that filters and structures an individual’s perception of the world by causing 
aspects of a particular situation to be perceived and interpreted in a particular way” (Weinberg, 
Wiesner, & Fukawa-Connelly, 2014, p. 169). The reader then encounters gaps, which are 
questions that the reader (explicitly or implicitly) asks in order “to construct meaning for the 
mathematical situation” (Weinberg, Wiesner, & Fukawa-Connelly, 2014, p. 170). Bridges are the 
answers that the reader constructs in response to these questions. 
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Weinberg, Wiesner, and Fukawa-Connelly (2014) identified four types of sense-making 
frames: content frames focus on the meaning of the mathematical content of the text; 
communication frames focus on the text’s organizational structure; situating-mathematics frames 
focus on the mathematical significance of the text; and situating-pedagogy frames focus on 
pedagogical choices that reveal the meaning or significance of the mathematical ideas. 

The Implied Reader 
To realize the learning opportunities afforded by a text, there is a limited range of productive 

interactions with—and interpretations of—the text. Weinberg and Wiesner (2011) defined the 
implied reader as “the embodiment of the behaviors, codes, and competencies that are required 
for an empirical reader to respond to the text in a way that is both meaningful and accurate” (p. 
52). For example, competencies for reading a calculus text that describes an application of 
integrals might include understanding integrals as accumulation. Codes might include 
recognizing that an image next to text implies that the text describes the image. Behaviors of the 
implied reader could include filling in logical details of an argument or derivation. 

Drawing on this framework, our research questions are: 
1. What gaps does each reader experience and how do they bridge those gaps? 
2. How can the reader’s gaps and bridges be characterized in terms of their sense-making? 
3. How can the reader’s gaps and bridges be explained by the implied reader of the text? 

 
Methods and Methodology 

We invited two groups to participate in the study. For the first group, we invited all 20 
students in a second-semester calculus class (at a midsized undergraduate institution in the 
northeast) to participate in the study; five students volunteered and all participated in the 
interviews. For the second group, we personally invited (from the same institution) three faculty 
members in the physics department and one each in the chemistry, biology, computer science, 
and economics departments; all agreed to participate. 

For this paper, we selected one student, “Peter,” and one professor, “Professor M,” to use as 
case studies. At the time of the interview, Peter was a sophomore with a major in architectural 
studies and a minor in mathematics. He had earned a B in Calculus I and ultimately earned an A- 
in Calculus II. Prior to the interview, Peter had regularly read sections from his textbook 
(Hughes-Hallett et al., 2012) and completed related activities, such as writing summaries and 
solving problems. Professor M was a tenured professor with a PhD in chemistry, and had taken 
two semesters of calculus in the early 1990’s. He indicated that he did not use calculus ideas in 
his research or teaching but regularly performed algebraic manipulations as part of teaching. 

In order to have the students match the implied reader’s competencies as much as possible, 
we selected textbook excerpts for interviews where the students had been taught the prerequisite 
knowledge. Both interviewees read two excerpts from Section 8.2: Applications to Geometry in 
Calculus (Hughes-Hallett et al., 2012). The first excerpt, shown in Figure 1, gave a description of 
the general computational strategy used in the section. The second excerpt, shown in Figure 2, 
included a derivation of the arc length formula. 

At the beginning of the interview, we asked participants to describe their knowledge of 
integrals and Riemann Sums and gave them a problem about interpreting an integral for a graph 
of electrical current vs. time to assess their understanding of integration concepts. Next, they 
were asked to read an excerpt from the textbook using a message q/ing protocol (e.g., Dervin, 
1983): we instructed the participants to hold a pen next to the line they were reading, and identify 
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places where they thought the text was unclear or confusing. After completing the reading, 
participants were asked to describe the main ideas of the section. The interviewer then used an 
abbreviated timeline protocol (e.g., Dervin, 1983), revisiting each paragraph in the text and 
asking the participants whether they felt that any aspect of the paragraph was unclear. 

All interviews were video-recorded to capture the discussion and participants’ gestures. The 
audio portions of interviews were transcribed, and notations were added describing participants’ 
gestures. We then collaboratively identified the following aspects of each interview: 

• a description of each gap, summarizing the question that the reader experienced; 
• our hypothesis about the source of the gap (e.g., mismatches with the implied reader); 
• a description of each bridge and a hypothesis about how the reader formed the bridge; 
• the sense-making frames the interviewee used while experiencing each gap and bridge. 

Figure 1. Section 8.2 Overview 

Figure 2. Arc length introduction, diagram, and formula derivation 
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Results 

Case Study 1: Professor M 
We identified 12 distinct gaps that Professor M experienced while reading. Here we describe 

four gaps, representing the variety in Professor M’s gaps, bridges, and sense-making frames. The 
italicized questions below each represent a gap as summarized by the research team. 

Background Knowledge. When asked what he knew about integrals and Riemann sums, 
Professor M recalled some ideas related to integrals: “taking areas under curves” and “doing 
areas of three-dimensional shapes.” However, when working on the pre-reading problem, he 
appeared to confuse integrals and derivatives. He indicated no knowledge of Riemann sums 
beyond recognizing the phrase.  

What is a Riemann sum? Professor M gave a summary of the first excerpt (Figure 1): 
We started learning how to calculate volumes of fairly simple shapes, now we're going to 
use what we learned to do more complicated shapes by cutting these complicated shapes 
into pieces that are easy to approximate. And then add them together by taking what's 
called this Riemann Sum, I think. 

Professor M’s phrasing—“what’s called this Riemann sum, I think”—suggested that he 
experienced a gap about the meaning of a Riemann sum or how it was being used in the text. He 
appeared to think of this gap as related to terminology knowledge (suggesting a content frame); 
this was consistent with his self-reported knowledge of Riemann sums and reflected a missing 
calculus competency that was part of the implied reader.  

Professor M appeared to initially guess about the role of the Riemann sum. However, by the 
end of the interview, he had bridged this gap: he thought of Riemann sums as a sum of small 
lengths that approximated the length of the curve: 

So I think the Riemann sum is basically taking all these, they're breaking this curve up 
into very tiny, little lines. Right? And then they're measuring the length of each of those 
little lines and adding them together. 

Professor M also described the relationship between a Riemann sum and an integral: 
The arc length is taking a definite number of smaller lines and adding them together. So 
you get an approximation of what the length of this whole curve is. This [the integral] is 
sort of doing the same thing, but with an infinite number of points. 

Finally, Professor M responded to a question about why Riemann sums appeared in the text: 
Because that's conceptually easier, I think, to understand…. Like take smaller steps, 
make smaller ones, and then—conceptually, I think that's a lot easier to, um... process, 
um… I think—connect that to something real. 

Professor M’s responses suggest that he built a bridge by coordinating multiple pieces of the 
text, including the section overview and the arc length introduction. Although his gap appeared 
to have emerged from a content-oriented frame, his final response suggested that he also 
employed a situating-pedagogy frame. By coordinating these frames, Professor M was able to 
make sense of the Riemann sum’s role in the derivation process. 

Does the diagram go with the first paragraph? What does the first paragraph mean? 
Reading the second excerpt (Figure 2), Professor M initially experienced two related gaps: 

“To compute the length of the curve y”.... Is—Is this [points to diagram] the curve that 
they're talking about? I guess.... The graphic, this here [points to diagram], is supposed to 
accompany this [points to first paragraph]? Oh wait [points to ‘Figure 8.27’ in paragraph 
after diagram], no. Okay, not really.... Alright, let me then go back. It looks like they’re 
referring to the figure here [points to "Figure 8.27" in paragraph after diagram]. 
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Professor M first expressed a gap about whether or not the first paragraph in Figure 2 
referenced the diagram below it. He appeared to initially expect that the “curve” in the first 
paragraph referred to the diagram. He bridged his gap by examining the text further, locating the 
text “Figure 8.27” in the paragraph below the diagram, and—based on this—deciding that the 
diagram was not in reference to in the first paragraph. His focus on the organization of the text 
indicates that he was employing a communication frame. 

Resolving this gap prompted Professor M to re-examine the first paragraph in Figure 2. His 
verbal hesitations suggest that he experienced a gap about the meaning of the mathematical 
objects described in the first paragraph; he then bridged this gap as he continued to read: 

Okay, ‘Compute the length of the curve y=f(x)... from x=a to b.’ Okay, a to b. This 
[points to x-axis on diagram] is the x-axis, where a is LESS than b. Okay. We divide the 
curve into small pieces. Okay. Alright, alright. Each one approximately straight. So we're 
taking a bunch of little straight lines [drags pen across diagram as he makes "ch ch ch ch" 
sounds] and putting them together.... Alright. 

In this excerpt, Professor M switched to a content frame, focusing on the mathematical 
content of the text. Although he identified the diagram as accompanying the paragraph following 
it, Professor M used the diagram to create his own instantiation of the content of the first 
paragraph by adding an “a” and “b” to the “x-axis” and drawing lines on top of the diagram.  

What is happening algebraically in the “Length” approximation? As Professor M read the 
“Length” approximation (Figure 2), he appeared to experience and quickly bridge a series of 
gaps about the algebraic manipulations involved, consistent with a content frame: 

Okay... [moves pen across the equations] Okay.... So this is simple, sort of algebra here. 
Take the Pythagorean Theorem, plugging in this [points to 𝑓′(𝑥)∆𝑥] for the change in y, 
combining like terms and so forth, getting that [points to √1 + (𝑓′(𝑥))2∆𝑥 ]. 

His speech suggests that he was implicitly asking and answering questions about how the 
algebraic expressions were connected. Since the text did not explicitly address how each 
expression on the line was connected, the process of questioning this line of text and filling in 
reasoning was a behavior of the implied reader. As illustrated by Professor M’s work, effectively 
doing so required coordinating information from the diagram (about the Pythagorean theorem) 
and from the previous line of text, as well as drawing on knowledge of algebraic manipulations. 

Case Study 2: Peter 
We identified nine distinct gaps that Peter experienced and evidence of content, 

communication, and situating-pedagogy frames during Peter’s reading. Below, we describe 
several of the gaps that Peter experienced, which reflect common themes in his reading 
experience as well as overlap with the gaps Professor M experienced. 

Background Knowledge. Peter described an integral as the area under a curve and indicated 
that a Riemann sum “splits up the area.” While working on the pre-reading question, Peter 
determined that an integral and a Riemann sum would both measure the total number of 
electrons passing by a point in a circuit over a certain period of time. He then expressed 
uncertainty about his conclusion and about whether an integral and a Riemann sum would 
measure the same quantity. He also indicated confusion about the purpose of a Riemann sum: 

They always just, like, take the Riemann sum and they just have a formula—the formula 
doesn't change—and then they just put it in an integral. So I was kinda, like, thinking on 
how.... Why couldn't we just kinda skip the Riemann sum step, ‘cause they never really 
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go over that too much in a book and… Whenever like teachers try to explain it, it's kinda 
just, like, so you know the change in the A or whatever the change in value could be. 

Peter’s experience appeared to be that one puts a formula into a Riemann sum and then 
changes the summation symbol into an integral, but he did not know the purpose of doing this. 

Where are a and b in the diagram? Like Professor M, Peter experienced a gap while trying to 
connect the first paragraph and the diagram in Figure 2: 

What threw me off was that in the picture—the graph—there wasn't really an a or a b. So 
I was kinda looking for those—I was kinda assuming that there would be an a here and a 
b here [traces his pen from the curve down to the x-axis in two different spots] but, um.... 
So I'm thinking those come in later, but I don't know what they had to do with it for now. 

Peter used a communication frame to focus on the physical layout of the text and employed a 
formatting code that graphics should be associated with adjacent text. This code, misapplied to 
the text, created a gap for Peter about the lack of association that he did not resolve.  

What is happening in the “Length” approximation? Peter articulated several distinct gaps 
while reading the string of equalities and approximations for “Length” in Figure 2. He first 
indicated confusion about the “1” under the square root sign: “But then they kinda just put one 
for the change of x squared.” Then, he expressed confusion at the appearance of the derivative 
and the move of Δ𝑥: “And then they just put derivative of x squared and took out the change of 
x”; and finally the relationship between Δ𝑦 and 𝑓′(𝑥): “Like yeah, they kinda just threw that ['y 
| f’(x) 'x] in there without really explaining it.” 

 Peter’s attempts to identify the justification for each new term in the derivation suggests 
that he was using a content frame. He enacted the behavior of the implied reader to question how 
the algebraic expressions were connected, but he didn’t implement the needed competencies to 
identify the mathematical reasoning for these connections and continued reading without 
evidence of having bridged any of these gaps. 

Why is it important to use a Riemann sum? After reading the integral formula for arc length 
(in Figure 2), Peter stated: 

It was saying before with the Riemann sum. Like they put the formula that they got here 
[points to “Length” formula in Figure 2] into the Riemann sum and that's fine. Um.... 
And then they kinda just say they're putting it into a definite integral. 

After completing the reading, the interviewer asked Peter why he thought a Riemann sum 
was used before an integral in the reading. Peter responded: 

For finding the length of the curve, I don't really understand entirely yet. I was under the 
impression that Riemann sums were there kinda just to show the understanding that um.... 
As the change of x gets smaller, then you're, um, you're gonna have a more accurate 
answer. But change of x in this case [pointing to the diagram] is the... I guess, length of 
this triangle they're trying to make. And as that gets smaller, it's not like you're getting a 
more accurate answer, but you're just gonna get a smaller answer for the curve.  

Peter hadn’t coordinated the sum with the individual terms in the sum, failing to possess the 
implied reader’s fluency with Riemann sums. He largely employed a content frame in these 
excerpts, focusing on how the Riemann sum fit into the derivation of the integral formula for arc 
length. However, his attempt to link Riemann sums to larger pedagogical goals indicated he was 
also using a situating-pedagogy frame. Although this frame could potentially have provided a 
foundation to make important conceptual connections, Peter’s limited mathematical 
competencies kept him from effectively creating a bridge by coordinating the two frames. 
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Discussion 

The readers described here experienced related gaps about the same parts of the text. 
However, differences in the ways that they experienced and responded to these gaps gives 
insight into the role of sense-making frames and background knowledge in the reading process. 

Both readers experienced a gap about the diagram in Figure 2 in relation to the text. From the 
researchers’ perspective, the diagram had three potential roles: a “zoomed-in” segment of a 
generic curve (explicitly referenced in the text), an exemplar of the curve f(x) described in the 
first paragraph, and a display of the result of the “Length” calculation. Each reader’s gap was a 
product of their attempt to employ a formatting code—proximity between text and figures 
indicates they are related—and the undifferentiated roles of the diagram in the excerpt. However, 
Professor M experienced this gap as a questioning of the initial formatting code and used another 
formatting code—texts reference figures where they are being used—to resolve the gap 
productively. In contrast, Peter expected the issue to be addressed by the text and moved on. 

Both readers experienced multiple gaps while reading the “Length” derivation in Figure 2. 
These gaps were compatible with the implied reader rather than the result of a mismatch between 
implied reader and actual reader:  Here, the text provided little justification for the algebraic 
derivation, requiring the reader to interrogate the text and to have the appropriate background 
competencies to fill in reasoning. Professor M was more successful in addressing these gaps, 
exhibiting a closer match to the behaviors and competencies of the implied reader. 

Both readers also experienced a gap about the role of the Riemann sum in the derivation of 
the formula for arc length. Here, missing or incomplete competencies about Riemann sums, on 
the part of each reader, played an important role. However, the extent of the mismatch between 
the implied and empirical readers did not fully explain the degree to which the readers bridged 
this gap. Peter arguably knew more about Riemann sums (and Calculus in general) than 
Professor M. Peter attempted to draw on his previous experience with the textbook and 
instructors’ input, but was not able to bridge the gap. Moreover, Peter did not use the reading 
itself as a source of insight for his confusion. In contrast, Professor M was able to bridge this gap 
by drawing on different parts of the reading—as well as coordinating pedagogical and content 
sense-making frame—to deduce what Riemann Sums were mathematically and why they might 
be pedagogically useful.  

The two readers also differed in how effectively they employed non-content sense-making 
frames. In particular, Professor M used a communication-oriented frame as a launching point for 
understanding the introduction to arc length, and he ultimately drew on this description as part of 
his understanding of Riemann sums. Professor M also exhibited a situating-pedagogy frame 
while describing Riemann sums. Although Peter used communication and situating-pedagogy 
frames, his use of these frames was not as sustained or reflective and limited their effectiveness.  

A mismatch between the implied and actual readers explained some but not all of the gaps 
that the readers experienced. This suggests that a focus on teaching “content” is insufficient to 
help students read textbooks more effectively. Moreover, these case studies highlight that some 
gaps are inherent to the reading process (such as the algebra gaps associated with the “Length” 
calculation). Normalizing this experience for students and helping them to distinguish between 
gaps that are inherent to the text and gaps that are related to background competencies may be 
important for increasing the effectiveness of textbook reading. Lastly, these case studies 
highlight that an implied/actual reader mismatch does not necessarily prevent the reader from 
creating valid meaning from the reading; effectively implementing non-content sense-making 
frames may be one way that readers can effectively overcome this mismatch. 
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Mentor Professional Development for Mathematics Graduate Student Instructors 

Sean P. Yee     Kimberly Cervello Rogers 
University of South Carolina  Bowling Green State University 

Abstract 
To develop graduate student instructors’ (GSIs) skills and abilities as collegiate mathematics 
instructors, researchers at two universities implemented a peer-mentorship model where 
experienced GSIs completed a 15-week professional development (PD) to learn how to mentor 
novice GSIs in teaching undergraduate mathematics. Using pre-survey, post-survey, and semi-
structured reflective interviews, we studied changes in 11 mentor GSIs’ perspectives on teaching 
and learning practices and what aspects of the mentor PD were deemed valuable by the mentors. 
Results suggest that this mentor PD, as a peer-mentorship model, helped GSIs deconstruct the 
dichotic mathematical paradigm of statements being true or false when discussing teaching. 
Moreover, mentor GSIs valued how the mentor PD helped guide them to facilitate novice GSI 
post-observation discussions. 

Key words: Graduate Student Instructors, Professional Development, Peer-Mentoring 

A key ingredient in a successful collegiate mathematics department is the “effective training 
of graduate teaching assistants” (Bressound, Mesa, & Rasmussen, 2015, p. 117). This training is 
crucial because graduate student instructors (GSIs)1 serve as instructors of record for hundreds of 
thousands of undergraduate mathematics students each semester (Belnap & Allred, 2009; Lutzer, 
Rodi, Kirkman, & Maxwell, 2007) and significantly impact the quality of collegiate mathematics 
instruction across the US. Despite their prevalent role as instructors of undergraduate 
mathematics, GSIs typically lack guidance and support to teach undergraduate students 
effectively (Latulippe, 2009; Rogers & Steele, 2016; Speer, Gutmann, & Murphy, 2005; Speer & 
Murphy, 2009).  

When an instructor lacks teaching support, they draw on their teaching beliefs, attitudes, and 
dispositions to define their pedagogy (Welder, Hodges, & Jong, 2011). Research has shown that 
an instructors’ initial experiences with teaching develops their beliefs and practices of teaching 
that may last their entire career (Lacey, 1997; Lortie, 1975; Zeichner & Tabachnick, 1985). Thus 
early teaching experiences of GSIs may shape how GSIs teach in the short term and in the long 
term as potential future faculty members. Without guidance, for instance, GSIs may struggle to 
distinguish between how their graduate-level mathematics courses are taught and how they 
should teach their undergraduate mathematics courses (Speer, King, & Howell, 2014). In order to 
address this critical need for early support in GSIs’ development as effective teachers, this study 
generated and implemented a mentor professional development (PD) at two American 
universities to develop experienced GSIs into mentors for novice GSIs (protégés). This paper 
focuses on the effect of the mentor PD2 on mentor GSIs’ views of teaching and learning. 

                                                 
1 GSI was used instead of TA (Teaching Assistant) because GSI targets the specific set of graduate students who are 
full instructors of record. 
2 The implementation of this mentor PD was supported by a National Science Foundation grant at two universities 
(NSF GRANT 1544342 &1544346). 
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Related Literature 

GSI Guidance and Support 
In K-12 teacher education, the critical role of student teaching with a mentor teacher has been 

recognized as a vital precursor to fully instructing a course (Council for the Accreditation of 
Educator Preparation, CAEP Standard 2). At the collegiate level, no such standard precursor 
exists across doctoral granting institutions (Speer et al., 2014). This is due, in part, to the wide 
variety of roles graduate students may be assigned (e.g. tutors, graders, recitation instructors, or 
instructors of record) and the limited resources within mathematics departments.  

Consequentially, researchers have determined that GSIs are unable to articulate their 
pedagogical decisions clearly. Rogers & Steele (2016) studied teaching mathematics content 
courses for preservice elementary teachers and found that GSIs: 

did not demonstrate strong abilities to articulate the reasons for their instructional 
decisions or identify alternative pedagogical moves that may have led to different 
outcomes; instead, their interview comments often focused on sufficiently covering the 
mathematical content and the importance of preparing PSTs with strong content 
knowledge to be able to teach their future elementary students. (page number) 

This lack of explicitly articulating pedagogical decisions could be due, in part, to the fact that 
mathematics graduate students often start their doctoral program with limited pedagogical course 
experience (Speer et al., 2014).  

Although there can be many individuals who offer general advice about teaching to 
graduate students, including mathematics faculty members and course coordinators, rarely is this 
advice individualized enough for the GSI to justify and reflect on their pedagogical decisions 
(Speer et al., 2014). Shulman (1986) reminds us that for GSIs to justify pedagogical decisions 
within mathematics requires an understanding of pedagogical content knowledge, “which goes 
beyond knowledge of subject matter per se to the dimension of subject matter knowledge for 
teaching” (p. 9). The links between content and pedagogy do not develop automatically in 
teaching (Ball, Thames, & Phelps, 2008) and teachers need to be aware of the goals orienting 
their decisions from the teacher’s and student’s perspective (Schoenfeld, 2010). This is where a 
mentor teacher can be helpful by offering specific advice and justifying that advice with the 
necessary pedagogical decisions. Many universities have used faculty as mentors for GSIs, 
however Johnson and Nelson (1999) found that such relationships are ethically complicated and 
multifaceted because of other hegemonic roles faculty must play, such as doctoral advisors and 
qualifying exam evaluators. We posit that to be genuinely aware of the individualized 
pedagogical decisions requires a mentor closely in tune with a protégé’s current experiences. To 
that end, we focused on a mentor PD for experienced GSIs to guide and support protégés. 

Mentoring GSIs 
Research has indicated that mentoring has social and cultural benefits if mentor GSIs were 

inclined to help protégés learn how to teach. Johnson and Nelson (1999) indicate that mentoring 
is central to “quality graduate education” (p. 205), a key component of a successful mathematics 
department (Bressound et al., 2015). Crisp and Cruz’s (2009) meta-analysis of mentoring 
literature from 1990 through 2007 found that certain subgroups (minorities and females) 
benefited greatly from peer mentoring, as mentors offer support to socialize professionally, 
work, navigate, reflect on academic discourse, and help alleviate stress within doctoral programs. 
Zaniewski and Reinholz (2016) looked at mentoring from a cultural perspective of identity in a 
peer mentoring program. Admittedly,  Zaniewski and Reinholz’s study focused on a different 
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population, experienced undergraduates mentoring freshman undergraduates in the physical 
sciences, but their results demonstrated positive psychosocial and academic interactions resulting 
in friendships that generated a community of practice (Kensington-Miller, Sneddon, & Stewart, 
2014) amongst certain majors. Such results are desired within doctoral programs. Thus the 
literature supports the design and implementation of peer-mentoring for GSIs, yet raises the 
question: How do we mentor the mentors? 

Mentoring curricula 
Although teaching experience is necessary, it is not sufficient for mentoring because mentors 

need to understand their role and purpose in facilitating meaningful pedagogical decision-
making conversations with protégés (Rogers & Steele, 2016). Consequentially, the design of a 
mentor PD curriculum should focus training mentors to guide and support protégés’ 
understanding of their pedagogical decisions. Despite the small body of literature structuring 
mentor PD curricula (Crisp & Cruz, 2009), we note Boyle and Boice’s (1998) seminal work on 
mentor PD that studied mentoring both novice faculty and novice GSIs with tenured faculty 
where they considered mentoring as the “cousin of faculty development” (p. 158). These 
researchers compared spontaneous mentoring (talk to the mentor if there are problems) and 
systematic mentoring (meeting regularly every week) and found that the systematic mentoring 
was more effective in supporting GSIs and faculty because the mentor could not prepare 
appropriately when it was spontaneous. Boyle and Boice also observed the topics that dominated 
mentor meetings in decreasing order of frequency were (1) discussions of undergraduates, (2) 
teaching styles, (3) teaching-related goals, (4) grading issues, and (5) course preparation.  

Boyle and Boice’s (1998) results informed the framework of our mentor PD because all five 
frequented topics could be discussed within the mentor PD through two main responsibilities: 
observing protégés teach and running small group protégé meetings systematically (not 
spontaneously). Thus our mentor PD curriculum revolved around observing protégés (including 
post-observation discussions) and facilitating small group discussions. A natural next question 
becomes, what impact did the mentor PD have on experienced GSIs? This study examines the 
results of a 15-week mentor PD around two research questions:  

(RQ1) How did the mentor PD change mentors’ perceptions of student behavior, student 
learning, and effective teaching? 

(RQ2) What specific aspects of the mentor PD curriculum did the mentors view as most 
valuable in their preparation as mentors?  

Method 

Participants 
Experienced graduate students at two universities applied and were selected to be mentors by 

the researchers based on their teaching experiences (aptitude for implementing student-centered 
techniques), their pedagogical accolades (teaching awards and student evaluations), and most 
importantly their desire to help novice GSIs to improve teaching at their university (essay 
responses were required). The number of participants was determined by the average size of each 
university’s mathematics GSI program. Eleven mathematics and statistics doctoral candidates 
were selected to participate in the mentor PD seminars (four from one university and seven from 
another).  
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Mentor PD Curriculum 
The goal of the 15-week mentor PD was to equip the 11 experienced GSIs to be effective 

peer-mentors. The participants and a mathematics education researcher met for 50 minutes once 
a week to discuss the responsibilities of the mentor as well as to generate frameworks and 
perspectives necessary for mentoring. Building on the GSI mentoring literature, the Mentor PD 
curriculum was structured around two main mentor responsibilities: (1) observing protégé GSIs 
including feedback, and (2) facilitating bi-weekly small group meetings (one mentor with four 
protégés) which provided a space to discuss teaching.  

The first two weeks of the mentor PD incorporated a review of aligning lessons plans, goals, 
and assessments that mentor GSIs had previously learned in their mathematics teaching 
pedagogy courses. The next month (weeks 3-6) focused on the GSI Observation Protocol 
(GSIOP), which was generated by building off of the MCOP2 (Zelkowski, Gleason, & Livers, 
2016) and forms used for GSI teaching evaluations. This work prepared the mentors to observe 
each of their four designated protégés classes three times during the protégé’s first course.  

The middle of the Mentor PD (weeks 7 & 8) introduced the notion of different colored flags 
to help mentors prioritize observational feedback for the protégés to digest easily. Although the 
GSIOP offers a thorough observation, feedback was focused to not overwhelm protégés. No 
more than two specific issues of each color were flagged (green flag: good, yellow flag: area for 
growth, red flag: immediate area of concern). Flagging was revisited in the mentor PD (weeks 13 
& 14) with hypothetical scenarios in which the mentors role-played post-observation discussions 
to understand how to approach different teaching styles and perspectives without sounding 
overly critical or evaluative.  

Another major topic addressed was how to effectively design, organize, implement, and 
facilitate biweekly small group meetings (weeks 9-12). By analyzing written scenarios, mentors 
learned how to structure and guide their small group meetings by determining who is driving the 
discussion and how it is being driven. Finally, week 15 brought many ideas together around the 
theme of critical reflection (Brookfield, 1995) by focusing on curricular hegemony and 
pedagogical efficacy over efficiency. Although researchers collected rich observational data 
from the mentor PD, space limitations mandated this paper remain focused on the results that 
would answer our research questions. 

Mentor PD Data Collection 
At the beginning and end of the mentor PD, the 11 mentor GSIs answered a survey (adapted 

from Jong, Hodges, Royal, & Welder, 2015) to examine their attitudes, experiences, and 
conceptions about teaching collegiate mathematics. Since the original survey drew upon the 
Mathematics Experiences and Conceptions Survey focusing on preservice teachers, we modified 
Jong and colleagues’ instrument to focus on the tertiary instructors. The pre- and post-surveys 
shared a group of questions that asked the mentors to rate how strongly they agreed with 
statements in three categories: (a) beliefs about students (15 statements), (b) teacher 
characteristics (11 statements), and (c) lesson design (3 statements). That is, on a scale of one to 
five, with one being strongly disagree and five being strongly agree, participants rated their 
agreement with statements such as: (a) students should use multiple ways to represent concepts 
and solve problems (beliefs about students), (b) as a teacher I provide wait time and think time 
regularly (teacher characteristics), and (c) the structure of my lesson must be well organized to 
effectively achieve its goals (lesson design). We analyzed the mentors’ pre- and post-survey 
responses to help address RQ1. Additionally, we included a question unique to the post survey: 
“List up to three things you learned from the mentor PD that you believe will help you as a 
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mentor. Please list them in order of significance and briefly explain why.” All 11 mentors listed 
what they learned most and second most while only nine listed a third lesson learned. Our 
analysis of these responses informs RQ2. 

After the conclusion of the mentor PD, an external evaluator conducted 1-hour, semi-
structured reflective interviews with each mentor. The mentors were given a copy of their pre- 
and post-survey responses and asked to elaborate on what they saw in their own responses to 
triangulate the data. Mentors’ responses about how and why their attitudes changed throughout 
the mentor PD also informs RQ1. 

Mentor PD Data Analysis 
We first examined the quantitative data by analyzing the pre- and post-survey questions. This 

quantitative analysis informed the design of the semi-structured reflective mentor interviews, 
which we qualitatively coded relative to the mentor’s responses to the attitudes, experiences, and 
conceptions on teaching questions. For all 29 pre and post questions, t-tests were used to 
determine variance before and after the mentor PD. Aggregate quantitative analyses of the pre- 
and post-survey data were shared during the semi-structured interviews to help answer RQ1. The 
additional post-survey question (top three things learned) was qualitatively analyzed relative to 
the topics and course design to determine what aspects of the mentor PD were deemed valuable 
by the mentors (RQ2).  

Results 

Change in Attitude (RQ1) 
Paired sample t-tests were implemented on all 29 pre and post survey questions to look for 

variance (N=11 with alpha=5%). Although, no variance was significant (which may be due to 
the limited number of participants, N=11), a few descriptive statistics on change in mean offer 
insight into how the mentor PD affected specific mentors’ attitudes. Due to limited space, we 
discuss the survey question with the greatest change in attitude. Mentors attitudes that “students’ 
success in mathematics depends primarily on how hard they work” had the largest average 
negative value change after the mentor PD (ΔM=-0.64, ΔSD=1.43). This indicates that, on 
average, mentors agreed less with this statement after the mentor PD (not statistically significant 
however with alpha=5%). 

In the reflective interviews, 9 of the 11 mentors did explicitly discuss their negative change 
in attitude on the survey relating student success and hard work. One mentor said,  

When I first took this [pre-survey], I strongly agreed because it sounded right, the way it 
should be, but what caused me to change was the word ‘primarily’ because success in 
mathematics is in part how hard they work…but a good teacher certainly makes a difference, 
the resources available certainly makes a difference. If not, we are assuming students…are 
lazy and just don’t work hard, which is not true in my opinion. 

A second mentor corroborated this perspective in their interview by directly connecting his 
negative change in attitude to the mentor PD. 

I probably changed my answer after the seminar because I had seen poorer examples of 
instruction in the mentor PD, which leads me to believe that, despite what I would like, the 
quality of instruction plays a role in how well they learn the subject material.  

Another mentor focused on deconstructing the word success. 
The hard part for me to really piece together about this question is ‘student success’ in 
mathematics. If I have a student who comes in with really strong [mathematical] background 
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comes in and aces all the homework, aces all the exams, versus the student who improves 
greatly but does not get as good of a grade, what is that in terms of success? 

Fundamentally, we see the mentors critically reflecting (a topic from week 15 during the Mentor 
PD) during these interviews because the mentors are deconstructing the meaning of certain 
words such as “primarily” and “success” that were taken for granted prior to the mentor PD.  

Most Valuable Topics from Mentor PD (RQ2) 
In the post-survey, mentors listed the three most important things they learned from the 

mentor PD in free-response form. We qualitatively coded their responses relative to the 
curricular topics. For example, a mentor stated that they most valued learning “methods for 
offering constructive criticism”, which was coded under facilitating post-observation discussion. 
Curricular topics are listed in order of ranking by mentors in Table 1.  
Table 1 
Top Three Things Mentors Learned from the Mentor Professional Development (PD) 

 
 

Mentor PD Curricular Topics (Weeks of the Mentor PD 
Seminar Curriculum) 

 

Number of Mentors who Rated This 
Topic 

Highest Second 
Highest 

Third 
Highest 

Facilitating post-observation discussion (Weeks 7, 8, 13, & 14) 6 2 2 
Designing, organizing, & implementing small group meetings  
(Weeks 9 & 10) 

2 2 3 

Designing, organizing, & implementing GSIOP ( Weeks 3-6) 2 1 3 
Facilitating small group meeting discussions (Weeks 11 & 12) 0 4 0 
Critical reflection during small group meetings (Week 15) 1 1 0 
Lesson goals, assessments, & mathematical task alignment 
(Weeks 1 & 2) 

0 0 0 

OTHER-It is okay for people to have different teaching beliefs 0 1 0 
OTHER-Teaching is difficult and messy 0 0 1 

Two mentors stated comments that spanned multiple curricular topics and were thus listed as 
“other” in Table 1. As no mentor was coded as indicating the same curricular topic more than 
once, Table 1 shows that 10 of 11 mentors valued learning how to facilitate post-observation 
discussion, but critical reflection during small group meetings was mentioned by only two 
mentors. 

Discussion 

Summary 
In sum, our study provides valuable information about how a peer-mentorship model 

influenced mentor GSIs’ perspectives on teaching and learning (RQ1) and identifies aspects of 
the model that mentor GSIs found valuable in learning (RQ2). Although the t-tests indicated no 
significant variance in mentors’ perspectives on teaching and learning, the reflective interviews 
indicated qualitatively that the mentor PD resulted in mentors thinking about certain terms, such 
as “success” as relative to courses and students they were currently teaching. Thus mentors were 
able to deconstruct the dichotic paradigm (true/false) prevalent in mathematical statements but 
not mathematics education. These results align with the results for RQ2 because the mentors 
suggested that they greatly valued focusing on post-observation discourse. When mentors 
provide constructive feedback to protégés after observing their classroom teaching, it is crucial 

20th Annual Conference on Research in Undergraduate Mathematics Education 103120th Annual Conference on Research in Undergraduate Mathematics Education 1031



that they address teaching concerns with subjective understanding of words such as “success” so 
as not to indicate to protégé GSIs that there is an absolute correct way of teaching or defining 
student “success”.  

Implications for Research 
This study informs the field’s knowledge of GSI guidance and support by illustrating how 

this mentor PD in the context of a peer-mentorship model can influence experienced GSIs’ 
understanding of mentorship, teaching, and learning. Through the peer-mentorship model, our 
research illuminated that the mentor PD did influence GSIs ability to justify their pedagogical 
understanding of certain terms. Although this does not directly indicate that mentor GSIs were 
able to justify pedagogical decisions they made in their own classes, their choice to value 
discursive facilitation and their ability to deconstruct terms such as “primarily” and “success” 
indicate their ability to consider multiple factors needed to reason and justify pedagogical 
decisions, a crucial concern of the current literature (Rogers & Steele, 2016). 

Additionally, the results of RQ2 corroborate Boyle and Boice’s (1998) recommendation that 
mentor meetings focus on productive discourse. That is, Boyle and Boice identified that 
discussion of undergraduates and teaching styles were the most frequented discussions in mentor 
meeting and Table 1 indicates that facilitating post-observation discourse and facilitating group 
meeting discussions were the most popular of the highest and second-highest learned topics, 
respectively. This emphasis on discourse was the foundation of Smith and Stein’s (2011) 
canonical work on discourse best-practices, which was used in the topics from the review weeks 
(1 & 2) and creation of the peer-mentorship model. 

Implications for GSI Programs 
The emphasis on discourse illustrated by the results of this study is an ideal way to begin in 

developing peer-mentoring programs for GSIs because from this discourse stems the need and 
value of a community of practice amongst GSIs within mathematics departments. In their 
research on how mathematics teaching practices shifts undergraduate instructors’ academic 
identities, Kensington-Miller et al. (2014) emphasize the need for a community of practices for 
an improvement in teaching practices to take place. These researchers define a community of 
practice as “a place of collaborative inquiry where various approaches to teaching can be tested 
through a reflective sharing process . . . . [A community of practice] can contribute to deeper 
levels of awareness and achieve new learning that can, in turn, lead to significant change” 
(Kensington-Miller et al., 2014, p. 829) . To work through reflective sharing for achieving 
awareness, a community requires a safe environment with a knowledgeable facilitator for 
productive discourse, which was an aspect of our mentor PD that the mentor GSIs greatly 
valued. Thus our data corroborates and aligns with prior research (Boyle & Boice, 1998; 
Kensington-Miller et al., 2014; Smith & Stein, 2011), by underscoring the need for mentors to be 
skilled at facilitating productive discourse in a collaborative environment and systematically 
organizing mentor meetings in hopes of generating a sustainable community of practice. 

References 

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes 
it special? Journal of Teacher Education, 59(5), 389–407. 
http://doi.org/10.1177/0022487108324554 

20th Annual Conference on Research in Undergraduate Mathematics Education 103220th Annual Conference on Research in Undergraduate Mathematics Education 1032



Belnap, J. K., & Allred, K. (2009). Mathematics teaching assistants: Their instructional 
involvement and preparation opportunities. In L. L. B. Border (Ed.), Studies in Graduate 
and Professional Student Development (pp. 11–38). Stillwater, OK: New Forums Press, 
Inc. 

Boyle, P., & Boice, B. (1998). Systematic Mentoring for New Faculty Teachers and Graduate 
Teaching Assistants. Innovative Higher Education, 22(3), 157–179. 
http://doi.org/10.1023/A:1025183225886 

Bressound, D., Mesa, V., & Rasmussen, C. (Eds.). (2015). Insights and recommendations from 
the maa national study of college calculus. MAA Press. 

Brookfield, S. D. (1995). Becoming a critically reflective teacher (First Edition). San Francisco, 
CA: Jossey-Bass. 

Crisp, G., & Cruz, I. (2009). Mentoring College Students: A Critical Review of the Literature 
Between 1990 and 2007. Research in Higher Education, 50(6), 525 – 545. 

Council for the Accreditation of Educator Preparation [CAEP]. (2013). CAEP Accreditation 
Standards (CAEP Commission Recommendations to the CAEP Board of Directors) (pp. 
1-56). Washington, DC. 

Johnson, W. B., & Nelson, N. (1999). Mentoring relationships in graduate training: Some ethical 
concerns. Ethics and Behavior, 9, 189–210. 

Jong, C., Hodges, T. E., Royal, K. D., & Welder, R. M. (2015). Instruments to measure 
elementary preservice teachers’ conceptions: An application of the rasch rating scale 
model. Educational Research Quarterly, 39(1), 21–48. 

Kensington-Miller, B., Sneddon, J., & Stewart, S. (2014). Crossing new uncharted territory: 
shifts in academic identity as a result of modifying teaching practice in undergraduate 
mathematics. International Journal of Mathematical Education in Science and 
Technology, 45(6), 827–838. 

Lacey, C. (1997). The socialization of teachers. London: Methuen. 
Latulippe, C. (2009). Encouraging excellence in teaching mathematics: MTAs’ descriptions of 

departmental support. In L. L. B. Border (Ed.), Studies in graduate and professional 
student development (pp. 85–96). Stillwater, OK: New Forums Press, Inc. 

Lortie, D. C. (1975). Schoolteacher: A sociological study. Chicago, IL: University of Chicago 
Press. 

Lutzer, D. J., Rodi, S. B., Kirkman, E. E., & Maxwell, J. W. (2007). Statistical abstract of 
undergraduate programs in the mathematical sciences in the United States: Fall 2005  
CBMS survey. Washington, DC: American Mathematical Society. Retrieved from 
http://www.ams.org/profession/data/cbms-survey/frontmatter.pdf 

Rogers, K. C., & Steele, M. D. (2016). Graduate teaching assistants’ enactment of reasoning-
and-proving tasks in a content course for elementary teachers. Journal for Research in 
Mathematics Education, 47, 372–419. 

Schoenfeld, A. H. (2010). How we think: A theory of goal-oriented decision making and its 
educational applications. Routledge. 

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational 
Researcher, 15(2), 4–14. 

Smith, M. S., & Stein, M. K. (2011). 5 Practies for Orchestrating Productive Mathematics 
Discussions. Reston, VA: National Council for Teachers of Mathematics. 

20th Annual Conference on Research in Undergraduate Mathematics Education 103320th Annual Conference on Research in Undergraduate Mathematics Education 1033



Speer, N. M., Gutmann, T., & Murphy, T. J. (2005). Mathematics teaching assistant preparation 
and development. College Teaching, 53(2), 75–80. http://doi.org/10.3200/CTCH.53.2.75-
80 

Speer, N. M., King, K. D., & Howell, H. (2014). Definitions of mathematical knowledge for 
teaching: using these constructs in research on secondary and college mathematics 
teachers. Journal of Mathematics Teacher Education, 1–18. 
http://doi.org/10.1007/s10857-014-9277-4 

Speer, N. M., & Murphy, T. J. (2009). Research on graduate students as teachers of 
undergraduate mathematics. In L. L. B. Border (Ed.), Studies in Graduate and 
Professional Student Development (pp. xiii–xvi). Stillwater, OK: New Forums Press, Inc. 
http://doi.org/10.1016/j.jmathb.2010.02.001 

Welder, R. M., Hodges, T. E., & Jong, C. (2011). Measuring changes in teachers’ beliefs,  
attitudes, and dispositions related to experiences in mathematics. In Proceedings of the 
33rd Annual Meeting of the North American Chapter of the International Group for the 
Psychology of Mathematics Education (pp. 2118-2125). 

Zaniewski, A. M., & Reinholz, D. (2016). Increasing STEM success: a near-peer mentoring 
program in the physical sciences. International Journal of STEM Education, 3(1), 14. 

Zeichner, K. M., & Tabachnick, B. R. (1985). The development of teacher perspectives: Social 
strategies and institutional control in the socialization of beginning teachers. Journal of 
Education for Teaching, 11(1), 1–25. 

Zelkowski, J., Gleason, J., & Livers, S. (2016). Measuring mathematics classroom interactions: 
An observation protocol reinfocing the development of conceptual understanding. 
Proceedings presented at the 13th International Congress on Mathematics Education, 
Hamburg, Germany. 

 
 
 

20th Annual Conference on Research in Undergraduate Mathematics Education 103420th Annual Conference on Research in Undergraduate Mathematics Education 1034



Order of Operations: A Case of Mathematical Knowledge-in-Use 
 

Rina Zazkis 
Simon Fraser University 

I describe reactions of secondary school mathematics teachers to the following assertion: 
“According to the established order of operations, division should be performed before 
multiplication”. I use the notions of local and nonlocal mathematical landscape (Wasserman, 
2016) to analyze teachers’ responses to the convention of order of operations in general and the 
presented assertion in particular.  

Key words: order of operations, local and nonlocal mathematical landscape, knowledge at the 
mathematical horizon, associativity 

In Canadian schools the acronym BEDMAS is used as a mnemonic, which is supposed to 
assist students in remembering the order of operations: Brackets, Exponents, Division, 
Multiplication, Addition, and Subtraction. In American and British schools the prevailing 
mnemonic is PEMDAS, where “P” denotes parentheses, and it further assists memory with the 
phrase “Please Excuse My Dear Aunt Sally”. Note that while “parentheses” and “brackets” are 
synonyms, the order of division and multiplication (D and M) is reversed in PEMDAS vs. 
BEDMAS.  

While researchers and educators argue against the use of mnemonics, as it does not support 
conceptual understanding and may lead to mistakes (e.g., Ameis, 2011, Hewitt, 2012), it is still a 
shared practice among many teachers. Ongoing discussions related to the order of operations 
attend to how this order is interpreted by various computational devises, noting considerable 
inconsistency. My study is concerned with interpretation and explanation of the order in the 
conventional order of operations by secondary school teachers.  

 
Mathematical Landscape and Knowledge-in-Use: Theoretical Underpinning 

Wasserman (2015) described how knowledge of “advanced mathematics may positively 
impact instruction” (p. 29). (“Advanced mathematics” here refers to topics beyond school 
curriculum, noting significant similarities in curricula across the world). He focused on topics 
and ideas of abstract algebra and demonstrated not only how these are connected to school 
mathematics, but also how they can shape or alter the teaching of school mathematics. 
Arithmetic operations and their properties were among the identified topics, for which abstract 
algebra can impact teaching. Wasserman included particular examples of planned teaching 
activities where abstract algebra experience transformed teachers’ perceptions, and ultimately 
their teaching.  

In his more recent work, Wasserman (2016) introduced the topological metaphor of 
mathematical landscape. He considered the local mathematical landscape to be the mathematics 
being taught and the nonlocal mathematical landscape, as consisting of “ideas that are farther 
away” (p. 380). He suggested that this division “tackles the notion of mathematical knowledge 
beyond what one teaches” (p. 380). These metaphors are linked to the notion of “knowledge at 
the mathematical horizon”, focusing on teachers’ (rather than students’ or curricular) horizons, 
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which Zazkis and Mamolo (2011) re-conceptualized as advanced mathematical knowledge used 
in teaching.  

 Wasserman distinguished three perceptions on the significance of exposure to nonlocal 
(advanced) mathematics: advanced mathematics for its own sake, advanced mathematics as 
connected to school mathematics, and advanced mathematics as connected to the teaching of 
school mathematics. He asserted that “teachers’ development of and understandings about 
nonlocal mathematics must not only relate to the content of school mathematics, but to the 
teaching of school mathematics content” (p. 386). This is because exposure to advanced 
mathematics helps teachers in developing Key Developmental Understandings (KDUs) (Simon, 
2006), which change perceptions about content and influence mathematical connections, so in 
turn, have an impact on teaching. 

In what follows I present a story where nonlocal mathematical knowledge can influence 
teaching in a ‘situation of contingency’. I borrow the notion of contingency from the 
“Knowledge Quartet” framework (Rowland, Huckstep & Thwaites, 2005), in referring to an 
event that is unforeseen or deviates from the agenda when planning for instruction. 

 
A Story in Two Accounts 

I follow the narrative inquiry methodology, where “narrative inquiry is aimed at 
understanding and making meaning of experience” (Clandinin & Connely, 2000, p. 80).  In 
presenting the story I rely on Mason (2002) in distinguishing between account-of and 
accounting-for. The term ‘account-of’ provides a brief description of the key elements of the 
story, suspending as much as possible emotion, evaluation, judgment or explanations. This 
serves as data for ‘accounting-for’, which provides explanation, interpretation, value judgement 
or theory-based analysis.  

The story is situated in a course “Foundations of Mathematics” for secondary mathematics 
teachers (n=16), which is a part of the Master’s program in mathematics education. Building and 
strengthening connections between advanced mathematics and school mathematics was an 
explicit goal of the course.  

Account of – Part 1. Background: Conventions Task 
One of the assignments for secondary mathematics teachers (here also referred to as 

‘students’) was to consider mathematical conventions. This assignment followed discussion on 
the choice of a particular mathematical convention, the use of superscript (-1) in different 
contexts. In prior research, prospective secondary teachers’ explanations of the “curious 
appearance” of superscript (-1) in the two contexts – inverse of a function and reciprocal of a 
fraction – were studied by Zazkis and Kontorovich (2016). It was found that the majority of 
participants do not attend to the notion of ‘inverse’ with respect to different operations, that is, do 
not view “reciprocal” as multiplicative inverse. Rather, the differences between the contexts 
were emphasized and analogies were made to other words and symbols, whose meaning is 
context dependent.   

In the conversation with students about the superscript (-1) similar ideas were initially 
voiced, but later an agreement converged towards a group-theoretic perception of inverse, as 
exemplified in two different contexts. This provoked interest in the choice of other mathematical 
conventions, conventions that are often introduced and perceived as arbitrary, rather than 
necessary (Hewitt, 1999), without any particular explanation. The “Mathematical conventions 
task” was designed to address this interest.  
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The idea behind this task was to extend a conversation on the choice of conventions, and 
acknowledge either the arbitrary nature or the reasoning underlying some of these choices. The 
students were asked to write a script for a dialogue between a teacher and students, or between 
students, where interlocutors explore a particular mathematical convention and a reason behind 
it. The particular conventions were left for the students’ choice. The detail of the task is found in 
Figure 1. 

 
Choose a mathematical convention and consider possible explanations for the particular choice.  

IN YOUR SUBMISSION: 
1. Reflect on the process of choosing the particular mathematical convention for this task. 

Share alternative conventions that you considered for this task and explain why they were not 
chosen. (1-2 paragraphs) 

2. Write a script for a dialogue in which interlocutors consider possible explanations for the 
convention you explored. The dialogue should reflect possible doubts, uncertainties and 
arguments regarding the suggested explanations. The dialogue should end either with an 
explanation that interlocutors accept or a summary of the disagreement between the characters. 
(3-5 pages). The dialogue can begin in the following way: 

Sam: Hey Dina, have you ever noticed that (the chosen convention)? 
Dina: Well, everybody knows that. 
Sam: Yes, but did you ever think about why it is so? 
Dina: Why should I think about it? It’s a convention. 
Sam: But, still… Can you propose an explanation? 
Dina: Maybe, this is because… 

Feel free to modify the proposed beginning of the dialogue. 
 
3. What have you learned, if anything, from completing this task? (1-2 paragraphs) 
 
  Figure 1: Mathematical conventions task 

Account of – Part 2. Order of Operations Convention 
One of the repeated examples for a convention (chosen by 3 out of 16 students) was order of 

operations when performing arithmetic calculations. Below is an excerpt from the script written 
by Andy, who describes a conversation occurring in Grade 8 class.   

 
Sam:  Hey Mr. X, a couple of us can’t decide on answer to the following question:  

25+ 5!×!7− 2!×!10÷ 5 
Mr. X:  What do you mean? 
Mary:  I bet them a dollar that they couldn’t get the correct answer to a question I made: 

25+ 5!×!7− 2!×!10÷ 5 
Sam:  Well I got 40. Jane says it’s 56. Tom believes it’s 436, and no one can agree on a 

solution. 
Tom:  Mine is correct! I know it. 
Mr. X:  Tom why do you say that? 
Tom:  I had a process of how I did mine. 
Mr. X:  How so? 
Tom:  I just did one operation after another: 26 plus 5 times 7 and so on. See: 

25+ 5!×!7− 2!×!10÷ 5 
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30!×!7− 2!×!10÷ 5 
210− 2!×!10÷ 5 
218!×!10÷ 5 
2180÷ 5 
436 

Sam:  I did something similar, but I started on the right side of the problem: 
25+ 5!×!7− 2!×!10÷ 5 
25+ 5!×!7− 2!×!2 
25+ 5!×!7− 4 
25+ 5!×!3 
25+ 15 
40 

Mary:  You guys did the operations in the wrong order. 
Jane:  I agree with you Mary. 
Mr. X:  What order would you suggest? 
Jane:  Well I did the division first followed by multiplication, addition and subtraction. 

25+ 5!×!7− 2!×!10÷ 5 
25+ 5!×!7− 2!×!2 
25+ 35− 4 
60− 4 
56 

Tom:  I don’t understand why you started with division. Why would you start there? 
Jane:  Everybody knows that’s the proper order to do operations. 
Sam:  Mr. X is that correct? 
Mr. X: Jane is correct. That is the correct order to do those operations. 
Sam:  But why? 
Mr. X:  A long time ago a group of people had a very similar situation that we have now. 

They were confused and couldn’t figure out who had the correct solution to a 
problem that involved the very operations you are having problems with. It 
happened around the early 15th century in a small European kingdom, it was 
called the Kingdom of Math. The King of Math, as it were, was a very 
intelligent leader and believed that his people should always come together to 
solve their problems. 

Jane:  Really, Mr. X, a kingdom of math? 
Mr. X:  Oh yeah, they were a very progressive country. Several of the King’s subjects 

had come to him to settle a problem that they were having. They couldn’t decide 
on an order of the operations that needed to be used. Sound familiar? 

Mary:  Very funny, Mr. X. 
Tom:  So what did the King do? 
Mr. X:  The king commanded his most trusted advisors, members of the Order of 

Knowledge, to look into the problem. It took several months before the Order 
had a response for the King. They proposed that the only way to solve this 
problem was for the King to proclaim an order to the operations so that everyone 
would know the correct way to solve the mathematical problem. 

Sam:  That makes sense. Then everyone would follow the same order and no one 
would be confused about what steps to do first. 

20th Annual Conference on Research in Undergraduate Mathematics Education 103820th Annual Conference on Research in Undergraduate Mathematics Education 1038



 
Andy offered the following comment at the end of the assignment: 
“I felt that there was only one reason that I could students: “We need to have an order that 

everyone follows so we can be consistent”. “This is the way we all do it”. “We” being us in the 
math community. Whether you’re in France, New Zealand, or Canada it’s the same. This is 
because we’ve all agreed to use the same order so as to have the same understanding of the 
operations. I tried to find an actual history of the order of operations, but couldn’t find anything 
concrete. So I decided to make up a story that would hopefully give them some connection to the 
problem and some entertainment along the way.” 

Accounting for – Mathematics of “Division First” 
It is clear from Andy’s commentary that accompanied the script that he perceives the 

convention of order of operations as an arbitrary decision. The reasoning behind this choice, 
other than the need for consistency, was unclear to Andy and was not found when sought. Other 
secondary school teachers agreed with this view. 

 The teacher-character’s agreement with the student statement, “division first followed by 
multiplication, addition and subtraction” could have been overlooked, as the result was correct.  
It is further unclear from the script whether the listed order refers to the general convention, or to 
the particular case. Nevertheless, both the claim of “division first”, and the order in which the 
operations were performed in Jane’s example, attracted my attention. For simplicity, let us 
consider only the last short computation that involves multiplication and division only,  
2!×!10÷ 5 

Performing “division first” means interpreting this calculation “as if” there are parenthesis 
around the operation of division  
2!×!(10÷ 5) 

But actually, “division first” and “in order of appearance” yields the same result: 
2!×!10÷ 5 = 20÷ 5 = 4   and   2!×! 10÷ 5 = !2!×!2 = 4 

Is this a coincidence?  In other words, is it a “general case” that  
a!×!b÷ c = !a!×!(b÷ c)  ? 
The situation is easily resolved attending to (a) division is an inverse operation of 

multiplication and (b) multiplication is associative. Therefore, division can be performed “out of 
order”, as 
a!×!b÷ c = !!a!×!b!× ! !!! = a!× ! b!× ! !!!! = !a!×!(b÷ c)   

Account of – Part 3.  Addressing “Division First” Assertion 
As a consequence of “division first” suggestion in Andy’s script, the following assertion was 

presented to a class discussion: 
Assertion: “According to the established order of operations, division should be 
performed before multiplication.” 

It was presented a student’s claim, for which a teacher’s response was sought.  
Four students (out a class of 15) agreed with the claim, while others insisted on the “left to 

right” order, when only division and multiplication appear in a computation. BEDMAS was the 
presented argument that supported the assertion∗. However, majority of students claimed that 
“division first” was wrong and attempted to find a counterexample, where giving priority of 
                                                

∗ Of interest is that in a class of prospective elementary school teachers, about 70% agreed with the assertion 
based on BEDMAS 
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division over multiplication vs. performing these operations in order they appear will lead to 
different results. (An analogous idea of “multiplication first” or “order does not matter” was 
suggested, but immediately rejected by a counterexample.) 

When “simple” computations did not lead to a counterexample, students turned to more 
complicated examples. These examples included a longer chain of computations, fractions, and 
negative numbers. An additional conjecture was voiced that “division first” works only in case 
there is divisibility between the chosen numbers for division. This resulted in more complicated 
examples, but the conjecture was refuted after several tests.  

In a class session, a search for a counterexample lasted for about 25 minutes. There were 
occasional exclamations of “Eureka!”, which eventually resulted in double checking that 
uncovered  computational errors. A failure to come up with a counterexample, resulted in a 
conjecture that prioritizing division over multiplication will always work.  

Considerable scaffolding was needed to prove this conjecture. When someone suggested that 
“it works” because “division is just an inverse of multiplication”, I countered the claim with 
“multiplication is just an inverse of division” and “it doesn’t work”. The suggestion of 
associativity was voiced only after students were asked explicitly to consider in what ways 
division and multiplication are different. As a result of focusing on this difference, the assertion 
was rephrased:  Division can be (rather than should be) performed before multiplication.  

Accounting for – Analysis of Responses 
The assertion presented for discussion for secondary school teaches caused a cognitive 

conflict to both supporter and objectors. Those who supported the conjecture based on BEDMAS 
were surprised to find out that performing addition before subtraction (A before S) does not lead 
to an expected result. Those who believed that conjecture was false, and claimed that division 
and multiplication have the same priority and should be performed in left-to-right order, were 
surprised to find out that giving priority to division indeed “works”.  

Each group exhibited a robust “strength of belief” (Ginsburg, 1997), based on knowledge 
that was entrenched and never questioned, as evident in a lengthy search for a counterexample.  
Extending the example space in search for counterexamples indicates, in accord with Zazkis and 
Chernoff (2008) that different examples have different convincing power.  

The justification and reformulation of the assertion, based on associativity of multiplication, 
was readily accepted, and even came with an “AHA!” experience for some teachers. As such, it 
is curious why such an argument was hard for teachers to find on their own. The theoretical 
constructs presented above provide a possible explanation.  

I suggest that the notion of associativity, even if not so “advanced”, does not belong to 
secondary school teachers’ local mathematical landscape. That is to say, they do not teach 
associativity, and even when this property is acknowledged together with other properties of 
arithmetic operations, it is mentioned together with commutativity. To elaborate, operations 
discussed in school mathematics are either commutative and associative, or neither commutative 
nor associative, which results in frequent confusions between the two (Hadar & Hadass, 1981, 
Zaslavsky & Peled, 1996). Associativity appears as a property “on its own” when considering 
groups and their structure. As such, while the notion itself does not require advanced 
background, knowledge of advanced mathematics reshapes how associativity is perceived. For 
teachers, associativity appeared to be found in the nonlocal environment, and the connection 
between local and nonlocal mathematics was not immediately articulated. Furthermore, I suggest 
that the discussion of the assertion helped in connecting nonlocal mathematics (associativity) to 
local mathematics  (order of operations) in a potential situation of contingency in their teaching.  
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Discussion 

With respect to the conventional order of operations in arithmetic, should division have 
priority over multiplication? If yes, why so? If not, does giving priority to division lead to an 
incorrect result? These questions, and unexpected answers, were explored with a group of 
secondary mathematics teachers. It was concluded that while teachers indeed possessed nonlocal 
knowledge needed to address these questions, it was not exploited in connection to a contingency 
situation that may appear in their teaching.  

In relation to teachers’ mathematical knowledge Wasserman (2016) uses the terms ‘nonlocal’ 
and ‘advanced’ as almost synonymous, referring to knowledge beyond what is taught in school.  
The example of order of operations demonstrates that ‘nonlocal’ is not necessarily ‘advanced’, 
but situated beyond teachers’ “active repertoire” of knowledge used in teaching.  

I concur with Wasserman (2016) that “knowledge of nonlocal mathematics becomes 
potentially productive for teaching at the moment that such knowledge alters teachers’ 
perceptions of or understandings about the local content they teach” (p. 382). While Wasserman 
(2015) and Wasserman and Stockton (2013) exemplified how planning of instructional sequence 
and instructional examples can be influenced by teachers’ exposure to advanced mathematics, I 
demonstrated how such exposure can be useful in the situation of contingency.   

 
 

References 

Ameis, J. A. (2011). The truth about pemdas. Mathematics Teaching in The Middle School, 16(7), 
414-420.  

Clandinin, D. J., & Connelly, F. M. (2000). Experience and story in qualitative research. San 
Francisco, CA: Jossey-Bass. 

Ginsburg, H.P. (1997). Entering the child’s mind: The clinical interview in psychological 
research and practice. Cambridge, UK: Cambridge University Press. 

Hadar, N., & Hadass, R. (1981).  Between associativity and commutativity.  International 
Journal of Mathematics Education in Science and Technology, 12, 535-539. 

Hewitt, D. (1999). Arbitrary and Necessary: Part 1. A way of viewing the mathematics 
curriculum.  For the Learning of Mathematics, 19(3), 2-9. 

Hewitt, D. (2012). Young students learning formal algebraic notation and solving linear 
equations: are commonly experienced difficulties avoidable? Educational Studies in 
Mathematics, 81(2), 139-159. 

Mason. J. (2002). Researching Your Own Practice: The Discipline of Noticing. London: 
Routledge Falmer. 

Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ mathematics subject 
knowledge: The knowledge quartet and the case of Naomi. Journal of Mathematics 
Teacher Education, 8(3), 255–281. 

Silverman, J., & Thompson, P. W. (2008). Toward a framework for the development of 
mathematical knowledge for teaching. Journal of Mathematics Teacher Education, 11(6), 
499-511. 

Simon, M. (2006). Key developmental understandings in mathematics: A direction for 
investigating and establishing learning goals. Mathematical Thinking and Learning, 8(4), 
359-371. 

20th Annual Conference on Research in Undergraduate Mathematics Education 104120th Annual Conference on Research in Undergraduate Mathematics Education 1041



Wasserman, N. (2015, online first). Abstract algebra for algebra teaching: Influencing school 
mathematics instruction. Canadian Journal of Science Mathematics and Technology 
Education. 

Wasserman, N., & Stockton, J. (2013). Horizon content knowledge in the work of teaching: A 
focus on planning. For the Learning of Mathematics, 33(3), 20–22. 

Wasserman, N. (2016). Nonlocal mathematical knowledge for teaching.  In Csíkos, C., Rausch, 
A., & Szitányi, J. (Eds.). Proceedings of the 40th Conference of the International Group 
for the Psychology of Mathematics Education, Vol. 4, pp. 379–386. Szeged, Hungary: 
PME. 

Zaslavsky, O. & Peled, I. (1996). Inhibiting factors in generating examples by mathematics 
teachers and student-teachers: The case of binary operation. Journal for Research in 
Mathematics Education, 27(1), 67-78. 

Zazkis, R. & Chernoff, E. (2008). What makes a counterexample exemplary? Educational 
Studies in Mathematics, 68(3), 195-208. 

Zazkis, R. & Mamolo, A. (2011). Reconceptualising knowledge at the mathematical horizon. 
For the Learning of Mathematics, 31(2), 8-13. 

Zazkis, R & Kontorovich, I. (2016). A curious case of superscript (-1): Prospective secondary 
mathematics teachers explain. Journal of Mathematical Behavior, 43, 98-110.  

20th Annual Conference on Research in Undergraduate Mathematics Education 104220th Annual Conference on Research in Undergraduate Mathematics Education 1042



Can/Should Students Learn Mathematics Theory-Building? 
 

Hyman Bass 
University of Michigan 

 
Mathematicians commonly distinguish two modes of work in the discipline: Problem 
solving, and theory building (Gowers, 2000).  Mathematics education offers many 
opportunities to learn problem solving.  This paper explores the possibility, and value, 
of designing instructional activities that provide opportunities to learn mathematics 
theory-building practices.  It begins by providing a definition of these theory-building 
practices on the basis of which to formulate principles for instructional designs.  The 
paper argues that theory-building practices serve not only the synthesizing role that they 
play in disciplinary mathematics, but they also have the potential to enrich learners’ 
reasoning powers and to enhance their problem solving skills.  These instructional 
designs offer a new approach to supporting student work on generalization and 
abstraction.  They have been piloted with preservice and practicing secondary teachers. 
 

Key words: theory building, problem solving, abstraction, instructional design. 
 
The Common Core has promoted the teaching of mathematical practices.  I take the 

practices of an occupation to be the things one does when so occupied.  So what do 
(research) mathematicians do?  Well they commonly distinguish two modes of doing 
their work:  problem solving and theory building (Gowers. 2000).  Does (or should) this 
duality find any expression in mathematics education?  Certainly problem solving has a 
robust presence (Polya, 1957; Schoenfeld, 1994); what about theory building?  I argue 
here that it does make sense, and have value, to give students opportunities to learn what 
I call (and shall define) to be mathematics theory-building practices, and I will present 
some instructional designs to support this. 
 

Mathematics Theory-Building Practices 
 

Mathematical knowledge is cumulative. Rarely are ideas discarded. What saves it 
then, after several millennia of relentless growth, explosively in the last two centuries, 
from sinking under its own weight into some dense mass of ideas?  This is achieved 
through ongoing processes of abstraction, whereby diverse phenomena are made to all 
appear as particular manifestations of a single unifying theoretical construct.  The latter 
is essentially a piece of conceptual invention with no a priori existence. It is born as a 
distillation, and naming, of what is common to the variety of its existing incarnations.  
The large-scale cumulative products of these processes are mathematics theories. 
 
Definition 

Based on this, I define (mathematics1) theory-building practices to be creative 
acts of recognizing, articulating, and naming something mathematically substantial that 
is demonstrably common to a variety of apparently different mathematical situations, 
                                            
1 In science, in contrast, Bereiter (2012) writes, “Theory building starts when an explanatory idea is 
modified or further developed to produce a better explanation.” 
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something that, at least for those engaged in the work, might have had no prior 
conceptual existence. I refer to an instance of engagement in such a theory-building 
practice as a theory-building act. 

It is important to distinguish mathematical theories from the theory-building 
processes that produce them, just as proofs are different from the practices of proving.  
The most familiar example of such abstraction is that of number itself.  For example, 
what is the number seven?  We cannot point to it, or say directly what or where “seven” 
is in the natural world.  Rather we can point to many collections of seven things; and we 
can say concretely what it means for two such collections to have the same cardinal.  
“Seven” then is a quality that all of these diverse collections have in common, but we 
can specify concretely only what it means for this quality to be common. 

The main products of theory-building practices are of course theories.  Some large-
scale examples are the theories of groups, topological vector spaces, manifolds, and 
categories.  A college level example might be linear algebra, in which the solving of 
systems of linear equations is eventually generalized and abstracted in terms of vector 
spaces, over a field of scalars, and linear transformations. Theories are general, and so 
achieve a kind of cognitive rescaling or compression of the knowledge edifice.  
Complex mathematical structures are thus identified and named so that they become, for 
the expertly initiated, as mentally manipulable as counting numbers are for a child.  At 
the same time theories are sufficiently specific to be susceptible to productively detailed 
and incisive theoretical exploration. Note that the examples above are the names of 
theories, but nothing is said here about the rich history of how each of them evolved and 
came to be formalized, through a long trajectory of theory-building actions. 

I will use the above definition of theory-building practices to formulate general 
principles for the design of some instructional activities that provide learners with 
opportunities to engage in theory-building practices.  I present examples of such 
instructional designs based on these design principles.  These designs involve seeking 
relations among a given set of mathematics problems.  Learners are asked to not only 
solve the problems, but, importantly, to find and articulate structural connections among 
the problems.  The designs have been piloted with groups of students and teachers. 

The premise of this work is that theory-building, not unlike problem-solving, is a 
high leverage mathematical practice that, suitably adapted for instruction, is of value for 
all students, not only those who pursue mathematics as a career. 

In a pilot of these problem designs, most students, in their reflections: 1. Professed 
to enjoy the activity; 2. Found that it would be useful in their teaching; and 3. Noted 
that, in none of their previous math courses, had they ever been asked questions like this. 
 

A Sample of Related Literature 
 

Mathematical theory-building practices involve a high level of abstraction.  
Abstraction has been much studied since the work of Piaget (1994) and Vygotzky 
(1997), and more recently in the study of student assimilation of already formalized 
abstract concepts, for example (Hershkowitz et al., 2001; Scheiner, 2016). 

Some curricular interventions, e.g. the “New Math,” introduced students 
axiomatically to some existing theories.  This of course is distinct from theory building. 
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Early work on structural relations between different problems comes from 
cognitive psychology studies of transfer, to see whether knowledge of how to solve 
problem A transfers to the ability to solve an “isomorphic” problem B (Simon et al., 
1976; Siegler, 1977).  Here A and B are said to be isomorphic if there is a 
correspondence between the objects, relations, and operations of A to those of B so that 
any solution strategy of A transforms into one of B.  Informally, A and B have the same 
structure, and differ only in superficial features of context.  It was found that transfer 
generally does not occur. 

Silver (1979), inspired by Polya’s heuristic, “think of a related problem,” and 
building on earlier work of Kruteskii (1976), conducted a study of students’ perceptions 
of relatedness of families of word problems, designed to vary on dimensions of 
relatedness, notably mathematical structure and context.  Among his findings, students 
with high proficiency levels, by a variety of measures, tended to sort problems by 
structure, while those with lower levels focused more on context. This reinforced similar 
findings of Kruteskii.  

In Mason (1989) and Mason, et al. (2009) one finds strong arguments for the value 
of developing a sensitivity to mathematical structure, as well as problem-solving 
contexts in which there are rich opportunities for structural thinking and exploration.   

Maher et al. (2010) report on one of the few longitudinal studies of children’s 
development of high level mathematical practices, including development of schemas 
for connecting structurally related problems.  

In 1968 Zal Usiskin published, in The Mathematics Teacher, a brief paper, “Six 
nontrivial equivalent problems.” Although addressed to teachers, the paper did not 
discuss instructional uses.  What unifies these problems is the fact that they can all be 
modeled by simple algebraic variants on a single Diophantine equation:  Find all whole 
number solutions (n,m) of,  1/n + 1/m  =  1/2.  In 2015 I expanded Usiskin’s list to a set 
of thirteen problems, spanning several mathematics domains, all sharing the same 
mathematical model.  This is accompanied by a lesson plan for its use in teacher 
professional development. 

Instructional Design Principles 

I turn now to a set of principles for the instructional design of opportunities to 
engage in theory-building practices. The designs comprise three components: a problem 
set; the task presented to the learners; and a sketch of the instructional enactment, or 
“lesson plan.”  The design principles guide the construction of these components. 

  
Problem Set Design Principles 

The definition of theory-building practices calls for, “recognizing, articulating, and 
naming something mathematically substantial that is demonstrably common to a variety 
of apparently different mathematical situations.”  Here I take a “mathematical situation” 
to refer to mathematics problem.   I take “something mathematically substantial that is 
demonstrably common” to mean a mathematical structure that is centrally involved in 
each problem, in the sense that the “problem space,” or “solution space” of the problem 
can be described using that structure.   

With these specifications I can now state the problem set design principles: 
1. An assigned problem set should consist of about 3 - 8 problems. 
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2. Individual problems should be substantial, yet accessible without formidable 
challenge for the given community of learners.   

3. The set of problems should be significantly diverse, for example with variable 
contexts, or even belonging to different mathematical domains. 

4. It must be possible to demonstrate that substantial subsets of the problems 
involve a common mathematical structure. 

Rationale:  #1is a practical consideration; #2 is to keep the primary focus on structural 
relations between different problems, not individual problem solutions; #3 captures the 
“apparently different” aspect of the definition; #4 is central to the concept of theory-
building practice. 
 
The Learners’ Task Design Principles 

Two formats are proposed.   
• The discernment format: Learners are asked to simply discern and explain 

relations among a set of problems that do not all involve a common structure.  
• The common structure format:  Learners are asked to identify and articulate a 

mathematical structure and demonstrate its presence in each of the problems.  
The discernment format presents the task as in Table 1.  

 
Table 1 
Discernment Assignment Format 
Below are problems, labeled A,B,C,D,E, . . .  The object is to place the letter of each problem in 
one of the boxes below.   

• Put letters in the same box if they are mathematically the “same” problem, apart from 
superficial differences of context.   

• If problems in different boxes are closely related mathematically, connect their boxes by 
a line, or by a double line if the connection is very strong.  (Note, you need not use all of 
the boxes, and you may reasonably answer this question even if you have not completely 
solved the individual problems.) 

• Work on this individually for a few minutes.  Then compare answers in your group.   
• Try to come to some consensus on how to explain (to the whole group) your choices, in 

particular the nature of the connections.	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	

The products in this format will be “connection networks,” and these can be quite 
variable.  The processes of explaining them, and then efforts to reconcile differences 
within and across different groups can help to develop a probing discourse about 
mathematical relations among problems. 

The common structure format assigns the following (interactive) phases: 
Phase 1.  Solve the individual problems.    
Phase 2.  Identify and articulate a common mathematical structure, and 

demonstrate how it is involved in each of the problems.     
 Phase 3.  Notice ways in which the problems are significantly different, and 

analyze some of the consequences of these differences. 
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Phase 2, expressly capturing the theory-building component of the task, appears to be 
the most novel and challenging aspect for the learners.  It is not likely that learners will 
gain high levels of proficiency with theory-building practices from a limited exposure to 
this kind of work.  But it is still possible, even with limited exposure, to awaken a 
sensibility to the kinds of questions posed, a foundation that can be built upon.   

Phase 3 is not directly entailed in the definition of theory-building practices, but 
pilots of these designs show that a given mathematical structure can be situated in 
problems in ways that significantly vary the mathematical sense and cognitive demand 
of the problem.  Awareness of this kind of variation is an important aspect of 
discrimination in theory-building practices. 

 
Instructional Enactment Design Principles 

The demands of these designs can be substantial, complex, and novel:  solving a 
substantial collection of non-trivial and diverse problems; finding and articulating a 
substantial mathematical structure common to the different problems; and noticing 
significant differences in the structurally related problems. 

I have found that the instruction works best when the students work in collaborative 
groups (of 3-6 students), and that the work extends over a reasonable amount of time, at 
least two sessions.  The individual groups can pool diverse ideas, distribute the work, 
and reconcile different outcomes. I then have each group prepare a formal presentation 
of its work to the whole group, allowing then for whole group discussion. 
 

Example Designs 

Figure 2.    
The 3-permutation set  (Discernment) 
A.   What are all three-digit numbers that you can make using each of the digits 1, 2, 3, and 
using    
       each digit only once? 
B.   In a group of five students, how many ways are there to pick a team of three students?	
C.  You are watching Angel, Barbara, and Clara on a merry-go-round.   At each moment you 
see    
      them in some order – left, middle, right.  As the merry-go-round turns, what are all the   
      different orders in which you see them? 
D.  If Angel, Barbara, and Clara have a race, and there are no ties, what are all possible  
     outcomes: first, second, third? 
E.  From a bag full of many pennies, nickels, and dimes, I randomly choose three coins.  What  
     are all possible coin combinations that I might have? 
F.  In a 3 x 3 grid square, color some of the nine (unit) squares blue, in such a way that there is  
     exactly one blue square in each row and in each column.  What are all ways of doing this? 
G. What are all the symmetries of an equilateral triangle? 

Here B and E are outliers, not deeply related to the other problems, or even to each 
other, though they both have ten solutions.  A structure involved in each of A, C, D, F, 
G, is the set of permutations of three objects and the solution to each of these problems 
is in fact the full set of six permutations.   In A, D, and F this outcome is demonstrably 
inherent in the problem, though this fact is most subtle for F.  However it can be argued 
that in C and G there is no a priori guaranty that all permutations will be achieved.  In 
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fact, when students were asked to reformulate the problems with 4 in place of 3, they 
found that the new C and G did not achieve all 4! permutations. 
 
Figure 3.    
The 8-choose-3 set  (Discernment) 
A.   A taxi wants to drive from one corner to another that is 5 blocks north, and 3 blocks east.    
      How many possible efficient routes are there to do this?  
B.  On the number line, starting at 0, you are to take 8 steps, each of which is either distance 1 
to   
     the right, or distance 1 to the left, and in such a way that you end up at -2.  How many   
     different such walks are there? 
C.  The home team won a soccer game 5 to 3.  How many possible sequences of scoring were   
     there as the game progressed? 
D.  You have coins worth 3¢ and 5¢.  With 8 such coins, how many different values can you      
     obtain? 
E.  From a group of 8 students, you need to select a (5-person) basketball team.  How many  
     different ways are there to do this?  
F.  You are to cut a 9-inch ribbon into six pieces, each of length a whole number of inches.  How  
     many ways are there to do this? 
G. In the expansion of (1 + x)8, what is the coefficient of x3?   

Here D is an outlier. The solution space of all of the other problems is represented by 
the set of all “binary sequences of length 8, with 3 terms of one type.”  
 
Table 4  
The Measure Exchange set  (Common Structure) 
1. (Tea & Wine)  I have a barrel of wine, and you have a cup of green tea.  I put a teaspoon of 
my wine into your cup of tea.  Then you take a teaspoon of the mixture in your teacup, and put it 
back into my wine barrel.  Question:  Is there now more wine in the teacup than there is tea in 
the wine barrel, or is it the other way around? 
2. (Heads Up)  I place on the table a collection of pennies.  I invite you to randomly select a set 
of these coins, as many as there were heads showing in the whole group.  Next I ask you to turn 
over each coin in the set that you have chosen.  Then I tell you:  The number of heads now 
showing in your group is the same as the number of heads in the complementary group.  
Question:  How do I know this? 
3.  (Faces Up)  I blindfold you and then place in front of you a standard deck of 52 playing 
cards in a single stack. I have placed exactly 13 of the cards face up, wherever I like in the deck.  
Your challenge, while still blindfolded, is to arrange the cards into two stacks so that each stack 
has the same number of face-up cards. 
4. (Triangle Medians)  In a triangle, the medians from two vertices form two triangles that meet 
only at the intersection of the medians.  How are the areas of these two triangles related?  More 
precisely, let ABC be a triangle.  Let A’ be the mid-point of AC, B’ the mid-point of BC, and D 
the intersection of AB’ and BA’.  How are the areas of AA’D and BB’D related? 
5.  (Trapezoid Diagonals)  The diagonals a trapezoid divide the trapezoid into four triangles.  
What is the relation of the areas of the two triangles containing the legs (non parallel sides) of 
the trapezoid? 
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A structure involved in each of these problems is a simple principle of 
measurement:  If two quantities have equal measure, and you remove from each what 
they have in common, then what remains of each of them will still have equal measure.   
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How Limit can be Embodied and Arithmetized: A Critique of Lakoff and Núñez 
 

Tim Boester 
University of Illinois at Chicago 

In Where Mathematics Comes From, Lakoff and Núñez (2001) describe how the notions of 
infinity, continuity, and limit can be constructed through metaphorical extensions of embodied 
experiences. This paper will critique their historical and psychological analysis, revealing an 
unresolved tension between a simplified, geometric “approaching” conception and the 
arithmetization of calculus by Weierstrass. A proposal of how to rectify this conflict through 
acknowledging how novices can metaphorically tie these concepts together is discussed. 

Key words: Embodied Cognition, Limit, Infinity 

The mathematical definition of limit has gone through various refinements throughout 
history (Kleiner, 2001), but its current form, for two-dimensional limit, requires the coordination 
of two small intervals. One interval’s radius, signified by the Greek letter delta (

� 

δ), surrounds the 
input or x-value, while the second interval’s radius, represented by the Greek letter epsilon (

� 

ε), 
surrounds the output or the result of the function applied to the x-value. The coordination of the 
two intervals is accomplished through the logical quantification portion of the definition: for any 
epsilon, there exists a delta, such that if the input value is within the delta interval, then the 
output value must be within the epsilon interval. These intervals are symbolized through the 
distance interpretation of the absolute value, while the logical quantification uses common 
logical symbols for “for any,” “there exists,” and the “if …, then …” structure. 

Limit can be mathematically conceptualized in two different ways, regardless of how a 
student could come to understand the concept: either in a dynamic way or in a static way (Cornu, 
1992). The dynamic conception is a motion-based idea of limit, frequently expressed using the 
word “approaching” (or similar words describing movement), or graphically demonstrated by 
showing a point moving along a graph towards another point. This was also the first way in 
which limit was historically conceived by Newton and Leibniz (Kleiner, 2001). Students 
thinking in terms of a dynamic conception would describe, through words and gestures, a limit as 
a point traveling along a curve. 

The static conception of limit is an arithmetic-based idea of limit which coordinates static 
intervals. This conception matches the formal definition devised by Cauchy and Weierstrass 
(Kleiner, 2001), and can also be thought of as a way to precisely describe closeness. Students’ 
thinking in terms of a static conception would describe, again through words and gestures, limit 
as coordinated intervals. In summary, the dynamic conception emphasizes motion in describing 
limit, while the static conception is devoid of motion and instead emphasizes closeness. 

The trajectory of mathematics education research of limit began with an initial focus on 
establishing misconceptions in undergraduates’ understanding of limit (Bezuidenhout, 2001; 
Davis & Vinner, 1986; Tall & Vinner, 1981), which then evolved into proposals on how students 
might build appropriate conceptions of limit (Cottrill et al., 1996; Lakoff & Núñez, 2001; 
Williams, 1991, 2001). These proposals brought about several more studies yielding successful 
interventions into students’ limit conceptions (Boester, 2010; Oehrtman, 2009; Roh, 2008, 2010; 
Swinyard & Larsen, 2012). However, while these most recent studies expanded the underlying 
framework for the learning of the limit concept, issues with how general theories of advanced 
mathematical thinking were initially applied to explain limit thinking in novices (students) 
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remain. In particular, an unresolved tension exists between how Lakoff and Núñez explain the 
transition between a geometric “approaching” conception of limit and how Weierstrass 
arithmetized Calculus to produce our modern, static conception of limit. 

The Problem of Conceptualizing “Approaching” Through the BMI 

Lakoff and Núñez introduce limit in Where Mathematics Comes From (2001) by first 
discussing one-dimensional limit: an infinite sequence along a number line that approaches a 
particular number (the limit). To demonstrate the process of “approaching” a limit, and how this 
utilizes the BMI, or Basic Metaphor of Infinity (p. 155), they give an example sequence 
xn{ } = n n +1( ) . As n increases, the value xn  gets closer and closer to 1 (p. 187). 

The authors choose to express this notion of “approaching” by utilizing the notation of the 
formal definition of limit in terms of sequences: the sequence xn{ }  has L as a limit if, for each 
positive number ε , there is a positive integer n0  with the property that xn − L < ε  for all n ≥ n0  
(pp. 189-90). Unfortunately, this definition cannot use the BMI directly, because there is nothing 
being iterated. In order to bridge the gap, they decide to express “approaching” in terms of nested 
sets, whose iterative quality can be directly used by the BMI: 0 < r < xn − L , where Rn  is the set 
of all values r bounded between zero and xn − L . As xn − L  gets smaller, the range of values in 
Rn  gets smaller. Since the largest value of Rn  is decreasing, these sets can be nested: Rn+1 ⊂ Rn . 
This chain of nested sets is then used in the BMI to obtain the limit (where the “last” nested set, 
R∞ , would be the empty set). Lakoff and Núñez take the expression 0 < r < xn − L  to be 
synonymous with xn − L < ε  so that we can then extend the BMI to cover the standard formal 
definition. 

Lakoff and Núñez are required to use the BMI to explain the concept of limit, because limit 
utilizes the concept of infinity. Because infinity does not exist in reality, this presents a critical 
challenge to a theory of mathematics that is entirely based on real-world, embodied experiences, 
hence the necessity of the BMI. Since the standard formal definition of sequences doesn’t use an 
indefinite iterate process contained within the BMI, they need to formulate a new definition 
which does, hence nested sets. Since nested sets can be plugged into the BMI as an indefinite 
iterative process, they can thus be used to explain our conception of limit. 

While this explanation follows the standard embodied cognition model of linking metaphors 
(including the BMI) built up from grounded metaphors based on embodied experience, there are 
several problematic issues with this explanation of how we comprehend limit. First, 
0 < r < xn − L  is technically not synonymous with xn − L < ε . 0 < r < xn − L  can be used when 
xn  is already known to be approaching L, while xn − L < ε  is essentially checking to make sure. 
For example, if the actual limit of the sequence is Lt , where Lt  falls within the neighborhood 
defined by xn − L  for all n, then the values of 0 < r < xn − L  can still create a chain of nested 
sets that follow Rn+1 ⊂ Rn due to the density of the real numbers, however R∞  would no longer be 
the empty set (instead, it would measure the distance between L and Lt ). This distinction is not 
possible with xn − L < ε , as for some ε , xn − L ≥ ε . 0 < r < xn − L  assumes that L is the actual 
limit, while xn − L < ε  proves it is so. 
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More importantly, however, in their attempt to mathematize the concept of “approaching”, 
they are completely ignoring the natural, physical-ness of approaching. What Lakoff and Núñez 
are trying to do is characterize the distance between you and the limit: the distance becomes 
smaller as you approach the limit. However, they use a complicated mathematical concept 
(nested sets) encoded in a complicated mathematical notation, when a description of 
“approaching” as simply going towards something would suffice. This notion of “approaching” 
more closely resembles one of the four grounding metaphors (p. 50), arithmetic as motion along 
a path. However, “approaching” might even be considered a grounding metaphor for limits, 
because it ties the concept of limit back to the image schema of motion along a path. 

In fact, thinking of “approaching” in this simple, physical way may even help students 
understand one very important piece of the formal limit concept. The same linguistic distinction 
between “jumping” and “swimming” can be made here: “approaching” is an imperfective aspect 
(p. 156), because it does not inherently mean that you arrive at what you are approaching. This is 
actually helpful because it matches the definition of limit (in that a function may not exist at the 
limit). You may never reach the limit, because it may not exist, even though you are approaching 
it. Reaching a limit is a consequence of the BMI – in order to have a limit, you must “reach” it at 
the infinite step (at least potentially, if not actually). While it may be important sometimes to 
know what happens at the limit (for example, when considering continuity), this is not required 
when finding the limit itself. 

Oversimplifying “Approaching” by Ignoring Complicated Approaching 

While Lakoff and Núñez overcomplicate matters by using nested sets, they completely 
oversimplify the ways in which limits can be approached that are covered through the absolute 
value-based definition. Recall the example sequence xn{ } = n n +1( ) . Notice that this example is 
strictly monotonic, in that it creeps up on the limit in one direction, always getting closer and 
closer to 1, never farther away. This matches the smooth, motion based “approaching” 
conception of limit. Taking smaller and smaller steps towards a wall would be a physical 
example of this. 

However, sequences (and functions) can approach limits in far more complicated ways than 
simply monotonically. The authors make an attempt to fix this by introducing sequences which 
converge indirectly but still have a limit. For example, they give a “teaser sequence” 3/6, 4/6, 
5/6, 9/12, 10/12, 11/12, 15/18, 16/18, 17/18, 21/24 … which bobs up and down while generally 
trending towards 1 (pp. 192-3). This improves their coverage of possible types of limit 
convergence, but does stretch the metaphorical interpretation of limits as “approaching”. This 
would correspond to a physical example where, for each step taken towards a wall, a step a 
fraction of that size is taken going away from the wall (remembering that the steps towards the 
wall are getting smaller and smaller). 

The physical interpretations of both monotonic and indirect convergence also illuminate 
another way that students may think of limit, as a barrier that cannot be crossed (Davis and 
Vinner, 1986). Mathematically, this is called a bound. Both examples presented are bounded at 
the limit because they only approach from one direction. You do not have to consider incredibly 
complicated sequences to find ones that approach a limit from both sides (even though Lakoff 
and Núñez (1997, 2001) restrict this property to a selection of “monster” functions that inspired 
the transition to the arithmetization of Calculus). There are many examples of sequences that do 
this, such as xn{ } = −1( )n n , which approaches zero from both sides. 
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“Approaching” from either side of a limit is covered in the absolute value portion of the 
formal definition: by making a range around L, it doesn’t matter if you are above L or below it, 
as long as you are no more than ε  away. Lakoff and Núñez also cover this possibility in their 
definition when they utilize absolute value notation for nested sets, although they do not 
comment about the implications of such notation. Remember that the nested sets Rn are defined 
as the sets of the values r can take when 0 < r < xn − L . Why should the absolute value be used 
here, since in the examples presented, all instances of xn  are less than L (thus simply writing 
0 < r < L − xn  would suffice)?  

While the examples only require 0 < r < L − xn , they use 0 < r < xn − L  because using the 
absolute value is necessary in the formal definition. If their definition did not cover limits which 
approach from both sides, they would be defining “approaching” in a lopsided way which was 
fundamentally different from the formal definition. In order to motivate using 0 < r < xn − L , 
they should have used an additional, more complicated example, but this would have stretched 
the physical interpretation of “approaching” past its breaking point. While it is still possible to 
stretch this motion-based concept to include approaching from both sides, there are some 
important implications of this. 

First, you will be approaching the limit from both sides, which is difficult to conceptualize 
using the types of physically-based examples used to ground the “approaching” concept. Using 
the same strand of physical examples from above, it would be like trying to approach a wall from 
both sides simultaneously. Second, you would need to abandon the idea that the limit is a barrier 
or bound, because you would be (repeatedly) passing it. You could not conceptualize the wall in 
our example as a barrier. Third, the sequence or function may equal the limit while it is 
“approaching” the limit. In taking the limit of the function y = xsin 1/ x( )  as x approaches zero, 
there are many times where the function has x-values near zero which yield y-values that are 
zero. In fact, we don’t even need to turn to something this complicated to see this. A constant 
sequence or function will equal its limit everywhere. This really challenges the concept of 
“approaching” the limit, since, for a constant function, you don’t actually move. 

These three implications pull the “approaching” metaphor away from the natural, motion-
based conception of limit stated at the very beginning of this section. They also create problems 
for the nested-set conception of “approaching”. A set of points on one side of a limit could not be 
nested inside of a set made from points on the other side of the limit (without resorting to some 
argument either about the size of the set rather than its actual contents or using sets which 
straddle the limit and are not bounded at either end). 

Conflating “Approaching” With the Formal Definition  

If Lakoff and Núñez want to stay with the embodied, motion-based “approaching” 
conception of limit, they need to stick with simple examples which are not stretched too far from 
normal experiences (thus avoiding the implications above). However, in mathematizing these 
simple examples, they should not use the absolute value, because it is not necessary. This means 
that whatever mathematical definition they try to establish, based on the examples, it cannot use 
the absolute value, which means that it cannot duplicate the formal definition (figure 1, argument 
one). 

If they want to motivate the formal definition, then they must use the absolute value as it 
appears in the formal definition when using the BMI. In order to motivate the usage of the 
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absolute value, they need more complex examples which approach the limit from both sides or 
converge indirectly. In doing this, they then must use much more complicated explanations of 
“approaching” than those which naturally arise because of the implications discussed above 
(figure 1, argument two). 

The authors try to do both. Their top-down argument originates with the desire to motivate 
the formal definition using the BMI. They cannot do this without using the absolute value. 
However, they examine the “approaching” conception of limit and use examples which naturally 
tie into this conception. Unfortunately, there is no reconciliation between the simple examples 
and their usage of the absolute value (figure 1, Lakoff and Núñez). 

 
Figure 1. Linking the informal, motion-based conception of limit with the formal definition. 
 

The authors make what, at first glance, appears to be a minor oversight. Their examples of 
“approaching” a limit do not require using the absolute value to characterize their behavior. 
When they formalize the “approaching” conception of limit through their usage of conceptual 
metaphor, they use the absolute value. Unfortunately, by missing the true importance of the 
absolute value and its cognitive implications in connection with the formal definition and the 
“approaching” conception of limit, their argument that this is the way in which we understand 
limits falls apart. 

The underlying reason why this merging of the “approaching” conception of limit and the 
formal definition doesn’t work is because the informal definition is based on motion, while the 
formal definition is devoid of any sense of motion because of its basis on the concept of range or 
proximity. The BMI uses definite iterative processes to explain indefinite continuous processes, 
but the formal definition is not a process as such: it is a static entity, not a dynamic one. Lakoff 
and Núñez had to build a stop-gap formal definition which used an indefinite iterative process 
(nested sets) in order to apply the BMI to the formal definition. While the BMI can explain the 
“approaching” conception of limit because of its basis in a dynamic process, this usage simply 
cannot be connected to the formal definition. In attempting to leap the gap between an 
“approaching” conception of limit and the formal definition through their unmotivated usage of 
the absolute value, it is clear that they are missing this vital distinction. Their mixing of the 
formal definition with the approaching conception is thus fundamentally flawed, and taints both 
interpretations of the limit concept. 
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Lakoff and Núñez (1997) attempt to get around this by stating that the formal definition 
actually has noting to do with a static or a dynamic conception of limit, but rather that the 
quantification (the logical structure) in the formal definition is the important part. They claim: 

 
Many students of mathematics are falsely led to believe that it is the epsilon-delta 
portion of these definitions that constitutes the rigor of this arithmetization of 
calculus. The epsilon-delta portion actually plays a far more limited role. What 
the epsilon-delta portion accomplishes is a precise characterization of the notion 
of “correspondingly” that occurs in the dynamic definition of limit where the 
values of f(x) get “correspondingly” closer to L as x gets closer to a. That is the 
only vagueness that is made precise by the epsilon-delta definition. (Lakoff & 
Núñez, 1997, p. 71). 
 

While it is true that mathematicians must formalize the concept of “correspondingly”, that, in 
and of itself, does not formalize “closeness”. Another way to express the “approaching” 
metaphor is to ask, as f(x) gets closer to L as x gets closer to a, just how close do we need to be? 
The correct answer is: as close as we want. It is this statement, “as close as we want”, that also 
needs to be formalized, and this is not covered by simply formalizing “correspondingly”. 

To demonstrate how formalizing “correspondingly” fails to include a formalization of 
“closeness”, we can examine Lakoff and Núñez’s “dynamic epsilon-delta limit” definition: 
“

� 

lim
x→a

f (x) = L  means that for every 

� 

ε > 0 , there exists a 

� 

δ > 0 , such that as x moves toward a and 
gets and stays within the distance 

� 

δ  of a, 

� 

f (x)  moves toward L and gets and stays within the 
distance 

� 

ε of L” (Lakoff & Núñez, 1997, p. 71). Here they retain the quantification of the formal 
definition, but express the rest in terms of “approaching”. This mixture of the dynamic (“moves 
towards”) and the static (“gets and stays within a distance”) conceptions of limit results in a 
definitional overkill. Once one has the static pieces of the definition, the dynamic pieces are 
technically unnecessary. If you simply have the dynamic pieces, then you do not necessarily 
have all of the pieces of the formal definition (because of the nature of “approaching”). In their 
attempt to show how a formalization of “correspondingly” is the key component of the formal 
definition, they are unable to avoid including pieces of the static definition. Thus, while 
quantification is important, it is not the only difference between the formal definition and the 
“approaching” metaphor. 

A Proposed Resolution: Connecting “Approaching” With the Formal Definition 

The “approaching” conception of limit and the formal definition cannot be reconciled the 
way Lakoff and Núñez propose. Instead of the argument presented, the authors could have 
simply kept the motion-based conception and the formal definition initially separate, instead of 
conflating the two. First, they could have presented the motion-based, “approaching” conception 
of limit, the examples which match this, and a conceptual metaphor which does not use the 
absolute value. Then later, they could have shown how the motion-based, “approaching” 
conception of limit breaks down when faced with more complicated types of limit convergence, 
how this ultimately lead Cauchy (Grabiner, 1992a, 1992b) to move to a new conceptual 
metaphor of proximity or range, which was later refined by Weierstrass (Lakoff and Núñez, 
2001, p. 308) and how this leads to the absolute value being used in the formal definition. 
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By mixing a motion-based definition with an static-based definition, Lakoff and Núñez cloud 
the real issue: how do people move from the intuitive, grounded, dynamic conception of limit to 
the formal, static definition? This is the central pedagogical question that we need to be asking, 
but through their casual use of absolute value, they gloss over it. The authors attempt to begin 
with the “approaching” conception of limit, which students use, and try to directly connect it to 
an understanding of the formal definition. However, while the formal definition is an important 
concept for students to understand, it is based on a completely different metaphorical foundation 
than the motion-based conception of limit. This implies that, when it is time for the transition 
from the “approaching” conception to the formal definition to take place, a new metaphor needs 
to be introduced. 

The formal definition was created to solve and explain cases of limit convergence that the 
“approaching” conception cannot explain, thus no amount of twisting the informal conception of 
limit will suffice. This has happened with other prominent scientific concepts as well. For 
example, Einstein’s general theory of relativity was created to explain not only the normal cases 
explained by Newtonian mechanics, but also cases where those ideas break down (particularly 
situations concerning the very large and the very small). Thus, a new metaphor was created 
which encompasses the old one, but does not build off of it. Newtonian mechanics cannot be 
sufficiently extended in order to link to the general theory of relativity; however, the general 
theory of relativity can be used in situations where Newtonian mechanics works. The same 
principle should be attempted here: because the “approaching” conception simply cannot be 
extended to cover all cases of limit convergence, a new metaphor which explains the formal 
definition needs to be introduced to students, at the same time making clear that, while the 
formal definition works in all cases, the “approaching” metaphor still works in simple cases. At 
the same time, the informal dynamic conception should not be abandoned, as there is value in 
supporting such dynamism, even if the expert view needs to contain the formal definition 
(Marghetis & Núñez, 2013). 

Based on classroom evidence, Boester (2010) suggests that students at first connect these 
distinct metaphors by assuming the “approaching” conception is the correct one, and that the 
static conception of the formal definition is a special case, as shown by putting the synchronized 
ranges created in the definition into motion. This would imply that students are using the pieces 
of the “approaching” conception as the source domain and the static conception as the target 
domain, thus mapping the dynamic aspect of motion along a line to the static (now dynamic) 
aspect of the range. However, some students evolved past this connection, recognizing that the 
formal definition conception is the correct one, and that the “approaching” conception is the 
special case (analogous to an expert view). This would imply that the students are using the static 
conception as the source domain and the dynamic conception as the target domain, thus mapping 
the static ranges to the dynamic (now static) aspect of approaching. 
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This theory-based report gives evidence and builds a conceptual framework for a construct 
called “mathematical knowledge for teaching future teachers” (MKT-FT).  Mathematics teacher 
educators construct MKT-FT as they teach courses for pre-service teachers. Connections to 
mathematical knowledge for teaching (MKT) are discussed, with an emphasis on the complex 
relationships between aspects of pedagogical content knowledge in MKT-FT and MKT.  

 
Key words: Mathematical knowledge for teaching, Discourse, Teacher educators 

 
In the 30 years since Shulman’s (1986) seminal speech on the importance of pedagogical 

content knowledge, a variety of theories about such knowledge have emerged (Depaepe, 
Verschaffel, & Kelchtermans, 2013). Among the most well known in the U.S. is at the heart of a 
primary-grades-focused model of mathematical knowledge for teaching (MKT) introduced by 
Hill, Ball, and Schilling (2008). The subject matter knowledge (SMK) and pedagogical content 
knowledge (PCK) components of Ball and colleagues’ model of MKT are illustrated in Figure 1.  

 
In the context of more advanced mathematics, others have explored how the idea of MKT 

may be productively refined for use in research and development in secondary and post-
secondary settings (Hauk, Toney, Jackson, Nair, & Tsay, 2014; Speer, King, & Howell, 2015). 
Speer and colleagues considered college instructional questions such as: What are the types of 
specialized, horizon, and common mathematical knowledge for teaching calculus? While Hauk 
and colleagues have tackled: How does one productively unpack the aspects of PCK – 
knowledge of content and curriculum, content and teaching, content and students –  when the 
teaching is in a college, the students are adults, the collections of mathematics experiences 
brought to the classroom are larger, and the sociocultural relationships between student and 
teacher are quite different from those assumed in the K-8 foundations of the initial framing of 

Figure 1. Model of mathematical model for teaching (Hill et al., 2008) 
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MKT? Hauk and colleagues (2014) developed an expanded model for college teacher PCK. They 
used the PCK components in Figure 1 as the vertices of the base of the tetrahedron and added a 
fourth vertex which they call knowledge of discourse (knowledge about the nature of discourse, 
including inquiry, socio-mathematical norms, and forms of communication in mathematics 
within and outside of post-secondary educational settings) – see Figure 2. 

Here we consider a related question: What is the nature of “mathematical knowledge for 
teaching” for college instructors who teach mathematics for pre-service elementary teachers? 
Such college teachers are teaching adults in post-secondary settings where the mathematical 
content is in the context of elementary mathematics (rather than advanced) and yet the content is 
itself linked to K-8 MKT of common, specialized, and horizon subject matter knowledge.  

Indeed, Gallagher, Floden and Gwekwerere (2012) note that we know little about what 
skills are required to be an effective mathematics teacher educator nor do we know much about 
how those skills develop. Here, by mathematics teacher educator we mean anyone who provides 
guidance, mentoring, or professional learning opportunities to prospective or in-service teachers. 
The current paper focuses on the subpopulation of mathematics teacher educators who teach 
mathematics-content-rich courses where the students are pre-service K-8 teachers.   

A natural question arises: Why should the Research in Undergraduate Mathematics 
Education (RUME) community have an interest in examining the knowledge required of 
mathematics teacher educators to perform their jobs effectively? First and foremost, much of the 
mathematical preparation for teaching among future K-8 teachers happens in colleges, most at 
the undergraduate level (Masingila, Olanoff, and Kwaka, 2012). In fact, Masingila and 
colleagues found that 88% of the teaching of “mathematics for elementary teachers” college 
courses happens in mathematics departments, with between 27% and 43% of faculty in these 
departments holding a Ph.D. in either mathematics or mathematics education. Across institution 
types (2-year, 4-year, and advanced-degree granting) there were more faculty with mathematics 
Ph.D.s teaching these courses (as opposed to those with Ph.D.’s in mathematics education).   

We know that early learning experiences are formative and that children who learn to see 
themselves as mathematical agents do better in secondary school and beyond (Aud, et al., 2013, 
Shim, Ryan, & Anderson, 2008; Woodward et al., 2008). We know teaching that supports 

Figure 2.  Tetrahedron model of PCK (Hauk et al., 2014).!
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children in building skills with mathematical process, practices, and content is socio-culturally 
rich and responsive to societal as well as community needs (Aud & KewalRamani, 2010; Gay, 
2010; Khisty & Chval, 2002; Téllez, Moschkovich, & Civil, 2011). We know that future teachers 
have greater resources to draw on and are more likely to offer children what they themselves 
have experienced as learners (including the undergraduate learning experiences that are most 
proximal to their launch as teachers; e.g. Ball and Bass, 2000; Conference Board of the 
Mathematical Sciences, 2001; Hodgson 2001). There is a need for mathematics faculty who are 
prepared to teach mathematics content courses for pre-service elementary teachers (PSETs) in 
ways that resonate with the kinds of classrooms those future teachers are expected to sustain.   

In the U.S., the current population of instructors for such courses includes adjuncts, graduate 
students, and full time tenure- and non-tenure-track track mathematics faculty (Masingila, et al., 
2012).  Large segments of this instructor population have difficulty teaching courses for PSETs 
(Flahive & Kasman, 2013; Greenberg & Walsh, 2008). Though instructors in mathematics 
departments usually have a deep mathematical background, they often face challenges teaching 
content that is relevant and has utility for PSETs, unaware of the “cognitive and epistemological 
subtleties of elementary mathematics instruction” (Bass, 2005, p.419).   

Given this state of affairs, Masingila, Olanoff, and Kwaka (2012) advocate for the design 
and implementation of professional development for mathematics teacher educators.  Indeed, 
Masingila and colleagues note that many faculty who participated in their study asked the 
researchers where they could find professional learning resources! The RUME community 
includes experts on such matters: any design and implementation of effective professional 
development for mathematics teacher educators must involve attention to identifying the types of 
knowledge that faculty use and need in their regular practice of teaching future teachers. 

For these reasons, we propose that college instructors possess a specialized constellation of 
knowledge to be studied: mathematical knowledge for teaching future teachers (MKT-FT).  We 
posit that like MKT, MKT-FT is largely individually constructed for mathematics teacher 
educators, though often socially mediated.  Seaman and Szydlik (2007) discussed the necessity 
but insufficiency of the early model of MKT for college mathematics instruction, particularly in 
the context of teaching future teachers. Several authors have noted the existence of what we see 
as components of MKT-FT. Zopf (2010) and Olanoff (2011) argued that effective teaching of 
future teachers requires mathematical knowledge of the work of teaching K-8 mathematics and 
awareness of the complexities of K-8 MKT itself.  

According to Rider and Lynch-Davis (2006) and Smith (2003), the mathematical knowledge 
needed for teaching future teachers attends to the fact that one is teaching adult learners who 
have some familiarity with the mathematics (as opposed to teaching children who may be 
learning content for the first time). And, we note, there is a perceived autonomy of the learner in 
the post-secondary setting that is largely absent in K-8 and high school contexts. Smith (2005) 
has claimed that faculty who work effectively with future teachers have some (perhaps implicit) 
knowledge of educational theory and K-12 practice, as well as knowledge resources for 
connecting ideas and concepts in ways that prepare pre-service teachers to review, select, and 
engage with the wide array of curricular decisions that must be made by a teacher (e.g., decisions 
regarding which resources, worksheets, texts, and activities to use or avoid).  Olanoff (2011) 
points out that Deborah Ball herself considers MKT to be the analogue of  “common content 
knowledge” for faculty when considering what it might mean for an instructor to have MKT for 
teaching teachers. 
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Research and development on the preparation of teacher educators has long assumed a 
nesting of types of knowledge. One representation of that can be seen in Carroll and Mumme’s 
work (2007). Figure 3a represents the nesting of mathematical content as subject matter 
knowledge (orange disk), linked to (future) teacher and elementary student within the larger 
context of the classroom (yellow disk). Similarly, in Figure 3a, mathematical knowledge for 
teaching (the stuff in the yellow disk) is linked to (future) teacher and mathematics teacher 
educator (“leader”) within the larger context of teacher professional learning (green disk).  

 
Now we have a highly multi-dimensional situation. For each disk in Figure 3a there is an 

associated set of specifications for what counts as the context and for what constitutes the 
“content” about which one has “pedagogical content knowledge.” Perks and Prestage (2008) 
made the case that knowledge for teaching teachers operates on several levels with a partially-
nested self-similar design for their model of teacher-educator knowledge (Figure 3b). 

 The model for MKT-FT proposed in Figure 5 blends features of the three models discussed 
above. At each vertex are both K-8 mathematical content in the college class and “content” that 
is Knowledge of Content and Students in K-8 (illustrated for just the KCT vertex as magnified 
and highlighted, lower right, in Figure 5). We claim a similar cascade of knowledge structures, 
related to Content & Students, Curriculum, and Discourses in K-8 are related to the PCK aspect 
of college mathematics instructor MKT-FT (illustrated by similar “mini” tetrahedral at each of 
the other vertices in Figure 5). 

While the nesting of knowledge structures within others is represented as geometrically self-
similar, a fractal structure, the knowledge and thinking represented at each vertex is not identical. 
Each vertex of the “large” tetrahedron for PCK in the mathematical knowledge for teaching 
future teachers has a four-to-one mapping.  For instance, the MKT-FT vertex for knowledge of 
content and students (KCS) is defined a la Ball as “content knowledge intertwined with 
knowledge of how students [who are future teachers] think about, know, or learn this particular 
content” (Hill et al., p. 375). In Figure 5, KCS includes knowledge of how college students 
engage with learning the MKT they will need in the future as teachers as well as (from the 
“smaller” tetrahedron) MKT related to K-8 teaching and learning.  Knowledge of content and 
teaching in the MKT model is about teaching moves for working with K-8 mathematics students.  
In the MKT-FT model, knowledge of content and teaching includes a knowledge of teaching 
moves for mathematics as a part of teaching the college course for future teachers as well as of 
teaching moves for including attention to K-8 MKT in teaching that college course. 

Figure 3a. Nesting of teaching and learning  
connections (Carroll & Mumme, 2007). 

Figure 3b.  Tetrahedron models for teacher-
educator knowledge (Perks & Prestage, 2008). 
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An Example: MKT-FT and Task Design 

Teacher education has long noted that task design may be a significant component in the 
development of knowledge for teaching pre- and in-service teachers. For example, Stylianides 
and Stylianides (2006) asserted that it is crucial for activities to be teaching-related mathematics 
tasks, so future teachers learn important school mathematics while at the same time making 
connections between how learning the content relates to its teaching. For Seaman and Szydlik 
(2007), well-designed tasks deepen the “mathematical sophistication” of future teachers, which 
they define as occurring as a result of enculturation into the mathematics community signified by 
teachers exhibiting the ways of knowing and values of mathematicians as their own. A broader 
example comes from the Journal of Mathematics Teacher Education issue devoted to the 
important topic of task design (Zaslavsky, Watson, & Mason, 2007). Papers in this special issue 
discussed different aspects of good task design in courses for teachers. For instance, according to 
Chapman (2007), effective tasks facilitate new understandings of familiar concepts and prompt 
reflection and discourse, while Bloom (2007) argued that quality tasks enhance mathematical 
habits of mind among college learners who are future teachers.  

Yackel, Underwood, and Elias (2007) demonstrated the profound effect that attention to task 
design and reflection on task implementation can have on MKT and MKT-FT development of 
those who teach future teachers.  One of their instructors commented, 

I found it interesting that adult students also go through some of the same 
progressions that children do.  In particular, I often noticed that many students initially 
needed to use [iconic representations] to perform calculations, such as explicitly drawing 
boxes, rolls, and pieces…Having never taught young children, I had never seen this first 
hand.  Base 8 gave me the opportunity to experience this part of children’s learning 

Figure 5. Model of MKT-FT pedagogical content knowledge – each vertex itself contains 
knowledge structures related to K-8 MKT.  
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[emphasis added].  I think this is valuable to college instructors because most, like 
myself, will never have an opportunity to work with elementary school children closely. 
(p. 364) 

Hence, we see that task design becomes a part of Knowledge of Content and Teaching for 
teacher educators: it is part of a teaching move designed to facilitate PSET learning of MKT.  
This example also reinforces the nonlinearity of our model for MKT-FT, as the instructor above 
mentions building the Knowledge of Content and Students (both for primary and adult learners) 
by engaging with their Knowledge of Content and Teaching. 

As another example of the pluralistic nature of MKT-FT, consider subject matter knowledge 
itself: as Ball noted, MKT becomes common content knowledge for mathematics teacher 
educators. However, MKT-FT specialized content knowledge includes an awareness of and 
responsiveness to the educational literature as a means of helping PSETs understand why certain 
mathematical practices or pedagogical practices are favored (e.g., in the Common Core 
Standards). Horizon knowledge for teacher educators includes recognition of district, state, and 
national mathematics standards.  

And what about the knowledge of discourse discussed earlier?  Well, for mathematics 
teacher educators, MKT-FT knowledge of discourse subsumes the same knowledge of discourse 
that teachers have, and draws on knowledge of communicating about MKT and the teaching of 
mathematics in different sociocultural situations. 

As Hauk, et al. (2014) point out, the literature on PCK includes both stable and dynamic 
features. To account for this, they use the edges in their tetrahedron to represent the ways of 
thinking about teaching mathematics that teachers use in practice. These ways of thinking are 
enacted in the classroom as teachers adapt to varying sociomathematical and cultural contexts 
that arise over time.  In like manner, effective mathematics teacher educators also possess ways 
of thinking about teaching mathematics and about teaching MKT that change as the social, 
mathematical, and cultural climates change in their courses for PSETs.  Hence, the edges in our 
fractal tetrahedron also represent these dynamic ways of thinking for faculty who teach future 
teachers. 

At the Conference 

In pursuit of applications of this model in current data analysis and in future research designs, 
at the conference we will present several examples of both knowledge and thinking as we 
envision them in the model. We have these questions for RUME participants in the session: 
1.! What would make a compelling argument for you about the connections among the ideas?  
2.! What kinds of data provide evidence for each?  
3.! How might we design a study to focus on a subset of the “small” or “large” tetrahedra?  
4.! Based on your experience, what connections among the ideas in the model are central? 
5.! How would knowing the answer to the questions we ask help faculty preparation and 

development? Or, inform practice of teaching adults who are in- and pre-service teachers? 
6.! What other questions are coming to mind, now that we have had these questions? 
 

Acknowledgement 
 

This project is supported by a grant from the National Science Foundation (DUE-1625215). 
Any opinions, findings, and conclusions or recommendations expressed in this material are those 
of the author(s) and do not necessarily reflect the views of the National Science Foundation.  

 

20th Annual Conference on Research in Undergraduate Mathematics Education 106520th Annual Conference on Research in Undergraduate Mathematics Education 1065



!

References 
 

Aud, S., Fox, M. A., & Kewal Ramani, A. (2010). Status and Trends in the Education of Racial 
and Ethnic Groups. NCES 2010-015. National Center for Education Statistics. 

Aud, S., Wilkinson-Flicker, S., Kristapovich, P., Rathbun, A., Wang, X., & Zhang, J. (2013). The 
Condition of Education 2013 (NCES 2013-037). U.S. Department of Education, National 
Center for Education Statistics. Washington, DC. http://nces.ed.gov/pubsearch. 

Ball, D. L., & Bass, H. (2000). Interweaving content and pedagogy in teaching and learning to 
teach: Knowing and using mathematics. In J. Boaler (Ed.), Multiple perspectives on the 
teaching and learning of mathematics (pp. 83–104). Westport, CT: Ablex. 

Bass, H. (2005). Mathematics, Mathematicians, and Mathematics Education. Bulletin of the 
American Mathematical Society, 42(4), 417-430. 

Bloom, I. (2007). Extended analyses: Promoting mathematical inquiry with preservice 
mathematics teachers. Journal of Mathematics Teacher Education, 10, 399-403.� 

Carroll, C., & Mumme, J. (2007). Learning to lead mathematics professional development. 
Thousand Oaks, CA: Corwin Press. 

Chapman, O. (2007). Facilitating preservice teachers' development of mathematics knowledge 
for teaching arithmetic operations. Journal of Mathematics Teacher Education, 10, 341-349.  

Conference Board of the Mathematical Sciences. (2001). The mathematical education of 
teachers: Part I. Washington, D.C.: Mathematical Association of America. 

Depaepe, F., Verschaffel, L. & Kelchtermans, G. (2013). Pedagogical content knowledge: A 
systematic review of the way in which the concept has pervaded mathematics educational 
research. Teaching and Teacher Education 34, 12-25. 

Flahive, M. and Kasman, R. (2013). Guided discovery in a discrete mathematics course for 
middle school teachers. In C Beaver, L. Burton, M. Fung, K. Kruczek (Eds.), Resources for 
Preparing Middle School Mathematics Teachers (pp. 85-96). DC: MAA.  

Gallagher, J.J., Floden, R.E., & Gwekwerere, Y. (2012). Context for developing leadership in 
science and mathematics education in the United States.  In B. J. Fraser, K. Tobin, and C.J. 
McRobbie (Eds.),  Second International Handbook of Science Education, Part One (pp. 
463-476). New York: Springer.  

Gay, G. (2010). Culturally responsive teaching: Theory, research, and practice, 2nd ed. New 
York: Teachers College. 

Greenberg, J., & Walsh, K. (2008). No common denominator: The preparation of�elementary 
teachers in mathematics by America’s education schools. Washington, DC: National 
Council on Teacher Quality.� 

Hauk, S., Toney, A., Jackson, B., Nair, R., & Tsay, J.-J. (2014). Developing a model of 
pedagogical content knowledge for secondary and post-secondary mathematics instruction. 
Dialogic Pedagogy: An International Online Journal, 2, 16-40.  

Hill, H. C., Ball, D.L., & Schilling, S. G. (2008). Unpacking pedagogical content knowledge: 
Conceptualizing and measuring teachers’ topic-specific knowledge of students. Journal for 
Research in Mathematics Education, 39, 372-400.  

Hodgson, B. (2001). The mathematical education of school teachers: Role and responsibilities of 
university mathematicians. In D. Holton (Ed.), The teaching and learning of mathematics at 
university level (pp. 501–518). Dordrecht, The Netherlands: Kluwer. 

Khisty, L. L., & Chval, K. B., (2002). Pedagogic discourse and equity in math: When teachers’ 
talk matters. Mathematics Education Research Journal, 14(3), 154-168. 

20th Annual Conference on Research in Undergraduate Mathematics Education 106620th Annual Conference on Research in Undergraduate Mathematics Education 1066



!

Masingila, J. O., Olanoff, D. E., Kwaka, D. K. (2012). Who teaches mathematics content courses     
for prospective elementary teachers in the United States? Results of a national survey. 
Journal of Mathematics Teacher Education, 15, 347-358.  

Olanoff, D.E. (2011). Mathematical Knowledge for Teaching Teachers: The Case of 
Multiplication and Division of Fractions(Doctoral Dissertation). Retrieved from 
http://surface.syr.edu/cgi/viewcontent.cgi?article=1063&context=mat_etd 

Perks, P., & Prestage, S. (2008). Tools for learning about teaching and learning. The 
international handbook of mathematics teacher education, 4, 265-280. 

Rider, R. L., & Lynch-Davis, K. (2006). Continuing the conversation on mathematics teacher 
educators. In K. Lynch-Davis, & R. L. Rider (Eds.), The work of mathematics teacher 
educators: Continuing the conversation (pp. 1-7)  Association of Mathematics Teacher 
Educators Monograph, Volume 3.  

Seaman, C. E., & Szydlik, J. E. (2007). "Mathematical sophistication" among preservice 
elementary teachers. Journal of Mathematics Teacher Education, 10(3), 167-182.  

Shim, S. S., Ryan, A. M., & Anderson, C. J. (2008). Achievement goals and achievement during 
early adolescence: Examining time-varying predictor and outcome variables in growth curve 
analysis. Journal of Educational Psychology, 100(3), 655. 

Shulman, L. S. (1986). Those who understand: A conception of teacher knowledge.  American 
Educator, 10(1), 9-15,43-44 

Smith, K. (2003) So What About the Professional Development of Teacher Educators?  
European Journal of Teacher Education, 26(2), 201-215. 

Smith, K. (2005). Teacher educators' expertise: What do novice teachers and teacher educators 
say? Teaching and Teacher Education: An International Journal of Research and Studies, 
21(2), 177-192.� 

Speer, N. M., King, K., & Howell, H. (2015). Definitions of mathematical knowledge for 
teaching: Using these constructs in research on secondary and college mathematics teachers. 
Journal of Mathematics Teacher Education, 18, 105-122.  

Stylianides, G. J., & Stylianides, A. J. (2006). Promoting teacher learning of mathematics: The 
use of “teaching-related mathematics tasks” in teacher education. In S. Alatorre, J. L. 
Cortina, M. Sáiz, & A. Méndez (Eds.), Proceedings of the 28th Conference of the North 
American Chapter of the International Group for the Psychology of Mathematics Education 
(Vol. 2, pp. 411-417). Mérida, México: Universidad Pedagógica Nacional.� 

Téllez, K., Moschkovich, J., & Civil, M. (Eds.) (2011). Latinos/as and mathematics: Research 
on learning and teaching in classrooms and communities. Charlotte, NC: Information Age.  

Woodward, J., Beckmann, S., Driscoll, M., Franke, M., Herzig, P., Jitendra, A., Koedinger, K. 
R., & Ogbuehi, P. (2012). Improving mathematical problem solving in grades 4 through 8: 
A practice guide (NCEE 2012-4055). Washington, DC: NCEERA, Retrieved from 
ies.ed.gov/ncee/wwc/publications_reviews.aspx#pubsearch/ 

Yackel, E., Underwood, D., & Elias, N. (2007). Mathematical tasks designed to foster a 
reconceptualized view of early arithmetic. Journal of Mathematics Teacher Education, 10, 
351-367.  

Zaslavsky, O., Watson, A., and Mason, J. (Eds.). (2007)  Special Issue on Mathematical Tasks.  
Journal of Mathematics Teacher Education, 10(4-6). 

Zopf, D. (2010). Mathematical knowledge for teaching teachers: The mathematical work�of and 
knowledge entailed by teacher education. Unpublished doctoral dissertation. Retrieved from 
http://deepblue.lib.umich.edu/bitstream/2027.42/77702/1/dzopf_1.pdf  

20th Annual Conference on Research in Undergraduate Mathematics Education 106720th Annual Conference on Research in Undergraduate Mathematics Education 1067



Research in Courses before Calculus Through the Lens of Social Justice 
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The terms equity, diversity, inclusion, and social justice have entered the research lexicon. Yet, 
researchers face significant challenges in gaining a nuanced understanding of the various ideas 
associated with these words. This theory-focused report presents some recent policy efforts to 
generate a shared meaning for “social justice” in mathematics education and offers a framework 
for making sense of (and making sense with) intercultural interactions as an essential component 
of rigorous research. To anchor discussion, we focus on research on teaching and learning in the 
courses before calculus (e.g., algebra, pre-calculus, liberal arts math, math for pre-service 
elementary school teachers, algebra-based statistics). 
  
Keywords: Social justice, Cultural competence 
  
Race. 
Yes, that kind, the White and Black and Red and Yellow and Brown kind. 
Go ahead. 
Experience the shock. 
  
Take a moment for a long, uncomfortable silence. 
Yes, we just touched the third rail in American mainstream culture. 
  
Breathe. 
Here it comes again. 
Race. 
You know, of course, that if we have said “race” that “racism” is not far off. 
Hovering, stage-right, there it is: Racism. 
Its companions join from stage-left: 
   Sexism, 

Ableism, 
Genderism, 
Ethnocentrism, 
Classism, 
Fill-in-the-blank-ism 

They come together when we consider:  
Social justice. 

  
In the past year two organizations, TODOS: Mathematics for All and the National Council of 

Supervisors of Mathematics (NCSM; 2016), issued a position paper entitled Mathematics 
Education Through the Lens of Social Justice: Acknowledgement, Actions, and Accountability. In 
it, social justice in mathematics education includes “fair and equitable teaching practices, high 
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expectations for all students, access to rich, rigorous, and relevant mathematics, and strong 
family/community relationships to promote positive mathematics learning and achievement.” 
Underlying all of these is a call for attention to the ways power, privilege, and oppressions 
contribute to and maintain an inequitable learning system.  

There is a distinction to be made between perpetuating an “ism” and dealing with the fact 
that it exists. For example, racism refers to the ways in which avoidable and unfair inequalities 
are perpetuated based on ethnic, cultural, religious, and other characteristics associated with the 
concept of “race” at interpersonal, institutional, and societal levels (Berman & Paradies, 2010). 
By comparison, racialization refers to the processes by which characteristics identified as 
“racial” become meaningful in different social situations (Delgado & Stefancic 2001; Walton, 
Priest, & Paradies, 2013). The two are often conflated, resulting in the contention that any 
mention of race is racist. This conflation of terms can derive from a variety of views, from a 
belief in “color-blindness” (Apfelbaum, Norton, & Sommers 2012), a drive to be “color-mute” 
(in which race-talk is actively silenced or removed in social interactions or written documents; 
Pollock, 2004) or from a stance that society is past race-based discrimination and can be 
considered “raceless” (Ono, 2010). Color-muteness and racelessness draw on color-blindness but 
for different purposes. Paradoxically, to be color-mute is to recognize racial difference in order 
to actively remove mention of it, while racelessness is a “post-racial” approach, in which it is 
assumed that race no longer matters (Kempf, 2012). 

Racialization, or genderization or other fill-in-the-blank-izations that use language to 
acknowledge inequities, can be valuable support for making bias explicit (rather than implicit). 
Research suggests that goals for equity, inclusion, and social justice are undermined when biases 
remain unexamined, implicit, or “unconscious” (Warikoo, Sinclair, Fei, Jacoby-Senghor, 2016). 

Discerning difference, recognizing pattern, and anchoring new knowledge in those already 
noted differences and patterns are at the core of all human cognition. In other words, making 
“bias” explicit and challenging it are the essentials that allow humans to think, know, and learn. 

Each of the authors has taken a different route in coming to mathematics education as a 
professional focus. Our experiences are rich in dealing personally with institutional “-isms,” both 
academic and societal. In this theory-focused report we explore tools to increase researcher 
capacity for nuanced noticing of “isms” while tackling the truth of their existence. To attend to 
social justice in and through research in collegiate mathematics education means addressing our 
own needs (as humans who are researchers) for language, concepts, and awareness-building to 
support intentional decision-making. At the same time, we acknowledge the related, inevitable, 
struggle, of engaging in challenging conversations. Toward that end, we offer key ideas from 
education theory and intercultural sensitivity development along with a few examples. 

 
Conversational Tools 

 
As people trained in mathematics, those who do research in undergraduate mathematics 

education (RUME) know that mathematical sense-making is more than “identify the problem 
and solve it.” As citizens of a first-world country in the 21st century, we are aware of societal 
injustice. Thus, as a community of researchers, we have an opportunity to dig deeper into a line 
of thought that has been emerging for a while (e.g., Aguirre & Civil, 2016; Adiredja, Alexander, 
& Andrews-Larson, 2016; D’Ambrosio et al., 2013; Davis, Hauk, & Latiolais, 2010; Gutiérrez, 
2013; Nasir, 2016).  
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Over the past 10 years, Singleton and Linton’s (2006) courageous conversations framework 
has become a cornerstone in the professional development of teachers around race. The 
framework is built on four agreements. Each can contradict some tightly held cultural norms 
relating to race talk. To participate in a “courageous conversation” people agree to: stay engaged, 
expect to experience discomfort, speak their truth, and expect and accept a lack of closure.  

Being courageous about the risk of engaging in  “--izations” involves navigating our own 
meanings for  comfort, safety, and bravery. One tool we have found helpful is the Venn diagram 
shown in Figure 1.  The diagram can support being self-aware and communicating with others 
about how each of us experiences risk in a conversation. We have used the diagram in a variety 
of settings: with pre-service K-8 teachers or developmental algebra students in creating 
classrooms where the challenging conversations are about mathematics (and its teaching) as well 
as with other researchers when the challenging conversations are about the role of race in 
research design. For example, a person may rarely feel safe having a conversation with people or 
about people from races other than their own, but can be brave and handle the expected 
discomfort in order to stay engaged in a valued exchange of ideas.   
 

 
Figure 1. Juxtaposition of three types of experience related to taking risk (personal or 
professional) during a challenging conversation. 
 
Along with the Venn diagram, we also have found the diagram in Figure 2 (next page) to be a 
useful tool. Qualitative researchers will recognize the interactions pictured among framework, 
experience, and reflection. What we have added are specifiers about being aware (mindful) 
during experience, being purposeful (focused) in reflection, and being rooted in human 
relationships (intercultural) when framing what we do. In fact, Figure 1 is a tool to support 
mindful experience. Generating this report resulted from focused reflection and an effort to share 
our, sometimes stumbling, journey into rehumanizing our work as researchers in collegiate 
mathematics education. 
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Figure 2. Descriptions and relationships among aspects of building self- and other-awareness. 
 

In what follows, our focus is how the idea of intercultural frameworks can support social 
justice in RUME. We encourage the reader to stay engaged, while also being mindful and 
expecting to experience discomfort. We will “speak our truth” by illustrating ideas with 
examples. In offering these ideas, just as each reader may face different degrees of professional 
and personal vulnerability in reading it (i.e., different experiences of safety, comfort, and 
bravery), so has each author in creating it. Finally, this theory-based piece is an opening, so we 
expect and accept a lack of closure.  

 
Moving From Personal Reflection to Professional Action  

  
According to the TODOS-NCSM (2016) position paper, three conditions are necessary to 

establish socially just and equitable mathematical education for all learners: 
(1) acknowledging that an unjust social system exists, 
(2) taking action to eliminate inequities and establish effective policies, procedures, and 

practices that ensure just and equitable learning opportunities for all, and 
(3) being eager for accountability so changes are made and sustained. 

Taking the three tenets as foundational, we can ask: What is the role of social justice in RUME? 
What is the role of RUME in social justice? When we conduct research in the U.S. we make 
decisions about who participants are. What would be different if decisions in a project you know 
about had included overt and repeated attention to the three tenets? 

 
 Read through the three conditions again and think about it for a moment.  
 
How would acknowledging that the social system is unjust shape selection of sites? 

Participants? Topics? Interpretations of actions and words? How might our next research 
question be framed so the answer would be evidence to support action to eliminate an inequity? 
How do we do that? How might the research design or analyses need to be different if the results 
of the work were held accountable by research peers and judged in a court of stakeholder opinion 
that valued equity as much as excellence in mathematics education? 
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 Short, possibly terrifying answers to these questions exist: observe the world; be purposeful 
in inviting people into your research who do not look like you or act like you or think like you. 
But the short answers are deceptive. Such calls for courageous action in the face of our own 
ignorance can feel motivating and can be recipes for disaster. Entering the uncomfortable, not 
necessarily safe space of research that pays attention to social justice can be rewarding – but we 
must also stick it out even when it blows up in our faces. 

Mathematical training has prepared us for this. The colossal failures before generating an 
elegant proof are well known to those who have done advanced mathematics. Some may ask: are 
the stakes as emotionally high in creating a proof? Mathematicians will say yes. For others, a 
comparable situation might be the personal and professional status that rides on completing and 
reporting well on a piece of educational research. So why do we do it? In short, to keep our jobs. 
But, we also may do it because something fulfilling comes from the process that is unavailable 
elsewhere. The reason we get on our particular professional roller coaster is because we want the 
thrill of the ride and we feel safe enough, or pressured enough, to be brave enough to take the 
risk. The idea of social justice in research adds complexity to the roller coaster. The main 
emotional aspects may be trepidation along with meta-affect of hope, a hope based on a (perhaps 
hazy) vision of a socially just world. The ideas and language of intercultural competence can 
help. They provide tools for meta-cognition about the affect and meta-affect. 

   
Framework for Intercultural Awareness and Competence Development 

 
Interactions with other people are shaped by our orientation to noticing and engaging with 

difference and the approach we take to the interaction itself. Do we anticipate great risk? Do we 
have the privilege of assuming safety? Social justice-aware research is shaped by what a 
researcher knows or anticipates about others’ experiences. Below, we first offer language and 
structure for the research community for noticing and discussing difference. Then, we give a 
vignette and examine it in light of the suggestions. 

The ways we are aware of and respond to others, including the particular challenges we each 
face dealing with the societal realities of racism, sexism, and other inequity-preserving 
structures, is a consequence of our intercultural orientation. This is neither a reference to our 
beliefs about culture or race nor about views on researching in mathematics education. Rather, 
intercultural orientation is the perspective about human difference each person brings to 
interacting with other people, in context. For researchers, it includes perceptions about the 
differences between their own views and values around various types of work in mathematics 
education, the views of their colleagues, and the views of various stakeholders in research. 
Intercultural competence is the capability to shift perspective and appropriately adapt behavior to 
socio-cultural differences and commonalities (Hammer, 2009). 

To build skill at establishing and maintaining relationships in, and exercising judgment 
relative to, cross-cultural situation requires the development of intercultural sensitivity (Bennett 
2004). The developmental continuum for intercultural sensitivity has five milestone orientations 
to noticing, making sense of, and developing response to difference: denial, polarization, 
minimization, acceptance, and adaptation. 

With mindful experience a person can develop from ethnocentric ignoring or denial of 
differences, moving through an equally ethnocentric polarization orientation of an us-versus-
them mindset. With growing awareness of commonality, a person enters the less ethnocentric 
orientation of minimization of difference, which may over-generalize commonalities. From there, 
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development leads to an ethnorelative acceptance of the existence of intra- and intercultural 
differences. Further development aims at a highly ethnorelative adaptation orientation in which 
differences are anticipated and responses to them readily come to mind. This summary is 
represented in Figure 3 and elaborated below. 
 

 
 

Figure 3. Diagram summarizing intercultural competence developmental continuum. One may 
start at point A and eventually develop to point B but the path is not linear. 

 
Denial. A central part of awareness is to observe self and others. In the denial orientation, 

little observation of others happens. Such an orientation is not denial in the sense of “I'm going 
to say it is not there” but denial as in “I can't even see it.” The view is “we’re all researchers and 
we all do our work” without attention to what “our work” might mean to others. 

Polarization. The polarization orientation might be characterized as: “There's a RIGHT way 
to do things and there's a WRONG way to do things. And we're going to make sure we use the 
right way.” For example, depending on the experience and values of the conversant, the “right” 
way to do research in collegiate mathematics education may or may not include education 
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discourse or the language of assessment, statistical analyses, curriculum, program, or teacher 
development. Nonetheless, enacting a polarized orientation in mathematics education research 
would mean seeing that a practice is happening or noticing a norm being developed. 

Minimization. From a minimization orientation, people may focus attention on how others’ 
approaches are similar to their own valued ways of designing, conducting, and reporting 
research. For some, this might be characterized as, “Look how this stuff called equity in math ed 
is LIKE research on effective mathematics teaching. It has a lot in common with it, even if the 
way it is said is a little different, I say effective, they say equitable. Let's talk about how it is 
similar. Let's leverage the fact that we have seen this before.” From this perspective, any research 
in mathematics education is similar to all other research in mathematics education – whether one 
is reflecting on teaching a class, examining inquiry-based project learning involving the 
mathematics of institutionalized racism, researching how teachers take up the idea of brave 
conversations about race, sex, and poverty in professional development workshops, or in 
researching how graduate students validate proofs. 

Acceptance. Through increased attention to nuance in the differences that exist among 
commonalities, one begins the transition from an orientation focused on minimization of 
difference to one of acceptance of difference. Here, the word “acceptance” is used in its socio-
cultural sense – the action or process of consenting to receive (rather than its psychological one – 
believe or come to recognize as valid or correct). From this orientation, it might be characteristic 
for a researcher to notice various ways of determining the “quality” of research and suggest 
colleagues use whichever makes most sense for them. Additionally, the researcher might 
encourage peers to accept and understand the differences that exist in ways of prioritizing 
measures of “quality” in research. 

Adaptation. Beyond accepting that there are these differences, adaptation-oriented people 
seek for themselves, and find ways to give colleagues, opportunities in noticing, articulating, and 
responding to differences. This might be characterized by statements such as, “I am looking for 
ways to work with colleagues. I don't have to assert or defend many, or even one method. 
Quality in research is a relative thing. How my colleagues and I connect ideas and access, 
organize, or value ideas is not necessarily strictly limited to the ways valued by my perspective.” 
In adaptation, a person can converse well with people of differing mindsets (and with other 
orientations), understanding and appropriately using discourse familiar to discussion partners. 

Intercultural competence is developed non-linearly. And, it is not static. The higher the stakes 
of a situation the more challenging it can be to maintain what might be one’s usual, everyday 
orientation, towards difference. When the potential for conflict or challenge emerges in a 
situation (like reading this paper), affect and meta-affective pressures mean we may fold back to 
earlier developmental levels (e.g., the wandering curve in Figure 3). Being mindful of ourselves 
– our reactions and orientations – can support developmental growth. 

  
Vignette  
A RUME researcher is creating a professional statement that situates her work in the context of 
social justice in teaching future teachers.  Her aim is to give background that explains the 
trajectory of her professional development and research goals. 

As a teacher I want to foster a learning environment in which everyone has equal 
opportunity to learn. And, I want to foster a research environment where everyone has equal 
opportunity to contribute to the research. It is about bringing a broader perspective to new 
researchers that encourages people to change their focus from within to around. I have looked, 
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but haven’t really found the research on culture and teaching very useful, so I don’t read it much. 
Just too much blame and shame there. 

I recently conducted research on the implementation of a new curriculum for developmental 
math students. The curriculum had relevant, real-world activities that helped make clear why 
algebra can be a useful tool. When I am researching general mathematics, I am focused on what 
is offered by a curriculum that changes mathematics “from a gatekeeper to a gateway.” I want 
students to see the ways society places workers in classes based on how much math they know 
and can use. We see this in K-12 education, and it is something most students have experience 
with. I want my research to recognize and capture information on how and if students see that the 
mathematics they learned in grade school had an impact on their options at the college level and 
beyond. Getting tracked into a lower level of mathematical learning does not have to limit their 
expectations and opportunities in life, but it does mean they will need to work harder as an adult 
to get to where they want to be.  When I research lower level college mathematics courses, the 
enrolled students are often (but not always) those who were tracked into lower level mathematics 
courses in high school.  The tracking students experience in grade school can have long-standing 
negative effects on the opportunities they see in the future.   

 
Discussion - Connecting the Framework to the Vignette 

Given our experiences in conversations with research colleagues, for this report we selected 
material for the vignette to highlight the minimization orientation. In the vignette, the narrator 
discussed intentional efforts to notice and include the three tenets of the social justice view. At 
the same time, her own developmental level of intercultural competence for noticing and 
responding to difference meant she saw students’ opportunities to learn as affected by previous 
tracking without noticing that the students themselves were participants in whether something 
was an “opportunity.” Her next round of research could include probing students’ and 
instructors’ perceptions of scenarios, finding out what is perceived as an opportunity, by whom. 

Students in “lower level math” courses are much more likely to have had regular encounters 
with disruptions to intimacy with mathematics. Every interaction with mathematics may be a 
risk, with the type and level of risk varying widely depending on the many years of previous 
experience of adult students. What the researcher or classroom instructor might perceive as an 
equal opportunity to increase intimate connections with mathematics may not be fair if the risks 
are vastly different for different students. The narrator had not investigated the literature because 
it was uncomfortable to read. She has an opportunity to take the kinds of risks that her new 
curriculum asks students to embrace.   

Another opportunity for the researcher is expanding on her reflection that: “Getting tracked 
into a lower level of mathematical learning does not have to limit their expectations and 
opportunities in life, but it does mean they will need to work harder as an adult to get to where 
they want to be.” 

 
Conclusion 

!
The feelings and thoughts experienced when reading the first page of this piece may have 

some indicators for you about where you are on the developmental continuum from denial to 
adaptation. A large body of research in intercultural orientation has suggested that the majority 
of the college-educated U.S. population interacts with the world from a perspective somewhere 
between polarization and minimization. Our own research, among researchers in collegiate 
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mathematics education, mathematicians, and U.S. public school teachers in grades 6 and up has 
echoed this result several times (Hauk, Toney, Nair, Yestness, & Troudt, 2015; Hauk, Yestness, 
& Novak, 2011). We take this as a starting point and seek ways to move along the developmental 
continuum. That means asking questions and finding resources that can support growth of 
intercultural sensitivity while being aware of the energy and care needed, for ourselves and 
others, to make brave decisions and to explore beyond the bounds of what we consider 
comfortable or safe. 

The more that researchers in cognition use critical theory features and vice versa, the closer 
the research community may come to an equality in talk. The problem in this over-reliance on 
commonality is that equality in discourse style is not equity in discourse. As Marilyn Cochran-
Smith and colleagues have recently described it, “With the former, the valence of the terms is 
primarily about sameness (equality) or difference (inequality), while with the latter, the valence 
of the terms has primarily to do with fairness and justice (equity) or unfairness and injustice 
(inequity)” (Cochran-Smith et al., 2016, p. 69). 

Remember, we said to expect an absence of closure. To support that, we offer some 
suggestions for questions to drive a conversation in your near future. Find someone to talk with 
who agrees to Singleton and Linton’s (2006) four standards and discuss some/all of these 
questions. The set of questions asks you to do some acknowledging, take some action (e.g., step 
into a brave space to read) and be accountable at least to yourself and a conversational partner. 

 (1) Read Bennett’s (2004) article. What new goals do you have for your own intercultural 
competence development? Review the references below, what might you read next to 
help make progress on those goals? 

(2) Read the article by Aguirre and colleagues (2017). How are your answers to the questions 
in #1 altered? Why? 

(3) Questions for a focused reflection on research identity: What is going on in my 
community? What do I mean by "my community"?  Research thought partners? Fellow 
faculty? Geographically defined? Socio-culturally defined? Why that? 

(4) Questions for a focused reflection on the intersection of research and social justice: If I 
were conducting research that attended to social justice in college mathematics, what data 
would be collected? What is problematic about using that data? For example, what does a 
social justice lens offer in thinking about what constitutes a valid assessment of 
mathematical thinking, knowing, and/or understanding? Of mathematical knowledge for 
teaching? 

(5) Questions for generating an intercultural framework: Given the potential variability in 
intercultural development of students, instructors, and researchers, of textbook authors 
and administrators, and acknowledging institutional inertia, how might we create a 
developmental continuum for social justice in mathematics education? 

(6) Questions to prepare for mindful experience: What is my position within the social justice 
framework? If you have not already, read Aguirre et al., (2017) and consider: What are 
next steps I am ready for now? Three months from now? One year from now? 

(7) Questions to connect social justice to a framework for research: Read the TODOS/NCSM 
(2016) position statement and Aguirre et al. (2017) article. The TODOS/NCSM position 
statement details steps to take to implement the recommendations of acknowledgement, 
actions, and accountability. On the next page is an example of how the ideas might be 
translated to RUME. Discuss and create similar tables of parallels, one table for each of 
the other aspects in the position paper. 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!      Example: Belief Systems and Structures  
!

Actionable Items for Changing  
Educational Practices in Mathematics (p. 4) 

Potential Actionable Items for  
Changing Research Practices 

• Interrogate individual and societal beliefs 
underlying deficit views about math learning 
and children with specific attention to race/ 
ethnicity, class, gender, culture, and 
language. 

• Interrogate individual and societal beliefs 
underlying deficit views about mathematics 
learning in college with specific attention to 
race/ethnicity, class, gender, culture, and 
language. 

• Refrain from using deficit discourse in 
instructional decision making (e.g., 
placement decision, course offerings). 

• Refrain from using deficit discourse in 
research decision making (e.g., sample, 
instrument design, interview strategies). 

• Show evidence that course taking patterns 
are changing, remedial/ intervention courses 
reduced, and advanced mathematics 
offerings are more robust and plentiful. 

• Conduct research to provide evidence about 
course taking patterns, including remedial/ 
developmental courses, and report on context 
for all, from basic to advanced mathematics. 

• Increase recruitment and retention of 
mathematics teachers and leaders from 
historically marginalized groups. 

• Increase recruitment and retention of 
researchers and research participants from 
historically marginalized groups. 

• Require professional development 
opportunities that focus on social, cultural, 
linguistic, contextual, and cognitive facets of 
mathematics and mathematics learning. 

• Require professional learning opportunities 
that focus on social, cultural, linguistic, 
contextual, and cognitive facets of mathematics, 
mathematics learning, and research thereon. 

• Create a mathematics vision with 
accountability mechanisms for the 
classroom, school, and district that uplifts 
students to learn rigorous and relevant 
mathematics. 

• Create a research vision with accountability 
mechanisms for individuals, projects, and 
professional groups that uplifts research on the 
learning of rigorous and relevant mathematics. 

 
Acknowledgement 

 
This work is supported by grants from the National Science Foundation (DUE-1504551 and 

DUE-1625215). Any opinions, findings, and conclusions or recommendations expressed in this 
material are those of the author(s) and do not necessarily reflect the views of the National 
Science Foundation.  

 
References 

!
Aguirre, J., Herbel-Eisenmann, B., Celedón-Pattichis, S., Civil, M., Wilkerson, T., Stephan, M. 

et al., (2017). Equity within mathematics education research as a political act: Moving 
from choice to intentional collective professional responsibility. Journal for Research in 
Mathematics Education, 48, 124-128. 

Aguirre, J. & Civil, M. (Eds). (2016).  Mathematics Education: Through the Lens of Social 
Justice [special issue].  Teaching for Excellence and Equity in Mathematics, 7(1). 

Adiredja, A., Alexander, N., & Andrews-Larson, C. (2016). Conceptualizing equity in 
undergraduate mathematics education: Lessons from K-12 research. In (Eds.) T. Fukawa-

20th Annual Conference on Research in Undergraduate Mathematics Education 107720th Annual Conference on Research in Undergraduate Mathematics Education 1077



Connelly, N. Infante, K. Keene, and M. Zandieh, Proceedings of the 18th annual 
Conference on Research in Undergraduate Mathematics Education (pp. 60-73), 
Pittsburgh, Pennsylvania. 

Apfelbaum, E. P., Norton, M. I.,  & Sommers, S. R. . (2012). Racial color blindness: Emergence, 
practice and implications. Current Directions in Psychological Science 21(3), 205–209. 
Doi: 10.1177/0963721411434980. 

Bennett, M. J. (2004). Becoming interculturally competent. In J. Wurzel (Ed.), Towards 
multiculturalism: A reader in multicultural education (2nd ed., pp. 62-77). Newton, MA: 
Intercultural Resource Corporation. 

Berman, G., & Paradies. Y. (2010). Racism, disadvantage and multiculturalism: Towards 
effective anti-racist praxis. Ethnic and Racial Studies, 33(2), 214–232. Doi: 
10.1080/01419870802302272 

Cochran-Smith, M., Ell, F., Grudnoff, L., Haigh, M., Hill, M., & Ludlow, L. (2016). Initial 
teacher education: What does it take to put equity at the center? Teaching and Teacher 
Education, 57, 67-78. doi:10.1016/j.tate.2016.03.006 

D'Ambrosio, B., Martin, D., Frankenstein, M., Moschkovich, J.,  Gutiérrez, R.; Taylor, E., et al. 
(Eds). (2013). Equity Special Issue, Journal for Research in Mathematics Education, 
44(1). 

Davis, M. K., Hauk, S., & Latiolais, P. (2010). Culturally responsive college mathematics. In B. 
Greer, S. Nelson-Barber, A. Powell, & S. Mukhopadhyay (Eds.), Culturally responsive 
mathematics education (pp. 345–372). Mahwah, NJ: Erlbaum. 

Delgado, R., and J. Stefancic (2001) Critical race theory: An introduction. New York: NYU 
Press. 

Gutiérrez, R. (2013). The sociopolitical turn in mathematics education. Journal for Research in 
Mathematics Education, 44, 37–68. 

Hammer, M. R. (2009). The Intercultural Development Inventory: An Approach for assessing 
and building intercultural competence. In M.A. Moodian (Ed.), Contemporary leadership 
and intercultural competence: Exploring the cross-cultural dynamics within 
organizations, (pp. 203-108), Thousand Oaks, CA: Sage. 

Hauk, S., Toney, A. F., Nair, R., Yestness, N. R., Troudt, M. (2015). Discourse in pedagogical 
content knowledge. In T. Fukakawa-Connelly (Ed.), Proceedings of the 17th Conference 
on Research in Undergraduate Mathematics Education. 

Hauk, S., Yestness, N., & Novak, J. (2011). Transitioning from cultural diversity to cultural 
competence in mathematics instruction. In S. Brown (Ed.), Proceedings of the 14th 
conference on Research in Undergraduate Mathematics Education (Portland, OR). 

Kempf, A. (2012). Colour-blind praxis in Havana: Interrogating Cuban teacher discourses of 
race and racelessness. Race, Ethnicity and Education 16(2), 246–267. 

Nasir, N. (2016).  Why should mathematics educators care about race and culture? Journal of 
Urban Mathematics Education, 9(1), pp. 7-18. 

Ono, K. A. (2010). Postracism: A theory of the ‘post-’ as political strategy. Journal of 
Communication Inquiry 34, 227–233. 

Pollock, M. (2004). Colormute: Race talk dilemmas in an American high school. Princeton, NJ: 
Princeton University Press. 

Singleton, G. E., & Linton, C. (2006). A field guide for achieving equity in schools: Courageous 
conversations about race. Thousand Oaks, CA: Corwin. 

20th Annual Conference on Research in Undergraduate Mathematics Education 107820th Annual Conference on Research in Undergraduate Mathematics Education 1078



TODOS: Mathematics for All and the National Council of Supervisors of Mathematics (2016). 
Mathematics education through the lens of social justice: Acknowledgement, Actions, and 
Accountability. Joint position statement. Available at http://www.todos-
math.org/socialjustice 

Walton, J., Priest, N., & Paradies, Y.  (2013). “It depends how you’re saying it”: The conceptual 
complexities of everyday racism. International Journal of Conflict and Violence 7(1), 
74–90. 

Warikoo, N., Sinclair,  S., Fei, J., & Jacoby-Senghor,  D.  (2016). Examining racial bias in 
education: A new approach. Educational Researcher, 45(9), 508-514. 

20th Annual Conference on Research in Undergraduate Mathematics Education 107920th Annual Conference on Research in Undergraduate Mathematics Education 1079



What Should Undergraduate Mathematics Majors Understand About the Nature of 
Mathematical Knowledge? 

 
Jeffrey David Pair 

Middle Tennessee State University 

A primary function of mathematics education is that students understand the subject matter of 
mathematics. That is, students are supported in understanding mathematical concepts and 
attaining mathematical knowledge. But there is another function of mathematics education, often 
unaddressed in research, which deserves more attention. In addition to learning content, students 
must be supported in developing informed views about the human processes by which 
mathematical knowledge is produced and the unique characteristics of that knowledge. Through 
an exploration of humanistic philosophy of mathematics, the purpose of this paper is to identify 
characteristics of the nature of mathematical knowledge that may be important for undergraduate 
mathematics majors to know and understand. Four characteristics are discussed: mathematical 
knowledge is subject to revision; mathematical knowledge is socially validated; proofs are bearers 
of mathematical knowledge; and informal mathematical work is the foundation of formal 
knowledge. 

Key words: Nature of Mathematics, Nature of Mathematical Knowledge, Philosophy of 
Mathematics 

Students and teachers often have a limited view of the nature of mathematics and may 
believe mathematics is a static body of knowledge consisting of arbitrary rules and procedures 
(Beswick, 2012; Erlwanger, 1974; Thompson, 1992). These naïve views may negatively affect 
the teaching (Thompson, 1992; White-Fredette, 2010) and learning (Erlwanger, 1974) of 
mathematics. In contrast to these naïve views, many mathematics education scholars view and 
describe mathematical knowledge as a dynamic human product (Boaler, 2016), and emphasize 
the human aspects of mathematical work such as creativity (Burton, 1999) and fallibility (Ernest, 
1991). These modern views are influenced by cultural approaches to mathematics (Bishop, 
1988), humanistic philosophy of mathematics (Ernest, 1991), or perhaps scholars’ own 
experiences doing mathematical work (e.g. Hersh, 1997). The gap between uninformed views of 
mathematics (largely held by students and teachers) and the informed cultural-historic 
perspectives held by scholars needs to be addressed within mathematics education. 
 

Lessons from Science Education 

In science education, scholars have argued that students and teachers not only need to 
understand the facts of science, but also need to possess a general understanding of science as a 
discipline, and the nature of scientific knowledge (McComas, Almazroa & Clough, 1998).  
Proponents for teaching the nature of science (NOS) are concerned with providing students and 
teachers a general understanding of the scientific enterprise. As Hurd (1960) noted, “A student 
should learn something about the character of scientific knowledge, how it has been developed, 
and how it is used” (p. 34). Driver, Leach, Miller, and Scott (1996) noted “such understanding is 
necessary in order to appreciate science as a major element of contemporary culture” (p. 19). 
Research in science education indicates that understanding NOS assists students in learning 
science content (McComas, Almazroa & Clough, 1998, p. 517). Furthermore, students enjoy 
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learning about NOS and lament when social/historical aspects of science are left out of 
instruction. McComas and colleagues (1998) wrote, “Incorporating the nature of science while 
teaching science content humanizes the sciences and conveys a great adventure rather than 
memorizing trivial outcomes of the process” (p. 519). Perhaps similar positive outcomes would 
be seen if mathematics students had the opportunity to learn about the nature of mathematical 
knowledge, but little work has been done in this area (Jankvist, 2015). 

 
Beginning a Systematic Inquiry into the Nature of Mathematics 

In science education, scholars have done significant work conceptualizing the construct of 
nature of science (NOS), and have conducted research to understand how NOS can be taught to 
students and teachers (Irzik & Nola, 2014). Research on the teaching and learning of nature of 
science is guided by frameworks or lists that explicitly outline an informed conception of NOS 
and goals for learning (Lederman & Lederman, 2014). Perhaps a first step in conducting a 
systematic inquiry into the teaching and learning of the nature of mathematics is to consider the 
characteristics of the nature of mathematics that students or teachers should understand, and 
compile them into a framework/list with the purpose of conducting further research into student 
and teacher understandings of those characteristics.  

In this paper we draw from the literature on philosophy of mathematics to formulate an initial 
list of possible goals for undergraduate mathematics majors’ understandings of the nature of 
mathematics. Such an understanding will certainly be valuable for students who pursue graduate 
studies in mathematics or become secondary teachers. I agree with Fried (2014) that those who 
are “mathematically educated must feel at home with mathematics, appreciate its power, and 
know it as a part of one’s culture” (p. 30). The conceptions of mathematics that future teachers 
develop in the university will likely stay with them as they begin to teach, and will likely have an 
influence on their students’ understanding. If the nature of mathematics cannot be taught at the 
university, the home of disciplinary mathematics, then where can it be taught?  

 
What is the Nature of Mathematics? 

Note that the question “What is the nature of mathematics?” is a philosophical one. Ernest 
(1991) noted, “The philosophy of mathematics is the branch of philosophy whose task is to 
reflect on, and account for the nature of mathematics” (p. 3). Philosophers of mathematics 
primarily seek to understand and describe the discipline of mathematics and the nature of its 
corresponding knowledge (Kitcher, 1983). Although there are many philosophies of 
mathematics, humanistic philosophy of mathematics has had a profound influence within 
mathematics education (Lerman, 2000; Toumasis, 1997). Humanistic approaches are unique in 
that they take as foundational the notion that mathematical knowledge is a human product. As 
Hersh (1997) wrote, “To the humanist, mathematics is ours—our tool, our plaything” (p. 60). 
Humanistic philosophy of mathematics (Ernest, 1991; Hersh, 1997; Lakatos, 1976) informs the 
characteristics of the nature of pure mathematics that are discussed in this paper. When 
describing these characteristics, I will also contrast humanism with Platonism and formalism. 
These philosophies have typically served to proliferate the idea that mathematical knowledge is 
absolute and value-free (Dossey, 1992).  

Steen (1988) called mathematics the science of patterns. She described three branches of the 
mathematical sciences: core (pure), applied, and statistical. There are also many other types of 
mathematics such as artisanal or commercial-administrative forms (Harouni, 2015). 
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Mathematical knowledge is certainly not limited to western academic knowledge (Bishop, 1988). 
Nevertheless, pure mathematical knowledge is particularly relevant to much of the research in 
undergraduate mathematics education (especially regarding the teaching and learning of proof). 
In this paper I will narrow our focus and consider what aspects of the nature of pure 
mathematical knowledge undergraduate mathematics majors should know and understand. 
 
The Nature of Mathematical Inquiry versus the Mathematical Nature of Knowledge 

In the domain of pure mathematics, I conceive of two aspects of the nature of mathematics 
(NOM) that may be fruitful to distinguish: the nature of mathematical inquiry (NOMI) and the 
nature of mathematical knowledge (NOMK). NOMI refers to the practices that mathematicians 
engage in when creating knowledge (e.g. conjecturing, proving, communicating, etc…) and the 
human experience of such activity (e.g. emotion). NOMK refers to the nature of the knowledge 
that mathematician’s produce (e.g., is mathematical knowledge absolute or subject to revision?). 
It should be noted that this distinction is not always clear cut. For instance, would an 
understanding of conjecturing be categorized as NOMI or NOMK? One can make the case for 
NOMI—conjecturing is an important mathematical practice that plays a role in the creation of 
mathematical knowledge. On the other hand, established theorems were once conjectures. This 
would place conjectures in the category of NOMK. Although the distinctions between 
knowledge and practice are not always clear cut, it is important to make the distinction when 
possible as there has been confusion in science education when scholars have conflated the 
nature of scientific knowledge and scientific inquiry when discussing nature of science 
(Lederman & Lederman, 2014). Due to length constraints, the focus of this paper shall be the 
nature of mathematical knowledge (NOMK).  

 
The Nature of Pure Mathematical Knowledge 

 
Mathematical Knowledge is Subject to Revision 

Humanistic philosophers work from the simple assumption that mathematics is a human 
activity and product (Hersh, 1997). As a human product, mathematical knowledge is necessarily 
imperfect, fallible, and subject to revision (Ernest, 1991). Imre Lakatos is typically credited with 
the fallibilist view of mathematical knowledge (Kitcher, 1983). Through the story told in Proofs 
and Refutations, Lakatos (1976) demonstrates the fallible, revisionary nature of mathematical 
knowledge—as counterexamples are found to what are believed to be solid proofs and theorems, 
mathematics grows and changes. Fallibilism stands in contrast to Platonism and formalism. 

Platonism. According to Dossey (1992), “Plato took the position that the objects of 
mathematics had an existence of their own, beyond the mind, in the external world” (p. 40). 
Brown (2008), a modern Platonist, wrote “Mathematical objects are perfectly real and exist 
independently of us” (p. 12), and we gain access to these objects through “the mind’s eye” (p. 
14). If mathematical objects are conceived to have a transcendental existence, then mathematical 
truth exists independently of humans and awaits human discovery.  

The Euclidean (Deductivist) paradigm. The Platonic perspective formed the foundation of 
the Euclidean paradigm that dominated mathematics for 2,500 years (Ernest, 1991). This view is 
that humans can arrive at certain mathematical knowledge by following the deductive process. A 
few self-evident truths called postulates are assumed along with some definitions of 
mathematical terms. Then, beginning from these postulates and definitions, one can proceed by 
logical deduction to arrive at other certain truths. But mathematicians eventually found they 
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could create new bodies of useful mathematical knowledge, non-Euclidean geometries, by 
withholding Euclid’s assumption about parallel lines (Ernest, 1991). Thus, what were considered 
postulates could no longer be considered obvious truths, as a different “truth” could be arrived at 
when one began with a different set of assumptions. According to Hersh (1997), “Geometry 
served from the time of Plato as proof that certainty is possible in human knowledge…. Loss of 
certainty in geometry threatened loss of all certainty” (p. 136). Mathematicians responded to this 
loss of certainty by attempting to ground the foundation of mathematics in logic, arithmetic or set 
theory, but these attempts led to contradictions (Hersh, 1997). Formalism, the attempt “to 
characterize mathematical ideas in terms of formal axiomatic systems” (Dossey, 1992, p. 41) 
emerged in response to these conundrums.  

Formalism. Under the formalist paradigm, mathematics begins with a collection of formal 
axioms and definitions. From these axioms and definitions theorems are logically deduced. If we 
adopt Axioms X, Y, Z we arrive at one branch of mathematics; or we can adopt Axioms W, X, Y 
and arrive at a different branch. Under formalism, neither branch of mathematics is truer than the 
other. In describing today’s formalist, Hersh (1997) wrote,   

For him, all mathematics, from arithmetic on up, is a game of logical deduction. He 
defines mathematics as the science of rigorous proof… All mathematicians can say is 
whether the theorem follows logically from the axioms. Mathematical theorems have no 
content; they’re not about anything. On the other hand, they’re absolutely free of doubt or 
error, because a rigorous proof has no gaps or loopholes. (p. 163)  

Hersh (1997) claimed that the working mathematician is caught between Platonism and 
formalism. “[W]hen he is doing mathematics, he is convinced that he is dealing with an objective 
reality… But then, when challenged to give a philosophical account of this reality, he finds it 
easiest to pretend that he does not believe in it after all” (p. 11). Furthermore, “To abandon both, 
we must abandon absolute certainty, and develop a philosophy faithful to mathematical 
experience” (p. 43).  

Both Platonism and formalism (or a melding of the two) perpetuate the absolutist view that 
mathematical knowledge “consists of certain and unchallengeable truths” (Ernest, 1991, p. 7). 
Humanists adopt the fallibilist view: mathematics is an imperfect human activity, and so 
mathematical knowledge is subject to revision. According to humanistic philosophers, we need 
not hold onto the idea that mathematical knowledge is absolutely certain, or that mathematics is 
restricted to axioms, definitions and proof. Hersh (1997) noted, “Mathematical knowledge isn’t 
infallible. Like science, mathematics can advance by making mistakes, correcting and 
recorrecting them” (p.22). Lakatos’s (1976) Proofs and Refutations highlighted the way 
mathematical knowledge can be revised over time as mathematicians find new counterexamples 
to established proofs (even proofs that were widely regarded as correct may be eventually be 
refuted). As Hersh (1997) noted, “For two millennia, mathematicians and philosophers accepted 
reasoning that they later rejected. Can we be sure that we, unlike our predecessors, are not 
overlooking big gaps? We can’t. Our mathematics can’t be certain” (p. 45).  

Burton (1995) noted that if we consider mathematics to consist of a body of absolute truths 
then “the purpose of education is to convey [the truths] into the heads of learners” (p. 276). 
When mathematics is presented as “information which should not be questioned” (p. 276), some 
learners may perceive that mathematics is a subject that only a few people have the ability to 
understand. Thus an absolutist conception of the nature of mathematics, in addition to being 
philosophically indefensible (Ernest, 1991; Hersh, 1997), also disempowers learners who do not 
immediately perceive the “truth” of what the teacher is trying to convey in the classroom. Burton 
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(1995) advocated for a humanist/feminist view of mathematical knowledge in school, claiming 
that “Re-telling mathematics, both in terms of context and person-ness, would consequently 
demystify and therefore seem to offer opportunities for greater inclusivity” (p. 280). 

 
Mathematical Knowledge is Socially Validated (NOMK) 

Philosophers presenting a humanistic view of mathematics (e.g. Ernest, 1991; Hersh, 1997; 
Lakatos, 1976; Tymoczko, 1988) are frequently cited and have been influential in mathematics 
education (e.g. Ball, 1988; Boaler, 2016; Komatsu, 2016; Lampert, 1990; Larsen & Zandieh, 
2008; Weber, Inglis, Mejia-Ramos, 2014). A key feature of humanistic philosophy is the notion 
that mathematical knowledge is socially validated. Ernest has described in detail the general 
process by which mathematical knowledge is socially validated in the discipline of mathematics. 
Ernest contended that mathematical knowledge is created through a subjective/objective cycle. 
Individuals subjectively create knowledge, and it is validated inter-subjectively by other 
mathematicians so that it becomes objective knowledge accepted by wider communities (perhaps 
through publication). This objective knowledge can then inspire more individual thought as it is 
subjectively reconstructed, and this may lead to further subjective creations, which may then in 
turn become objective taken-as-shared knowledge.  

Hersh (1997), an academic mathematician, emphasized importance of proof in the social 
validation of knowledge. Hersh noted that for mathematicians, the primary purpose of proof is to 
convince other mathematicians that a claim is true (Hersh, 1993). But the truth of the statement is 
not within the proof itself, but in the refereeing. Hersh (1997) claimed, “What mathematicians at 
large sanction and accept is correct mathematics” (p. 50). Furthermore “There are different 
versions of proof or rigor, depending on time, place, and other things”. (p. 22).  

How might students come to understand the social function of proof and the socially 
validated nature of mathematical knowledge? Some authors have designed instructional activities 
so that students have authority to judge what is correct through classroom discussions, and to 
negotiate standards of rigor and proof (cf. Ko, Yee, Bleiler-Baxter, & Boyle, 2016). Perhaps 
students will understand that mathematics is socially validated if they have the opportunity to 
participate in an inquiry-oriented classroom in which the students (rather than the teacher) are 
responsible for justification and validation. Speaking on findings from an inquiry-oriented 
differential equations course, Rasmussen and Kwon (2007) noted, “social norms that empower 
students to be creators of mathematical ideas, along with the explanations and justifications that 
support these ideas, provide an opportunity for learners to develop desirable beliefs about the 
nature of mathematics” (p. 192). But are these students developing desirable beliefs about the 
nature of mathematics in general, or just what “constitutes mathematical activity in [their 
particular] classroom” (Yackel & Rasmussen, 2002, p. 324)? Research in science education has 
found that “doing science” in an inquiry setting is not sufficient for students to develop informed 
understandings of the nature of scientific knowledge (Bell, Blair, Crawford, & Lederman, 2003). 
The outcome may be different for mathematics instruction, but we need more research to 
investigate this question.  
 
Proofs are Bearers of Mathematical Knowledge.  

Central to humanistic philosophy of mathematics is the distinction between descriptive and 
prescriptive philosophy (Ernest, 1991). Philosophy of mathematics traditionally was driven by 
the notion of what mathematics ought to be. For a Platonist or formalist, mathematics is (or 
should be) the most certain and absolute of human knowledge; thus the purpose of philosophy of 
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mathematics is to justify its absolute nature. For instance, even if most published mathematical 
proofs contain gaps in logic (Ernest, 1991; Hersh, 1997), proof ought (from a prescriptive 
perspective) to be a rigorous deductive argument from accepted premises to conclusion. 
Humanistic philosophers work from a descriptive perspective, basing their philosophy on what 
mathematicians actually do, rather than an ideal vision. Thus humanistic philosophy of 
mathematics is distinct from traditional philosophy because it incorporates sociological, 
anthropological, or historic studies of mathematics. Indeed the classroom discussions in 
Lakatos’s (1976) Proof and Refutations paralleled an account of the historical events 
surrounding the development of proof of an Eulerian conjecture. Hersh (1997) wrote “A 
humanist sees mathematics as a social-cultural-historic activity. In that case it’s clear that one 
can actually look, go to mathematical life and see how proof and intuition and certainty are seen 
or not seen there” (p. 48). The humanistic emphasis has relevance not only to philosophers, but 
also for mathematics education scholars who desire to understand the practices of 
mathematicians so that implications may be drawn to inform the teaching of mathematics.  

In his interviews with professional mathematicians, Weber (2010) found that mathematicians 
read proofs in order to learn new methods and techniques that could be used in their own work, 
in essence, filling their mathematical toolbox with tools that can be valuable in their own work. 
For this reason, Hanna and Barbeau (2008) claimed that proofs are bearers of mathematical 
knowledge (Rav 1999). Hanna and Barbeau (2008) noted that like mathematicians, students can 
fill their mathematical toolbox as they work to comprehend unfamiliar proofs. Undergraduates 
can find value in reading classmate’s proofs in order to get new ideas to aid in their own proof 
construction (Pair & Bleiler, 2015). Students should be aware that proofs are bearers of 
mathematical knowledge, and a key function of proof for mathematicians is the transmission of 
methods (Weber, 2010). Students may also benefit from learning about the other roles proof 
serves for the discipline of mathematics (de Villiers, 1990).   

 
Informal Mathematical Work is the Foundation of Formal Knowledge.  

An allegiance to formalism may result in the delegitimization and rejection of informal 
mathematics. For instance, Brown (1996) described a formalist mathematics instructor in a 
graduate course. This instructor explained that the only valuable objects in mathematics were the 
formalisms: axioms, definitions, and logically deduced theorems. During the writing of a proof at 
the board, he became temporarily stumped and resorted to draw a diagram. After using the 
diagram to obtain the insight needed to finish the proof, the teacher hurriedly erased his diagram 
and resumed the formalist presentation. Lakatos (1976) wrote, “This [deductivist] style starts 
with a painstakingly stated list of axioms, lemmas and/or definitions. The axioms and definitions 
frequently look artificial and mystifyingly complicated. One is never told how these 
complications arose” (p.142). Axioms are presented to students as having a divine status that is 
not to be questioned (Brown, 1996). Instead, students should have the opportunity to understand 
the concepts related to axioms and how mathematical axioms are formulated.  

Hersh (1991) elaborated on the importance of informal mathematical work when he claimed 
that mathematics has a front and a back. The front is what is typically seen, in journals, and in 
textbooks (e.g. axioms, definitions, theorems, proofs). The front of mathematics is the polished, 
finished form of mathematics. But just as important and meaningful is the behind the scenes 
work, the creative emotional activity that serves as the basis for formal mathematical knowledge. 
Hersh noted that mathematics, being a human activity, is influenced by economic and social 
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pressures. He explained that mathematics as an institution benefits from a presentation that hides 
the human struggle.  

The standard exposition purges mathematics of the personal, the controversial, the 
tentative, leaving little trace of humanity in the creator or the consumer. … If 
mathematics were presented in the style in which it’s created, few would believe its 
universality, unity, certainty, or objectivity. These myths support the institution of 
mathematics. For mathematics is not only an art and a science, but also an institution, 
with budgets, administrations, rank, status, awards, and grants. (p. 38)  

Students within a mathematics classroom, especially an undergraduate setting, should 
understand the nature of the informal work that ultimately leads to polished theorems. Lakatos 
(1976) claimed mathematics is a quasi-empirical discipline. De Villiers (2004) summarized the 
notion of quasi-empiricism: “[T]he objects in mathematics, though largely abstract and 
imaginary, can be subjected to empirical testing much as scientific theories are. Quasi-
empiricism will, therefore, refer here to all non-deductive methods involving experimental, 
intuitive, inductive, or analogical reasoning”. (p. 398). Lakatos (1976) showed how quasi-
empirical methods (e.g. using a counterexample to refute a theorem statement), are implemented 
in practice and contribute to the development of mathematical knowledge. Mathematicians often 
use examples to look for patterns and make conjectures (de Villiers, 2004); it is this informal 
work that ultimately leads to the formal theorem. In interviews in which mathematicians were 
asked to determine if a proof was valid, Weber (2008) found that mathematicians used inductive 
examples to make sense of deductive inferences within a proof. Students should understand that 
mathematics is not only axioms, definitions and the following of deductive steps. Inductive 
methods also play a crucial role in creating (Lakatos, 1976) and validating (Weber, 2008) 
mathematical knowledge.  

 
Summary and Implications 

 
In this paper we have discussed four characteristics of the nature of mathematical 

knowledge: mathematical knowledge is subject to revision; mathematical knowledge is socially 
validated; proofs are bearers of mathematical knowledge; and informal mathematical work is the 
foundation of formal knowledge. Scholars in undergraduate mathematics education will find it 
valuable to consider whether these or other characteristics of the nature of mathematical 
knowledge may be worthy to serve as goals for student understanding. Research will be needed 
to identify and understand the instructional methods that can be used to support undergraduate 
mathematics majors in coming to know and understand these characteristics.  
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Making RUME for Institutional Change 
 

Daniel L. Reinholz 
San Diego State University 

 
Overwhelming evidence favors the use of active learning in undergraduate STEM classrooms. 
Thus, the issue faced by educators is no longer what to do in classrooms, but how to enact what 
is known to be effective. This poses a challenge, because faculty teaching is embedded in the 
context of departments, universities, and the broader disciplinary culture. Thus, improving 
education requires knowledge of how systems work and how to enact systemic change. While 
organizational change has studied these issues for decades in nonprofit and business settings, 
the application of this knowledge to higher education is relatively new. Accordingly, this 
theoretical paper provides an introduction to the organizational change literature in the context 
of higher education and provides an example of its application through Departmental Action 
Teams (DATs). By highlighting five principles from organizational change, this paper serves as 
a reference for change agents wishing to improve undergraduate mathematics education. 
 
Keywords: Institutional change; Faculty development; Culture; Active learning 
 

There is now considerable evidence for the use of active learning techniques in STEM 
classrooms. Broadly speaking, active learning aligns with sociocultural and constructivist views, 
which posit that learning involves constructing meaning through engagement in social practices 
(Lave & Wenger, 1998; Smith, diSessa, & Roschelle, 1993). As such, active learning courses 
involve students as active participants in classroom sessions, through activities such as: 
groupwork, peer instruction, class discussions, and personal response systems. Active learning is 
generally contrasted with “pure lecture,” in which students passively listen to lecture and take 
notes. While active learning courses often involve some lecture (or mini-lessons), the distinction 
is that lecture is one of many modes used for instruction, rather than the only one.  

A recent meta-analysis of 225 studies demonstrates the benefits of active learning; pure 
lecture increases failure rates in STEM courses by 55% when compared to active learning 
(Freeman et al., 2014). This evidence is so strong that the authors of the study described teaching 
solely through passive lectures as akin to educational malpractice. Moreover, the use of active 
learning can help reduce existing disparities between students from dominant groups and those 
historically marginalized in STEM classrooms (President’s Council of Advisors on Science and 
Technology, 2012). Finally, these benefits appear to extend beyond just the courses 
incorporating active learning, to support students to do better in future courses as well (Kogan & 
Laursen, 2014). Thus, STEM education research has identified improved instructional techniques 
(i.e. active learning), scientifically proven to be more beneficial for students than traditional 
methods. As such, RUME (Research in Undergraduate Mathematics) is confronted with a new 
challenge: how to foster the use of active learning in undergraduate mathematics classrooms. 

Research shows that simply providing faculty with evidence of the value of active learning is 
insufficient (Foertsch, Millar, Squire, & Gunter, 1997; Reese, 2014). This has been studied 
extensively in physics, where despite the wealth of instructional advances and widespread 
awareness of them, they are not widely used (Dancy & Henderson, 2010; Henderson & Dancy, 
2007; Lutzer, Rodi, Kirkman, & Maxwell, 2005). Even when new pedagogies are adopted, 
sustainability is a challenge (Henderson, Dancy, & Niewiadomska-Bugaj, 2012). As such, recent 
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calls for educational improvement have begun to shift their focus from developing new learning 
techniques to understanding how to scale and sustain the use of existing techniques (PCAST, 
2012). This theoretical paper focuses on exactly this issue: how to enact and sustain educational 
change. Ultimately, I argue that change efforts should draw on the vast literature of 
organizational change. I highlight five principles from this literature to support change agents in 
their own local efforts, and provide an example of their application through Departmental Action 
Teams (DATs).	
 

Theoretical Framing 
 

Educational improvement requires attention to the university as a holistic system (Corbo, 
Reinholz, Dancy, Deetz, & Finkelstein, 2016). A recent meta-analysis of 191 STEM education 
improvement efforts showed that 85.3% of efforts focused on only a small part of the system, 
and that they were “clearly not effective” (Henderson, Beach, & Finkelstein, 2011). As such, 
researchers must draw from organizational change, to better understand how to change systems. 
Indeed, if the RUME community seriously considers the seven recommendations of the recent 
study of college calculus programs (Bressoud, Mesa, & Rasmussen, 2015), the need for systemic 
change is clear. Thus, change agents must expand their work with individual faculty members to 
consider how their efforts are embedded in departments, universities, and disciplinary culture. 
While there are interactions between each of these levels, the academic department itself is often 
considered the key unit of change, due to its relative coherence as a unit (AACU, 2014). 

Given its roots in educational psychology, most educational research is grounded in 
experimental science. The logic of experimental science is that variations in treatments and 
contexts can be accounted for statistically, to generalize results across settings. In contrast, 
organizational change is better understood as an improvement science (Bryk, Gomez, & 
Grunow, 2011). Given the complexity of organizations, improvement scientists argue that 
context is too important to be “averaged out” statistically; instead, one must develop a “system of 
profound knowledge” for how to enact change within a given context (Lewis, 2015). While some 
educational research aligns with this perspective, such as in action research (Zeichner & Noffke, 
2001) and design-based research (Cobb, Confrey, Disessa, Lehrer, & Schauble, 2003), these 
approaches have not yet been widely adopted.  

What follows is a brief description of principles extracted from a synthesis of improvement 
efforts in higher education (AACU, 2014; Elrod & Kezar, 2015; Henderson et al., 2011), 
intended to provide undergraduate mathematics educators with powerful ideas that they can use 
immediately to support their own educational improvement efforts. For a general overview of 
this literature, consider the book How Colleges Change (Kezar, 2013). While it is beyond the 
scope of this paper, improvement science offers tools for assessing the impact of systemic 
change efforts, such as: program improvement maps, driver diagrams, and Plan-Do-Study-Act 
(PDSA) cycles (Bryk et al., 2011). In what follows, I describe five ideas from organizational 
change and their application to RUME.  
 

Five Good Ideas 
 

These ideas draw the reader’s attention to concepts that are often overlooked in educational 
improvement. The five ideas are: (A) building a shared vision, (B) supporting agency and 
ownership of a change, (C) promoting the use of evidence, (D) creating opportunities for early 
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wins, and (E) designing for sustainability. As the authors of a recent effort for systemic change 
on university campuses note, “almost all of these process – organizational learning, addressing 
politics, creating a shared vision and unearthing cultural assumptions – were extremely hard for 
STEM leaders…These processes are often messy and non linear” (Elrod & Kezar, 2015, p. 7). In 
other words, while these principles are supported by the organizational change literature, they 
can be difficult to enact, and are not yet widely used.  
 
Building a Shared Vision 
 

Suppose a group of faculty aims to improve student interactions in their department. A 
common approach is to generate a list of barriers, such as: large class sizes, an overstuffed 
curriculum, lack of department funds, and many students commuting to campus. Having 
identified these problems, the group identifies possible solutions (e.g., classroom response 
systems, curricular change) and debates their relative merits. Yet, this “problems focus” tends to 
result in a fixation on specific problems and preferred solutions to them. For instance, one group 
member may fixate on large lecture courses, and the use of classroom response systems as a 
“solution.” Most individuals have such preferred solutions, and this often leads to inflexibility.  

Rather than operating in “problem-solving mode,” discussions are more effective when they 
focus on positive outcomes to be achieved (Cooperrider, Whitney, & Stavros, 2008). Suppose 
the same group of faculty works to generate a shared vision for student interactions in the 
department. They decide upon the goal: students will feel like a part of a community with their 
peers and work together productively to succeed as mathematicians. This opens the conversation 
to many other possibilities, including: improving department culture, running community events, 
and creating space for student collaborations outside of class. Such an approach builds 
flexibility, helps reduce conflict, and thus increases collaboration. An “outcomes focus” changes 
the nature of the conversation, allowing group members to see possibilities (e.g., creating a 
welcoming departmental culture) where before they saw only obstacles.  
  
Agency 

Change is not something that can be “done to others.” Yet, very often, educators have a new 
curriculum or teaching techniques that they would like others to adopt. In other words, the 
change agents would like to change others. However, as the research on dissemination 
approaches highlights (Henderson et al., 2011), this is generally not effective. Instead, a change 
agent should work with others, to help them achieve their goals. This process often begins with 
developing a shared vision for what the participants want to achieve, affording participants 
agency in the process. Agency relates to the ability of individuals to influence their 
circumstances (Bandura, 2006). When individuals have agency over a change effort, they are 
more invested in the work, as they develop ownership over their change effort. Because of this 
investment, the individuals are more likely to expend more effort, rather than giving up, when 
obstacles are inevitably encountered.  
 
Evidence 

Psychological research shows that individuals use shortcuts to make decisions (Kahneman, 
2011). According to the availability heuristic, individuals usually rely on the most accessible or 
salient examples to make decisions, regardless of how representative of the larger population 
they are. Consider a faculty member trying to explain why a student is doing poorly in their 
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class. The faculty member may notice a student has skipped a few class sessions, and infer that 
the student is lazy or unmotivated. In general, it is easier to center the locus of control within the 
student, than to consider systemic factors, such as departmental culture or the student’s life 
circumstances (e.g., working a full-time job to pay for college).   

The above explanations are ascriptions of motive, intended to describe the underlying causes 
of the student’s behavior. These ascriptions can be placed on a spectrum from person- to system-
focused (Blum & McHugh, 1971; Simpson & Vuchinich, 2000). Person-focused explanations 
(e.g., laziness) tend to be readily available, so faculty members are more likely to adopt them “by 
default.” Yet, person-focused explanations are also outside of the faculty member’s control, so 
adopting these explanations means that the faculty member has little agency to change the 
situation. In contrast, systemic factors (e.g., departmental culture) can be changed, so focusing 
on them increases faculty agency.  

When conversations focus on “anecdata,” they tend to revolve around person-focused 
explanations. Thus, to shift conversations towards systemic factors, change agents can use 
evidence that highlights the systemic nature of issues. In accordance with building a shared 
vision and promoting agency, change agents should help faculty gather data to answer their 
questions, rather than presenting data to argue for a preformed agenda.  
 
Early Wins 

Change is a time-consuming. For instance, work in teacher professional development shows 
that effective interventions are longterm and must be holistic (Darling-Hammond, Wei, Andree, 
Richardson, & Orphanos, 2009; Wilson & Berne, 1999). Similarly, work at the department or 
campus level can be expected to take many years (Elrod & Kezar, 2015). Yet, when change work 
takes years to come to fruition, it is easy for participants to disengage or processes to become 
stalled. Thus, it is key to build in “early wins” to the process (Kotter, 1996). 

The idea of early wins is simple; to begin a change process, a group identifies a vision for 
what it would like to achieve. Again consider the group that aims to build greater community for 
its students. While changing the community and the culture of the department is a many-year 
project, there are also many waypoints or markers of change that would provide evidence of 
improvement. For example, the group could: survey students about their experiences (collecting 
data), run community events, run faculty professional-development for inclusive teaching, or 
seek external funding. By conducting these activities, the group creates concrete “successes” 
towards the larger goal of building community. This is important internally, for the motivation of 
the group, and externally, with respect to department and campus politics.  

While there may often be early wins on the way to a larger goal, from the perspective of a 
change agent, they can be strategically built into the change process. For instance, creating early 
wins is built into the cyclical nature of PDSA cycles in improvement science (Bryk et al., 2011). 
PDSA cycles are iterative improvement cycles that focus on implementing and analyzing ideas 
quickly, to enact efforts in a way that is sensitive to the local context. Thus, once a shared vision 
has been developed, PDSA cycles are one way to identify short-term goals that can be achieved 
in service of the larger goal, to ensure that the process does not stall. 
 
Sustainability 

Change agents often talk about “solving” educational problems, or having courses that are 
“transformed.” This language implies that educational improvement is something that can be 
“done” and then it will be sustained. Yet, it is difficult to sustain even largely successful change 
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efforts  when external funding is removed (cf. Chasteen et al., 2015). Thus, efforts should focus 
on continuous learning and sustainability from the offset (Senge, 2006).  

One key aspect of sustainability is focusing on culture. Culture is a “pattern of shared basic 
assumptions learned by a group…which has worked well enough to be considered valid and, 
therefore, to be taught to new members as the correct way to perceive, think, and feel” (Schein, 
2010, p. 19). As such, a department’s culture consists of these beliefs, values, customs, rituals, 
practices, artifacts, and institutional structures. These various components of culture interact with 
one another to provide a relatively coherent system. Thus, if one attempts to change only a single 
component of the cultural system, without addressing other components, it is unlikely that the 
change will be sustained over time.  

As described above, dissemination efforts often do not result in sustained use of new 
teaching techniques (Henderson et al., 2012). Because these efforts focus only on practices, a 
single component of culture, there are numerous forces acting in opposition to the use of the new 
teaching techniques. For example, traditional beliefs about teaching and learning will influence 
how the practices are used, which may limit their efficacy. Or, reward structures may be such 
that the time required to learn to use the new techniques is not perceived as worthwhile.  
 

Departmental Action Teams 
 

Departmental Action Teams (DATs) were developed as one component of the STEM 
Institutional Transformation Action Research (SITAR) Project, which fostered and studied 
systemic change in STEM departments at one research-extensive university (Corbo et al., 2016). 
A DAT consists of 4-8 participants (primarily faculty) working collaboratively to improve 
education in a single department. DATs are externally facilitated; facilitators bring expertise in 
educational research, help coordinate logistics, and draw on principles from organizational 
change (i.e. the key ideas identified above). In what follows, the process of facilitating a DAT is 
described in more detail to provide change agents with concrete examples of how to implement 
organizational change principles in their own educational improvement efforts.  

A DAT begins with members developing a shared vision around an issue of common interest 
in their department (key idea A). Participants have agency to choose an issue that is meaningful 
to them (key idea B); the role of the facilitators is to help the DAT work on the issue in the most 
productive way possible, not to tell participants what issue to work on. As the DAT works to 
achieve its vision, it gathers and analyzes relevant data (key idea C): so it can make informed 
decisions about potential actions, and so it can build political will from external stakeholders 
(e.g., a department chair). Along the way, the facilitators and DAT members think strategically 
about how to build early wins into the process (key idea D) so that progress does not stall. 
Finally, the types of issues a DAT addresses are crosscutting, and building sustainable structures 
is a goal from the offset (key idea E).  

DATs in SITAR met regularly, typically for an hour every other week for multiple semesters. 
Between meetings, DAT members assign their own “homework,” determining what needs to be 
done to continue moving the group forward. DAT members may also schedule additional 
meetings as necessary. Thus, while DATs are externally facilitated, they are departmentally-
driven. To date, the DAT model has been used to facilitate 6 working groups through the SITAR 
project. In what follows, I provide examples of the five key ideas in action. Data are drawn from 
from four STEM departments: Alchemy, Potions, Prophecy, and Runes (actual department 
names redacted for confidentiality). 
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Shared Vision 

Once the group has been established, a DAT begins by building a common vision for its 
work. To help participants build a common vision, the facilitators use a “sticky note” activity 
(adapted from http://serc.carleton.edu/departments/degree_programs/idealstudent.html). Each 
DAT member is given a pad of large sticky notes, and asked to write individually their responses 
to the following prompt: 
 

Imagine you are writing a letter of recommendation for a student graduating from your 
department. Ideally, what would you like to be able to say in response to the following 
questions: (1) what kind of person will they be? (2) what will they be able to do? (3) what 
will they know? (4) what skills will they have? (5) how will they behave? (6) what will 
they value? 

 
After writing their responses, the DAT members stick their responses on the wall, the group 
organizes them looking for common themes, and then they have a whole group discussion about 
vision. These prompts are designed to help faculty focus on students (not just themselves), and to 
seek areas of overlap in what all participants value. These prompts appear to work effectively 
even with DAT participants that have very different views on education.  
 
Agency 

While the external facilitators help shape discussions, they do not tell DAT participants what 
to do. As described above, it is DAT members who determine the vision and direction of the 
group, not the facilitators. Moreover, the participants determine homework, whether or not to 
schedule additional meetings, and many other key features of how the work gets done. As a 
result, DAT members perceive the change effort as theirs. For example, as a participant in the 
Runes DAT described: 
 

I really think they did a fabulous job of letting all of us kind of speak our piece and 
keeping it harmonious and letting us kind of find our own way. I think- Like I said, I 
think, I'm hoping that everybody's as excited about this as I am, because I think we've 
struck on something that'll really work for our department. 

 
While this is a quote from just one member of one DAT, it is generally consistent with the 
perceptions of other DAT members that they “owned” their efforts.  
 
Evidence 

Gathering evidence to support decisions was a common thread across DATs. In the Runes 
and Prophecy DATs, both focused on curricular integration, participants gathered and analyzed 
institutional data about the course taking patterns and success of their students. In the Potions 
and Alchemy DATs, both focused on diversity and inclusion in their departments, a wealth of 
data about the retention, success, and experiences of students from diverse groups were collected 
and analyzed. These data were used to determine plausible actions for the DATs, and on multiple 
occasions were used in presentations at faculty meetings or to departmental committees to gather 
support for the actions of the DATs.  

 

20th Annual Conference on Research in Undergraduate Mathematics Education 109420th Annual Conference on Research in Undergraduate Mathematics Education 1094



Early Wins 
The Potions DAT spent the majority of its first year analyzing data related to diversity in the 

major, which resulted in a detailed report to the department. Yet, beyond curating data, the DAT 
also engaged in a number of actions, such as: targeted recruiting of admitted students, building 
collaborations with other diversity organizations on campus, and leading the department’s 
response to a campus diversity initiative. All of these actions supported the DAT to be seen as a 
positive force in the department, and ultimately supported it to be institutionalized in the form of 
a standing committee. Similarly, the Alchemy DAT has begun to focus on concrete actions in 
parallel to collecting and analyzing data.  

 
Sustainability 

Both the Runes and Potions DATs (the only multi-year DATs, to date) have successfully 
created new departmental structures to sustain their efforts. In Runes, new curriculum 
coordinator positions have been created (and funded by the department) to revisit curricular 
integration issues on an ongoing basis. In Potions, the DAT has been formalized as a standing 
committee. Moreover, the facilitation practices used by the external facilitators have been 
adopted, and the Potions DAT is continuing to use them in its ongoing work. 
 

Summary 
  

STEM education has identified research-based approaches for improving classroom learning. 
Yet, actually enacting these approaches remains a challenge. Fortunately, there is a wealth of 
organizational learning theory, traditionally applied to businesses and nonprofits, that can be 
adapted to support higher educational change. Accordingly, this paper has two primary aims: (1) 
broaden the focus of RUME to emphasize systemic change perspectives, and (2) provide 
practical tools that RUME practitioners can use to increase the impact of their work. 

A systemic change perspective provides a new lens for RUME practitioners engaged in 
improvement efforts. For example, it highlights the systemic nature of educational improvement, 
operating at multiple levels: students, classrooms, departments, universities, disciplines, and 
society. As such, improving education requires thinking about these multiple levels. It also 
highlights the political nature of change, such as the need to develop processes that will 
effectively engage a variety of stakeholders. Finally, this perspective highlights the need for 
sustainability. When sustainability is built into a process from the offset, rather than considered 
as an afterthought, it is much more likely for continuous improvement to result.  

This paper provides a number of practical tools that the RUME community can draw upon. 
For instance, simply organizing improvements around outcomes rather than problems, can result 
in much more productive conversations. Similarly, building in early wins can help make progress 
visible, rather than resulting in improvement efforts stalling. By affording participants with 
agency and the ability to make decisions around evidence, rather than anecdote, it is more likely 
that innovations in education will be used and sustained. In sum, organizational change provides 
useful theoretical background to promote systemic change. As researchers adopt this perspective, 
theory of organizational learning can be adapted and contextualized to RUME. 
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Although many policy documents include equity as part of mathematics education standards and 
principles, researchers continue to explore means by which equity might be supported. Teaching 
practices that include active learning have been proposed to address this issue (e.g., CBMS, 
2016; NCTM, 2014). In this paper, we theoretically explore the ways in which active learning 
teaching practices that focus on teaching for inquiry (e.g., Inquiry-Based Learning (IBL) or 
Inquiry-Oriented Learning (IOL)) support equity in the classroom. Specifically, we claim that 
some characteristics of inquiry (Student Ownership, Knowledge Building, Peer-Involvement, 
Doing Mathematics, Student-Instructor Relationship, and Student Success) put forth by Cook, 
Murphy, and Fukawa-Connelly (2016) may align with the Four Dimensions of Equity (Access, 
Achievement, Identity, and Power) proposed by Gutiérrez (2009). Therefore, inquiry teaching 
may be a first step for a focus on equity without compromising the excellence (Gutiérrez, 2002) 
or material that is often prescribed in undergraduate mathematics courses. 

Key words: Active Learning, Equity, Inquiry-based Learning, Inquiry-oriented Learning  

Many policy documents and institutions both highlight the importance of equity and caution 
educators with possible consequences of not attending these issues in research and teaching. 
Most recently in their Statement on Active Learning (2016), the Conference Board of the 
Mathematical Sciences stated, “Pervasive problems caused by issues of equity and access, 
starting long before students begin post-secondary study, prevent or discourage many students 
from continuing in their study of mathematics and other STEM disciplines” (p. 3). More 
strikingly, Nasir, Shah, Gutiérrez, Seashore, Louie, and Baldinger (2011) reported that three 
decades after the release of A Nation at Risk (1983), which “cautioned that America’s economic 
future depended on the mathematical and scientific literacy of all of its citizens” (p. 1), there are 
still “substantial disparities both in resources and in achievement” that are “organized along 
troublingly clear lines of race, ethnicity, and socioeconomic status” (p. 1).  

Although many policy documents include equity as part of standards or principles of 
mathematics education, ways in which this goal can be achieved are not explicit. For example, at 
the K-12 level, the Principles for School Mathematics provided by the NCTM have included 
Equity since the early 1990’s. The American Mathematical Association of Two-Year Colleges 
(2006) states, “All students should have equitable access to high-quality, challenging, effective 
mathematics instruction and support services” (p.10). Yet, as Gutiérrez (2007) indicates, “[m]ost 
members of the mathematics education research community would agree that equity is a valued 
goal, maybe even the reason behind their research. However, much less consensus arises when 
the question is raised: how do you think we should address equity?” (p. 2).  

Teaching practices that include active learning have been proposed to address this issue (e.g., 
CBMS, 2016; NCTM, 2014). We explore the ways in which active learning teaching practices, 
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with a focus on teaching for inquiry (e.g., Inquiry-Based Learning (IBL) or Inquiry-Oriented 
Learning (IOL)), can provide a pathway to equity in the classroom without compromising the 
excellence (Gutiérrez, 2002) or material that is often prescribed in undergraduate mathematics 
courses. We claim that characteristics of inquiry align with the Four Dimensions of Equity 
proposed by Gutiérrez (2009). That is, we claim these four dimensions explicate how inquiry 
pedagogy promotes equity in mathematics courses. This particular framing helps us to identify 
how the inquiry instruction can promote a more equitable experience for all students within the 
context of the curriculum that is usually required in undergraduate mathematics courses.  

 
Equity 

In general, equity teaching promotes a mindset where all students are capable of learning 
mathematics (Bullock, 2012; Gutiérrez, 2002; Jett, 2012). Equity research seeks to surface 
teaching practices that enable these mindsets (Gutiérrez, 2002) among instructors and students 
alike (Oppland-Cordell & Martin, 2015). It is important that instructors bracket prejudices about 
student participation and achievement levels based on race, gender, social class, proficiency in 
the dominant language, or ethnicity (Gutiérrez, 2002). Similarly, judgments based on a student’s 
prior performance, particularly if s/he has performed poorly in the past should not be seen as 
personal weakness, rather as a consequence of the complex social, economic, and cultural factors 
(Frankenstein, 1983) that affect individual experiences while learning mathematics.  

Gutiérrez (2009) argued that teaching for equity includes four dimensions: Access, 
Achievement, Identity and Power. Access and Identity are considered precursors to Achievement 
and Power, respectively. Access addresses the resources that students have available to them to 
participate in mathematics such as “quality of teachers, adequate technology and supplies, 
classroom environment that invites participation, infrastructure for learning outside the 
classroom” (p.5), and the opportunities to draw upon their “cultural and linguistic resources” (p. 
5). Achievement, on the other hand, is an outcome affected by students’ opportunities to learn 
and can be measured by “participation in class, course taking patterns, standardized test scores, 
majoring in math, having a math-based career” (p. 5). Adiredja, Alexander and Andrews-Larson 
(2015) summarized this description by offering that learning outcomes can range from the 
“knowledge on specific content to students’ ability to productively use mathematics to 
participate in society” (p. 64).  

On a different axis, Identity attends to the “balance between self and the global society and 
ways students are racialized, gendered and classed” (Gutiérrez, 2009, p. 5) and to pay “attention 
to whose perspectives and practices are ‘socially valorized’” (p. 5). The goal is to “strike a 
balance between opportunities to reflect on oneself and others as part of the mathematics 
learning experience” (p.5). Power can mean to empower students towards high academic 
achievement, but Gutiérrez explained it as students using their math knowledge to reach 
“personal goals of excellence such as helping their community to solve a local problem” (p. 6). 
Adiredja et al. (2015) added that learning focused on this dimension attends to “disrupting the 
existing power distribution and dynamics in a society based on race, gender, and social class” (p. 
64). To achieve this, students can be involved in decision-making on “what counts as productive 
mathematical knowledge” (Adiredja et al., 2015, p. 64), pacing of content (Laursen, Hassi, 
Kogan, and Hunter, 2011), and starting points for curriculum (Frankenstein, 1983). This type of 
learning requires a social transformation as measured by whose voice can be heard in the 
classroom and “opportunities to use math as an analytics tool to critique society” (Gutiérrez, 
2009, p. 6).  
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Gutiérrez (2009) situated these four dimensions more broadly, namely, “in society” or in a 
“community” (p. 6). In discussion of power, Gutiérrez (2002) positioned the distribution of 
power in the contexts of the classroom, future schooling, everyday life, and the global society. In 
this paper, we use the classroom as a stepping-stone to discuss alignment of inquiry pedagogies 
to dimensions of equity. As such, we utilize these four dimensions of equity as a framework to 
discuss how active learning pedagogies, and inquiry learning in particular, have the potential to 
increase access, lead to higher achievement, provide opportunities for students to reflect on their 
identities, and attune students to power dynamics in their mathematical community: the 
classroom. We acknowledge that just using inquiry learning alone may not fully address equity, 
especially if there is not a change to the system outside the classroom or if students do not have 
opportunities to question power distribution and dynamics in the greater society. The purpose of 
our theoretical exploration is simply to investigate inquiry learning as an entry point towards a 
more equitable classroom, in order to move towards a more equitable society. 

Active Learning 
While this paper reports on teaching through inquiry, we see this pedagogy as a subset of a 
collection of pedagogies termed active learning. Although many different definitions exist, 
Prince (2004) noted “active learning is generally defined as any instructional method that 
engages students in the learning process” (p. 223). However, pedagogical techniques used in 
active learning vary between instructors and may include group work, think-pair-share, student 
presentations, project-based learning, and many other teaching techniques. Freeman, Eddy, 
McDonough, Smith, Okoroafor, Jordt, and Wenderoth, (2014) reported that active learning 
techniques have a strong positive impact on student learning as a result of the meta-analysis of 
225 studies in STEM education. In addition, Kogan and Laursen’s (2014) study indicates that 
“the benefits of active learning experiences may be lasting and significant for some student 
groups, with no harm done to others. Importantly, ‘covering’ less material in inquiry-based 
sections had no negative effect on students’ later performance in the major” (p. 197). There is 
even strong evidence that active learning promotes student engagement and achievement when 
coupled with lecture; lecture is defined as “continuous expositions of a speaker” (Bligh, 2000, p. 
4) where student activity is “limited to taking notes and/or asking occasional and unprompted 
questions of the instructor” (Freeman, 2014, p. 5). Prince (2004) found that incorporating several 
short active learning segments into lecture on a topic in an engineering course improved 
students’ retention of the material and exam scores on that topic.  

Overview of Inquiry Learning 
Some major goals of inquiry learning are to “deeply engage [students] in rich mathematical 

tasks, [give students] ample opportunities to collaborate with peers (where collaboration is 
defined broadly)” (Academy of Inquiry-Based Learning, n.d.), “enable students to learn new 
mathematics through engagement in genuine argumentation, … empower learners to see 
themselves as capable of reinventing mathematics, and to see mathematics itself as a human 
activity” (Rasmussen and Kwon, 2007, p. 190). Despite the numerous studies on inquiry-based 
or inquiry-oriented learning, there is not a consistent definition of these pedagogies. However, 
one defining feature of inquiry learning seems to be the modified role of the instructor in the 
classroom, which Cook et al. (2016) label the Student-Instructor Relationship. Thus, in an 
inquiry course, part of the job of the instructor is to ask about student thinking (Kuster, Johnson, 
Keene, & Andrews-Larson, submitted). Laursen, Hassi, Kogan, and Weston (2014) found that 
students in IBL courses often reported being able to express their own ideas while the instructor 
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listens. Another facet of inquiry is student participation in authentic mathematical experiences, 
which Cook et al. (2016) refer to as Doing Mathematics. Kuster et al. (submitted) argue that 
“questions that require students to engage in problem solving activity affords the instructor 
opportunities to inquire into student thinking and reasoning” (p. 8). Thus, doing mathematics 
contributes to the student-instructor relationship. 

Cook et al. (2016) also describe Student Ownership as the action of encouraging learners to 
create, generate, and developing their own knowledge. This knowledge is built from their prior 
knowledge, which is labeled Knowledge Building. Kuster et al. (submitted) also see this as a 
fundamental part of IOL and they refer to it as “building on student contributions”. As part of 
knowledge creation, students are given opportunities to provide explanations and justifications of 
their thinking while others listen to and attempt to understand the ideas being discussed or 
presented, termed Peer Involvement by Cook et al. (2016). In Laursen et al. (2014), students in 
IBL courses reported often participating in activities such as asking questions, evaluating other 
students’ work, and working together in class. Kuster et al. (submitted) also identified students’ 
“being engaged in one another’s thinking” as a characteristic of IOL.  

According to Cook et al.’s (2016) exploration of existing studies, an outcome of their 
aforementioned features of inquiry is that inquiry-based or inquiry-oriented learning is better 
aligned to how people learn. Similarly, in a study that gathered data from over 100 sections of 
IBL and non-IBL courses taught between 2008 and 2012, Laursen et al. (2014) reported higher 
“cognitive gains in understanding and thinking, affective gains in confidence, persistence, and 
positive attitudes about mathematics, collaborative gains in working with others, seeking help 
and appreciating different perspectives” (p. 409) in students from IBL courses compared to those 
in non-IBL sections of the same courses. Notably, Laursen et al. (2014) also found that in IBL 
courses, both men and women’s attitudes about mathematics improved as well as their interest in 
pursuing mathematics, but the women had greater gains in these areas than men. Cook et al. 
(2016) categorized this as Student Success. 

In surveying authors of the papers that they reviewed, Cook et al. (2016) identified three foci 
in participants’ definitions of inquiry. The first focus is on the student-instructor relationship and 
how it is different from a lecture-based course, which is an extension to the aforementioned 
Student-Instructor Relationship theme. Participants stated that the students should not look to the 
instructor as the sole mathematical authority in the classroom. The second focus is similar to the 
theme Peer-Involvement; that is, the class should include opportunities for peers to interact. The 
last focus is different from the aforementioned themes as it highlights the importance of valuing 
and nurturing curiosity in the students. This last focus (valuing and nurturing curiosity) and the 
first five themes (Student-Instructor Relationship, Doing Math ,Student Ownership, Knowledge 
Building, and Peer Involvement) can be classified as Classroom Climate, whereas the last theme 
(Student Success) is related to an outcome of the classroom climate. 

The themes that we consider in this paper are not an exclusive list of IBL/IOL teaching 
practices; they are still under development and undergoing revisions. Hence, our theoretical 
exploration is only a preliminary start of a framework that aims to explore the alignments 
between IBL/IOL features with the Four Dimensions of Equity by Gutiérrez (2009). 

Alignment of IBL/IOL with the Four Dimensions of Equity 
With this proposed framework, we put forth the claim that, as a pedagogical practice, inquiry 
learning can be used to promote equity by providing students access and chances to explore their 
identities, with the hopes of both a shift in both power and achievement in the course. Our 
exploration originated from several reports, particularly Laursen et al.’s (2014) assertion that 
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“IBL benefits all students even as it levels the playing field for women” (p. 415). Their study 
documented ways in which IBL can increase achievement and attitudes among students. To 
explicate how described features of IBL/IOL provide a more equitable experience for students 
studying mathematics, within the Four Dimensions of Equity we describe some selected related 
features of IBL/IOL.  

Access 
Gutiérrez’s (2009) definition of equity included a “classroom environment that invites 

participation” (p. 5) as a tangible resource to access. Civil (2006) reinforced this definition and 
stated: “equity to me is related to access by all students to opportunities to engage in rich 
mathematics” (p. 56). IBL/IOL pedagogies revolve around a classroom environment that invites 
and encourages all students’ participation in doing, discussing, and presenting mathematics (Peer 
Involvement). When all students are given opportunities to be active participants in the 
mathematical community of the classroom (Doing Math), students are given an additional access 
point to learn because they are given the chance to provide explanations and justifications of 
their thinking processes while others listen and attempt to understand the ideas being discussed 
or presented. We believe that these opportunities give all students the chance to be exposed to 
other ways of thinking which can result in richer learning experience for them.  

Nasir et al., (2011) provided characteristics of classroom practices that support equity: 
“Powerful classroom practices include those that foster student-centered discourse, student 
exploration of mathematical ideas, and on-going feedback (Davis, et. al., 2007; Boaler, 2002b; 
Fullilove & Treisman, 1990” (Nasir et al., 2011, p. 17). Inherent in the on-going feedback is the 
Student-Teacher Relationship: the instructor’s responsibility of inquiring into student thinking 
and “fostering and facilitating productive student discourse” (Nasir et al., 2011, p. 17).  

Achievement 
Gutiérrez (2009) refers to Achievement as a measure of “how well students can play the 

game called mathematics” (pg. 6). In other words, this dimension relates not only to student 
performance on exams and standardized tests, but also considers a student’s mathematical 
“story.” This can refer to measures such as whether students continue taking mathematics 
courses or whether they choose a mathematical career.  

When all students are encouraged to create, generate, and develop their own knowledge 
(Student Ownership), confidence in doing mathematics and participation in class may be 
positively affected. Laursen et al. (2014) demonstrated that participation in IBL courses does 
increase student performance as well as other measures related to this definition of achievement.  
Learning gains were found in IBL sections over non-IBL sections of the same course; not only 
improvements in course performance, but gains in confidence, persistence, and enjoyment of 
mathematics (Student Success). Some of these outcomes may lead to Gutiérrez’s (2009) 
measures of Achievement, namely “course taking patterns, majoring in math, and having a math-
based career” (p. 5). Kogan and Laursen (2014) also reported that all students in IBL courses 
were positively impacted to enroll in more mathematics courses.   

Identity 
We claim that the Peer Involvement theme of IBL/IOL aligns with Gutiérrez’s (2009) definition 
of Identity. When students are actively engaged with each other and each other’s thinking (Peer-
Involvement), it can lead to a shift in mathematical identity. Hassi’s (2015) qualitative study of 
students reflecting on their IBL learning experiences supports our claim. In that study, students 
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talked about “the role of the social environment in an IBL class for gaining or verifying their 
self-esteem or self-confidence” (p. 60). In addition, Oppland-Cordell & Martin (2015) write that 
“the ways in which individuals continuously construct identities of participation and non-
participation over time in [Communities of Practice] is related to how they position themselves, 
how others position them, and how such positionings are related to their histories and 
experiences in the broader contexts in which [Communities of Practice] are embedded” (p. 24).  
At the secondary level, Boaler and Greeno (2000) contrasted students who learned by working 
through rote problems in a textbook with students who learned through mathematical discussions 
(Peer Involvement).  They found that in discussion-based classes, students were required to 
contribute more aspects of their selves (as compared to non-discussion-based), which can be 
done through reflecting on community participation and family relationships.  

Power 
Gutiérrez (2009) thinks of student voice as a fundamental part of the power dimension; 

inquiry is changing whose voice is primarily present in the classroom. Instructors are responsible 
for facilitating student discussion and presentation of the problems (Yoshinobu and Jones, 2012; 
Cirrillo, 2013). When given opportunities to provide explanations and justifications of their 
thinking while others listen to and attempt to understand the ideas being discussed or presented 
(Peer Involvement), power shifts to the students because they decide on “what counts as 
acceptable knowledge” (Adiredja et al., 2015, p. 66). 

The instructor is the primary architect of the problems worked on (Laursen et al., 2011), and 
when the tasks assigned include problem-posing, students create and solve their own problems 
(Doing Math). In this scenario, students have power in deciding the curriculum.  

The instructor’s main role is not as a problem-solver, but as an expert participant (Levenson, 
2013) that guides students to generate, create, and develop their own knowledge (Student 
Ownership). In this way, the instructor signals that the students’ thoughts, beliefs and 
contributions are a valued part of the learning process and removes her/himself as the sole source 
of knowledge in the classroom. If we agree that Doing Math, Peer Involvement, and Student 
Ownership are components of inquiry teaching, then this represents a substantial shift of the 
power dynamic from instructor to students.   

Future Steps 
 

“Equitable classrooms are reflections of a pedagogical, political, and moral vision.”  
(Lotan, 2006, p. 526) 

 
We acknowledge that changing the curriculum to include ways for students to use 

mathematics to critically analyze the society in which they are gendered, raced, and classed 
extends past our theoretical framework to provide a richer equitable experience. However, for 
instructors who are not ready to (fully) change the curriculum of their class, we claim that by 
merely engaging in practices of IBL/IOL, we can start to move towards teaching for equity and 
thinking equitably. That is, engaging in practices of IBL/IOL is a good entry point for people 
who are ready to begin embracing equitable practices.  

We also see room to frame IBL/IOL in terms of culturally responsive pedagogy.  Hernandez 
(2013) reviewed literature by seminal culturally responsive pedagogy researchers (Banks, Gay, 
Ladson-Billings, Nieto, Villegas and Lucas) and found five main themes within the research. To 
demonstrate how the inquiry themes posited by Cook et al. (2016) or the dimensions of equity 
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theorized by Gutiérrez (2009) may align with the five themes of culturally responsive pedagogy, 
we have added the inquiry themes in brackets to the definitions below:  

• Content Integration: inclusion of content from many cultures, the fostering of positive 
teacher-student relationships, holding high expectations for all students, and the use 
of research-based instructional strategies [Student Success] that reflect the needs of a 
diversity of backgrounds and learning styles [Knowledge Building] 

• Facilitation of Knowledge Construction: the teacher’s ability to build on what the 
students know [Knowledge Building] as they assist them in learning to be critical, 
independent thinkers who are open to other ways of knowing 

• Prejudice Reduction: teacher’s ability to use a contextual factors approach [Student-
Teacher Relationship] to build a positive, safe classroom environment [Access] in 
which all students are free to learn regardless of their race/ethnicity, social class, or 
language  

• Social Justice: teacher’s willingness ‘‘to act as agents of change’’ (Villegas), while 
encouraging their students to question and/or challenge the status quo in order to aid 
them in ‘‘the development of sociopolitical or critical consciousness’’ (Ladson-
Billings) [Power] 

• Academic: teacher’s ability to ‘‘create opportunities in the classroom’’ (Villegas) 
[Access] that aid all students in developing as learners to achieve academic success 
[Student Success, Achievement] (p. 811-814) [emphasis added]. 

In preliminary efforts to give empirical evidence of our framework, we found some data that 
did not fit into the themes presented by Cook et al. (2016) describing IBL/IOL. For example, 
“limited involvement by instructor” or “instructor acts as facilitator/mediator” didn’t seem to fit 
in the Student-Instructor Relationship category, which puts the instructor as an inquirer into 
student thinking or not as the sole authority.  Additionally, the theme of Doing Mathematics 
seemed to intersect with the other themes so often that we may need to create a hierarchy of 
themes.  Thus, we plan to continue refining the themes of inquiry, and the subsequent 
connections to equity, from student data we have collected and as other research emerges.  

The theoretical framework we put forth in aligning inquiry pedagogies to equity teaching is 
merely a start to providing equitable experiences for all our students regardless of race, gender, 
ethnicity, social class, sexual orientation, or language. To deepen equity in the field of 
mathematics, educators can integrate content that uses mathematics to critically analyze the ways 
in which students are gendered, classed and raced. For example, to address the contentious “All 
Lives Matter” movement, students in a proofs or logic class can analyze the statement, “If you 
are black, then your life matters” to help people understand that saying “Black Lives Matter” 
does not mean that other lives do not matter. In the future, we aim to deepen our alignments of 
inquiry teaching and learning with equity through interviewing students who have experienced 
inquiry pedagogies. We also hope to explore pedagogical techniques to better integrate content 
that allows students to use mathematics to critically analyze social justice issues. Both future 
goals are considered with the intent to extend our theoretical framework beyond the classroom 
and towards the global society. 
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Leveraging Real Analysis to Foster Pedagogical Practices 
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Although it is frequently a required course, many secondary teachers view real analysis as 
unnecessary and unrelated to teaching secondary mathematics. In accord with a proposed model 
for improving the teaching of advanced mathematics courses for teachers, we implemented a 
course that framed real analysis content by ‘building up from’ and ‘stepping down to’ teaching 
practice. In this paper, we describe how this model was implemented in a single module and 
analyze secondary mathematics teachers’ engagement in and reflections on the desired 
pedagogical aims, which provide evidence that they saw what they learned in the real analysis 
module as being useful for informing their pedagogical practice. 

Key words: Real Analysis, Secondary Teaching, Teacher Education, Pedagogical Practice 

In the United States, prospective secondary mathematics teachers usually are required to take 
a substantial number of courses in advanced mathematics, including real analysis. However, 
while mathematical organizations believe that a mastery of advanced mathematics is important 
for teaching secondary mathematics (e.g., CBMS, 2012), research has also shown that 
completing courses beyond a fifth course in university studies – which is where advanced 
mathematics courses fall – yields very minimal gains in a secondary mathematics teachers' 
efficacy (Monk, 1994). Indeed, many students do not perceive any relevance between advanced 
mathematics and the teaching of high school mathematics (e.g., Zazkis & Leikin, 2010). In this 
paper, we address the following broad question: Given that prospective teachers are required to 
complete courses in advanced mathematics, how can we design these courses so that they 
productively inform teachers' future pedagogy? We look specifically at one module in a real 
analysis course designed according to this aim, and consider how the prospective and practicing 
teachers (PPTs) engaged in and reflected on a particular pedagogical practice. 

 
Literature and Theoretical Perspective 

A Model for Teaching Secondary Teachers Advanced Mathematics 
From our point of view, the belief that completing a course in real analysis will improve a 

PPT’s ability to teach secondary mathematics has been based on a traditional view of transfer 
from the cognitive psychology literature (e.g., Perkins & Salomon, 2002). More specifically, 
there is an assumption that as a byproduct of learning advanced mathematical content, PPTs will 
better understand secondary mathematics content and will consequently respond differently to 
instructional situations in the future – a tenuously presumed “trickle down” effect (Figure 1a). 
Given the notorious difficulties in achieving this type of transfer, it is not surprising that PPT’s 
experience in real analysis often does not improve their teaching. In Figure 1b, we propose an 
alternative instructional model (Wasserman et al., 2016). This model is based on two premises. 
The first is the knowledge that PPTs learn should be inherently practice-based and applicable to 
the actual activity of teaching (e.g., Ball, Thames, & Phelps, 2008). The second is that PPTs will 
be more likely to make connections between real analysis and pedagogical practice if what they 
learn is situated within the context of teaching (e.g., Ticknor, 2012). Our model is composed of 
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two parts: building up from practice and stepping down to practice. To build up from (teaching) 
practice, the real analysis content is preceded by a practical school-teaching situation. The 
building-up portion provides a context that sets the stage for the study of real analysis content in 
ways that are both relevant to teachers’ practices and particularly well-suited to being learned in 
real analysis. The second part, stepping down to (teaching) practice, then uses the mathematical 
ideas from real analysis as a means to reconsider the pedagogical situation that began the 
module, as well as other relevant pedagogical situations. Stepping down to practice explicitly 
clarifies the intended mathematical and pedagogical aims. In between building up from and 
stepping down to practice, the real analysis topics are covered in ways true to its advanced 
character with formal and rigorous treatment, but the tasks make explicit what connections and 
implications these have for both secondary mathematics and its teaching.  

 
Figure 1a. Implicit model for advanced mathematics 
courses designed for teachers 

 
Figure 1b. Our model for advanced mathematics courses 
designed for teachers 

An Example of our Model: Considering Derivative Proofs as “Attending to Scope” 
In their professional work, teachers must explain content, practices, and strategies (e.g., 

TeachingWorks, 2016); we regard a particularly important facet of providing an explanation as 
being attentive to the scope of that explanation. For example, in trying to help elementary 
students understand subtraction, some teachers may state: “you cannot subtract a larger number 
from a smaller one.” This explanation has a limited scope—it is only accurate when one is 
considering positive numbers – and can hinder students’ future mathematical learning (e.g., Ball 
& Bass, 2000). Real analysis, with its rigorous proofs and its attention to the number sets to 
which a statement applies (e.g., the Intermediate Value Theorem requires the completeness 
axiom and consequently applies to R but not Q), is a domain in which attention to scope can be 
learned. In a real analysis course, students are expected to study and produce rigorous proofs of 
the common differentiation rules, such as the power rule and the product rule. (See, for instance, 
the textbooks of Abbott, 2015, and Fitzpatrick, 2006.) In the module that we describe, we use 
these real analysis proofs to highlight the importance of attending to the scope of a statement, 
and leverage them to help foster developing this desirable pedagogical practice.  

Building up from practice. We began the module by presenting PPTs with the following 
situation: “Mr. Ryan teaches everything from Pre-Algebra to Calculus. The following scenes are 
snapshots from his classes at different times during the year.” Using cartoons (which are not 
included for space purposes), two of Mr. Ryan’s statements throughout the year were depicted: 
the Exponents statement, “Exponents are just repeated multiplication,” and the Power rule 
statement, “If you see a function with an exponent, to take the derivative, you bring down the 
exponent to the front and subtract one from the exponent” [on the board was written f(x)=2x3]. 
From this cartoon, PPTs were first asked to “Evaluate the pedagogical quality of each one of 
these explanations.” We note that these two statements are limited in scope: exponents can only 
be viewed as repeated multiplication if the exponent is a positive integer, and the power rule only 
works for power functions. Next, students were shown a typical proof of the power rule for 
differentiation, using the binomial expansion of (x+h)n. They were asked to identify for which 
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sets the proof would be valid (N, Z, Q, or R), with the point being that this proof, which was 
likely familiar and is often presented to calculus students, is only valid for natural numbers. 

Real analysis. The real analysis portion of the course consisted of the presentation of proofs 
of the power rule, the product rule, the quotient rule, the chain rule, and the inverse function rule. 
A progression of proofs of the power rule (for f(x)=xn, f’(x)=nxn-1) was presented that differed 
depending on the scope (i.e., for natural-numbered exponents, for (non-zero) integer-numbered 
exponents, etc.), and the proofs of the product rule, quotient rule, chain rule, and inverse function 
rule were provided so that they could be used for the power rule proofs. 

Stepping down to practice. After the real analysis was presented, PPTs were invited to revisit 
the classroom scenario presented earlier. They were also asked on their homework to evaluate 
the pedagogical quality of two other explanations that were limited in scope, which we called the 
Perimeter statement (“The perimeter is just the sum of all the side lengths”) and the Add zero 
statement (“Remember, to multiply a number by ten, just add a 0 to the end.”). Finally, PPTs 
were asked write a journal entry in which they reflected on: “What, if anything, did you find 
helpful for your teaching in this week’s class? If there were helpful aspects, specify in what ways 
they might influence your teaching – if nothing was helpful, explain why.” 

 
Methodology 

Research Context, Participants, and Data Collection 
We designed an experimental real analysis course in which each session was designed using 

the model presented in Figure 1b and described above. We implemented this course with 32 
PPTs, 31 of whom agreed to participate in our research study. In this paper we focus on the 
Attention to Scope module, which took place across two 100-minute sessions. We collected and 
analyzed three sources of data: (i) we audio- or video-recorded all students collaboratively 
working on the module’s activities; (ii) we collected their homework responses to the Perimeter 
statement and the Add zero statement; and (iii) we collected their reflective journal assignments 
for what they learned from these modules.  

Analysis 
We coded each source of data in the following way. For (i), to analyze PPT’s in-class 

activity, we had recordings from five tables (T1, T2, T3, T4, T5), each containing about six 
students. When the groups were analyzing Mr. Ryan’s exponent and power rule explanations, we 
used an open coding scheme in the style of Strauss and Corbin (1990) to capture the aspects of 
the classroom scenario to which the PPTs attended. When asked to cite the limitations of the 
proof of the power rule using the binomial expansion, we recorded each group’s answers and the 
justification for their answers. For (ii), when coding the homework responses, we determine if 
the PPTs mentioned a limitation in scope for the statement and whether this limitation in scope 
was mathematically accurate. For (iii), we used an open coding scheme to document the category 
of responses that were present in PPT’s reflective journal entries. 

  
Results 

We organize the presentation of results from our analysis in terms of their support for three 
particular claims: Claim 1) When evaluating the pedagogical quality of a teacher’s statement, 
PPTs increased the attention they gave to the mathematical scope and limitations of a statement; 
Claim 2) PPTs valued the idea of attending to the scope and language of an explanation for their 
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teaching; and Claim 3) Our model contributed to the goals of the module, particularly via the use 
pedagogical discussions to motivate the real analysis and vice versa. 

To document Claim 1, we argue that PPTs showed limited attention the scope of Mr. Ryan’s 
explanations at the start of the module, but that PPTs showed increased attention to scope on 
their homework assignment. When considering Mr. Ryan’s explanations at the start of the 
module, we note that all tables were engaged with the task, and all evaluated the pedagogical 
quality of the exponents statement and the power rule statement negatively and gave reasons for 
their justification. At each table, a number of pedagogical concerns were raised. These included, 
for example, concerns about what students might understand ‘repeated multiplication’ to mean 
(e.g., “2x3x5x7” (T1)), and whether ‘bringing down the exponent to the front’ might be unclear 
(e.g., “It could be 23, not 6” (T3)). However, for some tables, this was the extent of their 
evaluations – focusing on the ‘explanation of the mathematics’ and not the ‘mathematical 
aspects of the explanation.’ Indeed, specifically in consideration of scope, only two tables (T3 
and T4) attended to the limitations of scope for both statements, one table (T5) considered the 
limitation of scope with the exponents statement but not the power rule statement, and the other 
two tables (T1 and T2) did not attend to scope at all. That is, only 2 of 5 tables were consistent in 
their attending to the limited scope of both explanations. In contrast, however, on the homework 
assignment, both for the Perimeter and the Add Zero statements, all 31 PPTs correctly noted the 
limited scope of these statements. In addition, the quality of their attention to mathematical scope 
in the HW responses also increased. Even for the two tables that did so initially (T3 and T4), the 
exploration of the mathematical limitations of the statements was relatively narrow – they did not 
attempt to exhaust the possible scenarios. Each table only identified one instance where the 
power rule statement was limited (i.e., sin2(x)) – neither table discussed, for example, the 
derivative of ex. In the HW exercises, however, the quality of the PPTs exploration of 
mathematical limitations was richer and more exhaustive. Both within individual responses as 
well as collectively across all PPTs, there was greater variety of limitations referenced (i.e., 
straight/curved, closed/open, exterior/interior lines, single/composite figures, 2D/3D) – indeed 
some of their discussions went beyond what was initially anticipated. We regard both the 
increased number of PPTs as well as the improved quality of responses as supporting Claim 1. 

We document Claim 2 based on PPT’s written reflections on what they learned from this 
module. In general, a common theme from PPT’s written reflections was that they specifically 
valued the desirable pedagogical idea of attending to the scope and language of an explanation 
for their teaching – primarily addressing the mathematical precision of their language with 
students. Of the 27 PPTs who submitted reflections, 25 identified this idea as both: i) specifically 
stemming from the real analysis module; and ii) valuable for their teaching. We see both of these 
aspects in the following response that is representative of their reflections: “This lesson made me 
realize that as a teacher I must pay close attention to what I am saying. When I make statements 
that have errors, I need to know what loopholes or misconceptions held in my statement and be 
conscious of these as I create examples and answer questions” (S1). Here, it is worth reminding 
the reader that the PPTs were not obliged to say that they learned anything useful from the real 
analysis class (an option that some PPTs chose when reflecting on other modules). Within their 
statements, a few subthemes about implementation considerations arose: 1) scaffold definitions, 
beginning simple but getting increasingly rigorous (6 responses); 2) make sure explanations were 
not just procedural (5 responses); and 3) take into account the teaching context when considering 
the rigor and accessibility of explanations used (7 responses). In summary, we take this as 
evidence that PPTs saw pedagogical value in this module. 
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Lastly, we consider Claim 3 about the contribution of the model toward these aims. Notably, 
the data supporting this claim is anecdotal; however, we regard reflection on the model as 
important, and the responses from some students as suggestive about its contribution. First, we 
explore the possible value that the pedagogical situation may have added to the real analysis. 
Within PPTs’ evaluation of Mr. Ryan’s statements initially, pedagogical quality hinged 
somewhat on the mathematical scope and limitations. Thus, when transitioning to the real 
analysis proofs, PPTs appear to have given additional gravitas to considering mathematical 
limitations because of the related professional value, and their sense of the proofs may have been 
similarly tied to these limitations. As one instance, upon realization that the first power rule 
proof was limited to N, one student concluded: “This proof takes anything that I’ve ever believed 
in... Like here’s a proof. Not anymore! Like this is the proof that I’ve always taught. And now, 
I’m like, everything about this is wrong” (T3). That is, the negative pedagogical evaluations 
appear to have prompted further mathematical motivation. Second, we explore the potential 
value that the real analysis may have added to accomplishing the desired pedagogical aims. 
Notably, the sequence of real analysis content explicitly modeled this attention to scope. And 
although one might do this without real analysis, at least some PPTs made this link and reflected 
on the value: “Seeing the connection between the analysis content and two very different 
concepts taught in high school was particularly useful.... the progression we took in the proofs 
from each set of numbers was a very elegant way of showing the different methods of proof, 
showing the flaws within each…” (S6). We see these – and other – comments as supporting the 
idea that the interaction between pedagogical discussion and real analysis was mutually 
beneficial to developing both.  
 

Discussion and Conclusion 

The analysis and reporting in this paper of one module from an experimental real analysis 
course – a single case study – sought to explore the broad issue of how advanced mathematics 
courses can be designed to inform PPTs pedagogical practice. In particular, the data from the 
study support the claim that, after engaging in the ‘Attending to Scope’ module from the real 
analysis course, the PPTs both increased their attention to (Claim 1) and valued (Claim 2) the 
desirable pedagogical practice of attending to the mathematical scope and limitations in teachers’ 
explanations. By design, the real analysis content was both tightly connected to and framed by 
this pedagogical practice; however, as was evident from some of the tables of PPTs (i.e., T3, T4), 
one does not have to learn real analysis to be able to attend to the scope and limitations of 
secondary mathematics explanations. However, since a real analysis course already sort of 
inherently models this idea in both the precision of statements and progression of proofs, it 
seems sensible to exploit this connection for teachers. Indeed, the teachers in this study, overall, 
increased their attention to and valued this pedagogical practice. The anecdotal evidence for 
Claim 3 also seems to support at least one of the ways in which the model may have facilitated 
these goals. Thus, we see this as evidence that by framing real analysis content with pedagogical 
situations, in addition to learning real analysis, PPTs can also learn important teaching ideas. 
Further work studying how best to mathematically prepare secondary teachers is needed, 
including the degree to which this particular model is productive and/or needs refinement, and 
could help guide improved design and implementation of advanced mathematics courses for 
secondary teachers. 
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This preliminary report offers initial results from a study designed to begin identifying             
characteristics of digital literacy in mathematics. Undergraduate students in a three-course           
honors calculus sequence were provided with tablet computers as part of a digital literacy              
initiative and digital tasks were integrated into the courses. Student work was analyzed and              
coded for type of ICT tool use and possible components of mathematical digital literacy. The               
specific types of tasks developed for and integrated into the class will be discussed below with                
specific illustrative examples highlighted. The aspects of mathematical digital literacy          
illuminated by student work will be outlined, with some initial conclusions and conjectures about              
the nature of digital literacy in mathematics. 
 
Keywords:​  Digital Literacy, Technology, Calculus, Preliminary Report 
 

Introduction and Background 
 

The ever-increasing role of technology in everyday life and work prompts questions about             
the skills and understandings needed for effective use of that technology. The range of              
information and communication technology (ICT) tools grows ever greater, and the ability to             
obtain, manage, synthesize, analyze, and communicate information is constantly changing and           
adapting. As technological capabilities rapidly change, the accompanying skills and          
understandings necessarily shift in response. Competence and knowledge with technological          
tools is described by and named with a variety of terms, the most prevalent of which is ​digital                  
literacy​ , a term first defined by Gilster (1997) as “the ability to understand and use information                
in multiple formats from a wide range of sources when it is presented via computers” (p. 1). It is                   
now frequently used as an umbrella term with a variety of implications, though there is general                
agreement that digital literacy involves interaction and integration of a number of proficiencies,             
such as procedural competence with ICT tools, cognitive skills for using them effectively, and              
social and communication skills (Avriam & Eshet-Alkalai, 2006; Goodfellow, 2011). The use of             
the word “digital” is itself far from universal, with some sources variously referring to media               
literacy, digital and media literacy, ICT literacy, or related specialized terms. This paper will use               
the term “digital literacy” to encompass the wide variety of terms used in order to draw on the                  
valuable contributions of multiple approaches.  

Educational Testing Service (2003) characterized seven proficiencies that characterize          
general digital literacy: Define, Access, Manage, Integrate, Evaluate, Create, and Communicate.           
Specific applications of the term might include or alter those proficiencies within the context of a                
particular subject. In education, digital literacy has been increasingly emphasized in general            
(Gutierrez & Tyner, 2012) and in mathematics specifically (NCTM, 2000, ​National Governors            
Association Center for Best Practices & Council of Chief State School Officers, 2010), and has               

20th Annual Conference on Research in Undergraduate Mathematics Education 111320th Annual Conference on Research in Undergraduate Mathematics Education 1113



 

been shown to have a positive impact on student learning ( ​Li & Ma, 2010). ICT tools are also                  
increasingly integrated into the work of research mathematics (Monroe, 2014).  

Despite the increased emphasis on and integration of ICT tools within mathematics,            
mathematical digital literacy is not well-defined. The competencies with ICT tools specific to             
mathematics would be of particular concern to educators, curriculum developers, and many other             
stakeholders within the field. This presentation describes an investigation into digital literacy            
among undergraduate students in an honors calculus sequence. By assessing how students            
engaged with digital tools that were often new and unfamiliar in order to solve mathematical               
problems and understand mathematical concepts, preliminary characteristics of mathematical         
digital literacy emerge. 

 
Context and Methodology 

 
Setting and Data Collection 

Undergraduates in a three-course honors calculus sequence were provided with tablet           
computers as part of a digital literacy initiative at their university. These courses (Honors              
Calculus I - 22 students; Honors Calculus II - 22 students; Honors Calculus III - 18 students)                 
covered the traditional material of the calculus sequences in a “late transcendentals” ordering. In              
the past, the mathematics program had not emphasized the use of digital tools, so integrating               
them into the work of the course provided an opportunity to observe emergent digital literacy in                
mathematics and investigate an initial characterization. The primary digital tools introduced to            
the students by the instructor were Wolfram Mathematica and the online Desmos graphing             
calculator.  

An initial assignment allowed students to use any tools they might choose and consisted of               
problems for which digital ICT might be useful, but which focused on concepts already familiar               
to students. For example, finding the zeros of a sixth degree polynomial or determining the               
domain of a ratio of logarithmic functions. This served as an initial assessment of how students                
chose to use such tools. Throughout the semester, two types of digital tasks were used to assess                 
student interaction with and use of ICT tools - digital assignments and digital exams. These were                
supplementary to the traditional written course content.  

Digital assignments were primarily meant to provide students with base-line experience           
using digital tools to solve mathematical problems and were typically assigned as handouts or              
pdf files related to the content that had recently been discussed in lecture. A set of instructions                 
led students through the use of Mathematica or Desmos (depending on the content) to visualize               
and solve a set of problems. Often the instructions would require students to choose parameters               
to create their own individualized problems. For problems that required more advanced coding,             
students would be provided with a template file to edit. During in-class digital assignments, the               
instructor would typically provide demonstrations and move around the classroom to help            
students with syntax and interpretation. Students submitted their work digitally as either a             
Mathematica Notebook file or a link to a Desmos graph. Though an indirect consequence of               
using these ICT tools may have been an increase in student understanding of content, the primary                
focus of digital assignments was on gaining literacy with digital tools and accessing new              
problems and information via their use. 

Digital exams were completed in the class period following a written exam. The problems on               
the digital exam often required students to create digitally generated images/animations and to             
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make computations that could not be completed by hand in a reasonable amount of time. The                
exams were “open resource” - students were allowed to use any digital resource at their disposal                
except for online help forums, including those not discussed by the instructor. This permitted              
analysis of the ways in which they chose to use digital tools. The TPACK framework (Mishra &                 
Koehler, 2006) and Howland, Jonassen, and Marra’s (2012) five dimensions of learning            
involving ICT tools served as general guides for designing the integration of digital tools into               
assignments and exams in each course. 

Student work was collected for each digital assignment and digital exam. On the initial              
assignment and digital exams, students were asked to identify what digital tools they used. At the                
end of the course, a survey about their attitudes toward and use of digital tools gave additional                 
information. The first digital assignment and the digital exams permitted students the most             
freedom in selecting and utilizing digital tools and were therefore the first to be analyzed for                
characteristics of digital literacy. Open coding (Strauss & Corbin, 1990) was used to develop              
coding schemes that described student use of and interaction with the digital tools.  

 
Examples of Digital Tasks 

An example of a digital assignment.​ Early in the Calculus I course, students were required to                
complete a digital “Desmos” assignment asking them to explore limits involving trigonometric            
functions. The first portion of the assignment asked students to consider the limit using            lim

x→0 bx
sin(ax)  

the function as graphed in an existing Desmos file. Students used the Desmos “sliders” to               
evaluate the limit for various values of ​a and ​b​ . Eventually, students choose their own unique                
values to verify the pattern. ​The assignment included a similar exploration for 3 other common               
trigonometric limits: , , and .lim

x→0
ax

sin(bx) x cot(x)lim
x→0

a lim
x→0 bx

1−cos(ax)  

Apart from the digital assignment, students were provided with a rigorous proof of the first               
computation. As with many digital assignments, this one provided exploration, experience, and            
visualizations that would later support formal computations, theorems, and proofs. During the            
assignment, the instructor reminded students that the use of Desmos itself as a tool was only the                 
secondary purpose of the assignment. The primary purpose of this assignment was to encourage              
students to begin using technology when presented with an apparently intractable problem.  

An example of a digital exam.​ Figure 1 shows a Calculus II Digital Exam problem on Taylor                 
series that is impractical to solve by hand. ​To illustrate the ways in which students used digital                 
tools to solve problems and communicate their solutions, samples of student work on this              
problem are included in Figure 2 below and discussed later. 

 
Figure 1: A Calculus II Digital Exam Problem 

 
The nature of the problems in both types of tasks was varied in order to expose students to                  

different ways ICT tools might be useful and to highlight the various ways students chose to use                 
them.  
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Preliminary Results 
 

The full analysis of student work provided rich data on use of ICT tools. Below, a very brief 
overview of the initial results is given. One specific example is used to illustrate how the digital 
tasks highlighted the variety of uses of digital tools and how the data led to this preliminary 
characterization of mathematical digital literacy. 

 
Notable Results from Surveys 

Thirty-five students responded to the post-course survey. When asked to rate their comfort             
level with digital tools at the beginning and end of the semester on a scale of 1 (not comfortable                   
at all) to 10 (very comfortable), every student reported the same or greater levels of confidence.                
The mean change in self-reported comfort level was 1.6 with a median change of 1. All students                 
reported using some technology outside of the digital assignments and course requirements.  

When students were asked to describe how they used digital tools in the class, the most                
common response was for visualization. In particular, students noted the value of Desmos for              
graphing equations and of Mathematica for graphing three-dimensional solids. They also valued            
the ability to quickly perform calculations and to check answers, though many noted that              
learning the syntax for Mathematica was difficult, at least initially.  

 
An Example of Results From Student Work 

Analysis of student work on the digital tasks illustrated the different ways in which students               
engaged with digital tools. For one instance, two examples of student work on the problem from                
Figure 1 are shown in Figure 2: 

 

Student 1 submission of #3 Student 2 submission of #3 

 

 
Figure 2: Samples of student work on Calculus II Digital Exam problem #3 
 
Both students chose Mathematica for this particular problem. This is not surprising given the              

nature of the problem and the tools with which most students were comfortable. However, their               
processes differ. Student 1 submitted a concise and correct solution. Student 2 also submitted a               
correct solution but copied previously used code provided by the instructor to find the 8th Taylor                
polynomial. Note that Student 2 did not bother to change p8 to p15 even though the problem is to                   
find the 15th Taylor polynomial. A comparison suggests that Student 1’s solution exhibited             
greater digital literacy since they were comfortable enough with the content and syntax to              
simplify their code whereas Student 2 attempted to mimic a previous application of digital tools. 
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Toward an Understanding of Mathematical Digital Literacy 
Students tended to use digital tools in the following major ways:  
1. Determine which tool should be used to solve a given problem​ .  
2. Learn and apply syntax of technological tool (sometimes based on template)​ .  
3. Decide how to translate mathematics into input in chosen tool​ .  
4. Interpret technological results to find a proposed solution.  
5. Use technology to justify that a proposed solution is correct​ .  
6. Display and submit answer and supporting work digitally.  
Though there was much variation in the particular ways students engaged in these activities              

with ICT tools, they fell into these six main categories of use. Such a categorization permits                
some initial conjectures about components of mathematical digital literacy: 

Component 1​ : Ability to assess and choose tools based on potential use along multiple              
proficiencies 

Component 2​ : Translation between digital and mathematical contexts, including multiple          
representations (notational, graphical, syntactical) and digital and       
mathematical troubleshooting 

Component 3​ : Using ICT tools to enhance or complement (rather than replace) mathematical             
understanding 

Component 4​ : Using ICT tools to communicate mathematics 
These components are related to the seven proficiencies with ICT tools described by ETS              

(2003), but are specific to mathematics. A more nuanced and detailed analysis is underway and               
will be described in greater detail in the proposed presentation. 
 

Conclusion 
 

Work remains to be done to fully characterize digital literacy for mathematics. However, this              
preliminary study supports the idea that a focus on learning and doing mathematics within digital               
environments increases student facility and comfort with ICT tools. The ways students utilized             
digital tools provides some initial indications of important components of digital literacy.  

 
The Proposed Presentation 
The proposed preliminary report would include the information summarized in this proposal in             
addition to more specific examples of student work and more careful and nuanced descriptions of               
components of digital literacy. As a preliminary report, the authors hope to use this as an                
opportunity for feedback from experienced and engaged mathematics educators to shape future            
research and analysis on this subject. In addition to welcoming critical assessment and feedback              
of this preliminary research, the authors propose the following questions to be considered by the               
audience: 

1. How do we, as a research community, move toward a fuller understanding and             
description of what digital literacy means in mathematics? What research designs might            
be useful or beneficial? 

2. How does such an understanding remain responsive to changes in availability and            
capability of digital tools? 
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3. How might we begin to understand the relationship between mathematical digital           
literacy, mathematical conceptual understanding, and proficiency with mathematical        
practices? 
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Blended Processing: Mathematics in Chemical Kinetics 
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This work investigates the following research question: How do non-major students understand 
and use mathematics to solve chemical kinetics problems involving integrated rate laws? 
Personal constructs, a blend of personal and social constructivism, serves as the theoretical 
framework for this study. Semi-structured interviews with 36 general chemistry students, 5 
upper-level physical chemistry students, and 3 chemical engineering students were conducted 
using a think-aloud protocol. Audio and written data were collected using a Livescribe pen. The 
audio data were transcribed, and screenshots of students’ written data were inserted into the 
transcripts; these transcripts were refashioned into problem-solving maps. Open coding of the 
problem-solving maps reveals initial themes regarding students’ understanding and use of 
mathematics when solving chemical kinetics problems. Blended processing was used as a 
methodological framework to guide the coding process. Through this analysis, distinctive types 
of blended processing have emerged. 

Key words: Rates, Problem Solving, Blended Processing, Chemistry, Kinetics 

Understanding fundamental chemistry concepts is intrinsically tied to understanding 
mathematical symbolism and operations, as well as the ability to translate between equations and 
physical reality. This nature has led researchers, such as Becker and Towns (2012), to investigate 
students’ understanding and use of mathematics in scientific contexts. These lines of inquiry are 
providing insight to researchers and practitioners on how to best enhance students’ abilities to 
interpret and use mathematical expressions with conceptual reasoning. 

Multiple studies have shown that students need a rich conceptual understanding of algebra 
and calculus in order to succeed in the physical chemistry classroom (Derrick and Derrick, 2002; 
Hahn and Polik 2004; Nicoll and Francisco, 2001). Thompson and colleagues showed that 
students struggled when writing mathematical expressions to describe a physical process (Bucy, 
Thompson, and Mountcastle, 2007; Thompson, Bucy, & Mountcastle, 2006). Conversely, 
students also demonstrated difficulty interpreting physical meaning from mathematical 
equations. In another study, students seemed to hold an isolated understanding of topics in 
physics and mathematics (Pollock, Thompson, and Mountcastle, 2007). This was studied further 
by Wemyss, Bajracharya, and Thompson (2011) who showed that when students are given 
analogous questions in the context of mathematics and physics, they perform better on the 
former. This finding is in line with other studies on students’ understanding of mathematics in 
the context of science (Bassok & Holyoak, 1989; Beichner, 1994; Black & Wittmann, 2007; 
Christensen & Thompson, 2012; Cui, Rebello, & Bennett, 2005, 2007; Cui, Rebello, Fletcher, & 
Bennett, 2006; Orton, 1983a, 1983b; Shaffer & McDermott, 2005; Zandieh, 2000). 

Problem solving is also a key component in the learning and practicing of chemistry (Bodner 
& Herron, 2002; Summerfield, Overton, & Belt, 2003). As Maloney (2011) found, there are 
many problem-solving strategies or steps required to solve quantitative problems. In quantitative 
problem solving, there is often an initial qualitative analysis to understand what the problem is 
asking (Reif, 1983). This conceptual reasoning step is not only important and beneficial to 
students, but also demonstrates problem-solving expertise (Hull, Kuo, Gupta, & Elby, 2013; 
Kuo, Hull, Gupta, & Elby, 2013; Reif, 1983). Such research has led to the development of 

20th Annual Conference on Research in Undergraduate Mathematics Education 111920th Annual Conference on Research in Undergraduate Mathematics Education 1119



problem-solving strategies to help students mirror expert-like behaviors (Heller, Keith, & 
Anderson, 1992; Huffmann, 1997; Reif, 2008; Van Heuvelen, 1991). However, examining how 
students use and understand the equations when problem solving in science contexts has rarely 
been studied. 

Chemical kinetics was chosen as a rich context to study quantitative problem solving among 
chemistry students because of its highly quantitative nature. Furthermore, this work contributes 
to two key gaps in the literature. In their recent review, Bain and Towns (2016) revealed that 
research in the area of chemical kinetics at the undergraduate level are rare, unlike other 
chemistry content areas. Additionally, the National Research Council reported that research on 
upper-level students and courses were scarce in discipline-based education research (DBER) 
(Singer, Nielsen, & Schweingruber, 2012). This study targets these literature gaps by 
investigating how both introductory- and upper-level students use and understand mathematics in 
the context of chemical kinetics problems. Therefore, the following question serves as the 
guiding research question for this work: How do non-major students in a second-semester 
general chemistry course, a physical chemistry course, and a chemical engineering course 
understand and use mathematics to solve chemical kinetics problems involving integrated rate 
laws? 
 

Theoretical Underpinnings 

The theoretical framework that guides this study is Kelly’s (1955) theory of personal 
constructs. This theory is a combination of personal and social constructivism that posits that 
while individual’s knowledge constructions may differ, they can be similar to one another 
because of social interaction. The theory of personal constructs provides an appropriate 
theoretical lens to investigate how individuals understand and use mathematics to solve kinetics 
problems in that each participant has their own individually constructed understanding of the 
content. 

Blended processing serves as the methodological framework for this study. This framework 
builds on the basic tenant of constructivism, knowledge as being constructed in the mind of the 
learner, by describing how an individual’s different knowledge constructions interact, or “blend” 
(Bodner, 1986; Bodner, Klobuchar, & Gleelan, 2001). Blended processing is a framework 
stemming from the field of cognitive science that explores human information integration 
(Coulson & Oakley, 2000). It provides a way to describe and understand individuals’ mental 
spaces (knowledge constructions) and their interactions (Bing & Redish, 2007; Hu & Rebello, 
2013). When multiple mental spaces are activated by external stimulus, knowledge elements 
from each space interact and are organized in a “blended space”, allowing an individual to make 
sense of cognitive input in an emergent fashion (Bing & Redish, 2007; Coulson & Oakley, 2000; 
Fauconnier & Turner, 1996, 1998, 2002; Hu & Rebello, 2013). 
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Methods 

The methods outlined below were chosen as they are consistent with the theoretical 
underpinnings guiding this work and allow for the investigation of student problem solving in 
chemical kinetics. 

Data Collection 
Semi-structured individual interviews were selected as the primary mode of data collection. 

A stratified purposeful sampling technique was employed, providing a participant sample of 
second-semester general chemistry students and upper-level physical chemistry students (Patton, 
2002). The upper-level students were sampled from two courses: a physical chemistry for 
biological and life science majors course and a chemical reactions engineering course. Non-
major science, technology, engineering, and mathematics (STEM) students served as the target 
study sample because they are a larger population both at the introductory- and upper-level. 
Additionally, because the ability to integrate different knowledge domains when solving a 
problem demonstrates expert-like reasoning, this exploratory study aimed to explore how 
students in interdisciplinary fields (like engineering) solve problems. 

A pilot study comprising of four second-semester general chemistry students was conducted 
initially to test the viability of the interview protocol (Table 1). Audio and written data were 
collected via a Livescribe pen. The pilot interviews were conducted by a team of two graduate-
student researchers in order to develop a shared understanding of the interview environment, 
prompts, and probing style. After preliminary analysis and discussion by the research team, the 
full study interviews were conducted independently by one the two graduate-student researchers.  
This data collection occurred over two semesters, yielding 36 introductory-level and 8 upper-
level interviews (Table 1). 
 
Table 1 

Interviews by population and semester 

Study population 
Number of students interviewed 

Fall 2015 Spring 2016 
Pilot study (second-semester general chemistry) 4 - 
Second-semester general chemistry (non-chemistry STEM majors) 17 19 
Physical chemistry for biological and life science majors - 5 
Chemical reaction engineering (chemical engineering majors) - 3 
 

The interview protocol consists of four prompts. Two prompts provide the participants with 
an integrated rate law equation and ask them to describe it. The other two prompts are chemical 
kinetics questions that are reminiscent of homework- or exam-style questions. These prompts 
provide students with data and information about a chemical reaction scenario, asking them to 
reason about a relevant chemical kinetics quantity. 

Data Analysis 
The data were transcribed verbatim. Participants’ written work were inserted into each 

transcript where appropriate. In order to make the data more manageable for analysis, problem-
solving (PS) maps were generated for each interview. Discrete problem-solving steps in student 
responses were identified. These steps and the corresponding transcript and written data were 
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organized into tables chronologically. Table 2 includes an excerpt from one of the pilot study PS 
maps. 
 
 
 
 
 
 
 
Table 2 

Excerpt from Trip’s PS map (he was prompted to explain the second-order integrated rate law) 

Student’s problem solving PS Steps 
“Okay, so, this is the second-order integrated rate law.” Recognizes 

equation 
“And so, it starts with, you have your rate equation for a second order reaction. And then you, if 
you integrate both sides with respect to time. dt. Then you end up, and then you rearrange it and 
you get this.” 

 

Recognizes 
origin of 
equation 

“So, basically, the purpose of this is so you can have a function of concentration versus time. 
Instead of just concentration versus rate. That way it's easier to use in like the lab.” 

Highlights 
purpose of 
equation 

 
Keeping the methodological framework of blended processing in mind, multiple rounds of 

open coding of the PS maps were conducted (Patton, 2002). Often times codes were assigned to 
excerpts of data as they were organized as steps in the map, meaning a single problem-solving 
step received one code. Other times multiple codes were assigned to the data in a single step; 
further, there were instances in which multiple, consecutive steps received a single code. This 
coding process is ongoing, where the code book is continually being refined via constant 
comparison methodology (Patton, 2002). 
 

Preliminary Results 

Preliminary analysis shows variation in how students integrate knowledge domains to make 
sense of concepts to solve kinetics problems. A non-blended understanding has the potential to 
limit students’ problem-solving abilities, while a blended understanding serves to support more 
productive problem solving. Our data suggests that blended processing is not a binary 
phenomenon; rather, it is dynamic spectrum. For example, when discussing the purpose of a rate 
law, a general chemistry participant, Hazel, argued that the equation is useful for solving for a 
third variable whenever you are given two of the values. This type of understanding could limit a 
student’s ability to understand and make sense a more authentic problem. In contrast, more 
blended understandings of concepts, such as those demonstrated by other general chemistry 
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participants, Trip and Damien, where the rate law is interpreted in terms of relationships and 
changes between variables, are likely to be more supportive of successful problem solving. 

Preliminary analysis has also revealed distinctive types of blending processing in students’ 
problem solving: mathematics blending, chemistry to mathematics, and mathematics to 
chemistry. Mathematics blending describes student blending of conceptual and formal 
mathematical reasoning. The second type of blending describes when students take chemistry 
concepts/information and translate that to mathematical concepts/symbolism. Alternatively, there 
is also evidence of mathematics to chemistry blending. This is the most common type of 
blending demonstrated by the pilot study interview participants. While we have only done 
preliminary analysis on the general-chemistry-level interviews, we do see similar types of 
reasoning with upper-level physical chemistry students. 

We have also noted a variation in problem solving approaches, varying from very simple 
approaches utilizing one method with little reasoning to more complex approaches trying 
multiple methods, often with conceptual predictions and justifications. The latter represents a 
more sophisticated approach to problem solving, as it draws on multiple types of understanding 
and explicitly incorporates justification for problem solving steps.  We plan to explore the 
relation of 1) success in problem solving and 2) complexity of problem-solving approaches to 
blended processing. 
 

Conclusions and Questions 

While our preliminary results suggest that there is evidence of blending among our student 
participants, this evidence is sparse and irregular. Chemistry faculty members want mathematics 
to be connected to (blended with) the chemistry represented in these problems. Ultimately, 
meaningfully blending and integrating mathematical understandings to science and engineering 
concepts and problem solving will help students develop a deeper understanding of STEM 
disciplines. Therefore, practitioners must explicitly model the cognitive practices of blended 
processing. Furthermore, they should provide students the time and space to practice blending 
and assess blended processing on course assessments. 

The following questions outline potential avenues for investigation. 
1. How is student problem-solving success related to blended processing? 
2. How is student problem-solving sophistication/complexity related to blended processing? 
3. What is the nature of chemical kinetics assessment in the participants’ courses? 
4. How do we foster this blending across disciplines in our classrooms?  
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Raising reasoning through revision: A case study of an inquiry-based college geometry 
course 

 
Janessa Beach    Rebecca-Anne Dibbs 

         Texas A&M-Commerce       Texas A&M-Commerce 

Geometry is the subject where U.S. students are weakest on international assessments, but 
college geometry is an area of proof that is understudied. Since geometry is secondary 
students’ only exposure to proof, it is vital our secondary teachers can prove effectively in 
this content area. The purpose of this case study, drawn from a larger project, was to 
understand how, if at all, pre-service teachers’ proof schemes became more axiomatic 
throughout a one-semester inquiry-based college geometry course. Participants in this study, 
Kayla and Lindsey, were pre-service teachers enrolled in an inquiry based college geometry 
course. Although Kayla had two prior proof courses and Lindsey had none, both participants 
were using a perceptual proof scheme at the beginning of the semester. However, by the end 
of the semester, the chance to revise their proofs and discuss problems with their peers 
helped both students advance to more axiomatic geometric thinking. 

Key words: College geometry, inquiry based learning, proof  

Compared to other nations, the students of the United States of America are floundering 
in geometry. The Trends in International Mathematics and Science Study (TIMSS) evinced 
that twenty-one educational systems, including China, Japan, Israel, and England, have 
higher geometry scores than the U.S. (Mullis, Martin, Foy, & Arora, 2012). This deficiency is 
because pre- and in-service teachers possess an inadequate understanding of the structure of 
geometry. Despite this difficulty for students and educators, college geometry remains 
severely under-researched (Speer & Kung, 2016). 

Geometry arises from a set of undefined terms and axioms through which all other 
theorems and definitions are constructed. Hence, a thorough understanding of geometry 
involves a deep understanding of proof; yet, teachers possess a narrow understanding of 
proof. Studies indicate that pre- and in-service teachers believe proof only helps explain ideas 
used in mathematical concepts, and they do not recognize the ability of proof to systemize 
results (Mingus & Grassl, 1999; Knuth, 2002b). Teachers lack the geometry content 
knowledge required for geometry proofs, and they are convinced by empirical evidence as 
well (Jones, 1997; Knuth 2002a). Consequently, teachers with inadequate proof and geometry 
understanding cannot be expected to impart adequate proof and geometry knowledge to 
students. 

Pre-service teachers in undergraduate proof courses do not thoroughly understand what 
arguments qualify as proof (Weber, 2001). They lack comprehension of the mathematical 
language and concepts necessary to proof (Selden, 2012), and they possess an incomplete 
understanding of definitions and theorems (Weber, 2001; Selden & Selden, 2008). In typical 
direct-instruction, lecture proof courses, students are expected to develop proficient proof 
skills with little guidance. Without recurrent feedback, students will likely cultivate 
ineffective strategies (Weber, 2001). These ineffective strategies are typically proof schemes 
dependent upon external and empirical convictions, such as the authoritarian, ritual, and 
perceptual proof schemes (Harel & Sowder, 2007). In order to successfully write a proof, 
students need to employ effective strategies or proof schemes with arguments based on 
axioms and logical deductions, such as the intuitive and structural axiomatic proof schemes.  
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A typical proof learning environment is dominated by the instructor with little student 
participation – an instructor-centered environment (Selden, 2012; Padraig & McLoughlin, 
2009). This learning environment affects teachers’ conceptions of proof, conceptions already 
determined to be limited (Mingus & Grassl, 1999; Knuth, 2002b). The typical instructor-
centered learning environment, where students copy instructors’ proofs, does not induce the 
logic and proof techniques needed to construct a proof in all students (Harel & Sowder, 
1998). Alternatively, a proof course should consist primarily of student-student and student-
teacher interactions (Selden & Selden, 2008). One potential approach is an inquiry-based 
learning pedagogy where students are active learners, and the instructor is responsible for 
facilitating students’ learning (Padraig & McLoughlin, 2009). 

The purpose of this study was to evaluate the effects of an inquiry-based learning 
environment on students’ development of proof comprehension throughout an undergraduate 
geometry course. Through this study, we can determine whether or not this type of 
instructional environment is a potential solution to pre-service teachers’ shallow 
understanding of proof and geometry. Mathematicians and teacher educators can then make 
more informed decisions on how to structure college geometry courses. We argue that the 
revisions present in an inquiry based classroom were vital to help students develop from a 
perceptual to a more axiomatic proof scheme.  

 
Methods 

The theoretical perspective used in this project was the reduced Toulmin model of 
argumentation. In mathematics education literature, there are two formats in which the model 
appears. I will distinguish them as the reduced Toulmin model (Figure 1) and the extended 
Toulmin model. The reduced model consists of three types of statements that represent 
different pieces of the argument, and the extended model consists of six statements. The three 
statements in the reduced Toulmin model are as follows:  The data (D) is the foundation on 
which the argument is based. The conclusion (C) is the statement the arguer intends to 
convince. The warrant (W) justifies the relationship between the data and the conclusion. 
When students are asked to prove a claim, the conclusion is correct because it is given to the 
students. However, the data is typically a mixture of right and wrong. This amalgamation 
occurs because of the warrant the student applies – their reasoning from a piece of 
information to the conclusion. Although a warrant is specific to an argument, a warrant-type 
is a category of warrants with similar properties. 

 
Figure 1. Reduced Toulmin model. Adopted from (Inglis, Meija-Ramos, & Simpson, 2007). 

This study took place at a midsized, rural, research university in the South, and the 
students who participated were those enrolled in a college geometry course based upon Miller 
(2010) geometry course notes. The data collected was part of a larger study; this study is a 
case study of two students – Kayla and Lindsey. Both Kayla and Lindsey are Caucasian 
females whose majors were math education. Kayla was classified as a senior and had two 
prior proof courses, and Lindsey was classified as a freshman with no prior proof experience. 
Students in the course were provided with course notes that presented open-ended problems 
related to a specific learning goal. For each new assignment, students were assigned a 
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specific problem from the provided course notes and a group. If a group appeared to be 
making little progress or moving in an unproductive direction, the teacher would use guided 
questioning to redirect students’ thoughts. If multiple groups stopped progressing, the teacher 
would initiate a whole class discussion.  

To determine students’ proof comprehension, researchers examined the assignments 
students turned in. Students were allowed to revise and resubmit all assignments, and these 
were analyzed as well. Researchers also used observations to gain further understanding of 
students’ proof comprehension. As students discussed their ideas, a researcher sat behind 
them listening and taking notes on their interactions. 

The submissions were analyzed by assignment, and all the drafts from an individual 
participant were analyzed at the same time. After this initial reading of blinded assignments, 
researchers would journal their impressions of the coding and the trajectory exhibited in the 
multiple submissions. These journals were used to operationalize the proof schemes in Harel 
& Sowder (1998) and Harel (2007), and to construct the standards of evidence (Table 1).  

Table 1 
Standards of evidence 

Proof Scheme 
Warrant 

Identifiers 
 

Authoritarian 
(1) 

(1) Argument produced after intentional scaffolding or direct instruction from the 
teacher/student did not participate in the group’s reasoning, and/or writing process/The 
correct pieces of reasoning were discussed in class, and the argument does not arise from 
the students’ data. 

(2)  

Ritual (2) 

Student misapplies multiple axioms and theorems/Argument mirrors the format of a known 
correct argument, but the argument does not arise  
from the axiomatic system/Student restates the axiom or theorem as it is originally written 
despite the fact that the terminology does not relate to the context of the proof. 
 

Perceptual (3)  

Student refers to or provides only a diagram as justification for reasoning/The argument is 
driven by students’ perceptual observation of the figure he or she drew and not by the 
implications of axioms and theorems. 
 

Low Analytical 
(4)  

The argument follows the correct deductive process, but the student does not establish the 
definitions, theorems, or axioms the process utilizes/The argument follows the correct 
deductive process, but there is one instance in which the student relies on another lower 
warrant/The argument follows the correct deductive process, but at least one clarification 
statement is necessary for validity/The argument follows the correct deductive process, but 
an axiom or theroem is misinterpreted and misapplied. 
 

Intuitive 
Axiomatic (5) 

The argument is built from undefined terms and axioms, definitions, and theorems of an 
axiomatic system that is intuitively grasped such as Euclidean geometry. 
 

Structural 
Axiomatic (6) 

The argument is logical and made up of systematic application of axioms and theorems/If 
any portion of the argument could be clarified, the clarification is not necessary for the 
argument’s validity. 

 

Findings 

After analyzing the data, we mapped Kayla’s and Lindsey’s warrants throughout the 
course. Figure 2 presents a chronological summary of their proof scheme warrants. On all 
assignments, except Midterm Problem 3biii, students worked on the solutions with a group 
during class. 
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Figure 2. Proof schemes used throughout the semester 

The Viewing Tubes assignment asked students to determine the formula to find the area 
of the wall that can be seen through a tube. To accomplish this, students needed to establish 
that the two triangles resulting from the situation are similar. Kayla and Lindsey both started 
this assignment utilizing the perceptual proof scheme. In their claim that the triangles are 
similar, the students produced and were convinced by a diagram.  As they received feedback 
on their arguments, Lindsey maintained the perceptual proof scheme and Kayla’s reasoning 
regressed to the authoritarian proof scheme. 

Neutral Geometry Worksheet 4 (NG 4) required students to prove each point belongs to at 
least two different lines. Kayla’s warrant on her first draft of NG 4 is the ritual proof scheme. 
This first draft mirrors another worksheet utilizing the Neutral Geometry (NG) axioms, and 
Kayla successfully completed this previous worksheet. Kayla’s revisions to this assignment 
come from statements directly made by the teacher or a class discussion. Hence, as her drafts 
of NG 4 progress, Kayla’s reasoning becomes solely authoritarian. Lindsey’s exploration of 
the NG Axiom System, however, allowed her to garner a better understanding of how axioms 
develop and argument. The warrant on Lindsey’s first NG 4 draft is then the structural 
axiomatic proof scheme because she applies the axioms to form a valid deductive argument. 
Table 2 
Kayla & Lindsey’s initial NG proofs 
Kayla NG 4 Draft 1 Lindsey NG 4 Draft 1 
Let there exist 3 different points, (Calvin, Hobbes, One) 
(Figure 1). Assumption: Let there be a point, A. 

 

By Axiom 3, there exists at least one line, L. 

CASE 1: If the point A lies on Line L, then at 
least point is not on L, point B, by Axiom 2. 

If there exits at least one line (Calvin, One), (Hobbes, One), 
or (Calvin, Hobbes) by Axiom 3, there must also exist a pair 
of points (Calvin, One), (Hobbes, One), (Calvin, Hobbes) 
that are connected by L. (Figure, 2, 3, 4)(Axiom 1) 

Since points A and B are two different points, 
then by Axiom 4, another line, Line M contains 
points A and B. 
Because B does not lie on L, line L and line M 
are two different lines. Therefore, point A 
belongs to two different lines, Line L and Line 
M. 

 

CASE 2: If point A does not line on Line L, then 
by Axiom 1, at least two points, points B and C 
belong to Line L. 
By Axiom 4, since A and B are two different 
points, there exists a line containing both A and 
B, line M. 

By Axiom 2, there must also exist a point that does not 
belong to L. In Figure 2, (Calvin, One) belong to L while 
Hobbes does not exist on L. This similarly applies to Figure 
3 and Figure 4 when L consists of (Calvin, Hobbes) or 

By Axiom 2, there exists another point not on 
Line M, point D. 
Since Point A and Point D are two different 
points, then by Axiom 4, there exists a line 
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(One, Hobbes). Given Figure 4, Calvin also exists on a line 
consisting of (Calvin, Hobbes). Thus Calvin exists on 2 
lines (Calvin, One) (Figure 2) and (Calvin, Hobbes) (Figure 
4). 

containing points A and D. 

Figure 1, L containing (Calvin, One), there must exist a 
Hobbes not on L (Axiom 2). For all L containing two points 
there will be a third point not on L. By Axiom 4, any two 
points can be connected by a line. For the three points, 
Calvin, Hobbes, One, therefore there can be at least three 
lines (L, M, and N) (Figure 4) 

 
Because points A and D are two different points, 
and point D does not belong to line M or Line L, 
then Line M, N, and L are different lines. 
Therefore, point A belongs to 2 different lines. 
Line N and Line M. 

Neutral Geometry Worksheet Problem 3 (NG 6) assignment asked students to prove there 
exists a line not containing a given point on the NG Axiom System. Kayla, for the first time, 
exhibits analytical reasoning, and her warrant for her drafts is the low analytical proof 
scheme. Her argument follows a correct deductive process, but she does not utilize the 
axioms to establish truths. Also, she partially relies on the ritual proof scheme because she 
continues to use the complex notation from she mirrored in NG 4. Lindsey’ warrant is the 
structural axiomatic proof scheme be she produces a valid deductive argument. 

The last assignment analyzed in this study was Midterm Problem 3biii (Problem 3biii), 
and students were to prove, using the NG axiom system, that for any given point there exist 
two other distinct points such that the collection of points is non-collinear. Kayla maintains 
the reasoning she previous exhibited, and her warrant is the low analytical proof scheme. 
Again, she develops a correct deductive argument, and she is finally able to move past her 
ritualistic beliefs about arguments in the NG axiom system. For a portion of the argument, 
however, she still relies on the perceptual proof scheme. Although her reasoning exhibits an 
analytical characteristic, it is still hindered by preconceptions about proof. Lindsey 
maintained her reasoning level from NG 6. Her warrant on Problem 3biii is the structural 
axiomatic proof scheme – she produces a valid deductive argument. 

 

Discussion 

Overall, both students began the semester as perceptual provers, and admitted they 
focused more on trying to remember high school geometry than on engaging in the problems. 
Kayla’s preconceived notions about proof inhibited her ability to move past a perceptual 
proof schema; whereas without any prior proof courses, Lindsey had no preconceived ideas 
to overcome and was quickly able to move her reasoning to an axiomatic level. The non-
Euclidean geometries used in all assignments after Viewing Tubes forced Kayla and Lindsay 
to fully engage with the problem to understand its solution. Kayla reported that she had never 
revisited an assignment in her previous proof courses, and it appears that the revisions they 
completed helped them to begin to reason more axiomatically; this was Lindsey’s first proofs 
class. Lindsey, who earned an A in the course, needed less time and fewer revisions to begin 
axiomatic reasoning than did Kayla, who earned a B. Although more inquiry is needed to 
determine if non-Euclidean is the most effective way to help pre-service teachers understand 
definitions and proof in their college geometry course, we recommend that revision of 
partially correct proofs be a incorporated into college geometry classes. 

20th Annual Conference on Research in Undergraduate Mathematics Education 113120th Annual Conference on Research in Undergraduate Mathematics Education 1131



References 

Harel, S. (2007). Students’ proof schemes revisited. In P. Boero (Ed.), From history, 
epistemology and cognition to classroom practice (pp. 65-78). Rotterdam, 
Netherlands: Sense Publishers 

Harel, G., & Sowder, L. (2007).  Toward comprehensive perspectives on the learning and 
teaching of proof. In Lester, F. (Ed.), Second handbook of research on mathematics 
teaching and learning (pp. 805-842), Greenwich, CT: Information Age. 

Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. 
CBMS Issues in Mathematics Education, 7, 235-283. 

Inglis, M., Mejia-Ramos, J. P., & Simpson, A. (2007). Modeling mathematical 
argumentation: the importance of qualification. Educational Studies in Mathematics, 
66, 3-21. doi:10.1007/s10649-006-9059-8  

Jones, K. (1997). Student teachers’ conceptions of mathematical proof. Mathematics 
Education Review, 9, 21–32. 

Knuth, E. (2002a). Secondary school mathematics teachers’ conceptions of proof. Journal for 
Research in Mathematics Education, 33(5), 379–405. 

Knuth, E. (2002b). Teachers’ conceptions of proof in the context of secondary school 
mathematics. Journal of Mathematics Teacher Education, 5, 61–88. 

Miller, N. (2010). Modern Geometry I course notes. Journal of Inquiry-Based Learning in 
Mathematics, 17, 1-62. 

Mingus, T. & Grassl, R. (1999). Preservice teacher beliefs about proofs. School Science and 
Mathematics, 99(8), 438–444. 

Mullis, I. V. S., Martin, M. O., Foy, P., & Arora, A. (2012). TIMSS 2011 international 
mathematics report. Chestnut Hill, MA: Boston College, TIMSS & PIRLS 
International Study Center. 

Padraig, M., & McLoughlin, M. M. (2009). Inquiry-based learning: An educational reform 
based upon content-centred teaching. Paper presented at the Annual Meeting of the 
American Mathematical Society. Washington, DC. 

Selden, A., & Selden, J. (2008). Overcoming students’ difficulties in learning to understand 
and construct proofs. In Carlson, M., & Rasmussen, C. (Eds.), Making the connection: 
Research and teaching in undergraduate mathematics (95-110). Washington, DC: 
Mathematical Association of America. 

Selden, A., (2012). Transitions and proof and proving at tertiary level. In Hanna, G., & 
Villier, de M. (Eds.), Proof and proving in mathematics education (391, 420). New 
York, NY: Springer. 

Speer, N., & Kung, D. (2016). The Complement of RUME: What’s missing from our 
research? RUME 2016 conference proceedings. RUME: Pittsburgh, PA. 

Weber, K. (2001). Student difficulty in constructing proofs: The need for strategic 
knowledge. Educational Studies in Mathematics, 48(1), 101-119. 

 

 
 

20th Annual Conference on Research in Undergraduate Mathematics Education 113220th Annual Conference on Research in Undergraduate Mathematics Education 1132



 
 

Exploring Mathematics Graduate Teaching Assistants’ Developmental Stages for Teaching 
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Oregon State University 

 
Traditional training programs that address mathematics graduate teaching assistants’ (MGTAs) 
teaching practices are offered when they first arrive to campus, when they have little, if any, 
teaching experience. However, not much research has investigated how MGTAs’ thinking about and 
facility with teaching change over the course of their graduate programs and, consequently, how 
their need for training changes over time. The goal of this study is to understand MGTAs 
developmental stages for teaching and how understanding these stages can inform the creation of a 
multi-year training program. Eleven MGTAs from a large, doctoral granting institution were 
surveyed and interviewed over the course of an academic year. Survey and interview responses were 
examined using a specific model of teacher development. Preliminary analyses, suggestions for 
multi-year MGTA training programs, and questions for future research are discussed. 

Keywords: Graduate Teaching Assistants, Professional Development, Training for Teaching  

Background 

Years of research have provided evidence that the form of instruction in science, technology, 
engineering, and mathematics (STEM) disciplines in post-secondary institutions is significantly 
problematic for undergraduate learners. In particular, Seymour and Hewitt (1997) found that 
undergraduates in STEM courses were most likely to point to poor pedagogy as the reason for 
dropping out of a STEM discipline. More recently, researchers have found that students in traditional 
lectures have higher failure rates than students in classrooms that support active learning and student 
engagement in mathematical work (Chen, 2013; Freeman et al., 2014; PCAST, 2012). Mathematics 
instructors’ and professors’ teaching practices have an impact on students, as do graduate teaching 
assistants, with undergraduate students’ interest in a subject experiencing a greater decline when 
they are taught by a graduate teaching assistant (Bettinger & Long, 2004). 

As a result of these findings and the understanding that mathematics graduate teaching assistants 
(MGTAs) represent the future instructors and professors of mathematics, researchers have 
investigated the teaching practices of MGTAs (Belnap, 2005; Latulippe, 2007; McGivney-Burrelle, 
DeFranco, Vinsonhaler, & Santucci, 2001; Speer, 2001). In particular, researchers have developed 
courses and other training programs with the goal of providing MGTAs with a new vision of 
instruction that would offer undergraduate learners more meaningful ways of engaging in 
mathematics that lecture-based, direct-instruction does not provide (DeFranco & McGivney-
Burrelle, 2001; Harris, Froman, & Surles, 2009; Speer, 2001). However, these studies found that 
MGTAs’ instructional practices did not change as a result of these programs. Despite investigations 
of the efficacy of training programs, the field of MGTA professional development has not yet 
reached a consensus on the breadth and scope of training programs for MGTAs, with training 
programs varying from a few hours, to an intensive week, to training incrementally spread over the 
course of an academic term (Deshler, Hauk, & Speer, 2015; Harris et al., 2009; McGivney-Burrelle 
et al., 2001). 

Of particular note about MGTA training programs, however, is that most are implemented solely 
in MGTAs’ first year of graduate school; more specifically, when MGTAs first arrive to their 
programs, when they know little about teaching and likely have not had experience teaching. This is 
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of concern because, over the course of their graduate programs, MGTAs’ knowledge of teaching and 
mathematics will change significantly. Yet, in general, MGTAs will not have explicit attention paid 
to the development of their teaching practices as their knowledge and beliefs change, and as they 
encounter particular obstacles to instructional change and innovation. Such obstacles include 
MGTAs’ own histories as mathematics learners (Deshler et al., 2015), the social context of the 
department (DeFranco & McGivney-Burrelle, 2001), belief among faculty members that attention to 
teaching is a distraction from research (Harris et al., 2009), and the structures of teaching assistant 
work (Beisiegel & Simmt, 2012). 

Little is known about how MGTAs develop their teaching practices over the course of their 
graduate programs, even though their teaching practices have a significant, negative impact on 
undergraduate learners (Bettinger & Long, 2004). Researchers have pointed to the development of 
MGTA training programs as needing to be informed by many factors and should take into account 
such needs of the graduate students at different stages of their development (Park, 2004). 
Additionally, DeFranco and McGivney-Burrelle (2001) note that such training programs should be 
“viewed as ongoing professional development experiences that support [MGTAs] through the long 
and complex process of changing their teaching practices” (p. 688). With this in mind, the purpose 
of the study is to understand MGTAs’ transitions, possible stages and changes in their thinking about 
teaching and learning as they progress through their programs. The research questions that guide this 
study are: 

1. Do MGTAs go through developmental stages as teachers over the course of their graduate 
programs? 

2. What implications do these stages have for how MGTAs are trained and supported over the 
course of their graduate programs? 

The long-term goal of this study is to use this new knowledge to create a well-informed, scaffolded 
training program that will attend to the stages MGTAs go through as their teaching and thoughts 
about teaching evolve.  
 

Theoretical Framework 

Besides what has been learned through the study of training programs that address MGTAs’ 
teaching practices, little is known about what stages MGTAs go through and how they can be 
supported as their views of teaching and learning evolve over the two to six years they are in a 
graduate program. Looking to the K-12 literature, researchers have studied schoolteachers’ 
experiences in order to gain an understanding of teachers’ transitions over time. For instance, Katz 
(1972) described four developmental stages, which include: (1) survival of the first year of teaching, 
with particular focus on classroom management and the routines of classrooms and schools; (2) 
consolidation, in which teachers begin to understand which skills they have mastered, and what tasks 
they still need to master; (3) a period of renewal, when teachers become tired of their routines and 
start to think of how things might happen differently; and (4) reaching maturity, where teachers think 
more broadly about the contexts of schools and students’ learning (p. 52-53). Importantly, Katz 
(1972) notes that the third stage of renewal, of beginning to question standard teaching practices, 
does not begin until the third or fourth year of teaching. If MGTAs experience similar developmental 
stages, then the current programs that address their teaching practices only at the beginning of their 
graduate programs are likely inadequate and more thought should be given to MGTAs’ possible 
developmental stages and their needs at those stages. 
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Context of the Study 

In order to understand the MGTAs’ transitions in teaching over time, two beginning-of-the-
academic-year surveys were developed, one for new and one for experienced MGTAs. Additionally, 
protocols for mid-year and end-of-year interviews were created. Surveys are used at the beginning of 
the year because of logistical issues, such as varied arrival times to campus, and to also capture 
baseline information. The surveys include open-ended questions that inquire about MGTAs’ 
thoughts about teaching and learning mathematics, how they would describe a well-taught 
mathematics lesson, and what had influenced the way they think about teaching. Additionally, 
Likert-Scale items include those that address MGTAs’ epistemic beliefs and self-efficacy. Mid- and 
end-of-year interviews allow a deeper view their teaching practices, MGTAs’ most recent teaching 
experiences, whether they feel that they are receiving adequate support, and what other support they 
they feel they need. The intention of the study is to survey and interview participants for the duration 
of their graduate programs in order to capture, longitudinally, any changes to their views of teaching 
and their need of support for teaching.  

In 2015, the MGTAs were recruited from a department of mathematics in a large, doctoral 
granting institution. Approximately 5,000 students enroll in a lower-division mathematics course 
(such as Pre-calculus, Differential, Integral or Vector Calculus, Business Calculus, or Differential 
Equations) each year at this university, with the structure of most courses having three hours of 
lecture with 150-250 students per class and taught by an instructor. MGTAs are generally assigned 
to run recitations (1 hour workshops) of smaller groups of students from the large lecture sections. 
MGTAs are not assigned to courses based on knowledge, skill, or experience. Rather, assignments to 
courses depend mostly upon scheduling, although MGTAs are asked what their preferences are. At 
the beginning of the academic year, newly arrived MGTAs receive 2 ½ days of training for their 
teaching assignment, with a primary focus on how to support active learning and student 
engagement in mathematical work during recitations and lectures. During the summer after their first 
year, MGTAs are offered the opportunity to teach their own course as the instructor of record. Only 
informal mentoring happens before and during the summer sessions. 

Eleven of 60 MGTAs agreed to participate in the first year of the study. Participants include 3 
first-year, 2 second-year, 4 third-year, 1 fourth-year, and 1 fifth-year MGTA. At the time of 
submitting this proposal, each of the participants had completed the beginning-of-the-year survey as 
well as the mid-year and end-of-year interviews. The participants who remain in the mathematics 
graduate program will complete surveys and interviews in the upcoming academic year and new 
participants will be recruited. Participants’ responses to survey and interview questions were 
analyzed using thematic analysis (Braun & Clarke, 2006), with a deductive approach that looked for 
instances of the participants’ experiences that could be elucidated with Katz’s (1972) four-stage 
model of teacher development. At the end of the first year of this study, data has not yet been 
collected that would illustrate each participant’s transitions during the course of their programs. 
However, comparisons will be made between the first- and later-year MGTAs in order to gain a 
preliminary understanding of their developmental stages. 

 
Preliminary Findings 

The first year MGTAs alluded to surviving the first year as teaching assistants. For example, one 
first year MGTA described her initial experience teaching in this way: “The first [term], I was 
completely on my own and I didn't know what I was doing.” In this statement, I see that, despite the 
training the MGTA had received, she was still fairly uncertain about her teaching. The newness of 
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teaching was a disorienting and isolating, and she did not seem to rely on what she had heard or 
learned during her training. As another example, a first year MGTA stated this about his first term: 

By that point the quarter was just getting really hectic and I wasn’t able to plan as much as I 
usually like to plan for courses. Sometimes I was looking at the material for about two hours 
before I started that day whereas usually I like to look at it the day before or during the 
weekend or something. And so sometimes, though, the classes that I went to where I was 
kind of doing it on the fly, where I was literally looking at it like an hour or two before class. 
A lot of times it’s just more like get the notes done, go in, and do it. 

In this participant’s statement, I observe that the busy life of a new mathematics graduate student 
was enough to counteract the training that he had received when he first arrived. He noted that he 
had intended to devote more time to preparing for teaching, even creating revised drafts of lessons, 
with the aim of posing several open-ended questions during class. However, under the time 
constraints of his life as a graduate student, he switched to survival mode, with a routine of going 
through notes and presenting material and not implementing teaching strategies that would promote 
active learning. 

One first-year MGTA spoke about his experience of being assigned to teach a course during the 
summer term at the end of his first year in the graduate program: 

I’ve never taught a day in my life – and when I went to – I originally just asked [two 
instructors] three questions. I asked them, “What worked in your classroom and what 
didn't?”, “What advice do you have?” and some other questions. And so they answered that 
and then they said, “Hey, if you want to sit down and talk, we can.” And, if that hadn't 
happened – that was out of their own kindness – and, if that hadn't happened, I feel like I'd 
be drowning right now because I wouldn’t know what to do. 

This MGTA noted that he would not be surviving, but would instead be drowning, in his first 
teaching experience had he not independently sought out advice and course materials from 
instructors. Another interesting thing to note is his statement that he had “never taught a day in his 
life.” He had led multiple recitations during the two terms immediately prior to teaching his own 
course, and yet neither that experience nor the initial training seemed to provide him with enough 
resources to feel comfortable in his role as an instructor. 

Later-year MGTAs spoke differently about their teaching experiences. For example, one third-
year MGTA summarized her transition from the survival stage to the renewal stage: 

I think previously, I was more focusing on, “I just want to survive my first teaching 
experiences.” So, now that this is my fourth time teaching, I feel a little bit more comfortable 
trying to incorporate more active learning in my classroom, and trying non-traditional 
techniques whereas previously, when I taught, for example, my first time teaching my own 
class and I taught Calculus, I did mostly lecture because I just wanted to do what I felt most 
comfortable with – what I felt I could be successful at.  

From her statement it is not clear that she had tired of her routine of lecturing, as suggested by Katz 
(1972), for the transition from survival to renewal. Yet, it is clear that she is now comfortable 
enough in the classroom that she is beginning to think of what she might do differently; in this case, 
incorporate active learning. This is interesting as the MGTA training she had received three years 
prior had promoted active learning and it was only at the end of her third year that she was ready to 
consider and enact active learning strategies. 

The third- and fourth-year participants’ statements illustrated their transition into maturity, as 
they were thinking more broadly of educational issues (Katz, 1972). For example, one MGTA noted 
that she had become more aware of different learning styles:  
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I’ve learned to understand more deeply some of the things students have going on in order 
for me to be more conscious of. I’ve also been very aware of different learning styles. I’m 
making sure to – some people are visual. I am visual. So I make sure to have everything 
written down. But I also know people are auditory learners. So I also read everything. 

Another later-year MGTA spoke of her awareness of multiple choice assessment questions and 
potential biases within multiple choice questions, noting her observation that questions are “biased 
for gender and ethnicity and culture.” This particular MGTA had also begun to think about the 
intersection of teaching mathematics and social justice issues.  
 

Discussion 

Katz’s (1972) developmental stages are useful for defining and understanding the stages that 
MGTAs go through. Through this framework, I observe that MGTAs think about different, and 
progressively more sophisticated, aspects of instruction as they progress through their graduate 
programs and developmental stages. These findings suggest that MGTAs are not necessarily ready to 
enact more demanding instruction (e.g., active learning) in their first experiences running recitations, 
when they are teaching for the first time and likely in survival mode. The findings of this study also 
suggest that MGTAs have more advanced thoughts about teaching in their third and fourth years, 
thoughts that go beyond what is typically offered in initial MGTA training programs.  

One conclusion is that MGTA training programs should be multi-year training programs that 
address these stages and the MGTAs’ needs in each of these stages. A third-year MGTA illustrates 
how the initial training did not impact her at first and that follow-up training in her third year might 
be useful. Here she refers to the teaching strategies she had learned in her initial training: 

I probably couldn’t recall them all, right? They’re just somewhere in the recess of my head.  
It might be good to hear them in the context of now having three years’ experience. And 
certainly what I thought was important before I had ever taught is going to be different than 
hearing it after three years’ experience. So maybe even if I heard the same thing, it would 
carry more weight now. I would have a better understanding for the context it would fit in. 

Katz (1972) noted the stage of renewal, of thinking of how teaching might happen differently, does 
not being until a teachers’ third or fourth year in the classroom. Thus, with Katz’s finding and the 
participant’s statement, I suggest that training programs that extend into third and later years might 
gain more traction in helping MGTAs enact more demanding forms of instruction, such as active 
learning. Once MGTAs have more experience teaching, the instructional practices espoused by 
training programs can become more relevant, relatable, and practicable.  
 

Intended Questions for the Audience 

For the presentation at RUME, questions that I intend to pose and discuss with the audience are: 
• Does Katz’s (1972) framework seem adequate for understanding and describing the 

developmental stages for MGTAs?  
• How might the results of this study be useful to and inform training programs for MGTAs?  
• What other questions and ideas should be answered in order to better inform the development 

of a multi-year MGTA training program? 
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Flip vs. Fold: What is so important about the Rigidity of a Motion? 
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This report will investigate the mathematical and pedagogical consequences of flipping versus 
folding in the identification of reflection symmetry. Preliminary results are presented from a 
teaching experiment aimed at exploring the development of one undergraduate student’s 
understanding of symmetry. The analysis indicated that throughout the teaching experiment, the 
student held two distinct versions of reflection symmetry. One version was what most would 
identify as reflection, while the other was an iterative process based on the participant’s ability 
to fold the figure. In this report, we share what this student identified as symmetries and how she 
justified her methods. In addition, we discuss why the definition of isometry necessitates a rigid 
motion and how the motion of folding is insufficient for identifying symmetries correctly. Lastly, 
we consider why understanding a rigid motion is advantageous for students who want to 
consider symmetries in more sophisticated mathematical contexts such as group theory. 
 
Keywords: Symmetry, Abstract Algebra, Intellectual Need, Teaching Experiment 
 

Introduction 
 

Symmetry can be thought of in two different ways (Larsen, 2010). Consider the following 
definitions of symmetry from different textbooks, “an object or design has symmetry if part of it 
is repeated to create a balanced pattern” (Lappan, Fey, Fitzgerald, Friel, & Phillips, 1998, p. 206) 
and “a symmetry of a figure is a rigid motion which leaves the figure unchanged” (Farmer, 1991, 
p. 27). The first definition describes symmetry as a property of a figure, and the second as a 
motion preformed on a figure. Throughout their K-12 experiences, students are introduced to 
both conceptions of symmetry as part of their mathematics instruction (Common Core State 
Standard [CCSS], 2010). In particular, as early as forth grade, students are introduced to the 
concept of symmetry as a property of a figure and expected to, “recognize a line of symmetry for 
a two-dimensional figure as a line across the figure such that the figure can be folded along the 
line into matching parts” (CCSS, 2010). In later grades, students are introduced to the concept of 
symmetry closer to that of a motion performed on a figure. For example, in 8th grade students are 
expected to “verify experimentally the properties of rotations, reflections, and translations” 
(CCSS, 2010). For more advanced courses in mathematics, it is often beneficial that students are 
able to consider symmetries as strictly isometries.  This is especially true in the context of group 
theory, where students need to be able to think of the property of symmetry in terms of a 
transformation that can be combined (composed) in such a way that leaves the given figure 
unchanged (Larsen, 2010).   

The context of geometric symmetry has proved to provide a ‘rich and natural context for 
developing the concepts of group theory’ (Larsen, 2009, p. 136), since the ideas of symmetry and 
equivalence are fundamental concepts in group theory (Burn, 1996). However, outside of APOS 
theory (Asiala, Kleiman, Brown, & Mathews, 1998), little research has been done into how 
students develop an isometry understanding of symmetry. We have recently begun to investigate 
how students may develop an understanding of symmetry and symmetry equivalence through a 
series of task-based interviews. In this preliminary report, we present our findings from a 

20th Annual Conference on Research in Undergraduate Mathematics Education 114020th Annual Conference on Research in Undergraduate Mathematics Education 1140



teaching experiment aimed at exploring the development of one undergraduate student’s 
understanding of symmetry. In particular, we report on how this student identified symmetries of 
various figures and how she justified her methods.  

 
Theoretical Perspective 

 
In the context of our research we are considering symmetry as an isometry, or a rigid motion, 

and therefore it must be a motion that does not deform the shape. Yet since it is not uncommon 
for students to have been taught to fold a figure in the context of symmetry (CCSS, 2010), we 
have found ourselves faced with an interesting question, “If symmetry is a motion, what does it 
matter if one flips or folds?”  We are interested in not only the mathematical consequences of the 
different motions, but also the pedagogical ones. If students are in fact more accustomed to a 
folding motion, as per Harel (2013), the issue we must address is that of how we might 
necessitate one a flip motion (rigid) over a fold (non-rigid).  In other words, as we help to 
facilitate students through the Measuring Symmetries Task (Larsen & Bartlo, 2009), we must be 
cognizant of how we can make flip, instead of fold, a solution to what students recognize as a 
problem. 
 

Methods 
 

The first author conducted a teaching experiment (Steffe & Thompson, 2000), exploring how 
an undergraduate student, Birdie, developed an understanding of symmetry over a series of 5 
task-based interviews. Birdie is a high achieving sophomore civil engineering student who had 
recently completed Calculus 3 at a large urban university in the western United States. Data 
collection consisted of all Birdie’s written work as well as video recordings of each interview, 
which were later transcribed. Throughout the interviews, the student explored her ideas of 
symmetries by working through the Measuring Symmetry Task (Larsen & Bartlo, 2009). The 
task is designed to build on the student’s aesthetic sense and intuition to help the development of 
formal ideas of symmetry, and later focuses on the idea of symmetry equivalence. The task 
begins by asking the student to consider the following figures, see Figure 1, and to rank them 
from least to most symmetric.   

 
 

A.      B.       C.   D.  
 

E.           F.      G.  
 

 
Figure 1. Figures (A – G) given in the Measuring Symmetry Task 
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Through the course of the teaching experiment the student was also asked to: 

• Measure (i.e., assign a number to) the symmetry of a figure in a way that is consistent 
with the ranking 

• Define the various types of symmetries they had counted 
• Negotiate between their definition and counting system for inconsistencies 
• Consider equivalence of symmetries 

 
Ongoing thematic analysis (Braun & Clarke, 2006) is being conducted in an attempt to 

identify Birdie’s various ideas of symmetry.  As one of the main research goals of the teaching 
experiment is to discover how Birdie developed an isometry understanding of symmetry, we are 
particularly interested in what parts of the definition of symmetry she could recreate on her own.  
There did not seem to be a point in the Measuring Symmetry Task that necessitated a flipping 
motion instead of folding, which was the catalyst in trying to find the true distinction between 
the motions. 

 
Initial Results 

 
From the first time Birdie offered an explanation as to why she ranked the figures in the way 

that she did, she offered 2 distinct versions of what she eventually called, “line symmetry.”  
When considering figure D (see Figure 1), Birdie assigned a ranking of 1. She explained: 

Birdie:  Um, this (motions to figure D) I can at least cut once, and I guess this is 
asymmetry (in reference to figure G)... 
Interviewer:  Can you describe what you mean by cut? 
Birdie:  So if I were to fold it in the middle right here I can fold it once and it would be 
symmetric on that line. 
Interviewer:  Can you use the transparency to show me what you mean by fold? ...(she 
folds the transparency in half) like actually fold it in half, ok.  And then it lines up like 
that, ok. 

This is precisely the reflection symmetry one would expect for figure D, and mathematically 
accurate, one reflection about a vertical axis down the middle of the figure. 

As Birdie continued to describe her ranking for the figures, she quickly offered a different 
version of line symmetry when considering figure E (see Figure 1). In early interviews, Birdie 
gave figure E a rank of between 2-6 symmetries as she developed and negotiated her ideas of 
line symmetry. Notice that mathematically figure E has only a trivial and non-trivial rotation, and 
no reflections. The following transcripts show her initial thoughts on a second version of line 
symmetry. 

Birdie:  Um, this one's (figure E) kinda the same situation where, if I fold it in the middle, 
it lines up to be something that's more symmetric in my mind. 
Interviewer: Ok, what parts are lining up when you fold it in the middle? 
Birdie: Um, actually it's not lining up, but it also has rotational symmetry. 
Interviewer: Ok. 
Birdie: Alright, well when I fold it, it lines up to be something that can be folded again 
into great symmetry. 
Interviewer: Ok so maybe by a compound fold? 
Birdie: Yeah, I don't know what the rules are here, but I'm just assuming it won't be... 
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Interviewer: We haven't established any so it's whatever you want to do at this point. 
Birdie continued to develop and refine both versions of line symmetry as the experiment 

continued and was able to begin to articulate them in her written description of what she was 
counting (symmetries). Figure 2 presents Birdie’s written description of symmetry. 

 
Symmetry is broken up into two groups for me, line & rotational. Line symmetry being if you 
draw a straight line through the object from one side to the other & fold it on that line the two 
sides will match up perfectly (perfectly being without any one the reflected side not matching a 
half) & either create the same shape or a new one. Which then can then be done again with 
another ‘fold’ aka drawing another straight line and so forth until it will no longer match up with 
the reflected side no matter where the line is drawn. 

Figure 2. Birdie’s written description of her conceptions of symmetry. 
 

Her description in Figure 2, suggests that Birdie recognized that while one version of 
symmetry considered the original shape, the other considered new shapes as the result of folding. 
This iterative folding was a sort of process in which she was considering the resulting shape from 
a fold, and if it had line symmetry in addition to the original figure. Birdie was always aware that 
one process deformed the original shape. The following transcript shows Birdie’s distinction 
between these two methods when asked to clarify her assigning 4 folds to figure B (see Figure 
1), which only has 2 reflection symmetries: 

Birdie:  I guess the argument is more, are you counting it as the same shape or as a 
different shape, each time you fold it? I mean, technically it’s a different shape just 
looking at itself, but considering the past of it, it’s the deformed shape that you create 
from the original shape.  

We explore the mathematics behind both of Birdie’s motions for identifying line symmetry; 
the single folding motion that Birdie eventually identifies as equivalent to ‘flipping’ and the 
iterative process of ‘folding.’ Flipping can be described as a reflective symmetry. Reflective 
symmetry is absolutely a type of isometry, and therefore a distance preserving injection. The 
‘folding’ motion however is not an injection, as it sends the figure to a proper subset of the 
original domain. The folding motion deforms the figure and so it is also not distance preserving. 

By using an iterative folding process Birdie was able to identify line symmetries that were 
not mathematically accurate.  The figure below (Figure 3) shows Birdie folding two different 
figures, each of which she counted more symmetries than the figure would have by the formal 
definition.   
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Birdie identified up 
to 4 line symmetries 

 
This figure has 2 

reflection 
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Birdie described 6 line 

symmetries through 
iterative folding 

 
Figure 3. Examples of Birdie's additional line symmetries from iterative folding. 

 
Conclusion 

 
The word ‘symmetry’ is given multiple definitions, and while that makes both symmetry as 

the property of a figure and symmetry as a motion preformed on a figure valid, only the second 
will be advantageous when thinking of symmetry as a more abstract mathematical object in 
contexts such as group theory.  Our work with Birdie has suggested that students beginning to 
work with symmetries as isometries may be (heavily) influenced by the notion of symmetry as a 
property and the motion of folding.  There is no doubt that symmetry has been found to be a rich 
and natural context for developing group theory (Larsen, 2009), where students can rely on their 
intuition and aesthetic sense, that provides rich opportunity for student discourse (Larsen & 
Bartlo, 2009).  Yet our research has shown that to fully develop an isometry understanding of 
symmetry required a student to negotiate between their pre-existing idea of symmetry and the 
folding motion/s that she had associated with it. 

 
Questions for the audience / Related ideas we’re still exploring 

 
• While we know that the deforming motion of the fold is not the same as the rigid motion 

of the flip and therefore will not create the same group structure under composition we 
are curious what kind of algebraic structure if any can be used to describe the folding 
motions, and what the operation might be. 

!
• Under what circumstances does a fold motion accurately identity reflection symmetry?  

Birdie had two kinds of line symmetry one of which was a single folding motion and the 
other was a series of iterative folds.  The single folding motion was successful at 
identifying reflective symmetries even though it was not a rigid motion. Would it always 
be?  Why? 

 
• What kinds of situations necessitate a flip over a fold that are experientially real for 

students that helps facilitate their recreation of a mathematically accurate definition of 
symmetry that includes a rigid motion? 
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Examining Students’ Procedural and Conceptual Understanding of Eigenvectors and 
Eigenvalues in the Context of Inquiry-Oriented Instruction 

Khalid Bouhjar, Muhammad Haider, & Christine Andrews-Larson 
Florida State University  

 
This study examines students’ procedural and conceptual understanding as evidenced by their 
written responses to two questions designed to assess aspects of their understanding of 
eigenvalues and eigenvectors.  This analysis draws on data taken from 126 students whose 
instructors taught using a particular inquiry-oriented instructional approach and 129 comparable 
students whose instructors did not use this instructional approach.  In this proposal, we offer 
examples of student responses that provide insight into their reasoning and summarize broad 
trends observed in our quantitative analysis.  In general, students in both groups performed better 
on the procedural item than on the conceptual item.  Additionally, the group of students who were 
taught with the inquiry-oriented approach outperformed the group of students who were taught 
using other approaches.  

Key words: eigenvalues, eigenvectors, linear algebra, inquiry-oriented, student thinking 

Linear algebra is a mandatory course for many science, technology, engineering, and 
mathematics (STEM) students. The theoretical nature of linear algebra makes it a difficult course 
for many students because it may be their first time to deal with this kind of abstract and 
conceptual content (Carlson, 1993). Carlson (1993) also posited that this difficulty arises from the 
prevalence of procedural and computational emphases in students’ coursework prior to linear 
algebra, and that it might therefore be difficult for students to connect new linear algebra topics 
and their previous knowledge. To address this issue, researchers have developed inquiry-oriented 
instructional materials and strategies to help students develop more robust, conceptual ways of 
reasoning about core topics in introductory linear algebra (e.g. Wawro, Rasmussen, Zandieh, & 
Larson, 2013). In this proposal we examine assessment data to identify ways in which students 
reasoned about eigenvectors and eigenvalues.  In particular, we identify differences in the 
performance of students whose instructors taught with a particular inquiry-oriented approach to 
teaching eigenvectors and eigenvalues and comparable students whose instructors did not use this 
approach.  

In this work we draw on data from an assessment that was developed to align with four 
core introductory linear algebra concepts addressed in the IOLA instructional materials: linear 
independence and span; systems of linear equations; linear transformations; and eigenvalues and 
eigenvectors (Haider et al., 2016). The focus of this study is to identify the ways students 
understand and reason about eigenvalues and eigenvectors. In the assessment, there were two 
questions, question 8 and 9 that addressed eigenvalues and eigenvectors. Question 8 was a 
procedural item related to the eigenvalue of a given matrix and question 9 focused on the 
conceptual understanding of the eigenvectors. The research questions for this proposal are: 

!! How did students reason about eigenvectors and eigenvalues in the context of 
questions designed to assess aspects of student’s procedural and conceptual 
understanding? 

!! How do the performance and ways of reasoning of students whose instructors 
adopted an inquiry-oriented approach to teaching linear algebra compare to the 
performance and ways of reasoning of other students?   
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Literature & Theoretical Framing 
Many have argued that the shift from a predominantly procedural approach to 

mathematics many students experience before college to a more conceptual approach causes a lot 
of difficulties for students as they transition to university mathematics; linear algebra is a topic in 
which students struggle to develop a conceptual understanding (Carlson, 1993; Dorier & 
Sierpenska, 2001; Dorier, Robert, Robinet & Rogalski, 2000; Stewart & Thomas, 2009).  Across 
the literature on the teaching and learning of eigenvalues and eigenvectors, procedural thought 
processes are featured prominently. For example, Stewart and Thomas (2006) highlighted the 
example of the conceptual processes and difficulties students find in learning about eigenvalues 
and eigenvectors, where a formal definition may be immediately linked to a symbolic presentation 
and its manipulation. Thomas & Stewart (2011) highlighted a difficulty students find when faced 
with formal definitions for eigenvalues and eigenvectors. Since these definitions contain an 
embedded symbolic form ("# = %#), students often move quickly into symbolic manipulations of 
algebraic and matrix representations such as transforming "# = %# to " − %( # = 0 without 
making sense of the reasons behind these symbolic shifts. Schonefeld (1995) used eigenpictures 
(“stroboscopic” pictures) to show # and "# at the same time by using multiple line segments on 
the x-y-axis. He observed that graphical representations of eigenvalues and eigenvectors got little 
attention in the literature and that a picture may benefit more than algebraic presentations. It is 
also documented that students struggle to coordinate algebraic with geometric interpretations (e.g. 
Stewart & Thomas, 2010; Larson & Zandieh, 2013) and the students’ understanding of 
eigenvectors is not always well connected to concepts of other topics of linear algebra (Lapp, 
Nyman, & Berry, 2010). To support students in developing a better understanding of the formal 
definition and the geometrical interpretations of the eigenvalues and eigenvectors, researchers 
have developed a variety of instructional interventions (e.g. Tabaghi & Sinclair, 2013; Zanidieh, 
Wawro, & Rasmusen, 2016).  

Researchers often make reference to conceptual understanding and procedural 
understanding when discussing student’s thinking about mathematical concepts (Hiebert, 1986). 
To operationalize our distinction between concepts and procedures, we draw on Vinner’s (1997) 
distinction between conceptual and analytical behavior. According to Vinner (1997), students are 
in a conceptual mode of thinking if their behavior provides evidence that they are attending to 
concepts, their meanings and their interrelations. On the other hand, students are in an analytical 
mode of thinking when solving routine mathematical problems if they act in the way expected and 
certain analytical thought processes occur. In case they do not act in such ways but succeed in 
making the impression that they are analytically involved in problem solving then they are in 
pseudo-analytical mode of thinking. Vinner (1997) argued that in most problem solving situations 
when students are asked to solve a problem their focus usually is on which procedure should be 
chosen and not on why a certain procedure works. Based on this, we draw on Vinner’s (1997) 
definition of conceptual versus analytical (procedural) as an analytic tool for interpreting student’s 
answers to the questions involving eigenvalues and eigenvectors.  

Data Sources 
In our previous work, we have developed an assessment that covers the four focal topics 

of linear algebra mentioned earlier (Haider et al. 2016).  This assessment was administered at the 
end of linear algebra course at different public and private institutions across the country. This 
was a paper-and-pencil assessment that includes 9 items and the students were allocated one hour 
to complete. It was designed to measure students’ understanding of introductory linear algebra 
topics. Every item of the assessment contained a component of open-ended justification for 
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students to elaborate their conceptual understanding of the topic. 
Figure 1. Question # 8 and 9 (Eigenvalues/Eigenvectors) of the assessment 

We have collected assessment data from two groups of students: students whose 
instructors received instructional supports to teach linear algebra using a particular inquiry-
oriented approach as part of the NSF-supported TIMES research project (who we will refer to as 
TIMES students), and students whose instructors did not receive these supports (who we will refer 
to as non-TIMES students.  The instructors who participated in the TIMES project attended a 3-
day summer workshop, participated online workgroup conversations for one hour per week for a 
semester, and implemented inquiry-oriented curricular material in their linear algebra class.  We 
have collected the assessment data of 126 Times students across six TIMES instructors and 129 
non-Times students across three non-TIMES instructors from different institutions in the US. 
Non-TIMES instructors were recruited from linear algebra instructors either at the same 
institutions as TIMES instructors or at other similar institutions (e.g. similar geographic area, 
similar size of student population, similar acceptance rate at institution) to collect assessment data 
for comparison of TIMES and non-TIMES students.  In this study, we focused on in-depth 
analysis of students’ reasoning on the assessment questions related to eigenvalues and 
eigenvectors. Both items are shown in the figures above. 

The inquiry-oriented approach to learning eigenvalues and eigenvectors associated with 
this study is characterized in detail elsewhere (Zandieh, Wawro & Rasmussen, 2016).  This 
approach supports students in coming to first learn about eigenvalues and eigenvectors as a set of 
“stretch” factors and directions that can be used to more easily characterize a geometric 
transformation.  In this sequence of tasks, students first work to describe the image of a figure in a 
plane under a transformation that is easily described in a non-standard coordinate system.  
Students then work to label points using standard and non-standard coordinate systems 
corresponding to the previous task; they also find matrices that transform points from one 
coordinate system to the other.  The instructor works to link this work to the matrix equation 
A=PDP-1 and subsequent tasks aim to leverage this conceptual basis as students learn more 
traditional computational methods associated with computing eigenvalues and eigenvectors.   

Methods of Analysis 
To identify different types of students’ approaches to eigenvectors and eigenvalues 

assessment items, we conducted our analysis in three stages: (I) developed a coding scheme for 
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both the descriptive (open ended) part and the non-descriptive (multiple-choice) part of the items, 
(II) coded assessment data by following the coding scheme, (III) ran statistical analysis of coded 
data for descriptive statistics and t-test to compare the performance of TIMES and non-TIMES 
students.  

At the first stage, we decide the coding scheme for non-descriptive part of the problems. 
Later, we looked into the descriptive parts of the problems. We identified different correct 
students’ approaches for both problems, which helped us to refine our coding scheme. The coding 
scheme for question 8 and 9 is given in the table below: 

 Points Awarded and Criteria Comments 

Q
ue

st
io

n 
8 

3 Points: For any of the following answers.  
1: det " − %( = 0 implies # − 1 # − 4 = 0 implies # = 1 or # = 4 

implies % = 2 is not an eigenvalue for the matrix ". 
2: det " − 2( = −2 ≠ 0 implies % = 2 is not an eigenvalue of ". 
3: " − 2( #

1 = 0 implies # = 0 and 1 = 0 which is the trivial vector, 
implies % = 2 is not an eigenvector for the matrix ". 

Fully correct 
answer 

2 Points: if any answer with computational mistakes and with good 
justification and conclusion will be credited with 2 credits (computational 
mistaken attempt cannot be awarded full credit like a fully correct answer) 

Partially 
correct answer 

1 Point: if any answer missing any of the three rules (correct answer, correct 
computation and correct explanation) will be missing credits depending on the 
number of rules missed. 

Some 
procedural 
knowledge  

Q
ue

st
io

n 
9 

3 Points: Writing 2# = %# or mentioning 2# as a constant multiple of 
#/scalar multiple of # with or without mentioning what the values of this 
constant/scalar; 0, 1 and −1 and giving the options #, 3, and 0.  

Fully correct 
answer  

2 Points: If a student mentions 2# = %# and miss any of the possible values of 
constant/scalar; 0, 1, and -1 and/or miss one of the given options # w, and 0. 

Partially 
correct answer 

1 Point: Writing 2# = %# and/or miss two of the possible values of 
constant/scalar; 0, 1, and -1 and/or miss two of the given options #, 3 and 0. 

Some 
understanding 

Table 1. Criteria for Awarding Points for question 8 and 9 

At the second stage of analysis, we coded assessment data by following the above grading 
scheme. Two researchers looked at every students’ attempt and decide a score independently and 
then matched with each other. If both researchers assigned different score to a particular student, 
then they discussed according to the grading scheme and agreed on a common score for that 
student. If both researchers have disagreement about a particular score, then a third researcher was 
consulted to make a consensus. At the third stage of statistical analysis, we checked the 
descriptive statistics to see the overall performance of students on the eigenvalue and eigenvectors 
questions. We also compared TIMES students with Non-TIMES students for both questions. We 
used t-test to compare the difference of means between questions 8 and 9 for both groups. 

Initial Findings 
In this section we summarize how students reasoned about the eigenvectors and 

eigenvalues items and how they med on both questions. We will provide some examples to show 
how they reasoned then point out using the quantitative data how the TIMES students performed 
compared to Non-Times students.   
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The following example shows that the student has a conceptual and procedural 
understanding in the sense that he/she by solving " − 2( # = 0, finding only the trivial solution 
and concluding that 2 is not an eigenvalue which is a nonstandard solution.  

 
Figure 2: A student’s example for Q8 

Another example of a student who is interpreting the matrix M as something that can change in 
interpreting the eigenvector equation. 

 
Figure 3: A student’s example for Q9b 

To see the difference in the students’ performance we paid attention to the mean and 
standard deviation of the coded data. We also used t-test to compare the difference of means 
between both groups.  

Table 2. Summary of TIMES and Non-TIMES Students’ Performance 

When examining the quantitative data to see how the two groups compared we noticed 
two things that seemed particularly noteworthy.  First, both groups did better on the procedural 
item than the conceptual one.   Second, TIMES students did better than non-TIMES on both 
items, but they outperformed non-TIMES on the conceptual item at a higher rate. In our session 
we will more deeply explore evidence of conceptual and procedural reasoning as it appeared in 
students’ responses to the two items, and differences between the two groups of students. 

 

Question All Students TIMES Students Non-TIMES Students 
Q 8: Maximum Possible 
Points 3 

Mean: 1.85 
SD: 1.31 

Mean: 2.0 
SD: 1.23 

Mean: 1.71 
SD: 1.37 

Q 9 (a & b): Maximum 
Possible Points 9 

Mean: 1.50 
SD: 0.82 

Mean: 1.59 
SD: 0.89 

Mean: 1.42 
SD: 0.74 

Q 9 (b part only)  
Maximum Possible Points 3 

Mean: 1.59 Mean: 0.54 
p-value = 0.0000273 < 0.05 
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  Supporting Students’ Understanding of Calculus Concepts: Insights From Middle-grades 
Mathematics Education Research  

Steven Boyce Kira Wyld 
Portland State University Harvey Mudd College 

 
In this preliminary proposal, we report on results from a paired-student teaching experiment 

focused on college calculus students’ developing notions of reversibility and reciprocity through 

compositions and transformations of linear relations. We anticipate fruitful discussions about 

relationships between numerical and quantitative reasoning and students’ thinking about 

graphs. 

Key words:​  Calculus, Derivative, Teaching Experiment 

Introduction 

The main topic of first-term calculus–the derivative–depends on deep, flexible 
understandings of rate and slope (Dawkins & Epperson, 2014; Zandieh, 2000) rooted in 
conceptions of rational numbers. Two explicit examples are learning to equivocate “increasing 
function” and “positive derivative” and learning to reason about reciprocal rates of change of an 
invertible function and its inverse. However, rational number conceptions are not usually the 
focus of pre-calculus coursework. In placement testing such as ALEKS, rational number topics 
are generally limited to arithmetic prerequisites for secondary school algebra. Research shows 
that development of numerical concepts in the elementary and middle grades can have a lasting 
effect on the ways students construct algebraic knowledge (Ellis, 2011; Hackenberg & Lee, 
2015). We conjecture that differences in calculus students’ reasoning about reversible and 
reciprocal relationships may extend from these differences. We report on our exploration of how 
differences in numerical conceptions affect college students’ understandings of the derivative 
and how engaging in compositions and transformations of linear relations concurrent to calculus 
instruction may benefit students. 

 
Theoretical Framework 

We take a cognitive constructivist epistemologist perspective in viewing individuals’ 
knowledge as a product of their organizing of their experiences interacting with the world to fit 
within or to construct mental ​schemes​  (von Glasersfeld, 1995). As others’ thinking is 
fundamentally unknowable, schemes are researchers’ constructs serving to fit their observations 
of others’ activities. Our aim is to explore how ways students have constructed schemes for 
rational number concepts affect their learning of calculus topics.  

A scheme consists of three parts: recognition of a situation, operations (mental actions), 
and an expected result. An example is the iterative fraction scheme ​, ​ which is necessary for 
understanding improper fractions as numbers (Hackenberg & Lee, 2015). A student with an 
iterative fraction scheme understands the size of an improper fraction as the result of partitioning 
and iterating the size of ‘1’. If his or her scheme were ​reversible​ , the student also understands the 
size of 1 as the result of partitioning and iterating the size of an improper fraction. Reversible 
schemes are those for which the result of one sequence of mental operations is recognized as a 
situation for the reversed sequence of operations. Reversible schemes that are ​interiorized ​ are 
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those for which the recognition of a situation and an expected result of mental activity are 
experienced as synchronous. For a student with an interiorized iterative fraction scheme, the 
symbol ‘9/7’ “contains” potential relations with numbers including ‘1’, ‘1/7’, ‘1/9’ and ‘7/9’, 
depending on the situation. These other numbers would be part of the student’s concept image 
associated with ‘9/7’ that could potentially be evoked (Tall & Vinner, 1981). The ways the 
associated units are coordinated depend on the student’s ​units coordinating structures​ . 

The construct of units coordinating structure ​ ​ has distinguished middle-grades students’ 
reasoning with whole number multiplication, fractions integers, and linear algebraic expressions 
(Hackenberg & Lee, 2015; Ulrich, 2015). Research with pre-service and in-service teachers 
suggests that differences in units coordinating structures persist into adulthood (Busi, Lovin, 
Norton, Siegfried, Stevens, & Wilkins, 2015; ​Izsák, Jacobson, de Araujo, & Orrill, 2012 ​). To our 
knowledge, units coordination has not previously been studied with calculus students. Of 
relevance for calculus students is whether students have constructed ​two-level​  or ​three-level​  units 
coordinating structures.  

Students who have constructed only two-level units coordinating structures can assimilate 
composite units (units of units), but transformations of those units (e.g., forming a third level of 
units) are non-reversible. Such students can reason with three levels of units ​in activity​ , but they 
reason with two levels at a time. For example, a student assimilating fractions with a two-level 
units coordinating structure could form the size of 9/7 from a given size of ‘1’ by partitioning the 
‘1’ into 7 parts and appending two more parts. Assimilating fractions with three levels of units is 
required for maintaining the relationships between the different units (seven 1/7 units within 1 
and nine 1/7 units within 9/7) (Norton, Boyce, Phillips, Anwyll, & Ulrich, 2015). A construct 
related to units coordination that has been studied with calculus students and has been shown to 
correlate with success in calculus is ​covariational reasoning.​  As seen in Table 1, the description 
of mental actions in the Covariation Framework (Carlson, Jacobs, Coe, Larson, & Hsu, 2002) 
involve successively more structured coordinations of variables’ values. Units coordinating 
structures constrain students’ conceptions of (negative) integers and fractions, suggesting 
relation to Mental Actions 3 and 4. 
 

Table 1 
Stages 3-4 of the Covariation Framework ​ (Carlson, Jacobs, Coe, Larson, & Hsu, 2002) 

Mental action Description of mental 
action 

Behaviors 

Mental Action 3 
(MA3) 

Coordinating the amount 
of change of one variable 
with changes in the other 
variable. 

●Plotting points/constructing secant lines 
●Verbalizing an awareness of the 

amount of change of the output while 
considering changes in the input  

Mental Action 4 
(MA4) 

Coordinating the average 
rate-of-change of the 
function with uniform 
increments of change in the 
input variable. 

●Constructing contiguous secant lines 
for the domain 

●Verbalizing an awareness of the rate of 
change of the output (with respect to 
the input) while considering uniform 
increments of the input 
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Methods/Methodology 

We assessed volunteer undergraduate students’ backgrounds during the first week of their 
Summer 2016 8-week differential calculus course, using a units coordinating assessment 
(Norton, Boyce, Phillips, Anwyll, & Ulrich, 2015), and a pre-calculus concept assessment 
focusing particularly on functions concepts and covariational reasoning (PCA, Carlson, 
Oehrtman, & Engelke, 2010). We engaged two students in six weekly hour-long teaching 
sessions, which were video-recorded for ongoing and retrospective analysis by the researcher 
and a witness (Steffe & Thompson, 2000). The sessions were concurrent but separate from 
students’ calculus classes, without interaction between the classroom instructors and researchers. 

 

Preliminary Results 

The two students (Susan and Kris, both pseudonyms) who participated in the teaching 
experiment were life sciences majors who had successfully completed pre-calculus coursework 
in college. Both were assessed as coordinating two levels of units: Susan used representations to 
form responses (coordinating units ​in activity​ ) rather than creating representations to justify and 
explain interiorized reasoning, whereas Kris did not correctly coordinate three levels of units 
with fractions. Their responses on the PCA were similar, as Susan answered 16 of the 25 items 
correctly and Kris answered 14 items correctly. The eight items they each missed suggested 
interpreting graphs, function composition, domain and range, and covariational reasoning were 
pertinent topics for exploration. Following are descriptions of activities and reasoning exhibited 
during the teaching experiment. 
 

Reasoning about linear relations  
In the first session Kris and Susan were given Cartesian graphs depicting linear relations 

between time and volume, and volume and height, of water in a container (see Figure 1).  

 
Figure 1. Graphs given to Kris (left) and Susan (right) 

 
After establishing common interpretations of unit grid marks, the teacher asked for the height at 
5 minutes. Susan used her time/volume graph to find the volume at 5 minutes and then found the 
height from Kris’ graph. The teacher next asked how long it would take for the water in the 
container to reach a height of 27 mm, anticipating that they might represent and compose the two 
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relations algebraically since they could not read the values directly from the graph. Susan instead 
focused on the graphs’ slopes. “First we need to find out how much volume needs to be added, 
and then how much time that volume takes….From my graph we know there’s 1 mm per 3 mL 
and from [Kris’] graph we know there’s 3 mL per 1 minute.” She was perturbed when 
multiplying  resulted in 1 min/mm; it seemed she had anticipated a time⋅27 mm

 81 mL

3 mL

1 min  
corresponding with 27 mm. She did not consider the non-zero volume at time t=0 and insisted 
that knowing the slopes should be enough “since they were constant.”  

The sessions switched to the Desmos “Water Line” app, in which water is depicted 
flowing at a constant rate into different containers and students graph water height over time 
(https://teacher.desmos.com/waterline). The first container is a cylinder; the container is then 
modified in multiple ways (see Figure 2). In this context, Susan correctly explained why graph of 
the new cylinder’s water line would be a positive vertical shift of the old cylinder’s graph, 
despite Kris’ conjecture of a negative shift and in contrast to her earlier reasoning. 

 

 
Figure 2. First three waterline containers 

Reasoning about non-linear rates of change  
Susan’s water line graph for the third container indicated a linear component prefaced by 

an increasing, concave up, non-linear component, which she referred to as “exponential.” When 
asked why she used the term exponential, she first exhibited shape-thinking (Moore & 
Thompson, 2015) regarding exponential growth , and then, referring to Figure 2, volunteered that 
“You can’t really define this rate, because at each second it’s filling at a different rate, because 
[the glass is] continually sloping inward. So it’s going to be an exponential growth curve, 
because it’s changing constantly.” When asked what she meant by “it’s changing constantly,” 
she replied, “it’s constantly getting quicker, and that is indicative of exponential growth.” In 
response, the teacher introduced graphing calculator explorations with sliders to perturb the 
students’ shape-thinking regarding exponential and polynomial functions, as well as activities 
relating the rate of change of a quadratic relation and its derivative, before returning to modeling 
water accumulation. ​We are continuing to analyze relationships between Susan’s and Kris’ 

rational number concepts and calculus understandings. We will solicit feedback from the 

audience regarding our interpretations of the students’ reasoning during the teaching sessions. 
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Signed Quantities: Mathematics Based Majors Struggle to Make Meaning 
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Physics students struggle to make meaning of the negative sign in a variety of mathematical and 
physical contexts. This study is part of an ongoing concurrent mixed methods exploration of 
student understanding of negativity in physics. A set of multiple-choice items, modified from a 
prior study, was administered to over 500 calculus-based college students from diverse 
backgrounds. Results suggest that when the positive sign is an explicit part of a quantity, 
students struggle with positive quantity just as they do with negative quantities, and that the 
language that instructors use may inadvertently impute unintended meaning about signs. 

Key words: signed numbers, negative, quantity, physics, vectors 

Introduction 

While notions of negativity have been part of mathematical thinking for well over a thousand 
years, many European mathematicians shunned negative numbers as recently as the advent of 
modern calculus.  Negative numbers were seen to  “… darken the very whole of equations and 
make dark of thinking which are in their nature excessively obvious and simple.”(Maseres, 1758) 
More recently, mathematicians have isolated a variety of natures of negativity fundamental to 
algebraic reasoning that go beyond a “position on a number line” nature (Gallardo & Rojano, 
1994; Thompson & Dreyfus, 1988; Nunes, 1993). College students are expected to reason with 
these various natures of negativity that form the foundation of scientific quantification, yet they 
experience the “darkening” of reasoning foreshadowed by 18th century mathematicians, 
struggling to separate the physical model from the rules associated with arithmetic. The work 
presented in this paper argues that the majority of engineering students in the U.S. struggle to 
make meaning of positive and negative quantities outside of the number line context learned in 
elementary school, in spite of successfully passing Calculus I and beyond in mathematics. 

Developing flexibility with negative numbers is a known challenge in math education. In her 
study of algebra students, Vlassis found that full understanding of the concept of a negative 
number required that students develop flexibility with the various ways negative numbers are 
used in context (i.e., with the “negativity” of the number) (Vlassis, 2004).  

Few published studies have focused on negativity in the context of the mathematics used in 
physics courses (Sherin, 2001; Bajracharya, Wemyss, and Thompson, 2012). In our own prior 
work on negativity (Brahmia & Boudreaux, 2016), we found that engineering students struggled 
to make sense of negative physics quantities, but struggled less with the unary, or “isolated 
number” nature of negativity, as compared with other natures. (The unary nature of negativity is 
embodied by position on a number line.) We found that students have particular difficulty with 
signed scalar product quantities, commonly associating the sign of the scalar with the direction 
of one of the factor vectors. We suspect that science contexts overwhelm some students’ 
conceptual facility with negativity, and conclude that students’ mathematical understanding is 
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likely more fragile than what physics instructors may commonly assume based on the students’ 
completed prerequisite math courses.  

The current study extends this prior research.  We wondered if there was something 
particularly “dark” about negative numbers per se, and if students would have a higher success 
rate had they been asked about signed positive numbers. Additionally, in open-ended versions of 
the assessment items we saw that students seemed to attribute meaning to particular phrases in 
the question statement that was not implied. We formulated the research questions below to 
focus the new study. The remainder of this paper describes our preliminary work in addressing 
these questions. 
1. Are difficulties with negative quantity associated with negativity per se, or do learners 

struggle in similar ways with positively signed quantity? 
2. What assumptions regarding negativity do students make based on language commonly 

found in physics problems? Specifically, to what extent do students: 
• interpret “movement along the x-axis” to imply motion in the +x-direction? 
• interpret a negatively signed quantity to imply a motion in the negative direction? 
 
The cognitive blending 

theoretical framework (Fauconnier 
& Turner, 2008; Bing & Redish 
2007) describes the interdependence of 
thinking about the mathematical and 
physical worlds that we feel is 
necessary for quantifying effectively 
with signed quantities in physics. Figure 1 illustrates a double scope quantity reasoning blend, in 
which two distinct domains of thinking are merged to form a new cognitive space optimally 
suited for productive work. Findings by Czocher support this view. She observed students 
enrolled in a differential equations course solving a variety of physics problems, and found that 
successful students functioned most of the time in a “mathematically structured real-world” in 
which they moved back and forth fluidly between physics ideas and mathematical concepts 
(Czocher, 2013). 

Research Methods 

Our work adopts a concurrent mixed methods strategy. We have used Vlassis’s framework 
for negativity (Vlassis, 2004) to inform the design of six assessment items, three involving 
contexts from mechanics (ME), and three, contexts from electricity and magnetism (EM). (See 
Appendix.) Previously, we used multiple-choice (MC) versions of the items to reveal trends in 
large populations, and free-response versions to explore students’ in-the-moment thinking 
(Brahmia & Boudreaux, 2016). 

For the current study, the items were administered in a three semester, large enrollment, 
calculus-based physics course sequence at a large, diverse, public R1 university, and in an 
analogous three quarter sequence at a smaller, less diverse, public regional university. The items 
were ungraded, and were bundled with concept inventories routinely given as part of course 
assessment. At the R1 university, the course was composed almost entirely of engineering 
majors, while at the regional university, the course included not only engineers, but also students 

Physically  
meaningful reasoning  

about quantity in 
introductory physics  

Conceptual 
understanding of 

arithmetic operations 
and quantity 

 
Connection to the 

physical world 

Figure 1: Double scope quantity reasoning blend 
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majoring in physics, chemistry, biology, and other STEM fields. In each case, students were 
concurrently enrolled in some level of calculus course. 

To investigate the first research question, we administered MC versions of the ME items at 
the R1 institution in Spring 2016 to 551 students completing the second course in the physics 
sequence (which includes mechanics applications and thermodynamics). Half of these students 
(at random) received modified versions of the items, in which the negative quantities used in the 
original versions were replaced with positive quantities. To investigate the second research 
question, we extended the study described earlier (Brahmia & Boudreaux, 2016), in which the 
ME items were administered at the R1 institution in Fall 2015 at the end of both the first course 
in the sequence (which covers mechanics) and the third course (which covers EM). We 
examined responses on free-response versions (n=84, ME; n=138, EM), and made changes to the 
wording and the MC distractors of some items. These changes are described in the footnotes of 
the appendix. The modified versions of all items were then administered in Winter 2016 at the 
regional university, at both the start and end of the second course of the three-quarter physics 
sequence (which covers EM). Table I summarizes the administration of assessment items. 
Table I: Administration of items in introductory, calc-based physics courses to assess student 
understanding of signed quantities. (FR=free-response, MC=multiple-choice) 

Institution Administered at Math 
Pre/Co Req. Item context Item 

format 

R1 University 
(2015/16) 

End of 1st sem. course  PreCalc, Calc I ME (negative quantities only) MC and FR 
End of 2nd sem. course Calc I ME (neg. and pos. quantities) MC only 
End of 3rd sem. course Calc II, III EM (neg. only) MC and FR 

Regional Univ. 
(2016) 

Beginning and end of 
2nd qtr. course Calc I, II ME and EM (mod. wording 

and choices; neg. only) MC only 

 

Findings 

Figure 2 shows results from the positive and 
negative versions of items ME1-ME3. For all three 
item pairs, a chi-square test of significance yields p-
values > 0.6. For items ME2 and ME3, effect sizes 
determined from log odds ratios are < 0.8 (Borenstein 
et al., 2009). The effect size for item ME1 is 0.13, a 
statistically small effect size. Prior research has found 
that physics students tend to inappropriately associate 
negative (positive) acceleration with decreasing 
(increasing) speed. We suspect that results on item 
ME1 are related to this difficulty, and thus do not 
interpret the finding as evidence that students experience inherent difficulty with negatively 
signed quantities (i.e., relative to positive quantities). Results overall suggest that students 
struggle to make sense of positive values just as they do with negative values, when the sign is 
an explicit part of the quantity.   

Figure 3 shows results from the original and modified versions of ME1 (see Appendix). We 
use these results to address the first part of the 2nd research question. Note that on the original 
version, choice “e” would be correct if the motion were assumed to be in the +x-direction. We 
note that on the modified version, given at the regional university, 17% fewer of the students 
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selected e, with a corresponding 17% increase 
in the fraction selecting c, the correct answer. 
This result, statistically significant with a 
medium effect size, could indicate that 
students at the R1 institution tended to 
interpret “an object moves along the x-axis” to 
signify motion in the positive direction. An 
alternative explanation is that students at the 
regional university were not comparable to 
those at the R1, perhaps due to differences in 
course instruction. The statistically identical 
patterns of the other distractors, however, cast 
doubt on this explanation. We intend to replicate the experiment with samples drawn from the 
same population, and to present the findings as part of our talk.    

To address the second part of research question 2, we compared results on the original and 
modified versions of items EM1 and EM3 (see Appendix). No significant differences in 
performance were found. We conclude that although on free-response versions of the items, 
some students associated negatively signed quantities (i.e., quantities other than velocity) with 
motion in the negative direction, this association is not robust enough to distract students from 
other sensible choices in the MC format. 
 

Implications for Mathematics Instruction 

Based on prior research associated with negativity (Blaire et al. 2012), we suspect that 
understanding signed quantities increases students’ cognitive load in science courses, which 
explains why, in the absence of a robust cognitive structure on which to hang the new signed 
quantities, students flounder to make meaning of the quantities and the language surrounding 
them.  

We recognize the value of explicitly addressing mathematization with signed quantities in 
physics instruction. Here, however, we open a discussion of math instruction, in particular 
instruction between pre-algebra and calculus, with informal observations from an examination of 
sample math textbooks: 
1. Sign and operation are often conflated using an equals sign (e.g., 5 + (-3) = 5 – 3), and 

unsigned numbers are assumed positive. Adding a negative quantity and subtracting a 
positive one often have different meanings in science contexts. Although these operations 
yield the same arithmetic results, conflating them may lead students to struggle with the 
distinctions between sign and operation.  

2. Orientation and sense are not always explicit in coordinate systems. Aligning the positive 
coordinate axis with the direction of motion eliminates the need for signed quantities. This, 
however, could be a missed opportunity to distinguish between orientation and sense. The 
opposite coordinate choice can prime students to understand signed numbers in science 
contexts.  
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Questions for the RUME community 

1.  What kinds of knowledge would math education researchers be interested in gaining from 
subsequent qualitative studies? 

2.  What audiences would be most interested in learning about this research?  
 

Appendix 
 

Multiple-choice versions of the assessment items and the percentage of students selecting each 
answer (Brahmia&Boudreaux, 2016). Correct answers are in bold. 
 

Unary structural signifier Symmetrical operational sig. Binary op. sig. 

M
E

C
H

A
N

IC
S 

IT
E

M
S 

Dir. of a vector component Signifies work by block not on block Position rel. to an origin 
aME1: An object moves along 
the x-axis. The acceleration is 
measured to be ax = – 8 m/s2. 
Consider the following 
statements about the “–” sign in 
“ax = –8 m/s2”. Pick statement 
that best describes information 
the neg. sign conveys: 
a. The object moves in the 

negative direction. (8%) 
b. The object is slowing 

down(26%) 
c. The object accelerates in the  

–x-direction (26%) 
d. Both a and b (6%) 
e. Both b and c (34%) 

bME2: A hand exerts a force on a block 
as block moves along a frictionless, 
horiz. surface. For a particular interval, 
the hand does W= –2.7 J of work. 
Consider the following statements about 
the “–” sign in “W = –2.7 J”.  

The neg. sign means: 
I.   the work done by hand is in neg. dir.     
II.  the force exerted is in neg. dir. 
III. the work decreases the mechanical 
energy associated with the block 

Which are true?     
a. I only (17%)   
b. II only (17%)    
c. III only (23%)  
d.  I and II only (29%)     
e.  II and III only (14%)  

ME3: A cart is moving along 
the x-axis. At a specific instant 
the cart is at position x = –7 m. 
Consider the following 
statements about the “–” sign in 
“x = –7 m”.  Pick statement 
that best describes information 
the sign conveys. 
a. The cart moves in the 

negative direction (6%) 
b. The cart is to the negative 

direction from the origin 
(67%) 

c. The cart is slowing down 
(6%) 

d. Both a and b (19%) 
e. Both a and c (2%) 
 

       aMod. version of ME1 at regional univ. replaced first sentence with “An object moves in one dimension.” 
       bMod. version of ME2 added “IV. block moves in the neg. dir.,” and replaced choice e with “e. IV only” 
 

Unary structural signifier Symmetrical operational sig. Binary op. sig. 

E
 &

 M
 I

TE
M

S 

Dir. of a vector component Signifies opposite type of charge Potential rel. to a reference 
cEM1: At a location along the x-
axis, the E-field is Ex = –10 N/C. 
Consider the following 
statements about the “–” sign in 
“Ex = –10 N/C”. Pick statement 
that best describes information 
the neg. sign conveys: 
a. The test charge is negative 

(16%) 
b. The field is being created by 

negative charge (21%) 
c. The field points in the 
     –x-direction (36%) 
d. Both a and b (12%) 
e. Both b and c (14%) 

EM2: Valeria combs her hair and there 
is a transfer of charge such that 
DQcomb= –5 mC. Consider the 
following statements about the  “–” 
sign in “DQcomb= –5 mC”.  

The neg. sign means: 
I.   neg. charge was added to the comb 
II.  charge was removed from comb 
III. all of the charge in comb is neg. 

Which statements could be true? 
a. I only (33%) 
b. II only (28%) 
c. III only (18%) 
d. I and III only (15%) 
e. II and III only (5%) 

dEM3: A student uses a 
voltmeter to measure voltage 
across a battery. It reads –5V.   
Consider the following 
statements about the “–” sign in 
“– 5V”. Pick statement that 
best describes information the 
neg. sign conveys: 
a. voltage is in opp. dir. as 

current (32%) 
b. there are 5V of neg. charge in 

battery  (14%) 
c. voltage is in the neg. dir. 

(18%) 
d. voltage at one term. is 5V 

less than the other (33%) 
e. battery has neg. voltage (3%) 

cMod. version of EM1 at regional univ. replaced choice d with “d. the test charge moves in the neg. dir.,” and choice 
e with “e. the electric field moves in the neg. dir.” 
 dMod. version of EM3 replaced choice e with “e. none of these is a valid interpretation”
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Developing Student Understanding: The Case of Proof by Contradiction 
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Proof is central to the curriculum for undergraduate mathematics majors. Despite transition-to-
proof courses designed to facilitate the transition from computation-based mathematics to proof-
based mathematics, students continue to struggle with mathematical proof. In particular, 
research suggests that proof by contradiction is a difficult proof methods for students to 
construct and comprehend. The purpose of this paper is to discuss preliminary results on student 
comprehension of proof by contradiction within a transition-to-proof course. Grounded in APOS 
Theory, this paper will illustrate that students’ ability to negate quantification plays an early 
role in student comprehension of proof by contradiction. 
 
Key words: Proof by Contradiction, Transition-to-proof course, Teaching Experiment 
 

Proof is central to the curriculum for undergraduate mathematics majors. Despite transition-
to-proof courses designed to facilitate the transition from computation-based mathematics to 
proof-based mathematics, students continue to struggle with mathematical proof (Samkoff & 
Weber, 2015). In particular, research suggests that proof by contradiction is a difficult proof 
methods for students to construct and comprehend (Antonini & Mariotti, 2008; Brown, 2011; 
Harel & Sowder, 1998). The purpose of this paper is to discuss preliminary results on student 
comprehension of proof by contradiction within a transition-to-proof course. In particular, this 
paper will address the following question: How does a student's conception of quantification 
affect their comprehension of proof by contradiction? Grounded in APOS Theory, a teaching 
experiment was designed to assess the development of student understanding of proof by 
contradiction. Results from a case study consisting of three teaching sessions with one student 
will be presented and discussed, concluding with a discussion of how quantification negation 
affects student comprehension of proof by contradiction. 

  
APOS Theory and the ACE Teaching Cycle 

APOS Theory is a cognitive framework that considers mathematical concepts to be 
composed of mental Actions, Processes, and Objects that are organized into Schemas. An Action 
is a transformation of Objects by the individual requiring memorized or external, step-by-step 
instructions on how to perform the operation. As an individual reflects on an Action, he/she can 
think of these Actions in his/her head without the need to actually perform them based on some 
memorized facts or external guide; this is referred to as a Process. As an individual reflects on a 
Process, they may think of the Process as a totality and can now perform transformations on the 
Process; this totality is referred to as an Object. Finally, a Schema is an individual’s collection of 
Actions, Processes, Objects, and other Schemas that are linked by some general principals to 
form a coherent framework in the individual’s mind (Dubinsky & McDonald, 2001). Utilizing 
the mental constructs of Actions, Processes, Objects, and Schemas, an outline of the hypothetical 
constructions students may need to make in order to understand a concept can be developed, 
referred to as a genetic decomposition. This genetic decomposition is used as a foundation to 
develop instructional materials.  

20th Annual Conference on Research in Undergraduate Mathematics Education 116420th Annual Conference on Research in Undergraduate Mathematics Education 1164



One such pedagogical approach aligned with APOS Theory is the ACE teaching cycle; an 
instructional approach that consists of three phases: Activities, Classroom discussion, and 
Exercises. In the Activities phase, students work in groups to complete tasks designed to promote 
reflective abstraction rather than correct answers. These tasks should assist students in making 
the mental constructions suggested by a genetic decomposition. In the Classroom discussion 
phase, the instructor leads a discussion about mathematical concepts that the activities focused 
on. Students take a prominent role in this discussion while the instructor guides the conversation 
and presents an overview of what the students have discussed and introduces a formal, 
mathematical way of presenting the concept. In the Exercises phase, students work on standard 
problems designed to reinforce the Classroom discussion and support the continued development 
of the mental constructions suggested by the genetic decomposition. The Exercises also provide 
students with the opportunity to apply what they have learned in the Activities and Classroom 
discussion phases to related mathematical concepts (Arnon et al., 2014).  

Methodology 

This paper is situated in a larger research project on how students develop an understanding 
of proof by contradiction within a transition-to-proof course at a public R1 university in the 
southeastern United States. Data for this preliminary report consists of three sessions of a 
teaching experiment with a single student, Chandler, during summer 2016 from Bridge to Higher 
Mathematics - the first course in which students are formally introduced to mathematical proofs 
and their accompanying methods of proof. Chandler’s understanding is similar to 5 other 
participants and can be considered representative of a general participant’s understanding. Unlike 
a typical instructional sequence of ACE teaching cycle that, in a regular classroom, usually lasts 
for a week, this teaching experiment consisted of 5 shorter, consecutive teaching sessions each 
mimicking the ACE teaching cycle. That is, each session consisted of: students working on the 
Activity worksheet focusing on a particular component of the genetic decomposition for proof by 
contradiction (A); A discussion about the concepts from the worksheet (C); and a typical series 
of proof comprehension questions (Exercises, E) related to the content of the worksheet. A more 
detailed description for each session, including the role of the interviewer during each phase, is 
described below. In addition, Table 1 provides an overview of the content for the first three 
sessions with Chandler. 

x Activity – Sessions began with a presented statement and proof. The interviewee would 
talk out how this statement and proof can be converted to propositional logic. During this 
phase, the interviewer acted as another student with incomplete knowledge. 

x Classroom Discussion – After the Activity, the interviewer would ask the interviewee to 
summarize the structure of the proof. At this point, a formal structure of the proof would 
be given to the student, after which the interviewee would discuss how this structure 
compared to the one written during the Activity. During this phase, the interviewer acted 
as a knowledgeable agent who guided the student to make comparisons that would 
develop student understanding.  

x Exercise – After the Classroom Discussion phase, the interviewee answered 
comprehension questions on their own, after which the interviewer prompted interviewee 
for their answers and their thinking behind the answers provided. Note that as textbooks 
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do not normally provide comprehension questions on proofs, the proof comprehension 
assessment model by Mejia-Ramos et al. (2012) was used to develop standard proof 
comprehension questions for the Exercises. During this phase, the interviewer acted as a 
knowledgeable agent to gain insight into the interviewee’s thinking. 

x Student’s Questions – After the Exercise phase, the interviewee was encouraged to ask 
questions on any topic (not just those discussed in the interview).  

Table 1. Overview of content per teaching experiment session 
 

 Activity Classroom 
Discussion 

Exercise Student’s 
Questions 

Session 
1     

Converting 
statements using 
propositional logic. 

Discussion of 
these 
conversions and 
quantification in 
general. 

Comprehension 
questions on a proof 
of the statement “The 
set of primes is 
infinite” 

How do you 
negate the 
statement 
“(∀𝑥)(∀𝑦) 
((𝑃(𝑥) ∧ 𝑃(𝑦)) 
→ 𝑥 = 𝑦)”? 

Session 
2 

Logical structure of 
the statement “If 
every even natural 
number greater than 
2 is the sum of two 
primes, then every 
odd natural number 
greater than 5 is the 
sum of three 
primes” 

Discussion of 
procedure for 
proof by 
contradiction of 
implication 
statements. 

Comprehension 
questions on the 
proof of the statement 
“If every even natural 
number greater than 2 
is the sum of two 
primes, then every 
odd natural number 
greater than 5 is the 
sum of three primes” 

How do you write 
a proof by 
contradiction for 
the statement 
“𝑃 → 𝑄1 ∧ 𝑄2” 
and similar 
statements? 

Session 
3 

Logical structure of 
the statement 
“There is no odd 
integer than can be 
expressed in the 
form 4𝑗 − 1 and in 
the form 4𝑘 + 1 for 
integers 𝑗 and 𝑘.” 

Discussion of 
procedure for 
proof by 
contradiction of 
nonexistence 
statements.  

Comprehension 
questions on a proof 
of the statement 
“There is no odd 
integer than can be 
expressed in the form 
4𝑗 − 1 and in the 
form 4𝑘 + 1 for 
integers 𝑗 and 𝑘.” 

How do you write 
a proof for the 
Triangle 
Inequality?  

 
Data Analysis 

All sessions were video recorded and then transcribed by the interviewer. Transcripts of the 
three sessions went through multiple passes of analysis. First, sections of the transcripts were 
grouped by Activity, Classroom Discussion, Exercises, and Student’s Questions for each session. 
Then, grouped sections were read together and general comments were made to find themes (if 
any) outside of the genetic decomposition. Two themes emerged from these general comments: 
(1) negating quantified statements and (2) procedures for proof writing. These themes were then 
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coded throughout all three sessions. Finally, each interview was coded for evidence of 
developing an understanding of proof by contradiction. Due to space constraints, the rest of this 
section will briefly discuss how Chandler negated quantified statements and how this affected his 
comprehension of proof by contradiction.  

Negating a statement is the first step toward writing a proof by contradiction and thus a 
student’s conception of quantification negation directly affects proof comprehension of proofs by 
contradiction. On several occasions, Chandler expressed the need for explicit rules in order to 
negate quantified statements, indicating an Action conception of quantification negation. For 
example, during Session 2 Chandler discussed having a table with instructions on how to negate 
statements with single and multiple quantifiers, saying “Negation… I wish there was a table on 
how to negate things and what they look like, I don’t know. There is this [points to page in 
textbook with rules for negating ‘for all’ and ‘there exists’ statements] for quantifiers.” The 
interviewer then found a table online with negations of logical operators that Chandler confirmed 
was what he was looking for in addition to the page in the textbook.  

In addition, Chandler had difficulties negating statements without first translating the 
statement into propositional logic and (sometimes with prompting) using rules to negate the 
propositional logic, again indicating an Action conception of quantification negation. For 
example, in Session 2 Chandler was asked to give the negation of the statement “Every even 
natural number greater than 2 is the sum of two primes.” An excerpt of what transpired is 
provided below: 

CHANDLER: Every even natural number greater than 2 is not the sum of two primes? No, 
all? I don’t know.  
[Interviewer prompts Chandler to write the statement in propositional logic] 
INTERVIEWER: Alright. So for every n here, that’s how you said it to me. So parentheses 
for all n, in the natural numbers, if n is greater than 2, then n is p + q. So what would be the 
negation of this statement? 
CHANDLER: There is a natural number…  
INTERVIEWER: There is a natural number. 
CHANDLER: n greater than 2 that is not equal to p + q.  

Note that at first, Chandler was unable to state the negation of the claim. However, once the 
claim was written in propositional logic, Chandler was able to recognize the negation of a “for 
all” statement. Chandler’s need to convert the statement into propositional logic can be explained 
by his reliance on external, specific rules for negating quantifiers.  

In terms of proof by contradiction comprehension, a student with an Action conception of 
quantification negation would need to have the logical structure of the proof explicitly written 
out. If the initial logical step is omitted (as they sometimes are in textbooks), he or she would not 
understand the proof as a whole. Chandler expressed a difficulty with an omitted negation in 
Session 1 with the following claim and first line of a proof: 

Claim: If every even natural number greater than 2 is the sum of two primes, then every odd 
natural number greater than 5 is the sum of three primes.  
Proof: Assume that every even natural number greater than 2 is the sum or two primes and 
that it is not the case that every odd natural number greater than 5 is the sum of three primes.  
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Chandler is initially unable to recognize the hidden negation step of the above proof, stating “I’m 
not sure when something contradicts, if you begin with 1, step 1. The assumption, or the given, 
was that P and Q. If you begin with P and not Q, it’s already a contradiction, isn’t it? No?” Once 
the intermediary step, “Assume it is not true that if every even natural number greater than 2 is 
the sum of two primes, then every odd natural number greater than 5 is the sum of three primes” 
and how this statement relates to the first statement of the proof “That is, assume that every 
even…” was presented, Chandler indicated he understood the first statement was a rewrite of the 
negation of the claim. This enabled Chandler to understand the logical underpinning of the proof.  

Discussion 

When Chandler was prompted to convert statements to propositional logic to negate and then 
convert back to mathematical language, he was successful in understanding (locally and 
globally) how statements of the proof logically followed. Converting statements to propositional 
logic for negation also aided Chandler in understanding the “logical leaps” of presented proofs, 
such as those that begin with the negated version of a statement and not with a phrase such as 
“Assume the statement is not true; that is …” that would indicate a proof by contradiction. While 
other authors have found difficulties negating quantification to affect student construction of 
proofs (Antonini & Mariotti, 2008; Lin, Lee, & Wu Yu, 2003), Chandler’s comprehension after 
logical quantification suggests that a student’s ability to negate quantification plays an early role 
in student comprehension of proof by contradiction. 

Future Plans 

Data collection and analysis will continue in spring 2017. A major goal for this semester will 
be to refine the preliminary genetic decomposition for proof by contradiction that guides the 
design of this study, provided below. 

Preliminary Genetic Decomposition for Proof by Contradiction 
1. Students outline the propositional logic of a given proof to develop specific step-by-step 

instructions to construct proofs by contradiction for the following types of statements: (i) 
implication, (ii) single-level quantification, and (iii) property claim.  

2. Students interiorize each of the Actions in Step 1 individually by examining the purpose of 
statements of given proofs. These Processes become general steps to writing a proof by 
contradiction for statements of the form (i), (ii), and (iii).  

3. Students coordinate the Processes from Step 2 by comparing and contrasting the general 
steps to determine the necessary steps for any proof by contradiction. This Process 
becomes general steps to writing any proof by contradiction and identifying a proof as a 
proof by contradiction. 

4. Students encapsulate the Process in Step 3 as an Object by utilizing the law of excluded 
middles to show proof by contradiction is a valid proof method. Students can now 
comprehend proofs on a holistic level. 

5. When necessary, students de-encapsulate the Object in Step 5 into a Process similar to Step 
3 that then coordinates with a Process conception of quantification to prove multi-level 
quantified statements. 
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Defining Functions: Choices That Affect Student Learning 
Joshua Chesler 

California State University, Long Beach 

Textbook authors and instructors choose how to define the concept of function for students. This 
study examines the impact of definition choice on the mathematics work of graduate students, all 
of whom were mathematics majors and most of whom are in-service mathematics teachers. Data 
are student work on tasks requiring the application of different textbook definitions of functions. 
By drawing on ideas about action vs. object conceptions of function, it is hypothesized that certain 
linguistic features of definitions may affect students’ abilities to use the definition and to build a 
robust concept image of function. 

Key words: Definitions, Functions, Curriculum 
 
Undergraduate mathematics programs must prepare future mathematics teachers to teach 

functions, a central topic in the secondary mathematics curriculum in the United States. Functions 
account for one of just six conceptual categories in the Common Core State Standards for 
Mathematics (CCSSM) for high school (Common Core Standards Initiative, 2010) and are a 
linchpin for much of the undergraduate mathematics curriculum. However, high school teachers 
often have a shaky understanding of the concept of function, exhibiting disconnected knowledge 
that is more procedural than conceptual (Doerr, 2004). Not surprisingly, their students are similarly 
challenged in their understanding of function (Kieran, 2007). This study investigates the impact of 
the choice definitions of functions in introductory algebra textbooks. 

As shown below, different textbooks present definitions of functions that vary in their wording 
and are not always mathematically equivalent. These wording choices by textbook authors may 
have consequences in K-16 mathematics education. For example, the CCSSM’s description of the 
standards for mathematical practice (i.e., what it means to do or practice mathematics) note that 
“mathematically proficient students understand and use stated assumptions, definitions [emphasis 
added], and previously established results in constructing arguments” (CCSI, 2010, p. 6). 
Accordingly, the big question which underlies this study is: How does the choice of definition of 
function impact learning and understanding? Unpacking this question, the study focuses on the 
questions:  

1. Are some definitions more “usable” than others?  
2. Does a definition respect what we know about students’ knowledge development? 

These questions are investigated by examining the work of in-service mathematics teachers, all of 
whom have undergraduate mathematics degrees, as they use different definitions of functions from 
high school textbooks. The preliminary results reported below indicate that, indeed, choice of 
definition matters. 

Theoretical Framework 

Understanding Functions 
Much has been written about understanding of functions (for an overview see Kieran, 2007). 

For present purposes, the focus is to distinguish between (1) someone who sees a function as 
instructions to do something, and (2) one who sees a function as an object. There are several 
frameworks which explicate the broad idea behind this division. Sfard and Linchevski (1994), for 
example, described a theory of reification in which learners of mathematical concepts first hold an 
operational conception (process-oriented). They describe reification as “our mind's eye's ability to 
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envision the result of processes as permanent entities [objects] in their own right” (p. 194). A 
learner’s concept of function, through reification, progresses from operational to structural/object-
oriented. APOS theory describes a similar trajectory for an individual’s mental construction of a 
mathematical concept  in terms actions, processes, and objects organized in schema (Dubinsky & 
McDonald, 2001). In the context of functions, an action conception may be to think of a function 
as a recipe (given by a mathematical expression) applied to some number. For someone with a 
process conception, the action is “interiorized” through repetition and reflection so that it can be 
thought about more abstractly (i.e., without evaluating the expression which determines the 
function by “plugging in” a number). Someone with an object conception can operate on functions 
as if they were indeed objects. Such a person may, for example, understand functions as a special 
type of mathematical relation, a set of ordered pairs. Thompson (1994) describes the object level 
as entailing “an image of functional process as defining a correspondence between two sets: a set 
of possible inputs to the process and a set of possible outputs from the process” (p. 27).  

For the purposes of this study, the action/process vs. object distinction is sufficiently granular. 
In particular, for the present analysis, no distinction is necessary between action and process 
conceptions. The distinction between action/process and object conceptions is viewed as 
hierarchical with an action preceding object conceptions of function, as Thompson (1994) 
contended. Though, as acknowledged in APOS theory, an individual’s progression through these 
stages may be messy and nonlinear. Furthermore, Sfard (1991) notes that “the ability of seeing a 
function or a number both as a process and as an object is indispensable for a deep understanding 
of mathematics, whatever the definition of ‘understanding’ is (p. 5).” In the spirit of Sfard, a 
definition of “understanding” is not attempted. Instead, the focus is the distinction between an 
action/process conception and an object conception. Paraphrasing Ponce (2007), there is a 
difference between a student who thinks of a function does something and one who sees a function 
as a thing? 

 
U.S. High School Textbooks and Definitions of Functions 

Herein, the action/process vs. object distinction will be related to linguistic features of 
textbooks’ definitions of functions and students’ work using the definitions. Textbooks are 
conceptualized as curricular materials in accordance with  Remillard’s (2005) definition, “printed, 
often published resources designed for use by teachers and students during instruction” (p. 213). 
The study is framed by Remillard's description of curriculum use as a participatory relationship 
that is influenced by characteristics of the individual (beliefs, pedagogical content knowledge, etc.) 
and by features of the curriculum (voice, representation of concepts, etc.). The curricular materials 
of relevance to this study are three U.S. high school introductory Algebra textbooks, specifically 
their treatment of functions. The textbooks were selected as a convenience sample; these were 
readily available books on the researcher’s shelf. The main goal was to capture a variety of 
definitions, and these textbooks provided that. The following are the textbooks’ definitions of 
function (emphasis added): 

• Definition 1. (CME Project Algebra 1) “A function is a rule that assigns each element from 
the set of inputs to exactly one element from the set of outputs” (Center for Mathematics 
Education, 2009, p. 421). 

• Definition 2. (McDougal Little Algebra 1 California)  “A function consists of: 
A set called the domain containing numbers called inputs, and a set called the range 
containing numbers called outputs… A pairing of inputs with outputs such that each input 
is paired with exactly one output.” (Larson, Boswell, & Kanold, 2006, p. 35). 
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• Definition 3. (Holt Algebra 1) “A relation is a set of ordered pairs. The domain of a relation 
is the set of the first coordinates. The range of a relation is the set of second coordinates. A 
relation that assigns to each value in the domain exactly one value in the range is called a 
function” (Burger, 2008, pp. 206–207). 

According to these definitions, a function may be thought of as a rule, pairing, or relation; that is, 
a function can be thought of as three different types of objects. Other differences are apparent as 
well. Definition 3 describes first and second coordinates, the other two describe inputs and outputs. 
Definition 2 is not equivalent to the other definitions as it defines the inputs/outputs of functions 
to be numbers; the others are less restrictive. Thus, without much effort, it is easy to find 
differences in the way high school textbooks define this essential mathematical object. This study 
focuses on the type of object that a function is defined as and how that may help learners negotiate 
between action/process and object levels of understanding.  
 

Methods  

Mathematics graduate students were asked to use each of the three definitions of functions to 
do two tasks:  

Task 1. Show that the equation 𝑦𝑦 = 𝑥𝑥 + 1 determines 𝑦𝑦 as a function of 𝑥𝑥. 
Task 2. Show that sequences are functions.  
The research subjects were 23 graduate students in a master’s program in mathematics (option 

in secondary mathematics education), all of whom had undergraduate degrees in mathematics or 
mathematics education and were credentialed secondary mathematics teachers. All but three were 
either currently teaching or had previously taught middle or high school mathematics. The research 
subjects’ statuses as current or future teachers and mathematics majors are of relevance to the 
study’s implications; participants may be viewed dually as students and teachers of mathematics. 

Operating under the hypothesis that certain features may make a definition more “usable” for 
students and teachers, “using a definition” was operationalized by checking if the type of object 
was somehow referenced in a student’s response. For example, to use Definition 1 a student would 
need to describe how the given equation or an arbitrary sequence determines a “rule”. Of particular 
interest was whether the student used a verb form of the object. For example, in using Definition 
2 (function as a pairing), did the student say something like, “A sequence pairs integers with 
terms.” Data are being coded for whether the student used the definition, how s/he used it (e.g., 
using a verb form of the object), and whether s/he used it correctly. 

This activity was assigned prior to any treatment of functions in the course. The nature of prior 
instruction about or experiences with functions was not probed. Though, the participants’ 
undergraduate mathematics degrees were assumed to be preparation for answering the questions.  

 
Preliminary Results 

There is compelling preliminary evidence that students have more success if function is defined 
as an object which has an accessible verb form. This is exemplified by the work of the following 
student (a graduate student and high school mathematics teacher). In using Definition 1, she never 
explicitly stated how the equation in Task 1 determines a rule and instead focuses on actions (e.g., 
plugging in).  In using Definition 2, she used the verb form of the noun/object “pairing” to describe 
how inputs are “paired with” outputs and provided a more complete answer. 

• Using Definition 1 (function as rule): “The equation 𝑦𝑦 = 𝑥𝑥 + 1 determines 𝑦𝑦 as a function 
of 𝑥𝑥 because for each value that you plug into 𝑥𝑥, you will produce exactly one value for 𝑦𝑦.  
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For example, if you plug in 2 for 𝑥𝑥, you will get 3 for 𝑦𝑦.”  
• Using Definition 2 (function as pairing): “For each pairing of inputs and outputs, each input 

value is paired with exactly one output value. For example, if the domain is {–2, 0, 5} then 
the range is {–1, 1, 6} and the pairing of inputs and outputs would be {(–2, –1), (0, 1), (5, 
6)}.  Each input is paired with exactly one output.” 

This student’s response for Definition 1 never addressed why or how the equation determines 
a rule. Yet her response for Definition 2 indicates that she does, in fact, understand the conventions 
for using a definition. By making use of the verb form of the noun “pairing,” she explicitly 
connected her explanation to given definition. 

In using Definition 2, participants had a preference for using the verb construction “is paired 
with” to explaining why the equation 𝑦𝑦 = 𝑥𝑥 + 1 is “a pairing.” Furthermore, the definition itself 
makes use of both forms, perhaps modeling flexible language use for students. Though a verb form 
may be available for the noun/object “relation” in the form of “to relate,” only one student used it 
one time whereas the phrase “paired with” appears in 30 out of the 46 student responses for Tasks 
1 and 2 using Definition 2. It is hypothesized below that access to a verb form may help students 
coordinate between action/process (verb) and object (noun) conceptions of function. 

There is indication that Definition 1 (definition as rule) is particularly challenging. Only 10 
students correctly used the definition to answer Task 1, and two of those answers showed some 
confusion. Data are still being analyzed, but will be probed too see if the lack of a readily accessible 
verb form of the word rule may have played a role – the verb to rule certainly wouldn’t have 
helped. 

At least three other themes have emerged in the initial analysis that will be investigated through 
the data. First, students did very poorly in explaining why sequences are functions regardless of 
the choice of definition. Second, students’ use of future tense may offer further evidence of a use 
of an action conception of function. For example many students wrote something similar to this 
student’s explanation: “By substituting a value of 𝑥𝑥 from the domain into this equation, one will 
find a value of 𝑦𝑦.” That is, given an input, the function performs an action that will result in an 
output. In the first example of student work in this section, the future tense was used with 
Definition 1 (rule) but not Definition 2 (pairing). Third, many students displayed confusion about 
the difference between sets and elements of a set (e.g, “A sequence is a rule with each element in 
the input assigns exactly one element in the output.”). Other students referred to 𝑥𝑥 and 𝑦𝑦 as sets. 
Such confusion could hinder use of definitions. 

 
Discussion 

This is a preliminary report, but it offers some evidence that the definitions we choose matter. 
It has implications for the undergraduate preparation of mathematics students in general and future 
mathematics teachers in particular. Students who have action/process conceptions of functions 
may be challenged by definitions which do not accommodate the use of action words. The 
connections between an action/process conception & verb and between an object conception & 
noun may be more than just a linguistic novelty. For example, there is not a convenient verb form 
for noun “rule” as there is for the noun “pairing.” This subtle difference may make a difference in 
a student’s ability to use a definition and negotiate the transition to an object conception of 
function. Perhaps making sense of Definition 1 (function as rule) is more likely to require a student 
to have an object conception of function. Though a verb form may be available for the noun/object 
“relation” in the form of “to relate,” only one student used it one time whereas the phrase “paired 
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with,” wording used in the definition, was commonly used. At this point in the analysis, it seems 
like students have more success when using action verbs.  

The abstract ideas of relations, sets, and rules may pose challenge for students who do not yet 
have object-level conceptions. It is noteworthy that these definitions came from an introductory 
high school algebra textbook, yet presented challenges for many mathematics majors. The study 
raises questions about choices of definition in introductory courses at all levels. Perhaps we should 
heed Thompson’s (1994) call for “curricula that are mathematically sound, but nevertheless are 
constructed from the start with an eye to building students' understandings” (p. 40). It is not enough 
for a definition to merely be mathematically correct – it must also accommodate beginning 
students’ action-level mathematical conceptions. 

There are, of course, many other variables at play in this investigation. For instance, especially 
in the case of Task 2 (about sequences), many participants’ lack of mathematical knowledge or 
fragile concept images obfuscated the role of the definitions’ wording. Also, the use of language 
related to sets  may have played some role in participants’ abilities to use the definition. Ongoing 
data analysis will further reveal the extent to which word choice in definitions may help or hinder 
the transition from action/process to object-level conceptions of functions. 

Analysis and interpretation of these data and directions for future research will be guided by 
audience discussion prompted, in part, by the following questions: 

1. Regarding the emergent themes (language about sets, use of future tense, sequences as 
functions), which of these are worth further investigation? How do they fit in with the 
main idea of thinking about definition use by students with action-level conceptions? 

2. In general, these participants (as math majors) knew the conventions of using a 
definition. What role is that playing? How does this impact the generalizability of the 
results to beginning students? 

3. What are the implications for secondary mathematics teacher preparation programs? 
For definition choice in general? 
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Hypothesis testing is a key concept included in many introductory statistics courses. Due to 
common misunderstandings of both scientists and students, the use of hypothesis testing to 
interpret experimental data has received criticism. This paper describes preliminary results 
obtained from a larger study designed to investigate introductory statistics students’ 
understanding of one sample hypothesis testing. APOS theory is used as a guiding theoretical 
framework. Preliminary data analysis focused on two students’ distinctions between test statistics 
when performing hypothesis tests on real world data. The results suggest a significant difference 
in these two students’ understanding, one being identified having an action conception while the 
other had an object conception of hypothesis testing as situated in the study. 

Key Words: Hypothesis Testing, Statistics, Test Statistics  

Introduction 

The use of statistics is crucial for numerous fields, such as business, medicine, education, and 
psychology. Due to its importance, statistics education has seen rapid growth over the past three 
decades (Vere-Jones, 1995). In the United States today, the Common Core State Standards for 
Mathematics calls for students to “understand statistics as a process for making inferences about 
population parameters based on a random sample from that population” (National Governors 
Association Center for Best Practices & Council of Chief State School Officers, 2010, p. 81).  

One method of making inferences (formulating a conclusion) about a population is hypothesis 
testing, which is widely used by researchers in the social sciences and is a key concept included in 
many introductory statistics courses. However, the use of hypothesis testing to interpret 
experimental data has received criticism (Nickerson, 2000) due to the common misunderstandings 
of both scientists and students when using this method (Batanero, 2000; Dolor & Noll, 2015; 
Vallecillos, 2000). LeMire (2010) defends the use of hypothesis testing and provides a framework 
that can be used to revise instructional content with the goal of further developing student 
understanding. This is an indication that on-going research should investigate students’ 
understanding and curriculum effectiveness in light of the critiques surrounding methods of 
inference.  

In this preliminary research report, we focus our attention on the following research question: 
What are students’ understandings of hypothesis testing in two distinguished real world situations? 

Theoretical Framework  

The guiding theoretical framework for our larger study is APOS Theory (Asiala et al., 1996). 
APOS Theory is a framework which models an individual’s mathematical conception using 
Actions, Processes, Objects, and Schema. An Action is an externally driven transformation of a 
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mathematical object (or objects). An Action can be described as an individual needing an external 
cue to follow, such as a step-by-step example. Once Actions are repeated and reflected on, an 
individual can start to interiorize them to become a Process. A Process no longer requires step-by-
step external cues. An individual is now able to internally imagine the steps in a transformation, 
without having to actually perform them. When an individual is then able to see the Process as a 
totality, is aware that transformations can be applied to it, and can construct these transformations, 
then the Process has been encapsulated into an Object. The collection of all mental constructions 
of Actions, Processes, and Objects forms an individual’s Schema of a particular mathematical 
concept. 

Methodology 

The focus of our study is on university students who are enrolled in an introductory statistics 
course based on the emporium model. The emporium model, originated at Virginia Tech, includes 
key components of “interactive computer software, personalized on-demand assistance, and 
mandatory student participation” (Twig, 2011, p. 26). For this particular institution, each week 
students were required to spend three academic hours in a computerized mathematics lab, as well 
as attend one academic hour class each week with an instructor. The time in the mathematics lab 
was spent actively learning using the mathematical software MyStatLab by Pearson. Students were 
also engaged in activities such as reading and discussing about the subject content with their peers, 
graduate and undergraduate lab assistants, and instructors. 

Elementary Statistics Using Excel was the textbook used in the course, written through Pearson 
and adapted specifically for the university (Triola, 2014).  The textbook describes a test statistic 
as “a value used in making decisions about the null hypothesis,” (p. 415). While assuming the null 
hypothesis is true, a test statistic is found by converting a sample statistic, whether that is a sample 
proportion or a sample mean, to a standardized score. As students for the course are required to 
calculate a p-value for most hypothesis tests, the text describes the p-value as the “probability of 
getting a value of the test statistic that is at least as extreme as the one representing the sample 
data, assuming that the null hypothesis is true,” (Triola, 2014, p. 416). Although we discuss test 
statistics as one mathematical term or value, there is a distinction needed to be noted between test 
statistics calculated from sample proportions versus sample means. Specifically, in our study, the 
distinction needs to be made between the normal distribution and the Student’s t distribution.  

For proportions, students always assume a normal distribution, and thus calculate test statistics 
which are z-scores. When calculating a test statistic for a sample representing a population mean, 
we are referring to a standardized value that represents the extremeness of your sample in regards 
to what is expected. For means, students learn about test statistics in hypothesis testing for the 
normal distribution (z-scores) and the Student's t distribution (t-scores). Although these 
distributions appear similar, the distinction occurs depending on what we know about our sample. 
In particular, if we know the population standard deviation, then we know how the data is spread 
out and can use the normal distribution (z-scores). However, if we do not know the population 
standard deviation, but can estimate it with the sample standard deviation, we can use the Student’s 
t distribution to estimate how the population is spread. For this reason, t-scores are greater than or 
equal to z-scores for the same value of n (equal as n approaches infinity) in order to 
overcompensate for the lack of knowledge of the distribution (see Figure 1).  
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Figure 1. Graphical Representation of Normal Distribution and Student’s t Distribution 

Data was collected from these classes during the Fall 2014 and Spring 2015 semesters. Data 
consists of all students’ work (more than 1,500 students) on hypothesis testing, including 
homework, quizzes, and tests. Semi-structured interviews took place with a targeted group of 
students of different capabilities. For this preliminary report, we will focus on two of the nine 
problem solving/interview sessions as the primary source of data. During the problem solving 
sessions, each participant worked alone on two hypothesis test questions. Following this, they 
participated in a semi-structured interview to further elaborate over the problems they solved. The 
first question asked the student to conduct and interpret a hypothesis test for a single population 
proportion. The second question asked the student to conduct and interpret a hypothesis test for a 
single population mean. The questions were as follows: 

1. In a recent poll of 750 randomly selected adults, 588 said that it is morally wrong to not 
report all income on tax returns. Use a 0.05 significance level to test the claim that 70% of 
adults say that it is morally wrong to not report all income on tax returns. Use the P-value 
method. Use the normal distribution as an approximation of the binomial distribution.  

2. Assume that a simple random sample has been selected from a normally distributed 
population and test the given claim. In a manual on how to have a number one song, it is 
stated that a song must be no longer than 210 seconds. A simple random sample of 40 
current hit songs results in a mean length of 231.8 seconds and a standard deviation of 53.5 
seconds. Use a 0.05 significance level to test the claim that the sample is from a population 
of songs with a mean greater than 210 seconds.  

Students had seen these exact questions on their homework and quizzes when using the 
MyStatLab software. The only difference was that for the problem solving/interview sessions they 
did not have multiple choice/drop down menus as an option to answer the questions. Since there 
was active learning associated with these concepts in the mathematics lab and in class, students 
were expected to know how to conduct and interpret hypothesis tests for both questions, and in 
particular, they were expected to know to use the normal distribution to find the test statistic for 
Question 1 and the Student’s t distribution to find the test statistic for Question 2.  
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Preliminary Results 

Our preliminary results indicate that students are not always able to make distinctions between 
test statistics. Several students used the normal distribution to find the test statistic for not only 
Question 1, but also for Question 2. For those that did use the normal distribution when calculating 
the test statistic for Question 1 and the Student’s t distribution for Question 2, some still could not 
articulate why they used two different test statistics or the relationship between the two test 
statistics. A common approach to finding the test statistic was to first look for key words, which 
suggests an Action conception of test statistic. This worked for some, however, others got confused 
with the language in the problems. For this preliminary report, we will describe the different 
approaches utilized by two students, Steve and Lana, and discuss the interpretations that helped 
them decide which test statistic to use.  

Steve 
For Question 1, Steve used the common approach of identifying key words to recognize which 

test statistic to use. He explained, “I immediately thought of these two formulas, and at first I 
wasn’t sure which one to use, and then I was like, oh wait, there’s no x-bar or mu or standard 
deviation. So that makes it pretty easy.” He used a system of elimination to decide which formula 
not to use. Even though he correctly identified the test statistic, he went on to say that this is “just 
a formula that I’ve learned like any other” and that he “doesn’t understand why we use that 
formula, other than we just use it”. He concluded his explanation stating that Question 1 used a z-
value because the problem was of proportions, what appears is likely a memorized rule applied to 
the problem.  

For Question 2, Steve recognized that it was now a question of means, but mentioned that “it’s 
basically the same problem” other than this discrepancy. Steve identified the distribution as normal 
because the question explicitly stated that “a simple random sample has been selected from a 
‘normally distributed’ population”. Based on the language in the problem, Steve associated the 
question with a normal distribution. He further explained that he would not know how to deal with 
a non-normally distributed population, that he could not recall learning anything other than a 
normal distribution, and that he did not know much about a Student’s t distribution. Ironically, 
later in the interview, when asked if his answer was a z-value or t-value, he responded that it is “a 
t-value because you’re testing means”.   

For Steve, it appeared as though he was basing his ideas of whether to use the test statistic 
associated with the normal distribution or the test statistic associated with the Student’s t 
distribution off of key words found in the problems. When the problem for Question 2 included 
the phrase of “normally distributed”, he used this to identify the question as a normal distribution. 
What could have been a result of memorized rules, led to a misconception of when to use the z-
test and t-test. Steve appears to exhibit an Action conception of the test statistic as he relied on 
external cues, such as the key words in the problem, to identify which test statistic to use. 

Lana 
Lana, for Question 1, used the normal distribution to find the test statistic based on the fact that 

the problem was about proportions. To explain the test statistic, she initially explained how she 
was picturing the “big curve, the bell curve, and I’m picturing the test statistic is where the point 
that falls on there … so this is the mean right in the middle, and the test statistic is one side of it, 
saying this is how far away from what they are saying is the mean, this is what the mean of this, I 
guess that’s what I’m thinking”. Comparison of the mean and test statistic possibly indicated an 
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Object conception of test statistic. After her explanation, she then drew a picture to illustrate her 
thinking (Figure 2) of a graphical representation of the normal distribution. 

 
 
  
  
 

 

Figure 2. Lana’s Graphical Representation of the Normal Distribution 

For Question 2, initially, Lana in her written work used the normal distribution to find the test 
statistic. During the interview she became worried when asked if the question was a z-test. She 
mentioned that she remembered from high school to use a t-score if the sample is of 30 or less. 
After prompting, she realized she should have used a t-score, however, she also immediately 
recognized that her z-score would “probably not” be very different from the t-score. She knew that 
in the relationship between the two test statistics, “they are really close together”. 

Lana was able to picture in her head a graphical interpretation of the test statistic, and was also 
able to identify a relationship between the two test statistics, suggesting an Object conception. This 
was more than what most other students were capable of interpreting.  

Concluding Remarks 

Our data suggests that one area students have trouble with when conducting hypothesis tests 
on real world data is correctly identifying and interpreting which test statistic to use. Students with 
an Action level of understanding of hypothesis testing relied on memorizing facts and identifying 
key words. Without a deeper understanding, misconceptions emerged. Students who appear to 
base their understanding off of ideas and concepts, not memorized rules, seem to have a better 
grasp of the relationship between the two test statistics, and when and why to use each one. It is 
also suggested that not having the MyStatLab multiple choice/drop down solutions to choose from 
could have possibly influenced the students’ responses in the analysis. The next step in analysis 
will be to further identify misconceptions and understanding related to hypothesis testing as a 
whole, not just the test statistic in particular.  

Questions for the Audience 

1. We have observed that the way students use certain mathematics software can influence  
students in developing a list of ‘hints and shortcuts’ for how to approach and solve certain 
types of problems. Does anyone in the audience have similar observations? How do we 
lower or eliminate this happening in our classes? 

2. Does having multiple choice affect your students understanding of concepts? Do you  
observe your students trying to ‘manipulate the system’ to get correct answers instead of 
putting in the same amount of effort to understand the concept? How do you combat this 
issue? 

3. Does the use of Excel versus other types of technology (calculators, statistical programs,  
etc) make a difference in the learning of students? 
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Spatial Training and Calculus Ability: Investigating Impacts on Student Performance and 
Cognitive Learning Style 
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Despite concerted efforts on the part of educational policy makers, women are still 
underrepresented in the STEM fields. Researchers have shown that calculus plays a major role 
in this gender disparity since it requires spatial skills to succeed: skills that women tend to lack 
compared to men. However, previous studies have shown that spatial ability is malleable and 
spatial skills can be improved with training. This pilot study employed spatial training in a third-
term calculus course and measured the effects of this training on students’ calculus ability, 
spatial rotation ability, and cognitive learning style. Associations between cognitive learning 
style and task performance were also measured. Preliminary results indicate that spatial 
training does not significantly impact student performance on a calculus skills assessment or a 
test of mental rotations, but effects on students’ cognitive learning style are present.    

Key words: spatial training, calculus skills, cognitive learning style 

Introduction & Literature Review 
 

While the call for more graduates in Science, Technology, Engineering and Mathematics 
(STEM) continues (Executive Office of the President, PCAST, 2012; Stieff & Uttal, 2015), 
women remain consistently underrepresented in these fields (Schlenker, 2015).  The major cause 
of this gender gap may concern a sequence of courses in calculus. Calculus is universally 
required for STEM majors and, therefore, often acts as a gatekeeper to student success and 
continuation into STEM careers (Bressoud et al., 2015). However, women are 1.5 times more 
likely to change to a non-STEM career pathway after a calculus course than men (Ellis et al., 
2016).  Women may struggle with concepts in calculus because they rely heavily on visual 
representations: females to have been shown to have less developed spatial abilities (Ferrini-
Mundy, 1987) and to underperform on spatial tasks compared to males, starting as young as four 
years of age (Levine et al., 1999; Voyer, Voyer, & Bryden, 1995). Other studies indicate that 
individuals with higher scores on spatial tests are more likely to enjoy STEM subjects and to 
choose careers in STEM (Wai, Lubinski, & Benbow, 2009).  

While the body of literature seems to suggest that women may have a disadvantage in the 
STEM fields, encouraging evidence exists that practice with spatial concepts can improve spatial 
ability (Uttal, 2009; Stieff & Uttal, 2015) and that spatial training can decrease the gender gap in 
spatial thinking (Newcombe, 2010). We refer to this idea in the paper as spatial training, which 
we define as explicit instruction and practice on spatial skills such as rotation, planar views or 
unfolding of an object. At this time, knowledge about the benefits of spatial training is not 
conclusive concerning whether an increase in spatial ability has direct effects on performance in 
the STEM fields. A study conducted with engineering students found an association between 
spatial training and academic performance, as well as a closing of the gender gap (Sorby et al., 
2013).  However, very few studies exist that investigate the link between spatial training and 
mathematical skills. One study by Ferrini-Mundy (1987) required undergraduate students to 
complete spatial training exercises during a calculus course but did not find significant increases 
in calculus performance (although female students were better able to visualize solids of 
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revolution than male students). Other research has found that while spatial training does reduce 
the gender gap in performance on spatial tasks, it fails to eliminate it (Uttal, 2009). Thus, a call 
has been made in the spatial cognition literature to extend this line of enquiry into the potential 
for spatial training to close the gender gap in the STEM fields by investigating new mediating 
variables and extending periods of spatial training (Casey, 2013).  

One factor that may be associated with spatial and mathematical ability is the psychological 
construct of cognitive learning style. A cognitive learning style represents a coherence of a 
person’s manner of cognitive function (i.e., information acquisition and processing) (Harvard 
Mental Imagery and Human-Computer Interaction Lab, 2013). Because the human visual system 
distinctly processes properties about objects (color, shape) and space (location and spatial 
relations), Kozhevnikov, Kosslyn, and Shephard (2005) have used neuropsychological evidence 
to propose the Object-Spatial-Verbal theoretical model of cognitive style. This model outlines 
three independent dimensions (object imagery, spatial imagery, and verbalization) to explain that 
object visualizers prefer to construct vivid, concrete, and detailed images of individual objects, 
spatial imagers schematically represent spatial relations of objects and spatial transformations, 
and verbalizers prefer to process and represent information verbally and rely on non-visual 
strategies (Kozhevnikov, Kosslyn, & Shephard, 2005). 

It seems that preference for one of the three strategies has been shown to directly relate to 
one’s performance on either mathematical, object imagery ability, or spatial ability tests (MM 
Virtual Design, 2016). Thus, cognitive learning styles may assist math educators to tailor 
material, assignments, and visualization media to students’ individual differences in cognitive 
learning style and decision-making based on visual stimuli.  Learning and performance based on 
visual information presented in a manner congruent to one’s cognitive learning style may help 
close the gender gap in STEM. Indeed, Peters et al. (1995) found that women report using verbal 
strategies to solve mental rotation tasks more often than men and Casey (2013) points out that 
one reason why large gender differences are found for mental rotation tasks is because verbal 
strategies are often less effective than holistic mental rotation approaches used more often by 
men. Thus, measuring cognitive learning style in association with spatial ability and an 
understanding of calculus may afford information about whether those with predominant verbal 
cognitive learning styles are women, as well as whether their performance in calculus improves 
with spatial training.   

This study targets the lack of literature investigating effects of spatial training on 
mathematical skills and seeks to answer the following research questions: (1) What are the 
impacts of spatial training on undergraduate students’ performance in calculus? (2) Are 
differences present in the effects of spatial training between male and female students? And (3) 
What are the impacts of spatial training on students’ cognitive learning style? 
 

Methods 
Context 

The study took place at a mid-sized state-funded university in the northwestern United States 
in a summer 2016 quarter. All student participants were enrolled in a third-quarter calculus 
course covering the calculus of sequences and series, vectors equations, and multi-variable 
functions. The course was taught using an inquiry-based learning pedagogy; spatial training was 
incorporated during class time.  

Spatial training was conducted for, on average, 10 minutes during every class meeting (twice 
per week for 10 weeks). Students completed exercises from a spatial training workbook 
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developed by Sorby et al. (2013; and used with permission). Exercises in the workbook ranged 
from assessments of what a given shape would look like when rotated around a given axis, to 
asking students to draw an object from different angles using different cross-sections, to showing 
2-D views of an object and asking students to draw the 3-D object. During the spatial training 
portion of class, students were asked to discuss the exercises in small groups and come to a 
consensus on the correct answer before answers were discussed with the whole class. 
Participants  

Participants had already completed two quarters of undergraduate calculus and spent an 
average of 12 hours a week (SD = 3.70) studying course material. Seventeen students (8 males, 9 
females) attended class for both rounds of data collection and all but one took part in the study (n 
= 16; 8 males, 8 females, mean age = 21 years). Five (31%) participants reported enrollment in 
another math course during the quarter while 11 participants (69%) reported that they were not 
receiving other forms of math training at the time of the study.  
Data Collection 

Participants were given three separate instruments in a pre-post data collection model that 
measured spatial ability, calculus ability, and preferred cognitive learning style. The 
measurement of spatial ability was obtained using a 15-item version of the Purdue Spatial 
Visualization Test: Rotations (PSVT:R) (Guay, 1977). This multiple-choice instrument gives an 
example of an object and a rotation of the same shape and asks participants to choose (from 5 
possibilities) the result of the same rotation on a new object.  The PSVT:R was used to obtain a 
baseline measure of spatial ability and to quantify improvements from the spatial training.  The 
Calculus Concept Inventory (CCI) was administered to measure calculus ability.  This 
instrument, designed by Epstein (2013), measures students’ understanding of the basic concepts 
of differential calculus. The CCI contains 22 questions about limits and derivatives, many of 
which require interpretation of a graph or visual aid. The Object-Spatial Imagery and Verbal 
Questionnaire (OSIVQ) developed by Blazhenkova and Kozhevnikov (2009) was used to 
measure students’ predominant cognitive learning style. The OSIVQ consists of 45 questions to 
assess object imagers, spatial imagers, and verbalizers and takes approximately 10 minutes to 
complete. Each item asked students to rate their agreement on a 5-item Likert scale ranging from 
“totally disagree” (1) to “totally agree” (5) with statements of preference or ease of performing 
various tasks.   

Additionally, basic demographic questions, such as age, gender, and the number of courses 
related to mathematics taken at the post-secondary level were asked. To gain an understanding of 
students’ concurrent exposure to mathematical and spatial concepts outside of the training, and 
the course in general, students were asked to report whether they were receiving (or intended to 
receive) alternative instruction or tutoring during the term (e.g., enrollment in a different math 
course or spending time at the learning and teaching center), as well as the number of hours of 
this additional instruction per week. 

All instruments were administered to participants during class time and no significant time 
pressure was placed on the students. Tasks were administered to participants in the following 
order: consent form; OSIVQ; Visualization and Rotation Purdue Spatial Visualization Test; 
Calculus Concept Inventory. Thus, the tasks were not completed simultaneously: only when a 
task was completed was the next task offered to a participant by one of the authors. No 
calculators or other electronic devices were used during task completion. 
 

Results 
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The CCI and PSVT:R were scored by assigning 1 point for a correct answer and 0 points for 

an incorrect answer. Descriptive statistics for each inventory separated by gender are given in 
Table 1. To answer our first research question, students’ pre- and post-test scores were computed 
and a paired-samples t-test was performed to determine significant improvements in calculus 
ability. No significant improvement was revealed over the term (p > .05).  While male 
participants’ average scores were higher on the CCI than women at the start of term (M = 9.63, 
SD = 4.47 and M = 7.75, SD = 7.75, respectively), they were not significantly higher (p > .05). 
This result was also borne out at the end of term whereby male students’ average scores on the 
CCI were insignificantly higher than female students’ scores (M = 10.25, SD = 2.09 and M = 
8.25, SD = 1.40, respectively).  

 
Table 1: 

 
 

To determine an association between students’ spatial ability and mathematical ability, a 
correlation coefficient for a student’s final grade in Calculus III and their final PSVT:R score 
was calculated. This correlation (r = 0.4283) was not significant (p > .05). Additionally, a paired-
samples t-test did not determine a significant improvement in students’ rotational ability during 
the term (p > .05). Consistent with previous studies (Levine et al., 1999; Voyer, Voyer, & 
Bryden, 1995), male participants’ average scores were higher on the PSVT:R than women at the 
start of term (M = 9.87, SD = 4.29 and M = 9.75, SD = 2.05, respectively), and at the end of the 
term (M = 10.5, SD = 1.45 and M = 9.25, SD = 1.24, respectively). However, these differences 
were not significant (p > .05).  

On average, more students at the start of the term self-identified as object learners (M = 
48.56, SD = 7.00) than they did as spatial learners (M = 47.94, SD = 8.69) or verbal learners (M 

 13 

Table 1 
Descriptive Statistics for Test Variables Per Gender Type 
Variable     Gender   Mean  Standard Deviation
        Round 1  Round 1 
CCI (scored out of 22)    Male   9.63  4.47   
     Female   7.75  3.45 
PSVT:R (scored out of 15)   Male   9.88   4.29 
     Female   9.75  2.05 
OSIVQ: Spatial (scored out of 75)  Male   49.75  2.74 
     Female   46.13  3.44 
OSIVQ: Object (scored out of 75)  Male   47.00  2.67 
     Female   50.13  2.26 
OSIVQ: Verbal (scored out of 75)  Male   42.75  1.40   
     Female   39.50  1.58 
        Round 2  Round 2 
CCI (scored out of 22)    Male   10.25  2.09   
     Female   8.25  1.40 
PSVT:R (scored out of 15)   Male   10.5   1.45 
     Female   9.25  1.24 
OSIVQ: Spatial (scored out of 75)  Male   54.00  2.19 
     Female   47.50  3.70 
OSIVQ: Object (scored out of 75)  Male   52.38  3.42 
     Female   49.25  2.04 
OSIVQ: Verbal (scored out of 75)  Male   45.38  0.80   
     Female   40.13  1.42 
 

After the first round of data collection, independent samples t-tests revealed no 

significant differences between male and female participants’ scores on the three OSIVQ sub-

scales (all ps > .05). However, at the end of the term, a significant difference between men 

and women’s scores on the verbal sub-scale of the OSIVQ was revealed, t(14) = 3.22, p < 

.01.  

Finally, scores on the spatial sub-scale of the OSIVQ did not correlate significantly 

with high scores on the PSVT:R at the start of the term (p > .05) but did so at the end of term 

(r = .62, p =.01). No other significant correlations were revealed between scores on the 

PSVT:R and other sub-scales of the OSIVQ, nor were there any significant associations 

between scores on the OSIVQ sub-scales and the CCI at the start or end of the term. 

Discussion 
 

Will write after analyses. 
 
Limitations 
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= 41.13, SD = 4.41). Indeed, scores on the spatial sub-scale were significantly higher than on the 
verbal sub-scale, t(15) = 3.97, p = .001. In addition, scores on the spatial sub-scale were 
significantly higher than those on the object learner sub-scale, t(15) = -2.98, p  < .01.  

After 10 weeks, the object cognitive learning style remained the predominant style for the 
class as a whole (M = 50.81, SD = 7.87) and, similar to the start of term, the second-most 
common learning style among the class was spatial (M = 50.75, SD = 8.96), followed by verbal 
(M = 42.75, SD = 4.16). However, unlike at the start of the term, these differences were 
significant: students sscored significantly higher on the object learning style sub-scale compared 
to the verbal learning style sub-scale, t(15) = -3.57, p < .01. They also self-scored significantly 
higher on the spatial sub-scale compared to the verbal sub-scale, t(15) = -3.55, p < .01.  

Although mean scores on each of the three sub-scales increased over the term, paired-
samples t-tests revealed only one significant difference between sub-scale scores over time. 
Students did not self-score significantly better or worse on the object or verbal subscales over 
time (all ps > .05). They did self-score significantly higher on the spatial sub-scale at the end of 
the term after receiving spatial training, t(15) = -2.59, p < .05. 

At the start of the term, the men in the sample identified most, on average, as spatial learners 
(M = 49.75, SD = 2.74) and least as verbal learners (M = 42.75, SD = 1.40). This was also the 
case at the end of the term (see Table 1). In contrast, the highest average score among the three 
cognitive learning styles for women was on the object sub-scale (M = 50.13, SD = 2.26) while 
the lowest was on the verbal subscale (M = 39.50, SD = 1.58) and remained so at the end of term.  

While participants’ general perceptions of dominant learning styles remained stable over 10 
weeks, each gender’s scores increased on each sub-scale -- except that women’s scores on the 
object learning style sub-scale decreased slightly (but insignificantly, p > .05) over time. 

After the first round of data collection, independent samples t-tests revealed no significant 
differences between male and female participants’ scores on the three OSIVQ sub-scales (all ps 
> .05). However, at the end of the term, a significant difference between men and women’s 
scores on the verbal sub-scale of the OSIVQ was revealed, t(14) = 3.22, p < .01.  

Finally, scores on the spatial sub-scale of the OSIVQ did not correlate significantly with high 
scores on the PSVT:R at the start of the term (p > .05) but did so at the end of term (r = .62, p 
=.01). No other significant correlations were revealed between scores on the PSVT:R and other 
sub-scales of the OSIVQ, nor were there any significant associations between scores on the 
OSIVQ sub-scales and the CCI at the start or end of the term. 

 
Discussion & Future Work 

 
This pilot study revealed that students who self-identified more as object or spatial learners 

than verbal learners did so significantly more strongly after spatial training. In particular, a 
strong identification as a spatial learner linearly associated with mental rotation ability after 
spatial training. However, spatial training alone did not significantly impact the calculus or 
mental rotation abilities of undergraduate students. The results of this research will inform an 
adjustment to the methods before a second study is undertaken with a second-term calculus 
course. Since the present study was done during a summer term, only a total of 18 classes 
occurred, with approximately 15 minutes of spatial training done per class. This may not be 
sufficient for students to be influenced by the training: indeed, less than half of the items in the 
workbook were completed during the term. Thus, the next iteration of this research will require 
students to complete some training modules independently to allow more time for an effect.  
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Applying Variation Theory to Study Modeling Competencies 
 

Jennifer A. Czocher 
Texas State University 

 
This paper presents preliminary results of using variation theory to design modeling tasks in 

order to explore ways of strengthening undergraduate engineering students’ modeling skills. The 
responses of two undergraduate engineering students enrolled in differential equations to a set of 
three versions of the same task are reported.  

 
Key words: mathematical modeling, qualitative methods, differential equations, variation 

theory 
 

Mathematical modeling has been identified as a critical component of students’ 
mathematics education at all levels, but in particular for preparing them for successful STEM 
careers (Cai et al., 2014; PCAST, 2010). Mathematical modeling can be seen as defining a 
mathematical problem from a nonmathematical situation, a process Freudenthal referred to as 
horizontal mathematizing (Freudenthal, 1991). STEM students struggle to define mathematical 
problems because there can be an overwhelming number of real-world considerations that they 
might not be able to handle mathematically. The goal of this study was to explore how 
purposeful variations in the real world conditions explicitly given in modeling tasks might aid 
students in strengthening their abilities to connect real world conditions and constraints to 
mathematical properties, parameters, structures, and representations. 

 
Theoretical Background 

 
Mathematical Modeling  

A mathematical model is a real-world system, a mathematical system, and a relationship 
between the two that maps the objects, properties and relationships from one system to the 
objects, properties, and relationships of the other system. Mathematical modeling is a nonlinear, 
iterative process that renders a real world situation as a mathematical problem that can be 
analyzed mathematically (e.g., Blum & Leiß, 2007). The results of mathematical analysis are 
then interpreted and validated against constraints from the real world situation. Two 
competencies have a reputation of being the most difficult: simplifying/structuring and 
mathematizing (Galbraith & Stillman, 2006; Stillman, Brown, & Galbraith, 2013). 
Simplifying/structuring consists of identifying conditions and assumptions of the real-world 
situation then selecting variables or constraints deemed to be important. Mathematizing 
introduces conventional representational systems (equations, graphs, tables) to present 
mathematical “properties and parameters that correspond to the situational conditions and 
assumptions that have been specified” (Zbiek & Conner, 2006, p. 99). Previous research has 
found that students’ real-world reasoning is important to students’ ability to define a 
mathematical problem (Stillman, 2000) and that the modeler’s initial interpretation of a problem 
situation evolves in tandem with their construction of the mathematical model (Lesh, Doerr, 
Carmona, & Hjalmarson, 2003). Thus it is important to find ways to help students connect their 
real-world knowledge to their mathematical knowledge. 
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Variation Theory 
In task design, variation theory focuses on what varies and what remains invariant in a 

sequence of tasks such that “desirable regularities might emerge from the learners’ engagement 
with the task” (Watson & Mason, 2006, p. 93). Dimensions of variation occur across tasks (they 
operate like variables) and ranges of change are values those variables can take on. For the 
modeling tasks presented below, the dimensions of variation are the real world constraints for 
which assumptions are given explicitly. When the real world constraints are given explicitly as 
assumptions in the task statement, they can be immediately mathematized. For example, consider 
a liquid contaminated with 4 grams of chemical agent per liter entering a tank at a rate of 5 liters 
per minute. The amount of contaminant remaining after one minute is 20 grams. In contrast, not 
stating information about the liquid entering the tank could lead to the more general model 
𝑐𝑖(𝑡)𝑟𝑖(𝑡)𝑡 of the amount of contaminant in the tank at time 𝑡, where 𝑐𝑖 represents the 
concentration of contaminant entering and 𝑟𝑖 represents the rate at which the liquid enters. The 
second mathematization requires the assumption that concentration and rate can vary in time.  

One use of variation theory is to guide successive versions of tasks across design cycles. 
Here, I present students’ responses to the first iteration of a set of tasks designed to direct 
students’ attention to similarities and differences in real-world situations drawn from the same 
context – reflected by the information stated in the task. The students then reflected on the 
similarities and differences in mathematical structures and representations used to model them. 

 
Methods 

 
Participants and Interviews  

Mance and Orys were sophomore male engineering undergraduates participating in a larger 
research study of undergraduate STEM majors’ mathematical thinking during mathematical 
modeling (Czocher, 2016). Each was enrolled in a first course on differential equations. Mance’s 
instructor focused on solution techniques. In contrast, Orys’s instructor focused on applications 
and modeling with differential equations. I focus on the work of Mance and Orys here because 
they successfully engaged with all three versions of Tropical Fish Tank task (presented below). 
As part of the larger study, Mance and Orys participated in a series of one-on-one task-based 
interviews (Clement, 2000; Goldin, 2000). I refrained from teaching or correcting the students’ 
work in order to minimize influence on their reasoning. My questions focused on making 
students’ implicit assumptions explicit and on understanding how the participants were selecting 
mathematical representations and structure. The interviews were audio/video recorded and 
transcribed. Analysis examined the students’ implicit and explicit assumptions and the ways they 
connected their real world knowledge to their mathematical knowledge. 

 
The Task and Its Variations 

The real-world situation presented in the Tropical Fish Tank task can be modeled with a first-
order, inhomogeneous, differential equation.  Three versions were used for this study: 

Version 1. To regulate the pH balance in a 300L tropical fish tank, a buffering agent is 
dissolved in water and the solution is pumped into the tank. The strength of the buffering 
solution varies according to 1 − 𝑒− 𝑡

60 grams per liter. The buffering solution enters the tank at a 
rate of 5 liters per minute. How much buffering agent is in the tank at any point in time? 

Version 2. To regulate the nutrients in a 300L tropical fish tank, a buffering agent is 
dissolved in water and the solution is pumped into the tank. Because the fish are more active 
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during the night than during the day, the strength of the solution entering the tank varies. A book 
on pet care suggested that the strength might vary according to sin ( 𝑡

45
). The buffering solution 

enters the tank at a rate of . 25* liters per minute. One morning, you notice that the pump 
removing soiled water is unreliable. How much of the nutrient is currently in the tank? [*Mance 
received a value of 5 liters per minute]. (Note: depending on the value of 𝑡, the function may 
take on negative values – this would violate real world constraints). 

Version 3. To regulate the pH balance in a tropical fish tank, a buffering agent is dissolved 
in water and the solution is pumped into the tank. Another pump takes well-mixed solution from 
the tank. How much buffering agent is in the tank at any point in time? 

Three dimensions varied for this set of tasks are real world constraints: the volume of liquid 
in the tank and the rates at which liquid flowed in and out of the tank (see Table 1).  Because 
different information is given across the three versions, the students had to make assumptions 
(implicitly or explicitly) that would satisfy the constraints in each. The intention was that as a set 
the tasks would aid the students in realizing that the variations did not affect the mathematical 
structure used to model the Tropical Fish Tank.  

 
Table 1 Dimensions of variation and range of permissible change for the Fish Tank Problem 

Dimension of 
Variation 

Possible Values Reason Varied Anticipated Student Responses 

Rate in and rate 
out 

5 (or .25) (Versions 1 & 
2), Not Given 

Draw attention to 
similarities among the 
models even if the 
concentrations were 
different; develop a more 
general model 

Set rate out to be constant, give a 
specific value (e.g., 0); Set rate out 
to be constant, give a parameter; 
Set rate out so 𝑑𝑉

𝑑𝑡
= 0; Set rates to 

vary with time 

Concentration Exponential decay 
(Version 1), Sinusoidal 
(Version 2), Not Given 
(Versions 2 & 3) 

Draw attention to 
similarities among the 
models even if the 
concentrations were 
different; develop a more 
general model 

Consider real-world implications 
of the given concentrations; 
Assume concentration = 0; Set 
concentration to vary with time 

Volume of the 
Tank 

Given (Versions 1 & 2), 
Not Given (Version 3) 

Dependent upon rates in 
and out 

Assume constant, give a specific 
value; Assume constant, give a 
parameter; Assume varies with 
time 

Borrowing Orys’s notation, let 𝑄(𝑡) represent the quantity of agent in the tank at time 𝑡, let 
𝑐(𝑡) represent the concentration of the solution entering the tank, let V be the volume of the tank, 
and let 𝑟𝑖(𝑡), 𝑟𝑜(𝑡) represent the rates at which the liquid flows in and out of the tank. In Version 
1, 𝑐, 𝑉, and 𝑟𝑖 are given. The rate 𝑟𝑜 must be assumed to be constant, left as a parameter, or left as 
an unknown function of time. In Version 2, 𝑐, 𝑉, 𝑟𝑖, are given while 𝑟𝑜 must be inferred to be zero 
(note that depending on the situation imagined, this might force V to be a function of time). In 
Version 3, none of 𝑐, 𝑉, 𝑟𝑖, or 𝑟𝑜 are given. They must be inferred as parameters or as functions of 
time. The differential equation that models the situation in Version 3 can be written as 

𝑑𝑄(𝑡)
𝑑𝑡 = 𝑟𝑖(𝑡)𝑐(𝑡) −

𝑄(𝑡)
𝑉 𝑟𝑜(𝑡). 

 
Results & Analysis 
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On all three versions, both students successfully obtained a differential equation to model the 
given situation, shown in Table 2. Both responded to the changed conditions in each version. For 
example, Orys observed that Version 3 seemed “to be missing a lot of stuff,” “the usual things 
just aren’t even mentioned like rates or volume of the tank…” He stated that he could make 
some assumptions but that he didn’t know if it would be right.  Orys’s comments indicate his 
unease in engaging in simplifying/structuring.  

Both students successfully handled the lack of information given about the rates in/out in 
Version 3. They also acknowledged that rate in/rate out need not be equal in any of the versions. 
Mance showed that 𝑉(𝑡) could be determined by integrating 𝑑𝑉

𝑑𝑡
= 𝑟𝑖(𝑡) − 𝑟𝑜(𝑡).  He indicated he 

was confident he could mathematize a nonconstant volume into the differential equation for the 
quantity of buffering agent in the tank, but that he was not sure if the differential equation with a 
non-constant coefficient of 𝑄(𝑡) would “follow all the things we learned before.” That is, though 
the model made sense to him, he was cautious in applying mathematics he knew to a novel 
mathematical context. In all 3 versions, both students eventually assumed that 𝑑𝑉

𝑑𝑡
= 0. Orys 

found an explicit expression for volume as a function of time (see Table 2), but did not solve the 
resulting differential equation. Mance’s work illustrates a successful arc through 
simplifying/structuring and mathematizing regarding this constraint. He appropriately converted 
an assumption (volume of liquid does not change) to a mathematical property (rate of change of 
volume is zero) to a mathematical representation (𝑑𝑉

𝑑𝑡
=  0 ), successfully mathematizing the 

assumption. He then explained the consequences of assuming that 𝑑𝑉
𝑑𝑡

=  0 and why it was 
reasonable to do so.  Ultimately, both simplified the problem by assuming that the volume of 
liquid in the tank constant so that the tank wouldn’t empty or overflow. 

In Version 2, Mance did not notice that the function describing the concentration of the 
entering solution could turn negative. This is an example of how implicit assumptions which 
don’t capture the real world situation be mathematized. On Version 2, Orys noted that the 
concentration should not be negative and decided to use 1 + sin ( 𝑡

45
) to describe its oscillation 

around a unitized amount instead. Below are their differential equations for Version 3. 
 
Table 2 The students' differential equations derived for Version 3 
Mance: (in the notation from above) Orys: 
𝑑𝑄
𝑑𝑡 = (𝑟𝑖(𝑡)𝑐𝑖(𝑡) − 𝑟𝑜(𝑡)𝑐𝑜(𝑡))𝑉(𝑡) 

𝑑𝑄
𝑑𝑡

(𝑡) + 𝑟0(𝑡)
𝑉(𝑡) 𝑄(𝑡) = 𝑟𝑖(𝑡)𝑐(𝑡), with 

𝑉(𝑡) = 𝑉0 + 𝑟𝑖(𝑡)𝑡 − 𝑟𝑜(𝑡)𝑡 and 𝑉0 as the initial 
volume of liquid in the tank 

Mance stated that his equation on Version 3 was “the most general expression [he] could 
come up with.” In this equation, the change in quantity of the agent does not depend on the 
amount of agent currently in the tank. This led the interviewer to probe Mance about the 
condition that the solution was well-mixed and why it was necessary, Mance indicated that if a 
solution was not well-mixed, the concentration of the tank would vary over space as well as over 
time. Indeed, without the assumption in place, the concentration of the solution leaving the tank 
would depend on where the overflow pump was placed. Thus Mance’s model mathematizes one 
consequence of the well-mixed condition (concentration of agent in the tank is uniform) and not 
another (rate of change of quantity depends on current concentration). 

Mance and Orys both reasoned using dimensional analysis. For example, on Version 2, 
Mance narrated his work to determine the rate at which agent entered the tank, “Your rate in 
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ends up being like a number, it’s 5 liters per minute and then you multiply that times your 
strength and you get some grams or whatever, your pH, per minute.” On Version 3, Orys used 
dimensional analysis to set up a difference equation for the change of quantity of agent in the 
tank and let the limit Δ𝑡 → 0 in order to obtain a differential equation. 

 
Discussion & Conclusions 

 
Varying the assumptions and conditions relevant to the real world situation revealed that the 

students were reflecting on how the mathematics they knew could apply to the situations as they 
simplified/structured and mathematized. Mance commented that ideally, he would like to see 
worked examples with numbers given and more generalized representations of situations in order 
to increase his skill at deriving and solving equations.  Constructing ever more general models 
may have helped these students explore the limitations of what the mathematical structure (or 
analytic technique) may be. Indeed, written and follow-up questions which varied parameters, 
changed assumptions, or otherwise focused on simplifying/structuring showed potential in 
helping Orys and Mance identify invariant mathematical properties and relationships that could 
be attached to real-world conditions and assumptions. This finding is consistent with research at 
the middle and high school level (Czocher & Maldonado, 2015).  

Further, the preliminary results here seem to suggest that at least for these advanced 
engineering students in differential equations, the development of modeling skills was facilitated 
by familiarizing the student with certain mathematical conventions that effectively mathematize 
horizontally (Freudenthal, 1991). Two examples of such a convention are: concentration is 
positive or time increases from zero. The latter convention would have been well-assimilated by 
the time the students arrived in differential equations. Other examples of assumptions that 
became conventions were: solutions are well-mixed or rate of change of a quantity can be 
expressed as a linear combination of base rates. Other elements of the students’ models were 
made up of more basic building blocks that could be assembled through the four basic operations 
and dimensional analysis. Using variance and invariance of real world conditions and drawing 
students’ attention to how those variations impacted the mathematical properties, parameters, 
structures, and analytic techniques appropriate to successfully model the real world situation 
could aid students in seeing how mathematical choices connect to and depend on real world 
conditions. Such task sequences therefore seem to be a promising path for developing modeling 
skills, but of course require further study. With regard to the research setting, varying real world 
conditions provided multiple opportunities for the interviewer to explore and probe how the 
students were envisioning the real world situation (their situation models, Blum & Leiß, 2007) 
and how they chose to represent those conditions mathematically. 
 

Questions for the Audience 
1. When conceptualizing modeling competencies as learning objectives, how can task 
effectiveness be measured? 2. Would follow up questions, e.g., what-if scenarios posed by the 
interviewer, also qualify as variations in task dimensions? 3. In the context of modeling, it is 
important to nurture the skill of generating one’s own assumptions. How can variations which 
target identifying real world assumptions and constraints and matching them with mathematical 
properties and parameters be implemented without overriding the dimensions the student 
spontaneously attends to? 
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 Do Students Really Know What a Function is?: Applying APOS Analysis to Student Small 
Group Presentations 

 
Tara C. Davis, Georgianna L. Martin 

Hawai’i Pacific University 
 
One of the fundamental concepts in mathematics is that of a function. This concept also appears 
to be a difficult concept to grasp for a large percentage of students. In order to assess the overall 
understanding of the concept of a function, we conducted an experiment with math majors at our 
university. In an upper division math problem solving course, the students were asked specific 
questions about the nature of functions. Students presented their understandings of function in 
groups of 2-3, which were recorded and then transcribed. Based on the IBL teaching 
methodology and the small group and classroom discussion data collected we have applied a 
sociocultural framework. The innovation we add is applying APOS, an individually oriented 
theory, to the collective level. Analyzing the video transcripts, we will discuss the overall trends 
in understanding as well as some of the common misconceptions that we have identified. 
 
Keywords: Function, Problem Solving, Pre-service Secondary Teachers, APOS Theory 
 

Purpose of the Study 
 

The major goal of this study is to answer the question: Do students really know what a 
function is?  This project was motivated by our experiences teaching upper and lower division 
math and science courses. We noticed an inability in a significant amount of students to apply 
the function concept to math and science problems. This in turn created an obstacle to success in 
a variety of undergraduate courses.  

For example, the students in classes ranging from precalculus to linear algebra exhibited 
difficulty in evaluating functions of single or multiple variables. While learning to estimate areas 
under a curve with finite sums, students in calculus were unable to relate the height of a rectangle 
to the y-value of a given function. In introductory physics, students had difficulty applying 
formulas where certain letters represent constants and other represent variables (e.g. simple 
harmonic motion), as well as translating between representations of these functions in the graph 
form, and in the equation form. 

Students appear to “get by” based on rote memorization and we wondered how much they 
actually understand. Without a comprehensive understanding and the ability to apply the 
function concept, we were concerned that higher order mathematical and scientific concepts 
would not be available to otherwise capable students. In addition to comprehension, the 
application of this knowledge can be found throughout a math or science degree.  For example, 
the physical sciences require a basic understanding of the composition of functions. Differential 
and integral calculus requires deep understanding of how changes in the domain, even over an 
interval, affect the range of a function. Further, students with a degree in pure mathematics or 
math education require application of functions in a more abstract setting, specifically with 
regards to groups, vector spaces, Euclidean spaces, and more.  

 
Theoretical Framework and Literature Review 

 

20th Annual Conference on Research in Undergraduate Mathematics Education 119520th Annual Conference on Research in Undergraduate Mathematics Education 1195



One of the most pervasive big ideas (Schifter & Fosnot, 1993) in all of mathematics is the 
concept of a function. Michael Oehrtman and colleagues (Oehrtman, Carlson & Thompson, 
2008) give an overview of the concepts necessary to understand the idea of function. Extensive 
studies that have been done on functions (Breidenbach, Dubinsky, Hawks & Nichols, 1992; 
Carlson, 1998; Dubinsky & Harel, 1992; Thompson, 1994; Oehrtman et al., 2008) substantiate 
our experience that there is a lack of comprehensive understanding at the undergraduate level.  

Our framework will be an integration of the APOS and sociocultural theories – where we 
take the unusual perspective of using the normally individual oriented APOS theory at the 
collective level.  

In (Breidenbach et al., 1992), the following explanations of the terms action and process are 
given: “An action is a repeatable mental or physical manipulation of objects. Such a conception 
of function would involve, for example, the ability to plug numbers into an algebraic expression 
and calculate. It is a static conception in that the subject will tend to think about it one step at a 
time (e.g., one evaluation of an expression)…A process conception of function involves a 
dynamic transformation of objects according to some repeatable means that, given the same 
original object, will always produce the same transformed object. The subject is able to think 
about the transformation as a complete activity beginning with objects of some kind, doing 
something to these objects, and obtaining new objects as a result of what was done.” Building 
upon the work done in (Breidenbach et al., 1992) the faculty in (Cottrill et al., 1996) improve 
upon the theory adding, the concepts of:  

…an object is defined as the result of “when the individual becomes aware of the totality of 
the process, realizes that transformations can act on it, and is able to construct such 
transformations.”  

…a schema “as a coherent collection of actions, processes, objects, and other schemas that 
are linked in some way and brought to bear on a problem situation.”  

This rounds out the theory defining APOS as Action Process Object Schema. They further 
argue that the process view or “dynamic conception” must be preceded by the action or static 
view. 

Although APOS is usually used to analyze individual conceptions it does tell us what to look 
for in how students talk about functions. That is, we categorize the group responses without 
saying that they capture any or all of the individual student conceptions. To be clear, we have 
identified our unit of analysis as the group of students not the individual students. 

The sociocultural theory was initially introduced in (Vygotsky & Cole, 1981) and (Vygotsky, 
1979). The sociocultural perspective explains the study design in terms of the class being taught 
with small group inquiry-based instruction, and synthesis of information occurring via whole 
class discussion, as well as the data collection of whole class video, and discourse analysis. The 
mathematical knowledge is constructed and transmitted via social interactions. In addition to this 
classroom culture, we keep in mind that that our students are pre-service teachers addressing 
mathematics through the lens of what they believe students should know. More specifically we 
can unpack the framework into the following three pieces: 

 
Cultural Social APOS 
Class culture 
IBL teaching method 
Type of students (pre-
service teachers) 

Group dynamics 
Classroom dynamics 
Data collection – video 
transcription 

Analysis of the action vs. 
process understanding of 
functions 
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 We apply the sociocultural perspective mainly to our study design, and the APOS theory to 
the data analysis. However, when analyzing the video transcript and seeing certain mathematical 
ideas arise, we interpret them in terms of the group dynamics that brought them to the surface. 
These theories fit together in a complementary way because we structure the instruction and data 
collection around a sociocultural perspective, and apply the APOS theory to the small group 
level to answer our question about whether students know what a function is, and more 
specifically whether the small groups collectively possess an action a process view.  

 
Methods 

 
This study took place during Spring 2013 and Spring 2014 semesters in a course designed to 

prepare future secondary educators with problem solving skills. There were 11 and 9 students 
enrolled in the courses, respectively. The students were geographically and ethnically diverse, as 
is common at our institution. The first author was responsible for teaching the course both 
semesters. This course is required for math education majors, and is a terminal math course, 
focused on problem solving and teaching.  No new math content is introduced; rather students 
apply known concepts relating to high school math to solve novel problems at the college level.  

 
Activity 

One unit of the course is on the theme of Functions and Covariation (Carlson, Jacobs, Coe, 
Larsen & Hsu, 2002). The two authors taught one course period devoted to a “Teaching 
Functions” activity prior to the unit being taught. During the “Teaching Functions” activity, 
students were broken up into small groups of 2-3 people, for a total of 7 groups. They were given 
the following prompts and asked to produce a mini-lesson in response: 

• What is a function?  
• What is an example of a function?  
• What is the role of the variable in a function?  
• What are the characteristics of a function?  
• What are the typical misconceptions about functions? (From the perspective of a high 

school student or person learning functions for the first time.) 
 

Students had 30 minutes to plan the lesson. The written lesson plans were then collected. 
Each group gave a 5-10 minute presentation, which was followed with brief question and answer 
time. The presentations were video recorded and we transcribed the audio portion of the 
presentations for our analysis. We did a detailed analysis of the results of this activity and video. 
Similar research has been published recently with a video analysis of students investigating the 
Cartesian Connection (Moon, Brenner, Jacob & Okamoto, 2013). These authors argue that 
cognitive obstacles arise as a result of misunderstanding fundamental and pervasive big ideas in 
mathematics.  
 
Analysis 

The analysis was done with the help of RQDA software. This is a R-based Qualitative Data 
Analysis software package. RQDA serves as a way to highlight and sort different ideas within 
multiple files allowing for the compilation of information related to each specific idea. All of the 
code creation and text categorization was done collaboratively, and following best practices 
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(Dewar & Bennett, 2015), (Taylor-Powell & Renner, 2003). We used a thematic analysis on the 
transcription of each group’s presentation.  

 
Preliminary Results and Analysis 

 
In order to summarize our initial findings, we will discuss the analysis as it pertains to the 

assigned questions. The first question the students were asked to address was based on the 
definition of a function. With regards to the definition of a function, we found that the students’ 
responses could be summarized by four overall themes listed in order from inaccurate to 
accurate: 1) A function must have an equality or inequality with at least one unknown; 2) A 
function must be an equation with one variable; 3) For every x, there exists a unique y mapped to 
by x and the more sophisticated but less accurate definition: 4) A relationship between two 
quantities with a specific input/output role.  

When asked to provide examples we note that most groups gave the linear and quadratic 
examples. This is perhaps not surprising, as these are some of the simplest examples of 
functions. We wonder whether our instructions to teach the lesson at the high school level 
influenced the types of examples that the students provided. We observed some other examples, 
such as the tangent, absolute value or other piecewise defined functions, as part of the later 
discussion that arose, for instance about one-to-one or onto functions or during a conversation 
about the vertical and horizontal line tests. The more sophisticated examples appear to result 
from classroom discussions evident of learning taking place through classroom dynamics. 

The impetus for asking the students to identify the role of the variable came from our 
experience in the classroom. We had noticed many students making the same mistakes involving 
evaluating functions at expressions, such as believing that f (x+h)= f (x)+h , including errors 
forming composition of functions, as well as mistakes involving setting all functional 
expressions to 0 and trying to solve for x even when it is inappropriate to do so. We conjectured 
that these mistakes may be occurring due to a basic lack of understanding of the role of a 
variable. The responses from the students can be summarized in the following three concepts: 1) 
The relationship between unknowns; 2) A placeholder for a value; and 3) The concept of the 
independent variable as input vs. output.	Although many groups did focus on plugging values 
into the variable, their responses overall appeared flexible enough that they might be less likely 
to fall into the mistakes we mentioned earlier. 

Related to our earlier question about the role of a variable, we were also interested in how the 
students would relate the various characteristics of a function. One group specifically reflected 
on their experience working with functions in their upper division numerical methods course, 
and how in this course the characteristic of the graph allowed them to solidify the initial ideas 
presented in their precalculus courses. This addresses a question we had about students making 
connections between courses and synthesizing and applying the concept and characteristics of a 
function. We were also interested to note that one group said, “what they’re going to learn in 
high school is to work with numbers but this could be vectors, or anything, it could be all kinds 
of numerical objects, all kinds of restrictions that you put in there and you get all things out.” 
This shows that some students believe the domain could be a set other than the real numbers.  

An analysis of the student presentations identified seven main themes in response to the 
characteristics question. They are 1) It has a ‘number’ of variables; 2) Has to have an equals 
sign; 3) Functions can be represented in a graph; 4) One-to-one, onto or Inverse; 5) Vertical line 
test; 6) Domain & Range; and 7) F(x) vs F(y). This last theme refers to the importance of 
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identifying the independent variable; e.g. that it is possible for a single expression to define a 
function of x but not of y or vice-versa.  

The final question concerning misconceptions was very rich. The students addressed 
common misconceptions, but also had a few of their own. The common misconceptions that they 
identified their potential students having were as follows: 1) All functions are one-to-one; 2) All 
functions have domain all real numbers; 3) The function is only dependent on the expression x or 
that y=f(x); 4) x as a function of y vs. y as a function of x; 5) Not necessarily a connection 
between the graph and equation; and 6) Not necessarily a connection between the notation and 
evaluation of expression. We found the variety of misconceptions identified by the students 
interesting. From the breadth of misconceptions we infer a high level of intuitive understanding 
of functions. Students appear to have reflected on and learned from their own mistakes as well as 
their experiences tutoring and observing others actual mistakes.  

It should be noted that the two authors actively chose not to correct or comment upon the 
content of the students’ presentations during the course of the exercise. Whilst we did not correct 
mistakes, we noticed that over the course of the conversation they as a group they came to 
consensus on the correct answer. The self-correction was seen in both years. For example, it was 
surprising to note that one group believed that an inequality is an example of a function. This 
error spawned a discussion within the class about whether an inequality is a function. Another 
student attempted to rationalize the example trying to help their colleagues. The group finally 
conceded that the inequality does not meet the definition of a function on real numbers. We 
asked ourselves what was the sociocultural dynamic in the group or classroom that resulted in 
this idea. Upon further viewings of the presentation it seemed that one member of the pair was 
more dominant. The less dominant student who began the presentation provided correct 
information inconsistent with the later incorrect ideas. We also noted that several groups were 
triples and perhaps this pairing of the dominant student with a wrong idea did not lend itself to be 
corrected in the small group.  

While the APOS theory is typically used to analyze the individual, here we apply the theory 
to the groups, thereby defining the small groups as our unit of analysis. We identified three 
groups as possessing only an Action View. Predominantly these students described a function as 
something that you plug a number into and get another number out of. For example, one group 
described plugging numbers into functions to evaluate them and to create t-charts. They claim 
that the relationship between the variables is just a plug-in process. We categorized three groups 
as possessing a Process View. The group that went the furthest into process interestingly did not 
present the plug-in model. They presented two different instances of a process understanding. 
This group explained, “…and when we’re introducing the function concept what’s going to be 
more effective probably is that we’re not talking about a letter with a hidden value. We’re talking 
about a relation between some value that we don’t know and another value that we don’t know, 
but we can still say a relation between them.” They do not view a function as an equation that 
needs to be solved, but instead describe a dynamic relationship.  The second instance 
demonstrated an understanding of the relationship between input and output and their reversal as 
defining an inverse function, rather than algebraic procedures such as switching x and y and 
solving. The remaining group did not have their transcript coded as either “action” or “process.”  
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Teachers’ Beliefs & Knowledge of the Everyday Value of High School Algebra & 
Geometry: Is One More Useful than the Other? 

 
Jennifer Dunham 

University of Maine 

Despite recent emphases on teaching that mathematics is useful, little is known about teachers’ 
beliefs about the value of the topics they teach. While teachers have been found to believe 
mathematics overall is worthwhile, it may be that this belief varies among subjects. This study 
examines the beliefs and knowledge of students enrolled in teacher preparatory courses by 
employing a survey and algebra and geometry tasks related to each subject’s usefulness and 
connection to real-world applications. Preliminary results show they value algebra above 
geometry in terms of future use by their students. However, while their confidence was equal in 
their abilities to produce real-world applications, they were more successful producing those 
related to geometry than algebra. Further survey and clinical interview data collection is 
planned with additional pre-service and in-service teachers to examine beliefs and knowledge 
expert (in-service) teachers bring to teaching to inform the preparation of secondary school 
teachers. 

Key words: pre-service teacher education, algebra, geometry, teacher beliefs, pedagogical 
content knowledge, mathematical content knowledge 

Introduction 
The Common Core State Standards for Mathematics, as well as the Next Generation Science 
Standards, and the National Council for Teachers in Mathematics, have each expressed the need 
for students to value mathematics and to see it as a useful pursuit. The Common Core’s 
Standards for Mathematical Practice includes in its description of mathematical proficiency, a 
“productive disposition (habitual inclination to see mathematics as sensible, useful, and 
worthwhile, [emphasis added] coupled with a belief in diligence and one’s own efficacy)” 
(National Governors Association Center for Best Practices and the Council of Chief State School 
Officers, 2010, p. 6).  

Research has shown that teachers see mathematics, as an entire discipline, as valuable. Yet 
little is known of mathematics teachers’ beliefs regarding the usefulness and value of the 
individual subjects they teach, or whether their beliefs are aligned with their practice. This study 
was designed to examine whether pre-service teachers’ beliefs towards algebra and geometry 
might differ, as well as their abilities to demonstrate the relevance and usefulness of the 
mathematics by producing real-world examples or stories. 
 

Research on Teachers’ Beliefs and Knowledge 
Research into teacher beliefs has been popular for decades. Despite this, little has been done that 
narrows in on an area of mathematics, particularly in regards to its nature or value. Peterson et al. 
(1989) conducted a study of teachers’ pedagogical content beliefs regarding addition and 
subtraction with first grade teachers. They write, “Unfortunately, research on teachers’ beliefs 
has not been concerned with subject-matter content…Thus, these studies are limited because 
they report findings on teachers’ beliefs across a wide range of curriculum areas and grade 
levels” (Peterson, Fennema, Carpenter, & Loef, 1989, p. 3). In other words, it is one thing for a 
teacher to believe that mathematics is a valuable and useful pursuit, and another thing to believe 
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that algebra or geometry is a valuable and useful pursuit. Furthermore, believing in the 
importance of all topics within mathematics for all of students is yet another thing entirely. 
Hence, there is a lot yet unknown related to teachers’ beliefs about the value of the subjects that 
they teach. This is despite the accepted view that teachers’ beliefs shape instructional practices 
and student learning opportunities (see, e.g., Leder, Pehkonen, & Torner, 2002; Philipp, 2007). 

On the other hand, research into teacher knowledge often focuses on a specific topic in order 
to categorize the knowledge they bring to bear, not only in solving mathematical problems, but 
teaching them as well. Work such as Ma’s (1999) pinpoints topics within mathematics to 
examine teachers’ mathematical knowledge in that small area. However, Ma’s research was with 
elementary teachers. At the secondary level, less has been done to examine teachers’ 
mathematical knowledge related to topics they teach within the wide field of mathematics. 
Therefore, less is known about variations in teachers’ levels of expertise from topic to topic, 
beyond the elementary level. Hogan, Rabinowitz, and Craven (2003), stated that “Because the 
scope of the school curriculum in a given subject is sufficiently broad to preclude expertise in all 
topics within the curriculum, a teacher may feel more knowledgeable and confident within one 
specific content area” (p. 239). Therefore, it would appear necessary to examine teachers’ 
knowledge on a variety of mathematics curriculum topics in order to gain a complete picture of 
secondary mathematics teachers’ knowledge and abilities to apply that knowledge in practice. 

While the U.S. lags behind a number of nations in mathematics, its weakest subject is 
certainly geometry. Results from the Third International Mathematics and Science Study 
(TIMSS) have repeatedly shown that of all the mathematical domains tested, the U.S. does best 
in algebra and worst in geometry (Clements, 2003; Provasnik et al., 2012). In fact, U.S. 
secondary students have been found to score near or at the bottom on every geometry item on the 
TIMSS (Clements, 2003). Thus, the focus of this study is teachers’ beliefs and knowledge of 
algebra and geometry, as relevant to the learning standards for grades 8-12 and with the goal of 
providing insights into teachers’ knowledge and beliefs that can inform the design of pre- and in-
service professional development.  
 

Research Design 
Research Questions 
In order to add to the existing work on teacher knowledge and beliefs, the specific research 
questions addressed in this study are,  

1. How do pre-service and in-service teachers perceive the importance of learning algebra 
and geometry?  

2. What kind of real-world algebra and geometry problems or models are pre-service and 
in-service teachers able to produce? 

These questions were designed to explore both mathematics teachers’ knowledge and beliefs at 
two different stages, during preparation and in practice. Studies have shown that teachers gain 
certain knowledge “on the job” that they may not have opportunities to acquire through teacher 
preparation programs, e.g., knowledge of common student difficulties, knowledge beyond 
understanding mathematics for oneself but for teaching mathematics, etc. (Borko & Livingston, 
1989; Livingston & Borko, 1989, 1990; Ma, 1999). Whether that pertains to knowledge of and 
beliefs about the value and usefulness of the mathematics they teach is the subject of this study.  
 
Theoretical Perspective  
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This study is being conducted with cognitive, expert-novice educational psychology theoretical 
framework. That is, it assumes that experts are characterized as having the ability to organize 
their knowledge in ways that reflect deep conceptual understanding of the area of study 
(Bransford, Brown, & Cocking, 1999). This organized knowledge allows them to observe 
meaning and patterns that would go unnoticed by novices. This also allows experts to 
contextualize their knowledge, making it flexible to retrieve and to apply. Novices, on the other 
hand, struggle to make connections between what they see as unrelated rules and facts, which 
prevents them from developing conceptual understanding. 

While the research defining expert and novice knowledge is well-established and accepted, 
there is less research on characterizing expert beliefs. Wieman (2007) described experts in his 
work on science education as believing science has a coherent conceptual structure. Novices, on 
the other hand, see science as isolated pieces of information that are transmitted by authority. 
Since they believe science to be unorganized, they rely on memorization rather than deep 
conceptual learning. Their knowledge remains fragmented, lacking the structure they also 
believe the subject to be lacking.   

In this study I am applying this theory to beliefs about mathematics and examining the extent 
to which mathematics teachers demonstrate expert beliefs about the nature of mathematics by 
conceiving of it as a coherent conceptual structure, interconnected and organized. In this 
framework, novice beliefs about mathematics would be characterized by assumptions that 
mathematics is made up of disparate facts and algorithms, meant to be transmitted from teachers, 
the authority, to their students. Their students then “learn” this material by repetition and rote 
memorization. 
 
Methods 
A two-part survey was administered to 35 pre-service teachers enrolled in an algebra course for 
elementary education majors near the end of the spring 2016 semester at a northeastern land-
grant university. The first part of this survey, focused on beliefs, was modeled after the 
“Usefulness” portion of the Fennema-Sherman attitude survey for students of mathematics 
(Fennema & Sherman, 1976). The 12 Fennema-Sherman items were reduced to five, eliminating 
redundancies to increase participation and limit fatigue (e.g., see Figure 1 below).  

Figure 1: Sample Beliefs Survey Item (modeled after Fennema-Sherman) 
 

In addition, three items were created to gather data on teachers’ attitudes towards the use of real-
world problems in their teaching (e.g., see Figure 2 below). All eight items were written both in 
terms of algebra and geometry.  

Figure 2: Sample Beliefs Survey Item (author-generated) 

Name	

PART	1	
	
Please	read	the	following	16	statements	carefully	and	indicate	your	level	of	agreement	on	a	scale	
of	1	to	5,	1	meaning	“I	strongly	disagree”.	This	survey	should	take	a	few	minutes	to	complete.	
	
1. I	believe	knowing	algebra	will	help	my	students	earn	a	living.	
	

	 1	 2	 3	 4	 5	
	 Strongly	Disagree	 Disagree	 Undecided	 Agree	 Strongly	Agree	
	

2. I	see	algebra	as	a	subject	my	students	will	rarely	use	in	their	daily	lives	after	school.	
	

	 1	 2	 3	 4	 5	
	 Strongly	Disagree	 Disagree	 Undecided	 Agree	 Strongly	Agree	

	
3. I	believe	teaching	students	algebra	is	a	waste	of	time.	
	

	 1	 2	 3	 4	 5	
	 Strongly	Disagree	 Disagree	 Undecided	 Agree	 Strongly	Agree	

	
4. I	believe	my	students	will	need	a	firm	mastery	of	algebra	for	their	future	work.	
	

	 1	 2	 3	 4	 5	
	 Strongly	Disagree	 Disagree	 Undecided	 Agree	 Strongly	Agree	

	
5. Algebra	has	no	relevance	to	my	students'	lives.	
	

	 1	 2	 3	 4	 5	
	 Strongly	Disagree	 Disagree	 Undecided	 Agree	 Strongly	Agree	

	
6. I	believe	it	is	important	to	show	my	students	real-world	applications	of	algebra.	
	

	 1	 2	 3	 4	 5	
	 Strongly	Disagree	 Disagree	 Undecided	 Agree	 Strongly	Agree	

	
7. I	do	not	often	use	real-world	examples	in	my	algebra	lessons.	
	

	 1	 2	 3	 4	 5	
	 Strongly	Disagree	 Disagree	 Undecided	 Agree	 Strongly	Agree	

	
8. I	feel	confident	in	my	ability	to	make	real-world	connections	to	my	algebra	lessons.	
	

	 1	 2	 3	 4	 5	
	 Strongly	Disagree	 Disagree	 Undecided	 Agree	 Strongly	Agree	

Name	

	

1. I	believe	knowing	geometry	will	help	my	students	earn	a	living.	

	

	 1	 2	 3	 4	 5	

	 Strongly	Disagree	 Disagree	 Undecided	 Agree	 Strongly	Agree	

	

2. I	see	geometry	as	a	subject	my	students	will	rarely	use	in	their	daily	lives	after	school.	

	

	 1	 2	 3	 4	 5	

	 Strongly	Disagree	 Disagree	 Undecided	 Agree	 Strongly	Agree	

	

3. I	believe	teaching	students	geometry	is	a	waste	of	time.	

	

	 1	 2	 3	 4	 5	

	 Strongly	Disagree	 Disagree	 Undecided	 Agree	 Strongly	Agree	

	

4. I	believe	my	students	will	need	a	firm	mastery	of	geometry	for	their	future	work.	

	

	 1	 2	 3	 4	 5	

	 Strongly	Disagree	 Disagree	 Undecided	 Agree	 Strongly	Agree	

	

5. Geometry	has	no	relevance	to	my	students'	lives.	

	

	 1	 2	 3	 4	 5	

	 Strongly	Disagree	 Disagree	 Undecided	 Agree	 Strongly	Agree	

	

6. I	believe	it	is	important	to	show	my	students	real-world	applications	of	geometry.	

	

	 1	 2	 3	 4	 5	

	 Strongly	Disagree	 Disagree	 Undecided	 Agree	 Strongly	Agree	

	

7. I	do	not	often	use	real-world	examples	in	my	geometry	lessons.	

	

	 1	 2	 3	 4	 5	

	 Strongly	Disagree	 Disagree	 Undecided	 Agree	 Strongly	Agree	

	

8. I	feel	confident	in	my	ability	to	make	real-world	connections	to	my	geometry	lessons.	

	

	 1	 2	 3	 4	 5	

	 Strongly	Disagree	 Disagree	 Undecided	 Agree	 Strongly	Agree	
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The second part of the survey consisted of two two-part tasks modeled after Ma’s (1999) 

interviews with U.S. and Chinese teachers on the division of fractions, one each related to 
algebra and geometry. Teachers were asked to work through a problem and then to generate a 
scenario that could be modeled by the computations they just completed (see Figure 3 below).  

 

 
Figure 3: Sample Algebra Task 

 
Three different tasks were designed for each subject to allow survey participants to have varied 
problems from their neighbors. Methods of analysis are discussed in conjunction with results 
presented below.  
 

Preliminary Results 
The beliefs survey items were scored using a Likert scale from one to five, one being “strongly 
disagree” and five being “strongly agree” with three being “undecided.” Scores were then 
inversed for statements that were phrased negatively, so that a five became a one, a four became 
a two, etc. In this way, a score above a three meant a positive belief towards the subject, and 
scores below three meant a negative belief. This also allowed for measuring differences in 
beliefs by subtracting one from the other, between disciplines. Therefore, a positive difference 
when subtracting geometry from algebra meant the participant valued algebra more than 
geometry, no difference meant a belief in equal value, and a negative difference meant they 
valued algebra less than geometry. 

For all but one of the beliefs survey questions, participants believed algebra to be equally as 
valuable or more valuable than geometry for their students’ lives. Most felt real-word examples 
were important for both subjects (n=34 vs. n=33) but would be somewhat more often used in 
class for algebra (n=18 vs. n=14). However, despite the majority believing in the importance of 
real-world examples, the number who were actually confident in their ability to produce these 
examples was fewer (n=23 for both). In addition, about half of participants ranked the 
importance higher than their confidence (approximately 56% for algebra and 53% for geometry). 
The numbers here are close due to the small sample size however, they suggest a trend of pre-
service teachers believing algebra to be more useful than geometry and, despite feeling that real-
world examples are important in both subjects, having little confidence in their ability to 
demonstrate these for their students. 

In the second half of the survey, participants were asked to solve a problem and then generate 
real-world scenarios that could be described by the solution they just produced. The first part 
(solving the problem) was scored “correct,” “partially correct,” or “incorrect.” If a participant left 
the question blank, this was also scored as “incorrect.” The second part was scored using a 0-3 
point rubric. A detailed complete example that correctly reflected the problem given was scored 

Name	

PART	2	
	
People	 often	 adopt	 different	 approaches	when	 solving	 a	 problem.	How	would	 you	 solve	 the	
following	problem?	Show	your	solution	below.	
	

1.	Solve	for	x.							
!"
! =

$%&
' 	

	
Now	imagine	you	are	teaching	an	algebra	course.	To	make	this	topic	more	meaningful	to	your	
students,	you	want	to	create	real-world	scenarios	to	show	them	the	relevance	of	algebra	in	their	
daily	lives.	What	would	be	a	good	story	or	model	to	demonstrate	the	application	of	this	problem?	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Say	you	want	to	do	the	same	thing	in	a	geometry	course.	First,	show	your	solution	to	the	
following	problem.	
	
2.	Quadrilaterals	ABCD	and	EFGH	are	congruent.	Which	of	the	following	options	of	rigid	
motions	would	demonstrate	this?	(Select	yes	or	no	for	each.)	
	

a.	Translate	3	to	the	right	&	then	reflect	over	the	x-
axis.	
	 	 	 Yes	 	 No	
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a 3. A related example lacking detail was scored a 2. An unrelated or so incomplete as to be 
unclear example was scored a 1. If a participant left the question blank then this was scored a 0. 
Using these scoring guides on this small sample, it appears there is no visible relationship 
between correctness and ability to produce real-world examples (see Table 1 below). Despite 
nearly half of the participants answering the algebra task problem correctly, slightly more were 
unable or unwilling to produce a related real-world example. In fact, only 5 participants scored a 
3. On the other hand, one-fifth of participants answered the geometry task problem correctly and 
again, only 5 participants wrote real-world examples that were scored a 3. Thus, even though 
participants had a higher success rate solving the algebra tasks than the geometry tasks, they had 
an equal success rate producing geometry-related real-world examples. 

Table 1: Algebra and Geometry Task Scores 
 

Conclusions and Implications 
The goal of this study is to add to the body of knowledge available to instructors of pre-

service teachers. Preliminary findings suggest that pre-service teachers generally believe algebra 
and geometry to be useful to their students’ futures but they lack confidence in their ability to 
produce real-world applications and, in fact, are often unable to, given common mathematical 
tasks. A typical pre-service teacher in this study believes algebra to be somewhat more useful 
than geometry but is unable to generate rich real-world examples for either, despite a belief in 
the importance of doing so. This suggests that pre-service teacher preparatory coursework needs 
to include more instruction on the applications of the mathematics they will teach, particularly 
everyday use and career applications of geometry. This would both serve to better prepare them 
to teach mathematics as useful and also to see it as useful themselves. The Common Core 
Standards has identified the need for students to see the value of mathematics, therefore it is vital 
that our teachers going into the classroom be able to see the value of their subjects, and be able to 
present it clearly and purposefully to their students, including via real-world examples. 

This survey will be administered to pre-service teachers enrolled in college mathematics 
courses again in the fall of 2016. From this, participants will be identified for clinical interviews 
to gain further insight into pre-service teachers’ knowledge, beliefs and abilities to generate real-
world examples. Additionally, clinical interviews will be conducted with in-service high school 
mathematics teachers from the surrounding area. This will allow for a deeper picture of what pre- 
and in-service teachers believe and both the pedagogical content knowledge and mathematical 
content knowledge they possess and how they differ with their level of teaching experience. 
Coupled with findings from pre-service teachers, findings about in-service teachers can then 
inform the design of instruction to enhance pre-service teachers’ capacities to provide rich 
learning opportunities for their students. 
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Second Semester Calculus Students and the Contrapositive of the Nth Term Test 
 

David Earls 
University of New Hampshire 

 
Little is known about the difficulties second semester calculus students have determining series 
convergence, and why students have such difficulty.  This report seeks to add to the existing 
literature on series by analyzing second semester calculus student responses to a multiple choice 
item that involves the use of the contrapositive of the nth term test.  We frame our discussion in 
terms of what these answer choices might say in terms of student concept images of series and 
sequences.  We also analyze what prerequisite knowledge might help students be more successful 
in answering questions about series and sequences typically seen in a second semester calculus 
course. 
 
Key words: Calculus, Nth Term Test, Series, Sequences, Contrapositive 
 
 Researchers have called for more research in the area of infinite series (González-Martín, 
Nardi, & Biza, 2011).  Some of the existing literature on series includes the role infinity plays on 
students‟ understanding of series(Sierpińska, 1987), student understanding of definitions (Roh, 
2008; Martínez-Planell, R., Gonzalez, A., DiCristina, G., & Acevedo, V., 2012), student‟s beliefs 
about their role as a learner and the relationship between these beliefs and approaches to solving 
convergence problems (Alcock & Simpson, 2004; Alcock & Simpson, 2005), how series are 
introduced to students (González-Martín, Nardi, & Biza, 2011), the difficulties students have 
accepting that comparison tests can be inconclusive (Nardi and Iannone, 2001), and the 
development of a framework used to analyze student errors determining the convergence of 
series (Earls & Demeke, 2016). 
 This preliminary report seeks to add to the existing literature on series convergence by 
analyzing second semester calculus student solutions to a problem that could be solved using the 
contrapositive of the nth term test.  The report is part of a larger dissertation study that seeks to 
determine the difficulties students have finding the convergence of sequences and series in 
second semester calculus, and in what ways these difficulties are related to prerequisite 
knowledge students‟ instructors mightexpect their students to have from precalculus and first 
semester calculus prior to entering the course. 
 

Conceptual Framework 
 

 Tall and Vinner (1981) use the term “…concept image to describe the total cognitive 
structure that is associated with the concept, which includes all the mental pictures and 
associated properties and processes” (p. 152).  A student‟s concept image of a particular concept 
usually results from working with examples and non-examples (Vinner & Dreyfus, 1989).  The 
concept image for concepts that do not have graphical components or have weak graphical 
components will include symbols, formulas, and associated properties (Vinner & Dreyfus, 1989).   
 Tall and Vinner (1981) define concept definition as “…a form of words used to specify 
that concept” (p. 152).  They also differentiate between a student‟s formal concept definition and 
a personal concept definition.  A formal concept definition is the definition of a concept that is 
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agreed upon by the mathematical community.  A personal concept definition, however, might be 
constructed by the student and could change over time. 
 Although distinct, concept images and concept definitions are intricately related.  Tall 
and Vinner (1981) describe this relationship by saying, “for each individual a concept definition 
generates its own concept image” (p. 153).  In other words, the words used to describe a 
particular concept generate a mental image associated with the concept.  As an example of this 
relationship, consider the function concept.  The formal concept definition of function can be 
described as a relation between two sets where each element of the first set is assigned exactly 
one element of the second set.  However, a student studying functions might not remember this 
definition, and the concept image for the student might include the idea that a function must be 
given by a rule or formula. 
 In the discussion that follows, this paper describes what one multiple choice question 
might say about students‟ concept images of sequences and series in general and the nth term test 
in particular. 
 

Research Methodology 
 

 The targeted population for this study is second semester calculus students enrolled at a 
large research university in the northeastern United States.  One hundred seventy-nine students 
responded to an anonymous six question multiple choice survey on sequences and series with a 
cover sheet.  The cover sheet asked students to list their previous three mathematical courses, 
whether or not they had experience with sequences and series prior to entering the course, age, 
year, gender, race, and expected grade in course. 
 The main research aims of the full dissertation study are to (1) determine what 
misconceptions of sequences and series are revealed when students solve problems on sequences 
and series typically seen in a second semester calculus course, (2) determine what ways, if at all, 
these misconceptions relate to the prerequisite knowledge students are expected to have prior to 
starting a second semester calculus course, and (3) determine what additional knowledge or 
conceptualization of sequences and series students might need to be successful in second 
semester calculus courses. 
 This preliminary report focuses on one problem on the multiple choice test, a problem 
that focused on students‟ understanding of the nth term test and its contrapositive.  This question 
was chosen for this report because more students answered this problem incorrectly than any of 
the others: 
Instructions: Please Circle The Letter of The Best Response. 
Suppose that you know that  

 𝑏𝑛
∞

𝑛=1

= 3 

What can you say about lim𝑛→∞ 𝑏𝑛? 
 

A. lim𝑛→∞ 𝑏𝑛 = ∞ 
B. lim𝑛→∞ 𝑏𝑛 = 0 
C. lim𝑛→∞ 𝑏𝑛 = 3 
D. We can‟t say anything about lim𝑛→∞ 𝑏𝑛  
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Recall that the nth term test states that, if lim𝑛→∞ 𝑎𝑛 ≠ 0, then  𝑎𝑛∞
𝑛=1  diverges.  

Consequently, the contrapositive of this statement tells us that if the series converges, then the 
limit of the sequence must go to 0.  Therefore, choice B is the correct answer. 

This question was recommended by a mathematics professor with many years of 
experience as a second semester calculus instructor.  Distractors were chosen based on responses 
given to this question during interviews in a pilot study.  This choice was made based on 
Kehoe‟s (1995) recommendation that any multiple choice assessment should have three to four 
well written answer choices.  All of the questions on the multiple choice test were reviewed for 
appropriateness (as in, typical problems that a second semester calculus student should be able to 
solve) and correctness by a mathematics graduate student, a mathematics education graduate 
student, and an experienced mathematics professor. 
 Data was analyzed using first exploratory data analysis (EDA) followed by confirmatory 
data analysis (CDA).  Exploratory analysis involves looking at variables individually, then two at 
a time, and then multiple variables at a time.  Behrens (1997) recommends starting with EDA 
before moving to CDA because EDA allows researchers, “…to find patterns in the data that 
allow researchers to build rich mental models of the phenomenon being examined” (p. 154). 
 During EDA, some hypotheses developed.  For example, it appeared as though students 
that had experience with sequences and series coming into the course performed better on this 
question than those that lacked experience.  The purpose of CDA is to test this and other 
hypotheses using statistical significance tests such as a chi-squared test, or Fisher‟s 2-tail 
test.These two statistical tests were chosen based on recommendations from the Institute for 
Digital Research and Education website (IDRE, n.d.).  All statistical tests were performed using 
the JMP software. 
 

Preliminary Results 
 

 Only 48 of the 179 students, or just over 26 percent, chose answer choice B, the correct 
answer to this question.  Ninety-two students, which is over 50 percent, chose answer choice C, 
with seven students, under four percent, choosing answer choice A and 32,about 18 percent, 
choosing answer choice D. 
 Students that said they had experience with sequences and series in a previous course 
performed better on this question than those who said they had no experience.  Sixty-eight 
students said they had experience with sequences and series prior to their second semester 
calculus course, and 111 said they had no experience.  Unfortunately, the sample sizes were too 
small to determine if there was statistical significance within each answer choice.  Consequently, 
I instead considered whether or not the students answered the question correctly. 
 Of the 68 students with prior experience, 25 students, or just over 36 percent, answered 
the question correctly.  Of the 111 students with no prior experience, only 23, or just over 20 
percent, answered the question correctly. 
 Fisher‟s two-tail test revealed a p-value of .0238, indicating that this difference is 
statistically significant.  Likelihood ratio and Pearson chi squared tests were also performed and 
revealed p-values of .0198 and .0187, further indicating the likelihood that the difference in 
performance between students with prior experience and those without prior experience is 
statistically significant. 
 The full contingency table from JMP is shown below to give a visual representation and 
more detail on what was presented above.  The no/yes on the left side of the table indicates 
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whether or not students had experience with sequences and series prior to entering the course.  
The no/yes on the top of the table indicates whether or not students answered the question 
correctly: 
 
Figure 1: Contingency Table – Question six correct by experience 
Experience? Question 6 Correct? 

Count 

Total % 

Col % 

Row % 

no yes Total 

no 88 

49.16 

67.18 

79.28 

23 

12.85 

47.92 

20.72 

111 

62.01 

yes 43 

24.02 

32.82 

63.24 

25 

13.97 

52.08 

36.76 

68 

37.99 

Total 131 

73.18 

48 

26.82 

179 

Tests 
N DF  -LogLike RSquare (U) 

179 1 2.7146923 0.0261 

 

Test ChiSquare Prob>ChiSq 
Likelihood Ratio 5.429 0.0198* 

Pearson 5.531 0.0187* 

 

Fisher's 
Exact Test 

Prob Alternative Hypothesis 

Left 0.9939 Prob(Question 6 Correct?=yes) is greater for Experience?=no than yes 

Right 0.0153* Prob(Question 6 Correct?=yes) is greater for Experience?=yes than no 

2-Tail 0.0238* Prob(Question 6 Correct?=yes) is different across Experience? 

 
Discussion 

 
 There are several plausible explanations for answer choice C, which over 50 percent of 
the population thought was the correct answer.  Note that the value for the sequence convergence 
in answer choice C is the same as the value of the series convergence.  It is possible that students 
are having difficulty understanding the difference between sequence notation and series notation.  
In other words, their concept image of sequences and series may include the fact that the 
symbols are interchangeable.  A review of existing literature on semiotics confirms that students 
have a difficult time reading and understanding symbols in mathematics (Marjoram, 1974; 
Chirume, 2012; Earle, 1977).  However, more research is needed to understand the role of 
symbols on student concept images of sequences and series. 
 Another possible reason for answer choice C is that students don‟t see the difference 
between sequences and series because of their use in everyday conversation.  That is to say, in 
the English language, the words “sequence” and “series” are interchangeable.  As an example, 
consider the sentence, “A long sequence of events has led me to a career in mathematics 
education.”  Replacing the word „sequence‟ with the word „series‟ leaves the meaning of this 
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sentence unchanged.  However, sequences and series are very different in mathematics.  Perhaps 
further research can explore the effect of the English language on student concept images of 
sequences and series. 
 The results above indicate that students that had some prior experience with sequences 
and series performed significantly better than students whose first experience with sequences and 
series came in this particular second semester calculus course.  This prior experience, however, 
varied greatly.  Some students noted on the cover sheet that they had seen sequences and series 
in BC calculus in high school.  Others said that they were familiar with finite series from high 
school precalculus courses.  Still others noted that they recognized series from the definition of 
the integral in a first semester calculus course.  Regardless of the level and depth of experience, 
some exposure to sequences and series prior to entering the course seemed to have helped.  It is 
worth noting, however, that even among the students with prior experience, most students, about 
64 percent, still answered the question incorrectly. 
 It is difficult to know exactly how the concept images of those who answered this 
question correctly differ from those that did not answer the question correctly.  It does appear, 
however, that the concept images of those that answered the question correctly may include a 
proper understanding of the nth term test and its contrapositive.  Those that did not answer the 
question correctly appear to have an incomplete concept image of the nth term test.  In particular, 
it appears as though they do not recognize the contrapositive of the nth term test.  The difficulties 
that students had in this problem with the contrapositive of the nth term test are consistent with 
existing literature describing student and teacher difficulties understanding the logical 
equivalence of a statement and its contrapositive (Gregg, 1997). 
 

Questions 
 

 I plan to continue the statistical analysis of the other problems on the multiple choice 
assessment.  As this is part of a larger dissertation study, I also intend to analyze the transcripts 
of students that solved this problem during interviews.  To help with further analysis, I would 
like my presentation to receive feedback on the following questions: 

(1) What other correlations do you think I should look for as I analyze the other multiple 
choice items? 

(2) What other methods can I use to further analyze student concept images of the nth 
term test aside from the transcript analysis? 

(3) Are there any other methodological suggestions you have that might help enhance 
this study and future research projects on student concept images of sequences and 
series? 
 

Implications 
 

 Moving forward, further research can be done to examine the effect of semiotics and 
word meanings in the English language on student concept images of sequences and series.  
Future research can also examine the understandings of sequences and series that students have 
in an undergraduate real analysis course, and this can be compared to the misconceptions of 
second semester calculus students.  Results from studies such as the larger dissertation study 
have potential implications for the development of curriculum materials and teaching strategies 
that can be used to strengthen student concept images. 
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Let’s Talk About Teaching: Investigating Instructors’ Social Networks 
 

1Kathleen Quardokus Fisher, 2Naneh Apkarian, & 3Emily M. Walter  
1Florida International University; 2San Diego State University; 3California State University, 

Fresno 

Researchers who evaluate efforts to improve STEM undergraduate education have recently 
begun to explore the importance of instructors’ informal teaching discussion networks. These 
informal networks allow for the flow of knowledge between instructors that can include 
information about how to implement research-based instructional practices and creative 
perspectives that lead to innovative solutions to address localized classroom challenges. In this 
report, we reanalyze the network data from three pioneering studies in this area to explore the 
features of mathematics department networks as compared to other STEM department networks 
at multiple institutions. We plan to discuss implications of these features on the design and 
implementation of change efforts. 

Key words: Social Network Analysis, Instructional Change, Academic Departments 

Numerous STEM-focused calls for enhancement of undergraduate education have been 
focused on improving instruction. These calls have resulted in the creation of evidence-based 
instructional practices that have been shown to improve student learning outcomes. However, 
many instructors remain unaware of these practices or face challenges in adopting these 
techniques to their unique classroom environments and student population. Change efforts have 
recognized these challenges and the importance of the networks of instructors that provide 
expertise and creative ideas to successfully implement and coordinate instructional practices.  
For example, Kezar (2014) specifically identifies the need for social network analysis to harness 
the power of these networks to inform instructional change. 

Social Network Analysis (SNA) is an investigation of social phenomena via the techniques 
of graph theory. In SNA, the vertices of a graph are individuals, the edges are relationships 
between two individuals, and the graph is called a sociogram. In this study, the individuals are 
STEM instructors and the relationships that connect the individuals are discussions about 
teaching. Each graph consists of all of the instructors in an academic department and the 
discussions among them. Figure 1 provides a sample discussion network in a STEM 
department.1  

We use this preliminary report to begin to analyze datasets of networks from multiple 
departments. In particular, we are interested in investigating if mathematics departments have 
unique features when compared to other STEM networks. For example, mathematics 
departments often have comparatively large numbers of non-major students who take many 
lower and upper division courses. This results in large numbers of students per mathematics 
course and requires more instructors to support multiple sections. In other STEM departments, 
such as engineering, students are often majors and class sizes are smaller. Furthermore, 
mathematics departments are part of a larger disciplinary culture that influences how instructors 
are trained in graduate school and encultured into the discipline. We suspect that these 
disciplinary differences might manifest in varying department social network structures. Finally, 

                                                 
1 All images and analysis were completed using UCINET 6 and NetDraw software (Borgatti, 2002; Borgatti, 
Everett, & Freeman, 2002). 
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as many academic departments do have similar policies and purposes, we may uncover similar 
social network features that reproduce themselves despite institutional and disciplinary 
differences. This finding in itself would be insightful and imply that change efforts in any STEM 
department would have similar network-based advantages and challenges. Our final report on 
this study will discuss these implications. 

 

    
   

Figure 1: Discussion network sociogram where vertices are individuals and edges are discussions 
about teaching. 

 
 

Theoretical Perspective 

The goal of instructional change efforts is to improve the practice of instructors in the 
classroom. Changing an individual’s practice requires addressing not only the individual’s 
knowledge and abilities but also the contextual environment within which the individual works. 
Thus, the development of curriculum and practices by external experts that are meant to be 
adopted directly by instructors are not likely to be successful. This process does not provide 
flexibility or insight into the specific context of the individual. Networks may be especially 
important in remedying this challenge by allowing for adaption and adoption of evidence-based 
instructional practice. First, network members will be familiar with the challenges of the context 
and provide opportunities for collective sensemaking to articulate the purpose and features of the 
practice (Kezar & Eckel, 2000). Second, network structures that have infrequent but trustworthy 
relationships connecting subgroups of individuals promote innovation because of the ability for 
an individual to hear and create novel ideas (Levin & Cross, 2015). Finally, changing behavior at 
the department level can create supports and pressure for even more individuals to change their 
practice, which in turn will increase the impact of the change efforts (DeHaan, 2005).  
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Three Studies on Discussion Networks in Departments 

This preliminary report represents the cooperative efforts of multiple investigators to 
reanalyze datasets in order to identify trends across multiple departments and institutions. The 
datasets represent three different studies, with different methods and different purposes. In our 
reanalysis, we are challenged to reconcile as many differences as possible across the datasets and 
to acknowledge those that could not be remedied in both the methods and results. In this section, 
we discuss the similarities and differences in the methods of the three studies. 

The first study investigated social networks of mathematics departments across multiple 
institutions. In this study, members of mathematics departments at six different institutions were 
given an online survey to report discussion networks. This study included graduate students as 
members of the department. The survey listed all of the members of the department and asked 
respondents to mark each person “with whom they discussed instructional activities” during the 
last term in which they taught courses. Other items of the survey measured advice networks, 
friendship networks, and collective trust measures. 

The second and third study shared similar survey designs. In both of these studies, 
respondents were given the opportunity to list up to seven individuals within the department with 
whom they “discussed teaching-related issues at least once a month.” The members of the 
departments were provided in dropdown lists and the respondent also included the frequency 
with which the discussions occurred: nearly every day, weekly, monthly, and less than once a 
month. If the discussion occurred less than once a month, then no relationship was recorded 
between the two individuals. The second study included 15 STEM departments at a single 
institution. The third study was of six STEM departments at a single institution and included 
advice networks and data were collected twice (two years apart).  
 

Reanalysis of Social Network Data 

In order to analyze the data of the three studies, we made the following adjustments and 
choices. First, we added professional rank as an attribute for each individual. This allows us to 
remove graduate students from the sample, if necessary. Next, we chose to measure discussion 
relationships only if they occurred during a term in the first study, and at least once a month in 
the second and third study.  We were unable to reconcile the difference in the nomination 
methods. In the first study, respondents could list ties with all individuals within the department. 
In the second and third study, this list was limited to seven people. We will need to discuss these 
differences when we are using measures that are likely to be greatly influenced by nomination 
approach, such as density of the network. Finally, we investigated if sample bias was influencing 
our results by comparing descriptive statistics of study one, study two, and study three before 
beginning our comparison of department-level network measures. 

 
Preliminary Results and Lessons Learned 

We begin by reporting descriptive statistics of each of the study’s networks. We are 
interested in determining if institutional and/or study-based characteristics influence metrics, and 
if so, which metrics. Table 1 displays the average values and standard deviation for network 
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degree centralization, average degree, density, average distance, and diameter. 2 Because of the 
limited number of departments, we do not make statistical claims.  

From this table, we can see that the studies have the most impact on the degree centralization 
of the network, and relatively smaller impact on the other metrics. Because study one also was 
only mathematics departments, we may consider if this difference in degree centralization was 
partially due to the disciplinary culture. However, recall that study one had nomination methods 
that did not limit respondents to seven entries. This may also be the cause of the difference. In 
the future we hope to investigate this finding with even more mathematics departments’ metrics 
and values. Future work will theorize what impact these metrics are likely to have on change 
efforts through sensemaking, creativity, and social norms. 

 
Table 1: Average values and standard deviation for common network metrics of each study 

 Degree 
Centralization 

Average 
degree 

Density Average 
Distance 

Diameter 

Study 1 Average 
(Standard Deviation) 

40.1  
(9.7) 

4.3  
(0.9) 

0.13 
(.05) 

2.2 
(0.4) 

4.5 
(0.8) 

Study 2 Average 
(Standard Deviation) 

25.4  
(7.3) 

3.3 
(0.8) 

0.14 
(0.06) 

2.6 
(0.3) 

5.3  
(0.9) 

Study 3 Average 
(Standard Deviation) 

20.4  
(5.5) 

3.6 
(1.1) 

0.13 
(0.06) 

2.4 
(0.5) 

4.9  
(1.1) 

 
 These preliminary results give us confidence in pursuing our initial research questions 
regarding the differences or similarities among networks of various departments. We also stress 
the importance of coordinating research efforts in order to make large-scale impact on 
instructional change efforts. If each researcher has different survey designs and measurements 
with no standardization, then finding implications with broad application will be difficult. We 
therefore, call for a standard practice among network researchers in this area to produce studies 
that can build on the findings of one another and support the development of this area of 
research. 
 

Audience Discussion Questions 

 The audience can help further this study be providing discussion around the following 
questions. 

x Do audience members have anecdotal experience of large-scale differences of 
mathematics departments from other STEM disciplines? 

x Do audience members believe that the data adjustments necessary for comparing 
networks are likely to challenge the validity of the study? 

                                                 
2 The degree centralization is a measure of the degree to which ties are concentrated among a few key individuals. 
Average degree is average number of edges each individual has. Average distance is the average number of edges 
that span the distance between any two individuals in the network. The diameter of the network is the shortest 
distance between the two most distant individuals. For calculations of these metrics see Wasserman and Faust 
(1994). 
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x What other features of networks do audience members expect to be important for 
improving instructional practices? 
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Raising Calculus to the Surface is a multi-year project designed to introduce important topics from 
multivariable calculus through the use of physical manipulatives. This report focuses on data 
collected through a series of task-based interviews with multivariable calculus students enrolled 
in a course featuring these manipulatives. To explain the students’ activity, a two-dimensional 
framework was designed based upon characterizations of their interaction with the instruments 
and the generality of their mathematical activity. The report concludes by discussing the 
contributions to the field and possible future uses of the framework. 

Key words: Multivariable Calculus, Instrumental Genesis 

Literature Review 

Multivariable calculus is a course that is important for the introduction of ideas that are 
complex and essential for STEM students (PCAST, 2012). Some research has been done on 
student conceptions in multivariable calculus of function (e.g. Martinez-Planell & Trigueros-
Gaisman, 2012), derivative (Martinez-Planell, Trigueros-Gaisman & McGee, 2014), and integral 
(Jones & Dorko, 2015), yet the overall body of work remains thin. Further, little is understood 
about the impact of non-traditional instructional approaches on student learning of these key 
ideas. 

Raising Calculus to the Surface is a multi-year project with an innovative curriculum 
designed to introduce important topics from multivariable calculus through student exploration 
with physical manipulatives. Students use, as representations of two-variable functions, surfaces 
which are molded from clear plastic and have a dry erase surface. Accompanying tools include 
an inclinometer (used to measure the slope at a point on the surface in a given direction), domain 
mats (dry erase sheets with coordinate lines or contour lines), 
and squares (made of clear dry erase plastic and used to 
simulate a tangent plane). Students in small groups complete 
activity sheets in-class, which emphasize collaborative 
learning, student inquiry, and measurement with quantitative 
reasoning (for further details see Wangberg & Johnson 
(2013)). 

For students who use tools to complete tasks and answer 
questions in their activities on multivariable calculus, little is 
understood about how they enhance their understanding of 
calculus, or what role the tools play in that process. 

 
Research Question 

At the nexus of these issues lies the following research question:  
What is the interplay between instrumental genesis and generalization as students develop 

conceptions of multivariable calculus during exploration involving the use of a physical 
manipulative? 

Figure 1 
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Theoretical Perspective 
 
Verillon & Rabardel (1995) presented Rabardel's theory of instrumental genesis to explain 

the complex process by which a person engaged in achieving a goal adopts the use of some 
assisting object. The material object when first introduced is an artifact. For it to be a productive 
tool, the user must attach to the artifact a role in solving the present task. Actions and behaviors 
cognitively organized by the user for a set of situations comprise a utilization scheme. Schemes 
can be constructed personally by the user, or received in a social context. The result of 
instrumental genesis is to have an instrument, an artifact endowed with a set of utilization 
schemes for tasks, a combination of material object and cognitive structures. During instrumental 
genesis, the artifact shapes the user through interactions which enhance the user's understanding 
of the subject matter, a process known as instrumentation. Additionally, the user shapes the 
artifact by developing schemes for interacting with the artifact, a process known as 
instrumentalization. Thus, as user and instrument develop their partnership, each one causes a 
transformation in the other. Subsequent to the development of the theory, instrumental genesis 
was applied in mathematics education to understand student use of graphing calculators, 
computer algebra systems (Artigue, 2002), and dynamic geometry software (Leung & Chan & 
Lopez-Real, 2006). 

The curriculum used by students in this project has as its general pedagogical pattern 
exploration of a concrete scenario followed by mathematizing the observations into a rigorous 
formula. Thus the students' inductive reasoning is a natural target of inquiry. This form of 
reasoning is both one of the most important higher-level cognitive functions, and one of the most 
complex (Zhong et al., 2009). For this analysis, we use the lens of generalization as described by 
Tall (1991). Generalization is “an extension of familiar processes” in order to “operate on a 
broader range of examples” (Tall, 1991, p11-12). 

 
Methodology 

 
The data for this preliminary report were obtained from semi-structured task-based 

interviews with ten multivariable calculus students enrolled in a class using the Raising Calculus 
to the Surface materials. All students completed an activity sheet in class meant to introduce the 
concept of linear approximation for functions of two variables. In the interviews, which all took 
place within three days of that activity, students reflected on their experiences and responded to 
prompts further probing their ideas of linearization and differentiation in multivariable calculus. 
The data was analyzed using grounded theory (Strauss & Corbin, 1990). After an initial viewing 
of the data, categories naturally arose, and the data was reviewed and coded to confirm those 
categories.   

 
Results 

 
Analysis of the interviews revealed that students’ interactions with the artifacts depended 

both upon whether the student engaged in instrumentalization or instrumentation in regards to 
the artifact and whether the engagement occurred while the student was addressing a specific or 
general case of the mathematical phenomena. Therefore, we created a framework which 
classifies student interactions with the artifacts using those two dimensions (as illustrated in 
Table 1.) 
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Table 1 

 
Instrumentalization - Specific 

Interactions were identified as instrumentalization-specific when the student brought prior 
conceptualizations of a specific case of a mathematical phenomenon to bear upon an artifact and 
as a result created schemes for utilizing the artifact meaningfully in this specific context. 

Instrumentalization-Specific Example. During a previous conversation about the meaning of 
the term “partial derivative,” R described the concept as a ratio of the change of the height of a 
function with respect to a change in either the x or y directions. The student was asked to 
determine the partial derivative at a specific point on the surface and given an inclinometer and a 
ruler as artifacts to use along with the surface. An inclinometer is a device that consists of two 
wooden rods connected at a hinge (see Figure 1). On one of the rods is a level which allows the 
user to confirm that one of the arms is horizontal while manipulating the other arm to represent 
the slope of the surface. Once introduced to the artifacts, R began experimenting with holding 
the inclinometer at different orientations until he determined which of those orientations best 
represented his understanding of partial derivatives.  

 
R: And this one [references the horizontal arm] we try to do it in such a way that this little 
ball is in the middle [references the bubble used for leveling the arm]. Then we will have 
something like this [holds the inclinometer such that it has a horizontal arm and the other arm 
reflects the slope of the surface] … Then you measure how high it is [holds a ruler vertically 
to the device].  So it will be just like a triangle. 
 
The student then proceeded to explain how to use the ruler to measure the change in height 

and change in distance as indicated by the inclinometer in order to calculate the partial derivative 
as the ratio of these two measured quantities. 

The student used his prior understanding of the partial derivative as a ratio of change in 
height over change in distance in order to create schemes for interacting with the surface and the 
inclinometer, therefore this was classified as instrumentalization-specific. 

 
Instrumentalization - General 

Interactions were identified as instrumentalization-general when the student brought prior 
conceptualizations of a general case of a mathematical phenomenon to bear upon an artifact and 
as a result created schemes for engaging with the artifact. 

Instrumentalization-General Example. A group of three students were asked to determine 
whether the partial derivative of a two variable function at a point should be equal to the partial 
derivative of the tangent plane to that surface at that point. One student, J, began to argue that the 

  Level of Generality 

  Specific General 

Relationship to 
instrument 

Instrumentalization Instrumentalization-Specific Instrumentalization-General 

Instrumentation Instrumentation-Specific Instrumentation-General 
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two partial derivatives should be equal by relating back to his experiences in single variable 
calculus. He picked up a plastic square and used it along with the surface to reason about this 
relationship.   

 
J: If we take this and put it here. [Student picks up the plastic square and places it on the 
surface as a tangent plane.] … So you just cut it right here, [student makes a downward 
chopping motion with his hand across the plane and the surface] and you view it sideways. 
You would see a function with a line at that point.     
 
The student proceeded to articulate that this representation should be viewed as similar to the 

single variable calculus relationship between a function and its tangent line.   
It is important to note that this was the student’s first experience encountering the plastic 

square. Once it was introduced, the student developed a scheme of placing the plastic square on 
the surface to represent a tangent plane along with a “cutting” scheme for viewing a cross-
section of the surface. This development of new schemes for interacting with the surface led us 
to classify this action as instrumentalization. Additionally, the student was engaged in a 
conversation about the relationship between the tangent plane and the surface at any point in the 
domain, so the student’s actions were not about a specific instance of this relationship, but rather 
about all such relationships across the surface, leading us to classify the activity as 
instrumentalization within a generalized context. 

 
Instrumentation - Specific 

Interactions were identified as instrumentation-specific when the student’s interactions with 
the artifact led the student to develop new conceptions of a specific case of a mathematical 
phenomenon. 

Instrumentation-Specific Example. A group of three students were asked to determine 
whether the partial derivative of a two variable function at a point should be equal to the partial 
derivative of the tangent plane to that surface at that point. The group first considered a single 
point, marked in blue on the surface, to determine whether they are the same at that point. During 
this conversation, one student, M, picked up the inclinometer and used a previously developed 
scheme to measure the partial derivative on both the surface and on the plastic square placed 
tangent to that surface. 

 
M: [while measuring the partial derivatives with the inclinometer] I guess it’s the same.  For 
either the plane or the surface, because this plane is tangent to the blue dot… 
 
 In this activity we see M used previously developed schemes, namely the scheme for 

measuring a partial derivative and the scheme for representing a tangent plane, to convince 
himself that in this case both calculations would yield the same result and thus the partial 
derivatives of the surface and of the tangent plane at that one point must be equal. Therefore this 
was classified as instrumentation-specific. 

 
Instrumentation - General 

Interactions were identified as instrumentation-general when the student’s interactions with 
the artifact led the student to develop new conceptions of a general case of a mathematical 
phenomenon. 
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Instrumentation-General Example. A group of two students were challenged to use only the 
value of a multivariable function and its partial derivatives at a point to approximate a nearby 
value of the multivariable function. The students used the surface and the plastic square along 
with schemes for interacting with these artifacts developed during the classroom activity to 
reason about how to approximate the nearby value and why that value is an approximation and 
not the exact value of the multivariable function. 

 
[Student places the plastic square on the surface as a tangent plane and uses the dry-erase 
marker to draw lines parallel to the x and y-axes. The student then labels the nearby point in 
question on both the surface and the tangent plane.]   
P: We can get the value of this point on the plane, but we cannot get the value on the surface. 
It’s an approximation, because the slope will change. In the x and y direction the slope will 
change at any point. On the plane it’s not going to change. 
 
 In this activity the student evoked previously developed schemes for using the 

instruments to reason about linear approximation. It was through the use of those schemes that 
the student identified the reason why the value should not be exact: that the surface had a 
changing slope while the tangent plane had a constant slope. Earlier in the interview, the students 
were unable to explain why this result should not be exact. Because the students used their prior 
utilization schemes for the instruments about partial derivatives and tangent planes to develop 
this new understanding about approximation which holds at every point on the surface, we 
classified the activity as instrumentation within a generalized context. 

 
Discussion 

 
In this report, we have aimed to extend the knowledge of the field related to the crucial area 

of student understanding in multivariable calculus. Due to the complexity of the material, 
individual examples may be easier for students to grasp initially, and it can be a challenge to 
extend these to general principles. Further, an additional challenge is presented by the 3-
dimensional nature of the mathematical objects. Students can use 3-dimensional tools to aid their 
study, but their use can be a complex process. 

We have designed a framework to better understand student activity while using the Raising 
Calculus to the Surface materials. The research presented in this report extends the perspective of 
instrumental genesis in two important ways. First, it incorporates into the perspective a measure 
of the level of generality, allowing for analysis based both upon activity with the instrument and 
the type of mathematical activity in which the student is engaged. Second, the perspective of 
instrumental genesis has been primarily used to describe engagement with technological 
instruments; our research extends this framework to apply to the use of physical models and 
measurement tools.   

When the categories described in this framework are coordinated temporally, they can create 
rich descriptions of student instrument use. Using this framework to describe mathematical 
activity, not only by categorization, but by moves between the different states of instrumental 
genesis and level of generality, may be a fruitful area of future study. 
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A Continued Exploration of Self – Inquiry in the Context of Proof and Problem Solving 
 

Todd A. Grundmeier and Dylan Q. Retsek 
Cal Poly, San Luis Obispo 

 
Self-inquiry is the process of posing questions to oneself while solving a problem.  The authors’ 
previous work has explored the self-inquiry of undergraduate mathematics majors and a 
mathematics professor.  Student self-inquiry was explored via structured interviews requiring the 
solution of both mathematical and non-mathematical problems. The professor’s self-inquiry was 
explored through self-reporting of questions asked in an advanced problem-solving context.  
Using transcripts of the student interviews, a coding scheme for questions posed was developed 
and extended after coding the professor’s self-inquiry. Previous results will again be highlighted 
here but will be followed by a discussion of self-inquiry in the context of an introduction to 
mathematical proof course.  Data from the introduction to proof course is being collected and 
will be analyzed using the already developed coding scheme. This analysis will be compared and 
contrasted to previous self-inquiry results and we will present questions about possible future 
directions for exploring self-inquiry.   

Key words: Problem Solving, Proof, Self-Inquiry, Logic, Questioning 

 Many teachers refuse to simply answer a student’s question; instead, these teachers insist 
on responding to the student’s misconceptions with other related questions that the student can 
answer, slowly scaffolding the student’s responses until the student has answered (knowingly or 
unknowingly) their own question.  This method, when done correctly, allows the student to 
recollect related knowledge, receive a confidence boost in their own knowledge of the subject, 
and receive a lesson in problem-solving strategies that could be utilized to solve future problems.  
This method of answering questions with other questions seems to work extremely well for 
student ownership of material, but the question remains as to why students don’t ask themselves 
some or all of these leading questions.  Since the student is capable of answering the posed 
questions that lead them to the solution, what is stopping the student from posing these questions 
themselves?  Is effective self-inquiry a mark of a “good” student?  What types of questions do 
these “good” students ask themselves while problem solving?  More importantly, how can we 
foster pedagogical knowledge from these “good” students’ questions so that teachers can guide 
all students toward productive self-inquiry?  
 We would expect that experts in mathematics do things differently than the masses. It 
therefore makes sense to also rigorously study exactly what characterizes expert mathematical 
thought, ultimately aiming to transfer this understanding to better educate undergraduates in 
mathematics. Indeed, much recent work in undergraduate mathematics education has explored 
this very idea. From how experts read proofs (Inglis & Alcock, 2012) and vet the work of their 
peers (Inglis, Mejia-Ramos, Weber & Alcock, 2013) to how they make conjectures (Belnap & 
Parrott, 2013) and use metaphors/perceptuo-motor activity (Soto-Johnson, H., Oehrtman, M., 
Noblet, K., Roberson, L., & Rozner, S., 2012), a clearer picture of expert mathematical practices 
is beginning to emerge. Adding expert self-inquiry to this developing picture of mathematical 
practices and comparing and contrasting it to undergraduate self-inquiry may shed further light 
on teaching practices that foster productive self-inquiry. 
 This preliminary report will summarize the authors’ previous forays into self-inquiry, and 
motivate and describe the most recent data collection efforts in an introduction to mathematical 
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proofs course.  Finally we will pose questions and lead a discussion with the audience about data 
analysis, relevance of self-inquiry in RUME and possible future directions. 

 
The Initial Exploration Into Self-Inquiry 

 
           A detailed initial exploration motivated by the questions posed above (Grundmeier, 
Retsek & Stepanek, 2013) suggests marked differences between the questioning profiles of 
“strong”, “average” and “weak” students.  This work led to a classification of the questions being 
posed by undergraduates.  The following question tree was developed to exhaust the coding of 
all questions posed.   The question tree will be explained in greater detail during the presentation, 
but essentially serves to group questions during problem solving into three main categories (and 
many subsequent subcategories) ranging from “static” to “dynamic” on a spectrum of action 
taken in the course of problem solving. See Figure 1. 
 

 
Figure 1:  The question tree 
 

In order to explore the self-inquiry of “good” students the authors defined the statistic 
RSQ (Relative Success Quotient) and calculated an RSQ for all students.   To calculate the RSQ 
the authors focused on the 11 upper division courses that had been taken by at least 7 of the 
participants.  For each course the average GPA and standard deviation of grades were calculated 
for the last 5 years of course offerings.  A participant’s RSQ is then calculated as the average 
number of standard deviations their grades are away from the mean for the courses they had 
completed from the 11 chosen. Participants clearly fell into three RSQ categories, deemed high, 
middle and low, and data has been organized accordingly.  The table below highlights data from 
the mathematical task.   
 

 Low Middle High 
RSQ -0.167 0.479 .879 

Average # of Q’s 13.75 16 9.2 
Definition Q’s 29.09% 18.75% 28.26% 

Specification Q’s 29.09% 46.875% 26.09% 
Legitimacy Q’s 41.82% 34.38% 45.65% 
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It is interesting to note that the students with a high RSQ were more efficient problem 

solvers who asked fewer questions.  More interesting, though, is that these fewer questions 
focused on legitimizing their problem solving efforts and a smaller percentage of questions that 
served the purpose of specifying the problem-solving situation or related to definitions. 

 
 

Comparison to an Experts Self – Inquiry 
 

In order to shed further light on these questions, the authors designed and undertook a 
similar data collection process wherein a single “expert” recorded his own self-inquiry over an 
extended period of study on an advanced mathematical topic.  The overarching goal of this study 
was to compare and contrast these expert questions to those of undergraduate students 
(Grundmeier, Retsek & Stepanek, 2013). Following an identical coding scheme, analysis of 
expert questions posed during the problem solving process shed further light on what makes for 
“good” self-inquiry and tested the adequacy and completeness of earlier question coding 
schemes.   

As the main activity in a quarter long sabbatical the participant worked through the 
majority of the first two chapters of the text Real Analysis: Modern Techniques and Their 
Applications (Folland, 1984).  This text was chosen because it is frequently used in graduate 
course work and would allow for a faculty mentor just in case mathematical questions needed to 
be referred to a colleague.  

The participant’s typical plan for working on the material was to carefully read each 
section of the text while noting questions that arose.  He then attempted the problems that had 
been assigned in a recent Real Analysis course.  While attempting to solve each problem the 
participant would document all questions that arose as well as the time between each question.  
Many problems required multiple attempts before a solution or proof was reached and questions 
during each attempt were recorded separately.  For example, in organizing the data many 
headings such as “Section 2.3, Problem #22 attempt #2” appear.  The choice to record these 
questions separately was made for a number of reasons. First there was often a significant 
amount of time between attempts, as the participant might have tried another problem in between 
or needed to sleep on the strategy he was using.  Second, the participant assumed there would be 
overlap between the questions asked which might be important to analyze and discuss.  Finally, 
it may be interesting to determine if the types of questions asked were different after some time 
subconsciously considering the problem. Working through this process for the first two chapters 
of the text led to the collection of 404 questions.   A broad comparison of self-inquiry is 
presented in the table below. 

 
 Low Middle High Expert	

RSQ -0.167 0.479 .879 NA	
Average # of Q’s 13.75 16 9.2 10.54	

Definition Q’s 29.09% 18.75% 28.26% 25.7	
Specification Q’s 29.09% 46.875% 26.09% 42.9	
Legitimacy Q’s 41.82% 34.38% 45.65% 31.4	
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 This initial analysis was followed by a more detailed analysis by question type that is 
presented in the tables below.  All data represent percentage of questions within question type.   
 

Definition	Questions	
	 Low	 Middle	 High	 Expert	

Factual	-	Definition	 0	 8.3	 7.7	 35.2	
Clarification	-	Definition	 81.3	 75	 53.8	 44.4	

Exemplification	-	Clarification	-	
Definition	

12.5	 8.3	 30.8	 11.1	

Conditional	-	Clarification	-	
Definition	

6.2	 8.4	 7.7	 9.3	

 
Specification	Questions	

	 Low	 Middle	 High	 Expert	
Clarification	-	Specification	 56.2	 33.3	 41.6	 21.1	
Conditional	-	Clarification	-	

Specification	
18.8	 33.3	 16.7	 22.2	

Procedural	-	Specification	 18.8	 23.4	 25	 45.6	
Human	-	Legality	-	Procedural	-	

Specification	
6.2	 10	 16.7	 0	

Exemplification	-	Clarification	-	
Specification	

0	 0	 0	 11.1	

 
Legitimizing	Questions	

	 Low	 Middle	 High	 Expert	
Procedural	-	Legitimacy	 21.7	 0	 4.7	 19.7	

Platonic	-	Legality	-	Procedural	-	
Legitimacy	

60.9	 77.3	 76.2	 10.6	

Human	-	Legality	-	Procedural	-	
Legitimacy	

8.7	 18.2	 14.3	 1.5	

Collaborative	-	Fruitful	-	
Procedural	-	Legitimacy	

8.7	 0	 0	 47.0	

Authoritative	-	Fruitful	-	
Procedural	-	Legitimacy	

0	 4.5	 4.8	 21.2	

 
This analysis suggests the following points that will be discussed during this report. 

• Expert may be more satisfied than undergraduates with precise and working senses of 
definitions with less need for exemplification. 

• Undergraduates focus information gathering on clarification while the expert focuses 
information gathering on execution of procedures.  

• Expert uses exemplification in the context of specification while undergraduates don’t.   
• Undergraduates focus legitimization on checking their work while the expert generates 

ideas for progress. 
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Further Data Collection and Analysis 
 

With the goal of continued refinement of the question tree and to continue our foray into 
self-inquiry the authors will collect further data in an introduction to proof course during the fall 
2016 quarter.  While we have explored self-inquiry during the problem solving process we have 
decided that a potentially fruitful further direction is a focused exploration of students’ self-
inquiry at the beginning of the problem solving / proving process.  During the proof course 
students will be required to state the first question that comes to mind after their initial 
consideration of the problem statement.  This inquiry requirement will be pervasive throughout 
the course and be an expectation on all assignments.  With approximately 50 students in two 
sections of the course and the requirement of student’s to submit a portfolio with all problem 
solutions / proofs from the course the author’s have the potential to collect at least 5000 
questions and problem solutions to code.   

Once data collection is complete the authors will code students’ self-inquiry using the 
question tree as well as score their problem solutions with the goal of addressing the following 
questions. 

1. Are there similarities and/or differences between self-inquiry in the context of 
mathematical proof and self-inquiry in the previous contexts explored? 

2. Does the initial self-inquiry of “good” students in the context of this course differ 
from other students? 

3. Is their any correlation between type of initial question and quality of the problem 
solution / proof? 

Questions for the Audience 
 

While related research has been conducted in secondary education and reading 
comprehension (Kramarski & Dudai, 2009; King, 1989) and in general mathematical thinking 
(Schoenfeld, 1992), it seems that the self-inquiry of undergraduates and experts has not been 
explored. Therefore another goal of this project is to continue this line of inquiry and add to the 
current mathematics education research related to problem solving and mathematical proof.  The 
following questions for the audience may help shape our future research direction: 
 

1. Is self-inquiry a relevant enough topic to the RUME community to deserve more 
attention and exploration? 

2. Are there other potentially fruitful ways to analyze this data set and/or make comparisons 
of self-inquiry? 

3. What other data collection tools or research design options would help explore self-
inquiry?   

4. Should we attempt further data collection of expert self-inquiry?  If so, how might we do 
this is some authentic way. 

5. How do we extend our work beyond the first question asked in the context of 
mathematical proof? 
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Three Worlds of Mathematics 
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Recent research illustrates the importance of studying students’ nuanced mathematical 
argumentation, as well as students’ tendency to invoke attributes of real numbers that no longer 
apply to situations in complex analysis. This preliminary report explicates a study exploring 
undergraduate student pairs’ reasoning about integration of complex functions. I am 
particularly interested in students’ attention to the idiosyncratic hypotheses of powerful 
integration theorems as they evaluate integrals. Here reasoning is treated as contributing to 
collective argumentation within one or more of Tall’s (2013) three worlds of mathematics. Data 
were collected via task-based, semistructured interviews with pairs of undergraduates to elicit 
such reasoning, and classroom observations of the six class sessions devoted to integration prior 
to the interviews. All interviews have been transcribed and current analysis consists of 
conducting a Toulmin (2003) analysis, augmented by a three-world classification. Potential 
implications of this work and connections to the associated literature are also discussed. 

Key words: collective argumentation, complex variables, integration, reasoning 

Introduction and Literature Review 
 

According to Tall (2013), “Mathematics is often considered to be a logical and coherent 
subject, but the successive developments in mathematical thinking may involve a particular 
manner of working that is supportive in one context but becomes problematic in another” (p. xv). 
The mathematics education literature on the teaching and learning of complex numbers reveals 
that such difficulties can arise when learning complex analysis. For instance, Danenhower (2000) 
identified a theme of “thinking real, doing complex” (p. 101) wherein individuals demonstrated a 
proclivity towards invoking attributes of real numbers that do not necessarily apply in the 
complex setting. Troup (2015) found further evidence of this phenomenon when undergraduates 
reasoned about derivatives of complex functions.  

It is possible, then, that undergraduates might be tempted to initially reason about integration 
of complex functions as area under a curve, as this is one common interpretation in the setting of 
certain real-valued functions. This could be especially prevalent given that even within the 
context of real-valued functions, the literature reveals numerous examples of students’ 
difficulties with integration (Grundmeier, Hansen, & Sousa, 2006; Judson & Nishimori, 2005; 
Mahir, 2009; Orton, 1983; Palmiter, 1991; Rasslan & Tall, 2002). However, many of these 
studies documented the product of students’ deficiencies and misconceptions rather than the 
process of students’ reasoning. As such, while students might end up with faulty conclusions 
about integration, their process of reasoning might actually be teeming with healthy connections 
to intuition or past experiences. Indeed, if nurtured properly, such connections between 
experientially-based intuition and formal mathematics could benefit students’ reasoning in 
courses such as complex variables or analysis (Soto-Johnson, Hancock, & Oehrtman, 2016).  

Moreover, by carefully documenting students’ successful reasoning about undergraduate 
mathematics topics, we are able to gain insight into “what deep understanding and complex 
justifications are possible for students as they engage in mathematics” (Wawro, 2015, p. 355). 
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Students’ reasoning within the subject of complex variables could particularly benefit from such 
an investigation, as the mathematical activity within this course is often situated somewhere 
between formal proof and symbolic calculation. In particular, students that integrate complex 
functions often invoke powerful theorems, which rely on idiosyncratic hypotheses and draw on 
ideas from topology and real analysis. While formal proof is typically not the focus of 
undergraduate courses in complex variables (Committee on the Undergraduate Program in 
Mathematics, 2015), application of such theorems requires that students at least recognize when 
these hypotheses apply. Hence it is possible that students might draw upon a combination of 
intuition, visualization, symbolic manipulation, and formal deduction when integrating complex 
functions. Accordingly, integration of complex functions serves as an appropriate topic to elicit 
the complex justifications that Wawro advocated for. Integration of complex functions is also an 
important topic for undergraduates with respect to practical applications. For instance, it is 
extensively used in physics and engineering to analyze and compute flux and potential. 
Moreover, one can apply techniques using integration of complex functions in order to 
drastically simplify or enable evaluation of certain real-valued integrals.  

Despite the practical and theoretical assets inherent to integration of complex functions, there 
exists no educational research regarding undergraduates’ reasoning in this mathematical domain. 
In particular, it is unclear as of yet how undergraduate students reason algebraically, 
geometrically, and formally with the notion of integration of complex functions. This study 
serves to ameliorate this gap in the literature and to inform the teaching and learning of complex 
variables by investigating undergraduates’ multifaceted argumentation about integration of 
complex functions. Using Tall’s (2013) Three Worlds of Mathematics framework, my ongoing 
research seeks to answer the following guiding questions: 

1. How do pairs of undergraduate students attend to the idiosyncratic assumptions 
present in integration theorems, when evaluating specific integrals?  

2. How do pairs of undergraduate students invoke the embodied, symbolic, and formal 
worlds during collective argumentation regarding integration of complex functions? 

Clearly, this requires a careful consideration about what constitutes mathematical reasoning. 
According to the National Council of Teachers of Mathematics (NCTM), reasoning is 
characterized as “the process of drawing conclusions on the basis of evidence or stated 
assumptions” (NCTM, 2009; p. 4). Hence, because reasoning is not directly observable as a 
mental process, researchers can use individuals’ argumentation, including the components 
mentioned by the NCTM, as a window into the mind. A common model used to document 
individuals’ argumentation was formulated by Toulmin (2003) and consists of six components: 
data, warrant, backing, qualifier, rebuttal, and claim. According to Toulmin, any argument is 
based upon the arguer attempting to convince his or her audience of some claim (C), or asserted 
conclusion. This claim is necessarily grounded in foundational evidence, or data (D), on which 
the claim is based. The arguer can then supply a warrant (W) justifying the link between the 
given data and the purported claim. A modal qualifier (Q) is often necessary to explicitly 
reference “the degree of force which our data confer on our claim in virtue of our warrant” (p. 
93). Depending on the warrant provided, there might also be circumstances in which the intended 
claim does not hold; in this case, conditions of rebuttal (R) are needed to indicate when the 
“general authority of the warrant would have to be set aside” (p. 94).  

In the mathematics education literature, participants’ mathematical argumentation has been 
analyzed with the aid of Toulmin’s model in several different contexts. In the in-class setting, 
some researchers (Krummheuer, 1995; Krummheuer, 2007; Rasmussen et al., 2004; Stephan & 
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Rasmussen, 2002) felt that a reduced Toulmin model where the qualifier and rebuttal are omitted 
was appropriate, and rarely found evidence of explicit backing. Moreover, Krummheuer (2007) 
illuminated warrants invoked by the participants that did not even relate to the mathematical 
content directly, such as an appeal to the teacher’s perceived authority. However, when more 
formal arguments such as proofs are concerned, researchers (Alcock & Weber, 2005; Inglis, 
Mejia-Ramos, & Simpson, 2007; Simpson, 2015) argued for the use of the full Toulmin model. 
They also mentioned that simply reading the finished product of a purported proof is inherently 
difficult because some components of the Toulmin model, such as backing and sometimes even 
the warrants, are implicit and cannot be elicited through real-time discourse with the proof 
author. Thus it would appear that an investigation into undergraduates’ nuanced argumentation 
about integration of complex functions should adopt the full Toulmin model and incorporate 
opportunities for clarification, as in an interview setting. 

 
Theoretical Perspective 

 
In this study, I adopted Tall’s (2013) Three Worlds of Mathematics as a way to theoretically 

orient my inquiry into undergraduates’ reasoning pertaining to integration of complex functions. 
This perspective traces all mathematical knowledge back to three distinct but interrelated forms 
of thought: conceptual-embodied, operational-symbolic, and axiomatic-formal. According to 
Tall, conceptual embodiment begins with the study of objects and their properties, progressing 
towards mental visualization and eventually description through increasingly subtle language. 
The second world of operational symbolism grows out of actions on objects and is symbolized in 
potentially flexible ways via procepts, or symbols operating dually as process and concept (Tall, 
2008). Tall’s (2013) third world is that of axiomatic formalism, wherein individuals build 
“formal knowledge in axiomatic systems specified by set-theoretic definition, whose properties 
are deduced by mathematical proof” (p. 17). These three worlds can also combine to form, for 
example, embodied symbolic or symbolic formal reasoning. 

As mentioned previously, Tall (2013) argued that our previous experiences with mathematics 
can either support or create conflict with new and abstracted mathematical notions. He referred 
to the knowledge structures predicated on these prior experiences as met-befores. Tall also 
argued that mathematical growth can be traced back to three innate set-befores of recognition, 
repetition, and language. These set-befores foster three forms of compression: categorization, 
encapsulation, and definition. Through this compression, individuals build so-called crystalline 
structures, which incorporate many equivalent formulations of a mathematical object and can be 
unpacked in various worlds.  

These worlds can also lend additional specificity to a mathematical argument, in that “each 
world develops its own ‘warrants for truth’” (Tall, 2004, p. 287). For instance, in the embodied 
world, truth is initially established based on what is seen to be true by the learner visually. In 
contrast, within the symbolic world, truth is established in arithmetic based on calculation. 
Finally, in the formal world, a statement is true either by assumption as an axiom, or because it 
can be proved formally from the axioms. Hence Tall’s three-world perspective can complement 
the Toulmin analysis of a mathematical argument by adding specificity with regard to the types 
of backing and warrants used. As such, I classify participants’ Toulmin components as 
embodied, symbolic, formal, or various mixtures of these, as viewed through Tall’s three-world 
lens. Therefore, in the context of this study I define reasoning as mathematical argumentation 
within one or more of the three worlds. 
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Additional specificity with regard to backing exists due to Simpson (2015), who examined 
how earlier papers (e.g. Evens & Houssart, 2004; Inglis et al., 2007; Stephan & Rasmussen, 
2002) reported its use. Simpson found that there were three distinct roles for backing of warrants 
within an argument. The first, backing for the warrant’s validity, was invoked to explain why the 
warrant applies to a given argument. A second type of backing served to “highlight the logical 
field in which the warrants are acceptable,” which Simpson characterized as backing for the 
warrant’s field (p. 12). Finally, a third type, backing for the warrant’s correctness, illustrated 
that a given warrant is actually correct.  

Given that my study considers how pairs of students reason about integration tasks, it is 
additionally important that I consider how each individual contributes to an argument. According 
to Krummheuer (1995), collective argumentation takes place when multiple participants 
construct arguments through emergent social interaction. As part of this interaction, an individual 
invokes one of four speaker roles. As author, a speaker is both syntactically and semantically 
responsible for his or her statement. On the other hand, a speaker might claim responsibility for 
neither the semantic nor syntactic aspects of an utterance, in which case he or she acts as relayer. 
Alternatively, a speaker “uses the words of someone else to mean something different from the 
meaning ascribed to the utterance of the original speaker” (Krummheuer, 2007, p. 67, italics in 
original) as a ghostee. Finally, when a speaker revoices a previously mentioned idea using his or 
her own language, he or she is acting as spokesman.  

 
Methods 

In order to rigorously address my research questions, I enlisted the help of two pairs of 
undergraduate students to partake in a videotaped, semistructured (Merriam, 2009), task-based 
interview comprised of two 90-minute portions. Participants were selected from undergraduate 
students at a military academy in the United States, enrolled in the complex variables course 
during the spring 2015 semester. My first pair of participants consisted of Sean and Riley. Sean 
was a fourth-year physics and mathematics major and Riley was a second-year applied 
mathematics major with a cyberwarfare concentration. The second pair consisted of Dan, a third-
year mathematics major, and Frank, a second-year applied mathematics major with an aero 
concentration. Table 1 summarizes my methods of analysis for the interview data; note that step 
one is now complete. 

To obtain a rich understanding of the context in which these participants learned about 
integration of complex functions, I also observed and videotaped six class sessions at 
participants’ undergraduate institution. These observations and ensuing field notes allowed me to 
document what mathematical content was introduced and emphasized during the integration unit 
in the complex variables course. They also allowed me to discern the nature of mathematical 
argumentation that was deemed appropriate for the complex variables course. 
 

Discussion 

Recently, Soto-Johnson et al. (2016) found that mathematicians drew upon a wealth of 
personal embodied experiences when discussing their conceptions of continuity of complex 
functions. Although their study pertained to the population of mathematicians, Soto-Johnson et 
al. hypothesized that meaningfully connecting experientially-based intuition and formal 
mathematics could also benefit students’ reasoning in courses such as complex variables. In part, 
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my research serves to reveal how undergraduates reconcile their met-befores with the formal 
idiosyncrasies present in integration theorems. Hence, my hope is that my inquiry into students’ 
reasoning about integration might illuminate ways in which instructors can cultivate healthy 
connections between students’ embodied intuition and rigorous, formal mathematics. 

 Additionally, I anticipate that my study will complement and extend the mathematics 
education literature regarding students’ mathematical argumentation. Wawro (2015) found that 
her participant’s argumentative successes were primarily due to the fact that he was “flexible in 
his use of symbolic representations, proficient in navigating the various interpretations of matrix 
equations, and explicit in referencing concept definitions within his justifications” (p. 336). 
Accordingly, this suggests a potentially strong connection between representational fluency and 
effective mathematical argumentation. I anticipate that the results of my study will serve to 
corroborate this finding by exploring how students’ embodiment, symbolism, and formalism 
collectively inform their argumentation about integration. 

 
Table 1  
Interview Analysis Summary  

Step Description 
1. Transcription  Document participants’ exact verbiage; provide rich 

description of gesture and written inscriptions 
2. Code Toulmin components Classify participants’ arguments for each task 

according to data, warrant, backing, rebuttal, 
qualifier, and claim as in Toulmin’s (2003) model 

3. Code for speaker roles Categorize participants’ speaking roles as that of 
author, relayer, ghostee, or spokesman (Levinson, 
1988, as cited in Krummheuer, 2007)  

4. Code for three worlds 
 

Further classify participants’ arguments from step 2 
according to Tall’s (2013) three worlds framework   

5. Code for backing types Refine coded arguments from step 3 by categorizing 
backing according to the types identified by 
Simpson (2015) 

6. Thematic analysis Reflect on the coded data from steps 1-5 to identify 
common themes within and across interviews 

 
  

Potential Questions for the Audience 
(1) How might I connect each of the analysis pieces to address my research questions? (2) 

How might one develop a teaching experiment where instructors draw students’ attention to any 
implicit assumptions used when evaluating integrals in complex analysis?  
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DNR-based professional development (DBPD) is a long-running program spanning seven years 
with multiple cohorts of in-service secondary mathematics teacher participants. This report 
investigates teacher change among five key variables: facilitating public debate, using holistic 
problems, attending to students’ intellectual need, attending to meaning of quantities and use of 
students’ contributions. Is there evidence that DBPD contributed to higher implementation among 
participants over time? What factors afford/constrain DNR implementation over time? Classroom 
observation data indicate the largest impact was found in teachers’ attention to meaning of 
quantities and students’ intellectual necessity while interview data provide insights to what affords 
and constrains DNR implementation. 

Key words: Teacher change, DNR-based instruction, Intellectual Need, Professional 
Development, In-service  

In their review of 106 articles reporting findings on mathematics professional development 
programs between 1985 and 2008, Goldsmith, Doerr and Lewis (2013, p. 21) point out that 
“existing research tends to focus on program effectiveness rather than on teachers’ learning,” 
while much less has been said about “how teachers develop knowledge, beliefs, or instructional 
practices”. Indeed, DNR researchers have conducted, and continue to conduct, studies exploring 
the processes by which teachers develop knowledge of mathematics, pedagogy and student 
thinking while also describing the contexts in which this learning occurs. For example, Harel, 
Fuller and Soto (2014) described characteristics of the teaching practice of a DNR expert aimed 
at helping a group of teachers transition from result pattern generalizing (RPG), a form of the 
empirical proof scheme, to process pattern generalizing (PPG), a form of deductive proof scheme 
(RPG and PPG are described in Harel, 2001). Harel (2013b, 2014) describe two of the content 
areas covered by DBPD in summer institutes and follow-up sessions.  

An extension of these studies – our current study – examines the extent to which the evidence 
that DNR-based professional development (DBPD) has contributed to the implementation of 
DNR principles by participating teachers and, in keeping with the recommendation of Goldsmith 
et al, seeks information about the factors that help or hinder implementation. This study reports 
such findings and contributes in areas by specifying a set of teaching practices we take as 
indicators of DNR implementation and combining direct classroom observation with participant 
interviews to yield both information about program effectiveness and provide insight into 
learning processes.  
 

Theoretical Framework 

DNR-based instruction in mathematics (Harel, 2008a; Harel, 2008b), is a theoretical 
framework that stipulates conditions for achieving critical goals such as provoking students’ 
intellectual need to learn mathematics, helping them acquire mathematical ways of 
understanding and ways of thinking, and assuring that they internalize and retain the 
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mathematics they learn. Though DNR is a system of premises, constructs and instructional 
principles, here we attend to only the necessity principle and the construct of teaching practices. 

In DNR, the necessity principle stipulates that in order for students to learn what teachers 
intend they must have an intellectual need for that targeted piece of knowledge and the 
construction of this knowledge is brought about through a series of equilibrium and 
disequilibrium phases as learners engage in problematic situations (Harel, 2013a). 

Harel (2008b) defines, “a teaching action is a curricular or instructional measure or decision 
a teacher carries out for the purpose of achieving a cognitive objective, establishing a new 
didactical contract (Brousseau, 1997), or implementing an existing one.” Characteristics of 
teaching actions are called teaching behaviors. Teaching actions and teaching behaviors taken 
together are called teaching practices. The necessity principle, described above, is a foundational 
claim about the importance of teacher awareness of students’ thinking and difficulties, the need 
to plan for and handle students’ problem-solving approaches, as well as the importance of 
availing oneself of the opportunities that could arise if the right problems are posed and students 
are given the chance to make and express their own meaning for problems that are not broken 
down for them in advance.  

 
Methods 

DBPD consisted of two related support structures: (1) summer institutes and mid-year 
follow-up and sessions similar to what was described in Harel, Fuller and Soto (2014) and (2) 
on-site professional development. Both efforts targeted the teachers’ knowledge of mathematics 
(in terms of ways of understanding and ways of thinking), knowledge of student learning, and 
knowledge of pedagogy. This report examined DNR implementation for 34 teachers, focusing on 
the following five teaching practices: public debate, holistic problems, intellectual need, 
attention to meaning, and taking contributions seriously as defined below. 

x Assigning Holistic Problems:  A holistic problem is one where a person must figure out, 
from the problem statement, the elements needed for its solution (Harel and Stevens, 
2011). It does not contain hints or cues as to what is needed to solve it. In contrast, a non-
holistic problem is broken down into small parts, each of which attends to one or two 
isolated elements. Often each of such parts is a one-step problem. (No/Yes) 

x Intellectual need: Do students have a need for understanding the mathematics the teacher 
intends to teach? Does the teacher appeal to a problematic situation that puzzles students 
when introducing new mathematics? (No/Yes) 

x Attention to meaning: When a problem has a context, unknown quantities have meaning 
with respect to that context (e.g. units related to quantities). Does the teacher attempt to 
attend to the meaning of quantities within the context of the problem? (No/Yes) 

x Public debate: Is there evidence to believe that the whole class is following the 
discussion? Is the teacher making a successful effort to engage the whole class in debate 
through questioning and solicitation of contributions? Public debate also includes the 
need to evaluate mental images and their validity and efficiency. (No/Yes) 

x Taking student contributions seriously:  A student’s contribution is considered to be taken 
seriously when it is allowed to live in the public space for discussion without immediate 
teacher evaluation. When taking contributions seriously, teachers solicit ideas and mental 
images from students, and facilitate public debate about these ideas to highlight and 
critique both underlying mathematics. (No/Yes) 
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Repeated classroom observations of teacher participants were conducted and used to evaluate 
participants’ implementation of DNR and to chart changes in participants’ teaching over time. 
Two forms of data were generated using these observations. First, researchers examined whether 
or not a particular teaching practice was demonstrated in each participant’s classroom during an 
entire classroom observation across two later years of the program’s existence. Second, 
researchers looked at interview data with participants conducted after classroom observations 
that could be used to give insight into factors that afford or constrain implementation. A 
summary of findings follows.  

Findings 
 

Three forms of findings constitute results of investigation into the program’s impact on DNR 
implementation.  
 
Classroom Observation Data (All classes) 

The following tables show percentages of classrooms in which a particular teaching practice 
was present during year 3 and 4 of the program. 

 
Attention to Meaning 

 Year 3 Year 4 
Present 25.9 % 61.5 % 

 

Intellectual Need 
 Year 3 Year 4 
Present 63 % 80.8 % 

 

Public Debate 
 Year 3 Year 4 
Present 70.4 %  76.9 % 

 

 
Taking student contributions seriously 
 Year 3 Year 4 
Present 81.5% 84.6 % 

 

Holistic Problems 
 Year 3 Year 4 
Present 81.5% 80.8 %  

 

The most dramatic results can be seen in the change of the percentage of classrooms in which 
teachers attended to meaning and to the intellectual need of students and raise questions about 
aspects of DBPD that may have contributed to these shifts. Similarly, one might ask what may 
have constrained increased implementation of holding public debate, taking student contributions 
seriously and using holistic problems. There are many possibilities, including the difficulties 
inherent in the teaching practices themselves, the students’ comfort levels sharing ideas in class 
or even a potential ceiling effect. Note that each of these three teaching practices began with a 
relatively high rate of classrooms demonstrating them, 70%, 81.5% and 81.5% respectively. For 
this reason, we decided to investigate individual data. 

Interview Data. During interviews with project staff, the following factors were reported as 
reasons participants felt they were able to implement DNR in their own classrooms. 

x Resonance of the major principles of the DNR framework with their own values, 
including a strong dedication to problem-solving, belief in student-centered instruction, 
and a belief that current curriculum needs modifications to accomplish meaningful 
instruction. 

x Community-driven programmatic elements such as a time, place, and leadership for 
sharing ideas and peer support building, one-on-one mentoring from more experienced 
teachers and regular contact with community members 
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x Academic freedom/autonomy to implement DNR-compatible teaching practices by 
administrators 

x The program’s on-site support 
x Adoption of the Common Core State Standards in Mathematics and compatibility with 

DNR 
x A strong sense of dedication to students 

 
Factors reported to constrain DNR implementation included: 

x Dissonance with the major principles of DNR, either throughout or growing with time 
x Difficulty of Didactical Engineering/adapting DNR’s instructional principles to 

curriculum 
x Lack of academic freedom with respect to content and/or teaching practices (either 

perceived or embodied in administrators and/or parents including pressure to teach 
algorithmic proficiency at sites/desire to maintain consistent testing results with high SES 
from parents, students and administrators and	large class sizes generating extraneous 
work) 

x Self-efficacy and retention issues 
 

Discussion 
 

We began the report with insights from Goldsmith, Doerr and Lewis (2013) describing some 
of what has been done and what still needs attention in mathematics professional development 
over nearly three decades. On the surface, this report seems to do the opposite of what Goldsmith 
et al recommend, appearing, at least initially, to focus on “program effectiveness” rather than 
teacher learning. However, we argue that DNR researchers have been carrying out the work of 
investigating how teachers develop the forms of knowledge, beliefs and instructional practices 
needed in the common core era for quite some time. Evaluation of a PD program attempting to 
implement DNR is a necessary part of theory building. Indeed, knowledge about the kinds of 
hurdles teachers face when attempting to turn theory into practice can inform the theory itself as 
researchers attempt to make adjustments to their theoretical perspectives moving forward, 
starting a new cycle of theory building, implementation and evaluation. 
 

Intended Questions for the Audience 
 

1. We are aware that there lurking methodological questions we have yet to ask about classroom 
observation protocols with respect to each of the five teaching practices. What are some of them? 
Would duration help on some of these variables? 
2. How can these findings inform future DBPD? DNR as a theoretical framework? 
3. We have data, by individual participant, with respect to each of the five teaching practices 
discussed. I have bar graphs readily available with mean and standard deviations. How might this 
data be used to address our questions? 
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An exploration of students’ discourse using Sim2Bil within group work: A commognitive 
perspective 
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This paper reports on critical aspects of three engineering students’ discourse in group work 
using a digital tool called Sim2Bil while solving mathematical tasks. Applying a commognitive 
perspective, where mathematical discourse is characterized by words used, visual mediators 
applied, narratives developed and routines established, we investigate how these characteristics 
are influenced by the technological environment. It is found that all of the aspects of the 
students’ discourse are influenced by Sim2Bil. For instance, a “trial and error” routine directly 
connected to the use of the tool is present in the students’ discourse. 

Key words: Commognition, Discourse, Engineering, Group work, Technological environment  

Introduction 

Working with mathematics involves using different resources. For instance, students use 
computers, calculators, and textbooks. These artifacts have been developed through history, and 
technological tools in particular have undergone major changes in the last decades. Nowadays, 
software for simulations, animations, graph plotting, dynamic geometry, CAS, and so forth, have 
emerged in mathematics education. These cultural tools change practices and give possibilities to 
work with mathematics in new ways. 

 Much research has been conducted on students’ interaction with technological tools (Beatty 
& Geiger, 2010; Wijers, Jonker, & Drijvers, 2010), and an important aspect of future education 
may lay in expanding technology-supported collaborative work between students (Lowyck, 
2014). The technological tools considered are, for instance, computer algebra systems (CAS) 
(e.g. Artigue, 2002) and tools for graph plotting (e.g. Swidan & Yerushalmy, 2014). Some 
studies have applied the commognitive framework to study how students are communicating 
using a digital tool (e.g. Ng, 2016) and the impact technological environments have on pupils’ 
mathematical thinking (e.g. Sinclair & Yurita, 2008).  

Previous studies conclude that technology can support students in their graphical approach to 
integrals (Berry & Nyman, 2003; Swidan & Yerushalmy, 2014). To supplement this research, in 
the study reported in the present paper we set up a kinematical context for integrals, and the 
students use integrals for a simulation of movement within a technological environment where 
students work with a digital tool called Sim2Bil. The students’ interaction with words and 
visualizations and how they were used in their communication has been analyzed in a previous 
paper by Hogstad, Isabwe, and Vos (2016). In the present paper, we will view the data from a 
discursive perspective, analyzing the characteristics of the students’ discourse with the aim of 
investigating how the digital tool influences the discourse. 

 
Theoretical Framework 

The commognitive theory (Sfard, 2008) takes a participationist perspective (Sfard, 1998) – 
learning is seen as the process of changing and individualizing discourse to become increasingly 
able to participate in a certain discourse community. The theory provides analytical tools for 
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analyzing discourses, and especially mathematical discourse. From a commognitive perspective, 
discourses are different types of communication “set apart by their objects, the kinds of 
mediators used, and the rules followed by participants and thus defining different communities of 
communicating actors” (Sfard, 2008, p. 93). Thus, doing mathematics is engaging in 
mathematical discourse, and this mathematical discourse – indeed any discourse – can be 
distinguished by four characteristics: word use, visual mediators, narratives and routines (ibid, p. 
133-134). Word use refers to words specific to the discourse or common words used in 
discourse-specific ways. Visual mediators are “the visible objects that are operated upon as a part 
of the process of communication” (Sfard, 2008, p.133). Every image of concretes, symbols and 
icons operated on in communication are visual mediators. Narratives are “any sequence of 
utterances framed as a description of objects, of relations between objects, or of processes with 
or by objects, that is subject to endorsement or rejection” within the discourse (ibid, p.134). 
Sfard includes mathematical definitions, theorems, axioms and proofs, as well as formulas and 
equations, under the term narrative. Other examples could be statements students make during a 
problem solving process, such as the statement they consider to be a solution to a given problem. 
Finally, routines are “repetitive patterns characteristic of the given discourse” (ibid, p. 135). 
Such repetitive patterns can be seen in almost any aspect of mathematical discourse: in forms of 
categorizing, modes of attending to the environment, in ways of viewing situations as “the same” 
or different and so on (ibid, p.135).  

Routines are divided into three types: explorations, deeds and rituals. Explorations are 
routines where the goal is to produce endorsed narratives (ibid, p. 223). Deeds involve actions 
performed with the goal of achieving change in objects. A routine may either be an exploration 
or a deed, depending on what the performers (in our case the students) are trying to achieve. In 
particular, the difference can become unclear in those cases when “the objects on which the deed 
is performed are, in themselves, discursive rather than primary” (p.239). Rituals are those actions 
whose goal is neither to produce an endorsed narrative nor a change in objects but rather to gain 
the attention and approval of others and to become a part of a social group.  
 

Methods 

The overall aim of the study is to investigate how students’ mathematical practice is 
influenced by working in a specially designed small-scale digital learning environment outside of 
regular lectures. The participants in the activity reported on in this paper were three engineering 
students. They were in the second semester of their first year at university. Their first year 
included courses in calculus, linear algebra and physics (including kinematics). Sim2Bil was not 
familiar to them.  

Sim2Bil is an interactive digital tool, the interface of which is shown in Figure 1. At the top 
left there are two cars – one red, one green – which can drive from a starting line to a finish line. 
This is called the simulation window. Below, there are visualized two graphs, one for the 
velocity-time function of each car. This is called the graph window. At the bottom right, there 
are velocity functions for each of the cars. A user can insert parameters here to make 3rd degree 
polynomials. This is called the formula window. At the top right is a menu window, which is not 
used in the study and will not be further explained. As a default setting, there are two functions 
given in the formula window: v1 = 100 (for the green car); and v2 = 50t (for the red car). With 
these functions, the students can engage in the environment by pressing the start-button to see the 
cars run differently and finish together. The distance between the starting line and the finish line 
is 400 meters. The preset functions make the cars reach the finish line simultaneously (thus 
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framing the forthcoming requirements), and they also make the graphical representations appear, 
thus showing how a user can operate with the tool. The shading of the areas under the graphs 
will appear gradually through an animation, increasing with time. These areas represent the 
distance travelled for the cars. 

 
Figure 1. Interface of Sim2Bil. 
 
The students received the following problem consisting of four tasks: 
 

Look around the screen. Find the start button (down at the right corner). The simulation runs 
for maximum 4 seconds.  
a) Press “Start” in the program, and explain to each other what happens. What do the shaded 

areas represent? 
b) Determine other numbers in the table, so that the cars run with different velocities, and 

arrive at the finish line at the same time. 
c) What can you do to make the green car be only half way when the red car reaches the 

finish line? 
d) Find the velocities of the green and the red car (v1 and v2), so that v2 is half of v1 when 

they reach the finish line simultaneously at 4 sec. Can you prove that your answer is 
correct? 

 
The problem is designed for collaboration between the students since the tasks can be solved 

using different approaches. The formulation of the problem was presented on paper and Sim2Bil 
was set up on a laptop in front of the students. Other available resources were a calculator, book 
of formulae, and pen and paper for writing. It was anticipated that the students would see 
relations between distances travelled, shaded areas under the graphs, and the integral of the 
velocity functions. The formula window constrains possible solutions by allowing the students to 
set in parameters only up to 3rd degree functions. 
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The activity was video recorded using two cameras: one moving, directed at the students and 
their writing; and one fixed, directed at the computer screen to capture mouse movement, 
students’ inputs within the interface and gestures like pointing towards the computer screen. One 
researcher was present during the activity and introduced the interface and tasks to the students. 
No specific time frame was given for the group work, and it turned out that the students spent in 
total of 45 minutes on the tasks. The video recordings were then transcribed and coded in terms 
of the different characteristics of discourse. In what follows, for reasons of space, attention is 
restricted to the first two subtasks.   

 
Analysis 

Briefly describing the students’ work on the subtasks, they begun by reading the tasks aloud. 
They then pressed the start-button and watched the cars run before discussing what the shaded 
areas represent. Thereafter they discussed the degree of velocity functions in order to find new 
parameters which they in turn set in the formula window to see if the cars arrive together. 

Looking at the discursive practice of the students, a number of characteristic features can be 
found. Starting with discourse-specific words, there are several words used to describe 
mathematical objects, such as: function, graph, area, integral, unknown, rectangle and triangle to 
mention a few. Still, although the students are mainly engaging in mathematical discourse, they 
also use terminology that might be considered to belong mainly to discourses of other 
disciplines. For instance, there are words used which belong to a discourse of physics, such as: 
position, distance, velocity and acceleration. Actually, one of the students recognized the 
discourse as being within physics by stating at the end of the session: “that is enough physics for 
today”. There are also a number of words directly connected to the interface, for instance start (-
button), start line and finish line. 

Different visual mediators are present in the discourse of the students. Some are of types 
traditionally connected to mathematical discourse, for instance mathematical symbols and 
graphs. These are in some cases written on paper, and in some cases are aspects of the digital 
tool. There are also visual mediators directly connected to the tool, such as the moving cars and 
the representation of the two velocity functions by a number of boxes (see the bottom right 
corner of the interface depicted in Figure 1). In addition, gestures such as pointing or tracing the 
shape of a parabola with your hand are also used. Such gestural actions seem to be used partly 
for making sure that the students are talking about the same objects. 

 Concerning narratives, these are also of different types – those connected to the tool and 
those connected to the underlying mathematical content. Mathematical narratives include, for 
instance, formulas for the velocity functions as general third-degree polynomials, as well as 
expressions for distances in terms of integrals of velocity functions. Narratives more specifically 
connected to the digital tool include interpretations of the various features of the interface in 
terms of a discourse of mathematics or physics:  

 
Student E: What do the shaded areas represent? It’s the area under the graph. 
Student S: Yes. The area, which then is the distance. It is a function. 
 
Another example concerns formulating connections between different features of the 

interface: “It [pointing at the graph] changes when we push here [by inserting parameters]. 
The influence of the Sim2Bil tool can also be seen in the types of routines present in the 

students’ discourse. Some routines are directly connected to the use of the tool. One of the most 
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common is “running the simulation”, that is, inserting values for the parameters, pressing start, 
watching the cars run and then pressing reset. On some occasions, this routine had the 
characteristics of a deed, concentrating on the running of the cars, with the students’ attention 
focused on whether they arrived simultaneously at the finish line. On other occasions, the routine 
was more exploratory, with the focus on the graphs describing the velocity functions, and how 
these influence the movement of the cars. This routine is closely connected to a routine which we 
might call “trial and error”. Here, values for the parameters are for the most part picked 
seemingly at random or at least without any explicit reasoning on the students’ part. Then the 
resulting effect on the graphs and the running of the cars is noted, new values are picked, the 
effects are noted, and so on. This process is denoted by the students as “playing around”, and 
particularly one of the students repeatedly invokes this when the other students shift their 
attention to symbolic and numerical calculations away from the screen: “Can’t we just play 
around a little? Isn’t that good?” 

On the other hand, there are also examples of routines that are more conventionally 
mathematical, such as “calculating values of expressions”. The calculations consist of writing 
algebraic expressions (mostly integrals of polynomial velocity functions) on paper and then 
using a calculator to calculate numerical values. These routines were mostly of an exploratory 
character. You might argue that there is an element of the deed about them, since the focus is on 
the numerical results, but these numbers are in turn going to be used to formulate narratives 
about the comparative movement of the cars in the digital environment. 
 

Discussion 

What we have presented above is a mostly descriptive account of the characteristics of the 
students’ discourse when working on the tasks. Still, looking at these characteristics it is clear 
that the Sim2Bil tool influences all aspects of the discourse. In particular, there is evidence of 
routines directly connected to the tool. This corresponds to the findings of Sinclair and Yurita 
(2008), where the introduction of a digital tool (Geometer’s Sketchpad) changes the routines 
engaged in the classroom.  

The study is also in tune with other studies reporting on new forms of communication 
mobilized in dynamic environments. For example, Ng (2016) shows how students utilized a 
variety of resources in their communication, and developed routines for conjecturing and 
verifying calculus relationships. Such routines can also be found in the discourse of the students 
in the present study.  

The environment described in this study enabled the students to connect algebraic 
expressions, graphical representations and movements of objects. As the students in the present 
paper see the growth of the shaded areas as an animation in the graphical window, the idea of 
area as a function is visually mediated. Although the distinction between dynamic and static 
visual mediators has so far not been explicitly addressed in the commognitive framework, the 
distinction is important because of the potential for dynamic visual mediators to evoke 
mathematical relations, as also stated by Ng (2016).  

However, the findings presented in the present paper are only a first step, and in future 
publications we intend to deepen this analysis, looking at what opportunities for learning are 
offered by the tool, and how the tool (and the tasks) influences the mathematical thinking and 
reasoning of the students, as manifested in their discursive practice.  

Question for discussions: How to interpret the complex interplay between technological 
aspects and mathematical aspects?    
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The role of undergraduate mathematics faculty in the development of African American 
male mathematics majors 

 
Christopher C. Jett, Ph.D. 

University of West Georgia 
 
Historically Black Colleges and Universities (HBCUs) have a longstanding legacy of supporting 
African American students in mathematics. The undergraduate mathematics faculty members 
play a unique role in supporting and developing astute mathematics students, especially African 
American male students. This preliminary research report highlights the experiences of a cohort 
of 16 African American male mathematics majors at an all-male, private HBCU by investigating 
the role of the mathematics faculty members. Using qualitative research methods grounded in 
critical race theory, preliminary data show these African American male mathematics majors 
benefited (mathematically and racially) by their supportive mathematics faculty members.  
 
Keywords: Undergraduate mathematics education, HBCUs, African American men, Supportive 
faculty 
 
Introduction 

This preliminary research report analyzes the mathematics experiences of a cohort of 16 
African American male mathematics majors at an all-male, private Historically Black 
College/University (HBCU) in the southeastern region in the United States. HBCUs have a 
historical legacy of developing mathematics majors/mathematicians, and this institution was 
recently recognized by the American Mathematical Society (AMS) as the Programs that Make a 
Difference Award for their commitment to producing African American male mathematics 
majors to increase diversity in the mathematical sciences (Borum, Hilton, & Walker, 2016; Jett, 
2013). This research report hones in on the role of undergraduate mathematics faculty members 
in the development of these 16 African American male mathematics majors. The overarching 
research aim was to ascertain intrinsic and extrinsic factors that led to the undergraduate 
mathematical persistence for this cohort of students.  

As it stands, this research study adds to the body of scholarship investigating the 
schooling experiences of African American male students (see, e.g., Duncan, 2002; Harper, 
2013; Noguera, 2008; Strayhorn, 2015). In addition, this study adds to the thread of research 
highlighting the mathematical strengths of African American male mathematics students (Berry, 
2008; Stinson, 2013). Given that a large number of these studies have been conducted at the K–
12 level, it is important to gain insights from studying African American male students who are 
persisting in college mathematics. African American male students’ stories of mathematical 
undergraduate persistence are largely absent in the research literature. Thus, this research project 
is designed to fill this void in the research literature and shift the discourse concerning the 
mathematics experiences of African American male mathematics collegians with respect to their 
mathematics faculty members.  
 
Review of the Literature  

There have been fruitful efforts designed to improve the mathematics achievement 
outcomes of African American students. One effort that has been successful in promoting high 
levels of undergraduate mathematics performance among African American students is the 
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Mathematics Workshop Program (MWP) at the University of California, Berkeley (Fullilove & 
Treisman, 1990). The MWP is cited as being successful for the following reasons: the workshops 
create environments that promote mathematics academic excellence among peers; the students 
spend more time on learning activities and learning tasks as opposed to just solving mathematics 
problems; and the students who participate in MWP are believed to continue in college longer 
than those students who do not participate in the workshop because they obtain social and study 
skills that can be used throughout their college matriculation.   

A research team at the University of Maryland Baltimore County studied high-achieving 
African American men (Hrabowski, Maton, & Greif, 1998). At this institution, researchers 
became concerned about the status of African American male students in college science, 
mathematics, and engineering (SME; SME is synonymous with STEM) majors and decided to 
learn more about this group by studying the habits of the highest-achieving students who were 
enrolled in the Meyerhoff Program. Although the program now serves students from all racial 
and ethnic backgrounds who desire to pursue a doctorate in the sciences or engineering, the first 
year consisted of African American male students only. Hrabowski et al. (1998) hoped to 
identify attitudes, behaviors, habits, perspectives, and strategies of the highest-achieving African 
American male students in the program. According to Hrabowski et al. (1998), the following 
factors are critical for success in college among African Americans in mathematics and science: 
an adequate high school academic preparation, analytical skills, strong study skills, time 
management skills, advising, academic as well as social integration, and motivation and support.  

Ellington and Frederick (2010) examined the experiences of eight high-achieving junior 
and senior mathematics majors to ascertain the factors that shaped their mathematical success 
and persistence. Their findings revealed the majors’ success was informed by participation in 
academic programs at the K–12 level and college scholarship programs, access to advanced 
mathematics courses, and support from family, classmates, and teachers. In another study, 
McGee (2015) investigated the factors undergirding academic resilience among 23 high-
achieving African American mathematics and engineering majors at the junior, senior, and 
graduate levels. Using the life-story interview process, she reported on a subset of two 
participants (one Black female and one Black male) from her larger study. McGee introduced the 
Fragile and Robust Mathematical Identity Framework to understand the interplay between 
mathematics and racial identity. Using this framework, she found that her two participants were 
able to thrive in these majors while grappling with various forms of racialization.       

While the previously mentioned studies have moved the field forward concerning the 
experiences of African American students, we know comparatively little about the role of 
undergraduate mathematics faculty in the development of African American (male) students. 
This study, therefore, complements and expands existing research efforts in the field by 
examining the role of mathematics faculty in the development of mathematics majors for this 
population of students. All in all, this research report builds on scholarship from scholars who 
honor the mathematical talents and gifts in African American students (see, e.g. Berry, 2008; 
Cooper, 2004; Delpit, 2012; Ellington & Frederick, 2010; Jett, Stinson, & Williams, 2015; 
Leonard & Martin, 2013; McGee & Martin, 2011; Stinson, 2006; Thompson & Lewis, 2005; 
Walker, 2006, 2014). Moreover, this study also reveals how complexities about the constructs of 
race and/or gender may influence the mathematical development of African American male 
students given the theoretical frame.  
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Theoretical Framework 
The experiences of African American students have been documented in the mathematics 

education research literature, and scholars in the field have paid attention to how their raciliazed 
experiences influence their mathematics learning (Larnell, 2016; McGee, 2015). As such, 
Critical Race Theory (CRT) was employed as the theoretical framework for this research project 
(see Bell, 1992; DuBois, 1903/2003 for comprehensive discussions concerning the country’s 
racial history). Racism is an institutionalized force that has been used both historically and 
currently to dismiss and oppress people of African descent and other people of color. Solórzano 
and Yosso (2002) argue that “substantive discussions of racism are missing from critical 
discourse in education” (p. 37). As it stands, issues of race and racism have been underexplored 
in mathematics education research (Martin, 2009). There are, however, a contemporary group of 
mathematics education researchers foregrounding issues of race and racism in their analyses 
(see, Jett, 2016; Larnell, 2016; McGee, 2015; Stinson, 2013; Terry, 2011). In an attempt to 
extend analogous mathematics education research drawing from race-based frameworks, CRT 
was used to examine the role of undergraduate mathematics faculty members in the development 
of a cohort of 16 African American male mathematics majors.  

With CRT, there are five foundational tenets, and these tenets are the hallmarks driving this 
theoretical perspective. These philosophical underpinnings include the following: 

1) CRT asserts that “racism is normal, not aberrant, in American society” (Delgado & 
Stefancic, 2000, p. xvi). 

2) CRT adheres to interest convergence, which advances that the dominant culture 
advances racial justice and other race based initiatives when it serves their interest 
(Delgado & Stefancic, 2001). 

3) CRT asserts that race is orchestrated as a social construction (Ladson-Billings, 2013). 
4) CRT explores the intersectionality of various constructs such as race, sex, class, gender, 

and sexual orientation to explore how these intersections make for broader 
understandings of these constructs (Delgado & Stefancic, 2001).  

5) CRT utilizes voice to serve as a counter-narrative to the dominant discourse 
surrounding racial groups (Dixson & Rousseau, 2005). 

These tenets of CRT were be used to frame the interview questions and to analyze the data.  
 
Research Question 

The overarching research questions (RQ) for this portion of study were as follows: 
RQ1: How do undergraduate mathematics faculty members (at this particular HBCU) either help  

or hinder the mathematical development of African American male mathematics majors? 
RQ2: What are the (student) identified strengths and weaknesses of the undergraduate  

mathematics faculty members as it pertains to the development of African American male 
mathematics majors?  
 

Methodology  
This research study employed qualitative research methods. More specifically, the 

qualitative research data collection methods included the following: 1) a pre-survey, 2) a semi-
structured interview, and 3) a member checking prompt (Bogdan & Biklen, 2007; Patton, 2015).  

1) The pre-survey was given to the participants prior to the first interview. This pre-
survey solicited information from the participants pertaining to their demographics, family 
dynamics, and education. The information obtained from the pre-survey was used to inform the 
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first interview as well as to substantiate the data for coding and analysis. 2) Next, the participants 
completed a semi-structured interview (ranging from one to two hours in length). The interview 
amplified the participants’ voices by honoring and using their own words to share their 
mathematics experiences. The utilization of “voice” as well as narratives aligns with qualitative 
research methods and CRT’s fifth tenet. 3) The final method included allowing the participants 
to member check my findings. In other words, the member checking aspect allowed the 
participants to verify whether I reported their words, findings, and interpretations accurately. 

With regard to data analysis, I employed coding to analyze the data. After analyzing the 
individual interviews, I searched for similar and dissimilar patterns in the data and articulated 
explanations for different phenomena (Glesne, 2006). In addition, I wrote reflective notes in my 
researcher’s notebook, which aided during both the data collection and coding processes 
(Bogdan & Biklen, 2007). Tenets of CRT were used to code and assist with analyzing their 
experiences as racialized beings. All in all, this qualitative data analysis process offered me an 
opportunity to verify my findings with the participants and to address questions pertinent to the 
analysis of data on the role of undergraduate mathematics faculty members in the development 
of African American male mathematics majors. 
 
Preliminary Findings  

Qualitative data have been collected for this research project, but the data are in the early 
stages of data analysis. However, preliminary data indicate that these 16 African American male 
mathematics majors were affirmed at their HBCU by their supportive mathematics faculty 
members. More specifically, the mathematics faculty members were dedicated to providing the 
mathematics majors with a challenging undergraduate curriculum. The faculty members were 
supporting and caring, and the majors spoke deliberately about the effective guidance and 
mentorship offered by these departmental members, especially the department chair (an African 
American male alumnus of the department). Conclusively, these faculty members had social 
constructions about who could be mathematically astute, and these ideological orientations 
informed their mathematical and racial empowerment of these African American male 
mathematics majors (Ladson-Billings, 2013).  

A more thorough discussion of the preliminary finding concerning the role of the 
undergraduate mathematics faculty members will be shared during this presentation. In doing so, 
I will also share some ways to improve the undergraduate mathematics space as articulated by 
the majors. The data will be shared in light of the research questions, with connections to the 
previously cited literature, and with theoretical linkage to CRT.   
 
Discussion Questions  

The following discussion questions and prompts will allow participants in this session to 
engage in dialogue, offer feedback for strengthening the work, reflect on their own 
undergraduate mathematics practices, and recommend suggestions for future areas of scholarly 
exploration for this line of research: 
• Please share any suggestions or insights from your experiences working with African American 
male mathematics majors that have yielded successful mathematics outcomes.  
• Please share any suggestions or insights from your experiences working with mathematics 
majors from other marginalized groups that have yielded successful mathematics outcomes for 
that particular population of students.  
• What are some implications of this work for undergraduate mathematics instructors? 
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• What are some implications of this work for undergraduate mathematics education researchers? 
• What are your thoughts and recommendations concerning extending and furthering this work? 
 
Goals 

One goal of this session is to highlight the critical role of the mathematics faculty in the 
development of African American male mathematics majors at an all-male, private HBCU. This 
particular institution has a legacy of producing many African American male mathematics 
majors as espoused by national data and reports. Another goal is to disseminate more stories of 
mathematical persistence to influence and develop more African American male students into the 
mathematics pipeline who have a desire to explore various mathematical and mathematics-
related pursuits. Finally, a goal is to generate more conversations concerning the participation 
and underrepresentation of African American male students in undergraduate mathematics 
degree programs.   
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Abstraction and Quantitative Reasoning in Construction of Fractions as Operators 
 

Eun Jung 
University of Georgia 

Drawing from task-based interviews, classroom observation, and participants’ homework, the 
present study examines ten middle grades preservice teachers’ understanding of the role of 
fractions as operators, with an eye toward exploring how fractional reasoning is constructed. 
The results point to the construction of the reversible distributive partitioning scheme as a 
requisite for understanding fractions as operators. Further discussion will suggest that school 
curricula and teacher education programs may need to be adjusted to reflect more current 
understanding of both early childhood cognitive development and future teachers’ fractional 
knowledge.  

Key words: Cognition, Teacher Education-Preservice, Teacher Knowledge 

Writing about four decades ago, Kieran (1976) remarked that “most school curriculum 
materials simply treat rational numbers as objects of computation. Hence, child and adolescents 
miss many of the important interpretations of rational numbers” (p. 102). Since then, substantial 
research has further emphasized that there are multiple interpretations––or “subconstructs”––of 
fractions (e.g., Behr, Khoury, Harel, Post, & Lesh, 1997), and numerous books have been written 
reflecting this point of review in teaching rational numbers (e.g., Clarke, Fisher, Marks, Ross, 
2010). The current study concerns itself primarily with the role of fractions as “operators,” 
referring to fractions that link two quantities of the same kind or of different kinds (see 
Vergnaud, 1988).  

Students are normally taught fractions from third to fifth grade, before reaching the expected 
age range identified by Lovell (1972) for developing the proportionality schema (i.e., ages 12-
14). Two subsequent studies on adolescents’ comprehension of fractions as operators (Kieren, 
1976) add some empirical weight to Lovell’s (1972) earlier findings, showing a strong 
relationship between age level and scores that is consistent with this suggested age range. In that 
regard, Kieren (1976) suggest an important relationship between students’ development of the 
proportionality schema and their comprehension of fractions as operators. 

Post, Behr, and Lesh (1982) noted that understanding proportional reasoning is only possible 
once students have reached Piaget’s “formal operational state,” which generally happens in the 
fifth grade. In that case, many students – perhaps a majority – are not ready to learn the operator 
role of fractions at the time when fractional foundations are being laid in school curricula. 
However, in the middle grades, if students cannot understand fractions both as quantities and 
operators, this can be a barrier to their comprehension of later topics in mathematics.  

In light of these considerations, this study investigates preservice teachers’ understanding of 
fractions as operators through task–based clinical interviews designed to reveal any areas of 
struggle, in order to further analyze the nature of these issues––particularly in regard to what 
they can reveal about how fractional reasoning is constructed––and to discuss possible solutions. 

 
Theoretical Framework 

Steffe (2003) conducted a study that can serve as an exemplar of the radical constructivist 
approach that forms an essential basis of my epistemological and analytical framework. Steffe 
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(2003) adopted as part of his analytical framework the notion that both social interaction and an 
individual’s action are crucial in learning. He regarded social interaction as a means of “ 
generating situation” for the construction of students’ cognitive schemes, and learning as a 
product of the “auto-regulation” of constructs within the individual’s understanding. The 
emphasis on the individual’s self-regulation and auto-regulation is in line with von Glasersfeld 
basic principles of radical constructivism (1990, p.22). What we perceive as reality is thus 
regarded as a construct within the mind of each individual.  

Hackenberg and Lee (2015) showed that only MC3 (able to coordinate three levels of units) 
students could use fractions as multipliers in the context of writing equations. Unit coordination 
is related to the ability to construct certain schemes, such as distributive sharing and reversible 
distributive partitioning (Steffe & Olive, 2010). To illustrate, students who can share two  
identical bars among three people have constructed the “distributive sharing” scheme. To carry 
out this operation, they would partition each of the two bars into three parts and pull out one part 
from each bar, understanding that those two parts make up 2/6 of the original two bars. However, 
unless they had also constructed the “reversible distributive partitioning scheme,” they would not 
understand that 1/3 of two bars is identical to the two individual thirds of each bar. Thus, 
students who have constructed the reversible distributive partitioning scheme understand that 
taking one-third of each of two objects (not necessarily identical) is equivalent to taking one-
third of both objects together.  

While I make use of a constructivist theoretical framework, my conceptual framework 
includes both the constructivist notions of fractional schemes and operations and Vergnaud’s 
(1988) explanation of fractions as quantities and operators. For the purposes of the current study, 
it seems appropriate to make use of a qualitative case study design that will allow for a context-
rich and focused investigation using task-based clinical interviews and participant observation.   

   
Research Design 

The present research is designed to address the following questions: How do middle grades 
preservice teachers’ reason with fractions as operators? 
 

1. What can their reasoning with fractions as operators reveal about their construction of 
fractional knowledge? 

2. What is the nature of their struggles in constructing fractions as operators, and what are 
some possible solutions to these issues in their understanding?  

 
Building on the concept of the clinical interview developed by Piaget (1951), the 

“constructivist teaching experiment” (see Steffe & Thompson, 2000, p. 285; Steffe, 2003) is a 
method by which the researcher’s ongoing analysis can interact with data in a fluid way. 
According to a description by Steffe & Ulrich (2014), “[a] teacher/researcher, through reviewing 
the records of one or more earlier teaching episodes, may formulate hypotheses to be tested in 
the next episode…” (p.104). While this research tracks students’ learning trajectories across 
successive teaching episodes, the pedagogical interventions themselves are supplied by the 
participants’ course instructor, rather than directly by the interviewer. The method employed in 
the current research, therefore, may be regarded as a modified teaching experiment method; 
rather than one person acting as the “teacher-researcher” in “teaching episodes” (Steffe & 
Thompson, 2000). I conduct interviews as the “researcher,” while the course instructor acts as 
the “teacher.” The interviews themselves––without the expressly pedagogical element 
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characteristic of the teaching episodes of a teaching experiment––closely resemble “task-based 
clinical interviews” (Goldin, 2000). 

This study makes use of a multiple case study design, examining the fractional knowledge of 
preservice middle grades math teachers in a Math Education department at a major public 
university located in the Southeastern United States. The primary data source is a series of 
clinical interviews conducted over the course of two semesters using ten volunteer participants 
from a math content course. More specifically, I make use of data from task-based clinical 
interviews, as well as from classroom observation notes and homework submissions. 

From among the initial volunteers in the math content course, I divide the participants into 
groups according to whether or not they have constructed the distributive sharing scheme. These 
selections are based on analysis of an initial round of interviews, classroom observation notes 
and homework submissions. 
 

Result and Significance 

All clinical interviews were recorded on video, transcribed verbatim, coded and annotated for 
emerging themes, and analyzed. At the beginning of the interview all of participants were unable 
to make composite units for fractions acting as operators, which means that they had not 
constructed the reversible distributive partitioning scheme. In fraction multiplication and fraction 
equation problems, two of the participants either could not produce the drawn model of certain 
problems, or they could not provide a coherent interpretation of their own drawings. All 
participants showed signs of confusion as a result of incorrectly applying procedural knowledge. 
Moreover, the current progress of my data analysis indicates that the construction of the 
distributive sharing scheme is necessary but not sufficient to ensure a students’ conceptual 
understanding of fractions as operators.  

During each interview, variations of fraction multiplication problems were given, and 
students were asked to design word problems and represent the problem situation visually. For 
one of the problems, 4/5 times 1/3, several students drew a rectangle and partitioning it into 3 
rows and 4 columns (or vice versa). They shaded 1 row and 4 columns and identified the 4 parts 
in the overlapping region as their answer. One of the word problems a student designed for this 
problem was: “You have a recipe that calls for one-third cups of flour, and you want to make 
four fifths of the recipe, so how much flower do you need to use?” When I asked her to show one 
cup and one recipe, she identified the largest box as both one cup and one recipe. This indicates 
that she used both fractions as extensive quantities (instead of 4/5 as the operator to show the 
relationship between the quantity 1/3 and the product 4/15). This shows her limitations in 
representing two different units in one drawing and in using one fraction as on operator.  

Another identifiable limitation was in making composite units. Before classroom instruction, 
when asked to show 7/3 of two unit bars, two students responded that they must find one-third of 
one bar and then repeat it 7 times. Thus, by partitioning both unit bars into three parts and 
repeating one of these parts seven times, in fact they showed 7/3 of just one bar. Their difficulty 
was in understanding the two bars together as one composite unit (treating it as the “whole” for 
7/3). 

After the completion of the unit on fractions in the participants’ math course, students 
already knew that the correct answer to the problem (finding 7/3 of two unit bars) could be given 
as 14 parts, each being 1/3 the size of one unit bar. However, in explaining the anser with a 
drawing, three out of ten students showed limitations in partitioning and iterating with composite 
units. All students gave the answer as 14/3 of one bar, but three students still answered that they 
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needed to understand 7/3 as equivalent to 14/6 to determine the result relative to two bars. If they 
could form one composite unit out of the two bars, they were able to find 1/3 of the two bars by 
partitioning each bars into thirds and taking 1/3 from each bar, after which they could also make 
a composite unit of these two parts and iterate it seven times to make 7/3 of the two unit bars. In 
that case, the students do not need to consider 1/3 of one bar as 1/6 of two bars. This shows the 
limitation of these three students’ reasoning with iterable composite units, corresponding to 
limitations in using fractions as operators.  
 

Conclusion 

In fraction multiplication contexts, the multiplicand represents an extensive or intensive 
quantity with one unit as a whole. However, the multiplier shows the relationship between the 
multiplicand and the product of multiplication. Thus the whole of the multiplier becomes the 
multiplicand, and students have to be able to use the multiplicand as one composite unit to 
perform the operation. This requires students’ construction of the distributive sharing scheme.  

These preliminary findings, although limited in scope, may direct further research that can 
case additional light on the construction of fractional reasoning, both in preservice teachers and 
in primary school students. Considering the foundational importance of being able to understand 
fractions as operators, in the very least we need to ensure that preservice teachers have a strong 
grasp of this fundamental fractional concept in order to teach middle grades students effectively. 
Moreover, if further research lends additional support to the notion that primary school is 
generally too early for students to understand the operator role of fractions, school curricula may 
need to be adjusted to reflect this.  
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Students’ Social Adaptation to Mathematical Tasks 
 

Jeffrey J. King 
University of Northern Colorado 

In this study, an advanced undergraduate geometry class taught in an inquiry-based learning 
setting was observed for social and socio-mathematical norms.  Three pairs of students engaged 
in three task-based, semi-structured interviews: paired, individually, then paired again, solving 
the Seven Bridges of Königsberg and related tasks.  A fourth stimulated-recall interview was 
performed using episodes from the last paired interview.  Classroom observations and interview 
discourses were open coded for themes, structure, and function to analyze the norms developed 
within the classroom and by each pair as shaped by their social interactions.  Tentative findings 
include: 1) norms of consensus, autonomy, and argumentation produced within the classroom, 2) 
varying metaphors across interview contexts, and 3) reliance on empirical strategies rather than 
structural reasoning. In this preliminary report, evidence from collected data is shared and a 
brief discussion how these results could help inform IBL teaching methods is included. 

Keywords: Active Learning Strategies, Cooperative Learning, Inquiry-based Learning, Socio-
Cultural Theory, Transfer   

The White House has issued a call to action for incorporating active STEM learning 
strategies in K-12 and higher education (White House Office of Science and Technology Policy, 
2016).  Some studies have shown the effectiveness of inquiry-based learning as an active 
learning strategy for all mathematics students and especially minority groups (Kogan & Laursen, 
2014; Laursen, Hassi, Cogan, & Weston, 2014).  Almost no literature can be found, however, on 
the socio-cultural theoretical underpinnings of the transfer of inquiry-based learning to individual 
work.  

The purpose of the dissertation study shared in this preliminary report was to explore the 
social and socio-mathematical norms of classroom using inquiry-based learning and the 
reproduction (or non-reproduction) of those norms in an interview setting.  The research 
questions of this ongoing study are: 
1. What were the social and socio-mathematical norms of the classroom? 
2. How were these norms reproduced (or not) by the students in the interview settings? 
3. In what ways did changes in the social context of the interview settings affect the 

mathematical practices produced by the students? 

Methods 
The setting of the study was at a four-year university in the Rocky Mountain region in an 

upper level mathematics course.  In this inquiry-based learning geometry course students worked 
in small groups on projects and submitted written reports, either as a group or individually.  The 
instructor of the course, Dr. Jackson (pseudonym), had taught the course using inquiry-based 
learning on more than twenty occasions.  All class sessions were observed using written notes, 
video recording, and audio recording.  During these observations, the researcher (first author) 
described the propositions used by students and the instructor, as well as the perceived sources of 
authority for those propositions.  Descriptions of propositions and sources of authority were then 
open coded for themes. 
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The students in the course were a mixture of elementary education majors with an emphasis 
in mathematics, and mathematics majors with emphases in liberal arts, applied mathematics, or 
secondary education.  Six students, Leo, Jemma, Skye, Melinda, Phil, and Grant (pseudonyms) 
agreed to participate in interviews, which were conducted as a mixture of individual and paired 
settings, the first three being task-based and the fourth being a stimulated recall interview (See 
Figure 1 for a full description of the interview structure).  Interviews were then transcribed in full 
and each utterance was coded for structure.  Open coding was used to describe the function of 
each utterance.   Examples of functions included expressing beliefs, proffering hypotheses, and 
making conjectures.  In this report, interview analysis from only one pair, Leo and Jemma, is 
shared.   

Interview Setting Purpose 

Interview 1 Paired, Task-
Based 

To investigate reproduction or non-reproduction of social 
and socio-mathematical norms of the classroom while 

performing a novel task as a pair. 

Interview 2 Individual, Task-
Based 

To investigate influence of paired setting on individual 
cognition. 

Interview 3 Paired, Task-
Based 

To investigate the influence (or non-influence) of 
individual cognition on discourse of the paired setting. 

Interview 4 Individual, 
Stimulated-Recall 

To gain insight into the covert thoughts of participants 
during Interview 3. 

Figure 1. Stages of the interviews 
 
The Interview 1 Task was the traditional Seven Bridges of Königsberg.  Pairs were prompted 

with a map and tasked with providing a path that crossed every bridge once and only once, or 
provide an explanation as to why no such path existed.  The Interview 2 Task was an amendment 
to the Interview 1 task, in that the individuals were instructed to: 1) construct a bridge such that 
one could create a path that crossed each bridge once and only once starting in the Red District 
and ending in the Gold District but it was not possible to construct such a path starting in the 
Blue District and ending in the Gold District (see Figure 2), 2) construct a second bridge such 
that one could create a path starting in the Blue District and ending in the Gold District, but no 
such path could be created starting in the Red District and ending in the Gold District, and 3) 
construct a third path such that one could create paths that crossed each bridge once and only 
once, starting and ending in both the Red and Blue Districts. 

The Interview 3 Task was to create a continuous curve that crossed each edge of a figure 
(See Figure 3) once and only once or provide an explanation as to why such a curve was not 
possible. 

 
Figure 2. Seven Bridges of Königsberg with locations of Red District (southern square), Blue 
District (northern square), Gold District (central circle), and Grey District (eastern circle). 
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Figure 3. Figure of the Interview 3 Task 

 
The Interview 4 was a stimulated recall interview using episodes video recorded from 

Interview 3.  Episodes were chosen based on the propositions made during Interview 3.  
Participants were instructed to explain any thoughts or feelings they had during each episode, 
and could pause or rewind if they felt compelled to do so.  After each episode, the interviewer 
(first author) would ask follow-up questions if the participant had not already addressed them. 

Preliminary Results 

Classroom Observation Findings 
Three themes emerged in observing the classroom: consensus, autonomy, and argumentation 

(see Figure 4 for a summary of the themes and subthemes).  Propositions were sorted into three 
categories: beliefs, hypotheses, and conjectures.  Beliefs were defined as propositions that were 
made without prior evidence, hypotheses were defined as propositions made with unverified (by 
the participants) evidence, and conjectures were defined as propositions made with verified 
evidence.  Categories of sources of authority were group consensus, prior group consensus, 
authority figure, implicit, preference, and logic.  Group consensus was evidenced by a small 
group or the whole class reaching a sense of agreement.  Prior group consensus was evidenced 
by a reference to consensuses that had been reached previously.  Authority figure was evidenced 
by an appeal to either Dr. Jackson or the researcher (first author).  Implicit was evidenced by no 
overt appeal to external authority, implying implicit appeal to the norms established within the 
classroom such as prior group consensus.  Preference was evidenced by an appeal to personal 
preference. 

In analyzing these themes and their interactions with one another, I could describe the 
evolution of the classroom could be described as follows: Students, in general, began the course 
lacking direction and authority to make and evaluate their own propositions.  Dr. Jackson was 
able to source their authority in group consensus by holding whole-class discussions and 
building group consensus, as well as referencing these consensuses at later times.  This afforded 
students with the opportunity to transition from lacking autonomy, to tentative autonomy, to free 
expression.  With each new topic or discussion, however, this sense of autonomy could reset and 
students could revert back to lacking autonomy.  By focusing on stylistic and structural aspects 
of argumentation, Dr. Jackson could then rebuild the students’ autonomy by allowing them to 
express preferences and validate those preferences with logic.  This cyclic process of building-
referencing-losing authority continued throughout the course, even after the final project had 
been completed. 
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Theme Subtheme Propositions Authority 
Sources 

Student Quote 

Consensus Building 
Consensus 

Beliefs, 
Hypotheses 

Group 
Consensus 

“Do you think that’s a good 
direction?  Looking at straight 
lines in terms of angles?” 

 Referencing 
Consensus 

None Prior Group 
Consensus 

“So we said that Axiom 4’ is 
saying that there can’t be two 
lines that share the same two 
points.” 

Autonomy Lacking None None “So where do we start?” 
 Tentativity Beliefs, 

Hypotheses, 
Conjectures 

Authority Figure “Does this make sense?  Is it 
ok to do this?” 

 Free 
Expression 

Beliefs, 
Hypotheses, 
Conjectures 

Implicit, 
Preference 

“It’s just saying that if we 
have two triangles that are the 
same, then the sides and the 
angles will be the same”, 
“I guess we decide because 
it’s our definition” 

Argumentation Stylistic NA Preference “I don’t think ‘evenly on 
itself’ is a very clear 
definition.” 

 Structural NA Logic “If we define straight as being 
the shortest distance between 
two points, that doesn’t work 
on the sphere.” 

Figure 4. Summary of observation themes of the classroom. 

Interview Findings 
Leo and Jemma began Interview 1 by recalling that they did something similar in Discrete 
Mathematics, a course they took before, albeit separately.  Leo recalled the terms Euler path and 
Euler circuit, but was unable to use them on the task.  Both recalled that the solution involved 
the number of even or odd vertices.  Jemma then suggested that they “… know it, with like, 
doors?”  They began using a door-and-room metaphor, implying that each section of the Task 1 
map was a room and each bridge was a door between rooms (see Figure 5).  The pair concluded 
eventually that there was no such path, because there could be at most two odd sections.  They 
also claimed that if there were all even sections, the path would start and end in the same section.  

 
Figure 5. Leo and Jemma’s picture depicting the door-and-room metaphor. 
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During Interview 2, Leo used a diagram that was more similar to a mathematical graph than a 
door-and-room diagram (see Figure 6).  Leo eventually concluded, “With exactly two odds, you 
must start in one and end in the other.”  Jemma, however, used a diagram that more closely 
resembled the map given in the prompt (see Figure 6).  Jemma eventually concluded, “If you 
start in an odd section, you can end elsewhere.” 

 
Figure 6. Leo’s Interview 2 diagram (left) and Jemma’s Interview 2 diagram (right). 

 
For Interview 3, Leo initially asked if the “outside” needed to be considered.  Jemma did not 

respond, and instead began path-tracing, claiming, “Each of these is like our space […] and there 
is a door on every single one of them.”  The pair then labeled the degree of each “space” with 
Leo accounting for three, five-degree sections on the “inside” and Jemma stating that, on the 
outside, “there would be nine.”  They then concluded that the curve was not possible, since they 
knew “three” parts of the figure had an “odd number of edges, and you can’t have more than 
two.”  

In summary, Leo and Jemma built consensus around their prior understanding of the problem 
from Discrete Mathematics, including their use of the door-and-room metaphor.  Individually, 
neither participant used the door-and-room metaphor, instead opting to use other diagrams.  For 
Interview 3, the pair reverted back to using the door-and-room metaphor and successfully 
completed the task.  During stimulated recall, Leo lamented that they relied so heavily on path-
tracing and in-out strategies and not relying on their conjectures.  He also said that he was 
uncertain initially as to how the previous tasks were related to the Interview 3 task.  Jemma also 
lamented their use of path-tracing.  She said that she viewed all the problems as doors-and-
rooms, and that enabled her to solve the Interview 3 task. 

Conclusion  
 
The analysis of the classroom indicated the norms of the inquiry-based, geometry classroom 

as consensus, autonomy, and argumentation.  Through the cyclic process of building and 
referencing consensus, Dr. Jackson was able to help the students develop a sense of autonomy in 
making choices regarding both stylistic and structural argumentation.  During interviews, it 
seems that the pair of Leo and Jemma reproduced the norm of building consensus by agreeing 
upon their usage of the doors-and-rooms metaphor to solve the task.  Both participants, however, 
did not use their agreed upon metaphor to complete the Interview 2 task.  They later used the 
doors-and-rooms metaphor to complete the Interview 3 task, with Jemma feeling fully 
autonomous to apply the door-and-room metaphor, while Leo felt less sure. 

These results indicated that while classroom norms may be reproduced in interview settings, 
they might not necessarily be reproduced when students work individually.  As such, further 
study is required to assess the transfer of inquiry-based learning to an individual’s own work. 
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Instruction in Precalculus and Single-Variable Calculus: A Bird’s Eye View 
 

1Dana Kirin, 1Kristen Vroom, 1Sean Larsen, 2Naneh Apkarian, & the Progress through Calculus 
team* 

1Portland State University, 2San Diego State University 

Improvement of mathematics courses in the first two years of college has recently become a 
priority in the United States. This is evidenced by multiple calls to enhance undergraduate 
education in the mathematical sciences and by funding allocated to related research and 
instructional improvement projects. As stakeholders make decisions to invest in the improvement 
of these courses, it is critical that these decisions be informed by reliable information regarding 
how these courses are currently being taught. The work described here is an effort to lay this 
groundwork by painting a comprehensive portrait of instruction in precalculus and single 
variable calculus (P2C2) in the United States. In this report we address two research questions; 
1) What instructional formats are currently in place in the P2C2 sequence? and 2) How common 
are these instructional formats nationally? 

Key words: Precalculus, Calculus, Census Survey, Instructional Approaches 

Improvement of mathematics courses in the first two years of college has recently become a 
national priority. This is evident from multiple calls to enhance undergraduate education in the 
mathematical sciences (e.g., A Common Vision for Undergraduate Mathematical Science 
Programs in 2025, Saxe et al., 2015) as well as from available funding allocated to related 
research by the NSF, through several programs. Given its key role in most STEM fields, the 
precalculus and single variable calculus courses (Precalculus to Calculus 2, P2C2)  are of 
particularly importance and are the focus of this report.  

The request for improvements of introductory post-secondary mathematics courses in 
general, and courses in the P2C2 sequence in particular, is warranted by the educational research 
in the area. It is well documented that within these courses, student learning outcomes lack rich 
conceptual understanding (Breidenbach, Dubinsky, Hawks, & Nichols, 1992; Carlson, 1998; 
Tallman, Carlson, Bressoud, & Pearson, 2016; Thompson, 1994). In addition, research indicates 
that students in calculus have difficulties leveraging their knowledge to solve non-routine 
problems (Selden, Selden, & Hauk, 2000) and students’ impoverished understanding of pre-
calculus concepts  can influence their understanding of concepts found later in the sequence 
(Thompson, 1994). 

Perhaps most problematic is the retention rate of STEM-intending students; less than 40 
percent of STEM-intending majors actually complete the degree (PCAST, 2012). Moreover, 
PCAST predicts there will be economic implications if this rate persists. Research indicates that 
many lose interest in STEM after taking courses in the calculus sequence (e.g., Bressoud, Mesa, 
& Rasmussen, 2015; Seymour & Hewitt, 1997). The literature repeatedly points to a relationship 
between retention and instruction. For instance, Ellis, Kelton, and Rasmussen (2014) found that 
some pedagogical activities (demonstrating how to work specific problems, preparing extra 
material to help students understand calculus concepts or procedures, holding a whole-class 

                                                
* The Project through Calculus PI team consists of Linda Braddy, David Bressoud, Jessica Ellis, Sean Larsen, Estrella 
Johnson, and Chris Rasmussen. Graduate students include Naneh Apkarian, Dana Kirin, Kristen Vroom, and Jessica 
Gehrtz. 
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discussion, and requiring students to explain their thinking on exams) were significantly related 
to STEM intending students persistence. Additionally, Seymour and Hewitt (1997) found 
students who transfer from a STEM major often cite traditional and uninspiring instruction as 
reasons for their switch. 

The AMS noted that “no single pedagogical method will be suitable for every classroom… 
Success in education is not achieved by simple formulas: there are many different successful 
ways of teaching mathematics, techniques adapted to the variation of talents of both students and 
teachers” (Friedlander et al., 2012, p. 1205). Thus, successful P2C2 sequences may come in a 
variety of forms involving a variety of instructional techniques. As we work towards the future 
of P2C2 instruction, it is important to understand how things stand now. This is important 
because the current situation represents the starting point of potential improvement efforts and 
likely will provide significant affordances and constraints as these efforts unfold. The work 
described here is an effort to lay part of the groundwork for improvement efforts by painting a 
comprehensive portrait of the instruction that is currently being implemented in the P2C2 
sequence across the United States. In this report we address the following research questions: 

1.   What instructional formats are currently in place in the P2C2 sequence? 
2.   How common are these instructional formats nationally? 
 

Methods 

The data reported here comes from a census survey undertaken as part of a larger, multiphase 
project. The survey was administered to all institutions across the country whose mathematics 
departments offer a graduate degree in mathematics between April and August 2015. We focused 
on institutions with graduate degrees in mathematics because they produce the vast majority of 
STEM graduates and because such institutions typically have significant research missions 
resulting in a challenging need to balance the demands of research and teaching. In the United 
States, there are 330 departments which offer graduate degrees in mathematics; 178 of the 330 
are PhD-granting institutions and 152 of the 330 offer Master’s degrees. The overall response 
rate was 67.6% (223/330); 75% (134/178) of the PhD-granting institutions and 59% (89/152) of 
the Master’s-granting institutions participated in the survey.  

The survey was designed to gather information about each department’s P2C2 program as 
well as the individual courses that comprise the sequence. In particular, the survey identified 
programs that are currently in place and their prevalence, revealed initiatives to improve current 
programs, and assessed degrees of implementation of the seven features of successful programs 
identified in the CSPCC project (Bressoud et al., 2015). The survey itself had three main parts. 
Part 1 asked the participants to name the courses that make up the mainstream P2C2 sequence in 
his or her department. Part II asked for information about departmental practices in regards to the 
P2C2 sequence. Part III asked for information about specific courses in the P2C2 sequence, 
including number of course offerings per term, total enrollment per term, DFW rates, contact 
hours, instructors, instructional approaches, recitations sections, and coordinated aspects across 
sections. This study reports on a subset of the data collected from Part III of the survey, where 
participants provided information about the individual courses that make up the P2C2 sequence. 

The following section includes descriptive statistics (i.e., frequencies, proportions, etc.) 
gathered from questions related to instruction in the P2C2 sequence. Our aim is to identify 
instructional patterns of existing P2C2 programs by analyzing the aggregated data as well as 
zooming into the individual components by stratifying the data based on institutional type (PhD 
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vs. MA/MS), course (precalculus vs. calculus vs. calculus 2), and course type (honors vs. 
regular).  

Sample Results 

The census survey collected information about the primary instructional format used in 
regular course meeting and that used in recitation sections (where applicable). In this report we 
focus on the format of the regular course meetings, and leave analysis of recitation sections for 
future work. We begin with a question where participants were asked, for each course, to identify 
whether the course is normally taught  using 1) mostly lecture, 2) some active learning alongside 
lecture, 3) mostly active learning, or 4) computer assisted instruction with lecture. Participants 
were also provided with the opportunity to report that there was too much variation in the 
instructional format of that course across sections or allowed to indicate that a course was taught 
using an instructional format that was not listed. If a participant indicated either of these last two 
options they were asked to provide additional explanations. In this report we do not consider 
these written-in responses, but that information will be discussed in our presentation.  

Two hundred institutions provided information about the instructional format for 881 
courses. Of these, 66% were identified as being taught using mostly lecture, 16% used some 
active learning in tandem with lecture, 2.5% of courses were taught using mostly active learning, 
and 3.6% of these courses used computer-based instruction alongside lecture. When these data 
were stratified by course (PC, C1, and C2), we see that the use of lecture increases throughout 
the P2C2 sequence, while the use of active learning decreases. The data also indicates that 
computer-based instruction coupled with lecture is most prevalent in Precalculus courses. These 
results are shown in Figure 1. 
 

 
Figure 1. P2C2 courses with selected primary instructional format. NPC=256, NC1=327, 

NC2=298.  
 

Figure 2 shows the prevalence of these instructional approaches across the P2C2 sequence 
for Master’s-granting and PhD-granting institutions. These results indicated that Master’s-
granting institutions are more likely than PhD-granting institutions to teach Precalculus using 
mostly lecture, while PhD-granting institutions rely slightly more on lecture within the single-
variable calculus courses. For both Master’s- and PhD-granting institutions, courses taught using 
some active learning concurrently with lecture were more prevalent in Calculus 1, followed by 
Precalculus, with Calculus 2 employing this instructional format the least. Very few P2C2 
courses are being taught using mostly active learning techniques in regular course meetings - 22 
out of the 881 reported. The majority of these (19/22) come from PhD-granting institutions, and 
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it was only at PhD-granting institutions that courses past Calculus 1 are taught in such a way. 
Furthermore, we note that the proportion of courses being taught using mostly active learning 
decrease along the P2C2 sequence at PhD-granting institutions. Additionally these results 
indicated that PhD-granting institutions are more likely than Master’s-granting institutions to 
teach both Precalculus and Calculus 2 using computer-based instruction alongside lecture, while 
Master’s-granting institutions rely slightly more on computer-based instruction coupled with 
lecture to teach Calculus 1. 

 

 
Figure 2. P2C2 courses with selected primary instructional format for MA- and PhD-granting 

institutions. Sample sizes for lecture: NALL=583, NMA=183, NPhD=400. For lecture incorporating 
some active learning: NALL=141, NMA=63, NPhD=78. For mostly active learning: NALL=22, 

NMA=3, NPhD=19. For lecture incorporating computer-based instruction: NALL=32, NMA=22, 
NPhD=10. 

 
For courses that were identified as incorporating at least some active learning as part of their 

instructional format, participants were asked to provide additional information about the type of 
active learning strategies used during instruction. In particular, participants were asked whether 
these courses incorporated 1) POGIL, 2) IBL, 3) clicker surveys, 4) group work, or 5) flipped 
instruction. Participants were also provided with the opportunity to indicate that an active 
learning strategy other than those provided was used and prompted to provide additional 
information. As before, we will focus on courses that incorporated one of the provided responses 
for this question and discuss other active learning strategies identified by participants in our 
presentation.  
 

 
Figure 3. Selected types of active learning strategies within the P2C2 sequence. NPC=57, 

NC1=65, NC2=40. Options are not mutually exclusive. 
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Of the 881 total courses, 163 were identified as incorporating at least some active learning. 
Of these, the most prevalent active learning technique was group work, reported in 78% of these 
courses. Additionally, 4% identified POGIL as a strategy used in these courses, 10% IBL, 21% 
clicker surveys, and 21% flipped (note that these options are not mutually exclusive). Figure 3 
shows the prevalence of the various active learning strategies across the P2C2 sequence. These 
results indicate that the proportion of courses that use POGIL and flipped instruction decrease 
throughout the sequence. In contrast, both the use of group work and clicker surveys increase 
throughout the P2C2 sequence.  
 

Conclusion 

The results reported here provide some insight into the prevalence of instructional formats 
currently in place in the P2C2 sequence. In particular, we reported on the types of instructional 
approaches used in the regular course meetings. While the majority of courses are taught in a 
traditional lecture format, our analysis reveals that alternative instructional formats, such as 
active learning, are also currently present within the P2C2 sequence. Approximately 19% of 
courses within the P2C2 sequence are currently taught using at least some active learning, while 
3.6% of courses are being taught using computer-based instruction alongside lecture. However, 
we note that the proportion of courses being taught in traditional lecture format increases through 
the sequence (from 59% to 74%), while all other formats decreased in frequency. Our analysis 
also reveals that courses being taught using at least some active learning employ a variety of 
active learning strategies. The most popular active learning strategy be used during regular class 
meetings is group work, followed by clicker surveys and flipped.  

 In addition to these results, we will present a similar analysis of the instructional formats 
being used in recitation sections accompanying P2C2 courses (when applicable). We will 
supplement the analyses presented here with information from the open-ended responses, 
explaining some of the variation in instructional format across instructors and identifying 
instructional approaches (e.g., emporium model) that were not included in our original set of 
options.  

This preliminary report and subsequent analyses lay out the landscape of instructional format 
and course delivery for P2C2 courses across the country. We believe that the information in this 
report and presentation will be useful to those studying pedagogy at the undergraduate level, 
presenting a starting point and indicating the relative frequency of usage of different approaches. 
This information may be informative for stakeholders whose decisions affect improvement 
efforts in P2C2 courses.  
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Students’ Inclination to Use Visual Images during Problem Solving 
 

Mile Krajcevski  
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This is a preliminary report on a study to investigate the inclination of Calculus III students to use 
visual reasoning in problem solving situations.  One of our research hypotheses was that there is 
a correlation between students’ inclination towards visual representations when taking notes and 
their use of visual representations in problem solving situations.  Surprisingly, preliminary 
analysis of the results suggests that there may not be a correlation, although work is ongoing. 

 
Key words: Visual representation, visualization, problem solving, calculus 
 

Introduction 
 
Even though the development of computer graphics and educational software with its 

ubiquitous penetration into educational practice, may lead some to believe that the days of using 
free hand sketching in the teaching process are over, research demonstrates that the use of free 
hand sketching in classroom practice has significant impact on students’ learning. (Walker, 
Winner, Hetland, Simmons, & Goldsmith, 2011)  The very process of sketching involves powerful 
hand-mind coordination; one reason for this is that the concretization of abstract mathematical 
objects as creations of our own hands is subject to easy manipulation or transformation.  

Research into the role of imagery in the cognitive process has been intensified in the last two 
decades. The usefulness of visual representations of mathematical objects in the process of 
learning mathematics has been described as a vehicle that promotes abstraction and generalization. 
(Zimmerman & Cunningham, 1991; Arcavi, 1999; Presmeg, 2006).What do we mean by 
visualization? Phillips, Norris and Macnab (2010) published an overview of educational literature 
about visualization published between 1974 and 2009; they found 23 explicit definitions of 
visualization and related terms, such as “imagery” or “visual aid”, and point out that some of these 
are even contradictory. For our theoretical framework, we will utilize their definition of a 
“visualization object”: 

Visualization objects are “physical objects that are viewed and interpreted by a person for the 
purpose of understanding something other than the object itself. These objects can be pictures, 
3D representations, schematic representations, animations, etc. Other sensory data such as 
sound can be integral parts of these objects and the objects may appear on many media such 
as paper, computer screens and slides. (Phillips et al.,2010, p.26) 
Traditional calculus content is particularly suitable for implementation of visual pedagogy. In 

a Calculus III class taught by the first author, we strived to create a learning environment in which 
the main ideas about three dimensional coordinate systems, classification of quadratic surfaces, 
and min-max problems involving multivariable functions would first be taught focusing on a visual 
point of view and then from an algebraic or analytic point of view. We also followed Inglis and 
Mejia-Ramos’s (2009) suggestion that students are more inclined to accept figures as evidence for 
the claim when descriptive text explaining the claim accompanies the figure. In this study, we 
focused on students’ ability to reproduce the images during enacted lessons but did not evaluate 
students’ sketches for the basic requirements of perspective, visibility or line intersections. 
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The purpose of this research was to study students’ desire and ability to reproduce three- 
dimensional images of the mathematical objects presented during instruction and how this desire 
and ability correlates with their use of images in solving test questions. The research questions for 
this work are: 

1. How do students use sketches and other visual representations when taking notes in a 
Calculus III class?  

2. What is the relationship between students’ inclination and ability to hand sketch visual 
images and their use of visual imagery when problem solving?  

 
Methods 

 
Research Context and Participants 

In a Calculus III class of 45 students, 30 students agreed to participate in this research project.  
The book used for this course was Stewart’s Essential Calculus, Early Transcendentals.  Designed 
as a one semester, four credit hours course, the class met three times a week with the first two class 
sessions for an hour and 15 minutes each and the last session meeting for 50 minutes.  Students’ 
class assessments consisted of a final exam, two one hour and 15 minutes tests, four 15 minutes 
quizzes, web-assigned homework, and handwritten homework each being adequately weighted.  
Students were encouraged to take notes for each class in a separate notebook and promised extra 
points for this activity.  Their notebooks were examined twice during the semester and we collected 
copies of the notes for two particular class periods, which were also videotaped for research 
purposes.   

The first recorded lecture was “Double integrals in polar coordinates” and the second recorded 
lecture was entitled “Triple integrals in spherical coordinates”.  We focus only on the videotaped 
lecture about triple integrals in spherical coordinates.  The teaching style of the instructor was a 
traditional lecture, with occasional questions asked to students in the class in order to gage their 
understanding of the concepts discussed. The change of coordinate system and questions 
associated with this notion in the Calculus III curriculum is rich with concepts that can easily be 
illustrated on the whiteboard: segments, lines, cylinders or spheres in 3-D coordinate system most 
of the time do not present  a challenging sketching task for the instructor. 

 
Coding  

Visual images from class. We first carefully watched the video recording of the lecture 
presented during the 50-minute class and identified all images that were presented on the 
whiteboard; these were typical visual representations of the Cartesian, cylindrical and spherical 
coordinate systems to visualization of the infinitesimal volume element in the spherical coordinate 
system.  

The imagery presented during the enacted lesson, was subject to a natural classification. We 
distinguished three categories of images: primary image, secondary image, and second-layer 
image. We define primary image as an image on which the derivation of the analytical portion of 
the presentation, related to a justification (proof) of a proposition relies. This image may also play 
an essential role in the explanation of a new mathematical concept. Usually this image will stay 
on the board during an enacted lesson for a substantial amount of time. In Figure 1, we provide 
two examples of primary images that were used in the lecture about triple integrals in spherical 
coordinates.   
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               Figure 1. Primary Images 
 

A second-layer image (SLI) is an image that has been superimposed on a primary image later 
in the exposition, bringing new aspects of the presented notion, or illustrating a portion of the proof 
of a proposition. Most of the time, during the enacted lesson, students are inclined to sketch a 
completely new illustration rather than revisiting a primary image and superimposing on this image 
a new one. Illustrative elements that have been superimposed on the primary images given in 
Figure 1 are indicated as shaded areas.   

 

                                                               
 
                                                             Figure 2. Second-Layer Image 
 
Our third category of images is secondary images.  These are images that have been used to 

clarify a particular argument related to the primary image, illustrate a particular point in the 
analytical portion of the argument, or used as a review of a specific notion used in the exposition. 
Usually these images will stay a short time on the board, serving its purpose and not interfering 
with the primary image. We illustrate this category in Figure 3.   

 

                                                            
 
                                                             Figure 3. Secondary Images 
 
The left picture from Figure 3 helps students recall the definition of sine and cosine function 

and the right picture illustrates four graphs of the equation φ = c (c is a constant) in the spherical 
coordinate system, for four different choices of c all between 0 and π.  

There were 16 images presented on the whiteboard during the class period (Lecture entitled 
"Triple integrals in spherical coordinates"), with one of the images appearing twice in the lecture, 
at the beginning and towards the end, and being counted as two separate images. Out of these, 4 
were counted as SLI and 5 were counted as secondary images as far as the instructor’s drawing.  

The researchers then coded each of the 30 notebooks by identifying which of the 16 images 
from the whiteboard were recorded by the students. This resulted in one tally for each of the 
students, which was the number of primary, SLI, and secondary images that the students had 
reproduced in their notebooks. 

20th Annual Conference on Research in Undergraduate Mathematics Education 127520th Annual Conference on Research in Undergraduate Mathematics Education 1275



Coding visual images for problem solving. In order to investigate students’ use of visual 
reasoning when problem solving, we chose to consider two problems from the exams given in the 
class. Each of these problems were designed so that visual representation of the problem would 
reveal a short path towards its solution. In the first problem (T1), we asked for unit vectors that 
make an angle of 30º with the vector < 2015, 2015 >. In the second problem (F), we ask students 
to evaluate an iterated integral, with its domain of integration given in cartesian coordinates by 
converting it to polar coordinates.  

 
Table 1.  

Code Description 
No code No attempt at problem 
1 No drawing used in solution 
2 An attempt at sketch for some notions 
3 Good sketch not used in solution 
4 Sketch was essential and provided insight for student 
Multiply code by 2 Student was successful 

 
Students’ use of images was coded as shown in Table 1.  We were interested not only in the 

use of images when solving problems, but also in a successful use of visual information and so 
codes were multiplied by 2 if the solutions were correct. We are trying to quantify the instant when 
a logical sequence of analytical expressions is guided by the visual information.  

In Table 2, we present a portion of the table with the students’ full coding.  This table was used 
to analyze quantitatively the data to answer the research questions.  In the next section, we discuss 
some of the results. 

 
Table 2.  

  Student 

Codes for notebooks Codes for problem solving on exam 

Primary SLI Sec. 
  

Primary + 
+SLI +Sec. 

T1       F T1+F  

7 7 1 1   9 -     1•1  1 
8 7 2 0   9 1•1     4•2  9 
9 9 1 0  10 1•1     1•1  2 
10 8 2 0  10 1•1     4•1  5 

 
Preliminary Results 

 
Bold horizontal segments in Figure 4 show the total number of images that each student 

reproduced in their notebooks (Primary + SLI + Sec). The triangular diagrams show the total score 
(T1+F). Visual inspection shows that the relationship between the two is low. Due to space 
constraints, we have not shown graphs that break out the differences between image types.  

Statistical analysis of the results reveal that the correlation index for the columns (T1+F), that 
measures how successful are students in producing visual information in problem solving 
situations and column (Primary+SLI+Sec) that indicates students’ ability and inclination to hand-
sketch is 0.05. In other words, there is no a correlation between these two variables. The 
comparison of other variables  reveal similar trends. For example, 30% of the students successfully 
completed prblem (F), but there is not a correlation between their success in this problem with 
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their tendency to give a visual representation of this problem (correlation  index in this case is 
0.334). 

 
Figure 4. 

 
Even though throughout the course the instructor exhibited a preference for visual explanations 

followed by analytic aspects of problem solving, it is surprising how little of this way of reasoning 
was accepted by students. Only four students (13%) successfully answered this question, all using 
the visual information in the most substantial way. A higher number of students using visual 
representation in the second problem (67%) may be explained by the way the polar coordinate 
system is introduced in all calculus books and in enacted lessons. A picture depicting how polar 
coordinates relate to the familiar Cartesian coordinates always accompanies it in the book.  

 
Conclusion and Questions 

 
    These  preliminary results indicate that just asking students to sketch visual representations in 
their notebooks is not sufficient for them to begin using more diagrams and graphs to problem 
solve in exams.  Instructors need to consider additional ideas to encourage the use of visual 
methods. This might include homework that requires sketching, or using group work to have 
students talk and work together, with visualization as a focus.  

 
Intended Questions for the Audience 
1. What other coding ideas might help us move forward on connecting visualization and problem 

solving in a classroom setting? 
2. Is it important to give value to getting a correct answer? How might we address this in other 

ways than doubling the scores? 
3. What other data might be useful to collect in order to continue investigating visualization in 

problem solving?  
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Students’ Epistemological Frames and Their Interpretation of Lectures in Advanced 
Mathematics 
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Rutgers University  

  
In this paper, we present a comparative case study of two students with different epistemological 
frames watching the same real analysis lectures. We show the general point that students with 
different epistemological frames can interpret the same lecture in radically different ways. We 
also identify epistemological frames that are useful or counterproductive for understanding a 
lecture on how the rational numbers are constructed from the integers. These results illustrate 
how different students interpretations of a lecture are not inherently tied to the lecture, but 
rather depend on the student and that student’s perspective on mathematics. Thus, improving 
student learning may depend on more than improving the quality of the lectures, but also 
changing student’s beliefs and orientations about mathematics and mathematics learning. 

Key words: epistemic frames, student understanding of lecture, real analysis  

In recent years, there has been a substantial increase in research into how proof-oriented 
university mathematics courses are traditionally taught. This research has led to important 
insights into what transpires in lectures in advanced mathematics (e.g., Fukawa- Connelly, 2012; 
Fukawa-Connelly & Newton, 2014; Hemmi, 2010; Lew et al., 2016; Mills, 2014; Pinto, 2013; 
Weber, 2004; Weinberg et al., 2016) and mathematics professors’ motivation for their 
pedagogical behavior (e.g., Alcock, 2010; Lew et al., 2016; Nardi, 2007; Weber, 2012).  

While the nature of lecturing in advanced mathematics is now better understood, there has 
been comparatively little research into how tertiary students interpret the advanced mathematics 
lectures that they observe. The goal of the current paper is to address this gap. In particular, we 
aim to shed light on the issue: When professors provide lectures in advanced mathematics that 
are clear to other mathematicians, why are these lectures often confusing to the students who 
attend them? Why do some students learn from a lecture while other students find the same 
lecture less clear? What dispositions prepare students to learn from lectures in advanced 
mathematics?  

To address these broad issues, we adapt the notion of epistemological frame. We elaborate on 
the nature of epistemological frames shortly, but an epistemological frame can be thought of as a 
person’s tacit answer to the question, “what sort of activity is this?” (c.f., Goffman, 1997; 
Redish, 2004). In this paper, we present a comparative case study of two students with different 
epistemological frames watching the same real analysis lectures. The first goal of this paper is to 
illustrate the general point that students with different epistemological frames can interpret the 
same lecture in radically different ways. The second goal of this paper is to identify 
epistemological frames that are useful or counterproductive for understanding a lecture on how 
the rational numbers are constructed from the integers.  

Theoretical Perspective 

In this paper, we adapt the notion of epistemological frame, as it is used in the physics 
education literature (e.g., Redish, 2004). Goffman (1997) introduced the notion of frame to 
describe how individuals develop expectations to help them make sense of the complex social 
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spaces that they inhabit. For instance, most adults in the Western world have a “restaurant 
frame” (Schank, 1990). When individuals enter a restaurant, they carry with them numerous 
assumptions: for instance, the individual will eat a meal, the staff at the restaurant will prepare 
the meal, the items listed on the menu list are what the individual may order, the prices next to 
the item denote how much the food will cost, the individual will be expected to pay for their 
meal using cash or a credit card, and so on. Such expectations are valuable in that they enable us 
to cope with the enormous complexity of most situations that we regularly encounter. However, 
occasionally our frames can be problematic in cases where they are inaccurate or when two 
different individuals frame the same situation in different ways. For instance, a visitor to the 
United States might not be aware of the expectation to leave a 20% tip on the bill, which could 
lead her to inadvertently insult the waiter by not leaving the presumed gratuity.  

In an educational situation, we refer to an individual’s epistemic frame as consisting of their 
epistemological expectations. These consist of an individual’s responses to questions such as 
“what do I expect to learn?”, “how do I build new knowledge?”, and “what counts as knowledge 
or an intellectual contribution in this environment?” (cf., Redish, 2004). Physics educators have 
illustrated how when a teacher and her students approach an activity with different 
epistemological frames, the students may not reap the educational benefits that the teacher 
intended. For instance, Redish (2004) described one student in a physics tutorial who was given 
a prompt to make a qualitative prediction using her conceptual understanding of physical 
principles. However, this student viewed intellectual contributions in a physics classroom as 
consisting of deriving numerical answers from textbook formulas. As a result, she participated in 
the activity by engaging in computations, thereby avoiding the conceptual considerations the 
activity was designed to elicit. Hammer (1995) illustrated how epistemological frames can 
explain how some students successfully learn physics in a traditional classroom while other 
students do not.  

In this paper, we use epistemic frames to account for two students’ interpretations of a lecture 
in advanced mathematics. Although the phrase “epistemic frame” is not often used in 
mathematics education, mathematics educators have used similar constructs to highlight 
students’ classroom participation and identify differences in how teachers and students 
sometimes frame mathematical activity. For instance, Thompson (2013) described a secondary 
algebra teacher, Sheila, whose discourse with students was saturated with references to the 
conceptual meaning of the operations that were being discussed and performed, and a student, 
Mindi, who struggled in Sheila’s course. Through his interviews with Mindi, Thompson found 
that Mindi believed that doing algebra consisted of applying rules and learning algebra consisted 
of memorizing rules; Mindi saw little value to having a conceptual understanding of these rules. 
As a result, she ignored the frequent references to meaning in Sheila’s discourse.  

In advanced mathematics, Solomon (2006) and Alcock and Simpson (2004, 2005) have 
explored the relationship between students’ epistemologies and their learning in advanced 
mathematics classrooms, with both emphasizing that students who believe mathematical 
knowledge comes from external sources have a difficult time in these environments. Similarly, 
many mathematics educators have documented how the types of arguments that students found 
convincing influenced their proof-related behavior (e.g., Harel & Sowder, 2007; Stylianides, 
Stylianides, & Weber, in press). In this paper, we consider a more fine-grained epistemological 
distinction than the ones discussed above. The two students that we considered both showed 
evidence of having a desire to understand the material that they were learning, an internal loci of 
control and deductive proof schemes. Nonetheless, their different epistemological frames led 
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them to interpret the same real analysis lecture in very different ways.  

Methods 

Rationale  

The goal of this study was to understand individual student’s interpretations of a real analysis 
lecture at a fine-grained level. Doing this in an authentic manner posed significant 
methodological difficulties. If we observed students in an actual real analysis lecture, it would be 
infeasible for us to know how a student was interpreting a professor’s comments in the moment 
since we would be unable to interrupt the lecture to probe the student’s thinking. We could 
follow Lew and colleagues (2016) in using cued recall by interviewing a student about a lecture 
they attended shortly after the lecture had occurred. However, by that time, much of the student’s 
initial impressions would be forgotten. To manage this difficulty, we interviewed two students as 
they watched real analysis lectures that had previously been posted on YouTube. Here, the 
students can act as if they were attending an actual lecture yet the interviewer or student could 
pause the video to discuss their in-the-moment impressions of what was being discussed.  

In this paper, we report a comparative case study (Yin, 2013) in which we attempt to 
illustrate how a particular phenomenon unfolds within a given context. There are some particular 
nuances of the study, such as the individual students’ backgrounds or the content of the lecture, 
that may not generalize to other situations. What we contend is representative is the phenomenon 
of how an individual student’s epistemological frame can influence his or her understanding of a 
mathematics lecture.  

Participants  

Two participants, Alan and Brittany (pseudonyms), agreed to participate in this study. Both 
participants were mathematics majors at a large state university in the northeast United States. 
Both students had completed a transition-to-proof course in the previous semester. At the 
university in which this study occurred, mathematics majors were required to complete a course 
in real analysis, for which the transition-to-proof course was a prerequisite. Some mathematics 
majors enrolled in real analysis in the semester after completing their transition-to-proof course 
while others, like Alan and Brittany, did not. Like many mathematics majors, Alan and Brittany 
elected to take an abstract algebra course immediately after their transition-to-proof course, 
choosing to postpone their real analysis requirement to a subsequent semester. Hence, while 
neither had, both participants could have taken a real analysis course in the semester of this 
study.  

Procedure 

The materials consisted of the first two 60 minute class meetings from a real analysis course 
taught by the president of the Mathematics Association of America and award winning professor 
Francis Su at Harvey Mudd University1. The lectures consisted of Professor Su beginning the 
real analysis course by first constructing the rational numbers and then the real numbers from the 
integers. Prior to conducting the study, the research team studied the lecture and parsed the 
lecture into five to ten minute segments in which coherent mathematical content was being 
																																																								
1	Videos can be found at: http://analysisyawp.blogspot.com 
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presented. The research team also identified points in the lecture where important content was 
being conveyed.  

Each participant met weekly with the first author for four weeks. Each of the four interviews 
was audio-recorded. The first interview was a one-hour interview in which the participant 
discussed the content from the transition-to-proof course to get a sense of their understanding of 
the relevant content (particularly with number theory, functions, and proof) as well as their 
learning strategies and dispositions. The next three interviews were two-hour interviews 
conducted in the style of a constructivist teaching experiment (Steffe & Thompson, 2000) in 
which the research team attempted to build and refine the mental schemes, which we termed 
epistemological frames, that each participant was using to interpret the real analysis lectures. 
During each interview, the participant watched the lecture and was instructed to stop the tape to 
discuss anything that they observed to be important, interesting, confusing, or otherwise 
noteworthy. The interviewer would also stop the tape to probe the participant’s thinking when 
the professor had stated something that the research team had identified as important or at the 
end of a segment. The interviewer would then ask the participant to describe their impressions at 
that point.  

After each interview, the members of the research team would engage in concurrent analysis 
by listening to the recordings of the interview and forming initial hypotheses about the schemes 
that the participants were using to interpret the lectures. They would then meet to synthesize 
these hypotheses and develop prompts to assess the viability of their hypotheses. These prompts 
were designed such that if a participant held a particular epistemological frame, we could expect 
them to respond in a particular way. We began the next interview segment by providing 
participants with these prompts, which was then followed by them resuming watching the lecture 
videos.  

After all four interviewers were conducted, we transcribed all four interviews and clarified 
our initial hypotheses of participants’ epistemological frames from the prior concurrent analysis. 
We then engaged in the following cyclic retrospective analysis: For each aspect of a participant’s 
hypothesized epistemological frame, each member of the research team individually read the 
transcripts, identifying all instances that either supported or disconfirmed that the participant 
held this frame. The research team then met to determine how well the proposed epistemological 
frame was supported by the data. When there were aspects of the hypothesized frames that were 
not supported by the data (i.e., there were few confirming instances or significant disconfirming 
instances), we either removed this aspect from the epistemological frames that we attributed to 
the students or we revised the epistemological frame and repeated our analysis. The result of this 
retrospective analysis were epistemological frames for Alan and Brittany that were grounded in 
our data.  

Results 

Epistemological Frames  
For the sake of brevity, we briefly discuss four aspects of Alan and Brittany’s 

epistemological frames. In our presentation, we will elaborate on these and provide supporting 
evidence. We first note two aspects that Alan and Brittany had in common: (i) Both participants 
appreciated, understood, and enjoyed mathematical proof and (ii) both exhibited an internal locus 
of control. We also note two areas in which they differed: (iii) Alan valued definitions of terms 
that were unambiguous while Brittany preferred definitions that were comprehensible and 
relatable to her prior ways of knowing, and (iv) Alan viewed the purpose of these lectures as 
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making his understanding of the rational numbers more reliable by basing it on a more secure 
footing (the reliability of the integers) while Brittany viewed the purpose of the lectures as 
providing a common base of knowledge shared by all students in the class from which real 
analysis can be built.  

Differing interpretations of the lecture. We note that Brittany’s epistemological frames, 
while sensible and productive in some situations, led her to interpret some aspects of the lecture 
in unproductive ways. For instance, when Professor Su deduced common properties of the real 
numbers (e.g., the integers were contained in the rationals), Brittany became frustrated because 
this was obvious and “everyone already knew this”. By contrast, Alan claimed that the point of 
the lecture was to illustrate how Professor Su’s construction of the rational numbers was 
sufficient to prove these important properties (cf., Weber, 2002). Brittany found many of Dr. 
Su’s proofs of common facts about the rational numbers to be unnecessarily complicated, since 
she was aware of simpler proofs of these statements that were appropriate for middle school 
students. For instance, Professor Su defined rational numbers as equivalence classes of ordered 
pairs and defined addition as (a, b) + (c, d) = (ad + bc, bd). Professor Su then proved this 
operation was well-defined. Brittany thought that the simple proof that a/b + c/d = ad/bd + bc/bd 
= (ad+bc)/bd was superior to Professor Su’s formal demonstration. In contrast, Alan abhorred the 
suggestion of using such a proof, since we had no right at this stage to say a/b = ad/bd. To Alan, 
the point of this exercise was to ignore everything we knew about the rational numbers. In 
general, Brittany wanted to apply her robust understanding of the rational numbers to the content 
that Professor Su was discussing and was annoyed that Professor Su did not do so. Alan 
continually reminded himself that he was only allowed to consider what he knew about the 
integers, the definitions Professor Su had provided, and the deductions made from them.  

Discussion and significance 

We use the general finding that students’ epistemological frames can enable or prevent 
students from interpreting mathematical lectures in a productive manner to make two points. 
First, previous research on lectures in advanced mathematics has generally focused on what the 
professor says but did not consider student’s interpretation of what was said. Our results 
illustrate how students’ interpretations of a lecture are not inherent in the lecture itself but also 
depend on the student doing the interpreting. Consequently, we argue that ignoring students’ 
interpretations of lectures is a significant shortcoming of most studies on lectures in advanced 
mathematics. Second, our results suggest that the key to improving students’ learning from 
lectures does not consist only of improving the quality of the lectures. Rather, it is important to 
attend to their epistemological frames as well, a point that Solomon (2006) and Dawkins and 
Weber (in press) argue has received limited attention in the mathematics education literature.  
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Mathematical Modelling and Mathematical Competencies: The case of Biology students. 

 
Yannis Liakos 

University of Agder, Norway 
 

The research aims at introducing modelling tasks in order to engage students more actively 
into learning mathematics through tasks that are biologically ‘colored’.  My focus is on the 
individual progression (if there is any) of students’ mathematical competencies during a 
sequence of modelling sessions that will be part of a regular course of their first year 
calculus. My ultimate goal is to construct a dynamic competence profile for every student that 
will participate in the project. Taking the above into consideration, my research suggests a 
number of interventions in a standard freshmen mathematics course for biology students, 
interventions that offer a fruitful didactical environment where students can sharpen their 
mathematical competencies. 

Key words: mathematical modelling, mathematical competencies, tasks, progression  

Introduction 

There is an increasing amount of literature which provides documentation for the learning 
benefits associated with engaging students in mathematical modeling. There is a ‘red thread’ 
among many researchers who, through the description of mathematical modelling processes, 
displayed the variety of many opportunities for educational benefits (Kaiser et al., 2006). 
Students engaged in modeling may develop a deep understanding of the content and an ability 
to solve novel problems (e.g. Wynne et al. 2001, Lehrer & Schauble 2005). Other studies 
(Schwarz & White 2005; Windschitl et al. 2008) have shown that modeling curricula can 
bring students into alignment with the epistemic aims of science and help them develop more 
sophisticated ideas about the scientific enterprise as a whole. Sriraman et al. (2009) blended 
the notion of interdisciplinarity with modelling, highlighting the necessity for creativity and 
giftedness across disciplines. It comes as no surprise that 

 
Both the National Research Council (NRC) and the National Science Foundation (NSF) in the 
U.S is increasingly funding universities to initiate inter-disciplinary doctoral programs between 
mathematics and the other sciences with the goal of producing design scientists adept at using 
mathematical modeling in interdisciplinary fields (Sriraman & Lesh, 2006, p.247). 

 
Theoretical Stance 

A long-lasting and ongoing discussion among 
researchers and members of Educational Institutes 
centers on students’ assessment and the need for a 
solid and valid evaluation (e.g. Galbraith 2007, 
Haines and Crouch 2007, Vos 2007). A different 
approach though occurred by an important number of 
researchers when they turned their view on students’ 
competencies and mathematical competencies (e.g. 
Greer and Verschaffel 2007, Henning and Keune 
2007, De Bock et al. 2007, Houston 2007, Blomhøj 
and Jensen 2007). 
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The Danish KOM (Kompetencer og matematiklæring) project (Fig. 1) Niss (2003) 
focused on basing the description of mathematics curricula primarily on the notion of 
mathematical competence. The framework they proposed could apply at any educational 
level. Niss and Højgaard (2011) managed to combine assessment and competence by 
introducing a three-dimensional model of progression of each competence, which I describe 
in the Data Analysis section. This model will be part of my set of tools for my data analysis 
since it focuses on the progression of students’ development of a certain competence. It is 
possible that one mental, verbal or written action may describe two different competencies 
(overlapping); therefore it is important to locate discrete elements that characterize every 
competence even though in mathematical modelling activities students need to combine 
mental process in terms of combined competency profiles. We can find some attempts 
towards this direction from Andersen et al. (2001) and OECD (1999, 2001) focusing on the 
PISA investigations. These studies include an international comparison of secondary school 
students’ competence profiles. The research reported here contributes to this research program 
by extending such analyses to university students. 

The competence framework in my research will be based on the general term of 
mathematical literacy which combines the development of mathematical concepts and terms 
while dealing with real-world (realistic) tasks. 

In my research I will use the notion of mathematical competence as something that 
students must bring into action in order to meet the challenges of the future. I consider this 
future-directedness rather important in educational terms because I am interested in the ways 
in which a student puts his or her mathematical knowledge to functional use. This will also 
give a strong connection to what Blum et al. (2002) considered as vital elements of modelling 
competences. He described a student, who is competent in modelling, as one who is able to 
structure, mathematize and solve problems. Furthermore in line with what Maaß (2004) 
considered as modelling competencies it is important to understand that knowledge alone is 
not sufficient for a student to develop his/her mathematical competencies. A student has to 
use and direct his knowledge with a suitable and specific way in order to be successful in 
modelling and this is where my study focuses on: observing, monitoring and analyzing that 
process. 

Besides the competence theoretical framework I will adopt the theory of Didactical 
Transposition. Bosch and Gascón (2014) refer to four different bodies of knowledge (see 
Figure 2) where the transformations applied to a “content” or a body of knowledge since it is 
produced and put into use, until it is actually taught and learned in a given educational 
institution. 

 

 
 

Research Questions and Design 

In this report I address the following two research questions:  
 

1) What is the dynamic of a student’s competence profile through the course of the 
mathematical modelling unit?  

2)  What competencies are deemed necessary for a student in a biology department? 
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By the term dynamic in the first research question I include the notion of progression (of a 
student’s competence) from the very beginning of the project and also focus on identifying 
the initial set of competencies that a student brings when he or she enters the tertiary level. 
 

In this study I make use of a design based research approach (Kelly & Lesh, 2000) in 
which an iterative process of design, implementation, and analysis takes place. More 
specifically, this study takes place in two phases. In Phase 1 (already completed), I 
investigated students’ mathematical competencies during their engagement with a series of 
modelling tasks. These students were on their first year in a university’s Department of 
Biology and the modelling session followed up a regular first year calculus course.  

Phase 2 is ongoing and takes place with first year students in biology at the Norwegian 
university where this study takes place begin with a standard 10 week mathematics course on 
calculus. The modelling sessions occur weekly during their first semester. Approximately 100 
students are organized in 3 separate classrooms where there is a 50 minute modelling session 
where students engage with modelling tasks. The students in each classroom are organized in 
small groups of three or four. One small group from every classroom is chosen to be 
monitored with audio and video devices. Every two sessions are considered to be a single 
modelling block where a new mathematical tool will be introduced. By the end of every 
session, a modelling task will be assigned to the students as part of their obligatory 
assignments for their mathematics course. Every modelling block will be designed in respect 
to the competence theoretical framework that I adopted. In addition the sessions will provide 
new knowledge that is also necessary for the successful engagement of students with the 
home assignments. 

 
Methods for Data Generation 

Data for Phase 1 and 2 consists of students’ written work (tasks and assignments) and 
recordings (video and audio) which capture all kinds of discourses that are taking place during 
the sessions. In Phase 2 a questionnaire will also be given to the students at the beginning and 
at the end of the project. Discussions between the students and with the lecturer will be 
recorded both in video and in audio form. In every classroom separate cameras and audio 
devices will record the focusing on the group and to the whole classroom. In addition, the 
selected groups will be provided with a special device (LiveScribe 3 Smartpen) for more 
accurate and secured data collection. The same equipment will be used in all interviews with 
the task designer.  

Data Analysis       

Data from RQ_1 and RQ_2 will allow me to address the four bodies of knowledge 
proposed by the ATD, the first two from a detailed task-design analysis, the third from the 
above mentioned recordings and the last from a general assessment (formal exams and 
general performance in the classroom during the sessions). A task-design analysis, for 
example, can provide what the existing literature (mathematical biology) provides on 
population dynamics and exponential growth (scholarly knowledge) but also which task was 
finally decided to be presented (knowledge to be taught) and this will happen for every 
different modeling block. 

The multi-dimensional model functions in such a way that whenever one or more 
dimensions may display a change (progression) then the volume (student’s competence 
profile) of the cuboid changes. At this point a better analysis of these three dimensions is 
necessary.   
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x Technical Level: 
indicates how and to what degree 
(how advanced) a student may use 
his/her tools and mathematical entities 
which belong to his/her cognitive set 
of knowledge in order to activate a 
certain competence.  

x Radius of Action: 
illustrates the range of action a student 
may take in terms of context and 
didactical situations. It shows where a 
student can activate a specific 
competence.  
       

x Degree of Coverage: 
indicates to what extent a student is 
developing a competence in terms of 
its specific characteristics. 

 
For the needs of this analysis I constructed a coding system which breaks down into 

smaller parts the verbal, mental and written actions of every single competence. This system, 
which is illustrated with data from Phase 1, functions as a decoding tool that assigns every 
student’s discourse action to specific parts of a certain mathematical competence. In order to 
be successful in this attempt I need strong indicators that correspond to a specific competence 
and the frequency of appearance of these codes can be an indicator of progression (or 
stagnation) of a specific competence. It is in my intention to improve the reliability of this 
coding system by grading every code depending on the different tasks the students 
encountered during the modelling sessions. 

 
Abstract from my coding system: the Reasoning Competence 
x When a student is able to follow and assess a chain of arguments.  

Code: Flw. Arg. 
 

x Knowing the difference between a formal mathematical proof and other kinds of 
mathematical reasoning. Code: Pr. ≠ Math. R.   
 

x Separating main lines from details and ideas from technicalities during a line of 
arguments posed by anyone in the classroom. Code: Sep. 
 

x When a student has the skill to devise formal and informal mathematical arguments. 
This may differ from a typical mathematical proof in our study therefore we could 
include the term: proving statements. Code: Pr. St. 

Data from Phase 1 
At the extract below we can see a discussion, between the members of Group2 in a 

university department of Biology about a modelling task. The students should come up with a 
solution in a time frame of 15 minutes and then present their possible solutions on a 
whiteboard in front of the other groups. The colored parts of the extract are based on the 
coding system above.  
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The task 
Uncontrolled geometric growth of the bacteria Escherichia coli (E. coli) is the theme of 

the best-selling Michael Crichton’s science fiction thriller, The Andromeda Strain. At some 
point the author claims that: ‘‘In a single day, one cell of E. coli could produce a super-
colony equal in size and weight to the entire planet Earth.’’ If a single cell of the 
bacterium E. coli divides every 20 minutes, how many E. coli would be there in 24 hours? 
The mass of an E. coli bacterium is 1.7×10-12 g while the mass of the Earth is 6.0×1027 g. 

x Is Crichton’s claim accurate?  
x If not, how much time should be allowed for this statement to be correct?  
 
The students are trying to find a way to mathematize the assumption: if a single cell of the 

bacterium E. coli divides every 20 minutes. They should come up with this expression: 23x 

 
1. A: what about 24x8 (checking calculator) and then I get…oh we have to compare it with, 

we can take 10 to the power of…isn’t that very close to Earth’s mass? 
2. B: close is not enough for mathematics. 
3. A: yes but we have something to compare it with. Is 8 our ground number (meaning base) 

or is it 24? I don’t know what power I should put. 
4. B: we have 2, 4, 8 … (almost silent) 
5. C: so it’s always double. 
6. B: so it goes 16, 32, 64… 
7. A: it may be 2x ? Since it’s always changing. 
8. C: But our ground number? 
9. A: Our ground number is 2, when we have 4 it is 22 then 2n=8 
10. B: No you have to put 3 to get 23=8 
11. C: You have 8, 16, 3, 64… so is there …? How is it called? 
12. A: (writes 23, 24…) Is this the first line with 21? The starting point? Oh we can take just 

225 and then we have (a huge number appears at the calculator) 
 

The Reasoning Competence is not the only one that appears in the text but for the interests 
and page restrictions of this report I included only this specific type of mathematical 
competence. It is quite possible that episodes of overlapping competencies may occur but this 
is not an obstacle when it comes to identifying the progression of a specific competence. 
 

Goals & Addressed Questions  

My main goal is to create a dynamic competence profile for every student and it is in my 
intention to redefine the term good student by that of competent and try to find a way to 
identify students’ learning skills, which in this study are considered as mathematical 
competencies. I therefore consider that the didactical environment of mathematical modelling 
is a suitable one for my research interests. 

It would be more than helpful for my dissertation, if I could have some feedback on the 
following questions that are closely related with my data analysis: 

 
1. What statistical tool would be ideal for my code analysis? 
2. Is there a solid connection between ATD, mathematical competencies and 

mathematical modelling tasks? 
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A Preliminary Investigation of the Reification of “Choosing” in Counting Problems 
 

Elise Lockwood 
Oregon State University 

In a recent combinatorics-focused teaching experiment with two undergraduate students, the 
students developed a robust understanding of a three-stage counting process that provided a 
solution for problems involving combinations. So strong was the students’ three-stage process, 
they did not seem to naturally conceive of the singular process of “choosing,” which is an 
important aspect of understanding combinations. In this preliminary report, I question whether 
or not the students engaged in reification, which Sfard and Linchevski describe as “our mind’s 
eye’s ability to envision the result of processes as permanent entities in their own right”(1994, p. 
194). I raise questions about what aspects of the student work might have fostered or hindered 
their ability to reify choosing, as well as what might be taken as evidence that reification has 
occurred in the context of combinatorics. 

Key words: Combinatorics, Reification, Discrete Mathematics, Counting Problems 

Combinatorial enumeration, or the solving of “counting problems,” is increasingly relevant 
in our computerized age, and counting has applications in a variety of mathematical and 
scientific areas. Recent research in undergraduate mathematics education has investigated a 
variety of aspects of counting, including examining productive ways of thinking about counting 
in general (e.g., Halani, 2012; Lockwood, 2014) and student reasoning about various facets of 
counting (Lockwood, 2013; Lockwood & Gibson, 2016). Following such research, in this paper I 
explore one particular aspect of counting: two students’ work toward the reification of the notion 
of “choosing.” By examining this phenomenon, I hope to both bring to light insights about the 
teaching and learning of the essential combinatorial construct of choosing, and also to speak to 
the nature of the broader mathematical practice of reification. 

In this preliminary report, I share results from a paired teaching experiment that was 
designed to examine the students’ generalization within a combinatorial context. The students 
were quite successful in their generalizing activity and their combinatorial problem solving, but a 
surprising phenomenon emerged regarding their development of solutions to problems involving 
combinations. Specifically, I was surprised to find that conceiving of “choosing” as an action 
was not something that seemed natural to them, and, interestingly, it was difficult to motivate 
them to reify this choosing process. By describing their work and exploring potential reasons for 
their resistance to reifying, I seek to answer the following questions: What factors affected 
(limited and facilitated) these two students’ reification of the process of choosing? What does 
this say about the nature of reification in the context of combinatorics?  

 
Literature Review and Theoretical Perspective 

Reification. Sfard and Linchevski (1994) describe reification as “our mind’s eye’s ability to 
envision the result of processes as permanent entities in their own right” (p. 194). In other words, 
reification occurs when someone can conceive of the result of a process as something that may 
be operated on or with. Sfard and Linchevski elaborate this phenomenon in algebra especially, as 
the following example suggests. They offer the algebraic expression of 3(x + 5) + 1, and they 
notice that we could view this expression in a variety of different ways. First, it may be a 
computational process that is “seen as a sequence of instructions: Add 5 to the number at hand, 
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multiply the result by three and add 1” (p. 191). It could, however, also be viewed as an object in 
its own right – as a function that could itself be operated on or treated as the input of another 
function. This dual way of thinking about an expression like 3(x + 5) + 1 is in line with Sfard’s 
(1991) distinction between structural and operational conceptions, in which “the same 
representation, the same mathematical concepts, may sometimes be interpreted as processes and 
at other times as objects” (Sfard & Linchevski, 1994, p. 193).  

Sfard and Linchevski (1994) go on to argue that reification can help promote relational 
understanding (or conceptual knowledge). Generally, they convey that reification is difficult, 
saying that their data “provided sufficient evidence that reification is inherently very difficult. It 
is so difficult, in fact, that at a certain level and in certain contexts, a structural approach may 
remain practically out of reach for some students” (p. 220). The importance yet difficulty of 
reification is one motivating factor for this study, and by exploring the data in depth I hope to 
gain insight both into the nature of reification (especially within a combinatorial context) and 
also how reification might be fostered for students. Additionally, I have previously noted the 
ways in which Sfard’s (1991) structural versus operational duality naturally applies to 
combinatorics (e.g., Lockwood, Reed, & Caughman, in press), and I believe that there is much 
more to be investigated about this dual relationship in combinatorics, especially regarding 
combinations. The results from this study provide but one preliminary perspective of a more 
complex and complete picture of structural and operational conceptions in combinatorics. 

Combinations. I now offer a brief mathematical discussion of combinations. I use 
Thompson’s (2008) notion of a conceptual analysis, which he describes as a method to “describe 
what students might understand when they know a particular idea in various ways” (p. 42). One 
reason that Thompson (referencing Glasersfeld, 1995) gives for developing a conceptual analysis 
is to “generate models of knowing that help us think about how others might know particular 
ideas” (p. 43). This reason aligns with the purposes of this paper, and I highlight a couple of key 
aspects of what it may entail to come to know combinations. 

“Combination” problems have as outcomes combinations, or sets, of distinct objects (as 
opposed to permutations, in which outcomes are ordered sequences). To count combinations, one 
may go through a three-stage process (this three-stage process describes a typical way in which 
the formula for combinations is taught – start with permutations and then divide by duplicate 
outcomes). If we consider the number of ways to choose k people from a set of n distinct people, 
we can first arrange all n people in a line, say. We can then note that we only care about the first 
k people,  and thus arrangements of the last n-k people all yield duplicate outcomes. Thus, b
n!

(n− k)!
 yields permutations of k people from n people. Then, to count combinations, because 

any k! arrangement of the k people are but one combination we wish to count, we can divide that 
product by k!. This three-stage counting process is reflected in the formula for combinations, 

which is given by n!
(n− k)!k!

.  

While it is important to be able to explain this formula, another aspect of conceiving of 
combinations is to understand that although this three-stage process can effectively explain the 
formula, it is sometimes useful to be able to think about choosing as one reified process that can 
itself be a stage in the counting process. In particular, the result of choosing can itself be viewed 
as something that can be acted upon. When I say the act of “choosing,” then, I mean conceiving 
of a single, particular act in which I can choose some subset of objects from a set of distinct 
objects. The reification of choosing is an important feature of successful combinatorial 
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enumeration because there are many problems in which choosing itself becomes a stage in the 
counting process. Two previous results point to this phenomenon and highlight the importance of 
being able to conceive of and use choosing as a stage in the counting process. In Lockwood, 
Swinyard, & Caughman (2015), we highlighted an episode in which students struggled on one 
particular problem that involved combinations as a stage in the counting process. In Lockwood, 
Wasserman, & McGuffey (2016) we also demonstrated that certain combinations are particularly 
difficult for students, who view such problems as qualitatively different than other combination 
problems. The results from that study also indicate that solving counting problems that involve 
combinations as a stage in the counting process are difficult. Both of these studies point to the 
fact that choosing can be a stage in the counting process is an important but difficult idea for 
students to understand.  

Methods 
The data in this study is part of a larger project intended to explore students’ generalizing 

activity in a variety of mathematical domains. For the part of the project described in this paper, 
we conducted a 15-session teaching experiment with two calculus students (Rose and Sanjeev, 
pseudonyms). Each videotaped session was ~60 minutes in length, and we met approximately 
three times a week for five weeks. We covered a variety of material in the teaching experiment, 
including having students generalize formulas after solving counting problems, and initially 
explore combinatorial proof. In this paper I focus on a particular phenomenon regarding the 
students’ conceptions of combinations. During the teaching experiment, I started to observe that 
the students were solving problems involving combinations in a way that suggested they were 
not reifying the process of choosing. In response, I gave students tasks with the aim of examining 
their conceptions of choosing and to attempt to foster the reification process.  

For data analysis, I had the interviews transcribed. My research team and I then took a pass 
through the data in which we created enhanced transcripts, which involves adding screen shots 
and relevant nonverbal cues to the transcript. In reviewing the videotapes and creating enhanced 
transcripts, we flagged situations and episodes in which students were using the choosing 
formula, and we returned to those episodes. We tried to use those episodes to articulate a 
narrative (Auerbach & Silverstein, 2003) of the students’ understanding and use of combinations.  

 
Results 

In the limited space provided, I describe a handful of key episodes that demonstrate the 
students’ development and use of the formula for combinations. I argue that their initial 
conceptions likely affected the ways in which they later reasoned about combinations. I try to 
point out that the students had such a strong conception of a particular counting process that they 
did not naturally seem to view choosing as a single, reified counting process. I also raise 
questions about whether the approach I took in teaching these concepts (starting with 
permutations and deriving combinations) had some unintended consequences in terms of the 
students’ ability to reify the process of choosing. 

Students’ development of the formulas for permutations and combinations. A noteworthy 
aspect of the students’ initial work is that the students developed a surprisingly strong sense of 
equivalence, which they used to derive the formula for permutations. We asked the problem, 
How many 3-letter sequences are there using the letters A, B, C, D, E, F if no repetition of letters 
is allowed?, and they understood their formula of 6!/3! as dividing out by equivalent 
arrangements in the three elements of the “tail” – or the three positions they did not care about.  
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In the exchange below, Rose suggested an answer of 6!/3!, which Sanjeev had not previously 
considered. As he reasoned through and ultimately explains the process, this argument became 
his key way of reasoning about this kind of problem.  
Rose: Well, I divide it by 3 factorial, because the last 3 spots can be in any order, and 

they don’t matter.  It doesn’t really – 
Sanjeev: Are you saying hypothetically – if you were to continue adding spots – like if you 

were to go all the way up to 6. 
Rose: Yeah, if you wanted combinations with all 6 letters that means when you get the 

last 3, and you’d get how many combinations there are with all 6 letters. 
Sanjeev: Oh, I see.  So if you have 6 letters then 6 factorial represents the total number of 

arrangements you can make with 6 letters. Because you’re only looking for a 
sequence of 3.  Then you can take out that last 3, because it doesn’t matter. That 
order these last 3 would be in.  And so when you divide that out, and this part this 
gets divided out here, you’re left with (inaudible). 

In developing the formula for combinations, the students understood that if they considered 
combinations (as opposed to permutations) they needed to account for duplicates, and they 
realized that they needed to divide by an additional factor. Ultimately, they arrived at the correct 
formula for combinations. 

The students had thus established a strong understanding of division and equivalence in 
determining the formulas for both permutations and combinations. We saw subsequently that this 
became their go-to way of solving combination problems. This can be from Session 4 with a 
problem about iPhones that says, In a shipment of 1,000 iPhones, 25 are defective. How many 
ways can we select a set of 50 non-defective iPhones? Figure 1 demonstrates exactly their three 
stage counting process – arrange all of the distinct elements, divide by the “tail” that you “do not 
care about,” and then additionally divide (or multiply by 1 over the reciprocal) in order to 
account for duplicates again.  

 
Figure 1 – The students’ response to the iPhones problem 

 
I want to emphasize that it was impressive that Rose and Sanjeev had such a solid 

understanding of the division and of the counting process, and especially that they had an 
understanding of how combinations and permutations are related. Almost more than any students 
I had worked with before, they had a particularly solid sense of division and equivalence and of 
how to make that work out in terms of the set of outcomes. However, at the same time I started 
to notice that every time they explained or thought about or talked through a combination 
problem, they always referred to that three-stage process. I began to wonder if they necessarily  
went through this process as an inherent part of their understanding of combinations.  

 As further evidence of their conception of this three-stage process for solving combination 
problems, and for the relationship between permutations and combinations, consider the 
students’ description of four key problem types in Table 1. After the students solved some initial 
problems we had them characterize and group the problems according to type and to articulate a 
formula for each one. Their formulas and written responses for factorials, permutations, and 
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combinations are given in Table 1. Note that they actually defined the definition of combinations 
as building on the formula for permutations, providing further evidence for the nature of the 
process for counting combinations. Subsequently, there were surprising episodes in which the 
students seemed to focus on their process rather than implement a single act of choosing. 

Formula Problem Type Students’ Written Description 
n! Arrangements How many ways to arrange a given number of elements. 
n!

(n− k)!
 

Permutations How many ways to arrange a given number of elements into a 
given number of spots without reusing any elements 

n!
(n− k)!k!

 
Combinations [continue from permutations]…and divide by the factorial of the 

given spots to delete repeated sequences because any arrangement 
of the same given elements is considered the same combination. 

Table 1 – The students’ descriptions of what they were trying to count 
 

Eventually, after more prompting and work with the students, they did perhaps demonstrate 
that they could consider the result of their three-stage process as an object in and of itself. For 
example, they were solving a problem in which they were making a committee with 3 men from 

7 men. As they had the following exchange they wrote 7!
4!
⎛

⎝
⎜

⎞

⎠
⎟ / 3! . 

Rose: So that means for this scenario, we have what was it, seven men. I’m going to 
write it over here. We have seven men, and it looks like we’re going to isolate the 
three persons by 4 factorial. 

Sanjeev: Which are the ones we don’t care how they’re arranged. 
Rose: Yeah. And then, within this group of 3, there’s 3 factorial ways to arrange them. 
This again emphasizes their attention to the three-stage process. However, they then did seem to 
be able to think about operating on the result of that expression, as Rose indicated . 
Rose: Because this will tell us how many ways you can arrange the men. And for every 

way you can arrange the men, it goes with one of the three arrangements of the 
women. So if there are three arrangements for women, then, that’s three times this 
[the expression for the men]. 

 
Discussion and Conclusion 

Although I could provide only a limited number of examples due to space, the results 
presented in this preliminary report are intended  to raise questions about what it takes to provide 
evidence that reification has taken place. There did seem to be evidence that the students could 
think of their combination expression as “how many ways you can arrange the men,” which 
suggests being able to conceive of the results of their three-stage process. And yet, such 
utterances came only after the students clearly articulated this process. Some lingering questions, 
then, include, What is evidence for reification in the context of combinatorics? and Do the 
utterances such as “this will tell us how many ways you can arrange the men” count as evidence 
that they conceive of “choosing” as a reified process? In addition, I wonder what role 
symbolization plays in reification, as I had not prompted the students to express the formula for 
combinations using a single symbol. Also, I wonder if the way in which the tasks were 
sequenced hindered their reification process in any way. A final question is whether or not it is 
necessary for students to reify the process of choosing in order to be successful counters. I hope 
to facilitate discussion about such questions through the presentation of this preliminary report. 
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Outcomes Beyond Success in a Problem Centered Developmental Mathematics Class 

Martha Makowski 
University of Illinois at Urbana-Champaign 

Low success rates in the pre-college level, or developmental, curriculum at many community 
colleges has resulted in the creation of classes that use problem solving and group work to help 
students become more mathematically empowered. This preliminary report describes one such 
class at a Midwestern community college and then outlines the results from a pre- and post-
survey of students taking the class, focusing on whether students’ attitudes towards mathematics 
changed while enrolled in the class. Further analysis will examine how students evaluated the 
class and ranked the class structures. Generally, males, younger students, and Black students 
were less likely to complete the course. Students who came close to completing the class had an 
overall positive shift in their attitudes towards mathematics. 

Keywords: developmental mathematics, community college, problem solving, attitudes 

Each year over 1 million students invest substantial time and money to take pre-college level 
classes that do not count towards a degree (Parsad, Lewis & Greene, 2003). Often called 
“developmental,” such classes provide all students with the chance to be college ready (McCabe, 
2000). However, as many as 67% of students who start developmental classes do not finish 
(Bailey, Jeong & Cho, 2010), which is particularly concerning given that developmental students 
disproportionately come from minority and low socio-economic backgrounds (Attewell, Lavin, 
Domina, & Levey, 2006). Despite the volume of students in developmental programs, research 
has rarely examined individual classes and students. Given this, an acute need exists for research 
on developmental math that looks beyond success rates (Mesa, Wladis & Watkins, 2014).  

Developmental math tends to be taught using lecture with an emphasis on procedural 
knowledge (Grubb et al., 1999; Mesa, Celis, & Lande, 2014). The low success rates, combined 
with the fact that community college students have high levels of math anxiety (Sprute & 
Beilock, 2016) and appreciate knowing how what they learn relates to their lives (Cox, 2009), 
suggests that the traditional ways of teaching developmental math do not provide sufficient 
opportunities for students to change their opinions about mathematics or themselves as doers of 
mathematics. This study examines the outcomes beyond success of one developmental math 
implementation that attempts to better meet the needs of the developmental population. 
… 

Mathematical Literacy: Streamlining the Curriculum 
… 

Low success rates in developmental mathematics has led community college educators to 
create curriculum pathways that accelerate students through their required pre-college-level 
course work while promoting more real world connections. Mathematical Literacy at Fields 
Community College (FCC; all names are pseudonyms) is one such initiative. Rather than 
learning through lecture, students engage in group work. The teacher primarily acts as a 
facilitator while the students work on real world problems. The course is designed to be 
completed in one semester, which fulfills the students’ developmental needs in a shorter time 
frame than the traditional algebra sequence. 

The Mathematical Literacy movement is fairly new, but early results from national initiatives 
suggest students are more successful than students taught in traditional classrooms (Strother & 
Sowers, 2014; Yamada, 2014). Less understood is how students’ relationship to math changes 
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after taking classes like this and students’ experiences in these classes. Developmental classes 
offer one of the last opportunities for students to explore mathematics and challenge their ideas 
about math, so it is important to investigate whether and how students’ attitudes towards math 
change in these new developmental classes. In particular, I investigate: 

x Who finishes Mathematical Literacy at FCC? 
x Do the attitudes of students who finish Mathematical Literacy change during the course of 

the semester? How do attitudes vary between students with different characteristics?  
x Is there a relationship between the magnitude of students’ attitudes towards mathematics 

and their background characteristics? 
x How are students’ evaluations of the class related to their attitudes towards mathematics? 

x … 
Methods 

Sample 
In total, 150 Mathematical Literacy students from eight surveyed sections at FCC 

participated. All FCC Mathematical Literacy instructors were invited to participate. Sections 
were surveyed in all instances when the instructor agreed to participate. Three sections occurred 
in the in fall (n = 53) and five sections in the spring (n = 97). The number of students 
participating from a particular section ranged from 15 to 24 students. 
Data Sources 

Data for this study come from a pre- and post-survey given to students during the first and 
last week of the semester, respectively. Both the pre- and post-survey included the Attitudes 
Toward Mathematics Inventory (ATMI; Tapia & Marsh, 2004) to measure mathematics attitudes 
along four dimensions related to mathematics performance: enjoyment of mathematics (8 items), 
motivation (9 items), self-confidence (15 items), and value (8 items). Students answered items 
using a 5 point Likert scale on items. The pre- and post-surveys also include single item 
questions asking about the nature of mathematics (i.e., “learning math is mostly memorizing 
facts”) and about students’ level of comfort with certain types of class structures (i.e., “I learn 
mathematics best when I get to work in a group”). In addition, both surveys contained free-
response items asking about students’ mathematical backgrounds (pre-survey), demographics 
(pre-survey), educational plans (pre-survey), expected grades (post-survey), and course 
evaluation (post-survey). 
Analytic Methods 

To determine who completes Mathematical Literacy I ran descriptive statistics on the pre-
survey sample and compared these to the descriptive statistics of the post-survey sample. 

To examine whether or not the attitudes of students’ towards mathematics changed over the 
semester, I conducted a confirmatory factor analysis on the ATMI scales. For brevity, in this 
proposal I report only the results from the original scales. Analysis using the attitude scales were 
run on both the original scale and the scales created after the confirmatory factor analysis. The 
general trends of the findings discussed in the results section are the same for both sets of scales.  

Using the attitude scales, I performed paired sample t-tests to determine whether attitudes of 
those who come close to completing the class changed significantly over the 16 week class. To 
test for differences in attitudes growth between different sub-populations, I ran independent 
sample t-tests between different sub-populations of interest.  

To examine the relationship between the changes in attitudes and students’ background 
characteristics, I performed two-level Hierarchical Linear Models (HLM) with teachers as a 
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level-two variable and students as level one. Separate models were run for each of the four 
attitudes, with the post-survey attitude scores as the dependent variable. Independent variables 
were students’ pre-survey attitude score, gender, race, age, anticipated grade, whether or not they 
had taken previous developmental math classes, and the highest degree they intended to earn.  

I will use descriptive statistics, basic qualitative coding, and HLM modeling to examine the 
attitude scales and class evaluation data and their relationship to students’ backgrounds. 
… 

Results 
… 
Who Completes Mathematical Literacy 

Although eight sections took the pre-survey, one class section did not take the post-survey 
because the survey schedule did not work out for the instructor. Within the students who had the 
opportunity to take both the pre- and post-survey resulted in a 63.3% retention rate between the 
pre- and post-survey. Students in this group who did not take the post-survey were, for the most 
part, no longer actively pursuing the course for personal or academic reasons. All of the students 
who took the post-survey reported that they expected to pass the class. 

Descriptive statistics for participants who took only the pre-survey, compared to those who 
took both surveys are summarized in Table 1. Notably, the whole survey sample is more female 
than male and majority white, which is consistent with the developmental population at FCC. 
Those who only took the pre-survey were more likely to be male, more likely to be Black, and 
were a couple years younger than the students who took both surveys.  

 
Table 1. Demographics of Survey Samples 
 Whole sample  Pre-survey only  Took both surveys 
  n %   n %   n % 
Gender         

Male 65 45.14  34 52.31  31 47.69 
Female 79 54.86  27 34.18  52 65.82 

Race          
White 52 56.52  8 15.38  44 84.62 
Black 29 31.52  21 72.41  8 27.59 
Hispanic 5 5.43  1 20.00  4 80.00 
Asian 5 5.43  0 0.00  5 100.00 
Other 1 1.09  0 0.00  1 100.00 

Taken prior developmental  93 35.86  44 47.31  49 52.69 
No prior developmental 52 64.14  21 40.38  31 59.62 
Age (years) 150 22.71 (7.88)   69 21.59 (7.31)   81 23.66 (8.26) 

Note: Age reports the mean age of the participants in years followed by the sample standard deviation.   
 
Changing Student Attitudes in Mathematical Literacy 

Students who took both surveys had average positive gains on all four of the measured 
attitudes towards math. The shift in their enjoyment of math was significant. Students who were 
enrolled in their first developmental class had an overall positive increase in their value of 
mathematics, compared to those who had taken previous developmental math (Table 2).  

Students were significantly more likely to disagree with the statement “there is only one way 
to solve a mathematics problem” at the end of the semester than they were at the beginning of the 
semester (Table 3). On other nature of math items there were no significant differences. They 
were also likely to shift whether or not they thought they learned mathematics best in a group or 
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not, but these results were not significant. The high mean pre-post difference combined with the 
high standard deviation for these items (𝑥 = -0.185, sd = 1.246) suggests, however, that students 
were changing their mind about whether they agreed with these statements or not. 
… 
Table 2. Attitude Change Results for Selected Sub-populations 

 
 

Comparison of pre-post-survey attitude 
scores (complete data on both surveys) 

 
Average growth in attitude scores of those with no prior 

developmental math compared to those that did 
  N   Pre-post difference  

Attitude N Pre-score Post-score t-stat   
No prior 

devel. math 
Prior devel. 

math   
No prior 

devel. math 
Prior devel. 

math t-stat 
Confidence 61 2.859 2.986 1.562  36 23  0.174 0.064 0.638 
Enjoyment 74 2.941 3.093 2.406*  44 28  0.202 0.076 0.943 
Motivation 73 2.830 2.925 1.637  44 27  0.073 0.136 -0.502 
Value 68 3.756 3.813 1.064   40 26   0.144 -0.082 2.047* 
 *p<0.05 
Note: Attitude scores were scaled to be on a 5 point scale with 1 corresponding to “Strongly agree” and 5 
corresponding to “Strongly disagree.” 
… 
Table 3. Attitudes Shifts towards Math and Classroom Structures 

Item statement N 
Mean post-pre 

difference 
Standard 
deviation 

Learning mathematics is mostly memorizing facts. 77 -0.039 1.032 
There is only one way to solve a mathematics problem. 80 -0.288* 1.171 
I enjoy working in small groups in math class. 78 -0.077 1.066 
I learn mathematics best when I get to work in a group. 81 -0.185 1.246 
I learn mathematics best when I work by myself. 81 0.185 1.205 
The math I learn in school rarely helps me when I use  
    math in my daily life. 78 -0.115 1.032 

*p<0.05 
Note: Items were scored on a 5 point Likert scale, with 1 corresponding to “Strongly agree” and 5 
corresponding to “Strongly disagree.” 
… 
The Relationship between Attitude Change and Background Characteristics 

For each of the measured attitudes, the biggest significant predictor of how attitudes changed 
was their pre-survey attitude score. However, intending to earn a Masters or higher significantly 
predicted an increase in the value of mathematics. Expecting to earn a grade of A in the class 
significantly predicted an increase in their mathematical confidence. The full results of the 
HLMs using the original scales on the ATMI are presented in Table 4. 
… 

Discussion & Conclusions 
… 
 The results presented in the previous section highlight many positive outcomes beyond 
success rates in a Mathematical Literacy classroom. A 63% retention rate may seem low, but this 
number is higher than many developmental math instructors experience when teaching using 
traditional methods. That the students who completed the class experienced an average positive 
growth in their attitudes towards and views of mathematics also warrants excitement. Although 
only enjoyment showed a significant increase, several others were close to being significant. A 
larger sample could produce more robust results. Given that community college students do 
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Table 4. HLM Coefficients for Models Predicting Post-survey Attitude Scores 
  Value Confidence Enjoyment Motivation 
Fixed effects     

Pre-attitude score 0.692*** 0.560*** 0.647*** 0.738*** 
 (0.085) (0.090) (0.088) (0.089) 

Male 0.081 -0.040 0.169 0.179 
 (0.099) (0.150) (0.129) (0.124) 

Race/Ethnicity     

Black -0.020 -0.218 0.138 0.086 
 (0.159) (0.230) (0.198) (0.204) 

Hispanic -0.012 -0.404 0.029 0.095 
 (0.235) (0.363) (0.294) (0.310) 

Asian 0.436* -0.519+ 0.118 -0.078 
 (0.198) (0.311) (0.244) (0.230) 

Other 0.464 0.478 0.475 0.000 
 (0.382) (0.542) (0.512) (.) 

Age (years) -0.003 -0.001 0.009 0.005 
 (0.006) (0.010) (0.009) (0.008) 

Prior developmental 
math 

-0.180+ 0.047 -0.170 0.042 
 (0.104) (0.156) (0.134) (0.131) 

Expected grade     

A 0.110 0.606** 0.319* 0.231 
 (0.123) (0.190) (0.159) (0.158) 

B  0.076 0.367* 0.069 -0.052 
 (0.108) (0.157) (0.136) (0.133) 

Anticipated degree     

Bachelors 0.023 -0.026 -0.070 -0.023 
 (0.127) (0.204) (0.170) (0.164) 

Masters or higher 0.364** 0.166 -0.010 0.190 
 (0.138) (0.229) (0.183) (0.183) 

Unknown 0.174 0.322 0.519 0.401 
 (0.373) (0.386) (0.366) (0.350) 

Constant 1.046** 1.092*** 1.070*** 0.667* 
 (0.335) (0.300) (0.297) (0.302) 

Random Effects     

Teacher 0.000** 0.000** 0.000* 0.040 
Residual 0.338*** 0.477*** 0.464*** 0.442*** 

Sample size 65 58 71 69 
+ p<0.10, * p<0.05, ** p<0.01, *** p<0.001   

 
experience a lot of mathematics anxiety, these results are certainly worth investigating further to 
determine which parts of Mathematical Literacy contribute to the students’ shift in attitudes. 

That said, some results suggest that Mathematical Literacy does not reach everyone equally. 
The overall rate of persistence in Mathematical Literacy is higher than for traditional classes, but 
the students who did not complete the class were more likely to be Black and male than the 
students who did. Community college mathematics classrooms are an important and under-
examined area in mathematics education. Given that Black students disproportionally enroll in 
developmental math, understanding the issues that keep these students from succeeding in 
Mathematical Literacy deserves a closer look.  
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Underrepresented Students Succeeding in Math: The Challenges and Coping Strategies 
of Mathematically Talented Post-secondary Students 

Martha Makowski & Randi Congleton 
University of Illinois at Urbana-Champaign 

Retaining mathematically talented underrepresented students in mathematics programs requires 
understanding the challenges the face during their post-secondary mathematics education. Using 
Swail’s framework (2003), this study investigates the self-identified challenges undergraduate 
and graduate mathematics students face and the coping mechanisms that helped them navigate 
and overcome those challenges. The vast majority of the challenges both groups of students 
encountered were cognitive in nature, suggesting that programs wishing to retain students 
should focus on providing social and institutional supports to provide balance. 
… 
Key words: Underrepresented students, mathematics, post-secondary programs 

… 
In the United States, completing a graduate program in mathematics was, until recently, 

primarily the domain of white American citizens and international students. In 2012−2013 the 
U.S. awarded 1,843 doctoral degrees in mathematical science, with 46.5% going to U.S. citizens. 
Of domestic students, only 24 graduates were African American and 25 Latino (AMS, 2013).  

The reasons for low numbers of underrepresented students in math stem from many causes. 
Underrepresented undergraduate students generally have lower rates of degree attainment than 
the general college student population (Gladieux & Swail, 1998; Mortenson, 2005) and 
mathematics based fields (Bonous-Harmarth, 2000). At both the undergraduate and graduate 
level, underrepresented students pursuing STEM degrees face challenges related to their identity 
(Fries-Britt & Turner, 2002; Gildersleeve, Croom, & Vasquez, 2011; Malone & Barbarino 
2008). At the graduate level academic challenges have been documented for students of color 
(Cooper, 2004; Herzig 2002). Cooper (2004) found that black graduate reported differences 
between graduate and undergraduate culture related to studying. Although they felt comfortable 
in the program, some reported hostile and competitive climates. Students of color who eventually 
earned a graduate degree in a mathematics based field reported frequently being judged by the 
color of their skin while earning their degree (MacLachlan, 2006). 

Many students earning advanced degrees face adversity, but the unique and compounding 
challenges underrepresented students face means it is particularly important to understand their 
challenges and how they overcome them at both the graduate and undergraduates levels. Few 
studies have examined successful underrepresented students in mathematics. Expanding this 
knowledge base can help inform services that support students pursuing math. Towards this end, 
we compare the challenges to success and the subsequent coping strategies mathematically 
talented underrepresented undergraduate and graduate students identify. In particular we ask: 

1. What are the self-reported challenges the mathematically talented underrepresented 
students face? 

2. What are the strategies utilized by students to help them manage and persist through these 
challenges? 

3. How do the challenges faced and coping strategies used vary between undergraduate and 
graduate students? 

To help answer these questions, we focus on student participants in the National Alliance for 
Doctoral Studies in the Mathematical Sciences (henceforth referred to as “the Alliance”). The 
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Alliance is a nationwide program seeking to facilitate the recruitment and retention of talented, 
underrepresented domestic students in mathematics disciplines through the doctorate.  

… 
Conceptual Framework 

… 
This study uses Swail’s (2003) Framework for Retention of Minority Students, which 

captures the interplay of the many factors affecting student persistence and achievement by 
categorizing them into three main components: 1) Social; 2) Cognitive; and 3) Institutional. 
These constructs are presented around a triangle, with each component forming one edge (Figure 
1). The graphical representation signifies that the three components impact one another while 
also influencing a students’ persistence or achievement; persistence optimally occurs when 
equilibrium exists between the three factors. For example, a student facing large institutional 
challenges must have social and/or cognitive supports that compensate for the deficiency. 
Swail’s framework, although underutilized in research, accounts for both students’ personal 
attributes and the contextual factors related to an institution’s role in persistence (Swail, 2003).  

While Swail’s (2003) retention framework is most commonly utilized by institutions to 
improve student retention, the Alliance’s goal to retain students in mathematics is comparable. 
Alliance students are currently persisting towards a mathematics degree and have access to many 
of the factors the literature suggests cultivate success. This unique set of circumstances makes 
the Alliance population uniquely suited to understand the challenges of STEM pipeline persisters 
and the ways in which they overcome those challenges.  
… 
Figure 1. Swail’s Framework of Minority Student Persistence  

 

Source: Swail (2003), p. 77 

Data and Methods 
Sample 

Participants at the 2014 Alliance conference were asked to complete an anonymous survey 
during lunch of the main day. Of the approximately 300 conference attendees, 210 individuals 
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took the survey, which included students, faculty mentors, and university representatives. We 
focus on the responses of the participating undergraduate (n=127) and graduate students (n=25). 
Table 1 provides basic demographics on these students. The two page survey consisted of both 
free-response items asking about various dimensions of success and quantitative rankings of 
various influences on success.  

In this study, we draw the data from four of the questions: two free-response and two ranking 
questions. The free response items asked:  

1. Among the various experiences you’ve had in your program, please describe one that you 
consider to be the most challenging. 

2. If applicable, why did you think this was a challenging experience and how did you 
overcome this challenge? 

The first ranking question asked students to order the influence of various individuals on 
their success. The options were: faculty/teachers, advisors, mentors, peers, family, or others. The 
second ranking question asked students to assign a percentage to different people and structures 
that indicated how much of their success was attributable to that entity, so that the sum of the 
percentages assigned was 100%. Their choices were: mentors, financial aid, the Alliance, natural 
ability, hard work, peer relationships, and other. 

 
Table 1. Demographics of Survey Sample 

 Undergraduate  Graduate  
  Male Female  Male Female Total 

White 9 9  1 2 21 
Black 9 25  5 1 40 
Hispanic 34 23  6 4 67 
Asian 0 2  0 0 2 
Other/Multiracial 3 10  2 3 18 
Total 55 69  14 10 148 

 
Methods of Analysis 

The analysis of the items from this survey used qualitative coding combined with statistical 
tests for the two free response items and statistical methods for the two ranking questions. We 
discuss each, in turn, below. 

Free response items. The free response items asked students to identify the biggest challenge 
faced during their program and then describe how they overcame that challenge. We read the 
responses and identified the challenge and the coping strategy using Swail’s (2003) Framework 
for Retention of Minority Students. The authors each coded all the responses separately. 
Discrepancies were discussed until consensus was achieved.  

One hundred twelve undergraduates and 23 graduate students described the challenges they 
faced while in school. In comparison, only 74 undergraduates and 19 graduate students answered 
the follow-up question. For this preliminary analysis, each challenge and each coping strategy 
was coded as social, cognitive, or institutional. If a student mentioned more than one challenge 
or coping strategy, both codes were assigned. When the student identified a challenge but not 
their coping strategy, or the student indicated that the challenge had not been resolved, the 
coding for the coping strategy was left blank.  

 After coding we ran Pearson Chi-squared tests to determine whether the undergraduate or 
graduate students varied significantly in the types of challenges they faced. We ran similar tests 
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to determine whether graduate students were more likely to resolve challenges with both social 
and cognitive coping strategies.  

Quantitative items. The first quantitative item asks students to rank which individuals were 
critical to their success. The second asks students to assign a percentage indicating how much 
particular sources contributed to their success. Responses that did not sum to 100% were 
removed from the analysis. Data from these questions were analyzed using independent sample 
t-tests to determine if the rank or weight of each source varied significantly between the 
undergraduate and graduate students.  

 
Preliminary Results 

The results presented in this section represent the initial analysis done on the research 
questions discussed above. By the time of the conference we plan to have explored these findings 
in more detail, as discussed in each of the results sub-sections.  

 
Challenges and Coping Strategies 

Both undergraduate and graduate students experienced similar challenges and the majority of 
the challenges they faced were cognitive. For example, a female undergraduate stated that for her 
“balancing all aspects of life was hard. Finding the right balance between school, family, social, 
and sleep is hard to find so that none are ignored.” A male graduate student noted that “…trying 
to learn anything when I wasn’t prepared for the stuff” was his biggest challenge. Both of these 
statements received a cognitive code they mention need for balance and academic background 
respectively, both of which are cognitive factors in Swail’s (2003) framework. The first 
statement also received a social code because she notes social obligations as a challenge, which 
falls under the domain of social in the framework.  

Graduate students did use coping strategies from multiple domains significantly more often 
than undergraduate students. They were also more likely to draw on social coping strategies than 
undergraduates. Table 2 documents the relevant test statistics. In our next steps we will code the 
cognitive responses into the secondary cognitive categories of Swail’s framework to see whether 
graduate and undergraduate students face different types of cognitive challenges. 

 
Table 2. Nature of Challenges and Coping Strategies by Student Status  

  Nature of Conflict 

  N Social Cognitive Institutional 
Social & 
Cognitive 

Social & 
Institutional 

Cognitive & 
Institutional All three 

Undergraduate 112 36 76 12 11 0 1 0 
Graduate 23 5 16 3 1 0 0 0 
Pearson Chi-squared  0.977 0.026 0.105a     

   Nature of Coping Strategy 
Undergraduate 74 24 44 11 2 1 2 0 
Graduate 19 11 12 5 4 4 2 1 
Pearson Chi-squared  4.176* 0.769 0.238     
*p<0.05         
a Cell sizes in this analysis were smaller than is technically required for a reliable Person Chi-squared estimate. 

 
Factors Students Attribute to Success 

Undergraduate and graduate students agreed on the relative rank of various individuals on 
their success: both groups felt that the person most important to their success was themselves. 
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Families and peers were the least important. Graduate students did rank their family and peers a 
bit higher than undergraduate students, but the difference was not significant.  

Of those surveyed, 23 graduate and 114 undergraduate students completed the question 
asking students to assign a percentage indicating how much various influences impacted their 
success. The only significant difference was that graduate students attributed less of their success 
to natural ability (9.78% compared to 16.52% for the undergraduates). Table 3 shows the means 
for each of the tested influences and the relevant test statistics. 

 
Table 3. Average Percent of Influence on Student Success 

Influence on Success Student Level N Mean Std. Deviation (s.e.) t 
Mentor Graduate 23 19.13 14.05 (2.93) .446 

Undergraduate 114 17.81 12.74 (1.19)  
Financial Aid Graduate 23 15.61 11.54 (2.41) 1.068 

Undergraduate 114 12.96 10.74 (1.01)  
Natural Ability Graduate 23 9.78 7.16 (1.49) -2.764* 

Undergraduate 114 16.52 11.21 (1.05)  
Hard work Graduate 23 30.00 17.58 (3.67) -.269 

Undergraduate 114 30.98 15.49 (1.45)  
Peer relationships Graduate 23 16.48 15.81 (3.30) 1.742 

Undergraduate 114 12.30 9.11 (0.85)  
Alliance  Graduate 23 7.96 7.97 (1.66) .381 

Undergraduate 114 7.40 6.05 (0.57)  
Other Graduate 23 1.09 5.21 (1.09) -.655 

Undergraduate 114 2.05 6.63 (0.62)  
*p<0.05       

 
Significance 

 
This study provides insight into the types of challenges persistent underrepresented 

undergraduate and graduate students face in their mathematics programs. The fact that most of 
their challenges were cognitive is suggestive. Swail’s (2003) framework argues that to persist 
students must have balance between the three domains. Because students in mathematics 
programs face overwhelming cognitive challenges at both the undergraduate and graduate level, 
programs focused on retaining underrepresented students should strive to balance the necessary 
cognitive challenges with rich, meaningful social and institutional supports.  

The fact that graduate students were more likely to cope with the challenges they faced using 
structures from multiple domains of Swail’s framework is also suggestive. Although 
undergraduate and graduate students face similar challenges, graduate students are more likely to 
resolve those challenges using multiple types of support. The quantitative data from the survey 
speak to this—graduate students believe their natural ability is not as important to their success 
as undergraduates, suggesting they look outside of themselves for support. Conversely, the key 
to promoting undergraduate retention in STEM may require encouraging underrepresented 
undergraduates to take advantage of the opportunities many diversity offices provide. More 
generally, the findings presented in this study provide support for previous research positing that 
an awareness of the environmental factors that exist for underrepresented students and how they 
perceive those factors is integral to their successful transition and persistence.   
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Student Gesture Use When Explaining the Second-Derivative Test and Optimization: 
Mimicking the Instructor? 

 
Tim McCarty 

West Virginia University 
Nicole Engelke Infante 

West Virginia University 
 
The Second-Derivative Test and optimization can naturally evoke gestures from an instructor 
while he or she is teaching. We wanted to establish how student learning might be affected by an 
instructor’s use of gesture. Students viewed either a gesture-rich or gesture-free video of an 
instructor solving an optimization problem, and were interviewed a week later to assess both their 
understandings of optimization and how they used gesture to support their explanations. Very few 
gestures were used when the students explained how they solved the optimization problem. 
However, when describing the second derivative test separate from optimization, students used a 
number of gestures. We conclude that further study should be undertaken, but such study should 
be focused on the Second-Derivative Test without the context of optimization problems. 
 
Key words: Gesture, Calculus, Optimization, Instruction 

 
Background 

 
Gesture use in the classroom may be used to increase student interest and foster student success 

in calculus. Recent studies suggest that instructors’ use of gesture promotes student learning, and 
that instructors can intentionally alter their gesture production during instruction (Alibali, et al., 
2013a; Alibali, et al., 2013b; Cook, Duffy, & Fenn, 2013; Hostetter, Bieda, Alibali, Nathan, & 
Knuth, 2006). As calculus can be considered the study of motion, it is a natural place to examine 
gesture. There are several types of calculus problems that require students to visualize or imagine 
situations involving changing rates, with optimization being one example. LaRue (2016) studied 
student responses and approaches to optimization problems, while classifying each action in a 
student’s problem-solving process using Vinner’s (1997) conceptual, analytical, pseudo-
conceptual and pseudo-analytical definitions. We use these definitions, along with Tall and 
Vinner’s (1981) concept image, to describe student understanding. 

We seek to answer the following questions: Will students who view a gesture-enhanced lesson 
demonstrate a greater understanding of the presented concept than students who view a gesture-
free lesson? How do students use gesture when explaining their work? Do they mimic any gestures 
used by their instructor? We present a pilot study that attempts to answer these questions. 

 
Methods 

 
Data collection was completed in two phases. The first phase included eleven students, each 

of whom were currently enrolled in a second-, third-, or fourth-semester Calculus class. The 
average amount of time it had been since each student had taken first-semester Calculus was about 
three-and-a-half years. These students were asked to take a short pretest, watch one of two possible 
videos, and then complete a short posttest. The second phase, which occurred a week later, 
involved semi-structured interviews in which students were asked questions to assess their 
understanding and recall of the first phase’s material. 
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The six-question pretest had students determine if points on a function were maxima, minima, 
neither, or “can’t tell,” using three of the standard function representations: algebraic, graphical, 
and verbal. The verbal problem was an optimization problem in which they were asked to 
maximize the area of a rectangle for a given perimeter. After completion of the pretest, students 
were shown one of two videos in which a similar perimeter/area optimization problem was 
presented, solved, and verified using the Second-Derivative Test. Both videos followed essentially 
the same script, but one video contained instruction that was given without any of the categories 
of gesture outlined in Engelke Infante (2016), while the second video contained instruction that 
utilized such gesture. After watching and taking notes on the video, the students were given a 
three-question posttest consisting of three optimization problems: the first was very similar to the 
one in the video, the second was an extension of the first, and the third was a different type of 
optimization problem. In the interest of space, we consider only the optimization problems that 
were similar to what was presented in the video. Six students viewed the gesture video, and the 
other five viewed the gesture-free video. Rubrics were created for each problem, and tests were 
graded and scored.  

For the second phase, we requested interviews with all participants. Three students agreed to 
participate and were asked to 1) tell us what you know about the Second-Derivative Test, and 2) 
solve a simple perimeter/area optimization problem. As students reached three specific points in 
their solution process, they were asked “How do you know that the functions you have chosen 
represent area and perimeter?”, “How do you know to take the derivative at this step?”, and “How 
do you guarantee that the answer you obtained was a maximum?” Follow-up questions were asked 
to clarify responses and ascertain that we had gained as much student knowledge as possible. The 
interviews were videotaped and an analysis of subject gesture use was begun. 

 
Data and Results 

 
To assess the extent that the gesture-rich video influenced student understanding, we compared 

the student scores of the last item on the pre-test (the only optimization problem) with the average 
scores of the two similar optimization problems in the posttest. The initial results suggest that the 
students who viewed the gesture-rich video improved their scores on the optimization problems 
more than the students who watched the gesture-free video, as shown in Table 1. 

 
 

Table 1 
Scores of the Optimization Problems, Pre- and Post-video 

Students Pretest Problem Posttest Problems Improvement 
All Students 26% 52% 26% 

Gesture-rich video 22% 55% 33% 
Gesture-free video 32% 48% 16% 

 
 

During the interviews, we expected students to recall statements and solution methods that 
were shown to them in the video. However, of the three students interviewed, none could give an 
accurate description of the Second-Derivative Test, and while two students completed the initial 
optimization problem correctly, they did not verify their answers using the Second-Derivative 
Test, which was the method of verification in the video. The third student also obtained a correct 
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answer to the initial optimization problem, but he did so without using calculus. When given an 
additional optimization problem to solve, he was unable to solve it. Further discussion of the 
interview responses is given below.  
 
The Pretest and Posttest 

The pretest suggests that the students had poor mastery and recall of first-semester calculus 
objectives that required the use of more abstract algebraic representations of functions. The first 
question (Pre #1) asked students to determine extrema of a function, 𝑓, given its graph. The next 
four problems (Pre #2-5) asked students to determine extrema of 𝑓 given either the graph of 𝑓′ or 
a list of algebraic information about 𝑓, 𝑓′, and 𝑓′′ (e.g.,  𝑓(1) = 8, 𝑓′(1) = 0, 𝑓′′(1) = 2.) The 
final pretest problem (Pre #6) asked students to solve an optimization problem requiring them to 
maximize the area of a rectangle for a given perimeter. Table 2 lists the scores for all problems on 
the pretest and posttest and shows this drop in scores after the pretest’s first problem. We were not 
totally surprised by this score decrease, given that the literature indicates that the function concept 
takes a long time to develop, and that students have difficulty moving between different function 
representations (Carlson, 1998; Carlson, Oehrtman, & Engelke, 2010). 

We found a similar score decrease across the posttest optimization problems. The posttest 
problems asked the students to: 1) solve a problem similar to the example problem in the video, 2) 
solve a problem with a slight extension of the example problem, and 3) solve an optimization 
problem with a different context. It was our goal to determine the extent to which they could make 
extensions from the example that had been presented. As seen in Table 2, students scored well on 
the most similar problem (Post #1) and scores decreased as extensions needed to be made.  
 
 
Table 2 
All Pre- and Posttest Scores 

Students Pre #1 Pre #2-5 Pre #6 Post #1 Post #2 Post #3 
All Students 75% 24% 26% 67% 36% 20% 

Gesture-Rich Video 87% 25% 22% 70% 40% 12% 
Gesture-Free Video 60% 23% 32% 64% 32% 22% 

 
 

The Interviews 
 

During the interviews, no student accurately described the Second-Derivative Test. Each 
student gave responses that were a mixture of correct statements, pseudo-conceptual and pseudo-
analytical ideas (Vinner, 1997), and statements that were incorrect or off-topic. Two of the three 
students were able to complete an optimization problem correctly, but neither of them used a 
version of the Second-Derivative Test to verify their answers, like had been done in the video 
example. We present case studies of each student’s responses that focus on their gesture use and 
what they said about the Second-Derivative test. 
 
Students Who Watched the Gesture Video 

Student 105. Student 105 initially stated that the Second-Derivative Test was “concavity.” His 
first use of gesture occurred when he began discussing a sign chart which was part of his concept 
image of the test. While stating that one must find critical points, he used his hands to signal a 
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hierarchy of derivatives by moving them lower at each step while saying “… [given a] function, 
you find the first derivative, and then you find the second derivative.” He seemed to show 
confusion between 𝑓, 𝑓′, and 𝑓′′, stating that one must “plug [critical number] back into the original 
function and that will tell you exactly where it changes … it will change concavity” and later 
compounding this error by drawing a sign chart that involved plugging critical values into 𝑓, 
claiming that the signs of those results determined decrease and increase, and stating incorrectly 
that “from decreasing to increasing is concave down, and … from increasing to decreasing is 
concave up.” Thus, while his concept image includes this sign chart, his reasoning behind the 
creation of this chart is pseudo-conceptual. Nevertheless, he used many gestures during this 
explanation, indicating concavity by using five “U”-shaped hand positions and two “U”-shaped 
tracing motions within a span of about 40 seconds during the explanation of his sign chart.  

He was able to solve the optimization problem correctly, using the method shown in the video 
minus the verification step. However, when asked about why we take the derivative of our area 
function, he noted because “The first derivative tells us the maximum and minimum, the second 
derivative tells you the concavity.” While this statement is technically correct, it is pseudo-
analytical as it is not an explicit reason as to why we take a derivative, and he did not include any 
of the “U”-shaped gestures he used before. When asked how he knew that his final answer led to 
a maximum, he did not invoke the Second-Derivative Test. Instead, he constructed a table by 
testing at least one value larger and one value smaller than his critical point; the areas resulting 
from those numbers were calculated and found to be less than the area resulting from his answer. 
Here, we see evidence of pseudo-analytical reasoning and the absence of gesture use.  Aside from 
a few general hand motions given to emphasize certain words, he invoked minimal gesture during 
these particular explanations. 

Student 109. Student 109 mentioned that the Second-Derivative Test was “to determine the 
point at which the (first) derivative changed direction,” while positioning his index finger higher 
than his middle finger and then switching their positions to signify this change. When recalling the 
Second-Derivative Test, he invoked the image of a bell curve, and used gestures in his description, 
using two hand motions to trace, first upward, then downward, an imaginary bell curve in the space 
in front of him while saying, respectively, “climbing up the bell curve,” and “it would not start to 
go negative, but start decreasing,” and finishing with the same finger gesture as before while 
stating “it’s the change of the first derivative.”  

Like Student 105, Student 109 was able to solve the optimization problem using the method 
shown in the video, and used a similar table instead of the Second-Derivative Test to show that his 
answer led to a maximum. Student 109 did not use much gesture during the explanation to his 
solution of the optimization problem; his gesture use consisted primarily of tracing elements of the 
many diagrams he drew to compliment his words. For example, after drawing a bell curve with a 
small horizontal tangent line at the top, he said “at this point, slope should equal zero, and the 
tangent line would be flat,” while tracing over the horizontal tangent line. 
   
Student Who Watched the Gesture-Free Video 

Student 106. Student 106 initially said that the Second-Derivative test told us “rate of change” 
and “maximum and minimum.” With that latter statement, he presented simultaneously a raised 
and lowered horizontal, flattened hand to delineate the ideas of maximum and minimum. He later 
said the test is “where the first derivative is equal to zero …,” at which point he seemed to trace a 
small horizontal segment with his pencil, maybe to represent an image of a horizontal tangent line. 
He continued “… and it tells you the maximum and minimum, or maybe the local maximum and 
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minimum of the first derivative,” while making the same flattened-hand gesture during both times 
he said “maximum and minimum.” Thus, it appears that Student 106 has at least a partial 
conceptual understanding of the second derivative.  

He answered the perimeter/area optimization question by quickly stating that the shape had to 
be a square. When asked how he knew this to be true, he stated that “I know that circles have 
probably the largest area, then I think the square, in my mind is next … so I just figured that I’ll 
just make a square out of the rectangle.” Since this answer did not take up much time, the 
interviewer gave him a second optimization problem to consider. He talked through several 
possible ways to approach the problem, but finally settled on constructing a graph. He drew two 
increasing segments followed by three decreasing segments and did not have an explanation as to 
why he drew this shape. While he was describing how he was interpreting his graph, he made a 
downward pointing motion when describing a function as decreasing, moved his hand in a precise 
straight line when saying that a function was linear, and held up his pencil horizontally then moved 
a finger down at the appropriate time while saying that the first derivative equaling zero can give 
us a maximum because the “slope tells us where it levels off and starts to go back down.” 
 

Ongoing Work 
 

The fact that students who viewed the gesture video showed more improvement when solving 
optimization problems on the posttest appears to be a promising area to explore. The interviews 
given a week later provided mixed results. While the students were describing their understanding 
of the Second-Derivative test in the interview, they used several gestures, some of which were 
similar to what they had seen in the video (Student 105) and some that were distinctly different 
(Student 106, who viewed the gesture-free video). However, students’ performance on similar 
optimization problems was not as strong as indicated on the posttest. Students did not verify that 
their answers were extrema. When asked how they knew their answer was a maximum, they did 
not invoke the second derivative as had been presented in the video. This leads us to believe that 
we were potentially asking them to recall too much mathematics. Analysis of the interviews is 
ongoing.  

Since the amount of mathematics in our script and tests seemed too much for these students, 
our next stage of research will be done on a smaller scale. We plan to devise a smaller, 4-5 minute 
script that only defines the Second-Derivative Test, eliminating the surrounding context of an 
optimization problem. This script will be filmed in four ways: with no gesture at all, with only 
tracing and pointing gestures at the board, with only hand gestures in the space between the 
instructor and the student, and with both of the preceding types of gesture. It is our hope that a 
simplified script, with more focused pre- and posttests, will allow for greater student success. With 
this success, we hope to not only have a greater understanding of how instructor use of no gesture, 
limited gestures, or many gestures might affect student learning, but also see students using more 
gesture to augment the explanation of their mathematical processes. Hence, we will be able to 
make suggestions for how instructors can incorporate gesture into their teaching to facilitate 
student understanding and success. As our work progresses over the next several months, we are 
certain several interesting questions will arise that we will bring to the conference. 
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Experts’ Varied Concept Images of the Symbol 𝒅𝒙 in Integrals and Differential Equations 
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The mathematical symbol “dx” is a symbol for which there can exist different views about its 
characteristics, purposes, and roles. We wished to see how experts viewed the dx in a variety of 
settings. We chose four mathematical contexts and interviewed four mathematics professors in 
order to understand their various concept images of the dx. While there was little agreement 
among the experts’ responses, most of them did have a strong concept image that remained 
consistent throughout their interviews, despite our attempts to create cognitive conflict between 
the different mathematical contexts. We conclude that the existence of a range in the experts’ 
opinions is noteworthy, and that further study should be conducted in order to more fully explore 
this range and any implications for instruction that may result from it. 
 
Key words: Calculus, Integrals, Differential Equations, Concept Image 
 

In this preliminary report, we examine instructors’ views of some of the various roles of the 
symbol 𝑑𝑥. This symbol can be found in a variety of mathematical settings, including definite and 
indefinite integrals, the formal definition for differential of a function, Leibniz notation for 
derivatives, the process of integration by substitution, and several types of ordinary differential 
equations. We wanted to see whether instructors’ concept images (Tall & Vinner, 1981) of this 
symbol would be consistent throughout all of these settings, or if different concept images would 
manifest given different settings. 

Research has been done on how students perceive the 𝑑𝑥 in a definite integral. Sealey and 
Thompson (in press) summarized four such perspectives noted in the literature: a marker that 
points out the variable of integration (Artigue, Menigaux, & Viennot, 1990; Hu & Rebello, 2013; 
Jones, 2013; Nguyen & Rebello, 2011), a graphical width of a rectangle (Bajracharya, Wemyss, 
& Thompson, 2012; Wemyss, Bajracharya, Thompson, & Wagner, 2011), a small amount of a 
given physical quantity (Artigue et al., 1990; Hu & Rebello, 2013; Roundy, Manogue, Wagner, 
Weber, & Dray, 2015), or a difference or change in a quantity (Von Korff & Rebello, 2012). 
López-Gay, Martinez, & Martinez (2015) gave other concept images found in physics, including 
𝑑𝑥 as an infinitesimal increment or linear estimate. While Hu and Rebello (2013) emphasized the 
importance of conceptualizing the dx as a width, Sealey and Thompson (in press) noted the 
importance of conceptualizing it as a difference in other mathematical contexts.  

The purpose of our research is to explore further concept images of the dx in some additional 
mathematical contexts. Specifically, we chose to investigate experts' perspectives of the 𝑑𝑥 in 
definite and indefinite integration, the formal definition of the differential of a function, integration 
by substitution, and separable and exact ordinary differential equations. To create beginning points 
of reference, two surveys of textbooks were conducted. The first survey included nine books 
(Barnett & Ziegle, 1989; Breusch, 1969; Ellis & Gulick, 1988; Fisher & Ziebur, 1965; Hughes-
Hallet, et. al., 2006; Mizrahi & Sullivan, 1982; Rees & Sparks, 1969; Stein, 1967; Stewart, 1987) 
which contained material found in traditional first- and second-semester calculus courses. We  
analyzed and compared any sections of these books in which definite integrals, indefinite integrals, 
differentials of functions, and integration by substitution were introduced and/or defined. The 
second survey included three books (Boyce & DiPrima, 2012; Stewart, 1987; Zill, 1997) that 
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contained information on basic ordinary differential equations, with which we compared and 
contrasted the sections that introduced separable and exact differential equations. 

We found that only Hughes-Hallet et al. (2006) presented the idea that the 𝑑𝑥 in the definite 
integral comes from the factor Δ𝑥 found in a Riemann Sum, while the other books stated that the 
𝑑𝑥 in a definite integral was merely notation with its only purpose to serve as a dummy variable 
that indicated the variable of integration. All of the books clearly stated the definition that, if 𝑦 
were a function of 𝑥, the differential of 𝑦 is given by the formula 𝑑𝑦 = 𝑦′(𝑥)𝑑𝑥, with all but one 
book stipulating that x and 𝑑𝑥 were independent variables, 𝑥 is any number in the domain of 𝑦, 
and 𝑑𝑥 is any real number. Every book approached the evaluation of an integral that required 
substitution by the usual method of determining a 𝑢(𝑥) and using the relation 𝑑𝑢 = 𝑢′(𝑥)𝑑𝑥. 
However, there was no discussion as to the nature or roles of the various 𝑑𝑥s that were seen 
throughout this process. Similarly, no matter the solution methods offered for separable or exact 
ODEs, no book explained the roles of the 𝑑𝑥, nor discussed the permissibility of multiplying or 
dividing by 𝑑𝑥 throughout the solution process. 

 
Theoretical Perspective and Methods 

 
Tall and Vinner’s (1981) concept image and definition were used to structure the design of the 

study and the analysis of the data. Because of the discrepancies and varieties of concept images 
and definitions found in the existing research and collections of textbooks, we wanted to interview 
experienced mathematics faculty to see if their concept images would be different, not only from 
the books’ images, but also from each other’s. We wanted to determine if their individual concept 
images would be more well-formed and align more closely to a formal concept definition than 
what the textbooks seemed to provide. Assuming the existence of well-formed concept images, 
we also wanted to see whether we might find some instances of potential cognitive conflict.  

During a series of clinical interviews, four professors were shown a series of mathematical 
symbols, definitions, and situations in which the symbol 𝑑𝑥 was present. Faculty members were 
chosen so that there was some variety in their research areas. Participants Sonya, Johnny, and 
Jackson each had research and/or teaching experience in analysis and differential equations, while 
Kurtis’ research areas included combinatorics and graph theory.  

Prior to the interviews, we created an interview protocol, listing the order in which the 
aforementioned mathematical symbols, definitions, and situations would be presented to the 
subjects. Thirteen such symbols, definitions, and situations were divided into four categories, listed 
in Table 1. In addition to the question of how the subjects perceived the role of the 𝑑𝑥 in each 
category, follow-up questions were posed if the subject stated something that differed markedly 
from the surveyed textbooks or other subjects’ responses. Johnny requested that his interview not 
be videotaped; thus his impressions have been taken from the authors’ notes. All of the other 
interviews were videotaped and later transcribed.  

 
Data and Results 

  
Since we were interviewing experienced instructors, it was possible that their individual 

concept images might have converged to a formal concept definition. But, as the textbooks did 
not show one formal definition but a variety of ways in which to think about the 𝑑𝑥, we anticipated 
that the professors might not all have the same concept image. Data analysis is ongoing, but          
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Table 1 
A Summary of Our Categories and Uses of 𝑑𝑥 

Categories Symbols, Definitions, or Situations Containing 𝑑𝑥 

Integrals 
 

∫ 𝑓(𝑥) 𝑑𝑥  , ∫ 𝑓(𝑥)𝑏
𝑎 𝑑𝑥  , and ∫ 𝑓(𝑥)𝑎

𝑏 𝑑𝑥  
 

Definitions and 
Notation 

 

If 𝑦 = 𝑦(𝑥), the notation 𝑑𝑦
𝑑𝑥

 and definition 𝑑𝑦 = 𝑦′(𝑥) 𝑑𝑥  

If 𝑥 = 𝑥(𝑡), the notation 𝑑𝑥
𝑑𝑡

 and definition 𝑑𝑥 = 𝑥′(𝑡)𝑑𝑡 
 

Integration by 
Substitution 

 

∫ cos √𝑥
2√𝑥

4
1 𝑑𝑥  versus ∫ cos 𝑥2

1 𝑑𝑥  ,  

after ∫ cos √𝑡
2√𝑡

4
1 𝑑𝑡 used the substitution 𝑑𝑥 = 1

2√𝑡
𝑑𝑡 

 

Two ODEs 

1) The separable equation 𝑑𝑦
𝑑𝑥

= 𝑔(𝑦)ℎ(𝑥), and the solution steps 
1

𝑔(𝑦)
𝑑𝑦 = ℎ(𝑥) 𝑑𝑥  and ∫ 1

𝑔(𝑦)
𝑑𝑦 = ∫ ℎ(𝑥) 𝑑𝑥  

2) The exact equation (2𝑥𝑦 − 9𝑥2) 𝑑𝑥 + (𝑥2 + 2𝑦 + 1)𝑑𝑦 = 0 
 
 
preliminary analysis indeed shows that while all four interview subjects were very consistent 
within their personal concept image, these images differed from one another, and did not align 
with a single formal concept image. Summaries of the subjects’ responses for each of our four 
contexts and some of the subjects’ personal concept images are given below. 

  
The 𝒅𝒙 in Definite and Indefinite Integration 

Sonya and Jackson stated that the 𝑑𝑥 in a definite integral comes from a limiting process 
applied to the width represented by the bases of Riemann Sum rectangles. Kurtis seemed to have 
a similar idea but was not as specific, saying that “it [the 𝑑𝑥] comes from the Δ𝑥 [in a Riemann 
Sum]” without mentioning the image of rectangle widths. Johnny initially described the 𝑑𝑥 as 
arising from the limit of “cuts in the interval between 𝑎 and 𝑏 on the x-axis,” but later changed his 
answer to “dummy variable” after some thought. All subjects except Kurtis also claimed that they 
viewed the 𝑑𝑥 in an indefinite integral no differently than they viewed the 𝑑𝑥 in a definite integral. 
Kurtis, however, claimed that the indefinite integral’s 𝑑𝑥 had no meaning beyond being half of a 
notation (the other half being the integral sign) which signaled antidifferentiation. 
 
The 𝒅𝒙 in Definitions and Leibniz Notation 

Kurtis said that 𝑑𝑦 = 𝑦′(𝑥)𝑑𝑥 if and only if 𝑑𝑦
𝑑𝑥

= 𝑦′(𝑥), but did not feel that this meant that 
one could simply multiply or divide by 𝑑𝑥 to go from one form to the other. Sonya agreed that 
such multiplication or division was not possible, while Johnny and Jackson had no problem with 
multiplying or dividing by 𝑑𝑥 in this way. Another area of contention was that part of Johnny’s 
initial response when presented with the four notations and definitions in this section was to state 
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an idea also found in Rees and Sparks (1969): the 𝑑𝑥 in 𝑑𝑦 = 𝑦′(𝑥)𝑑𝑥 could be either an 
independent variable or a function of two other variables, and that this definition of the differential 
of a function would still hold. Sonya and Jackson initially thought instead that 𝑑𝑥 was strictly a 
dependent or independent variable depending on its position in the definition, but Sonya came 
around to Johnny’s view after that view was presented to her. Kurtis only went so far as to claim 
that the relationship between the 𝑑𝑦 and 𝑑𝑥 in 𝑑𝑦 = 𝑦′(𝑥)𝑑𝑥 was the same as the relationship 
between the 𝑑𝑥 and 𝑑𝑡 in 𝑑𝑥 = 𝑥′(𝑡)𝑑𝑡. 
 
The 𝒅𝒙 in Integration by Substitution 

All subjects except Sonya seemed to feel that even though the substitution process began with 
the “𝑑𝑥 = 𝑥′(𝑡)𝑑𝑡” definition of the differential of a function, once the substitution was made, the 
𝑑𝑥 had transformed into a simple dummy variable, and was therefore now bereft of any deeper 
meaning. Jackson additionally mentioned that while the initial dummy variable (in ∫ cos √𝑥

2√𝑥
4

1 𝑑𝑥) 

and the transformed dummy variable (in ∫ cos 𝑥2
1 𝑑𝑥) had similar roles as infinitesimal widths, we 

could still think of them as different, since one was the limit as n goes to infinity of 4−1
𝑛

 while the 

other was the limit as n goes to infinity of 2−1
𝑛

. This idea that the two versions of 𝑑𝑥 have different 
sizes was also expressed by Sonya, but her image included an idea that both 𝑑𝑥s were on different 
levels; specifically “macroscopic/microscopic” levels. 
 
The 𝒅𝒙 in Separable and Exact ODEs 

Sonya felt that even though it may appear that we could multiply by 𝑑𝑥 in order to separate 
variables in the separable equation, what is really happening instead is that we are multiplying by 
Δ𝑥 and then passing through the limit. Kurtis agreed with the idea that we are not really multiplying 
by 𝑑𝑥, but seemed to think that it was always fine to proceed as if that is what were really 
happening. Johnny and Jackson, as before, had no problem with multiplying or dividing by 𝑑𝑥. 
Similar responses occurred during the explanations of the exact ODE. Sonya was still 
uncomfortable with the idea of “moving the 𝑑𝑥 around” but admitted that it is how solving 
differential equations is usually taught. Johnny and Jackson did not have this discomfort, and 
Kurtis declined to answer, stating that he was not as familiar with exact differential equations. 
   
Personal Concept Images 

While analyzing all of the subjects’ responses, it was found that Johnny, Kurtis, and Sonya 
seemed to have central images that ran throughout all of their answers. Johnny’s overall view 
seemed to be summarized by his initial response when presented with the two notations and 
definitions: “in some ways, they are all the same.” He noted that even though the traditional 
definition 𝑑𝑦 = 𝑦′(𝑥)𝑑𝑥 came with the idea that x and 𝑑𝑥 were independent variables, there was 
nothing stopping us from assuming that 𝑑𝑥 could also be a function depending on other 
independent variables (for example, 𝑑𝑦 = 𝑦′(𝑥)𝑑𝑥 while 𝑑𝑥 = 𝑥′(𝑠)𝑑𝑠), a view shared by Rees 
and Sparks (1969). If one were to continue this chain down to the last link, then the last differential 
in this chain can also fit that definition, as in our example: 𝑑𝑠 = 1 ∙ 𝑑𝑠, since the derivative of 𝑠 
with respect to 𝑠 is 1. He repeatedly said that these relations between differentials were 
“meaningful only in their relation to one another.” Thus, for example, one can multiply or divide 
by a 𝑑𝑥 while manipulating an ODE, since that ODE also contains a 𝑑𝑦, but in the “integration by 
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substitution” process, once the substitution has been made, the 𝑑𝑥 becomes a dummy variable, 
since we no longer have a second differential.  

Johnny’s central view of all 𝑑𝑥s outside of integration having a numerical basis seems to run 
counter to Kurtis’ central view, which was that every instance of 𝑑𝑥 or 𝑑𝑦 was merely a product 
of a “useful notation” and had no mathematical meaning as a numerical entity. Kurtis said many 
times that all of these manipulations were products of a “perfectly good notation,” and thus easy 
for educators use when introducing concepts like the Chain Rule or integration by substitution, but 
while it may appear that mathematical operations with a 𝑑𝑥 might be implied, Kurtis was adamant 
that this was not the case. 

An image of Sonya’s was that she was uncomfortable multiplying or dividing by 𝑑𝑥, since it 
was an infinitesimal quantity created by “passing Δ𝑥 through the limit.” To her, no matter the 
situation in which a 𝑑𝑥 was being used in algebraic manipulations, the “real story” was that we 
were instead manipulating Δ𝑥 (a measureable quantity) and then passing through the limit, turning 
all Δ𝑥s into 𝑑𝑥s. She noted that the convenience of simply saying “multiplying by 𝑑𝑥” was helpful 
for instruction, but that we should be more careful about telling our students “we can multiply by 
𝑑𝑥.” Yet when it was presented to her, she seemed to accept Johnny’s and Rees and Sparks (1969) 
view that 𝑑𝑥 could be an independent variable no matter the presentation. This might seem to 
contradict her idea that 𝑑𝑥 was only some infinitesimal quantity unable to be manipulated. Further 
research will explore whether these two views are an example of cognitive conflict, or whether 
deeper questioning will lead to a more complete view of her total concept image. 

 
Discussion 

 
Many of the subjects' responses suggest possible areas for future research. It is possible to use 

differentials to develop implicit differentiation (Mizrahi & Sullivan, 1982; Rees & Sparks, 1969) 
or generate derivatives by using differentials instead of taking the limit of a difference quotient 
(Dray, 2013; Dray & Manogue, 2010). Additional data collection could tell us if any of the 
subjects’ concept images allow or conflict with these developments. Sonya mentioned that the 
convenience of multiplying by 𝑑𝑥 would not be appropriate with higher-order differentials; 
additional data collection could tell us if any of the subjects’ concept images agree or disagree. 
Several books gave differential rules that parallel derivative rules (an example being 𝑑(𝑢𝑣) =
𝑢 𝑑𝑣 + 𝑣 𝑑𝑢), and there are also proofs of the Chain Rule and various methods of finding the 
solutions to separable differential equations in which it appears that differentials are being 
multiplied, divided, or canceled. The belief in whether one could perform such manipulations with 
𝑑𝑥 divided our subjects equally; additional data collection could tell us what percentage of other 
experts will feel that such manipulations are acceptable.  

This preliminary report also suggests implications for teaching. Even though only four subjects 
were interviewed, their concept images had some variety to them. One could say that there was a 
continuum of answers, from Johnny’s central thought that all differentials outside of integration 
were really the same and had analytic properties, to Kurtis’s assertion that all differentials were 
only part of a really good notation, with Sonya’s and Jackson’s views falling somewhere in the 
middle. Further research might further define spaces on this continuum or perhaps show a greater 
concentration of images at one or both ends. Whatever the dispersion of concept images on this 
continuum, the fact that such a dispersion exists perhaps begs the question of how the existence of 
different views of differentials held by textbooks and instructors might affect student learning. 
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Locating a Realistic Starting Point for the Guided Reinvention of Limit at Infinity With 
Community College Students Prior to Pre-Calculus 

Will McGuffey 
Teachers College, Columbia University 

In this paper, I describe a teaching experiment conducted with a pair of undergraduate students 
at a two-year community college. My primary goal was to explore a realistic starting point for 
the guided reinvention of the concept of limit at infinity for students who had not yet studied 
limits. The teaching experiment included 5 weekly hour-long sessions in which the two students 
were presented with tasks that involved describing the behavior of certain real-world 
phenomena. The initial analysis revealed that these students showed ways of thinking that 
anticipate the formal concept of limit at infinity. Further analysis will be used to develop an 
appropriate instructional sequence with a realistic starting point to be used in future teaching 
experiments in which students will be engaged in the guided reinvention of a formal definition of 
limit at infinity. 

Key words: Calculus, Guided Reinvention, Limit at Infinity, Two-Year College 

The limit concept is notoriously difficult in learning (and teaching) Calculus. Prior research 
has documented common student misconceptions and models of how students might understand 
the limit concept (Tall & Vinner, 1981; Williams, 1991). Most, if not all, research on students’ 
understanding of the limit concept has involved participants who had previously studied Calculus 
or were enrolled in Calculus at the time of the study. If we aim to improve instruction on limits 
by understanding what can cause difficulties for students, there are two potential issues with this 
approach to participant selection. First, it is difficult to discern whether cognitive obstacles are 
imposed by traditional instruction on limits or are natural products of the mathematical concepts 
themselves. In other words, what if the difficulties students face when learning limits could be 
avoided by using alternative instructional or curricular approaches? Second, by nature of making 
it through a Calculus course (or even making it to a Calculus course), the students in such studies 
have already demonstrated a certain level of mathematical ability (or determination). A different 
approach is needed in order to examine how students think about limits, without them first 
having been taught explicitly about limits. In this paper, I aim to describe how two students 
reasoned about limits prior to formal instruction on limits by engaging them in the guided 
reinvention of the concept of limit at infinity using their informal understandings of realistic 
situations with asymptotic behavior as a starting point. 
 

Background and Related Literature 

Guided Reinvention 
Guided reinvention has often been used in undergraduate mathematics education research in 

order to develop instructional sequences that aim to make advanced mathematics content more 
accessible to students (Cook, 2014; Larsen, 2009; Oehrtman, Swinyard, & Martin, 2014; 
Swinyard, 2011). Guided reinvention is a teaching approach that is aligned with Hans 
Freudenthal’s Realistic Mathematics Education (RME) philosophy, which proposes that 
mathematics instruction should focus on the activities of doing mathematics rather than the 
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products of those activities (Freudenthal, 1973; 1991). The starting point for instruction should 
be a context that is realistic relative to students’ experiences so that it will be within their reach 
to develop ways of reasoning related to the mathematical concept(s) that are to be learned. From 
that starting point the instructor guides students to reinvent the desired piece of mathematics.  

The Limit Concept 
The limit concept has a fairly complicated structure, which includes many advanced 

concepts. In order to make the definition accessible to first-time Calculus students, it is often 
described informally. The most rigorous informal description (of limit at infinity) is usually 
given in textbooks, such as “lim௫→ஶ݂(ݔ) =  means that f(x) can be made arbitrarily close to L ܮ
(or as close as desired) by making x sufficiently large,” where the terms arbitrarily close and 
sufficiently large have technical mathematical meanings. 

Through the APOS framework, Cottrill et al. (1996) described how students might learn the 
limit concept through a coordination of these two processes. Swinyard & Larsen (2012) added 
that student understanding of the formal limit concept could potentially be hindered by two 
obstacles: (1) a tendency to take a domain-first perspective in reasoning about limits and (2) the 
difficulty of thinking about an infinite process as being completed. Swinyard (2011) 
demonstrated that students can be guided to reinvent a formal definition of limit from the starting 
point of a strong informal understanding of limit. I am not aware of any previous attempts to 
examine how or if students can be supported to reinvent any aspect of the limit concept from a 
starting point that does not require prior understanding of the limit concept itself. 

Research Question and Methods 

The purpose of this study was to gain insights into how students – who have not had 
instruction on limits in Pre-calculus or Calculus – might come to understand the concept of limit 
at infinity in the context of guided reinvention of limit at infinity. In particular, the goal was to 
explore one potential starting point from which the concept of limit at infinity could be 
reinvented. I aimed to answer the following research question: Can instructional tasks in the 
context of describing functional behavior evoke ways of thinking that anticipate desired ways of 
reasoning for understanding the concept of limit at infinity? 

This study involved a teaching experiment (Steffe & Thompson, 2000) with a pair of 
students (Zelda and Tetra, pseudonyms) who were recruited from a College Algebra course at a 
two-year community college. The participants were selected based on the fact that they had not 
previously taken a course in Precalculus or Calculus (verified by the student on a preliminary 
questionnaire) and on their ability and willingness to discuss their thoughts about mathematics 
with others (verified through a conversation between myself and the students’ College Algebra 
instructor). The teaching experiment consisted of five 60-minute instructional sessions. All 
instructional sessions were video- and audio-recorded for analysis. Before each instructional 
session, I conducted a thought experiment to imagine a possible hypothetical learning trajectory 
(Simon, 1995) for the upcoming session. Between each pair of sessions, I conducted ongoing 
analysis (Strauss & Corbin, 1998), which involved comparing the proposed hypothetical learning 
trajectory to what actually took place during the sessions, and then planning instructional tasks 
for the next session. After the conclusion of the teaching experiment, I conducted an initial 
reflective analysis (Cobb, 2000) of all five sessions together. The focus of this initial analysis 
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was to identify events during the teaching experiment in which the students showed signs of 
reasoning about the instructional tasks in ways that anticipate the concept of limit at infinity.  

Overview of the Teaching Experiment 
For this preliminary report, I will highlight a few key moments from the first three sessions of 
the teaching experiment related to the development of the concept of limit at infinity. In Session 
1, participants described how the quantities changed in each of the realistic situations in Table 1 
(among others that were dropped after Session 1). Then, during Session 2 the students looked for 
similarities and differences among the situations in Table 1. During this session the students 
indicated that they wanted to be able to use graphs and formulas to solve these problems. So, I 
gave them formulas (for Situations 1 and 5) and graphs (for Situations 2 and 3) to work with in 
Session 3. When students indicated that the limit (or “end value”) would not be reached based on 
the formulas or graphs, I posed the question of how close the quantity would get to it. In Sessions 
4 and 5 I asked students to predict a value of the quantity at some future time that was not 
displayed on the graph. I introduced two new situations (involving exponential growth and 
circular motion) in order to contrast the other examples in which their predictions were getting 
better as I asked them to predict values of the quantity after longer periods of time. 

Situation 1 
 

Imagine taking a pie out of the oven after it has been baking at 350 
degrees. Describe how the temperature of the pie changes as time passes. 

Situation 2 
 

Imagine a person bungee jumping over the side of a bridge that is 200 ft. in 
the air. Describe how the height from the ground of the bungee jumper 
changes as time passes. 

Situation 3 Imagine dropping a tennis ball from the roof of a tall building and 
watching it hit the sidewalk below. Describe how the height of the ball 
from the ground changes as time passes. 

Situation 5 A group of scientists store 10 g of a radioactive substance. Every 30 days 
half of the substance decays (breaks down into other substances and 
energy). Does the substance ever completely decay? 

Table 1. Realistic situation prompts from Session 1 

Results 

I organize the results to discuss 3 such examples from the first three sessions, where 
students’ dialogue about these situations seemed to lead them to discuss 3 important aspects for 
reinventing limit: infinite process, closeness, and coordinating domain and range. 

Dealing With an Infinite Process 
When comparing the four situations in Session 2, one of the main observations the students 

focused on was how the quantities in Situations 1-3 eventually reached a constant value whereas 
in Situation 5 the quantity never reached zero. For Situations 1-3, the students were only 
concerned with a finite timeline, as demonstrated by Zelda’s description of Situation 1: “…it’s 
just like really hot… and then over time it will just cool off gradually and then eventually, I 
guess, turn into room temperature.” Then, when the students were first describing Situation 5 in 
Session 1, they spontaneously began to write out a list of values, believing that they would 
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determine when the mass reached zero. The students paused after calculating the first eight 
values and had the following exchange: 

Tetra: This is what I was trying to say about the infinite numbers between zero and one. 
That’s what I was trying to say. It’ll keep going. 

Zelda: So, would it never decay? 
Tetra: It’s just not going to decay. 
Zelda: Ever? [with a tone of surprise] 

At this point Zelda was struggling with the idea of an infinite process. In Session 2, she 
decided to use her calculator to continue the process that they had started in Session 1, saying 
“because I do feel like it comes to zero at a point.”  She ended up dividing by two over forty 
times before giving up and saying “It will just always have a number to divide in half, like 
always. Even if it’s like zero-point-one or zero-point-something.” Engaging in this task allowed 
the infinite process to become experientially realistic to her. 

Anticipating Arbitrarily Close 
Since the students had determined that the mass of the radioactive substance in Situation 5 

would never completely decay, I posed the question: “How close would the mass get to zero?” 
The following dialogue transpired. 

Tetra: I can’t comprehend that number because, like, every time you would divide it, the 
decimal just keeps getting longer and longer and longer and longer and longer and 
longer. So, it would be like some crazy, never-ending decimal. 

Zelda: I don’t know how to figure that out. Unless you give us a number that’s like to you 
that’s close enough to zero. 

The students’ comments indicate that any comprehensible number is insufficient in describing 
how close the mass gets to zero. Tetra’s comment about the decimal just getting longer 
demonstrates the students’ struggle with seeing an infinite process as being completed. In 
addition, Zelda’s comment “Unless you give us a number…” was connected to her knowing that 
for any given value, they could use the formula to identify the corresponding number of days 
needed to reach that number. In other words, there was a sense of “arbitrariness” to the “give us a 
number that’s close enough to you, and we can figure it out” idea. 

Coordinating Domain and Range 
Another interesting interaction occurred near the end of Session 3. Prior to giving the 

students a graph for Situation 2, I asked them to recall their prior description of the situation 
from Session 1, and Tetra sketched a graph (Figure 1).  

 
Figure 1. Students’ graph of the height of the bungee jumper (Situation 2) 
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Based on our previous discussions, the students seemed to believe that the bungee jumper would 
eventually stop bouncing. So, I asked them how long it would take.  

Tetra: I feel like all of these are the same. They just never end. 
Zelda: No, I think he’d stop bouncing. I think he’d just like stay. I don’t think it would 

take that long to stop bouncing completely. 
Will: So, on the graph, what would it look like? 
Tetra: Just taper off. 
Will: But, like, how would you draw it? 
Tetra: So, let’s say after a point it would be really, really small. Like, I could draw it 

bigger, but like, on the other bounce, it would keep getting smaller until it’s kind 
of like… [draws the portion on the right in Figure 2] 

Zelda: And then he’s just still, or like swinging at the same height. 
Tetra: And then just get smaller. 

Relying on her intuition that the bungee jumper would eventually stop bouncing, Zelda saw 
the stopping point as an end to the situation. On the other hand, Tetra was open to the idea that 
the bungee jumper would continue to bounce forever. As a result, she was able to focus on the 
quantity approaching a limit rather than simply reaching it. This perspective also fostered a shift 
in her language. Where she had previously used language like “at a point” to refer to some 
moment in the future when the limit was reached, she began to say “after a point” to indicate that 
she was also considering what happened beyond the moment when she considered the quantity to 
be close to the limit. Moreover, she coordinated her notion of “after a point” (similar to 
sufficiently large) with the bounces being really small and continuing to get smaller.  

Discussion 

The two students in this study were able to reason about these realistic situation contexts in 
ways that indicate that these contexts and tasks could potentially be used as a starting point for 
the guided reinvention of the concept of limit at infinity for students who have not previously 
learned about limits. In particular, describing a situation in which the students believed that the 
limit (or “end value”) would not be reached could provide a context for discussing the 
completion of infinite processes. The task of determining how close the changing quantities 
could get to the limit (Task 3) supported discussions in which the notions of arbitrarily small and 
sufficiently large were present in the students’ comments.  

These findings come with several limitations. Although the students were able to reflect on 
an infinite process, it was not in the context of the infinite processes involved in the limit 
definition in which students think of values in the range becoming successively closer to the 
limit value and values in the domain becoming successively larger (Cottrill et al., 1996). 
Moreover, there was no indication that the students were able to resolve the idea of an infinite 
process being completed, which is one of the student difficulties with the limit concept described 
by Swinyard & Larsen (2012). Lastly, although Tetra showed signs of coordinating the notion of 
sufficiently large in the domain with the notion of small variations in the range, she seemed to be 
taking a domain-first perspective. Overall, important issues related to the concept of limit at 
infinity, including potential student difficulties, were evoked during these students’ engagement 
in the instructional tasks; however, more insight is needed to help the students overcome and 
resolve these difficulties in future implementations of the teaching experiment. 
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Exploring Student Conceptions of Binary Operation 
 

Kathleen Melhuish 
Texas State University 

Binary Operations are essential to many undergraduate mathematics courses. However, little is 
known about student conceptions around binary operation. This report presents preliminary 
results from nine student surveys about the topic. The question set was developed in response to 
Group Concept Inventory (GCI) results. We look at three activities closely related to binary 
operation: identifying when an instantiation is a binary operation, identifying when two 
instantiation are the same binary operation, and generating an original binary operation 
instantiation. We use the lens of variation theory to make sense of student responses. We found 
that students’ concept image of binary operation may be missing key attributes (such as 
requiring two inputs) and contain unnecessary attributes (requiring a general rule.)    

Key words: Group theory, variation theory, abstract algebra, binary operation 

Students begin working with binary operation in elementary mathematics classes. However, 
binary operation is not defined abstractly until advanced mathematics courses such as abstract 
algebra. Well-known operations such as addition and multiplication provide the examples of 
binary operations for much of mathematical education. Taking a variation theory approach, 
student conceptions of binary operation are built from the examples they encounter and 
particularly what variations exist across this space. This may lead to overgeneralizing properties 
such as operations always having a formal name or symbolic rule to describe them. Furthermore, 
critical attributes of binary operation may remain hidden such as the necessity for binary 
operations to be defined on two elements of a set. By giving nine modern algebra students a set 
of non-routine binary operation prompts, we identify critical aspects of binary operation that may 
be hidden in routine contexts. 
 

Concept Understanding in Advanced Mathematics 

There are a number of ways researchers have made sense of concept understanding in 
advanced mathematics. In this study, we use the concept image/concept definition framework 
(Tall & Vinner, 1981) and variation theory (Marton & Booth, 1997) to make sense of the 
snapshot data collected about students’ conceptions of binary operation. Tall and Vinner’s work 
on concept image and definition introduced a way of discussing all of the cognitive associations 
with a given mathematical concept. Concept definitions exist formally, but also personally for 
each student. Concept image captures all associations such as examples, applications, and 
representations of a concept. Tall and Vinner’s work was especially powerful in its ability to 
capture a lack of coherence that often exists in novice’s concept images and definitions. The 
definitions may not be cohesive with images, and different parts of a concept image may not 
align with itself.  

Variation Theory (Marton & Booth, 1997, Watson & Mason, 2006) provides one lens for 
making sense of potential lack of coherence. The theory posits that learning occurs in contexts 
where variations occur. Experiences with examples of a concept, such as binary operation, may 
expose a learner to different attributes to eventually become part of their greater conception 
around a topic. Marton and Booth likened this process to a jigsaw puzzle where “the parts need 
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to be found and then fitted into place” (p. 180) to understand the whole. Through exposure to 
varying aspects, the learner can then determine which aspects are parts of the whole or the 
structure of a mathematical concept and which are allowed to vary, dimensions of possible 
variation (Watson & Mason). A students’ concept image reflects the attributes that they have 
been exposed to (and assimilated) in varying situations. 
 

Prior Research on Student Conceptions of Binary Operation 

Informally, a binary operation can be thought of as a rule for combining two elements of a set 
to produce a single element (from this same set.) Addition is a binary operation on the set of real 
numbers because any two real numbers can be added to another real number. Formally, binary 
operations are defined as a function from the Cartesian product of some set S (SxS) to S. In this 
way binary operation brings together two concepts that may have been seen as disjoint in prior 
situations: operations and functions. Research on the specialized case of arithmetic dominates the 
operation literature with framework such as Slavit’s (1998) operation sense framework. This 
framework builds formal operations from standard processes (such as combining groups 
developing into addition), but does not extend to the abstract notion of binary operation. To 
adopt the language of variation, until university courses, variation in operations are likely limited 
to these well-developed arithmetic operations.  

Because binary operations are a special case of functions, student conceptions around 
functions may play an additional role in their understanding. Students have been documented as 
struggling with functions across grade levels (Oehrtman, Carlson, & Thompson, 2008). For 
example, students may prefer a certain representation such as a written symbolic rule 
(Breidenbach, Dubinsky, Hawks, & Nichols, 1992; Vinner & Dreyfus, 1989). This may reflect 
students typically being exposed to functions that can be defined in that manner leaving students 
to overgeneralize that a written symbolic rule is a structural aspect of function.  

Existing frameworks on binary operation have taken a number of approaches. Brown, 
DeVries, Dubinsky, and Thomas (1997) presented a genetic decomposition of binary operation 
where students may have an action conception (explicitly combining two inputs to arrive at an 
output), a process conception (a general process for combining inputs to arrive at outputs), or an 
object conception (seeing binary operations as things that can be acted on as objects themselves.) 
Novotná, Stehlíková, and Hoch (2006) provided a structure sense framework capturing the 
transition from familiar operations to unfamiliar. Ehmke, Pesonen, and Haapasalo (2011) 
presented a framework leveraging different representations to distinguish students with 
procedural and conceptual understandings. Each of these frameworks in some way captured 
going from concrete to abstract understanding. The variation theory approach in this paper aims 
to compliment these process frameworks with a more nuanced view of exactly what attributes of 
binary operation may be influencing student conceptions.  

Some of these ideas have been broached in misconception literature in other subject areas. 
Mevarech (1983) found statistics students overgeneralized properties onto binary operations such 
as associativity. Zaslavsky and Peled (1996) had pre-service and in-service teachers generate 
examples of binary operations resulting in a number of issues including defining unary 
operations rather than binary operations.  

The study presented below serves as a follow-up to initial results from the Group Concept 
Inventory (Melhuish & Fasteen, 2016). We conjectured that student conceptions of binary 
operation accounted for performance on questions targeting subgroups, the associative property, 
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and groups themselves. For example, in results from the GCI, over half of students surveyed felt 
that the set {0,1,2} was a subgroup in Z6. Follow-up interviews reflected that the students might 
not think that the addition modulus 3 was different than addition modulus 6. These students’ 
responses raised questions regarding student conceptualizations about what makes two binary 
operation instantiations the same or different. 
 

Methods and the Question Set 
 
The nine surveys analyzed herein come from two modern algebra classes at a large, public 

university. The students were surveyed at the end of their course. In order to make sense of 
student thinking around binary operation, we identified three activities that are tightly linked to 
understanding of mathematical concepts: 

1. Is or is not. Determining if a given instantiation is an example of a concept (Ehmke, 
Pesonen, and Haapasalo, 2011) 

2. Same or different. Determining if two instantiations are mathematical the same  
3. Generating. Creating an instantiation meeting some criteria (Zazkis, & Leiken, 2007) 

The survey questions prompted students to engage in one of those activities. We looked at what 
attributes of binary definition students might attend to, how students determine if two binary 
operations are the same, and if students can generate a non-standard binary operation. For each 
question, students were also prompted to explain their reasoning. The surveys were then 
analyzed with the lens of variability: which attributes of binary operation seemed to guide 
student solutions. 
 

Results and Analysis 
 
The Binary Operation Concept Attributes 

Each student was asked to determine if functions were binary operations including: addition 
mod 3 on {0, 1, 2}, division on the reals, x2 on the reals, and a binary operation defined element-
wise on the set {1, 2}. The responses to these prompts had two notable patterns: 1) students 
attended to closure over other attributes; 2) students did not always attend to binary requirement. 

Closure seemed to the primary attribute attended to across all prompts. The eight students 
who elaborated on their responses either used the term closure or provided an explanation such 
as: “Yes. When you add any two numbers in the set it produces another in the set.” However, 
this closure manifested differently depending on whether the student had integrated the attribute 
of binary. When evaluating addition mod 3, one approach was to take all six combinations of 
three elements, add together the pairs, and determine the result was still in the set. However, two 
of the students looked at the elements and appeared to treat the modulation as the operation. For 
example, one student stated: “Yes, 0 mod3=0, 1 mod3=1, 2 mod3=2. All the elements of the 
operation are in the set.” Similarly, all eight students who responded to the prompt about x2 
claimed that this was in fact a binary operation. I conjecture this is for one of a two reasons 1) a 
unary approach, 2) restricting the domain of a known binary operation:  multiplication.  For 
example, see the students’ response in Figure 1. 
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Figure 1. Unary approach to x2 
 

In this case, the student appeared to be inputting members of the reals rather than ordered 
pairs or two inputs. As in the modular addition case, this student illustrated that the attribute of 
binary may not be realized as structural to binary operation. Alternately, some students rewrote 
x2 as x*x then explained that it “gives you another number that is [sic] R.” In this case, the 
students seemed to unintentionally be restricting the domain from all sets of two elements, to 
only ordered pairs of the form: (x, x). These students may not be attending to the necessity of 
domain to include all combinations of two elements from the corresponding set.   
 
Attributes of the Same Binary Operation 

The students were also given four pairs of operations to determine if they were the same or 
different respectively. These prompts were intended to probe what attributes of the binary 
operation instantiations determine if they are unique. Of the nine students, five thought that 
division and multiplication were the same operation on R. (One student provided the caveat that 
0 had to be removed for division.) The arguments generally relied on the relationship between 
division and multiplication: they are inverse operations, or alternately, division can be rewritten 
as a multiplication statement. (a/b = a*(1/b)). There are similarities across multiplication and 
division; however, the commonalities are not sufficient attributes to be the same operation. 
Students also argued that addition modulo 3 and addition modulo 6 are the same. Half of the 
eight students felt these were the same operation with reasoning such as: “Yes, because op 1 is 
addition under mod 3, whereas, op 2 is also addition under mod 6.” In the third of these tasks, 
students were given a binary operation defined on a table and a second defined element-wise. 
The elements were named the same, but had had a differing output for one combination. Of the 
seven students who addressed this prompt, all seven appropriately matched elements and used 
the rationale to declare the operations different. Yet, these same students used different rationale 
to declare multiplication and division the same operation and addition modulo 3 and 6 as the 
same operation. Table 1 contains a breakdown of attributes that students allowed to vary when 
determining if two binary operations are the same.  
 
Table 1. Sameness Attributes. 
Name Description Permissible Variation 
Superficial 
Sameness 

Students attend to attributes that 
provide similarities disconnected 
from the definition of binary 
operation.  

element names, domain of 
operation, output for given pair of 
elements 

Literal Sameness Students attend to attributes 
connected to binary operation 
requiring a literal sameness  

none 

Isomorphic 
Sameness 

Students attend to attributes up to 
isomorphism 

names of elements 
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Attributes when Generating Binary Operations 
The final question in the survey stemmed from a GCI question. Students were prompted to 

generate a binary operation such that the set {1,2,4} forms a group. Five students indicated it was 
impossible to construct such an operation, one student did not know how to approach the prompt, 
two students provided a familiar binary operation not meeting criteria, and one student provided 
no rationale for their response. One sample student response was, “No. Because the finite set 
does not hold enough elements to have the properties necessary when performing an operation 
on the set to form a group.” Another student listed the four arithmetic operation putting, “No?” 
next to them. These students’ approaches reflected student responses from the GCI (Melhuish & 
Fasteen, 2016). Through generating an unfamiliar example, students are limited to a set of 
examples with what they perceive as permissible variations. If students were to create a binary 
operation on this set, they would need to create one that had no pre-set name or explicit symbolic 
rule. This may not be a variation that students have experienced and aligns with other research 
on how students conceive of functions. 

 
Discussion 

 
Looking across the three activities highlights 1) binary operations are not trivial structures for 

students in introductory group theory, 2) variation theory provides a lens for making sense of 
what variations are permissible in students’ concept images. The students in this study seemed to 
include some form of closure as a structural attribute of binary operation. The desire for closure 
was found in the is or is not question set and the creating question. However, binary, the need 
for two inputs, appeared to be lacking across several of the surveys. To take a variation-based 
approach, it is unlikely these students are ever presented with a function that does not take two 
inputs as typical textbook treatments do not include operations that are not binary (Gallian, 2016; 
Fraleigh, 2003). Without varying this attribute to illustrate non-examples, students may not 
realize that two inputs are a structural aspect of the binary operation concept. Going a step 
further, we can look at what attributes students attend to when differentiating between members 
of the set of binary operations. In this case, students looked at a number of attributes ranging 
from superficial similarity to deep, structural similarity. The student responses reflected their 
understanding of binary operation on a whole. Particularly, the students often shifted from the 
defining attribute of a binary operation being the elements and the way they are operated on to 
other aspects such as both belonging to a similar family. We argue that the notion of identity (or 
sameness) amongst elements of a set is essential to understanding the attributes of greater 
concept. Furthermore, across first and second question sets, students often altered the domain 
such as restricting to (x,x) inputs in the x2 question. The notion of binary operation as function 
(with a particular domain) may not be prioritized as an attribute when approaching such tasks. 

Understanding binary operation is essential to appropriately addressing any number of tasks 
and concepts in group theory. This preliminary analysis shows that students’ concept image of 
binary operation may overlook key attributes (such as two inputs) and pick up unnecessary 
attributes (such as requiring a symbolic name.) The consequences of exploring student 
understanding using variation theory are largely pedagogical in nature. Studies have started 
looking at dimensions of variability available for students in abstract algebra courses in terms of 
groups and rings (Cook & Fukawa-Connelly, 2015; Fukawa-Connelly, 2014). Pairing such 
studies with student responses can provide a powerful impetus towards consciously varying 
examples and non-examples to best bring attention to structural attributes. 
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The Lead TA Influence: Teaching Practices Focused on for an Active Learning Classroom 
 

Hayley Milbourne 
San Diego State University 

Susan Nickerson 
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Across the nation, there is increased national interest in improving the way mathematics 
departments prepare their GTAs. In particular, this research focuses on how the mentor GTAs in 
the graduate teaching assistant program under consideration share effective teaching practices 
and how this effects changes in the teaching practice of GTAs. I report preliminary results on 
how the focus of particular teaching practices of mentor GTAs (known as lead TAs) change over 
the period of one term through their participation in professional development. With an 
understanding of the differences and the similarities between the focuses of the lead TAs, an 
analysis of the differences between the Calculus I and II GTAs will become more apparent. The 
research presented here represents the start of an increased understanding of how GTAs form 
their own teaching practices.  

Key words: Graduate teaching assistants, professional development, teaching practices 

Across the nation, mathematics departments have begun to change the way they structure the 
teaching of the Calculus sequence. One of the seven recommendations that emerged as a result of 
the MAA sponsored study of successful Calculus programs (Bressoud, Mesa, & Rasmussen, 
2015) was to improve the professional development offered to the Graduate Teaching Assistants 
(GTAs) involved in the teaching of Calculus. Though the departments have the common goal of 
improving the teaching practice of GTAs, the structure of the professional development 
programs for GTAs varies greatly among mathematics departments (Belnap & Allred, 2009). 
The research has been on the various structures of professional development programs or on the 
outcomes of the program. While it is important to know what the outcomes of the program are, it 
is equally important to understand how those changes occurred so as to improve our professional 
development programs. Little work has been done investigating the process GTAs go through in 
their evolving understanding of effective instructional practice and, ultimately, improving their 
practice.  

At a large southwestern university, several changes were made to the calculus program, 
including to the structure of the professional development program for the GTAs. Before the 
changes were implemented, the GTAs had no training before they began to work. Currently, the 
GTAs participate in a three-day seminar before the semester begins. They also meet with a 
professor in mathematics education in a professional development course that meets throughout 
the academic year and with a mentor GTA, or lead TA. The focus of the seminar, the course, and 
the mentoring is on effective teaching practices and developing ways to reflect on one’s 
instructional practice.  

This paper discusses preliminary results of analysis on the nature of the discussions regarding 
effective teaching practices in the various debriefing sessions between the lead TA and their 
fellow GTAs. In addition to these debriefs, the GTAs participate in weekly meetings with their 
course coordinator to prepare the activity for the following week. When coupled with analysis of 
debriefs, the differences between the two lead TAs will help provide insight into the ways the 
lead TAs have possible influence over the ways the  teaching practices of their fellow GTAs is 
shaped throughout the term. 
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Background 

In many ways, professional development can feel like a complex game of telephone. The 
leaders and creators of the professional development have certain ideas of effective instructional 
practice that they are attempting to convey to the teachers or the facilitators with whom they are 
working. However, the facilitators and teachers are appropriately going to interpret it in their 
own way and share and use their transformed version of their ideas of effective practice. This 
particular phenomenon has been well documented in the K-12 literature. Research on the 
Standards movement reform of the 1980’s and 1990’s documented only a modest impact of the 
initiative on teachers’ practice. What the research did document was that teachers selectively 
took up reform ideas and adopted only the surface-level features (Spillane & Zeuli, 1999). 
Researchers explained the adaptation in terms of teachers’ learning processes and suggested that 
implementation varied because teachers drew on prior knowledge and practices when 
interpreting the message about the new standards and instructional practices (Coburn, Hill, & 
Spillane, 2016; Coburn, 2001; Cohen & Ball, 1990). Additionally, the interpretation created by 
the teachers sometimes did not align with the professional development and messages from 
school districts and school administrators and so resulted in inconsistent instructional guidance 
(Coburn, 2001). 

Though the K-12 research focuses on how standards are adopted or polices are implemented 
at the state level and then interpreted by district and local administrators (and, in some cases, 
content coaches), the context is still similar to the process of changing teaching at the university 
level. I argue that when faculty and graduate students undertake reform teaching, all of those 
involved, including the department chair, course coordinators, faculty who take on professional 
development of teaching assistants, and the teaching assistants, co-construct the message of the 
reform. It begins with a small group of faculty with the goal to promote high-quality instruction 
and its success ultimately, in large part, depends upon the learning of the teaching assistants who 
interact with the college students most frequently. In the K-12 literature, focus has been placed 
on the ways in which the teachers themselves are interpreting instructional policy and the ways 
in which their communities affect their interpretations (Coburn, 2001; Stein & Coburn, 2008). 
Through these studies, researchers have been able to record the significant impact on 
understanding that discussion with other teachers has on an individual teacher’s learning of the 
instructional policy. My particular study focuses on something similar at the undergraduate level, 
where I am interested in gaining a better understanding of how GTAs make sense of and 
interpret what they learn about how to lead a student-centered classroom. 

Within the various studies done on the range of professional development programs available 
for GTAs, most studies can be described by three main themes: temporal, structural, and topical. 
In temporal, the duration of the professional development is discussed and how it varies across 
the nation (e.g. Belnap & Allred, 2009). In structural, the focus is on the various ways the 
programs for professional development of GTAs is structured across the nation (e.g., Ellis, 2015; 
Palmer, 2011). In topical studies there is an effort to create a list of standard topics focused on 
within each of the professional development programs described in previous studies (e.g. 
McDaniels, 2010). Finally, outside of the three topics described above, there are a group of 
studies on the efficacy of particular professional development programs (e.g. Griffith, 
O’Loughlin, Kearns, Braun, & Heacock, 2010). 

There have been only a handful of studies done exclusively on the state of professional 
development of GTAs across the nation (Belnap & Allred, 2009; Ellis, 2015; Kalish et al., 2011; 
Palmer, 2011; Robinson, 2011). Outside of the national studies, there are also a handful of 
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articles on particular programs at specific institutions, with a focus on the structure of the 
program or the efficacy of the program (e.g. Griffith, O’Loughlin, Kearns, Braun, & Heacock, 
2010; Marbach-Ad, Shields, Kent, Higgins, & Thompson, 2010). So, while there have been 
studies that describe the various forms of professional development or that give an idea of what 
GTAs have learned from their experiences in professional development, little to no work has 
been done on the ways in which the GTAs are actually taking-up and implementing what they 
have gleaned from the professional development. In other words, the focus has been on the 
product and not the process. This research contributes to understanding how the GTAs are 
appropriating and transforming various teaching practices to fit their own needs over time. 

Setting 

At the large, public southwestern university, several significant changes have been made to 
the Calculus I and II courses, with professional development on teaching for GTAs who lead the 
break-out sections taking a central role. The professional development for the GTAs focuses on 
supporting the enactment of student-centered instruction so the GTAs are prepared to lead group 
work and whole class discussions around challenging problems. The GTAs are being asked to 
lead the Calculus homework and problem-solving sessions in a manner different than the 
instruction they likely experienced. Some have never taught before and among those who have, 
the paradigm is likely new to them. 

In addition to a professional development program, the structure of the GTA program has 
been changed to include a lead TA. The lead TA position is filled by a more experienced GTA 
providing support to his or her fellow GTAs with a professional development aspect that occurs 
both before the term begins and throughout the term (Ellis, 2015). At the university in the study, 
the lead TAs for Calculus I and II were chosen based on their prior experience with teaching or 
participating in an active learning classroom. Throughout the semester, the lead TA visited the 
activity day sections of his fellow GTAs to observe the class and met with the GTAs after to 
debrief about how the class went. The lead TA attempted to make these visits about three times a 
semester for all of the other GTAs that he was able to observe. Finally, the lead TA served as a 
liaison for the other GTAs to the coordinator of the course, the mathematics education 
researchers involved in the professional development, and occasionally the head of the 
department. 

With the lead TA holding such a centralized position within the program, capturing the ways 
they have influence over how the professional development on leading a student-centered 
classroom is appropriated and transformed is important to research. What role does the lead TA 
play in shaping the information provided through the various professional development 
meetings? To begin answering this question, the analysis compares the teaching practices 
discussed by each lead TA during the debriefings. In the next section, I go into more detail on 
how this was done. 

Methods of Analysis and Initial Results 

To contribute to the research base, I collected data for one term at a large, southwestern 
public university with two groups of GTAs, one for Calculus I and the other for Calculus II. The 
mentor GTAs who performed the observations and debriefs are known as the lead TAs and they 
have more experience with student-centered instruction than the other GTAs. The data used in 
this study includes the discourse in the various formal professional development settings in 
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which they were involved and the debriefings between the lead TAs and the other GTAs for 
Calculus I and II.  

I transcribed each of the videos and audio recordings, creating a new utterance (Bakhtin, 
Emerson, & Holquist, 1986) each time the topic changed within each speaker’s turn. The 
utterances are open coded (Strauss & Corbin, 1994) for the various teaching practices discussed. 
With this list of teaching practices, the instructional practices the lead TAs deemed important 
enough or relevant to discuss with their fellow GTAs during the debrief sessions is evident for a 
comparison between the two lead TAs. With this analysis, I will have the basis for understanding 
how the lead TAs shaped the teaching practices of their fellow GTAs over the course of the term 
and how the communities of Calculus I and II GTAs differ in their focuses over the period of a 
term. 

For the final analysis of how the lead TAs shaped the teaching practices of the GTAs over 
the term, I am be using a framework known as the Vygotsky space (Harré, 1983). In this 
framework, a particular teaching practice can be tracked as it is appropriated and transformed by 
the GTAs throughout the term. A representation of the Vygotsky space can be seen below in 
Figure 1. Since the analysis of the data in this preliminary report will not be using the Vygotsky 
space framework, a detailed explanation of the framework is beyond the scope of this proposal.  

 
Figure 1: The Vygotsky Space 

Preliminary Analysis 
Each of the lead TAs met with their fellow GTAs approximately three times throughout the 

term. In these debriefings, the lead TA would discuss both things he found positive in the class 
and things he felt could be improved. The lead TA for Calculus I observed his fellow GTAs over 
the period of two weeks, twice during the term. He conducted his debriefings after the 
observation in his office and the meetings lasted between 20 and 40 minutes. In contrast, the lead 
TA for Calculus II conducted two observations a week and rotated the GTAs so that he observed 
each of them two times throughout the term. He conducted his debriefings directly after his 
observation so as to give the GTAs the information before they went to their next class and the 
meetings lasted between 5 and 10 minutes. Each of these debriefings were audio recorded and 
transcribed.  

The teaching practices focused on in the debriefs by the two GTAs did differ in some ways 
but there were several main similarities. What differed the most between the two lead TAs were 
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the ways they discussed particular teaching practices. For instance, both lead TAs focused on the 
ways to launch a task at the beginning of a class but there were distinct differences in the ways 
they talked about the launch. The lead TA for Calculus I tended to focus on the goal aspect of 
launching a task: 

So one thing that you did do that we want to stress is like at the beginning, you 
really want to outline their goal. What they should be doing. And I thought you 
did that well. You said the goal is to match the limits and then create a limit 
sentence so you can say it in English and you know exactly what it means. So that 
was really good. And you want to try and do that every activity, like, make sure 
they know what they're working towards because if they don't then they think that 
they're done really fast and you're like, what about this? They're like, oh I didn't 
know we had to do that. Just typical student stuff. 

In contrast, the lead TA for Calculus II focused more on the wording and the tone of the launch: 
You did a really quick launch. You did a nice quick launch… Yeah. Um, so in 
your intro, sort of avoid saying things like the professor's says or the professors 
wanted me to say. It sort of exudes that you don't really care what you're doing. 
You're just doing it because you have to. 

The difference between the two lead TAs could possibly come from the differences between 
the focuses of the course coordinators. For Calculus I, the weekly meetings with the course 
coordinator do involve a discussion about the activity for the coming week but the lead is mostly 
taken by the lead TA. In contrast, the comment from the Calculus II lead TA illustrates how the 
lead TA appropriated the use of the word ‘launch.’ The lead TA also adopted the professor’s 
message that they were to convey that this was a most interesting mathematics problem. The lead 
TA chose to discuss the GTA’s reference to the professor as deflection of autonomy, authority, 
and, consequently, conveying a lack of personal interest in the problem. With the focus on the 
way the activity was introduced to the students, the lead TA made sure to focus and comment on 
those particular practices during his first two observations. These differences between the 
interpretations and weekly meeting discussions have the potential to highly influence the lead 
TAs and, as a consequence, the other GTAs. With an analysis of the rest of the data, we can 
better understand the GTA’s interpretation and whether or not the practices of the GTAs changed 
over the course of the term based on these suggestions.  

Conclusion 

The study discussed in this proposal is still within the preliminary stage of analysis. 
However, with a better understanding of the teaching practices focused on by the lead TAs, there 
will be a better understanding of what practices were deemed important by the community of 
GTAs and how those practices changed over the course of the term. With this information, the 
field can begin to understand how GTAs change their practice over time and improve the 
professional development offered to graduate students who are new to the practice of teaching.  
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Professional Development Linking the Concept of Inverse in Abstract Algebra to Function 
Inverses in the High School Curriculum 
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Pre-service and in-service high school teachers often do not leverage their experience with 
abstract algebra when interpreting the notation of inverse functions. For this study, we have 
designed a professional development activity in which teachers can explore inverses in different 
sets with different binary operations to elicit pseudo-empirical abstraction of the relationship 
“element * inverse = identity.” We used a scripting task found in previous literature to measure 
the impact of the activity on both the teacher’s understanding of inverses and how the teacher 
would explain the inverse function notation to students. We claim that emphasizing the role of 
the identity element when discussing inverses can help pre-service teachers overcome 
misconceptions about inverse functions. 
 
Key words: teacher education, abstract algebra, horizon content knowledge 

 
Introduction and Literature Review 

 
Students in high school or college algebra classes commonly misinterpret the notation 

)(1 xf �  as 
)(

1
xf

. From an advanced mathematical perspective, we understand that the root of 

this issue is that the student is not attending to, or is not aware of, the fact that the notation 
)(1 xf �  generally refers to the inverse with respect to function composition and not function 

multiplication. Really, the fact that function composition is the binary operation at hand is 
merely a convention and the student’s interpretation, while it does not conform to standard 
mathematical interpretations, is not unreasonable.  

As instructors who have had experiences with students at this level, we realize that the 
student is probably not thinking about binary operations at all and is merely generalizing from 
their experiences with negative exponents of real numbers. But how do high school teachers, 
who have presumably had training in abstract algebra, think about such a situation? Zazkis & 
Mamolo (2012) report that they informally asked ten in-service teachers how they might respond 
to a student who has this confusion. Eight of the ten responded that the meaning of the □ 1� is 
context-dependent. For example, a teacher may explain that the meaning of the symbol □ 1�

changes depending on what it is “next to.” Only two of the ten teachers referenced an inverse 
with respect to an operation.  

Continuing this line of research, Zazkis and Kontorovich (2016) crafted a scripting task for 
pre-service teachers to investigate how they would respond to a student’s question about the 
symbol □ 1�  in a classroom setting. The pre-service teachers were given the beginning of a script 
between a teacher and a student (see Figure 1) with directions to finish writing the dialogue 
between the teacher and student (or several students). Their analysis divided the 22 scripts into 
two groups: those that explained the symbol □ 1� as always meaning inverse with respect to an 
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operation and those that explained that the symbol □ 1� changes meanings (inverse or reciprocal) 
depending on the context. Fourteen of the 22 pre-service teachers fell into the latter category. 
 
T: So today we will continue our exploration of how to find an inverse function for a given 
function. Consider for example 52)( � xxf . Yes, Dina? 
S: So, you said yesterday that 1�f  stands for an inverse function.  
T: This is correct.  
S: But we learned that the power (-1) means 1 over, that is, 5

115  � , right? 
T: Right.  
S: So, is this the same symbol, or what? 
T: 
Figure 1: Scripting Task (Zazkis & Kontorovich, 2016) 
 

We have developed a professional development activity designed to help pre-service and in-
service teachers make connections between inverses as they appear in the school curriculum and 
inverses with respect to binary operations in a group theoretic context. To measure the impact of 
our professional development activity, we utilized the same scripting task (Figure 1) as a pre- 
and post-test. From our results from the pre-test we will identify two misconceptions held by pre-
service teachers: an “opposite” scheme for inverse, and a “get to one” scheme for inverse. We 
present evidence that group theoretic activities designed to help teachers pseudo-empirically 
abstract the generalized property “element * inverse = identity” can help them move from a 
“same-symbol different meaning” understanding to a “same symbol same meaning” 
understanding. In particular, an emphasis on identifying the identity element with respect to an 
operation before discussing inverses can help teachers overcome a “get to one” scheme.  

 
Theoretical Perspective 

 
The data from this study will be analyzed through the lens of Piagetian genetic epistemology 

and von Glasersfeld’s radical constructivism. According to these theories, “…what [people] are 
able to observe about the world is more dependent on what they already know – that is, on their 
own special system of thinking - than it is on what actually exists” (Gallagher & Ried, 1981, p. 
1). These structures of knowing are referred to as schemes or “units of generalized behavior (or 
actions) that provide the basis for mental operations” (Driscoll, 2005, p.192). When a learner 
encounters something that does not fit into an existing scheme, the learner must accommodate 
this new object by expanding his existing scheme or by creating a new one (vonGlasersfeld, 
1995). Piaget used theories of abstraction to describe how assimilation and accommodation can 
occur. Pseudo-empirical abstraction can be defined as, “abstraction based on the observation of 
perceptible results, with coordination drawn from activities exerted on objects, reflection on the 
products of activity” (Ellis, 2016). The process of acting on objects, reflecting on these activities, 
and coordination of those actions can cause perturbation, which can lead to the learner 
accommodating their current scheme to encompass this new element.  

Horizon content knowledge is one part of mathematical knowledge for teaching (Ball, 
Thames, & Phelps, 2008). While some view horizon content knowledge as a connection between 
the mathematics that students are doing and more advanced mathematics that the students will 
encounter (Ball, et. al, 2008; Fernandez & Figueiras, 2014), others perceive it as connected to the 
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teacher’s knowledge of advanced mathematics (Wasserman, 2013; Zazkis & Mamolo, 2011). 
Our working definition of HCK is the teacher’s advanced mathematical knowledge and the 
threads that connect it to the students’ mathematical understanding that guide a teacher’s 
planning and in-action instruction. 

 
Task Design 

 
The professional development tasks were designed to give teachers experience with several 

different sets and operations. We chose three sets: the Real Numbers, the integers modulo 12 (the 
numbers on a clock), and the set of functions. We chose the first two sets because the teachers 
have experience doing calculations in both of those settings, and the latter set because it was 
relevant to the discussion about inverse functions. We used colloquial language whenever 
possible so that the activities are accessible to those who were not familiar with group theory. 

For the real numbers, the participants were asked to begin with the binary operation of 
addition. We gave the following definition: “The additive identity element is the element that 
‘does nothing’ when you add it to another element,” and asked them to identify the additive 
identity. Then we gave them the definition: “An additive inverse for an element in the set is the 
element that you must add to get back to the additive identity,” and asked them to find additive 
inverses of several different elements and then to write a statement describing additive inverses 
in the real numbers in general. We then asked corresponding questions regarding multiplication.  

For the set of integers modulo 12, we chose to use only the numbers appearing on the face of 
a clock, because we wanted them to have experience with a set in which the additive identity is 
represented with something other than zero. Since they may not be as familiar with computing in 
this context, we first gave them some true statements (i.e. 8+9=5) and asked them to explain why 
each one is true and to generate some of their own statements. Then they were asked to identify 
the additive identity element, find additive inverses of several elements in the set, and write a 
general statement describing additive inverses in this set. The tasks for clock multiplication were 
similar, but before we talked about multiplicative inverses we gave them a completed 
multiplication table and asked them to circle all of the times that the multiplicative identity 
appears in the table. Then they were asked to identify some of the elements that had 
multiplicative inverses. 

At this point, we had the participants make a table in which they described the different sets, 
operations, identity elements, and types of inverses that they had seen in the exercises. The goal 
of this activity was for them to begin to abstract the notion: element * inverse = identity.  

The final set was the set of functions. We began with function addition. We gave them a few 
functions to work with and had them practice adding functions. We then asked them to identify 
the additive identity function, and asked them to graph it. We had a discussion about why this 
function was the additive identity, and asked them to find the additive inverses of the given 
functions. Then we moved on to function composition, asking them to compose some given 
functions and think about an identity function with respect to composition (most groups were 
able to figure it out). We then proposed the function xxi  )( , and asked them to compose the 
given functions with the function i. They then found inverses for the given (injective) functions 
with respect to composition and composed the given functions with their inverses to see that that 
composition results in the identity function xxi  )( .  

 
Methods 
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Participants were recruited via email and word of mouth from a mathematics department at a 

large Midwestern public university and a local high school. Participant groups included two 
graduate students in mathematics who piloted the activities, three senior level pre-service 
secondary teachers who were doing their student teaching, three sophomore level pre-service 
secondary teachers, and three in-service teachers from a local school district. We implemented 
the professional development in groups of two or three. The activity took approximately two 
hours. First, we gave the participants the scripting task (Figure 1) and had them write a script 
individually. Then we collected the scripts and went directly into the professional development 
activities, which they worked on in groups. At the end, we gave their scripts back and had them 
individually write a reflection on their script, identifying things they might change in their script 
and areas in which their own understanding had changed as a result of the activities. All groups 
were video recorded and their written work was collected.  

 
Results 

 
The results reported here will focus on an analysis of the scripts that the participants wrote 

before they did the group theory activity, and the reflections on the scripting task that they wrote 
after the activity. We found, similar to Zazkis’s previous work, that only a few of our 
participants (3 out of 11) explained the notation □ 1� as referring to an inverse with respect to an 
operation: both of the graduate students and one in-service teacher. The scripts also revealed that 
several of the participants held misconceptions about inverses. We identified two schemes that 
displayed underdeveloped understandings: the opposite scheme and the get-to-one scheme.  

The opposite scheme is characterized by the vague idea that “inverse means opposite.” They 
pay no attention to the identity element at all in this scheme. When asked to find an inverse of an 
element, they will do something to make it an “opposite,” whether that is changing the sign or 
finding the reciprocal, and often cannot move smoothly between the “two types of opposites.” 
One participant fixated on the symmetry that additive inverses have on the number line. He then 
had difficulty thinking about multiplicative inverses because he couldn’t construct a visual 
representation. Others referred to the inverse of an operation: “An inverse means opposite, so the 
opposite (if you’re thinking about multiplication) is division. So 15� means you would divide by 
five. An inverse function is different, but it still essentially means opposite.”  

The get-to-one scheme is characterized by the idea that “the inverse is what gets you to one.” 
Participants who displayed this scheme began to attend to the role played by the identity element, 
but incorrectly generalized that the identity is always 1. One participant, Ben, showed in his 
script that composition of a function and its inverse results in x. Ben seemed to be unsatisfied 
with the x , so he wrote that xx 1  and drew a box around the coefficient 1. We interpret this 
action as his way to assimilate this result into his get-to-one scheme (see Figure 2).  
 
T: So, the inverse of an object, be it a fraction or a function, is the thing that turns the thing into 
1.  
S: Okay? 
T: Remember when we found the inverse of a fraction? We got the reciprocal, which was the 
flipped fraction and when we multiplied it with the original fraction we got one.  
S: Yeah… 
T: So, that is what the inverse fraction does. And I will show you exactly what I mean by this. 
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So, for f(x) the inverse is 2
5

2
1 �x . Now… plug it in xxxx 1555)(2 2

5
2
1   �� ��  

Figure 2: Ben’s Scripting Task Exhibiting a Get-to-One Inverse Scheme 
 

Five of the six undergraduates and two of the three in-service teachers reported that they 
think differently about inverses after the group theoretic activity. All but two mentioned that 
their understanding about the identity changed. Dan said, “I had forgotten how to find the inverse 
of a function because I hadn’t done them in so long and I was only taught the process, not the 
reasoning.” Markus also reported, “Yes, this session was a good refresher for me on what inverse 
was.” Sloan explained, “Before this session, I never really realized how many different types of 
inverses were possible depending upon the operations and sets. Seeing the relationships between 
the various inverses and correlating identities is enlightening…”   

It is interesting that although they had found inverse functions in the past and had likely 
encountered the computation xxffxff   �� ))(())(( 11 , the pre-service teachers didn’t know 
how to interpret this result. Jane said, “I now think of inverses as connected to the identity” and 
Kim notes “the composition of functions having the identity x is very interesting and I hadn’t 
thought of the idea of the operation actually having an identity.”  

Dan, Sloan, and Ben all showed evidence of a get-to-one scheme in their first scripting task. 
After the exercises, both Sloan and Ben said that they had never thought about different types of 
identity elements and had expanded their understanding of inverses.  

Six of the eleven participants said that they would change how they talked about inverse 
functions to students. Sloan said, “I would make an effort to clarify which operation [and] 
identity I would use as I explain.” Kim said, “The word ‘identity’ would be used much more. 
However, the same concept regarding ‘neutralizing’ the function I believe I would continue to 
use. When the composition [gives] x, the composition is neutral.” 

 
Discussion 

 
Previous research has shown that many pre-service teachers do not leverage their 

understanding of abstract algebra when interpreting the notation □ 1� . Because of teacher 
shortages, it is quite possible that many teachers have never had a course in abstract algebra at 
all. Thus, professional development activities designed to broaden teachers’ mathematical 
experiences can be beneficial. Zazkis and Mamolo (2011) suggest that a teacher could make use 
of her horizon content knowledge by explaining the situation in terms of an inverse with respect 
to an operation. Our work contributes by incorporating professional development tasks aimed to 
help teachers make these connections. Our tasks emphasize the role of the identity element when 
thinking about inverses. This emphasis seems to help teachers overcome the misconception that 
an inverse is the element that “gets you back to 1.” Having the teachers experience finding 
identity elements and inverses in different sets with different operations helped many of them to 
generalize the relationship “element * inverse = identity” which can lead them to interpret the 
notation □ 1� as meaning an inverse in general. This study is limited by the small number of 
participants, however, the goal of this work was to design and conduct a professional 
development activity focusing on a particular connection between an advanced mathematical 
concept and secondary school mathematics in a way that teachers can leverage in their 
classrooms. Future research is needed to continue the development of such professional 
development activities.  
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Textbook Formations of Independence 
 

Steven Edalgo   Adam Molnar 
Oklahoma State University  Oklahoma State University 

The noun independence and adjective independent are applied in multiple mathematical 
contexts. In probability, independent events do not affect each other, but in algebra and 
regression, an independent variable has a non-symmetric effect on a dependent variable. Further 
complicating matters, independence in everyday language represents something in between. 
Prior research has shown that students and professors struggle to apply concepts of 
independence. As part of an investigation into curriculum about independence, textbook 
definitions about independence were examined. Across nine books, a mix of algebra and 
statistics texts, substantial variations existed in definitions of independent events and 
independent variables. Variations included the register of representation, verbal against 
algebraic, and the strength of the dependent effect. Little written guidance was provided to help 
learners navigate across the multiple formations. 

Key words: Independence; Probability; Variable; Semiotics; Lexical Ambiguity 

Independence is an old concept in probability. Over 250 years ago, De Moivre defined 
independent events in The Doctrine of Chances; two events are independent when “the 
happening of one neither forwards nor obstructs the happening of the other” and dependent if the 
“probability of either’s happening is altered by the happening of the other” (1756, p. 6). The 
concept is symmetric; either event can serve as the “one” or the “other”. In probability, the term 
maintains that definition today. Independent events are sufficiently common that the authors of 
the Common Core State Standards chose to include the definition in the high school standards 
(National Governors Association [NGA] Center for Best Practices & Council of Chief State 
School Officers [CCSSO], 2010, p. 82). 

Despite 250 years of history—or perhaps because of 250 years of history—people have 
trouble determining if events are independent. Manage and Scariano (2010) surveyed 219 
college students in US introductory statistics classes; only 23% correctly answered a multiple-
choice question on the definition of independence. Molnar (2016) surveyed 25 US high school 
mathematics teachers; only 3 (12%) correctly solved a problem about two events in a table. 
Outside the USA, D’Amelio (2009) wrote about students’ and professors’ challenges in 
Argentina; about half the French pre-service teachers surveyed by Nabbout-Cheiban (2016) 
incorrectly solved problems about independent events. 

One potential reason behind the trouble is that the colloquial non-probabilistic definition of 
independence differs from De Moivre’s statement. According to the Oxford English Dictionary, 
the adjective independent refers to something “not depending on the authority of another, not in a 
position of subordination or subjection; not subject to external control or rule; self-governing, 
autonomous, free” (“Independent,” 2015). In everyday language, independence and dependence 
are not necessarily symmetric. For instance, when choosing where to live, young children are 
usually dependent on their parents’ decisions, but parents have more autonomy. 

Another complication arises from the labeling of independent and dependent variables when 
describing algebraic functions. In Common Core standards, Grade 6 students should “write an 
equation to express one quantity, thought of as the dependent variable, in terms of the other 
quantity, thought of as the independent variable” (NGA Center for Best Practices & CCSSO, 
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2010, p. 44). With defined sides, this definition is never symmetric, although closer to the 
sometimes-symmetric everyday definition than the always-symmetric probability version. 
Incomplete textbook explanations do not assist students. Leatham (2012) gathered 10 school 
mathematics textbooks containing problems on independent and dependent variables. Of 73 total 
problems, 32 (44%) provided absolutely no information to determine the independent variable; 
others provided only partial information. Leatham concluded that most textbook problems sent 
mixed messages, “implicitly impeding students from developing a robust understanding of 
independent and dependent variables” (p. 357). 

Some statistics textbooks tag on an additional non-symmetric definition of independent 
variables in regression models, where the independent variable controls the value of the 
dependent variable. Because the regression definition is similar to the algebraic one, and the 
definition does not appear in state standards, it is less crucial. Besides, between colloquial, 
algebraic, and probabilistic definitions, ample opportunities exist for confusion.  

Our entire investigation will consider the curriculum around independence through multiple 
lenses as defined in Gerhke, Knapp, and Sirotnik (1992). In this preliminary report, we examine 
planned textbook curriculum in algebra and statistics textbooks. Later, we will interview teachers 
to ask about intended curriculum and analyze student artifacts of experienced curriculum.  
 

Theoretical Framework 

Independence is a non-physical mathematical concept. As Duval wrote in 2006, 
mathematical objects are never physically visible. Humans comprehend mathematics only 
through symbols and signs, “but the mathematical objects must never be confused with the 
semiotic representations that are used” (p. 107). Therefore, our framework for understanding 
mathematical confusions about objects labeled independent is semiotic. 

For example, a mathematical object that can change between more than one value, dependent 
on circumstances, receives the representation variable in written English. In college algebra, the 
object receives a single letter representation such as X. In either setting, the object could have 
been expressed with another semiotic representation, such as changing-number or v or 변수 (the 
Korean representation for the concept of variable). 

In Duval’s (2006) framework, systems of representations are called registers; earlier, 
variable was presented in the registers of written English, algebra, and Korean. Explanations for 
mathematical objects, known as formations, are designed to help students connect a concept with 
its representation in a register. Students are expected to learn formations. For instance, in the 
Common Core probability standards, students are asked to explain the formation of 
“independence in everyday language and everyday situations” (NGA Center for Best Practices & 
CCSSO, 2010, p. 82).  

When authors write textbooks, they generate written formations for mathematical objects. 
Some authors include formations in other registers or ask students to convert between registers. 
Our textbook research uses the semiotic framework to ask the following questions. 

1. For independent events, what formations and registers are used in definitions? 
2. For independent variables, what formations and registers are used in definitions? 
We had also proposed a third question, about explanations provided to distinguish 

applications of the semiotic symbol independence, but we did not find many of these 
explanations. We comment more about this in the section on questions for the audience. 
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Method 

Encyclopedic search of pre-algebra, algebra, and probability textbooks would be very long, 
given the abundance of available textbooks. For this RUME report, we decided to concentrate on 
a small sample of books we knew had recent college-level use, similar to how Cook and Stewart 
(2014) examined recently-published textbooks on linear algebra. We selected three college 
introductory statistics textbooks (Bluman, 2014; Bowerman, O’Connell, & Murphee, 2014; Diez, 
Barr, & Cetinkaya-Rundel, 2015) and three college algebra textbooks (Bittinger, Beecher, 
Ellenbogen, & Penna, 2013; Crauder, Evans, & Noell, 2014; Miller, 2014). For comparative 
purposes, we added three US secondary school algebra textbooks (Benson, Dodge, Dodge, 
Hamberg, Milauskas, & Rukin, 1991; Bittinger, 1999; Brown, Dolciani, Sorgenfrey, and Kane, 
1990). In each textbook, we recorded the initial formative definition involving independent or 
independence and examined problems in the text related to independence. 

  
Results 

Each introductory statistics textbook had a different definition of independent in regards to 
events. One college algebra textbook and one secondary school algebra textbook also contained 
formations because the books included sections on probability. The initial definitions are 
presented in Table 1, with statistics book definitions first. 
 
Table 1 
Initial Textbook Definitions Related to Independent Events in Probability 
 
Textbook Definition 
Bluman (2014, 
p. 213) 

Independent Events – Two events A and B are independent events if the fact 
that A occurs does not affect the probability of B occurring. 

Bowerman et 
al. (2014, p. 
171) 

Independent Events – Two events A and B are independent if and only if  
1.) P(A|B) = P(A) or, equivalently, 
2.) P(B|A) = P(B) 
Here we assume that P(A) and P(B) are greater than 0. 

Diez et al. 
(2015, p. 85) 

Independent Process –  Two processes are independent if knowing the outcome 
of one provides no useful information about the outcome of the other. 

Brown et al. 
(1990, p. 756) 

Independent Events – Two events A and B are independent if and only if: 
P(AÇB) = P(A)P(B). 

Miller (2014, 
p. 779) 

Independent Events – If events A and B are independent events, then 
probability that both A and B will occur is P(A and B) = P(A)*P(B). 

 
The authors of a statistics textbook, Bowerman et al. (2014), presented the most challenging 

definition, using both the probability algebra register P(A|B) = P(A) and conditional probability. 
The two algebra textbooks also contain formulations in the probability algebra register, varying 
slightly in the semiotic sign for and (and versus Ç), but do not require another mathematical 
concept. Relying on an additional concept complicates the structure. If a student cannot convert 
P(A|B) into a mental concept, the student will not comprehend independence. Research results, 
summarized by Falk in 1986, have shown that conditional probability confuses many students. 

20th Annual Conference on Research in Undergraduate Mathematics Education 135020th Annual Conference on Research in Undergraduate Mathematics Education 1350



Asking learners to construct a mental formulation of independence through another challenging 
concept, plus a conversion from the algebra register, is highly demanding. 

On the other hand, Diez et al. (2015) and Bluman (2014) avoided conditional probability and 
the algebra register, relying only on written English. The computational formula appears later. 
Placing the written definition first reduces cognitive load by requiring less symbolic conversion. 
Nevertheless, despite language similarities, their definitions are not alike. A process is a larger 
concept than an event; events are sets of outcomes inside random processes. By defining 
independence on processes, not two events inside a process, Diez et al. (2015) have offered a 
different conception than the other authors. Interestingly, Diez et al. later refer to independent 
events, writing “if two events are independent, then knowing the outcome of one should provide 
no information about the other” (2015, p. 94). The shift between larger processes and smaller 
events may not appear notable, but for a concept with demonstrated problems, all shifts in 
formulation matter. Bluman’s (2014) definition is the clearest.   

 
Turning to variables, four algebra books and two statistics books contained a definition for 

independent variables. We do not know why the other two algebra books did not; perhaps the 
authors considered the concept a prerequisite. Initial definitions are presented in Table 2, with 
college algebra textbooks first, then secondary school algebra textbooks, then statistics books.  
 
Table 2 
Initial Textbook Definitions Related to Independent Variables 
 
Textbook Definition 
Bittenger et al. 
(2013, p. 62) 

Independent Variable – In the equation	" = $
% & + 2, the value of y depends on 

the value chosen for x, so x is said to be the independent variable. 
Miller (2014, 
p. 17) 

Independent Variables – One type of mathematical model is a formula that 
approximates the value of one variable based on one or more independent 
variables.  

Benson et al. 
(1991, p. 346) 

Independent Variable – In a function, the variable whose value is subject to 
choice. The independent variable affects the value of the dependent variable. 

Bittenger 
(1999, p. 156) 

Independent Variables – Write an equation like y = x2 – 5, which we have 
graphed in this section, it is understood that y is the dependent variable and x is 
the independent variable, since y is calculated after first choosing x and y is 
expressed in terms of x. 

Bluman (2014, 
p. 19) 

Independent Variable – In an experimental study, the one that is being 
manipulated by the researcher. … The resultant variable is called the 
dependent variable. 

Bowerman et 
al. (2014, p. 
487) 

Independent Variable – Regression analysis is a statistical technique in which 
we use observed data to relate a variable of interest, which is called the 
dependent (or response) variable, to one or more independent (or predictor) 
variables. 

 
As with the independent event definitions, we see multiple registers in Table 2. Both books 

with Bittenger (1999, 2013) as an author initially used the algebraic register. Although the letter 
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x is a common algebraic formulation for an independent variable, writing in two registers 
complicates the concept. In other surveyed books, the symbolic x appears later. 

Both Bittenger books (1999, 2013) introduce independence through the verb choose; 
independent variables have values selected, but dependent variables do not. The noun choice 
appears in Benson et al.’s (1991) definition; Bluman’s (2014) definition of manipulation in 
experiments has synonymous language. The other two books do not mention choosing a value 
for independent variables. Both Miller (2014) and Bowerman et al. (2014) utilize a word related 
to prediction. Only Miller’s 2014 mathematics book—not a probability and statistics text—
describes the connection as approximate, although affect in Benson et al.’s (1991) definition is 
not as strictly causative as the other books or the Common Core formulation. Overall, free choice 
versus control appears to be the dominant formulation. The two statistics books that use the term 
independent variable do not vary much from algebra formulations, a slightly surprising result. 

 
Questions for the Audience 

The third probability and statistics textbook made a type of distinction we had hoped to see 
frequently. When discussing regression modeling, Diez et al. add in a footnote that applying the 
words independent and dependent “becomes confusing since a pair of variables might be 
independent or dependent, so we avoid this language” (2015, p. 18, emphasis in original). The 
other books do not make distinctions or connections between formations involving the word 
independent. One possibility for the paucity of connections we saw is our sample size. Although 
our recollections of other texts include few connecting and distinguishing statements, a larger 
search could identify more. Alternatively, we could interacting with more teachers and students. 
1. Would a more comprehensive textbook search be fruitful? 

The three concepts are unalike in the direction of the relationship. As described earlier, the 
probability relationship is symmetric; the algebra relationship is not symmetric; the colloquial 
relationship is sometimes symmetric. In an earlier discussion, one person suggested that 
relationships be defined in terms of causal direction, bi-directional versus uni-directional. 
2. What research could be done to investigate this idea? Given the untested nature of any new 
causal definitions, the investigation would likely have to occur outside standard classroom flow. 

 This leads into another question, the primary one in the minds of teachers—and us. 
3. What are other possible solutions to the misconceptions and lexical confusion? 
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This study explores how practicing teachers make connections between secondary and tertiary 
mathematics. Using three frameworks for teacher knowledge of mathematics, coupled with key 
developmental understandings (KDUs) (Simon, 2006) as related to teacher knowledge (Murray 
& Wasserman, 2016), we observe how a professional development workshop focused abstract 
algebra impacts teachers’ understanding and teaching of secondary mathematics.  
 
Key Words: mathematical connections, professional development, teacher knowledge 
 

Within the mathematics and mathematics education communities, ongoing consideration has 
been given to the knowledge secondary mathematics teachers require to provide effective 
instruction. At the focus of this debate is what mathematical content knowledge secondary 
teachers must have in order to communicate mathematics to their students, evaluate student 
reasoning, and make informed curricular and instructional decisions. Many believe that 
mathematics teachers should have a solid base of mathematical knowledge and mindfulness of 
how tertiary mathematics is connected to secondary mathematics (Papick, 2011). But some have 
shown how more mathematics preparation does not necessarily improve instruction (Darling-
Hammond, 2000; Monk, 1994). Thus, questions endure about what connections are between 
secondary and tertiary mathematics are important and how knowledge of these connections may 
impact classroom practice. While there are many who support the notion that mathematics 
preparation for secondary teachers must involve knowledge of vertical connections, less is 
known about how inclusion of courses such as abstract algebra in teacher preparation programs 
may bring this about. 

Framework 

In order to explore the nature of vertical connections in mathematics, we draw on three areas 
of teachers’ knowledge of mathematics research: Mathematical Knowledge for Teaching (MKT) 
(e.g., Ball, Thames, & Phelps, 2008), Advanced Mathematical Thinking (AMT) (e.g., Zazkis & 
Leiken, 2010), and Knowledge of Algebra for Teaching (KAT) (e.g., McCrory, Floden, Ferrini-
Mundy, Reckase, & Senk, 2012). These frameworks, along with the research on key 
developmental understandings (KDUs) (Simon, 2006) as related to teacher knowledge (Murray 
& Wasserman, 2016), provide a way to think about how understanding of tertiary content may 
impact teachers’ understanding of the teaching and learning of secondary mathematics.  

Building on Shulman’s seminal work on teacher knowledge (1986, 1987), Ball and 
colleagues (2008) conceptualized the domains of MKT according to elementary mathematics. 
Although there exist many challenges in translating the definition of these domains in a 
secondary context (Baldinger), our current work utilizes MKT constructs to better understand the 
nature of knowledge needed for secondary teaching. In particular, we consider the development 
of horizon content knowledge (HCK) as it pertains to secondary mathematics through exposure 
to tertiary mathematics. According to Ball, Thames, & Phelps (2008) HCK is “an awareness of 
how mathematical topics are related over the span of mathematics in the curriculum” (p. 403), 
but this construct varies considerably from the elementary to secondary level (Howell, Lai, & 
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Phelps, 2008). For the purpose of the current work, we use the definition of HCK as rendered by 
Jacobson et. al., (2013), as “an orientation to and familiarity with the discipline (or disciplines) 
that contribute to the teaching of the school subject at hand, providing teachers with a sense for 
how the content being taught is situated in and connected to the broader disciplinary territory” (p. 
4). We use this definition to consider how instruction in abstract algebra coupled with secondary 
tasks prompting teachers to apply this knowledge may develop an awareness of connections 
between abstract algebra and secondary mathematics. We believe that knowledge of specialized 
content such as abstract algebra may provide secondary teachers with a better understanding of 
the mathematical horizon as it pertains to their teaching of secondary algebra. 

Even with more students taking algebra, the preparation of algebra teachers is still not well 
researched (Stein et. al., 2011 in McCrory et. al., 2012). This lack of research on teacher 
preparation and shortcomings of existing frameworks serves as motivation for the development 
of KAT. This framework contains three domains of knowledge believed to be essential to the 
teaching of secondary algebra: school algebra, advanced mathematics, and algebra for teaching 
(McCrory, et. al., 2012). Knowledge of advanced mathematics is pertinent as this is the 
knowledge that provides teachers with “some perspective on the trajectory and growth of 
mathematical ideas beyond school algebra” (McCrory et. al., 2012, p. 597), much like HCK. 
This knowledge is of special significance because many students experience difficulty 
transitioning from high school to college mathematics and many teachers perceive the 
undergraduate mathematics that they themselves learned as immaterial with regard to their 
teaching practice. For these reason, and because secondary teachers are typically required to 
graduate with an undergraduate degree in mathematics, we also draw upon AMT, defined as 
“knowledge of the subject matter acquired in mathematics courses taken as part of a degree from 
a university or college” (Zazkis & Leiken, 2010, p. 264). 

Finally, in order to better understand how exposure to abstract algebra content may impact 
secondary teachers’ knowledge of teaching mathematics, we consider mechanisms by which 
teachers develop awareness of connections and how this awareness may impact instruction. To 
accomplish this, we utilize the construct of KDUs (Simon, 2006). The essential characteristics of 
KDUs to teachers and teaching are that a KDU must involve a conceptual advance on the part of 
the teacher, and that without the knowledge, teachers must build their understanding through 
activities and reflection rather than explanation or demonstration. We posit that through 
awareness of connections between secondary and tertiary mathematics, it is possible for 
secondary teachers to develop KDUs, thereby furthering their understanding of and ability to 
teach secondary mathematics. 

Our current work explores how in-service teachers make connections between secondary 
mathematics and abstract algebra. This work builds on the results of a smaller pilot study, which 
revealed an interesting change in participants’ understanding of various mathematics concepts, 
including inverse. In the previous and current work, frame participants’ understanding of inverse 
using the APOS framework (Asiala, Brown, DeVries, Dubinsky, Mathews, & Thomas, 1997). 
The APOS framework conceptualizes an individual’s understanding of mathematical content 
according to four levels - action, process, object, and schema. At the action level, inverses are 
used algorithmically to perform mathematical tasks such as solving equations, e.g., multiply both 
sides of an equation by the multiplicative inverse. As a process, inverses are viewed as both an 
operation and mathematical property of equality. At the object level, inverses are understood as 
elements within a set defined with respect to a binary operation. Finally, at the schema level, a 
comprehensive understanding of inverse is attained and the operational/elemental duality of 
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inverse is understood as well as its utility as a mathematical property of equality (Wright, 
Murray, & Basu, 2016). 

In our pilot, we found that some participants initially discussed inverses through an action or 
process-level of understanding. After engagement in activities focused on the algebraic structures 
of groups, rings and fields, participants began to consider inverses as objects. We used this 
finding to further explore how an extended professional development workshop highlighting the 
connections between abstract algebra and secondary mathematics may not only change teachers' 
ideas about the inverse concept, but also influence their thinking about mathematics teaching and 
learning. The research questions for this study are: (1) How does understanding of tertiary 
mathematics change teachers’ knowledge and teaching of secondary mathematics concepts? (2) 
How does exposure to and instruction in tertiary content, specifically abstract algebra, change the 
way teachers understand and teach the concept of inverse? 

 
Methods 

To answer these research questions, we conducted a four-day professional development (PD) 
workshop with four in-service teachers (Conor, Dylan, Orlaith, and Aidan) from an urban high 
school in northern New Jersey. The workshop consisted of four three-hour sessions held on 
consecutive days prior to the beginning of the school year.  

Data Collection 
During the workshop, participants worked through three packets of activities that included 

scripting tasks (Zazkis, 2013) (e.g., extend an imaginary interaction between a teacher and 
students in a form of dialogue, including explanations and/or examples), secondary content 
activities (e.g., describing the mathematical properties used to solve a multistep linear equation), 
and tertiary content activities. The tertiary activities focused on abstract algebra content 
including algebraic structures (groups, rings, and fields) and formal definitions of binary 
operations, inverse relation and function. The first two packets prompted participants to consider 
mathematical properties used when solving equations in a secondary classroom and how these 
properties relate to algebraic structures. The third packet focused on connecting the content on 
algebraic structures to functions. The purpose of these activities was to unpack how discussions 
about inverses through an abstract algebra lens might help participants reconsider functions as 
objects rather than actions or processes. Additionally, we sought to challenge conventional 
thinking about what a function is and common problems distinguishing between additive, 
multiplicative, and compositional inverses for functions.  

Participants engaged in these tasks individually and as a group. One researcher engaged 
participants in group discussions, which were audio and video taped. We collected all written 
artifacts containing participants’ responses and reflections for future analysis. Future data to be 
collected is classroom observations and participant interviews that will allow us to further 
explore how exposure to and instruction in abstract algebra content impacts instructional 
practice. 

Data Analysis 
In our initial analysis, each researchers independently isolated episodes from the video 

recordings that highlight teachers’ understanding of inverse and identity.  Once the significance 
of these episodes was mutually ratified, we transcribed and analyzed the audio using an initial or 
“open” coding method, searching for words or phrases that showed evidence of participants’ 
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making connections between secondary and tertiary mathematics. Open coding was the preferred 
method for our initial analysis as it allows for the development of tentative codes that may lead 
to further inquiry, thereby allowing the study to take direction naturally (Saldana, 2009).  

Preliminary Results 

We focus our results on the fourth day of the workshop to explore how abstract algebra 
impacts secondary teachers’ understanding of inverse. Similar to our pilot, we found participants 
moved from an action/process level toward an object level of understanding of inverse. To 
highlight how the participants’ understanding evolved, we divide our results into three sections: 
understandings of the concept of inverse and inverse function as action/process, the transition in 
understanding towards object, and impact on instructional practice. 

Initial Understanding of Inverse 
At the beginning of the session, participants read and responded to a scripting task capturing 

the conversation between a teacher and three students regarding the inverse of the function f(x) = 
x2. Students in the task provided three answers for the inverse of this function: 1/x2, -x2, and √x. 
After considering this scenario, Dylan, commented, “Only one of them [1/x2, -x2, or √x] is the 
inverse of the function f(x) = x2, but they all have different thinking. For example, x2 and -x2. 
When you combine them it is 0 but does that mean that that’s an inverse?” 

Conor viewed the inconsistency of responses as a lack of “conciseness in mathematical 
vocabulary” rather than “just students’ misconceptions”. Based on this discussion, we see 
participants beginning to understand why there are inconsistencies in students’ understandings of 
inverse functions. In trying to unpack this ambiguity, participants exhibited an understanding of 
inverse at the action/process level. For example, when participants were asked to communicate 
their understanding of inverse, Conor referred to multiplication and division as inverse 
operations, while Dylan asserted, “my definition of the inverse of a function is something that 
undoes another function.” In providing this definition, Dylan overlooks the binary operation with 
respect to which the inverse is defined. He references an algorithmic approach to “undoing” 
without considering the operation that is being undone or the product of this undoing, arriving at 
the identity, thereby evidencing action-level understanding. 

Transition in Inverse Concept Understanding 
During the discussion of abstract algebra in connection with the inverse and identity function, 

participants transition from action/process to object level understanding. In the introductory 
scripting task described above where participants realize the ambiguity in their conception of 
inverse, they discuss the importance of clearly defining the term inverse. Orlaith states, “What 
does it mean that we are asking them for the inverse? So define the term inverse. I think that's 
where we would have to start.”  She also notes how inverse is different for functions, but 
expresses her inability to provide a specific definition for this concept. Through this reflection, 
we posit that Orlaith’s HCK might not include the understanding of functional inverse. 
Specifically, she seems to be aware of how her inability to provide an accurate definition of a 
function’s inverse is indicative of a gap in her knowledge of the broader mathematics territory of 
inverses in algebraic structures. We interpret this as evidence of a transition in her understanding 
of the concept of inverse. 

We also observe transitioning through participants’ written responses to reflection questions 
posed at the end of the four-day workshop. In particular, Conor writes, “You think about them in 
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terms of other definitions/properties that contain the words inverse or identity.” In addition, 
Aidan reflects on his transitioning knowledge by stating, “It is important to emphasize what 
operations we are working with.” Through these reflections, we claim that participants have 
developed a deeper awareness of inverses as either a mathematical property (process level) or as 
an element within a set of objects that must be defined with respect to an explicit mathematical 
operation (object level). Furthermore, we posit that this advance in conceptual understanding 
may signify the development of a KDU with regard to the higher-level mathematical 
underpinnings of inverse. 

Impact on Instructional Practice 
At the conclusion of the workshop, participates seemed more aware of the connection 

between tertiary and secondary mathematics than they had been at the beginning. This awareness 
prompts teachers to reconsider their own practice in different ways. For example, during one 
conversation, Dylan mentions how he will integrate newfound understanding of inverse, 
particularly in regard to defining inverses with respect to their identity under composition, into 
this year’s lessons. Upon realizing that the identity of a function under composition is the 
function “y=x” Dylan states, “I never taught it like that” and “I’m one-hundred percent using that 
this year!” When asked to reflect upon future instruction, he further states, “I will be lesson 
planning completely different. Our first unit is all about solving and inverse operations. I must 
change how I approach my introduction throughout this unit because I want my students to not 
have misconceptions as they approach higher levels.” In so stating, Dylan is considering how this 
new knowledge impacts his teaching of secondary mathematics as it may help prepare his 
students for higher-level mathematics, showing an awareness of the mathematical horizon. 

Applications and Implications 

Based on our pilot findings in which participants’ understanding of the mathematical concept 
of inverse evolved from action/process to object understanding, we created an extended PD 
workshop to push teachers’ thinking about inverse, identity, and solving equations. This 
extended workshop allowed us to present classroom scenarios and scripting tasks and to delve 
more deeply into abstract algebra content.  

In the current study, participants’ understanding of inverse evolved in a similar way as our 
pilot participants. That is, participants began to think about inverses as objects within an 
algebraic structure, rather than as an action or process. The difference between the current work 
and the pilot came from the participant’s connection to their classroom practice. Similar to the 
pilot, the participants reported a newfound appreciation for being precise and consistent with 
their language in the classroom, especially around definition of identity, inverse, and binary 
operations. In the current work, the participants went even further by connecting their 
experiences in undergraduate mathematics classes to their teaching. As Conor stated, “I left it all 
in the floor in college, but it’s so important for Algebra II as well!” 

As we continue our data collection and analysis, we will use classroom observations and 
interviews to verify that the teachers’ reports of how this new understanding of content might 
impact instruction. The implications of this work are a first step in helping us understand how 
knowledge of mathematics is related to being an effective secondary mathematics teacher. We 
hope to engage mathematicians and mathematics teacher educators in discussions about how this 
data might provide confirming or disconfirming evidence for teachers’ reports on instructional 
impact of the knowledge of connections between secondary and tertiary mathematics. 
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Research shows that low-achieving students are less able to accurately assess their own 
weaknesses. As a result, many might fail to see the need to explore the subject matter more 
deeply, in order to improve their conceptual understanding and procedural fluency. This 
study investigates undergraduate mathematics students’ self-assessment behaviors. Students 
from a broad range of courses at three universities were asked to predict their expected 
grades on assignments, and these predictions were compared with the grades assessed by 
their instructors. They were also asked to justify their self-assessments if they did not give 
themselves full points. Preliminary results showed that students overall overestimate their 
grades. There was a significant difference between expected and actual grades. As test scores 
increased, the difference increased from negative to positive. Students in the B-range 
(between 80-89%) were the most accurate predictors. 

Key words: [Self-assessment, Undergraduate Mathematics Teaching, Metacognition] 

Studies suggest that higher-ability students also have better metacognitive skills (Chi et 
al, 1989; Recker & Pirolli, 1992; Shute & Gluck, 1996; Wood & Wood, 1999), and that low-
achieving students are less accurate when assessing their own weaknesses (Langendyk, 
2006). One implication of these findings is that many low-achievers may not see the need to 
explore the subject matter more deeply, in order to improve their conceptual understanding 
and procedural fluency. Students think that they are doing “just fine” even if their knowledge 
and performance are weak (Kruger & Dunning, 1999). This over-confidence could be a factor 
contributing to students’ lack of success (Langendyk, 2006). Students often do not know 
when they need help or what form of support is appropriate (Aleven & Koedinger, 2002), and 
low-achieving students need external support in order to link assessment to learning 
(Langendyk, 2006). 

Undergraduate mathematics courses have one of the highest dropped, failed or withdrawn 
(DFW) rates (Gardner Institute, 2013). However, little research has investigated mathematics 
students’ self-assessment of performance, or the reasoning for their self-assessments. This 
study addresses these gaps in the literature by investigating the following research questions: 
1) How accurately do undergraduate mathematics students self-assess their performance? 2) 
How do self-assessments of successful and unsuccessful performers compare? 3) What 
reasons do students give to justify their self-assessment of their performances? 4) How does 
students’ self-assessment accuracy affect their self-regulated learning behaviors? 

At this point, we only have information pertaining to the first two research questions. 

Literature Review 

This study is based on the theoretical framework of “meta-ignorance,” also referred to as 
the Kruger-Dunning effect (Dunning & Kruger, 1999; Kruger & Dunning, 1999). This 
framework asserts that people’s ignorance is often invisible to them, because “lack of 
expertise and knowledge often hides in the realm of the “unknown unknowns” or is disguised 
by erroneous beliefs and background knowledge” (Dunning, 2011, p. 248). 

Research shows that good students have better metamemory (a conscious awareness of 
ones own processes with respect to memory) accuracy than do poor students, and are better 
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able to predict what they know and do not know (Sinkavich, 1995). Dunning and Kruger 
(1999) found that when asked to rank their performances relative to peers, bottom-quartile 
students overestimated their performance, while top-quartile students underestimated. Self-
assessments are more likely to be inaccurate on difficult tasks for which people lack requisite 
knowledge (Lichtenstein & Fischhoff, 1977). If the task is too difficult or the person is 
unskilled, there is a greater likelihood of overconfidence (Dunning & Kruger, 1999). 

Dunning and Kruger (1999) assert that people unaware of their incompetence suffer a 
dual burden, as “not only do they reach erroneous conclusions and make unfortunate choices, 
but their incompetence robs them of the ability to realize it. Instead, they are left with the 
mistaken impression that they are doing just fine” (p. 1121). They further argue that such 
people are likely to get stuck and become unaware of their incompetence, because “the skills 
that engender competence in a particular domain are often the very same skills necessary to 
evaluate competence in that domain” (p. 1121). Incompetent individuals are unlikely to 
recognize correct judgment if they cannot produce correct judgment. In other words, they 
lack metacognition skills (Everson & Tobias, 1998). 

Research shows that good students are more successful in the metacognitive task of 
evaluating their own performances, such as anticipating which test items they will get right or 
wrong (Austin, Gregory, & Galli, 2008; Sinkavich, 1995). A survey of 15-year old students 
across 34 countries showed that higher performance and more accurate self-perceptions of 
math skills are associated with each other (Chiu & Klassen, 2010). However, good students 
also underestimate their abilities when comparing themselves to peers (Dunning, 2011), a 
behavior known as the “false consensus effect” (Ross, Green, & House, 1977). Below-
average students, on the other hand, falsely believe that they are above-average (Ferraro, 
2010). When students are given their peers’ work to grade, good students improve their 
ranking accuracy much more than their weaker peers (Dunning, 2011). 

Dunning and Kruger (1999) found that students are willing to rate themselves more 
negatively if they are equipped with intellectual resources. They showed that even a short 20-
minute lesson to solve a certain task improved students’ logical reasoning and self-
assessment accuracy. Research also shows a link between self-assessment and learning if 
students use their knowledge to formulate new strategies and learning goals (Boud & 
Falchikov, 2006). However, making people aware of their limitations does not necessarily 
induce them to overcome their limitations (Prasad et al., 2009). Many of them are unwilling 
to anticipate their incompetence even if they receive feedback on their work (Hacker, Bol, 
Horgan, & Rakow, 2000; Ferraro, 2010). Such unwillingness may be caused by self-esteem, 
self-defensiveness, or the difficulty they experience when trying to improve (Sheldon et al., 
2014). 

Little research has investigated undergraduate mathematics students’ self-assessment 
behaviors, how they justify their self-assessments, and whether their self-assessment accuracy 
impacts their self-regulated learning behaviors. We hope that the results of this study would 
inform future mathematics instruction and the design of professional development activities 
for instructors to help students become better learners.  
 

Methodology 

Four faculty researchers collected data in their respective universities: a private university 
in central Georgia, and two public universities in north and southwest Georgia. Data were 
collected from 229 students in a broad range of undergraduate courses taught by the 
researchers: introduction to mathematical modeling, college algebra, elementary statistics, 
calculus I, II, and III, differential equations, and mathematical probability and statistics. 

20th Annual Conference on Research in Undergraduate Mathematics Education 136120th Annual Conference on Research in Undergraduate Mathematics Education 1361



Students in these courses were given an initial survey asking their self-reported readiness to 
take the course and their expected end-of-semester grades. Students were asked to write their 
expected grades for all in-class quizzes and exams, which were graded based on the 
instructors’ grading rubrics. Students were also asked to justify their self-assessment if they 
did not give themselves full points in those problems. Since they were asked to write their 
expected grades at the bottom of each assignment, they were able to compare the two scores 
after the assignments were returned to them.  

Students’ self-evaluation of their performances was also measured through a short survey 
after each exam. Toward the end of the semester, a purposeful sample of students (those who 
consistently overestimated, underestimated, or made almost accurate predictions of their 
scores) was asked to voluntarily participate in a few semi-structured interviews. They were 
reminded of the differences between the two scores and asked to explain their perceived 
reasons for the inaccuracy (or accuracy) of their assessment. This report is based on data from 
the spring 2016 semester, but does not include qualitative data from the interviews. Data will 
also be collected in the fall 2016 semester and a comprehensive study of the combined data 
will be made. 

Based on existing research and our personal experiences, we hypothesized that top 
performers would be more accurate predictors of their scores, bottom performers would 
overestimate themselves and be less accurate predictors, and students would become better 
predictors as the semester progressed. 
 

Results 

This paper reports preliminary results from quantitative analysis pertaining to only the 
first two research questions. We have used both descriptive and inferential statistics. An 
independent t-test was used to determine the statistical significance of the average difference 
between the students’ expected grades and the grades assigned by the instructor. Pearson’s 
correlation test was used to determine the significance of the relationship between the 
students’ predicted and actual grades. We found that students overall overestimated their 
scores. The test shows a statistically significant difference between their expected and actual 
grades (t (1799)=-6.89, p < 0.01), with a mean difference of 5.85 on a 100-point scale. For A 
students (scoring 90-100%), the difference was still statistically significant (t (381)= 7.84, p < 
0.01), but they underestimated their performances by an average of 5.22 points on the 100-
point scale. B students (scoring 80-89%) slightly overestimated themselves, but the 
difference between predicted and actual grades was not statistically significant. The mean 
difference was only 1.42 points. 

For C students only (70-79%), the difference was statistically significant (t (150)=-6.58, p 
< 0.01). They overestimated themselves on average by 8.43 points. Students in the D range 
and below (69% and less) were the most miscalibrated, overestimating their performance (t 
(500) = -14.4, p < .001) by 20.25 points on a 100-point scale. The line graph (see Figure 1) 
shows how the difference between instructors’ average grade and students’ expected grade 
changes in relation to the average instructors’ grade. This shows that bottom performers tend 
to overestimate themselves, and top performers tend to underestimate. The graph suggests 
that students in the B-range (80-89%) were more accurate predictors of their performances. 

Preliminary test results did not support our initial hypothesis that top performers are more 
accurate predictors, as B students actually proved to be the most accurate. But the results 
supported the hypothesis that bottom performers are less accurate predictors than others. 

The regression line in Figure 2 shows the relation between average grades vs. average 
differences. The two variables are strongly correlated, r (89) = 0.67, p < 0.01. This shows that 
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as the test scores increase, the difference between the instructor’s grade and students’ 
predicted grade increases from negative to positive. 
 

 
Figure 1. Average Instructors' Grades vs. Average Differences 

 
We also looked at how the differences between predicted and actual grades changed as 

the semester progressed. Students overestimated their performance by 5.58 points on the first 
quiz, then underestimated by a mere 0.74 points on the second. Interestingly, they then 
overestimated by 5.7 and 6.3 points on the third and the last assignments (quizzes or tests). 
This did not validate our initial assumption that students would be more accurate predictors 
of their performances as the semester progressed. 
 

 
Figure 2. Average instructors' grades vs. average differences 
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Discussion 

We had little information about college math students’ self-assessment behaviors prior to 
this study. The results show that they are likely to be more miscalibrated when they either 
perform well or do not perform well, as also found in existing research (Kruger & Dunning, 
1999; Langendyk, 2006). Both top (A students) and bottom performers (C and below) were 
inaccurate predictors. Top performers slightly underestimated their scores, while bottom 
performers overestimated by a huge margin. More interestingly, B-range students turned out 
to be the most accurate predictors, as the difference between their expected and actual grades 
was not statistically significant. This was in agreement with previous findings that students in 
between the top and bottom performers are more accurate predictors (Langendyk, 2006). We 
do not know why this group was able to better predict their performances, but we will have 
better insight once we finish analyzing our qualitative data. 

Existing research shows that top performers in general underestimate their performance 
when comparing themselves to their peers (Dunning, 2011). Our study showed that top-
achievers in college math courses still underestimate themselves, even when they are not 
comparing themselves with their peers. Since we haven’t analyzed our qualitative data yet, 
we do not know why this group of students underestimate themselves. Either they are not 
completely confident that their solutions are correct, or they think they have not met 
instructors’ expectations. The false consensus effect (Ross, Green, & House, 1977) in this 
group of students might be encouraging them to always work harder.  

Lack of knowledge may prevent poor performers from knowing what they have done 
wrong (Dunning, 2011; Kruger & Dunning, 1999). If they had the ability to recognize right or 
wrong solutions, they probably would have been able to better predict their scores. Since they 
did not know that their solutions were incorrect, they might have been overly optimistic about 
their performances because they were hoping for a passing grade. Because of their mistaken 
belief that they know the subject matter, they might not even realize that they need to work 
harder to gain deeper understanding of the subject matter and gain procedural fluency.   

We did not find studies that investigated college math students’ self-assessment behaviors 
as we did in this study. One implication of our findings is that both low- and high-achievers 
need instructor support. Low-achievers need help figuring out conceptual and procedural 
gaps in their knowledge. They often do not know when they need help and what kind of 
support they need (Aleven & Koendinger, 2002). High-achievers, on the other hand, need 
help figuring out that what they know is actually correct. Preliminary findings show that they 
know the content but still lack confidence in their knowledge, as evident from their predicted 
scores. Since the students in between these two groups know, in general, whether they did 
right or wrong, it shows that these in-between students (mostly B students) have potential to 
improve. We will have better understanding about students’ self-assessment behaviors once 
we finish analyzing their justifications for their self-assessments.  

Results from this study showed that our initial assumption that students would become 
more accurate predictors of their performances as the semester progresses was not necessarily 
true. Even though they made almost accurate predictions of their scores in the second 
assignment (a quiz or a test), they then overestimated their performances on the next two 
quizzes or tests. Seeing the difference between their expected and actual grades on the first 
assignment might have made them more cautious about expecting higher scores on the 
second assignment. But why the students then became overly optimistic on the next 
assignments is unknown. We need to analyze interviews and collect more data to make any 
conclusions about this student behavior. This can be a good topic for further investigation. 
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Identification Matters: Effects of Female Peer Role Models Differ By Gender Between 
High and Low Mathematically Identified Students 

 
Susan D. Nickerson  Katie Bjorkman Sei Jin Ko David Marx  

San Diego State University 

We investigated a peer role model intervention designed to alleviate underrepresentation of 
women in STEM. Half of the Calculus break-out sections at a large university were visited by a 
peer role model and half served as controls. The female peer role models were expected to 
increase the sense of belonging and mathematical self-efficacy of women highly identified with 
mathematics.  Our results show that peer role models have the intended effect on women highly 
identified with mathematics, but also have a positive effect on men with low mathematical 
identification. 

Key words: Calculus, Gender, Experimental, Self-Efficacy, Mathematical Belonging 

In spite of the need for more workers with training in science, technology, engineering, and 
mathematics (STEM) (PCAST, 2012), retention in STEM majors and programs of study is a 
persistent problem in the United States (e.g., Bressoud, Mesa, & Rasmussen, 2015; Chen, 2013; 
Seymour & Hewitt, 1997). It is particularly troubling that under-represented groups such as 
women and ethnic minorities are disproportionately affected (Ellis, Fosdick, Rasmussen, 2016; 
Hill, Corbett, & St. Rose, 2010; Lewis, Stout, Pollock, Finkelstein, & Ito, 2016). The Calculus 
sequence is critical to student success in a STEM major, and students’ experience in Calculus 
has been shown to dissuade students from continuing. At the site of our study, a large, urban, 
southwestern university, women are almost twice as likely as men to opt out of taking Calculus 
II after completing Calculus I. This is similar to national data showing that even after 
controlling for academic preparation, career intention, and instruction, women are one and a 
half times more likely than men to leave after Calculus I (Ellis et al., 2016). We need to better 
understand how different populations are differentially affected by their Calculus experiences. 

Several factors have been suggested to be potential causes for the retention disparities 
between men and women. One factor that researchers in the laboratory have identified as 
important in the performance of women highly-identified with mathematics is stereotype threat 
(Steele & Aronson, 1995). Stereotype threat is a concern stereotyped individuals have about 
confirming a negative ability stereotype that exists about their group. For instance, women 
routinely contend with the stereotype that they are inferior in math and this concern lowers their 
math performance below their actual math ability (Spencer, Steele, & Quinn, 1999). Among 
these women, exposure to female peer role models enabled positive performance and 
psychosocial outcomes, such as greater self-efficacy (Marx & Roman, 2002). Peer role models 
are inspiring in-group members who defy negative ability stereotypes about their group (i.e., 
mathematically-capable female students) (Marx & Roman, 2002). Researchers have suggested 
that the lack of mathematical confidence, or self-efficacy, is a potential deterrent to women’s 
persistence (Ellis et al, 2016). Furthermore, stereotypes contribute to the perception that gender 
and ethnic minority students do not fit with being a STEM major leading to the minority 
students’ feeling of not belonging, greater insecurity, and greater expectation of dropping out of 
STEM (London, Rosenthal, Levy, & Lobel, 2011). The absence of female peer role models in 
the classroom contributes to feelings of not belonging (Lockwood, 2006). For under-
represented students, including women, belonging is crucial (Good, Rattan, & Dweck, 2012; 
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Hill, Corbett, & Rose, 2010; Walton & Cohen, 2007).  
Wilson et al. (2015) conducted a 5-institution study linking belonging with academic 

engagement among STEM majors. Students filled out surveys containing measures of 
belonging at multiple levels (class, major, and university) as well as measures of behavioral and 
emotional engagement in their academic pursuits. The results were that class and major 
belonging correlated with greater behavioral and positive emotional engagement and lower 
negative emotional engagement. Belonging remained a significant predictor even when other 
measures such as self-efficacy were included in the models. Furthermore, while belonging and 
self-efficacy are correlated, they also have distinct aspects that contribute separately to positive 
outcomes for students. While Wilson et al. (2015) looked at correlates for a single point in time, 
Walton and Cohen (2011) demonstrated that a short intervention can result in long term 
stabilization of feelings of belonging and raise the GPA of minority students who participated. 

In Calculus classrooms, women are aware that their gender is in the minority and this 
contributes to a feeling they do not belong and this can feel threatening for STEM-intending 
students. In numerous past laboratory studies, researchers have found that exposure to similar 
others who represent success in STEM (i.e., math-talented peer female role models) can 
alleviate the negative effect on women’s math performance (e.g., Marx & Ko, 2012; Marx & 
Roman, 2002; Marx, Stapel, & Muller, 2005). Because female peer role models defy the 
stereotype and highlight women’s presence in STEM, more exposure to these peer role models 
may also has the potential to foster women’s belief that they do belong in STEM and that they 
have the ability to succeed in math. The results presented here are part of a larger study that 
seeks to examine the effects of peer role models on sense of belonging and self-efficacy in the 
setting of university mathematics classrooms, as well as long-term effects such as a higher 
percentage of women continuing in higher level mathematics courses. 

 
Setting & Participants 

Participants were undergraduates of all racial/ethnic groups in Calculus I at a large 
university in the southwestern U.S. All were eligible to participate. The Calculus I classes are 
conducted in large lecture halls with graduate teaching assistants (GTAs) leading two 50-minute 
break-out sections each week. There were 16 break-out sections that were typically about 35-40 
students. We recruited and trained 4 female upper-division STEM majors to serve as near peer 
role models (2 Hispanic   and 2 non-Hispanic white STEM majors). These near peers made 2 
in-class role model presentations in half of the breakout sections of the Calculus I classes. The 
other half of the Calculus I class served as the control. The role model presentations closely 
followed the structure that we have found through laboratory studies to be key components of a 
role model. Half of the break-out sections were visited by one of four female near-peer role 
models twice during the semester. These smaller sections supported the opportunity for students 
to form a more personal connection with the peer role model. The focus of past work on role 
models has been conducted among under-represented minorities who were pre-selected to be 
highly STEM identified. Those who are most likely to experience threat are those who are most 
vested or identified with the domain (i.e. STEM) (Schmader, Johns, & Forbes, 2008). In a 
Calculus classroom with high and low math identified students, we have the opportunity to test 
whether role models can be beneficial to minority students at all levels of math identification. 

The role model presentations consisted of: 
1) an introduction establishing the role model’s similarity to students and aptitude in 
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mathematics 
2) a presentation of a mathematical topic, each topic related to helping people/the 
environment and was directly tied to mathematics being taught in the class but presented 
within some mathematical setting that was mathematically unfamiliar 
3) explicit encouragement to persist in mathematics/STEM in order to understand the 
unfamiliar mathematics 

The particular topics were chosen in effort to combat the notion that STEM careers are less 
likely than careers in other fields to fulfill communal goals (e.g., working with or helping other 
people) (Diekman, Brown, Johnston, & Clark, 2010). 
 

Methodology 

Following the second in-class role model presentation, all students (both intervention and 
control groups) filled out a questionnaire containing the Mathematics Identification 
Questionnaire (Brown & Josephs, 1999) and a modified version of Walton and Cohen’s (2007) 
Social Fit Measure to assess sense of belonging in STEM. This measure contains questions 
such as, “I would feel comfortable in a math field” and “I feel that I would belong in a math 
field.” We also combined Marx and Roman’s (2002) Self-Appraised Math Ability Scale and a 
modified version of Schwarzer and Jerusalem’s (1995) General Self-Efficacy Scale (GSE) to 
measure self-efficacy. The self-appraised math ability scale contains items such as “I deal 
poorly with challenges in math”. All items in the GSE were worded to reflect mathematical 
self-efficacy (e.g., “I can always manage to solve difficult math problems if I try hard enough”). 
Responses were recorded on 1 (strongly disagree) to 7 (strongly agree) scale. Students then 
provided basic demographic information. In our analysis the sense of belongingness and self-
efficacy dependent variables were regressed separately onto role model (yes vs. no), student sex 
(female vs. male), and the continuous variable math identification (centered). 
 

Results 

Sense of Belonging 
Sense of belonging yielded a main effect of math identification, F (1, 120) = 41.73, p < 

.001, showing a positive relation between math identified and sense of belonging in math. Of 
more interest was the significant 3-way interaction between role model, student sex, and math 
identification, F (1, 120) = 14.06, p < .001. Among low identified female students, those 
exposed to role models indicated feeling just as low a sense of belonging in math (M = 4.12) as 
those in the control (M = 4.42), F < 1. Whereas among high identified female students, those 
exposed to role models indicated a higher sense of belonging in math (M = 5.60) than those in 
the control (M = 4.93). The benefit of role model exposure among high math identified female 
students was further confirmed by comparisons with male students. Specifically, among high 
math identified students in the control condition, we observed the classic lower sense of 
belonging for female compared to male students (Mfemale = 4.93 vs. Mmale = 5.59). In 
contrast, among high math identified students in the role model condition, female students had a 
higher sense of belonging in math than male students (Mfemale = 5.60 vs. Mmale = 4.95). 
These results suggest that role models are not as beneficial for low as compared to high STEM 
identified female students. Interestingly, however, low math identified male students seem to 
derive benefit from female role model exposure such that those who were exposed to the role 
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model had higher sense of belonging than those in the control (M = 4.02 vs. M = 4.62). 
 
Self-Efficacy 

Self efficacy also yielded a positive relation with math identification, F (1, 120) = 33.29, p < 
.001. There was also a role model by student sex interaction, F (1, 120) = 4.75, p < .05. This 
demonstrated that in the control condition female students had lower self-efficacy than male 
students (Mfemale = 4.47 vs. Mmale = 5.17). In contrast, this gender difference in self-efficacy 
closed in the role model condition (Mfemale = 4.97 vs. Mmale = 4.95). 

This 2-way interaction was subsumed under a 3-way interaction between role model, student 
sex, and math identification, F (1, 120) = 10.82, p < .01. A closer look at this interaction showed 
a remarkably similar pattern of effects as that found for sense of belonging. Specifically, low 
identified female students, those exposed to role models indicated about the same level of self-
efficacy (M = 4.18) as those in the control (M = 4.28), F < 1. Whereas among high identified 
female students, those exposed to role models indicated higher self-efficacy (M = 5.76) than 
those in the control (M = 4.66). Comparisons between female and male students within the high 
math identified students further confirmed the beneficial effect of role model exposure on female 
students. Specifically, in the control condition, we observed the classic gender gap in self-
efficacy (Mfemale = 4.66 vs. Mmale = 5.80). In contrast, in the role model condition, female 
students had self-efficacy than male students (Mfemale = 5.76 vs. Mmale = 5.14). Again, 
mirroring what we found for sense of belonging, role models seem to have an opposite impact 
among those in with low math identification. In particular, whereas role models did not seem to 
benefit female students (Mrole model = 4.18 vs. Mcontrol = 4.28), role models seem to have 
some benefit for male students (Mrole model = 4.75 vs. Mcontrol = 4.54). 

 
Discussion 

We posited that female students’ career trajectories would benefit from exposure to female 
peer role models who, through their own success in mathematics, illustrate that women do 
belong in STEM. The female peer role models were expected to increase the sense of belonging 
and mathematical self-efficacy of women highly identified with mathematics.  Our results show 
that peer role models have the intended effect on women highly identified with mathematics, 
but also have a positive effect on men with low mathematical identification. We will discuss 
possible reasons for the positive effect in men. The results are being analyzed for a second 
semester to see whether role models can alleviate female students’ negative mathematics 
experiences in order to increase their interest and persistence in mathematics. 
 

References 

Bressoud, D., Mesa, V., & Rasmussen, C. (2015). Insights and recommendations from the 
MAA National Study of College Calculus. MAA Notes. Washington, DC: 
Mathematical Association of America. 

Brown, R. P., & Josephs, R. A. (1999). A burden of proof: Stereotype relevance and gender 
differences in mathematics performance. Journal of Personality and Social 
Psychology, 76, 246–257. 

Chen, X. (2013). STEM Attrition: College students’ paths into and out of STEM fields. 
Statistical Analysis Report. NCES 2014001. National Center for Education Statistics. 

20th Annual Conference on Research in Undergraduate Mathematics Education 137020th Annual Conference on Research in Undergraduate Mathematics Education 1370



Institute of Education Sciences. U. S. Department of Education. Washington, DC. 
Diekman, A. D., Brown, E. R., Johnston, A. M., & Clark, E. K. (2010). Seeking 

congruity between goals and roles: A new look at why women opt out of science 
technology, engineering, and mathematics careers. Psychological Science, 21(8) 
1051–1057. 

Ellis, J., Fosdick, B. K.,  & Rasmussen, C., (2016). Women 1.5 Times more likely to leave 
STEM pipeline after Calculus compared to men: Lack of mathematical confidence a 
potential culprit. Plos One, 11(7), e0157447. doi:10.1371/journal.pone.0157447 

Good, C., Rattan, A., & Dweck, C. S. (2012). Why do women opt out? Sense of belonging 
and women’s representation in mathematics. Journal of Personality and Social 
Psychology, 102(4), 700. 

Hill, C., Corbett, C., & St. Rose, A. (2010). Why so few? Women in science, 
technology, engineering, and mathematics. Washington DC: AAUW. 

Lewis, K. L., Stout, J. G., Pollock, S. J., Finkelstein, N. D., & Ito, T. A. (2016). Fitting in or 
opting out: A review of key social-psychological factors influencing a sense of 
belonging for women in physics. Physical Review Physics Education Research, 12(2), 
020110.  

Lockwood, P. (2006). “Someone like me can be successful”: Do college students need same- 
gender role models? Psychology of Women Quarterly, 30, 36–46. 

London, B., Rosenthal, L., Levy, S. R., & Lobel, M. (2011). The influences of perceived 
identity compatibility and social support on women in nontraditional fields during the 
college transition. Basic & Applied Social Psychology, 33(4), 304–321. 

Marx, D., & Ko, S. J. (2012). Superstars like me: The effect of role model similarity on 
performance under threat. European Journal of Social Psychology, 42, 807812. 

Marx, D. M., & Roman, J. S. (2002). Female role models: Protecting women’s math 
test performance. Personality and Social Psychology Bulletin, 28, 1183–1193. 

Marx, D. M., Stapel, D. A., & Muller, D. (2005). We can do it: The interplay of a 
collective self- construal orientation and social comparisons under threat. Journal 
of Personality and Social Psychology, 88, 432-446. 

National Center of Education Statistics (NCES). Bachelor’s, master’s, and doctor’s 
degrees conferred by secondary institution, by sex of student and discipline division 
2012–2013. 

President’s Council of Advisors on Science and Technology (PCAST) (2012). Engage to 
excel: Producing one million additional college graduates with Degrees in Science, 
Technology, Engineering, and Mathematics. Washington, DC: The White House. 

Seymour, E., & Hewitt, N. M. (1997). Talking about leaving: Why undergraduates leave 
the sciences. Boulder, CO: Westview Press. 

Schmader, T., Johns, M., & Forbes, C. (2008). An integrated process model of stereotype 
threat effects on performance. Psychological Review, 115(2), 336. 

Schwarzer, R., & Jerusalem, M. (1995). Generalized self-efficacy scale. In J. Weinman, S. 
Wright, & M. Johnston (Eds.), Measures in health psychology: A user’s portfolio. 
Causal and control beliefs (pp. 35–37). Windsor, UK: NFER-NELSON. 

Spencer, S. J., Steele, C. M., & Quinn, D. (1999). Stereotype threat and women’s 
mathematics performance. Journal of Experimental Social Psychology, 35, 4-28. 

Steele, C. M., & Aronson, J. (1995). Stereotype vulnerability and the intellectual test 
performance of African-Americans. Journal of Personality and Social Psychology, 69, 

20th Annual Conference on Research in Undergraduate Mathematics Education 137120th Annual Conference on Research in Undergraduate Mathematics Education 1371



797–811. 
Walton, G. M., & Cohen, G. L. (2007). A question of belonging: Race, social fit, 

and achievement. Journal of Personality and Social Psychology, 92, 82–96. 
Walton, G. M., & Cohen, G. L. (2011). A brief social-belonging intervention improves 

academic and health outcomes of minority students. Science, 331(6023), 1447–1451. 
Wilson, D., Jones, D., Bocell, F., Crawford, J., Kim, M. J., Veilleux, N., Plett, M. (2015). 

Belonging and Academic Engagement Among Undergraduate STEM Students: A Multi- 
institutional Study. Research in Higher Education, 56(7), 750–776. doi:10.1007/s11162-
015- 9367-x 

20th Annual Conference on Research in Undergraduate Mathematics Education 137220th Annual Conference on Research in Undergraduate Mathematics Education 1372



Considerations for Explicit and Reflective Teaching of the Roles of Proof 
 

                           Jeffrey D. Pair                            Sarah K. Bleiler-Baxter 
                 Middle Tennessee State University                    Middle Tennessee State University 

 
In a previous study we sought to understand the classroom activities that provided students the 

opportunity to engage in the five roles of proof described by Michael de Villiers (1990). In 
conducting the analysis for that study, we noticed that students’ views of proof were sometimes 
not aligned with de Villiers’ views. This led us to the current investigation, where we explore 
alignment between undergraduate students’ views of the nature of proof and de Villiers’. We 
hypothesize that an explicit and reflective (ER) approach to instruction may be important if 
students are to learn about the nature of mathematics (in general) and the nature of proof (more 
specifically). We offer implications for both research and practice, with respect to the explicit and 
reflective instruction on roles of proof.  

Key words: Roles of Proof, Nature of Mathematics, Nature of Proof, Transition-to-Proof 

Researchers in mathematics education have made several efforts to understand the disciplinary 
practices of mathematicians (e.g., Burton, 1999; Nardi, 2008; Weber, 2008; Weber & Mejia-
Ramos, 2011). As a result of such studies, the field benefits by gaining a deeper understanding of 
the nature of mathematical knowledge and inquiry. Proponents of situated learning theory 
(ourselves included) would argue that in order to learn mathematics, students must engage in 
authentic mathematical practices (Greeno, 1997; Lave & Wenger, 1991). From this perspective, 
understanding the work of experts in a field (such as mathematicians in mathematics) is an 
important aspect of instructor knowledge, allowing instructors to design learning environments 
that engage students in authentic disciplinary practices and thus aid in their learning of 
mathematics. But, do students need to go beyond engagement in legitimate mathematical practices 
within the classroom, and actually hold an understanding of the nature of mathematician’s practice 
and the nature of mathematical knowledge? It is widely acknowledged that most students know 
very little about what mathematicians do (Hersh, 1997). Yet little research has been conducted 
regarding students’ understanding of the nature of mathematics as a discipline (Jankvist, 2015). 
Perhaps an understanding of the nature of mathematical knowledge and inquiry may lead 
undergraduates to have a greater appreciation of mathematics or even lead to greater learning 
gains. But until systematic research is conducted into this area, these remain untested hypotheses.  

Within science education, researchers have studied how students learn about the nature of 
scientific inquiry and scientific knowledge and the benefits of such knowledge (Lederman & 
Lederman, 2014). One of the main findings of that work is that engagement in authentic scientific 
practice alone is not sufficient for students (or teachers) to learn about the nature of science (Bell, 
Blair, Crawford, & Lederman, 2003). Although teachers often perceive that their students will 
implicitly learn the nature of science through engaging in scientific practice, research shows that 
students need explicit and reflective (ER) instruction on the nature of science in order to develop 
a sophisticated understanding (Bell et al., 2003). To teach the nature of science explicitly and 
reflectively means that students engage in authentic scientific practice, have that practice brought 
to their attention explicitly (e.g., by the instructor), and have the opportunity to reflect on the ideas 
that have been explicitly addressed (Lederman et al., 2014). Researchers in mathematics education 
sometimes claim that students have developed “desirable beliefs about the nature of mathematics” 
(Rasmussen & Kwon, 2007, p. 192) after participating in inquiry-oriented courses. However, these 

20th Annual Conference on Research in Undergraduate Mathematics Education 137320th Annual Conference on Research in Undergraduate Mathematics Education 1373



claims about student beliefs are made in regards to what it means to do mathematics within the 
particular classroom settings, and generalizations are not made about what students may believe 
about the nature of mathematics as a discipline (e.g., Fukawa-Connelly, 2012; Yackel & 
Rasmussen, 2002).  

We believe there may be an implicit assumption possessed by some scholars that if students 
participate in inquiry-oriented classrooms and engage in mathematical practices similar to those 
of research mathematicians, then the students may come away from such classes with informed 
conceptions of what it means to know and do mathematics in the discipline. The authors of this 
paper admit to being guilty of this assumption in the past. We believed that undergraduates’ 
understanding of the nature of proof in the discipline could be developed implicitly by engaging 
students in the five roles of proof described by de Villiers (1990). One of the learning objectives 
in our transition-to-proof course, taken from the course syllabus, was that students “Gain an 
appreciation of the many roles of proof and reasoning in the discipline of mathematics (e.g., 
verification, explanation, systemization, discovery, communication).” In a previous study, we 
identified the (classroom) activities that engaged students in those five roles of proof. Our implicit 
assumption was that by engaging in the five roles of proof, the students would gain a sophisticated 
understanding of those roles in the discipline. However, we found that even when students were 
engaged in a role of proof, this did not always lead to their understanding of the role in the broader 
discipline. Even after reading de Villiers’ (1990) paper on the roles of proof, their written 
summaries of these roles suggested they had naïve conceptions that did not align with de Villiers’. 
This leads us to the hypothesis, based on the findings in science education, that an explicit and 
reflective (ER) approach to instruction may be important if we want students to learn about the 
nature of mathematics (in general) and the nature of proof (more specifically). 

In this preliminary report, we intend to explore the following questions: 
x What do undergraduate students in a transition-to-proof course understand about the 

nature of proof in the discipline? What do they not understand? 
x Which roles of proof are in need of further explicit and reflective (ER) instruction?  

By exploring these questions, we hope to gain a better understanding of the considerations 
necessary when teaching the nature of proof in a more explicit and reflective (ER) manner.  

 
Conceptual Framework 

 
A key construct in our research is the notion of the nature of proof as it is experienced by 

research mathematicians. We conceptualize the nature of proof using de Villiers’ (1990) five roles 
of proof: verification, explanation, systematization, discovery, and communication. A 
mathematician engages in verification when a proof convinces the mathematician of the truth of a 
mathematical statement. The reason why the mathematical statement is true may be illuminated as 
a mathematician engages in the explanation role of proof. Systematization refers to proof’s role in 
organizing and creating a deductive system of axioms, definitions, and theorems. A mathematician 
engaged in discovery may deduce an unanticipated result during the completion of a proof. Proof 
also provides a means for communication among mathematicians as they transmit mathematical 
knowledge and negotiate meaning and validity. We frame our work from the following 
assumption: Students have a sophisticated understanding of the nature of proof if their ideas 
surrounding the roles of proof align with those of de Villiers (1990). 
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Methodology 
 

The data for this study were taken from an undergraduate transition-to-proof course at a 
southeastern university in the United States. The instructor (also one of the authors on this paper) 
designed the course with an aim toward broadening students’ understanding of proof and 
providing experiences for students to engage with proof in ways similar to mathematicians in the 
discipline. There were thirteen students in the course: nine mathematics majors (seven of whom 
were prospective secondary mathematics teachers), and four mathematics minors. At the end of 
the semester the students took a two-part final exam. The second part (20% of the exam grade) of 
the final required students to read de Villiers (1990) paper, describe in their own words each of 
the five roles of proof, recall an instance during the course in which they engaged in one of the 
five roles (or describe an activity that might be used in the future for engaging students in such a 
role) and rank order their engagement in each role of proof throughout the semester.  

The researchers used open process coding (Saldaña, 2009) to analyze the written descriptions 
of the 65 student recollections (five roles and thirteen students) of the instances in which they 
recalled being engaged in the roles of proof during the course. During subsequent analysis the 
researchers discussed the following questions:  

1) How do students perceive that a certain activity engages them in a specific role of proof? 
2) How do student perceptions align with the role of proof as articulated by de Villiers?  
3) What are some implications for teaching such a course in the future?  
When completing initial work related to the project, we focused on the first question. Here 

we concentrate our efforts on the second question related to comparing student perceptions to de 
Villiers’ perceptions. After completing the introductory analysis, the first author went back to the 
data and reviewed each students’ summary of the five roles of proof as well as their description 
of an activity which engaged them in the role of proof. He noted if the students’ ideas were 
aligned with de Villiers, identified evidence for this determination, and noted any implications. 
He then reviewed these notes and identified several preliminary discussion points regarding 
student understanding of the roles of proof and the nature of mathematical knowledge/inquiry.  

 
Results and Discussion 

 
Verification 

When describing the verification role of proof, de Villiers’ (1990) challenged the naïve view 
that proof provides mathematicians with absolute certainty. While acknowledging that proof 
does indeed provide conviction, especially in the case of non-intuitive claims, lack of quasi-
empirical falsification also plays a role in conviction. Our data suggest that reading de Villiers’ 
arguments was not enough for students in the course to understand this position. Several students 
summarized de Villiers’ description of verification using the language of “absolute certainty.” 
David wrote, “Verification by proofs is to show the absolute certainty of a mathematical 
computation by proving it in every case.” Similarly, Tina claimed,  

The verification of a proof is most often a way of knowing what you already know. By that I 
mean the things that we are most sure are true the verification makes us absolutely certain. If 
mathematicians had not verified the proofs of some of the greats from ancient times we still 
would not know that some of them were incorrect. 

Students such as Tina and David may benefit from classroom discussions regarding the nature of 
proof and absolute certainty. Perhaps reading and discussing relevant philosophy of mathematics 
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(Hersh, 1993) or mathematics education literature (Weber & Mejia-Ramos, 2015) may prove 
useful in challenging students’ absolutist conceptions of proof.  
 
Explanation 

We have noticed that the term “explanation” may be confusing for students. While the 
occasional student understood this role, many students interpreted explanation in a colloquial 
sense, e.g. explaining why one step follows from another within a proof. Jared claimed, 

Explanation is the reasoning behind the proof. It shows how steps are logically taken to get to 
the conclusion of the proof and why we take them. Overall, it is saying why we can go from 
the statement to the conclusion. 

Similarly, Stephanie wrote, 
Proofs may provide more or less explanation and still be a valid proof. Explanation is just 
how much detail the writer of the proof goes into. If your audience doesn’t know as much 
about mathematics you may want to give a full explanation of your proof. 

Perhaps it would be beneficial for an instructor to specifically draw attention to how proving can 
provide insight or understanding. Hersh (1993) claimed that in teaching, the primary role of 
proof is for explanation. However, without explicit and reflective instruction, students ultimately 
may fail to understand that proofs serve this important function. Instructors may ask students to 
compare and contrast proofs in regards to the insight or understanding they provide. 
 
Systematization 

In general, the students in the course under study did not understand the systematization 
role, that proof may play a role in the organization of a theory. They viewed systematization as 
the use of established theorems, axioms, and definitions within a proof. Jeb wrote, 

Systemization is taking several smaller true statements and arranging them into one large true 
statement that is the proof. It is organizing or ordering the smaller sections of a proof to flow 
in such a way that they look like a single statement. 

De Villiers (1990) noted that the systematization role is only understandable at an 
advanced stage of mathematics. It is the first author’s opinion that in a course in which 
systematization has already been conducted by the organization of course materials, it will be 
difficult for students to understand systematization as a role of proof. Perhaps in a course in 
which the organization of materials is not predetermined (e.g. Fawcett, 1938), students may 
better understand this role. 

 
Discovery 

De Villiers (1990), in describing the discovery role of proof, described how mathematicians 
may prove an unexpected result when they realize, through deduction, that a proof generalizes 
from a specific case to a larger class of mathematical objects. Students in the course recalled 
times when they experienced discovery in this manner, but also wrote about additional ways they 
came to discovery during the course. For instance, Millie recalled a problem that asked her to 
“Prove, or disprove and salvage” a given mathematical statement:  

I decided [for all integers a, b, and c, if bc is divisible by a, then either b is divisible by a or c 
is divisible by a] was a false statement, and I provided a counter example. Then, I made a 
conjecture that the converse was true: for all integers a, b, and c, if either b is divisible by a 
or c is divisible by a, then bc is divisible by a. I proved my conjecture, and that conjecture 
was my own personal discovery. 
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Although not aligned with de Villiers’ description of the discovery role of proof, we believe 
that Millie’s learning experience was valuable. For instance, Susan explicitly mentions how 
classroom discoveries led her to develop a new conception of the nature of mathematics. 

Discovery came to me when working on a truth table to test possible outcomes of a proof. 
This truth table led to “Susan’s conjecture.” I also think this class, in general, led to a broader 
“discovery” that mathematics is a living, changing, developing thing. Unlike my former 
perspective that it had all been discovered many years ago and we are just reviewing and 
learning those truths. 
We contend, that although these two students did not describe an instance in which they 

discovered a new result through deduction (as de Villiers described), their classroom discoveries 
were valuable. It is important that students come to realize that mathematics is a dynamic field in 
which new discoveries are made rather than a static body of knowledge. Explicit and reflective 
instruction related to the discovery role of proof should enable students to be aware of the variety 
of ways discovery may occur in mathematics (in addition to discovery as de Villiers described). 
 
Communication 

De Villiers describes the communication role of proof as being related to the negotiation of 
meaning and validity amongst mathematicians. We are encouraged that students seemed to 
understand this role. Krissy wrote, 

Our inability to come to a consensus among three people when evaluating a particular 
argument also demonstrated how difficult it might be for the global community of 
mathematicians to achieve agreement when it comes to proof style and validity.   

The instructor designed several course activities with the goal of helping students understand the 
social nature of proof. For instance, students designed a course rubric that outlined what makes a 
valid mathematical argument and were constantly asked to critique the arguments of others. The 
instructor frequently made the social nature of proof an explicit part of classroom discussions 
and we believe this contributed to students’ understanding of the communication role of proof. 
 

Conclusions 
 

Reading de Villiers’ (1990) article may be a first step towards explicit and reflective (ER) 
instruction on the nature of proof, but it is not enough. The students submitted their reflections as 
part of a final assignment, and there was no subsequent class discussion related to the 
assignment. Our findings may have been different if students had the opportunity for discussion. 
We judge that if any role of proof was discussed explicitly and reflectively most often in class, it 
was the communication role. Students seemed to possess a clear understanding of how validity is 
negotiated within the community of mathematicians through proof. 

In moving forward with this work, we would like to gain feedback from RUME conference 
participants on the following questions: 

1. How important is it that students understand the nature of mathematics (in general) and 
the nature of proof (more specifically)? Why? 

2. How can what we know from science education research (about explicit and reflective 
teaching of the nature of a discipline) transfer to mathematics education? 
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Perturbing practice: The effects of virtual manipulatives as novel didactic objects on 

instruction 
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Abstract: The advancement of technology has significantly changed the practices of numerous professions, 
including teaching. When a school first adopts a new technology, established classroom practices are 
perturbed. These perturbations can have both positive and negative effects on teachers’ abilities to teach 
mathematical concepts with the new technology. Therefore, before new technology can be introduced into 
mathematics classrooms, we need to better understand how technology affects instruction. Using interviews 
and classroom observations, I explored perturbations in mathematical classroom practice as an instructor 
implemented novel didactic objects. In particular, the instructor was using didactic objects designed to lay the 
foundation for developing a conceptual understanding of rational functions through the coordination of 
relative magnitudes of the numerator and denominator. The results are organized according to a framework 
that captures leader actions, communication, expectations of technology, roles, timing, student engagement, 
and mathematical conceptions.  

Key words: Virtual manipulative, Didactic objects, Rational functions 

The advancement of technology over the past twenty years has significantly altered the practices and 

routines found in numerous professions. When school districts adopt a new technology, teachers 

experience immediate changes, or perturbations, in their existing practices. These perturbations in 

practice can have small or large, short- or long-lived, and positive or negative effects on teachers’ 

ability to accomplish the work with the new technology. In mathematics education, new technology is 

regularly being introduced into instruction (Pope, 2013). This technology comes in many forms such 

as hardware (e.g., computers or graphing calculators), software (e.g., Geometer’s Sketchpad), or 

educational website licenses (e.g., Nearpod).  
The goal associated with the implementation of new technology in instruction is to facilitate 

instruction and improve student achievement and understanding. However, in order to achieve this 

goal, we need to better understand the process of adopting new technology in instruction.  In 

particular, we need to account for teachers’ current mathematical meanings of concepts, the 

perturbations experienced by teachers when implementing a new technology, and the effect these 

perturbations have on the instruction of mathematical concepts.  
As a step along this path, this paper identifies perturbations that occur in mathematical classroom 

practices (MCPs) when an instructor uses novel virtual manipulatives to teach a concept for which 

there are already established instructional practices.  In order to connect with the goal of introducing 

technology to improve student understanding, virtual manipulatives designed to support reflective 

mathematical discourse were chosen for the study. The observed perturbations in MCPs are 

organized in a framework based on perturbations from industry when a new technology was adopted 

(Edmondson et al., 2001; Pickering, 1995). Additionally, assimilation and accommodation (Piaget, 
1967), cognitive conflict (Lee, Kwon, Park, Kim, Kwon, & Park, 2003), and covariational reasoning 

(Carlson et al., 2002), were used to tailor the framework to a mathematics classroom. 
Virtual manipulatives as didactic objects. Manipulatives are physical objects or concrete models 

that can be touched and moved around by the learner (Durmus & Karakirik, 2006).  In mathematics 

instruction, manipulatives afford opportunities for learners to interact with abstract mathematical 

concepts and procedures through visualization and movement. However, we now recognize that the 
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benefits of using manipulatives do not necessarily require the sense of touch, e.g., moving around 

physical objects. Now, a new class of computer-based manipulatives has been created (Durmus & 

Karakirik, 2006; Moyer-Packenham, Salkind, & Bolyard, 2008), where a virtual manipulative is 

defined as a “web-based visual representation of a dynamic object that presents opportunities for 

constructing mathematical knowledge” (Moyer, Bolyard, & Spikell, 2002,p.373).  
Research on the use of objects (physical or virtual) in mathematics instruction has traditionally 

focused solely on how the tool itself supports student learning and understanding in terms of 

cognition (Lee et al., 2003). However, there has been a shift to expand the focus beyond the object 

itself to include the accompanying discussion (Thompson, 2002). Accordingly, Thompson (2002) 

defines didactic objects (DOs) as tools or objects that are created with the intent of supporting 

reflective discourse (p.198) and considers them to have two components: first, the object itself, and, 
second, the classroom discussion that engages students in constructing mathematical understandings. 

This study explores DOs designed to scaffold a conceptual understanding of rational functions. 
Practices in and out of the classroom. Practices or routines are ways of doing things that are known 

and shared by a group of people as they engage in some activity. They are established over time and 

emerge as a group works together repeatedly to accomplish an activity. Changing the tools that are 

used in an activity, therefore, changes the associated practices, both in the long and short term. In the 

long term, tools can transform practices and significantly change the very nature of an activity. In the 

short term, the introduction of a new tool or technology can perturb established practices and lead to 

the adoption of new practices. For example, Pickering (1995) noted multiple disruptions in 

established practices on the labor floor and within management due to the adoption of numerically 

controlled machine tools by General Electric’s (GE) Aero Engine Group in the early 1960’s. 

Similarly, Edmondson, Bohmer, & Pisano (2001) discovered disruptions in routines that occurred 

when minimally invasive cardiac surgery equipment was introduced to cardiac surgery in an 

emergency room. Table 1 contains a framework categorizing, summarizing, and providing examples 

of the perturbations in practice informed by research in industry. 
Table 1. Framework summarizing perturbations in practice in industrial contexts	

Aspects of practice	 Description	 Example	
Leader Actions	 Leader’s interpretation of the technology and how the 

leader implements the technology	
Edmondson et al. (2001) demonstrated how the surgeon's beliefs in the 
technology correlated with how the ER team adapted to the technology. 	

Communication	 The discourse and environment	 In Edmondson et al. (2001), the discourse in the ER changed from the surgeon 
being the only speaker to every member of the team needing to communicate. 	

Expectations of 
Technology	

Predicted outcomes for the implementation process	 In Pickering (1995), prior to implementation GE management expected the 
technology to increase production.	

Roles and 
Responsibilities	

The individual’s original responsibilities are altered during 
the implementation process	

In Pickering (1995), the role of workers evolved from button pushers to integral 
members in the success of the machines. 	

If we consider a mathematics classroom, then the teacher and students together represent a team 

of individuals with a shared, collective goal of learning, and with the teacher as the team leader. The 

teaching practices that have been established over time in the context of the classroom by the teacher 

and her or his students in the course of their ongoing interactions (Cobb, Stephan, McClain, & 

Gravemeijer, 2001) and that may be disrupted by the implementation of new technology include 

pacing, student engagement, communicative norms, etc. For mathematics classrooms, such practices 

also include the emergent mathematical conceptions of the students as well as the mathematical 

understandings the teacher plans to cultivate within students (Thompson, 2013). MCPs, once 

established, are maintained through reflection and consistency. When a teacher reflects on the 

effectiveness of a practice, he or she is assessing whether the practice is effective in helping attain the 

goal of learning. Maintaining established MCPs relies on the consistency of the teacher. Teachers 

continually reinforce MCPs (for example through selecting tasks and activities) that engage students 

in productive ways and help them to build mathematical understandings. 

20th Annual Conference on Research in Undergraduate Mathematics Education 138120th Annual Conference on Research in Undergraduate Mathematics Education 1381



Establishing and maintaining classroom practices is arduous work and takes a fair amount of 

time, effort, and coordination to accomplish, which makes changing practices difficult as well 

(Thomson, 2004). If a practice is disrupted or forced to change, there may be an accompanying 

experience of discomfort. Teachers, like every working professional, easily fall into a comfort zone 

that is made up of carrying out established practices. When these established classroom mathematical 

practices are perturbed by a new technology, such as a virtual manipulative, the teacher might well 

experience disequilibrium or discomfort (Schwartz, 1999). Furthermore, the teacher beliefs of how 

the mathematics classroom should function, what mathematics concepts are important, and what 

resources are to be used for instruction can affect how the established practices are changed (Cobb & 

Yackel, 1996).   
Rational Functions. Students are first introduced to rational functions in algebra courses, usually 

taken in high school. Traditionally, rational function instruction centers on finding the asymptotes 

algebraically. However, this calculational orientation does not provide students with a conceptual 

understanding of how rational functions behave. In particular, simply setting the denominator equal 

to zero does not capture the covariational relationship that exists between the two polynomials that 

make up the rational function. It does not support students’ ability to see the relative magnitude of the 

numerator in terms of the denominator as a single quantity. This issue sets the stage for the adoption 

of a virtual manipulative that allows students to explore rational functions more dynamically and to 

construct a covariational understanding of how the functions behave near vertical asymptotes. 
Methods 

I focused on a single instructor (Elaine) and a pair of novel DOs for teaching rational functions. 

Elaine was a graduate student teaching Pathways Pre-calculus (Carlson et al., 2013) and had taken a 

technology and visualization course, but was unfamiliar with teaching rational functions with the 

DOs used in this study. Therefore the DOs are considered novel to Elaine. The DOs (Rat Bar and Rat 

Graph) were accompanied by teacher guides, containing display setting and questions to ask students 

to foster a discussion around four phases, as summarized in Table 2.   
Table 2. Phases of didactic objects	

	
In order to study the perturbations caused by the novel DOs, I used two pre-interviews, classroom 

observations, and a post-interview with the instructor. In the first pre-interview, which took place one 

week prior to the observations, I explored the participant’s current understandings of rational 

functions and gathered descriptions of the participant’s instructional practices prior to the 

introduction of the novel DO. In the second pre-interview, which took place two days prior to the 

observations, I guided the participant through an exploration of the DOs. The instructor was provided 

with a journal to record instructional preparations made following the second pre-interview. Two 

days after the pre-interviews, I conducted three real-time classroom observations covering the 

instruction on rational functions to identify moments of perturbations from my perspective. Using 

stimulated recall methodology (Stough, 2001), video clips of the moments I identified during the 

observations were then shown to Elaine during a post interview two days later so she could give a 

retrospective analysis of the instances that I had flagged as perturbations. 
Figure 1 depicts the implementation of the DOs for each phase shown in Table 2. In Phase 1, the 

teacher displays various lengths of two bars and asks students to provide a numerical guess of their 
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relative magnitude (Figure 1a); in Phase 2, the teacher changes the length of the two bars and asks 

students to use the distance between their fingers to represent the changing magnitude (Figure 1b); in 

Phase 3, the teacher changes the length of the two bars and asks students to use their fingers to 

coordinate the change of one magnitude relative to the other (Figure 1c); in Phase 4, the teacher shows 

students a graph of the numerator and denominator of a rational function and asks students to graph 

the resulting rational function (Figure 1d). 

	
Figure 1. Four phases of using didactic objects for teaching rational functions  

Preliminary Results 
The preliminary results of the study provided converging evidence for the aspects of practice that 

are perturbed when novel technology is introduced in the context of industry, e.g. leader actions, 
communication, expectations of technology, and roles/responsibilities (Table 1). However, there 

were also ways in which the novel DOs perturbed practices in the classroom that were not observed in 

industry. These included student engagement and mathematical conceptions, as shown in Table 3 

which describes and provides examples of the aspects of practice that were perturbed as a result of the 

introduction of novel DOs.   
 

Table 3. Framework summarizing perturbations in practice in mathematics classroom	
Aspects of practice	 Description	 Example	

Leader Actions	 How instructor perceives novel DO and how the instructor 
uses the technology in the classroom	

Elaine’s introduction to the DO demonstrated her uneasy feeling 
toward trying something new. 	

Communication	 Classroom discourse surrounding the novel DO	 Elaine’s students no longer relayed exact answers but instead they 
explained the behavior of the function. 	

Expectations of Technology	 What understandings the teacher expects students to develop	 Elaine had expected the novel DO to take the exact amount of time 
as her previous lesson.	

Roles and Responsibilities	 Responsibility for assimilating conceptual and procedural	 Elaine’s role was altered from lecturer to discussion facilitator. 	
Student Engagement	 Student participation while the DO is being used	 Elaine’s students became more active in the lesson through the 

activities that accompanied the virtual manipulatives. 	
Mathematical Conception	 How students perceive the mathematics addressed by the novel 

DO	
The novel DO change the emphasis of rational functions to 
behaviors rather than symbolic manipulation. 	

A possible reason for these additional perturbations in classroom practice (student engagement, 
mathematical conceptions) stems from differing expectations of technology. Industry adopts 

technology with the intent of increasing productivity and efficiency. In contrast, the purpose of using 

technology in a mathematics classroom is reorganizational (Sherman, 2014) and supports the 

development of deeper understandings (Thompson, 2002). All sources of data collected in this study 

point to the difficulties of accomplishing this task. Figure 2 displays two examples drawn from the 
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classroom observations showing how two of the six aspects of practice, namely leader actions and 

mathematical conceptions, were affected by the implementation of the novel DOs.  
Leader actions. In industry, it was noted that the introduction of new technology impacts the actions 

of the leader, which in turn affects how the team operates. This was also true in the observed 

classroom environment. In this case, the novel DOs caused Elaine to adopt a hesitant, foreboding 

approach to the upcoming lesson on rational functions. As seen in Figure 2, her introduction of the 

DOs to the students sounded much like a parent trying to explain to a child that vegetables may not 

taste good but that they are good for your health. Thus, as the leader, she gave students plenty of 

reason to be wary of the upcoming lesson and mathematics, instead of exuding confidence and a 

belief in the value of conceptual understanding. This is noteworthy because teachers, as classroom 

leaders, profoundly influence student beliefs in both the short and long term and thus ultimately shape 

the perception of what it means to understand and do mathematics (Thompson, 2013).   
 

  
Figure 2. Examples of perturbations in mathematical classroom practices 

Mathematical conceptions. However, unlike what was observed in industrial contexts, in the 

classroom the introduction of novel DOs also perturbed the conceptions of those involved, causing 

new conceptions to emerge and unexpected conceptions to surface. Thus, as seen in Figure 2 (right) 

Elaine was baffled by the mathematical conception of one of her students when working with the 

class through Phase 3. In this phase, the students are asked to construct a graph of the relative 

magnitude of the numerator in terms of the denominator. Elaine admitted to being stumped in the 

moment when the student drew a graph on the board of two functions on the board. After the class 

session ended, Elaine figured out the student’s conception and how this was reflected in the 

presentation on the board. This is an example of how perturbations can lead to additional practices, in 

this case the practice of anticipating student responses (Stein, Engle, Smith, & Hughes, 2008).  	
Discussion and Conclusions 

This preliminary work found converging evidence of perturbations found in industry 

(Edmondson et al., 2001; Pickering, 1995). Evidence from the study confirmed that novel technology 

caused perturbations in classroom practice with regard to leader action, communication, expectations 

of technology, and roles and responsibilities. Additional perturbations in student engagement and 

mathematical conception were found supporting the tailoring of the framework. 
Although this study has limitations in scope, but sets the stage for delving more deeply into the 

ways in which novel DOs perturb classroom practices so that we can find ways to foster productive 

perturbations (e.g., supporting cognitive conflict and conceptual understanding) and mitigate the 

effects of less productive perturbations (e.g., transmitting a lack of confidence to students through the 

instructor’s actions). The framework can guide development of interventions to smooth the path of 

using technology in classrooms. If teachers are more comfortable introducing and making use of new 

technology, we will be one step closer to improving student achievement and understanding.  
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In this study we focus on the use of graphical representations to find similarities and differences 
regarding how graphs are used in mathematics textbooks and how they are used in STE 
textbooks and journals. After highlighting the need for our study and summarizing the results of 
related studies, we present our methods. We then present key preliminary findings comparing 
how a selected pre-calculus textbook and certain textbooks and journals in various STE fields 
use graphical representations. We conclude with preliminary implications and questions. 

Keywords: Graphs and graph use; STEM; Precalculus 

The changing nature of the global market has highlighted the need for improving STEM 
education in the U.S. In order for the U.S. to compete with other nations, U.S. students need to 
enter STEM fields. However, currently U.S. STEM education is surpassed by other nations at the 
elementary and secondary levels (Holdren, Lander, & Varmus, 2011). Further, mathematics 
often plays the role of a “gatekeeper” for students’ continued study and future success in STEM 
fields (Crisp, Nora, & Taggart, 2009; Gasiewski, Eagan, Garcia, Hurtado, & Chang, 2012). 
Given this role, we focus on college level mathematics, particularly precalculus and calculus. 
These levels are particularly important because more than one third of students intending to 
pursue a STEM major in the U.S. enroll in mathematics remediation (e.g., precalculus) (Radford, 
Pearson, Ho, Chambers, & Ferlazzo, 2012) and students interested in STEM majors are more 
likely to declare a non-STEM major after introductory calculus (Bressoud, Carlson, Mesa, & 
Rasmussen, 2013). 

In the larger study we aim to explore the mathematics presented at these levels as it connects 
to the demands of science, technology and engineering (STE) fields. Our research question is, 
“How are graphical representations used in precalculus and calculus textbooks similar to and 
different from the graphical representations used in STE textbooks and practitioner journals?” 
Specifically, we focus on nuances of graphical representations of two covarying quantities in 
mathematics textbooks and in STE textbooks and journals. We note that at the time of 
submission we have examined one precalculus text and have not had the opportunity to examine 
any calculus textbooks, although this is our intention.  

Literature Review 

Rybarczyk (2011) and Roth, Bowen, and McGinn (1999) analyzed several textbooks and 
research journals in biology and ecology respectively, examining every visual representation in 
these sources (e.g., diagrams, photographs, graphs, tables, etc.). The researchers identified a 
mismatch in the types of visual representations used in science textbooks compared to journals. 
For instance, journals used graphical models to represent statistical data more frequently than 
textbooks. Because these researchers focused broadly on the different visual representations used 
across science textbooks and journals, they did not address nuances in how these sources 
represent two covarying quantities. Such nuances can impact students’ interpretation of graphs 
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(e.g., if graphs follow conventions commonly maintained in school mathematics) (Moore, 
Paoletti, Stevens, & Hobson, 2016; Moore, Silverman, Paoletti, & LaForest, 2014). Hence, in 
this study, we attempt to close this gap by producing a fine-grained analysis of how STE 
textbooks and journals use graphs to represent two covarying quantities and compare these to 
introductory college level mathematics textbooks. 

Methods 

To address our question, we have begun to gather data from textbooks and journals in STEM 
fields to explore how graphical representations are used in these different sources. To date, we 
have analyzed the five sources described in Table 1. We used the Open Syllabus Project (OSP, 
opensyllabusproject.org) to determine which textbooks were frequently used in STE courses.  
Table 1 
The Source Title, Author or sub-journals and reasons for including the source, by source. 

Source Title (Short 
name) 

Author or sub-journals  Reason for including 

Glencoe Precalculus 
(Precalculus text) 

Glencoe Precalculus 2014 Precalculus textbook from a major 
publisher. 
 

Chemistry: The Central 
Science (Chemistry 
text) 
 

Brown, LeMay, Bursten, Murphy, 
and Woodward (2012) 

3rd ranked textbook in OSP under search 
for “chemistry”. 
 

Engineering Mechanics: 
Statics (Statics text) 

Hibbeler (2013) 1st ranked textbook in OSP under search 
for “statics”.  
 

IEEE Journals and 
Physics Today 
(IEEE/Physics) 

IEEE Electron Device Letters 
IEEE Network 
IEEE Communications Magazine 
IEEE Photonics Journal 
IEEE software 
IEEE Journal of Selected Topics in 
Quantum Electronics 
Ten IEEE “Transactions” journals 
Physics Today 

IEEE is the world’s largest technical 
professional organization for engineers 
and scientists. They publish a variety of 
journals and magazines aimed at 
providing a venue for these professionals 
to share their knowledge. Physics Today, 
with a circulation over 100,000 is the 
membership magazine of the American 
Institute of Physics. 
 

Journal of the American 
Medical Association 
(JAMA) 

 The most widely circulated medical 
journal in the world, JAMA publishes 
original research, editorials and reviews 
within the biomedical sciences. 

With respect to the three textbooks, we focused on the graphical representations that the 
authors emphasized. As such, we analyzed all graphical representations that were included in the 
body of the text and did not analyze the graphs in the problem sets as it is up to instructor to 
assign these problems. With respect to the journals, for JAMA, we started with the most recent 
issue available through our university library (July 5, 2016) and backtracked through May 2016, 
identifying all articles with at least one graphical representation. For IEEE/Physics, we identified 
journals whose stated purpose seemed to align with informing practitioners. We then scoured 
these journals for articles with at least one graphical representation. For every article we found, 
we coded any graphs we observed in the article. As our coding of the graphs is both a method 
and result, we elaborate on how we coded each graph in the results section. 
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Results 

We coded a total of 850 graphs across the five sources (Table 2). Our initial goal was to code 
the extent to which these sources used graphs to represent relationships between covarying 
quantities (Covarying Quantities in Table 2, Figure 1a). However, because certain sources used 
graphs for other purposes, we also coded the number of graphs in each source that were used for 
these purposes. For instance, and as reported by Rybarzyk (2011) and Roth, Bowen, and McGinn 
(1999), several sources often presented statistical graphs (Statistical Graphs in Table 2, Figure 
1b). Other sources (specifically the Statics text) overlaid a coordinate system over an object or 
phenomena to help mathematize the situation (Imposing Axes in Table 2, Figure 1c). Table 2 
presents the number of each type of graph we observed in each source. We highlight the 
prevalence of graphs representing two quantities in the precalculus text, chemistry text and 
IEEE/Physics journals. Statistical graphs played a smaller but still significant role in journal 
articles when compared to textbooks. Further, we note that the Engineering Statics text almost 
exclusively used graphs to impose axes on a given object or phenomena.  
Table 2 
The total number of graphs (N) as well as the number of graphs representing two quantities, 
statistical graphs, imposing axes, and imaginary planes versus the source. 

Source N  Covarying 
Quantities 

Statistical 
Graphs 

Imposing 
Axes 

Imaginary 
Plane 

Precalculus text 299 273 (91.3%) 23 (7.7%) 0 (0%) 3 (1.0%) 
Chemistry text 74 74 (100%) 0 (0%) 0 (0%) 0 (0%) 
Statics text 255 3 (1.2%) 0 (0%) 252 (98.8%) 0 (0%) 
IEEE/Physics  166 144 (100%) 22 (13.3%) 0 (0%) 0 (0%) 
JAMA 56 35 (62.5%) 21 (37.5%) 0 (0%) 0 (0%) 

 
(a)   (b)    (c) 

Figure 1. An example of a graph representing (a) two covarying quantities from Brown et al. 
(2012, p. 390), (b) statistical information from Li, Yu, Mao, and Jin (2016, p. 13) and (c) 
imposing axes on a situation from Hibbeler (2013, p. 37). 
 

Because our main focus was on how these sources use graphs to represent the relationship 
between covarying quantities, all further analysis focused on graphs that fit this subcategory. We 
were interested in how frequently graphs represent two decontextualized quantities (typically x 
and y), one contextualized and one decontextualized quantity, or two contextualized quantities 
(e.g., Figure 1a) (Table 3). We note the significant differences across these sources in regards to 
using graphs to represent contextualized quantities. Unsurprisingly, STE textbooks and journals 
almost exclusively used graphs to represent two contextualized covarying quantities. In contrast, 
graphs in the precalculus textbook rarely represented two contextualized quantities. We found 
the lack of contextualized examples in the precalculus textbook surprising, and conjecture that 
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we may obtain a different result when we examine calculus textbooks and possibly precalculus 
textbooks from other publishers.  
Table 3 
The total number of graphs representing two covarying quantities (CQ), the number of graphs 
representing two decontextualized, one contextualized one decontextualized, and two 
contextualized quantities versus the source. 

Source CQ Two 
decontextualized 

One contextualized one 
decontextualized 

Two 
contextualized 

Precalculus text 273 270 (98.9%) 1 (0.4%) 2 (0.7%) 
Chemistry text 74 2 (2.7%) 1 (1.4%) 71 (95.9%) 
Statics text 3 0 (0%) 0 (0%) 3 (100%) 
IEEE/Physics  144 0 (0%) 0 (0%) 144 (100%) 
JAMA 35 0 (0%) 0 (0%) 35 (100%) 

 
Another aspect of graphs representing two quantities that we examined across these sources 

was the frequency with which conventions with respect to the location of the intersection of the 
coordinate axes was maintained (Table 4). We coded graphs representing two quantities as either 
having axes intersect at (0,0), as having axes intersecting at a value other than (0, 0) (e.g., Figure 
1a), or if the graph had no scale and we were unable to infer the coordinate values of the 
intersection of the axes. We note that all graphs in the precalculus and chemistry textbooks had 
axes that intersected at (0, 0). However, practitioner journals followed this convention with less 
frequency; it was typical for the intersection of the axes in these sources to not be at (0, 0).   
Table 4 
The total number of graphs representing two covarying quantities (CQ), the number of these 
graphs with the intersection of the axes at (0, 0), not at (0, 0) and no scale versus the source. 

Source CQ  Axes intersect at (0, 0)  Axes do not intersect at (0, 0) No Scale 
Precalculus text 273 273 (100%) 0 (0%) 0 (0%) 
Chemistry text 74 74 (100%) 0 (0%) 0 (0%) 
Statics text 3 0 (0%) 0 (0%) 3 (100%) 
IEEE/Physics  144 40 (27.8%) 89 (61.8%) 15 (10.4%) 
JAMA 35 19 (54.3%) 16 (45.7%) 0 (0%) 

 
We conjectured that mathematics textbooks used time as a quantity under consideration 

frequently and wanted to compare how frequently other sources used time. Hence, for all graphs 
representing covarying quantities with at least one contextualized quantity, we coded if time was 
represented on the graph (Table 5). Articles in JAMA represented time in a majority of their 
graphs representing contextualized quantities. The chemistry text and IEEE/Physics journals had 
significantly more graphs in which time was not a quantity under a consideration.  
Table 5 
The total number of contextualized graphs, graphs in which time is a quantity under 
consideration, and time is not a quantity under consideration by source. 

Source Contextualized 
Graphs  

Time is a quantity under 
consideration 

Time is not a quantity 
under consideration 

Precalculus text 3 1 (33.3%) 2 (66.7%) 
Chemistry text 72 10 (13.9%) 62 (86.1%) 
Statics text 3 0 (0%) 3 (100%) 
IEEE/Physics  144 35 (24.3%) 109 (75.7%) 
JAMA 35 25 (71.4%) 10 (28.6%) 
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Preliminary Discussion, Implications, and Future Research 

One important preliminary implication of our results is the importance of preparing students 
who may enter STE fields to use coordinate systems both to represent two covarying quantities 
and to mathematize a situation or phenomena. Although researchers have focused on students’ 
understandings of representing relationships between covarying quantities (e.g., Carlson, Jacobs, 
Coe, Larsen, & Hsu 2002; Kozhevnikov, Motes, & Hegarty, 2007; Thompson, 2011) there has 
been less focus on students’ use of coordinate systems to help mathematize an object or 
phenomena. There have been some efforts to examine the mental operations that students’ use 
when imposing axes onto a situation or phenomena (Lee, 2016; Lee & Hardison, 2016; Piaget & 
Inhelder, 1967), however, the extent to which the Statics textbook uses coordinate systems to 
mathematize a phenomena or situation reinforces the need to continue to examine students’ 
understandings of this use of coordinate systems.  

A second implication relates to previous researchers’ findings in regards to students’ 
interpretations of graphs. There is a large body of research examining individuals’ struggles 
interpreting graphs in both mathematics and the sciences (e.g., Glazer, 2011; Leinhardt, 
Zaslavsky, & Stein, 1990; Shah & Hoeffner, 2002). For instance, several researchers have 
indicated students make iconic translations, interpreting graphs intended to represent two 
covarying quantities as an image of the situation (Carlson et.al., 2002; Leinhardt et al., 1990; 
Monk, 1992). We conjecture the lack of contextualized graphs in precalculus curriculum may 
help explain some of the observed struggles students encounter when interpreting contextualized 
graphs. Consistent with Shah and Hoeffner’s (2002) argument, if graphs are presented only 
abstractly, students are likely to struggle translating this knowledge to graphs in contextualized 
situations; future research is needed to examine the validity of this conjecture.  

A third implication relates to graphing conventions. Researchers (Gattis & Holyoak, 1996; 
Moore et al., 2016; Moore et al., 2014) have indicated that students often maintain what are 
conventions to teachers and researchers as inherent aspects of their mathematics. These findings 
reflect what students experience with their textbooks. If students repeatedly experience graphs in 
which these conventions are maintained, they may develop mathematical understandings that are 
constrained by such conventions. Hence, it may be unsurprising when students struggle to make 
sense of situations in which these conventions are not maintained. 

A final implication relates to the extent to which different sources represent time as a 
quantity under consideration. Entering the study, we conjectured time would be a predominant 
quantity used in mathematics textbooks but found this was not the case in the precalculus 
textbook. In JAMA time was a quantity under consideration in a majority of graphs but in the 
chemistry textbook and IEEE/Physics journals time was a quantity under consideration in less 
than a quarter of the graphs. The extent to which time is used as a quantity under consideration in 
various STEM fields requires further examination. 

Intended Questions 

We intend to examine more precalculus and calculus textbooks. What other sources (both 
mathematics or sciences textbooks or journals) would be good to consider in this study? Why? 
What other data would be worth analyzing within the graphical representations? Why?  
What do you see as some other possible implications of a study like this? What could we do to 
make our implications stronger? 
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In the study presented in this paper, the authors aim to construct a model for the processes by 
which students in a multivariable calculus class conceptualize solid regions in three dimensions. 
We designed and recorded student work from several tasks in which students must decode a de-
scription of a solid figure and answer questions assessing the strength of their conception of the 
figure. Presented here are findings from the analysis interviews and group work on one of these 
tasks in which students are asked to build a clay model of the solid region described by a set of 
inequalities in three variables.  
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Introduction 
 

As motivation for our study, we consider the following problem, variations of which appear 
in many multivariable calculus textbooks. 

In anecdotal observations of student work, the authors found that students would attempt to 
solve this problem, apparently without attempting to conceptualize the solid figure E as a subset 
of R3. While this observation calls into question the validity of such problems in building and 
assessing students' understanding of volume, it also raised the question, through what process 
would students decode sets of inequalities such as (1) as a solid figure? 

In the present study, we use data from 76 undergraduate multivariable calculus students (split 
into 29 response groups) collected in individual interviews and recorded group work, to identify 
common strategies and obstacles in decoding, processing, and communicating representations of 
solid figures. 
 

Theoretical Background 

There is a rich history of studying student conceptions of three-dimensional solids in the con-
text of spatial reasoning. Much of the work in this area relies on methodology in which subjects 
must interpret a two-dimensional drawing of a solid figure and then perform some spatial task 
such as rotation (Bodner, Guay, 1997) or identification of cross-sections (Cohen, Hagerty, 2007). 
However in studies where a two-dimensional drawing is used, Gorgorió (1998) warns, “individ-
uals’ demonstration of their spatial orientation ability depends also on their abilities for interpret-
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ing and communicating spatial information.” Indeed it has been shown that student misconcep-
tions can lead to errors both during interpretation (Parzysz, 1988; Hallowell, et al, 2015), and 
communication (Ben-Chaim, Lappan, & Houang, 1989; Hershkowitz, 1990). Thus, building on 
the paradigm set forth by Parzysz (1991), we model student responses to the tasks as information 
which has passed through three phases: decoding, processing, and communication. 

The decoding phase encompasses interpretation of the given representation. The processing 
phase includes any mathematical or visuospatial treatments the subject performs, as well as con-
versions between registers. Finally, in the communication phase, subjects encode their responses 
to the task. Included in the communication phases are written work, drawings, conversation with 
other students, and building physical models. 

In a multivariable calculus class, students are asked to become fluent in interpreting descrip-
tions of figures in R3 which come in a variety of forms: written descriptions, equations or ine-
qualities in three variables, two-dimensional drawings, and combinations of these. Viewed from 
the theoretical framework of semiotic representation theory, this requires students to coordinate 
representations in several registers (Duval, 1993), and perform conversions from one register to 
another (Duval, 2006). Trigueros and Martínez-Planell (2010) investigate how students use this 
coordination of registers to perform tasks related to surfaces and equations in multivariable cal-
culus. Our study builds on this work by applying the same theoretical framework to solid figures 
in three dimensions. 

Methodology 
 

We designed several tasks meant to elicit responses which would give insight into the strate-
gies students use and the obstacles they face in decoding and processing representations of solid 
figures. For this preliminary report, we will discuss results from Task 2 below. 

Figure 1: Model for student responses. This figure illustrates the flow of 
information resulting from students’ response to a task. Errors or loss of 
information may occur in each phase. 

Initial Representation Response 

decoding communication 

processing 

Student Conception 
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Like many of the tasks in our study, Task 2 pairs a close representation of the solid (Parzysz, 
1988)—a three-dimensional model—with the representation type we wish to study—in this case, 
a set of inequalities. Underlying the rationale behind this pairing is the hypothesis that students 
will face little difficulty in decoding the close representation, nor in communicating a robust 
enough conception of the figure into the medium of a clay model. Under this assumption, errors 
in student work on Task 2 could be attributed to misunderstandings or miscalculations related to 
the decoding and processing of the sets of inequalities1. 

We used a grounded theory approach to collect and analyze the data from participants in the 
study. Data collection involved video-taping students working in groups on the tasks during nine 
class sections from two different instructors in the spring and summer of 2016. We also collected 
students’ written work and photographed clay models produced by the students. Additionally, we 
conducted individual interviews with four students. Through axial coding (Glaser & Strauss, 
1967), we established categories for responses to the task, and identified several distinct strate-
gies used by the students. 

Preliminary Results 

Here we present preliminary findings from analysis of Task 2 above. Four categories of clay 
models emerged from the coding of student responses: rectangular prism (P), tetrahe-
dron/pyramid (T), conflicted (C), and accurate (A); examples of each are shown in Figure 2 be-
low. 

    
 

Figure 2: Examples of the four categories of responses. From left to right: rectan-
gular prism (P), tetrahedron/pyramid (T), conflicted (C), and accurate (A). 

                                                
1 This assumption was not entirely accurate since some students who demonstrated a robust conception of 
the solid made errors in the model the produced related to the relative scaling in the x, y, and z variables. 
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The categories of (P) and (T) are self-explanatory. A clay model was classified as accurate 
(A) if it reflected all the correct faces and edges of figure described by the given inequalities; 
models in which the x, y, and z variables were scaled differently could still be considered accu-
rate. Models which fell into none of the other three categories were classified as conflicted (C); 
in all cases, these models were some hybrid between a pyramid and an accurate model. 

Additionally, we identified several distinct strategies that were used by students while com-
pleting the tasks, which are described below. 

1. Maximum/Minimum: Identifying the maximum and minimum values for each variable—
in this context, this amounts to identifying that z < 2. Example: "The first two inequalities are 
the same, so we concluded that the base of the region is a square. The third inequality is de-
pendent on x and y, and the largest value is 2, so the region can range from a rectangular prism 
to a 2d square." 
2. Covariation/Path: Using language that invokes an image of two variables changing at the 

same time, often to describe an edge of the figure or a path along a face. Example: “the z starts 
at zero and the origin corner at the square then goes to 2 at the (1,1) corner.” 
3. Finding Vertices: Locating extremal points of the figure by converting some subset of the 

inequalities to equalities and solving. Example: see Figure 3. 
4. Level Curves: Sketching level curves of z = x + y in order to understand the top face of the 

figure. Example: see Figure 3. 

Figure 3: Examples of Finding Vertices and Level Curves. 

We organized strategies by response category, as shown in Table 1. The most notable trend is 
that response groups which produced an accurate model seemed to use a wider range of strate-
gies than those which produced other models.  

Applying our model for interpreting student responses from Figure 1, we can attempt to infer 
in which phase information was lost or mishandled from both the response type and the strate-
gies used. For example, we hypothesize that for students who responded model type (P), most of 
the information never made it past the decoding phase—that students did not correctly interpret 
the meaning of the inequalities taken as a set. For students who responded with model type (T), it 
seemed that some information was lost in the decoding phase, and that only minimal processing 
had taken place. For model type (C), a hybrid between (T) and (A), the mishandling of infor-
mation seemed to occur in the processing phase; these students had a conception of the figure in 
one representation register, but failed to accurately convert it to another. 

 

Finding Vertices Level Curves 
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Table 1: Strategies used, organized by response category. Responses submitted by a group of 
students were treated as a single response. In many cases, groups reported using more than one 
strategy, which is reflected in the table. 

Student’s Strategies 
Rectangular 

Prism (P) 
Tetrahed-

ron/Pyramid (T) Conflicted (C) Accurate (A) 

Responses in this category 5 2 7 15 

Maximum/Minimum              5 (100%) 2 (100%) 4 (57%) 7 (47%) 

Covariation/Path                   1 (14%) 3 (20%) 

Finding Vertices 1 (20%) 1 (50%)  7 (47%) 

Level Curves   4 (57%) 5 (33%) 
 

Conclusions 
 
We plan on analyzing the rest of our collected data in a similar vein. We remain interested in us-
ing this information as a base line to flesh out the three phases of decoding, processing, and 
communication in further analysis of student’s thinking on solid regions in R3. 
 

Questions for Audience 
 

1. For those who teach multivariable calculus: How do you communicate solid figures to 
students in the context of triple integrals and volume? What big ideas do you hope your stu-
dents will get out of this part of your course? 
2. The use of three-dimensional models of unfamiliar three-dimensional solids, constructed 

using 3D printing or clay, is somewhat novel to our research. What other lines of inquiry 
could we investigate with this medium? 
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The Effects of the Epsilon-N Relationship on Convergence of Functions

Zackery Reed
Oregon State University

Much work has been done in recent years to study students’ formulations of formal limiting
processes. One of the most common goals is to foster a productive understanding of the
relationship between the error bound epsilon and the domain of the convergence; what is called a
range-first perspective. My study examined an advanced calculus student’s understanding of the
relationships involved in convergence of functions, and how his prior experience with limits
influenced his concept image. I unpack his cognitive organization of the dependence relationships
between epsilon, N , and x in functional convergence. This case study demonstrates the effects of
a persistent understanding that � depend on N in the convergence of sequences.

Key words: Sequences of Functions, Formal Definition of Convergent Sequences, Advanced
Calculus

Mathematics students study convergent sequences throughout their college career.
Formalizing sequential convergence provides an important yet difficult stage in the development
of students’ reasoning about advanced mathematics. A vital component of the formal definition of
sequential convergence is the relationship between � (epsilon) and the critical index N . I call this
the epsilon-N dependence relationship, which mirrors the epsilon-delta dependence relationship
within the formal definition of continuity of a function.

In advanced analysis courses, sequences take on forms beyond just real numbers. In
particular, advanced calculus students encounter sequences of continuous functions towards the
end of their instruction. The convergence of such functions is defined in a manner that is
structurally similar to the familiar convergence of real numbers, but it has the added complexity
of also accounting for variation within the domain of the function. Thus, keeping track of the
definition’s quantifiers becomes vitally important to understanding the different types of
convergence and their implications on the functions themselves.

While conducting a larger study involving student conceptions of metric spaces, I interviewed
two students to examine their concept images and definitions (Tall & Vinner, 1981) pertaining to
convergence of function sequences. A case study of one student’s interview demonstrates how
reversal of the epsilon-N relationship may persist beyond convergence of real numbers to affect
the convergence of functions. In this preliminary report, I will discuss this case to demonstrate the
effect of this reversal on convergence of functions, and I will go into detail about some cognitive
conflicts that seemed to arise within the student’s concept image. I seek to answer the following
research questions: 1) How does the addition of the domain value x into the definition for
functional convergence affect student understanding of convergence?, and 2) Does reversal of the
epsilon-N dependence relationship in real number convergence affect the dependence
relationships for functional convergence?

Literature Review

There is an abundance of research on student initial understanding of limits, the potential
difficulties that arise and initial interpretations of limit definitions (Bezuidenhout, 2001; Cornu,
1991; Cottrill et al., 1996, Davis & Vinner, 1986; Roh, 2008; Roh, 2009; Tall, 1992; Tall &
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Vinner, 1981; Williams, 1991). There have also been investigations into students’ intuitions about
the nature of limits (Oehrtman 2003; Oehrtman 2009). Much of these investigations, however,
pertained to students’ intuition and reasoning with informal limits rather than formal
understanding.

Targeted glimpses of student understanding of formal limit definitions began with Swinyard
(2011). In his teaching experiment, two students successfully reinvented the formal definition of
the limit of a function. Swinyard and Larsen (2012) also suggested some strategies for fostering
productive generation of formal limit definitions such as a focus on the error bounds. This
strategy is called adopting a range-first perspective as opposed to a domain-first perspective where
the control of the convergence is given to the variation in x values. This was adapted to sequences
by Oehrtman et al. (2014) to also include the index n in the domain-first perspective for purposes
of sequential convergence study where students reinvented the definition of formal sequence
convergence.

Other efforts have also been made to investigate student understanding of the formal definition
of limits with special attention paid to the relationships between the variables controlling the
limiting process (Adiredja, 2013; Adiredja & James 2013; Adiredja & James 2014).

This study will continue the literature on student understanding of formal limit definitions
with specific attention to the relationships of the variables within convergence of sequences in
advanced settings.

Theoretical Perspectives

Concept Image and Concept Definition
Formal mathematics often entails understanding a particular concept via its definition.

Accompanied with each concept, however is also a collection of cognitive organizations beyond
just the definition. This calls for a distinction to be made between the collection of cognitive
objects that are brought to bear upon recollection of the concept, and the words that compose the
definition of the concept. This is the distinction between a thinker’s concept image and concept
definition (Tall & Vinner, 1981).

Tall and Vinner define the concept image as the ”total cognitive structure that is associated
with the concept”. This includes examples, graphs, images, relationships, and even the concept
definition. The concept definition is the formal language that the student uses to identify the
concept. This definition may be a personal definition given by the student, or it might be the
formal definition accepted by the mathematical community. In this report, I use the notions of
concept image and concept definition to characterize the student’s conceptions.

Domain-First and Range First Perspectives
Informal limit notation is usually written in a manner such as lim

n��
an or an � a. In

accordance with this notation, students transitioning from informal to formal notions of the limit
may focus first on how the variation of the index affects the sequence entries. This is called a
domain first perspective. Swinyard and Oehrtman (2014) suggest that focusing on the behavior of
the range values before focusing on the domain values will foster correct interpretation and
generation of the quantifiers within the formal limit definition.
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Mathematical Discussion
I now briefly offer a discussion of the mathematics involved in this study to situate the

subsequent discussion of the data. The convergence of a sequence of functions is an advanced
concept that is encountered by mathematics students towards the end of the advanced calculus
sequence. There are two types of convergence, however we will only be discussing point-wise
convergence.

Because of the nature of convergence in metric spaces, the formal structure of functional
convergence is very similar to that of the familiar convergence of real number sequences. A
sequence of real numbers (an) converges to a real number a if ��>0, �N � N such that �n � N
we have |an � a| <�. For this type of convergence, the error bound � controls the behavior of the
sequence, since as � decreases, a critical index N must be found.

A sequence of functions(fn) converges point-wise to a function f on a domain D if ��>0 and
�x � D �N � N such that |fn(x) � f(x)| <�. Note that at each x value in the domain of
convergence we have the sequence of functions forms a convergent sequence of real numbers,
thus the critical index N is controlled by both x and �.

Methods

The episode reported on was part of a larger study exploring student’s reasoning about metric
spaces. This involved conducting teaching experiments with two students, each teaching
experiment consisting of six hour-long sessions (Steffe & Thompson, 2000) with a single student.
The particular episodes being explored in this report were semi-structured and task based
(Hunting, 1997) so that student activity could be observed.

The participants in the study were both mathematics majors at a large northwestern university
who had completed the advanced calculus instructional sequence and were studying real analysis
applied to finite dimensional vector spaces at the time of the interviews. Both students
demonstrated proficiency in their advanced calculus courses and had seen functional convergence
before.

Each interview was video recorded, and the sessions have been reviewed multiple times
highlighting episodes illuminating aspects of the students’ concept images as well as sources of
cognitive conflict and their resolution. The particular episodes reported on are transcribed along
with time stamped pictures highlighting diagrams or writing done by the students.

Results

The goal of this interview was to explore Kyle’s concept images and definitions pertaining to
different types of convergent function sequences. This set the stage for a new metric space to be
explored, and I was able to examine Kyle’s concept image for convergence of functions.

The first step of the interview was to establish Kyle’s concept definition for point-wise
convergence of functions. This type of convergence would have been Kyle’s first experience with
functional convergence of any kind in the classroom. Kyle’s first concept definition, the
formulation I claim that is most relevant to his understanding, is given here: A sequence of
functions {fn} converges pointwise to f if �x � D, lim

n��
fn = f . Kyle soon corrected this to add

in fn(x) and f(x).
This is significant because Kyle first chose to use the conventional limit notation given in a

calculus setting instead of incorporating the �-N definition. Kyle demonstrated a domain-first
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focus throughout the majority of the interview, and this focus on N controlling the limiting
process was first displayed in his personal concept definition.

After a brief discussion about what the elements of his definition meant, I prompted Kyle to
write a formal definition. When asked to discuss what the definition means, he said:

Kyle: When we are trying to show point-wise convergence we are trying to find some � that
will always be greater than the difference between our sequence and our function, however
because we are selecting our � and then selecting our x then this � will actually be a function of x
and the N from the naturals.

As he said this he wrote out �(x, N). As we began to unpack the nature of the dependence of �
on N and x, he made the following statement:

Kyle: N plays the same role that it always plays when we’re talking about convergence. It’s
the last index such that every index past this you’re going to have this property [|fn(x) � f(x)|]
be true, so in so much as that � is pretty much always dependent on that natural because you want
to say that past this natural N , you know this � is always going to be true.

As we continued discussing the nature of the � dependence on N and x, we discussed some
typical examples of functions that converge in a point-wise manner such as xn and x/n. In each
of these examples Kyle would draw an � window around the values of the functions at a particular
point x, reinforcing that a different � window was necessary as N increased without bound and as
x varied across the domain. Kyle continually demonstrated that the index increasing without
bound was the driving force of the convergence of the functions, verifying that he had adopted a
domain-first perspective.

This domain-first perspective, which I infer had carried over from his experience with
convergence of real numbers, now had an added complexity of incorporating the domain of the
function as well into his scheme for convergence. As an example of this, Kyle described the
following x-N-epsilon relationship as we examined the sequence of functions x/n:

Kyle: but if we think about what n is, like if we think about the Archimedian property. If you
are thinking about 1/n as being less than �, then that means that 2/n would imply that 1/n is less
than �/2. So if you’re increasing the values of these x’s, your � is going to get smaller and smaller.

This of course is not the case as there is no inherent relationship between � and x. As we
further discussed the effect of fixing an x value, Kyle had a moment of cognitive conflict where
he commented that he didn’t really mean � was a function of x, just that if you changed the x you
would change the �, but then since we do this for all positive epsilon maybe ”�/2 is just as good
as �”. Here I think he has a moment where he is considering the universal quantification of �, but
his reversal scheme is still his dominant stance.

His reversal was evident later when Kyle wrote out that to show xn converges at x = 1/2 we
needed to bound (.5n) by �, and so we take the ”nth root of epsilon” . This would happen if we
had already found a critical index N and needed to find an error bound that worked for that N .
This task then illuminated Kyle’s potential sources of cognitive conflict which allowed a
resolution to be found. When he could not verify the convergence in the manner he wanted, I
suggested using the fact that 2n is greater than n for all n, and so then he tried bounding 1/2n by
1/n which could then be bounded by �. When trying to prove the convergence of 1/n, he recalled
the Archimedean property, and after trying to find the � using the property, I reminded him that
the Archimedean property works for a fixed � and showing that there exists some N that bounds
1/N by �. This served to reorient Kyle’s stance on the dependence.

By resolving that the N is found for a fixed �, he immediately restructured his construct on
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not only the convergence of 1/2n but also for all of his previous claims of dependence. This was
then reinforced by showing xn converged for different values of x, which altered the ciritcal index
even with a fixed �. After realizing that varying x and � could potentially change the critical
index, he claimed that N was doing all the work of convergence, thus reorienting his
understanding of the dependence relationships.

Discussion and Conclusion

This episode is meant to serve as an example of the persistence of � dependence within more
advanced mathematical settings and the effect it can have on the understanding of more
complicated processes than just convergence of real numbers. I argue that because the informal
perspective on a limit was so ingrained in Kyle’s concept image, it caused him to project the
dependence of � on the domain values x as well, even though no relationship should exist at all
between � and x. While Kyle could readily recall the formal concept definition of functional
convergence, and even reason through a few examples, his personal concept definition dictated
the contradictory epsilon-N-x relationship that seemed to permeate his concept image.

I contend that the main source of his interpretation of the dependence relationship was his
previously held notion that � depended on N for convergent real-number sequences. This
demonstrates a lack of attention to the use of quantifiers since he correctly understood the need to
fix an x value in evaluating the convergence. His proficiency of fixing x played a vital role in his
cognitive re-organization when he observed the convergence of xn at different fixed values of x
and � after the discussion about the Archimedian Property. This suggests a potentially strong
instructional point to make is that point-wise convergence of functions is the convergence of a
continuum of real-valued sequences all at once.

One final observation is that his understanding of the limiting process was robust enough to
adjust upon integrating the Archimedean Property into his concept image. Kyle was secure in the
convergence of a few key examples of function sequences so that he could experiment with his
process of proving the functions converged to the limit he knew them to have. This case study
highlights the complex relationships that exist between the different variables involved in
functional convergence and the potential compounding of the epsilon-N reversal. An instructional
takeaway from this is the importance of original instruction of formal convergence, as well as the
need for attention to quantification in the interpretations of formal definitions. This study also
serves as a first look into student understanding of convergence beyond that of real numbers.

Questions and further directions
This of course was a first glance at student reasoning with function convergence, and so there

is still much to explore in this area. Clearly there is a natural relationship between understanding
of convergence of real numbers and convergence of functions. Thus an extension of this study is
to introduce function convergence to students with a robust understanding of real number
convergence.

The following are for further discussion: 1) Are there ways in which we can investigate the
relationship between the types of convergences? 2) Are there ways to specifically target universal
quantification that might elicit useful understanding of the need to vary x and epsilon in
functional convergence? 3) As pointwise convergence is the evaluation of a continuum of
real-valued sequences, is there a way to leverage this natural connection to sequential
convergence of real numbers in future investigations?

20th Annual Conference on Research in Undergraduate Mathematics Education 140320th Annual Conference on Research in Undergraduate Mathematics Education 1403



References

[1] Adiredja, A.P. (2013). A microgenetic study of one student’s sense making about the temporal
order of delta and epsilon. In Brown, S., Karakok, G., Roh, K.H & Oehrtman, M. (Eds.),
Proceedings ofthe 16th Annual Conference on Research in Undergraduate Mathematics
Education , Denver, CO.

[2] Adiredja, A.P. & James, K. (2013). Students’ knowledge resources about the temporal order of
delta and epsilon. In Brown, S., Karakok, G., Roh, K.H & Oehrtman, M. (Eds.), Proceedings of
the 16th Annual Conference on Research in Undergraduate Mathematics Education, Denver,
CO.

[3] Adiredja, A.P. & James, K. (2014). Students’ struggle with the temporal order of delta
and epsilon within the formal definition of a limit. In Brown, S., Karakok, G., Roh,
K.H & Oehrtman, M.(Eds.), Proceedings of the 17th Annual Conference on Research in
Undergraduate Mathematics Education, Denver, CO.

[4] Bezuidenhout, J. (2001). Limits and continuity: Some conceptions of first-year students.
International Journal of Mathematical Education in Science & Technology, 32(4), 487-500

[5] Cornu, B. (1991). Limits. In D. O. Tall (Ed.), Advanced mathematical thinking (pp. 153166).
Dordrecht, The Netherlands: Kluwer Academic Publishers.

[6] Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., & Vidakovic, D.
(1996). Understanding the limit concept: Beginning with a coordinate process schema. Journal
of Mathematical Behavior, 15, 167192.

[7] Davis, R. B., & Vinner, S.(1986). The notion of limit: Some seemingly unavoidable
misconception stages, Journal of Mathematical Behavior, 5, 281-303.

[8] Hunting, R. P. (1997). Clinical Interview Methods in Mathematics Education Research and
Practice. Journal of Mathematical Behavior, 16(2), pp. 145-465.

[9] Oehrtman, M. (2003). Strong and weak metaphors for limits. In N. Pateman, B. Dougherty,
& J. Zilliox (Eds.), Proceedings of the 27th Conference of the International Group for the
Psychology of Mathematics Education, Vol. 3 Honolulu, HI, (pp. 397404).

[10] Oehrtman, M.(2009). Collapsing dimensions, physical limitations, and other student
metaphors for limit concepts. Journal for Research in Mathematics Education, 40(4), 396426.

[11] Roh, K. H. (2008). Students’ images and their understanding of definitions of the limit of
sequence. Educational Studies in Mathematics, 69, 217-233.

[12] Roh, K. H. (2009). An empirical study of students’ understanding of a logical structure
in the definition of limit via the e-strip activity. Educational Studies in Mathematics. DOI:
10.1007/s10649-009-9210-4.

20th Annual Conference on Research in Undergraduate Mathematics Education 140420th Annual Conference on Research in Undergraduate Mathematics Education 1404



[13] Steffe, L. P., & Thompson, P. W.(2000). Teaching experiment methodology: Underlying
principles and essential elements. In R. Lesh & A. E. Kelly (Eds.), Research design in
mathematics and science education (pp. 267- 307). Hillsdale, NJ: Erlbaum.

[14] Swinyard, C., & Larsen, S. (2012). What does it mean to understand the formal definition
of limit? Insights gained from engaging students in reinvention. Journal for Research in
Mathematics Education, 43(4), 465493.

[15] Tall, D.(1992). The transition to advanced mathematical thinking: Functions, limits, infinity
and proof. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning
(pp. 495-511). New York: Macmillan.

[16] Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with
particular reference to limits and continuity. Educational Studies in Mathematics, 12(2),
151169. .

[17] Williams, S. R. (1991). Models of limit held by college calculus students. Journal for
Research in Mathematics Education, 22(3), 219236.

20th Annual Conference on Research in Undergraduate Mathematics Education 140520th Annual Conference on Research in Undergraduate Mathematics Education 1405



The Effect of Attending Peer Tutoring on Course Grades in Calculus I 
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Tutoring centers are common in universities in the United States, but the effects of tutoring on 
student success are often not examined statistically. This study utilizes multiple regression 
analysis to model the effect of tutoring attendance on final course grades in Calculus I. Our 
model predicted that every three visits to the tutoring center would increase a students’ course 
grade by one percent, after controlling for prior academic ability. We also found that for lower 
achieving students attending tutoring had a greater impact on final grades. 
 
Keywords: Calculus I, multiple regression, peer tutoring, undergraduate mathematics 
 

Introduction and Literature Review 
 

Although many institutions across the nation offer free tutoring to students (Johnson & 
Hansen, 2015) with the goal of improving lower division instruction, there have been few 
published studies investigating the impact of attending tutoring on performance (Xu, Hartman, 
Uribe & Mencke, 2001). A common approach is to simply look at success rates for students who 
attended peer tutoring versus success rates for students that did not attend tutoring (e.g. Garcia, 
Morales & Rivera, 2014; Jimenez, Acuna, Quiero, Lopez & Zahn, 2015). While this may provide 
some evidence that tutoring had a positive impact, we argue that this type of analysis is over-
simplified. Unfortunately, reporting on student performance and retention in an in-depth manner 
requires resources in terms of staff time and collaboration with other disciplines that many 
tutoring centers simply do not have (MacGillivray, 2009). 

Quantitative measures of the impact of tutoring on grades can be difficult because students 
tend to self-select and students of different mathematical abilities may attend tutoring for 
different reasons (Topping, 1996). One way to account for these factors is to use multiple 
regression. Regression models have been used to show that attending Peer Assisted Learning 
sessions can improve the grades of mathematics majors (Duah, Croft & Inglis, 2013) and that 
attending optional tutoring can improve the grades of college algebra students while controlling 
for students’ mathematical abilities (Xu, et. al, 2001). This study will add to the literature by 
using multiple regression to measure the impact of attending optional tutoring sessions at the 
Mathematics Learning Success Center on course grades for Calculus I students at Oklahoma 
State University. 

The research questions for the study are: 
1. What is the effect of attending optional drop-in tutoring offered by the MLSC at Oklahoma 
State University on Calculus I students’ course grades, after controlling for their high school 
math GPA and ACT math sub-score? 
2. Do we see that attending optional drop-in tutoring at the MLSC benefits students of lower 
mathematical ability more than stronger students? 
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Method and Data 
 

To evaluate the effectiveness of mathematics tutoring in calculus, student academic and 
tutoring data were collected from a public 4-year research university in the Midwest with an 
enrollment of approximately 25,000 students. Study participants include all 640 students enrolled 
in Calculus I for the fall 2015 semester. Since attending tutoring sessions is voluntary and 
students receive no credit for participation in tutoring, self-selection bias is acknowledged as a 
limitation of this study. 

Data collected for the study includes: student course grade (percentage) in Calculus I, high 
school math grade point average, ACT math score, number of visits to the tutoring center, and 
duration of visits at the tutoring center. For visits with a missing duration, the average of the 
student’s other visit durations is used as an estimate. Of the 640 students enrolled in Calculus I, 
there were 390 students who visited the tutoring center a total of 5193 times.  
Table 1.   Descriptive Statistics 

  Mean Standard Deviation Minimum Maximum 
Final Course Grade (Percent) 73.93 22.49 3.44 101.46 

High School Math GPA 3.51 0.58 1.63 4.75 
ACT Math 26.55 3.60 14 36 

Visits 8.11 13.75 0 102 
Estimated Total Time (Minutes) 738.45 1435.43 0.00 11549.03 

 
Of the 640 students in the study, 390 (60.9%) visited the tutoring center at least one time. For 

the students who did visit the tutoring center, the average number of visits was 13.3 per student 
with an average visit length of 78 minutes. These students had slightly higher prior academic 
achievement scores with an average high school math GPA of 3.58 and math ACT of 26.8 
compared to 3.38 and 26.2 respectively for those who did not visit the tutoring center. The 
average course grade earned for students who attended tutoring was a B (80.4%) while the 
average for those who did not attend tutoring was a D (62.0%). There were 534 students who 
completed the final exam and 78 (12.2%) withdrew from the course.  

Overall, as the number of times a student visits the tutoring center increases, so does the 
course grade. However, on average, students with a higher frequency of visits also had a higher 
high school math GPA, so it is unclear at this point whether the increase in exam score is a result 
of increased tutoring visits or prior math ability (see Table 2). 
Table 2.   Scores by Tutoring Visit Category 

  Number of Students Average Final Exam 
Score 

Average High School 
Math GPA 

0 250 62.0 3.38 
1-5 169 78.2 3.52 

6-10 64 80.3 3.54 
11-20 72 82.3 3.65 
21+ 85 83.3 3.68 

Overall 640 73.9 3.51 
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Results 

 
To investigate the relationship between the variables, Pearson r correlations were computed 

(see Table 3). The correlation between visits and estimated total time is close to 1 which 
indicates possible multicollinearity and that likely only one of these variables will be needed in 
the final model. 
Table 3.   Correlation Matrix 

  Final High School Math GPA ACT Math Visits 
High School Math GPA 0.50*    

ACT Math 0.42* 0.42*   
Visits 0.26* 0.15* -0.03  

Estimated Total Time 0.23* 0.12* -0.05 0.94* 

Note. * significant at p < 0.05 
    

Simple linear regressions using each independent variable separately as a predictor of the 
dependent variable indicate that each independent variable individually is a significant predictor 
of course grades. The initial multiple regression model will therefore include all four 
independent variables. Analysis of this model indicates significant overall statistical predictive 
ability, F(4, 455)=60.63, p<0.0001. The R2 of this model is 0.348, which indicates that 
approximately 34.8% of the variance in course grades can be explained by the predictor 
variables. In this model, Estimated Total Time has a large p-value of 0.9016 indicating it is 
unlikely to be a meaningful predictor. Removing this variable and analyzing the subsequent 
model with predictor variables of high school math GPA, math ACT, and visits results in a 
significant overall model, F(3, 485) =85.27, p<0.0001, and an R2 of 0.345. Each independent 
variable was found to have a p-value of less than 0.0001 indicating a they are all likely 
meaningful predictors. The R2 values indicate the proportion of variance in course grades that 
can be uniquely accounted for by that predictor variable. Coefficients, correlations and 
collinearity statistics are found in Table 4. 
Table 4.   Multiple Linear Regression Results 

  Parameter 
Estimate P-Value Partial 

R2 Tolerance 

Constant -21.677    
High School Math GPA 12.993 <0.0001 0.13 0.81 

ACT Math 1.782 <0.0001 0.10 0.83 
Visits 0.333 <0.0001 0.06 0.97 

 
The parameter estimates in Table 4 indicate the change in predicted course grade for each 

unit change in the predictor variable. As such, the parameter estimate of 0.333 for visits indicates 
that a student’s course grade is predicted to be approximately one percentage point higher for 
every three visits to the tutoring center. The prediction equation for this regression is: Final 
Course Grade = -21.677 + 12.993(High School Math GPA) + 1.782(ACT Math)+0.333(Visits). 
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Interaction 

 
It is also of interest to determine if students of lower mathematical ability, determined by 

high school math GPA, benefit more from tutoring than students with higher mathematical 
ability. In Table 5, mean course grades are compared between those who did attend tutoring and 
those who did not at different categories of high school GPA. From this table, it does appear that 
lower mathematical ability students benefit more from tutoring with a decreasing difference in 
mean course grades with increasing mathematical ability. 
Table 5.   Mean Final Exam Score by HS GPA and Tutoring Participation 

HS GPA 
Category No Tutoring 1+ Tutoring Visits   Mean Difference 

2.00-2.49 25.9 66.6  40.7 
2.50-2.99 56.4 72.7  16.3 
3.00-3.49 58.1 74.2  16.1 
3.50-3.99 71.6 86.4  14.8 

4.00+ 78.5 87.2   8.7 
 

To investigate this analytically, a regression with an interaction between high school GPA 
and number of visits is analyzed. The results from this analysis are found below in Table 6. It 
should be noted that the independent variables in this analysis have been centered to mitigate 
multicollinearity due to the inclusion of both GPA and Visits and the interaction term between 
those variables. 
Table 6.   Multiple Linear Regression Results 

  Parameter Estimate P-Value Partial 
R2 Tolerance 

Constant 74.105 <0.0001   
High School Math GPA 12.929 <0.0001 0.13 0.83 

ACT Math 1.798 <0.0001 0.10 0.81 
Visits 0.365 <0.0001 0.07 0.89 

High School Math 
GPA/Visits Interaction -0.203 0.0555 0.01 0.93 

  
In this analysis the predictors of high school math GPA, ACT math, Visits and the interaction 

term all have very low p-values indicating they are likely meaningful predictors of the final 
course grade. However, it is worth noting that the partial R2 of the interaction term of 0.01 
indicates that the interaction is only able to account for an additional 1% of the variation in 
course grades over that of the other dependent variables. The overall R2 of this model is .350 
compared to .345 for the model without interaction which indicates that the predictor variables 
are able to account for 35.0% of the variance in course grades. 

The sign of the coefficient of the interaction term suggests that visits for students with lower 
high school math GPA result in a larger increase in course grade than for students with a higher 
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high school math GPA. The predicted increase in course grade per visit to the tutoring center of a 
student with a high school math GPA one standard deviation above the mean is 0.25 points. This 
increase is 0.37 points for students with an average high school math GPA and 0.48 points for 
students with a high school math GPA one standard deviation below the mean. In other words, 
students with lower prior math academic achievement see a larger increase in course grade per 
tutoring visit than students of higher prior math academic achievement. The prediction equation 
for this regression is: Final Course Grade = -27.752+ 14.576(High School Math GPA) + 
1.798(ACT Math)+1.077(Visits)-0.203(Visits*High School Math GPA). The coefficients of this 
equation have been simplified from the centered form of the equation and therefore differ from 
those in Table 6. 

 
Discussion 

 
We attempted to control for students’ prior mathematical ability by using high school GPA 

and ACT math sub-score as variables in the multiple regression model. We found that high 
school math GPA, ACT math sub-score, and the number of tutoring visits were all significant 
factors in predicting course grades. The model predicts that each visit to the tutoring center raises 
the student’s grade by 0.33%. A student with the mean high school math GPA and the mean 
ACT math sub-score who does not attend tutoring is predicted to make a 60% in the course. If 
that same student attends tutoring twice a week for the whole semester (30 visits), the predicted 
course grade is raised to 70%.  

To determine if tutoring attendance benefits low achieving students more than high achieving 
students, we developed a new regression model that includes the interaction between high school 
math GPA and tutoring visits. This interaction model has slightly better predictive power than 
the previous multiple regression model. The model predicts that a low achieving student (with 
high school math GPA and ACT math score each one standard deviation below the mean) would 
score 56% without tutoring, and would need to attend tutoring 28 times to raise their score to a 
passing grade (70%).  In contrast, a high achieving student (with high school math GPA and 
ACT math score each one standard deviation above the mean) would score 86% without 
tutoring, and 28 visits to the tutoring center would only raise the student’s grade 7 percentage 
points. Thus, for the lower achieving student, each visit to the tutoring center has more of an 
impact on his or her course grade.  

There are several limitations to this study. We acknowledge that the students had the option 
to attend tutoring, so there is a self-selection bias that we attempted to control by using prior 
mathematical ability scores in the multiple regression model. We also have no data about 
whether or not students made use of other support services, such as office hours or independent 
study groups.  
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Mental Constructions Involved in Differentiating a Function to a Function Power 
 

Rachel Rupnow   Catherine Ulrich 
Virginia Tech      Virginia Tech  

 
Functions of the form ! ! = (! ! )!(!), including constant functions, power functions, and 
exponential functions, are fundamental examples of functions that differential calculus students 
should be able to differentiate. Yet students often struggle to distinguish between these forms. 
Drawing on APOS (Action-Process-Object-Schema) theory as well as Piaget and Garcia’s triad 
of schema development, this paper offers a genetic decomposition of the schemas students build 
for determining the derivative of a function to a function power. In particular, we analyze how 
students determine which differentiation rules to use with different function structures of a 
function to a function power and how students construct a conception of logarithmic 
differentiation. An initial genetic decomposition informed by existing literature was refined using 
the results of a series of three clinical interviews with each of two calculus students. Findings 
include the necessity of a strong background in functions, logarithms, and other differentiation 
rules.  
 
Key words: Logarithms, Differentiation, Function, APOS, Schema 

 
Purpose and Background 

Logarithmic differentiation is useful when differentiating non-constant functions to non-
constant powers. For example, consider the function ! = !!. To find the derivative of this 
function, a student would need to realize that neither the power rule nor the exponential rule 
applies so the function equation must be transformed into an equation to which standard 
differentiation rules apply. Taking the natural logarithm of both sides of the equation and 
implementing a property of logarithms yields ln ! = ln !! = !!ln !. This function can then be 
differentiated using standard differentiation rules, resulting in !"!" != !!

! ln ! + 1 . When either the 
base or exponential function in a function to a function power (FFP), ! ! = (! ! )!(!), is 
constant you can, in contrast, use the appropriate rule for differentiating polynomial or 
exponential functions.  

Therefore, appropriately carrying out logarithmic differentiation requires students to 
coordinate all other differentiation rules and properties of logarithms. Additionally, students who 
know when to apply the technique demonstrate recognition of differences between types of 
FFPs. Because of this, we felt that differentiating FFPs provided a rich context for studying how 
students construct and utilize their differentiation rules. In this paper, we examine the necessary 
mental constructions for students to differentiate FFP expressions and to distinguish between 
situations where the constant rule, power rule, exponential rule, and logarithmic differentiation 
are appropriate.  

 
Theoretical Framework 

We use both APOS theory (Dubinsky, 1991) and Piaget and Garcia’s (1989) triad of schema 
development to analyze the mental constructions necessary to address problems like the one 
above. APOS theory is an extension of Piaget’s work with reflective abstraction in which student 
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concepts are categorized as Actions, Processes, Objects, or Schemas. An action is an external 
transformation of objects (Asiala, et al., 1996); for example, a student with an action concept of 
the derivative could directly apply the power rule to find the derivative of ! ! = !!!. A process 
is an interiorized action; for example, a student with a process conception of the derivative could 
find the derivative of ! ! = !! + 2 ! by expanding the binomial and then taking the derivative 
by using the power rule or by applying the chain rule and power rule. An object is an 
encapsulated process; for example, a student can think about the result of applying the power 
rule to an appropriate, arbitrary function as producing another function, not just as a series of 
steps to find a solution.  A schema coordinates a student’s objects and processes; for example, a 
student could recognize that finding the derivative of ! ! = !! + 2 ! could be accomplished by 
expanding the binomial and then taking the derivative by using the power rule and could be 
accomplished by applying the chain rule and power rule, but then decide which was simpler and 
differentiate accordingly. 

Researchers such as Clark et al. (1997) have found categorization using APOS theory 
difficult in cases where students will be at different levels of abstraction for different elements of 
study: action concepts of some composite functions and process for others when studying the 
chain rule. In these cases, the triad of schema development can help look in more detail at how 
schemas develop (Dubinsky & McDonald, 2001). Three stages, Intra, Inter, and Trans, describe 
the development and coherence of connections made within a student’s schema. At the Intra 
stage, a student focuses on individual objects rather than looking for connections between them. 
A student at the Inter stage recognizes some relationships between different actions, processes, 
objects, and schemas, but cannot explicitly connect all of the relationships. A student at the Trans 
stage has created a coherent structure that connects appropriate relationships and recognizes what 
is and is not within the scope of a schema.  

 
Preliminary Genetic Decomposition 

Students with only an action conception of function need to substitute specific values into a 
function and receive outputs to make sense of a function. Students with a process conception of 
function recognize that a function receives inputs and gives outputs without explicitly needing 
values with which to calculate, but still consider a function in terms of a dynamic activity (Arnon 
et al., 2014). A student with an object conception of function recognizes the set of outputs of a 
function as an entity, recognizes the relationship of the inputs to the outputs, and can distinguish 
between different types of functions. We hypothesize that an object conception is necessary 
when differentiating FFPs in order to distinguish between types of functions and choose 
applicable differentiation rules and techniques.  

 An action conception of logarithms requires logarithms to be calculated with specific values 
to have any meaning. At the process level, students can recognize logarithms are functions that 
obey specific properties and use those properties of logarithms appropriately because they 
recognize the process that has been applied to compute solutions. For many students, it takes a 
long time to attain a process understanding of logarithms, as they tend to overgeneralize 
algebraic rules as they “factor out” logarithms (i.e., ln ! + ln ! = ln(! + !)) or “cancel” 
logarithms (i.e., !"!!"! = !

!
!), (Liang and Wood, 2005). This process knowledge is necessary for 

logarithmic differentiation because complex equations involving the chain rule, such as 
! ! = ! (!! + 2)!!!, require awareness of what can and cannot be separated using logarithmic 
properties. 
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A differentiation scheme at any level of development, from action conception to full schema 
development, includes many subschemes including a graphing scheme and separate schemes for 
determining derivatives according to different differentiation rules. In order to address finding 
the derivative of an FFP, all differentiation rules must be at least at a process level for derivatives 
requiring more than one rule to be coordinated in a new process, much as Maharaj’s 2013 study 
concluded. However, each differentiation rule need not be viewed as a static object, because 
coordinating the rules and completing the procedure for finding the derivative could be viewed 
as a few more steps in a dynamic process.  

Finally, students must develop a logarithmic differentiation scheme as a subscheme of their 
differentiation schemes. The logarithmic differentiation scheme coordinates their function 
scheme, logarithm scheme, and various differentiation rule subschemes in order to determine a 
derivative of an FFP when the functions in both the base and exponent are non-constant. Because 
this scheme must coordinate so many other schemes, decomposing students’ mental 
constructions with the triad of schema development is useful.   

Students at the Intra level of logarithmic differentiation would struggle with coordinating the 
constituent schemes described above, either because they had not developed all of them to a 
sufficient degree or because they would not recognize that their other differentiation schemes 
could not be applied to a situation. For example, students may not recall their logarithmic 
properties and therefore take the natural logarithm of the equation, but then use the power rule to 
differentiate the resulting logarithm rather than applying properties of logarithms, which was the 
point of performing logarithmic differentiation (i.e. ! = !!! !yields ln ! = ln !!, but then the 
student incorrectly concludes !!

!"
!" = !

!!!!
!! ). Alternatively, students might be able to perform the 

steps of logarithmic differentiation but would need to be told to apply it. Another possibility is 
that they might indiscriminately perform the process to find the derivative of any function, 
whether useful or not (i.e. determining the derivative of ! = sin!! ! through logarithmic 
differentiation because it appears to contain a power).  

Students at the Inter level would have organized the constituent differentiation rule 
subschemes sufficiently to recognize which functions require logarithmic differentiation. 
However, they would not recognize why logarithmic differentiation works or why functions with 
constant base and non-constant power and functions with non-constant base and constant power 
require different differentiation rules or why logarithmic differentiation might be applied to 
equations like!! ! = !! sin 2!3 cos 3!2 + 2 . 

Students at the Trans level would recognize that logarithmic differentiation is useful because 
it allows previously inaccessible functions to be transformed into functions that can be addressed 
with other differentiation rules. A secondary use of logarithmic differentiation, simplifying 
functions requiring multi-part product rule application like ! ! = !! sin 2!! cos 3!! + 2 , 
would also be assimilated at this time, though a student may not choose to use logarithmic 
differentiation in this way. Moreover, students might recognize that changing the position of the 
constant in FFP situations (i.e. ! = !! versus ! = !!) alters the set of outputs of the function, so 
it also alters the rate of change of the function.  

 
Methods 

The participants for this study were two entering freshmen taking a differential calculus 
course in a six-week summer session. Both students had previously seen differential calculus in 

20th Annual Conference on Research in Undergraduate Mathematics Education 141420th Annual Conference on Research in Undergraduate Mathematics Education 1414



high school, participant A through AP Calculus AB and participant B through a pre-calculus 
course that also included calculus topics. Participants were recruited from the same section.  

Each participant engaged in three semi-structured interviews (Fylan, 2005) lasting 30-50 
minutes. The interview questions are listed in Figure 1. The first interview occurred after both 
students had been taught how to find derivatives of constants, power functions, !!, and to use the 
product, quotient, and chain rules. The second interview occurred after students had been taught 
logarithmic differentiation. The last interview occurred within a day of the final exam for the 
course, approximately three weeks after the second interview. The interviews were video-
recorded and participants’ written work was collected. To analyze the data, participants’ 
interviews were examined for evidence of the construction of processes, objects, and schemas 
relevant to developing a schema for logarithmic differentiation. 

Interview 1 Interview 2 Interview 3 
! ! = !!! + 3! ! ! = !5 sin(!!) + !!! Sketch'the'graph'of'the'derivative'of'the'given'

function'(which'was'! ! = 2.82! + 1.37). ! ! = !4!! − 2!! ! ! = !ln!(2!! − 1) 
! ! = !!! ! ! = !4!! − cos! ! Sketch'the'graph'of'the'derivative'of'the'given'

function'(! ! = 2.9 ! + 2.6 ! − 2.1). ! ! = ! !! + 1 ! ! ! = !!! 

! ! = !7!
!!

!!  ! ! = ! cos !!  
Sketch'the'graph'of'the'derivative'of'the'given'

function'(! ! = !!! + 2). 
! ! = !!! Sketch'the'graph'of'the'derivative'of'the'given'

function'(! ! = 3!! + 2!! + 1). ! ! = !!!! ! ! = !! sin 2!! cos 3!! + 2  ! ! = !!!! Sketch'the'graph'of'! ! = !!'and'connect'to'the'
derivative'of'the'function.'(The'derivative'is'

!! ! = 1 + ln ! !! .) ! ! = ! (!! + 2)!!! ' ! ! = (!! + 2)!!!  

! ! = (!! + 4) sin !' ! ! = ! sin!! ! !!! ! + !!.! Differentiate:'! ! = !!! + 2! + !! + !!/! 
Figure 1: Interview questions 

 
Results 

Both participants demonstrated at least an object conception of function; they could fluently 
distinguish between constant, !!, and !! forms when asked to identify what type of function 
each was.  Participant A was also able to identify graphs of quadratic and cubic polynomials and 
exponential functions, though Participant B struggled to identify the graph of an exponential 
function. Additionally, when Participant A was asked to find the derivative of ! ! = !!! in the 
first interview, before learning logarithmic differentiation, he noted similarities to ! ! = !!!, but 
also noted the base !, “was not a constant, or a number. It’s just weird.”  

Participant B displayed a process conception of logarithms. He applied logarithm properties 
appropriately in all but one problem and actively avoided the error he had made in the second 
interview in the last interview. Specifically, in the second interview he chose to use logarithmic 
differentiation on ! ! = !4!! − cos! !, which led him to say that ln ! = 2! ln 4 − 3 ln (cos !). 
However, in the last interview, he recognized directly applying logarithmic differentiation to 
! ! = !!! + 2! + !! + !!/! “wouldn’t help because it’s not multiply or divide; it’s the sum. 
They are different [functions] so that’s not going to work.” 

Participant A was less comfortable with the use of logarithms, displaying process level 
conceptions intermittently.  In interview 2, when asked to differentiate ! ! = !ln!(2!! − 1), he 
questioned aloud whether or not ! ! = ln 2!! − 1 = ln 2!! − ln!(1). When asked if he could 
determine if this was true or not, the only method he could determine was to compare their 
derivatives. While this method worked, he could not construct an argument based on properties 
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of exponents. In interview 3, when asked to differentiate ! ! = !!! + 2! + !! + !!/!, he took the 
natural logarithm of both sides, but wrote each piece separately as ln ! = ln !! + ! ln 2 + 2 ln ! +
!
! ln !. While he knew some procedures for working with logarithms, he did not display 
understanding of why the procedures worked.  

Both participants had full schema conception for all of their differentiation rule subschemas. 
They were both very comfortable with differentiating using the product, quotient, chain, and 
basic differentiation rules. In many instances, they demonstrated multiple ways of approaching 
problems, including recognizing the derivative of ! ! = !! + 1 ! could be found by using the 
chain rule directly or by expanding the binomial and then applying the power rule.  

Bringing together these constituent subschemas, Participant A had an Inter stage and 
Participant B had a Trans stage of logarithmic differentiation schema development. By the end of 
the course, neither participant tried to apply his logarithmic differentiation schema to functions 
where it was not helpful (like ! ! = ! sin!! ! !!! ! + !!.!) and both recognized when it was 
necessary (! ! = !!!) or helpful (! ! = !! sin 2!! cos 3!! + 2 ). However, in interview 3, 
Participant A could not successfully differentiate ! ! = !!! + 2! + !! + !!/! because his 
logarithm schema was not sufficiently developed, whereas Participant B could and realized why 
his previous “factoring” of the logarithm was inaccurate.  

 
Discussion 

Because both participants struggled at times to process how a logarithm works and what 
properties it possesses, having a process conception of logarithms does appear to be necessary to 
address logarithmic differentiation problems. Despite expecting development of a Trans stage 
schema for logarithmic differentiation to be necessary for students to consider apply logarithmic 
differentiation to three-part product rule situations, Participant A, who only attained Inter stage, 
applied this ably. Thus we revise the genetic decomposition, claiming students recognize all 
possible opportunities to use logarithmic differentiation at the Inter stage, even if they do not 
understand exactly why it works.  

The present genetic decomposition of a logarithmic differentiation schema requires an object 
level conception of function and a process level conception of logarithms and each 
differentiation rule. A student’s logarithmic differentiation schema then coordinates these 
subschemas. The level to which a student is able to coordinate these subschemas is characterized 
as being at the Intra level if the student cannot coordinate them and does not realize when 
logarithmic differentiation should be performed, at the Inter level if the student recognizes when 
to apply logarithmic differentiation but does not understand why, and at the Trans level if the 
student recognizes the underlying structure of the functions and can therefore answer why 
logarithmic differentiation should be used.  

By describing the mental constructions necessary to perform and know when to apply 
logarithmic differentiation through APOS theory and the triad of schema development, 
instructors may be better equipped to teach in a manner that encourages the development of 
students’ mental constructions. Specifically, encouraging students to distinguish between 
different types of functions may assist students in strengthening their function schemas and 
differentiation rule schemas. This will then enable them to construct a logarithmic differentiation 
schema and a richer understanding of calculus. 
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Some mathematics education publications highlight the importance of fostering students’ 
mathematical creativity in the undergraduate classroom. However, not many describe explicit 
instructional methodologies to accomplish this task. The authors attempted to address this gap 
using a formative assessment tool named the Creativity-in-Progress Rubric (CPR) on Proving. 
This tool was developed to encourage students to engage in practices that research studies, 
mathematicians, and students themselves suggest may promote creativity in processes of 
proving. Three instructors in different institutions used a variety of tasks, assignments, and in-
class discussions in their proof-based courses centered around the CPR on Proving to explicitly 
discuss and foster mathematical creativity. These instructors’ actions are explored using 
Levenson’s four teacher roles of fostering mathematical creativity. In this report, preliminary 
results indicate that each of the three instructors assumed at least three of the four roles. 

Keywords: Mathematical creativity, teaching practices, proof-based courses 

Mathematical creativity has been emphasized by the MAA's Committee on the 
Undergraduate Program in Mathematics in its latest guidelines (Schumacher & Siegel, 2015). 
The guidelines state that “[a] successful major offers a program of courses to gradually and 
intentionally leads students from basic to advanced levels of critical and analytical thinking, 
while encouraging creativity and excitement about mathematics” (p. 9). Under Cognitive Goals 
and Recommendations, the guidelines also state “major programs should include activities 
designed to promote students' progress in learning to approach mathematical problems with 
curiosity and creativity and persist in the face of difficulties” (p. 10). In support, Nadjafikhah, 
Yaftian, and Bakhshalizadeh (2012) claim that one of the goals of any educational system should 
be to foster mathematical creativity. Mathematical creativity is discussed as an important aspect 
in undergraduate mathematics (e.g., Zazkis & Holton, 2009), but pedagogical actions that 
support its explicit fostering in classrooms are rarely mentioned or studied. Ervynck (1991) 
stated, “[W]e therefore see mathematical creativity, so totally neglected in current undergraduate 
mathematics courses, as a worthy focus of more attention in the teaching of advanced 
mathematics in the future” (p. 53). In this project, the authors attempt to explore this issue further 
by attempting to address the research question: What teacher actions or practices in the proof-
based undergraduate classroom might foster students’ perceptions of mathematical creativity? 

To explicate mathematical creativity with undergraduate students, three instructors from 
different universities in the U.S. implemented various practices such as designing assignments, 
creating tasks, and structuring class discussions in their courses. One common feature of these 
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practices was that all three instructors centered their implementations around a tool created to 
enhance research-based actions for mathematical creativity in the proving process, the 
Creativity-in-Progress Rubric (CPR) on Proving (Savic et al., 2016; Karakok et al., 2016). This 
rubric was developed considering certain theoretical aspects of mathematical creativity, which is 
discussed in the following section. 

 
Theoretical Perspective and Background Literature 

There are over 100 different definitions of mathematical creativity (Mann, 2006) and 
multiple theoretical perspectives (Kozbelt, Beghetto, & Runco, 2010). In developing the CPR on 
Proving, the authors considered mathematical creativity as a process that involves different 
modes of thinking (Balka, 1974) rather than looking at the creative end-product (Runco & 
Jaeger, 2012). Mathematical creativity in the classroom often considers a relative perspective, 
similar to Liljedahl and Sriraman's (2006) description of mathematical creativity at the K-12 
level: a process of offering new solutions or insights that are unexpected for the student, with 
respect to his/her mathematics background or the problems s/he has seen before. This particular 
definition acknowledges students' potential for creativity (both in process and product) in the 
mathematics classroom. Often literature cites this as “little-c” creativity (Beghetto, Kaufman, & 
Baxter, 2011), as opposed to “big-C” or an absolute perspective (Feldman, Csikszentmihalyi, & 
Gardner, 1994). Finally, the authors focus on creativity in the domain of mathematics, instead of 
exploring creative endeavors in general (Torrance, 1966). Many researchers (e.g., Baer, 1998; 
Milgram, Livne, Kaufman, & Baer, 2005) also stressed this distinction and the importance of 
domain-specific creativity: “creativity is not only domain-specific, but that it is necessary to 
define specific ability differences within domains” (Plucker & Zabelina, 2009, p. 6). 

Creativity-in-Progress Rubric (CPR) on Proving 
The CPR on Proving was rigorously constructed through triangulating research-based rubrics 

(Rhodes, 2008; Leikin, 2009), existing theoretical frameworks and related studies (Silver, 1997), 
conducting studies exploring mathematicians’ and students’ views on mathematical creativity 
(Tang et al., 2015), and investigating students' proving attempts (Savic et al., 2016). 

There are two categories of actions that may help a student foster mathematical creativity: 
Making Connections and Taking Risks1. Making Connections is defined as the ability to connect 
the proving task with definitions, theorems, multiple representations, or examples from the 
current course that a student is in or possible prior course experiences. Taking Risks is defined as 
the ability to actively attempt a proof, demonstrate flexibility in using multiple approaches or 
techniques, posing questions about reasoning within the attempts, and evaluating those attempts. 
Making connections has three subcategories (between definitions/theorems, between examples, 
and between representations), and Taking Risks has four subcategories (tools and tricks, 
flexibility, posing questions, and evaluation of a proof attempt) that are designed to have students 
explicitly think about ways to develop aspects of their own mathematically creative processes.  

Teaching for Development of Creativity 
The literature for teachers’ actions to develop mathematical creativity at the undergraduate 

level is scarce. Zazkis and Holton (2009) cite a few implicit instances or strategies for 
encouraging mathematical creativity, including learner-generated examples (Watson & Mason, 
                                                
1 For a final version of the CPR on Proving, see Karakok et al. (2016). 
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2005) and counterexamples (Koichu, 2008), multiple solutions/proofs (Leikin, 2007), and 
changing parameters of a mathematical situation (Brown & Walter, 1983). From the K-12 
literature, there are quite a number of articles of fostering mathematical creativity through 
problem posing (e.g., Silver, 1997; Knuth, 2002) or open-ended problems (e.g., Kwon, Park, & 
Park, 2006). However, there is still a need to understand what teacher actions in the classroom 
could foster mathematical creativity, especially in undergraduate mathematics courses.  

 
Methods 

Participants 
Three different instructors, Drs. Eme, X and Omar, from three different institutions (two 

located in Western US and one located in Northeastern US) participated in this study. Each 
instructor used the CPR in Proving; Drs. Eme and X removed the word “creativity” from the 
rubric in an attempt to minimize the explicit influence of the rubric on students’ development of 
ideas on mathematical creativity. They also both implemented IBL teaching pedagogies, whereas 
Dr. Omar also included lectures. Dr. Eme introduced the CPR on Proving mid-semester in her 
Transition to Advanced Mathematics course in Spring 2016. Dr. X’s implementation was in a 
seminar on Elementary Number Theory during Fall 2015 where he introduced the rubric in the 
third week. Dr. Omar implemented the CPR in his Combinatorics course in Spring 2016 and 
used it in Portfolio Assignments.  

Data 
Prior to the start of the semester, all instructors discussed their course goals with the 

researchers and shared their CPR on Proving implementation plans with the researchers. Drs. 
Eme and X were involved in the development of the CPR on Proving where as Dr. Omar 
approached the authors to utilize the CPR on Proving in a course that he was designing. All three 
instructors met with the authors regularly to discuss the process of their utilization of the CPR on 
Proving throughout the semester. All three instructors collected their students’ work and 
utilization of the CPR on tasks. Dr. Eme also audio-recorded in-class sessions. Students in the 
three courses were invited to participate in interviews at the end of the semester. In this 
preliminary report, we share our analysis of notes from instructors’ self-reported actions in class 
and implementation plans, along with recorded implementations of the CPR in their courses.  

Three instructors had different ways to introduce the idea of mathematical creativity and 
implementation of the CPR on Proving. Two months into the course, Dr. Eme started a class 
period showing the class their own exam solutions: “...That's the exam 2 ‘solutions’ and I say 
solutions in quotes because they're not all 100% correct, okay, but it doesn't matter. You know 
there are still really good ideas in there and that's what I want you to see.” Dr. Eme had students 
practice using the CPR on a former student’s scratch work in the same class period. The scratch 
work was for theorem: “If 3|!, then ! is a trapezoidal number (a number that can be decomposed 
into a sum of two or more consecutive integers)” The discussion below ensues: 

1 Dr. Eme: What did you guys get for the first one? 
2 Stephanie: Advancing 
3 Dr. Eme: Advancing? Why?   
4 Stephanie: Because they were able to utilize multiple theorems and 
5  definitions…Definition Q, the consecutive integers, Definition test 3.  
6 Dr. Eme: Good. Good. Other people agree? Disagree? 
7 Tony: Agree. 
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8 Dr. Eme: Agree?  Ok. How about “between representations?” 
… 
9 Cargo: That “The Between Representations” still confuses because I’m not sure exactly 
10  what  it means? Is it supposed to be like using the notation or what? 
11 Dr. Eme: Yeah, that's a good question. Does anybody have an answer? 
12 Stephanie: I would say it’s anyway you can rewrite it, or draw a picture, or anything 
13 you can do to represent that same concept but in a different way. 
14 Cargo: OK. 
15 Dr. Eme: That helps? 
16 Cargo: Yeah. 
17 Penny: That “concept” being.... the if 3|!, let be trapezoidal number or any like any 
18  definition? 

At another institution, Dr. X asked the students to use the CPR on five occasions throughout 
the semester, during homework as an evaluative tool, and during the final exam as extra credit. 
For example, in a homework problem, a student provided some scratch-work in his proof, 
bracketed the scratch-work, and wrote the reason why this scratch-work was not leading to a 
correct proof (in the student’s words, “a mistake”). The student then promptly proved the 
theorem, utilizing the evaluation subcategory of the CPR on Proving. 

Finally, Dr. Omar utilized the rubric while handing out problems labelled as “portfolio 
problems,” which are, quoting from the syllabus, “much more involved, and the intention is to 
allow freedom to roam with it in any direction you wish.” The students were required to use the 
rubric in a minimum three-page write up summarizing the proving processes they used. 
Unbeknownst to the students, many of these portfolio problems were open in mathematics, and 
the one portfolio problem had the same weight as the other three problems in the assignment 
which Dr. Omar viewed as “exercises”. Dr. Omar stated that these three additional problems 
could be done by directly implementing ideas from class lectures or discussions. 

Analytical Framework 
To explore these three instructors’ teaching actions, the authors adapted the work of 

Levenson (2011, 2013), who investigated fifth- and sixth-grade classes with the intention of 
explicating collective creativity and its effects on an individual’s mathematical creativity. She 
described four teacher roles in fostering mathematical creativity:  

1. choosing appropriate tasks, 
2. fostering a safe environment where students can challenge norms without fear of 

repercussion, 
3. playing the role of expert participant by providing a breakdown of the mathematics 

behind a process, and  
4. setting the pace, allowing for incubation periods. (Levenson, 2013, p. 273) 
The authors conducted preliminary analysis on instructors’ actions during implementation of 

the CPR on Proving in their courses using these four roles. In particular, this preliminary analysis 
focused on how the CPR on Proving was utilized to foster mathematical creativity in their 
classroom, and using student interview data to support that fostering occurred. 

 
Preliminary Analysis Results 

The authors observed that all three instructors reported utilizing tasks that would encourage 
the mathematical creativity (property 1). For example, all three instructors choose tasks that were 
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not all “Type 1” tasks, i.e. “proofs…can depend on a previous result in the notes” (Selden & 
Selden, 2013, p. 320), but rather either “Type 2:” “require formulating and proving a lemma not 
in the notes, but one that is relatively easy to notice, formulate, and prove” (p. 320) or “Type 3,” 
which is hard to notice a lemma needed. Moreover, Dr. Omar assigned open-ended tasks, and 
Drs. Eme and X had their students analyze solutions or proof processes of others as part of 
classroom discussions, which we view as an action related to choosing appropriate tasks since 
students were required to think analytically about both a solution and proving process.   

The authors noticed from Dr. Eme’s classroom data that this instructor explicitly tried to 
foster a safe environment (property 2). As seen in the above episode, she carefully stated that the 
“solutions” the instructor was sharing out were not correct, but contained ideas that were “still 
really good.” This teacher action challenged the common norm of “only correct solutions should 
or would be valued” in this course. In addition, this action may also allow the students to 
challenge norms themselves without repercussion, since their instructor modeled such an action. 

In the dialogue above, the students looked at another student’s proof of the trapezoidal 
number theorem. The authors claim that both the theorem and the evaluation of a student’s proof 
using the rubric are two examples of choosing appropriate tasks (property 1) for fostering 
students’ perceptions of creativity. Also, Dr. Eme is setting the pace to allow for incubation 
periods (property 4) in the course by letting students wrestle with how to interpret the CPR on 
Proving by analyzing the student’s scratch work (see lines 8-18).  

Property 4 is more apparent in the “appropriate tasks” that Dr. Omar assigned during class, 
since he knew those tasks were open, and therefore necessitated incubation time. The tasks 
themselves are a form of property 1, since they had the necessary elements for mathematical 
creativity to occur (through the lens of CPR). That is not to say that mathematical creativity can 
only occur in open math problems; tasks that both Dr. Eme and X provided can also elicit 
relative mathematical creativity. 

Finally, each of the four properties of teachers fostering mathematical creativity (Levenson, 
2013), seemed to appear in different forms in these instructors’ implementations of the CPR on 
Proving. For example, even though Dr. Omar did not have regular in-class discussions about the 
CPR on Proving in class, his approach to assignments encouraged the students to experience his 
“role of expert participant” (property 3).   

 
Discussion/Conclusion 

Creativity in mathematics is important for both mathematicians and students' development of 
mathematical actions. Three instructors of this study used the CPR on Proving differently. 
However, all three had a shared goal: a recognition or awareness of students' own proving 
processes and the actions that could lead to the development and enhancement of students’ 
perceptions of mathematical creativity. Drs. Eme and X had explicit discussions related to rubric 
categories, which are important to “increase student learning, motivate students, support teachers 
in understanding and assessing student thinking, shift the mathematical authority from teacher 
(or textbook) to community” (Cirillo, 2013, p. 1). Discussions can lead to student reflections of 
their own work. Dr. Omar asked students to utilize the CPR on Proving to reflect on their 
portfolio problem assignments. The CPR on Proving seemed to facilitate the explicit valuing of 
such meta-cognitive practice. As Katz and Stupel (2015) stated, “Creative actions might benefit 
from meta-cognitive skills and vice versa, regarding the knowledge of one’s own cognition and 
the regulation of the creative process” (p. 69). 

 

20th Annual Conference on Research in Undergraduate Mathematics Education 142220th Annual Conference on Research in Undergraduate Mathematics Education 1422



References 

Baer, J. (1998). The case for domain specificity of creativity. Creativity Research Journal, 11(2), 
173-177. 

Balka, D. S. (1974). Creative ability in mathematics. Arithmetic Teacher, 21(7), 633-638. 
Beghetto, R. A., Kaufman, J. C., & Baxter, J. (2011). Answering the unexpected questions: 

Exploring the relationship between students' creative self-efficacy and teacher ratings of 
creativity. Psychology of Aesthetics, Creativity, and the Arts, 5(4), 342-350. 

Brown, S., & Walter, M. (1993). The art of problem posing. Philadelphia, PA, USA: Franklin 
Press. 

Cirillo, M. (2013). What does the research say the benefits of discussion in mathematics class 
are? NCTM Discussion Research Brief. Retrieved from: 
http://www.blockfest.org/research-brief-19-benefit-of-discussion.pdf 

Ervynck, G. (1991). Mathematical creativity. In D. Tall, Advanced Mathematical Thinking (pp. 
42-52). New York, NY, USA: Kluwer Academic Publishers. 

Feldman, D. H., Csikszentmihalyi, M., & Gardner, H. (1994). Changing the world: A framework 
for the study of creativity. Praeger Publishers/Greenwood Publishing Group. 

Karakok, G., Savic, M., Tang, G., El Turkey, H., Plaxco, D., & Naccarato, E. (2016, Feb/Mar). 
A rubric for creativity in writing proofs. MAA FOCUS, 36(1), pp. 42-43. 

Katz, S., & Stupel, M. (2015). Promoting creativity and self-efficacy of elementary students 
through a collaborative research task in mathematics: A case study. Journal of 
Curriculum and Teaching, 4(1), 68-82. 

Knuth, E. (2002). Fostering mathematical curiosity. The Mathematics Teacher, 95(2), 126-130. 
Koichu, B. (2008). If not, what yes? International Journal of Mathematics Education in Science 

and Technology, 39(4), 443-454. 
Kozbelt, A., Beghetto, R. A., & Runco, M. A. (2010). Theories of creativity. In The Cambridge 

Handbook of Creativity (pp. 20-47). New York, NY, USA: Cambridge University Press. 
Kwon, O. N., Park, J. H., & Park, J. S. (2006). Cultivating divergent thinking in mathematics 

through an open-ended approach. Asia Pacific Education Review, 7(1), 51-61. 
Leikin, R. (2007). Habits of mind associated with advanced mathematical thinking and solution 

spaces of mathematical tasks. The Fifth Conference of the European Society for 
Researchers in Mathematics Education - CERME 5, (pp. 2330-2339). 

Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin, 
A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted 
students (pp. 129-145). Haifa, Israel: Sense Publishers. 

Levenson, E. (2011). Exploring collective mathematical creativity in elementary school. The 
Journal of Creative Behavior , 45(3), 215-234. 

Levenson, E. (2013). Tasks that may occasion mathematical creativity: Teachers’ choices. 
Journal of Mathematics Teacher Education, 16(4), 269-291. 

Liljedahl, P., & Sriraman, B. (2006). Musings on mathematical creativity. For the Learning of 
Mathematics, 17-19. 

Mann, E. (2006). Creativity: The essence of mathematics. Journal for the Education of the 
Gifted, 30(2), 236-260. 

Milgram, R. M., Livne, N. L., Kaufman, J. C., & Baer, J. (2005). Creativity as a general and a 
domain-specific ability: The domain of mathematics as an exemplar. In J. C. Kaufman, & 
J. Baer (Eds.), Creativity Across Domains: Faces of the Muse (pp. 187-204). Psychology 
Press. 

20th Annual Conference on Research in Undergraduate Mathematics Education 142320th Annual Conference on Research in Undergraduate Mathematics Education 1423



Nadjafikhah, M., Yaftianb, N., & Bakhshalizadehc, S. (2012). Mathematical creativity: Some 
definitions and characteristics. Procedia - Social and Behavioral Sciences, 31, 285-291. 

Plucker, J., & Zabelina, D. (2009). Creativity and interdisciplinarity: One creativity or many 
creativities? ZDM, 41, 5-11. 

Rhodes, T. (2010). Assessing Outcomes and Improving Achievement: Tips and Tools for Using 
Rubrics. Washington, DC: Association of American Colleges and Universities. 

Runco, M. A., & Jaeger, G. G. (2012). The standard definition of creativity. Creativity Research 
Journal, 24(1), 92-96. 

Savic, M., Karakok, G., Tang, G., El Turkey, H., & Naccarato, E. (2016). Formative Assessment 
of Creativity in Undergraduate Mathematics: Using a Creativity-in-Progress Rubric 
(CPR) on Proving. In R. Leikin, & B. Sriraman, Creativity and Giftedness: 
Interdisciplinary Perspectives from Mathematics and Beyond (pp. 23-46). Germany: 
Springer. 

Schumacher, C. S., & Siegel, M. J. (2015). 2015 CUPM Curriculum Guide to Majors in the 
Mathematical Sciences. Washington, DC: Mathematical Association of America. 

Selden, A., & Selden, J. (2013). Proof and problem solving at the university level. The 
Mathematics Enthusiast, 10(1&2), 303-334. 

Silver, E. (1997). Fostering creativity through instruction rich in mathematical problem solving 
and posing. ZDM Mathematical Education, 3, 75-80. 

Tang, G., El Turkey, H., Savic, M., & Karakok, G. (2015). Exploration of undergraduate 
students’ and mathematicians’ perspectives on creativity. In T. Fukawa-Connelly, N. 
Engelke Infante, K. Keene, & M. Zandieh (Ed.), Proceedings of the 18th Annual 
Conference on Research in Undergraduate Mathematics Education (pp. 993-1000). 
Pittsburgh, PA: Mathematical Association of America. 

Torrance, E. P. (1988). The nature of creativity as manifest in its testing. In R. J. Sterberg, The 
nature of creativity: Contemporary psychological perspectives (pp. 43-75). New York, 
NY: Cambridge University Press. 

Watson, A., & Mason, J. (2005). Mathematics as a constructive activity: Learners generating 
examples. Mahwah, NJ, USA: Lawrence Erlbaum Associates. 

Zazkis, R., & Holton, D. (2009). Snapshots of creativity in undergraduate mathematics 
education. In R. Leikin, A. Berman, & B. Koichu, Creativity in mathematics and the 
education of gifted students (pp. 345-365). Rotterdam, the Netherlands: Sense. 

 
 

20th Annual Conference on Research in Undergraduate Mathematics Education 142420th Annual Conference on Research in Undergraduate Mathematics Education 1424



 

 

The Saga of Alice Continues: Her Progress With Proof Frameworks Evaporates When She 
Encounters Unfamiliar Concepts, but Eventually Returns 

Ahmed Benkhalti      Annie Selden      John Selden 
New Mexico State University 

This case study continues the story of the development of Alice’s proof-writing skills into the 
second semester. We analyzed the videotapes of her one-on-one sessions working through our 
inquiry-based transition-to-proof course notes. Our theoretical perspective informed our work 
and includes the view that proof construction is a sequence of mental, as well as physical, 
actions. It also includes the use of proof frameworks as a means of initiating a written proof. 
Previously, we documented Alice’s early reluctance to use proof frameworks, followed by her 
subsequent seeming acceptance of, and proficiency with, them by the end of the first semester 
(Benkhalti, Selden, & Selden, 2016). However, upon first encountering semigroups, with which 
she had no prior experience, during the second semester, her proof writing deteriorated, as she 
coped with understanding the new concepts. But later, she began using proof frameworks again 
and seemed to regain a sense of self-efficacy.   

Keywords: Transition-to-proof, Proof construction, Proof frameworks, Coping, Self-efficacy 

This case study reports how Alice, in one-on-one sessions, after adopting the technique of 
proof frameworks (Selden, Benkhalti, & Selden, 2014) and completing several real analysis 
proofs, apparently hit a “brick wall” when she encountered a new concept, semigroups, in the 
second semester. However, after some time spent acquainting herself with semigroup concepts, 
such as ideals, idempotents, and homomorphisms, she “regained her footing” and started once 
again to use the technique of proof frameworks. Amongst other things, this case study illustrates 
the fragility of newly acquired proving skills, in the context of the acquisition of new 
mathematical concepts. It appears that Alice’s proof-writing knowledge was initially, but not 
permanently, context bound. 

Theoretical Perspective 

 We consider proof construction to be a sequence of mental and physical actions, some of 
which do not appear in the final written proof text. Such a sequence of actions is related to, and 
extends, what has been called a “possible construction path” for a proof (Selden & Selden, 
2009). For example, suppose that in a partly completed proof, there is an “or” in the hypothesis 
of a statement yet to be proved: “If A or B, then C.” Here, the situation is having to prove this 
statement. The interpretation is realizing the need to prove C by cases. The action is constructing 
two independent sub-proofs; one in which one supposes A and proves C, the other in which one 
supposes B and proves C. 

When several similar situations in proof construction are followed by similar actions, an 
automated link may be established between such situations and actions. Subsequently, such a 
situation can be followed by the corresponding action, without the need for any conscious 
processing between the two (Selden, McKee, & Selden, 2010). When students are first learning 
proof construction, many actions, such as the construction of proof frameworks (Selden, 
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Benkhalti, & Selden, 2014; Selden & Selden, 1995), can become automated. A proof framework 
is determined by just the logical structure of the theorem statement and associated definitions. 
(For some examples, see Selden, Benkhalti, & Selden, 2014). 

Related Research 

Proof Frameworks 
The idea of proof frameworks was introduced by Selden and Selden (1995), who stated:  

By a proof framework we mean a representation of the “top-level” logical 
structure of a proof, which does not depend on detailed knowledge of the 
relevant mathematical concepts, but which is rich enough to allow the 
reconstruction of the statement to be proved or one equivalent to it. A written 
representation of a proof framework might be a sequence of statements, 
interspersed with blank spaces, with the potential for being expanded into a 
proof by additional argument. (p. 129). 

Selden and Selden (1995) went on to connect the ability to unpack the logical structure of 
mathematical statements with the ability to construct proof frameworks and with proof 
validation. They also pointed out that mental skills were involved (p. 132). The learning and 
mastering of such mental skills can involve much mental energy and considerable working 
memory. While Selden and Selden (1995) did not state this explicitly, in their sample validation 
in the Appendix, they did note that sometimes checking a sufficiently complex part of a proof 
might overload working memory and potentially lead to error. (p. 146).  

Working Memory  
  It has been said that the “two major components of our cognitive architecture that are 
critical to [thinking and] learning are long-term memory and working memory” (Kalyuga, 2014). 
Working memory makes cognition possible but has a limited capacity that varies across 
individuals. It is associated with the conscious processing of information within one’s focus of 
attention. However, working memory can only deal with several units, or chunks, of information 
at a time, especially when working with novel information (Cowan, 2001; Miller,1956). In 
contrast, long-term memory can be thought of as a learner-organized knowledge base that has 
essentially unlimited capacity and can be used to help alleviate the limited capacity of working 
memory (Ericsson & Kintsch, 1995). However, when working memory capacity is overloaded, 
errors and oversights are likely to occur.  

Coping with Mathematical Abstraction and Formality  
While the mathematics education research literature does not seem to have considered 

working memory overload during learning per se, there are a few studies of coping with 
abstractions. These could be reinterpreted as related to working memory overload causing 
confusion. For example, Hazzan (1999) investigated how Israeli freshman computer science 
students, taking their first course in abstract algebra in a “theorem-proof format”, coped by 
“reducing the level of abstraction”. Specifically, she found that they tended “to work on a lower 
level of abstraction than the one in which the concepts are introduced in class.” (p. 75).  
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Leron and Hazzan (1997) pointed out that students in mathematical problem-solving 
situations “often experience confusion and loss of meaning.” (p. 265), and that students attempt 
to make sense of the problem situation “in order to better cope with it.” (p. 267). While this 
coping perspective occurs at all levels, they stated that “the phenomena of confusion and loss of 
meaning are even more pronounced in college mathematics courses.” (p. 282). They also 
suggested that more work on the coping perspective in mathematics education is needed. Pinto 
and Tall (1999) also considered university students’ coping mechanisms when confronted with 
formal definitions and proofs in real analysis. However not many university level mathematics 
education studies have specifically considered students’ coping perspectives. 

Methodology: Conduct of the Study 

In the second semester, as in the first, we met regularly for individual 75-minute sessions 
with Alice, a mature working professional, who wanted to learn how to construct proofs. Alice 
followed the same course notes previously written for an inquiry-based course used with 
beginning mathematics graduate students. As previously reported (Benkhalti, Selden, & Selden, 
2016), Alice had a good undergraduate background in mathematics from some time ago and also 
had prior teaching experience. Further, she only worked on proofs, at her own pace, in front of us 
during the actual times we met. Because of this, we gained greater than normal insight into 
Alice’s mode of working and its development. Altogether, we met with Alice for 39 sessions.  

We met in a small seminar room with blackboards on three sides, and Alice constructed 
original proofs at the blackboard, eventually using the middle blackboard almost exclusively for 
her evolving proofs. We videotaped every session and took field notes on what Alice wrote on 
the three boards, along with her interactions with us. For this study, we reviewed the second 
semester videos and field notes several times, looking for signs of Alice’s progress. However, 
somewhat to our surprise, after continued progress with her proof writing when dealing with real 
analysis proofs, she seemed to hit a “brick wall” upon beginning the abstract algebra 
(semigroups) section of the notes. 

Alice’s Progression Through the Second Semester 

At the end of the first semester, we (Benkhalti, Selden, & Selden, 2016) left our 19th 
meeting with Alice, feeling that she was making great progress, both with writing proof 
frameworks and with the problem-centered parts of proofs, and was developing a sense of self-
efficacy (Bandura, 1994, 1995). She had just completed the proof of the theorem that the sum of 
continuous functions is continuous. This proof has a rather complicated proof framework that 
necessitates leaving three blanks spaces -- one for using the hypothesis appropriately, one for 
specifying a , and one for showing that the chosen  “works”, by showing the relevant 
distance is less than . 

Upon resuming in the second semester, Alice continued proving real analysis theorems, 
first attempting to prove that the product of two continuous functions, f and g, is continuous1 in 
our first three meetings (i.e., our 20th-22nd meetings). She set up the proof framework correctly 
and explored the situation in scratch work. During this proving process, Alice made some astute 

                                                           
1 Due to space limitations, we do not provide Alice’s proof.  
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observations, for example, having gotten to |fg(x) - fg(a)| = |f(x)g(x) - f(a)g(a)| ≤ |f(x)| |g(x) – g(a)| 
+ |g(a)| |f(x) – f(a)|, and having dealt with term involving |g(a)|, she noted that the former term 
was the “hard part” because |f(x)|, unlike |g(a)|, is not a constant. Somewhat later, Alice exhibited 
some self-monitoring, noting that she needed to move her sentence about the bound on |f(x)|, 
prior to setting  equal to the “minimum of [the] three” deltas she had found. She also noted, in 
the 22nd meeting, that it seemed “weird” to write the restrictions on |f(x) – f(a)| and |g(x) – g(a)| 
without immediately explaining why she had chosen the bounds  𝜀

2|g(𝑎)|
 and 𝜀

2𝑀𝑓
 , respectively, 

when applying the definition of continuity to f and g. Next, Alice proved polynomials are 
continuous with only a small amount of help from us. 

By our 25th meeting, Alice had completed the real analysis section of the notes, and was 
ready to begin the abstract algebra (semigroups) section that starts with the definitions of binary 
operation and semigroup, followed by requests for examples. She provided only the most 
obvious of examples, such as the integers under addition or multiplication, and when asked for 
something “stranger”, she said she could use the real numbers. When asked for another “strange” 
example “with no numbers at all”, she suggested union as the binary operation, and with help, 
wrote up the example of the power set of a set of three elements. Next, when it came to 
providing examples of semigroups, she suggested the natural numbers with subtraction, but had 
to be prodded to check associativity; for this she considered (3 - 7) - 2 versus 3 -  (7 - 2) and 
correctly inferred this was not a semigroup. To provide examples of left and right ideals, Alice 
needed to come up with a noncommutative semigroup, but she drew a blank. We suggested the 
semigroup of 2×2 real matrices under multiplication, and for an ideal, the subset of matrices of 
the form [𝑥 𝑦

0 0]. After some calculation, Alice concluded the subset is a right ideal, but not a left 
ideal.  

Alice continued considering examples for the first 35 minutes into the next (26th) 
meeting, after which she came to the first semigroup theorem to prove: “Let S be a semigroup. 
Let L be a left ideal of S and R be a right ideal of S. Then L ⋂ R ≠ ∅.” She first wrote the 
definitions of semigroup, left ideal, right ideal, and ideal on the left-hand board, as she had done 
many times before. Then she wrote the first-level framework on the middle board, after which 
she went to the right-hand board and began doing some scratch work, which included drawing a 
Venn diagram of two overlapping circles, L and R, with an arrow pointing to the intersection. 
She wrote in her scratch work “L ⋂ R = ∅” and “there exists an element a ∊ L ⋂ R”. It seemed 
that Alice was trying to clarify the theorem statement for herself, however, she had not yet 
attended to the second-level framework. We pointed this out. During the rest of her proving 
attempt, we seemed to need to remind Alice of relevant actions, such as considering what she 
knew about ideals (i.e., that they are nonempty), and hence, concluding that each of L and R 
contains an element, which she labeled l and r respectively, and using those, to try to “explore” 
to find an element in L ⋂ R, in order to conclude it was not empty. With our guidance, Alice 
finished the proof, but her sense of self-efficacy seemed shaken. Indeed, at the next (27th) 
meeting, Alice wanted to reprove the theorem before continuing. We now feel that she had been 
somewhat overwhelmed, or confused, by the new content, perhaps causing working memory 
overload. She had tried to cope as best she could by concentrating on the new concepts, while 
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“forgetting” her prior proof writing skills. Alice’s hesitant behavior continued for eight more 
sessions. 

Then, during the 35th meeting, Alice considered the theorem, “If S and T are semigroups 
and f: S→T is an onto homomorphism and I is an ideal of S, then f(I) is an ideal of T”. She wrote 
the definition of homomorphism on the left board, wrote “What I know” on the right board, 
constructed the first-level proof framework, unpacked the conclusion, wrote the second-level 
proof framework, and decided to do a two-part proof (for left and right ideal). She seemed to 
have regained “her footing”. At the next meeting, she finished the proof, with some help from us.  

Discussion 

Alice began the second semester with the construction of additional real analysis proofs 
and seemed to be making very considerable progress, both with writing proof frameworks and 
with the harder problem-centered parts of proofs. By the end of the real analysis section of the 
course notes, we felt that she had developed greatly in her proving ability and had developed a 
sense of self-efficacy (Bandura, 1994, 1995) about proving. However, the subsequent 
introduction of unfamiliar, abstract content in the form of several definitions and theorems about 
semigroups at the 25th meeting seemed to cause her confusion, and she constructed the most 
obvious examples somewhat hesitantly. Also, when asked to prove the first theorem about 
semigroups, she did not begin by producing a proof framework, as she had previously done with 
the real analysis proofs, but rather began writing what she knew or could find in the notes, on the 
right-hand blackboard. Her proof construction, while not top-down, seemed to consist of first 
trying to gather as many semigroup ideas as she could, followed by trying to arrange them into a 
final proof. We feel that concentrating on understanding the unfamiliar abstract content was 
Alice’s initial way of coping. It was not until the 35th meeting, almost at the end of the second 
semester, that Alice seemed to have regained her sense of self-efficacy, and she again 
constructed proofs using the technique of proof frameworks that she had learned and perfected 
previously.  

Implications 

 It seems that coping with newly introduced abstract concepts is not easy, even for 
someone as experienced as Alice. It also seems that one cannot expect, having learned the skill 
of constructing proof frameworks in more familiar settings, that this skill will be easily invoked 
while new abstract content is being learned, perhaps due to working memory overload. Amongst 
other things, this case study illustrates the fragility of recently acquired proving skills, in the 
context of the acquisition of new abstract mathematical concepts. It also suggests the difficulty 
due to such fragility can be overcome. Our own experiences as mathematicians suggests that one 
can (tacitly) learn not to be greatly disturbed by the introduction of several new abstract ideas. 
However, some school curricula avoid certain introductions of concepts, such as the Bourbaki 
definition of function, because they are considered too abstract (Tabach & Nachlieli, 2015). 
Further, as Hazzan (1999) found, students sometimes cope by “reducing the level of abstraction.” 
Yet Alice’s case suggests that, with time and effort, students can learn to cope with abstraction. 
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Studying Pre-Service Teachers’ Selection of Representations in a Technologically 
Enhanced Environment 

 
Robert Sigley  Muteb Alqahtani  Victoria Krupnik 

              Texas State University         SUNY Cortland          Rutgers University 

This paper reports the results of four groups of three pre-service teachers working on a task that 
had them investigate the fairness of dice. The teachers used an online collaborative environment 
to sample from six different dice and the environment provided them with various representations, 
which they used to support their arguments. All four groups preferred the frequency table over bar 
and pie charts representations. After working on the task, they evaluated the work of students on 
the same problem. They viewed students’ work that used other representations as not convincing 
regardless of the correctness of their solution and showed preference to the students only using 
one representation. Implications for pre-service teacher training in statistics and how to promote 
the use of multiple representations are discussed at the end. 

Keywords: statistics education, probability, representations, technology  

Statistics and probability are important to understand everyday phenomena. Technologies 
allow us to efficiently collect, organize, and present our data. Other technologies allow us to 
simulate phenomena and explore the likelihood of different events. Starting in early grades, 
students are encouraged to learn concepts of statistics and probability. The National Council of 
Teachers of Mathematics (NCTM) suggests that students in elementary grades learn how to 
collect and present some basic data and make decisions using them (NCTM, 2000). Similarly, 
the Common Core State Standards (CCSS) recommends that students starting from sixth grade to 
learn about the likelihood of events and to use simulations to generate frequencies of events 
(CCSS Initiative, 2010). This indicates that mathematics teachers in all levels need to acquire a 
deep understanding of statistic and probability in order to teach the topic effectively. Though 
groups such as NCTM have identified the importance of teachers preparing their students to be 
statistically literate, little is understood about teachers’ knowledge of the subject (Jones, 
Langrall, & Mooney, 2007). Externally provided visual representations such as bar graphs have 
been shown to aid in the development of student understanding by providing a model of the 
situation (Schwartz & Black, 1996). By studying the external representations teachers use as 
evidence in problem solving may provide insight into their knowledge. In this study, we report 
on the work of four groups of pre-service teachers who collaborated online to solve a probability 
task and evaluate middle school students’ solutions of the same task. The main goal of study is to 
understand how PSTs use and analyze multiple representations while investigating the fairness of 
dice and how they evaluate middle school students’ justifications for their solutions.  
 

Overview of the Literature 

Teaching statistics and probability are disciplines that require different knowledge to that 
needed to teach mathematics, such as non-mathematical activities like building meaning in data 
and choosing appropriate study designs (Groth, 2007; Cobb & Moore, 1997). Groth (2007, 2013) 
developed a hypothetical framework for the knowledge of teaching statistics, acknowledging in 
the framework the differences that statistics and mathematical knowledge. Due to the difference 
between the disciplines, investigating teachers’ knowledge of statistics and probability is 
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relatively a new direction in mathematics education (Garfield & Ben-Zvi, 2008; Garfield & Ben‐
Zvi, 2007). Nonetheless, multiple studies investigated the challenges students and teachers face 
when learning statistics and probability and how to deal with some of these challenges (Garfield 
& Ben‐Zvi, 2007; Groth and Bergner, 2006). Other studies showed that incorporating 
technological tools in learning and teaching probability can support collaborative learning of 
probabilistic concepts effectively (Garfield et al., 2008; Lee & Hollebrands, 2011). 

Researchers have shown the benefits of eliciting multiple representations when engaging in 
problem solving tasks (e.g., Shaughnessy, 2007). Computer programs have become useful in 
statistics education since they can quickly sample from a data set multiple times and provide 
multiple representations of the data. Beihler (2013) emphasized the benefits of technological 
environments as a pedagogical tool for learning elementary probability. Ben-Zvi and Arcavi 
(2001) used virtual environments to study students’ use and construction of data representations 
to understand their way of thinking and found that in these environments students were able to 
learn in unique ways that promoted understanding compared to traditional environments. While 
multiple representations are beneficial and computer environments can quickly construct them, a 
study by Schnell and Prediger (2014) concluded that connecting different representations for 
students is complex, and if taught properly can foster deep understanding for patterns and 
variability.  

Methodology and Data Source 

Twelve pre-service teachers (PSTs) participated in the study. All of the PSTs were in their 
last semester of a two-year teacher education program at a large Northeastern university. The 
study consisted of the PSTs working in groups of three to solve three open-ended mathematics 
problems in a collaborative online environment, Virtual Math Teams with Geogebra Tool 
(VMTwG). The VMTwG tool integrates Geogebra with a white board and a chat box for 
synchronous discussion. 

During each problem-solving session, the PSTs would meet in their group and work together 
to solve a task. The goal of the tasks was to have the PSTs not only come to a solution, but to 
form arguments to justify their solutions. After the PSTs worked on and discussed the task, they 
then watched together a video of children working on the same task as them. Discussion prompts 
for the video were provided that had the PSTs contrast and compare their problem-solving 
experience with those of the children in the video. Finally, individually, the PSTs would look at 
samples of work of students who worked on the same problem as them. The teachers were asked 
to review the student’s representations and work and specifically address: (1) the correctness of 
the solution provided, (2) description of the strategy used, (3) the validity of the reasoning, and 
(4) whether or not they find the solution convincing and, if so, why. If they did not find the 
solution convincing, they were asked to indicate from studying the student work what 
pedagogical moves they might take to help the student develop a convincing argument. The data 
for this paper focus on the probability task which had the PSTs investigate the fairness of 
different dice using interactive simulations of each die. This module was chosen for analysis 
since the VMTwG software provided a variety of representations for the data and the PSTs were 
to choose which representations they wanted to support their argument whereas other modules 
had them construct their own representations. We were interested in studying which 
representations they chose for their argument and how it influenced their analysis of student 
work. 

The PSTs were provided with simulations for six dice that were weighted differently. They 
could roll each dice between 1 and 1,000 times to determine whether the dice are fair. The 
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VMTwG environment provided them with three different representations of the data; a frequency 
table, a pie chart, and a bar graph (Figure 1). As a group, the PSTs were to determine which data 
representations they wanted to use as evidence to make an argument about the fairness of the 
dice. The video they watched contained a group of eight seventh graders engaged in a debate 
about how many times one would have to roll the dice to determine if the dice were fair or not. 
The student work, that was analyzed individually, was a series of charts produced by the same 
group of students. The charts contained screenshots of the tool, which the students used as 
evidence to support their conjectures about which set of dice were fair. 

 

 
         Figure 1. The VMT environment the PSTs worked in. 

 
The VMTwG software contains a replay tool that allows a user to replay all actions that 

occurred in the tool. For analysis, two researchers openly coded the actions of the teachers inside 
of the tool, their chat logs, their group write up about which dice company they thought was fair, 
and their individual analysis of student work.  Altogether, four groups of three teachers were 
analyzed. 

Preliminary Results 

Analyzing the chat logs and reports submitted by the PSTs revealed that while the groups 
saw benefits in using the bar graph and pie chart, all four groups chose to use the frequency table 
as evidence for their selection of dice in their reports. During the problem-solving session, all of 
the groups chose to use the frequency table to calculate the range of the distribution and used that 
to determine the fairness of the dice regardless of the sample size they used. The groups 
discussed selecting the dice that had “less range in the numbers” and dismissed dice with a 
“much wider range”. One teacher elaborated on her use of the frequency table. She reported that 
she “used this fraction [one sixth] with the frequency table to compare numbers.” She used the 
numbers provided in the frequency table to test whether the outcome for each side of the dice is 
more or less that one sixth of the sample size. 

Furthermore, when responding individually to the student work produced by the middle 
school students, the PSTs indicated that they were not as convinced by the students who used bar 
graphs and pie charts as their evidence even though the students’ arguments were correct. 
Several of the PSTs also expressed that the children should only use one type of representations 
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to make their argument and that multiple representations were “not appropriate”, “confusing”, 
and “made it difficult to decipher [their argument]”. In responding to a student who used both a 
bar chart and a pie graph, one of the teachers remarked, “The pie graph did not represent this 
argument as well as the other two types of data because the visual contrast is not as present in the 
pie as it is in the bar graph”.  

 
Discussion and Questions 

Though all four groups of PSTs had multiple representations available to them, all four 
groups chose to focus on the frequency table to support their own arguments. Their chat logs and 
write ups of the problem indicate that they found that representation as more convincing. When 
analyzing students’ work, the PSTs were dismissive of arguments by students who used the other 
representations. The preference for one type of representation by the PSTs may be problematic 
as researchers (e.g., Shaughnessy, 2007) have shown that multiple representations are a learning 
goal for statistics education and that various representations can help aid students in different 
ways. When the students whose work was evaluated by the PSTs used multiple representations, 
the PSTs suggested that they only use one to make their argument less confusing. While 
environments like the VMTwG have the ability to construct multiple representations of the same 
data, just providing the representations are not enough since it seems that learners tend to prefer 
and focus on one representation. Further work is needed to understand how to engage PSTs in 
environments like the VMTwG where they have to consider the affordances and constraints of 
different representations so they can foster a classroom environment that invites and uses 
multiple representations to support arguments. 
 
Questions for the audience: 

1) Do you see any benefits in having students construct their own representations instead 
of having them generated by the software? Dynamic representations have shown to be 
useful in statistics education, but the process of creating a representation seems 
important. 

2) Any feedback or suggestions about the structuring of the study (participants engaging 
in the task, viewing videos, evaluating student work).  
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Mathematicians’ Interplay of the Three Worlds of the  
Derivative and Integral of Complex-valued Functions 

 
Hortensia Soto 

University of Northern Colorado 
 

Michael Oehrtman 
Oklahoma State University 

 
We engaged five research mathematicians in describing their images of differentiation and 
integration for functions of complex variables. Analyzing the data in terms of Tall’s three worlds, 
we explore the connections between the physical embodiments of the mathematicians’ reasoning, 
their descriptions for students, and their formalizations of these interpretations. For 
differentiation, the mathematicians relied heavily on direct application of concepts and 
analogies from differentiation of real-valued functions and employed rotation and stretching as a 
local linear description of the action of the function, corresponding to repeated mental imagery 
and physical gestures. For integrals, the mathematicians employed reasoning about line real-
valued integrals, but acknowledged that they struggled to conceptually interpret what was being 
accumulated in the complex case. Instead, they all developed more personal meanings through a 
process of reconciling various aspects across their own conceptual-embodiment, operational-
symbolic, and axiomatic-formal reasoning. 

Key words: complex-valued function, derivative, integral, reasoning  

Introduction and Literature Review 
 

Authors of complex analysis texts introduce the definition of the derivative of a complex-
valued function 𝑓 at the point 𝑧0 as the complex limit: 𝑓′(𝑧0) = lim

𝑧→𝑧0

𝑓(𝑧)−𝑓(𝑧0)
𝑧−𝑧0

  if it exists. 

Although this algebraic inscription is introduced as early as chapter 2 of many texts (Brown & 
Churchill, 2009; Paliouras & Meadows, 1990; Saff & Snider, 2003) authors claim, “geometric 
interpretations of derivatives of functions of a complex variable are not as immediate as they are 
for derivatives of functions of a real variable” (Brown & Churchill, 2009, p. 59). Such 
interpretations are then delayed until after conformal mappings are introduced which generally 
appear towards the end of the text. Similarly, integration of complex-valued functions is 
generally introduced using algebraic inscriptions similar to those employed in a multi-variable 
calculus course. If 𝑤: [𝑎, 𝑏] → 𝐂 is a complex-valued function of a real variable such that 𝑤(𝑡) =
𝑢(𝑡) + 𝑖𝑣(𝑡), where 𝑢 and 𝑣 are are real-valued, then ∫ 𝑤(𝑡)𝑑𝑡 = ∫ 𝑢(𝑡)𝑑𝑡 +  𝑖 ∫ 𝑣(𝑡)𝑑𝑡𝑏

𝑎
𝑏

𝑎
𝑏

𝑎 , 
provided the integrals exists. A contour integral over a path 𝛾: [𝑎, 𝑏] → 𝐂 of a function 𝑓: 𝐂 → 𝐂 
is further defined as ∫ 𝑓(𝑧)𝑑𝑧𝛾 = ∫ 𝑓(𝛾(𝑡))𝛾′(𝑡)𝑑𝑡𝑏

𝑎 . If any geometric representations are 
provided for these integrals, they are often for the integrals of u and v in Euclidean space rather 
than leveraging any complex geometry to visualize w or f and 𝛾. Given complex variables 
textbooks do not offer introductory geometric interpretations of either differentiation or 
integration on the complex plane, it is possible that students enrolled in complex analysis courses 
may not have opportunities to develop rich visualization of either of these notions. As such, we 
felt it worthy to explore the research question: What geometric interpretations do mathematicians 
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use to reason about differentiation and integration of complex-valued functions? Such research 
has the potential to contribute to the creation of design experiments and new curricula as well as 
to extend the literature on teaching and learning of complex variables which is scarce. 

Much of the literature on the teaching and learning of complex variables is limited to 
exploring undergraduates’ and inservice teachers’ geometric reasoning of arithmetic and 
algebraic concepts of complex numbers (Danenhower, 2000, 2006; Harel, 2013; Karakok, Soto-
Johnson, & Anderson-Dyben, 2015; Nemirovky, Rasmussen, Sweeney, & Wawro, 2013; 
Panaoura, Elia, Gagatsis, & Giatlilis, 2006; Soto-Johnson, 2014; Soto-Johnson & Troup, 2015). 
Much of this work illustrates undergraduates’ and inservice teachers’ tendency to prefer 
algebraic reasoning even when geometric reasoning simplifies the task. On the other hand, 
Nemirovsky et al. demonstrated how undergraduates’ geometric reasoning of the arithmetic of 
complex numbers could be developed through the use of physical activities. These activities 
entailed using a tiled floor, string, and stick-on dots representing the complex plane, vectors, and 
points respectively. As a result of these activities the research participants were able to make 
connections between algebraic and geometric reasoning. Soto-Johnson (2014) and Soto-Johnson 
and Troup (2015) found similar results with high school students and undergraduates, who used 
a dynamic geometric environment (DGE) to explore the geometric meaning of the arithmetic of 
complex numbers. The dynamic movement of the string or dragging elements in the DGE 
allowed the research participants to reconcile their algebraic and geometric reasoning and to 
view the arithmetic of complex numbers as transformations on the complex plane.  

Some researchers have begun to explore analytical concepts related to complex variables 
(Soto-Johnson, Hancock, & Oehrtman, 2016; Troup, 2015) but the work in this area remains 
scant. Troup (2015) showed how DGEs can assist in developing undergraduates’ geometric 
reasoning of the derivative of complex numbers. Specifically, with the aid of technology the 
research participants abandoned their belief, which stemmed from their calculus experiences, 
that the derivative of a complex function represents the slope of the tangent line. They also came 
to recognize the derivative of a complex function as the dynamic notion of an amplitwist 
(Needham, 1997). While Troup focused his work on undergraduates, Soto-Johnson et al. focused 
their research on mathematicians’ conception of continuity of complex-valued functions. Using 
Schiralli and Sinclair’s (2003) framework of conceptual and ideational mathematics, the authors 
found that the participating mathematicians’ ideational mathematics manifested itself via 
metaphors which appeared to stem from their prior physical embodied experiences. Furthermore, 
these metaphors did not tend to fully capture the mathematicians’ conceptual mathematics. For 
example, although the concept of continuity accounts for the co-domain first, several of the 
metaphors accounted for the domain first and thus had a domain-first quality. Given the role that 
metaphor and embodiment played in the participants’ responses, we decided to employ Tall’s 
(2013) Three World of Mathematics Framework (discussed below) in this research project. 

Although there is abundant literature on both students’ understanding of derivatives and 
definite integrals in introductory calculus of real variables, little of it touches on interpretations 
that are likely foundations for generalization to geometric interpretations of the corresponding 
concepts in complex variables. Neither standard curricula nor research tend to address the 
derivative of a function from 𝐑 → 𝐑 as a linear map (multiplication by the value of the derivative 
at a point) in any representation as a potential precursor to the amplitwist idea. Introductory 
multivariable calculus also does not typically provide such a foundation and instead frames the 
derivative in terms of partial derivatives or equations of tangent planes. Even more, most texts 
(quite reasonably) rely on the independence of codomain functions for real-variable derivatives 
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to simplify the situation to multidimensionality only in the domain. Although line integrals 
provide a possible foundation for contour integrals, little education research has focused on the 
related concepts. Multiplication in the integrand of a contour integral by a complex-valued 𝛾′(𝑡), 
however, introduces a rotation of the real and complex components of f that does not have a 
convenient real-valued analog.  

 
Theoretical Perspective 

 
Tall (2013), coined the term met-before after the word metaphor and defined it as “a structure 

we have in our brains now as a result of experiences we have met before” (p. 23). These met-
befores can be supportive or problematic in a new situation, such as in the case of Troup’s (2015) 
research participants’ initial notion of the complex-valued derivative as the slope of a tangent 
line. A natural counterpart to met-befores are set-befores which consist of “a mental structure 
that we are born with, which may take a little time to mature as our brains make connections in 
early life” (p. 23). Tall identified recognition, repetition, and language as the primary set-
befores, which promote categorization, encapsulation, and definition which in turn foster 
mathematical knowledge through three worlds of mathematics. 

The three worlds of mathematics are: conceptual-embodiment, operational-symbolic, and 
axiomatic-formal and though distinct, they are very much interrelated. Tall (2013) explained how 
the world of conceptual-embodiment is a result of our perceptions and actions which create 
mental imagery which are perfected via verbal communication. The second world, operational-
symbolism, stems from embodied human actions which transform into symbolic procedures that 
in turn are compressed into procepts (Tall, 2008). The third world, axiomatic-formal builds on 
formal axiomatic systems whose properties are established through mathematical proof. It is 
important to note knowledge expressed in the axiomatic-formal world can be conveyed via the 
conceptual-embodiment world. This is especially evident in teaching abstract notions and this 
was evident in the work of Soto-Johnson et al. (2016). Given that Tall (2013) clearly states that 
these three worlds are intertwined, we will seek to document mathematicians’ interplay between 
the three worlds as they convey their geometric reasoning of the derivative and integral of a 
complex-valued function.   

Methods 

This research is part of a larger study where we explored mathematicians’ geometric 
reasoning of the arithmetic of complex numbers and analytic concepts of complex-valued 
functions. Five Ph.D. mathematicians from three different institutions, within the same state, 
participated in a 90-minute, video-taped, structured interview. Becky, Judy and Rafael’s area of 
expertise was complex analysis, Luke’s area of expertise was differential geometry, and 
Andrew’s background was in differential equations (names are pseudonyms). All five of the 
mathematicians have taught complex analysis on a regular basis and four of the mathematicians 
have published in this area. In this preliminary report, we focus on the participants’ responses to 
the questions about their interpretation of differentiation and integration. As part of the 
interview, the participants had access to a black or white board and were encouraged to use it as 
they saw fit. We also probed in instances where the response seemed unclear or in instances 
where we knew that the response was not a complete geometric representation of the concept.  

Our data analysis is similar to the analysis conducted by Soto-Johnson et al. (2016), 
including time-lines which depict the interplay of the three worlds. At this time, we have 
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transcribed all the interviews and began using a scheme similar to Soto-Johnson et al., while 
attempting to tease out conceptual mathematics into either operational-symbolic or axiomatic 
formal. We also provide rich descriptions of gesture as this is a prominent source of evidence for 
the conceptual-embodiment world. Below we provide a glimpse of the mathematicians’ 
responses. 
 

Preliminary Results and Discussion 

We categorized segments of the mathematicians’ responses to the differentiation questions 
into comparisons to differentiation of real-valued functions, amplitwist models, and a variety of 
idiosyncratic images. While interpreting the complex derivative, all of the mathematicians relied 
heavily on met-before comparisons to differentiation of functions from 𝐑 → 𝐑, 𝐑2 → 𝐑, and 
𝐑2 → 𝐑2. Especially when describing how they explain the ideas to students, they emphasized 
operational-symbolic reasoning as they stressed the need to write out the complex function in 
coordinates 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) and examine the limit definition of the derivative, 
paths along coordinate axes, partial derivatives, level curves, matrix representations of linear 
maps, and single and multi-variable Taylor series expansions. Judy, for example, acknowledged 
the need for real differentiability of f as a function from 𝐑2 → 𝐑2, but asserted she believed most 
people do not understand the geometry of this well. Instead, she consistently pursued approaches 
involving the separate tangent planes of u and v in her arguments, ultimately attempting to work 
out the geometric relationship between the tangent planes of the component functions u and v. 
Luke and Rafael agreed that there was no significant geometric insight to be gained from 
interpretations of continuous partials implying real differentiability, but both connected images 
of real-valued linear functions to the complex case. Andrew and Becky resisted drawing 
geometric interpretations of derivatives when talking about them apart from specific examples.  

Four of the five mathematicians relied heavily on geometric interpretations consistent with 
Needham’s description of an amplitwist, drawing several pictures and making consistent and 
repeated physical gestures of the action. As such, they integrated conceptual-embodied 
reasoning. All of the participants emphasized aspects of dependence on the domain point, local 
behavior of the function, linear approximation of this behavior, errors approaching zero “more 
quickly” than |z|, relating to multiplication by 𝑓′(𝑧), and decomposing the action into a rotation 
and a stretch. All of the mathematicians represented these actions algebraically and graphically 
in Cartesian coordinates, but several either commented that polar representations are more 
appropriate or deliberately switched to using polar coordinates in their descriptions. They all 
drew coordinate grids in a domain plane and their images in a codomain plane to illustrate the 
local stretch and rotation in the mapping. These decisions reflected conceptual-embodied and 
operational-symbolic reasoning. Repeatedly they would either move their hands from one to the 
other on the board or an imagined version in space spreading their fingers apart to indicate 
stretching and twisting their wrist to indicate rotation, often doing so seemingly subconsciously 
as they were thinking about other tasks. When focusing directly on conveying these ideas, their 
gestures became more exaggerated, often involving both arms or their whole body. 

The responses to the integration task tended to combine various met-befores from real-valued 
calculus, but for the most part, the mathematicians were uncertain about a clear geometric 
interpretation for integration of complex-valued functions. For example, Andrew, Luke, and 
Judy applied the met-before notion of line integrals from multi-variable calculus. Andrew 
immediately responded that he would not think of integration geometrically and followed up by 
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saying that he would have to think about it. After some pause he started using operational-
symbolic reasoning as he wrote ∫ (𝑢 + 𝑖𝑣)(𝑑𝑥 + 𝑖𝑑𝑦) = ∫ (𝑢𝑑𝑥 − 𝑣𝑑𝑦) + 𝑖 ∫ (𝑣𝑑𝑥 +𝑐𝐶𝐶
𝑢𝑑𝑦) and indicated that one could easily determine an answer but that he didn’t know how to 
make sense of it. Although, hesitant to interpret such symbolism, he attempted to reconcile 
operational-symbolic reasoning with conceptual-embodiment of contexts such as work and flux 
but concluded, “It just means if I would compute the integral this is what I would get. I don’t 
think I have any deep insight. Is there deep insight?” Luke’s initial response to the integration 
question was similar to Andrews, as he stated, “Wow, what does that mean? (long pause). Okay, 
so this is a hard question. If you’re integrating (long pause). This is hard.” Although starting with 
conceptual-embodiment to reason about a path in the plane, Luke shifted to reconciling 
operational-symbolic reasoning with axiomatic-formal reasoning as he wrote mathematical 
inscriptions and cited several theorems. He uttered that these theorems would allow him to “get 
some number,” but did not “know what that number means,” and concluded, “I don’t have a 
good feel for it.”  

In contrast, Judy immediately remarked that she teaches integration of complex functions as 
integrating along the x-axis for the function 𝑓(𝑧) = 𝑢(𝑧) + 𝑖𝑣(𝑧). Thus, she employed 
operational-symbolic reasoning but transitioned to conceptual-embodiment as she mentioned that 
“it’s geometrically more helpful for students to think about an application like work done along 
the curve … imagine there’s a force field and I’m traveling through it.” As she uttered these 
these words she traced a curve in the air with her hands together. One aspect of Judy’s response 
that was quite different from the other responses was that she discussed tangent planes in 
conjunction with the Cauchy-Riemann equations and as such appeared to be combining 
conceptual-embodiment reasoning with axiomatic-formal reasoning. 

Rafael’s response mimicked Needham’s (1997) description the most, but through a creative 
and well-developed story regarding an early explorer on an ocean ship, who has a route on a map 
that is incorrect. Rafael mentioned that the route represents the path of integration and in order to 
determine the correct route one has to break up the incorrect route “into little line segments … 
[and] each one of these [segments] is a displacement vector.” Each of these displacement vectors 
are then rotated and dilated and all summed in order to determine the true path. Rafael’s response 
combines symbolic-operational and conceptual-embodied reasoning via diagrams that come to 
life with his gestures. 

 
Discussion and Questions for the Audience 

 
Besides contributing to the literature on the teaching and learning of complex numbers we 

hope to contribute to Tall’s framework. For example, he provides rich theoretical examples that 
illustrate these three worlds for the derivative and integral of real-valued functions. Our work 
will provide further empirical evidence but for complex-valued functions. We anticipate this can 
be adopted for real-valued functions, which might create non-problematic met-befores. We 
anticipate posing questions to the audience about ways to analyze and present the evolution of 
the interplay between the mathematicians “three worlds” in time. We will also seek critical 
feedback on our coding scheme, especially from the community whose research adopts 
embodied cognition or Tall’s Three Worlds of Mathematics. 
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Evaluation of Graduate Student Professional Development and Instruction by 
Mathematics Departments: Results from a National Survey 
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Findings from a recent national survey indicate that two thirds of graduate-degree-granting 
mathematics departments provide some form of teaching-related professional development to 
their graduate students. Despite the prevalence of such programs, little is known about how 
departments evaluate the quality of the graduate students’ instruction or the efficacy of their 
professional development. We present a mixed-method analysis of data to shed light on both of 
these topics. We found that graduate students and their professional development are most often 
evaluated based on student evaluations. Other research indicates the ineffectiveness of student 
evaluations as measures of teaching, and so this finding indicates a need for research-guided 
evaluation tools for graduate student professional development.  
 
Key words: Graduate Student Teaching Assistants, Professional Development, Institutional 
Change, Evaluation 
 
 In the United States (U.S.), graduate student teaching assistants (GTAs) play a large role in 
undergraduate mathematics education (Belnap & Allred, 2009; Ellis, 2014), though typically 
have little to no prior teaching experience and receive minimal teaching preparation. It is well 
documented that more rigorous teaching preparation can result in expert-like beliefs, knowledge, 
and practices (Alvine, Judson, Schein, & Yoshida, 2007; Hauk et al., 2009; Kung & Speer, 2009; 
Luft, Kurdziel, Roehrig & Turner, 2004), making up for the lack of teaching experience of 
graduate student instructors compared to other types of instructors. In particular, a recent 
national study found the presence of a robust GTA professional development (PD) program to be 
characteristic of departments with successful undergraduate calculus programs (Ellis, 2015). 
Given the need for effective preparation of GTAs in teaching, there is also a growing need to 
understand how these PD programs are, and can be, evaluated.  

A primary goal of GTA PD is to help ensure that high quality instruction is provided to 
undergraduate students. Consequently, it stands to reason that departments would (or could) 
utilize some measures of teaching effectiveness in the evaluation of their programs. 
Unfortunately, assessing teaching practices presents many challenges. As noted recently: 

“…even with widespread national investments, education researchers, administrators, and 
faculty do not yet have shared and accepted ways to describe and measure important aspects 
of teaching. Developing the language and tools necessary to describe teaching practices in 
undergraduate education is crucial to achieving productive discussions about improving those 
practices” (American Association for the Advancement of Science (AAAS), 2013, p. 1). 

The work reported on in this Preliminary Report is part of a longer-term effort to understand 
and support department change related to GTA PD. To help departments improve their GTA PD 
programs first we need to understand their current evaluation practices and what they take as 
evidence of effective instruction. Here we present findings from a U.S. national survey of 
graduate-degree granting (Master’s and Ph.D) institutions to answer the following questions: 
How are mathematics departments currently evaluating the success of their GTA PD programs? 
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What data do departments gather related to teaching effectiveness? Answers to these questions 
provide insights into the current context. The findings presented here are the first phase of the 
larger, longer-term effort. These findings and the discussions that will occur as part of this 
Preliminary Report presentation will inform the design of the next phase that will include case 
studies and interviews. These sources will provide detailed data to further inform answers to the 
research questions that are the focus of our current presentation of findings from survey data.  

Theoretical Background 

As noted by others, “Documenting an existing practice is often the first step in improving it” 
(AAAS, 2013, p. 4). With our longer-term goals of supporting change to GTA PD programs, our 
initial efforts are focused on obtaining and analyzing baseline data about current practices of 
GTA PD program evaluation and assessment of teaching practices.  

Typically a PD program for teachers is marked as successful based on a positive change in 
teachers’ knowledge, beliefs, instructional practices, or their students’ success (Sowder, 1997), 
and thus evaluating a PD program often involves evaluating at least one of these measures. A 
number of researchers have (separately) assessed multiple K-12 PD programs and determined 
common characteristics of successful ones (Elmore, 2002; Garet, Porter, Desimone, Birman, & 
Yoon, 2001; Hawley & Valli, 1999; Kilpatrick, Swafford, & Findell, 2001). These characteristics 
include, but are not limited to, programs occurring over long periods of time, a focus on content-
specific understanding and student thinking and an opportunity for enactment of practices 
through teaching activities. Currently, there exists no comparable set of characteristics identified 
as common to successful GTA PD programs. We anticipate that frameworks used in these other 
studies of PD programs can inform our efforts and thus our survey question design was informed 
by the common characteristics identified by these researchers.  

With the long-term goal of analyzing factors that influence how and why departments change 
(and supporting such efforts), we approach this work with an eye towards change strategies. 
Henderson, Beach, and Finklestein (2010) conducted a large-scale meta-analysis of research on 
facilitating change in undergraduate science, technology, engineering, and mathematics (STEM) 
instruction. They found that the least successful change strategies were developing and testing 
“best practice” curricular materials and then making these materials available to other faculty as 
well as other “top-down” policy-making meant to influence practices. Successful strategies 
involved shifting the focus from approaches with exact intended outcomes before 
implementation to those that acknowledge that the final outcomes will be shaped by the 
individuals and/or environment involved in the system. To leverage these findings in the context 
of mathematics departments’ GTA PD program change we need rich data and insights into the 
“system” in which program and teaching practice evaluation occur. That information can then be 
used to help support departments to pursue what Henderson et al. (2010) characterized as one of 
the most effective change strategies: seeking to understand the system that one wishes to change 
and designing a strategy that is compatible with that system. 

Methods 

A survey was sent to department chairs at all graduate-degree granting mathematics 
departments in the U.S. (n = 330). The survey was designed to document a variety of features of 
current departmental efforts including their calculus program, planned changes related to this 
program, and their GTA PD program. 
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Department chairs were encouraged to have local departmental experts answer components 
of the survey with which they were most knowledgeable. For instance, in the case of questions 
about GTA PD programs, facilitators of the programs would be ideal for answering that section 
of the survey. The survey was administered using Qualtrics and distributed by the Mathematical 
Association of America (MAA) with follow up emails and phone calls to encourage 
participation. Response rate was 68% (n=223) of all institutions, 75% (n=134) of Ph.D.-granting 
and 59% (n=89) of Master’s-granting institutions. For this report we present combined data from 
Ph.D.- and Master’s-granting institutions. Results presented here come from analysis of survey 
data from the 148 departments (two-thirds of all responding institutions) that reported having a 
department-specific GTA PD program.  
 Here we discuss responses to a subset of questions related to GTA PD, as shown in Table 1. 

These questions focus on how departments evaluate graduate students in their roles as GTAs, 
how they assess success of their GTA PD program, and what data they use as evidence in their 
program assessment. This subset of questions includes both multiple choice questions and open-
ended responses questions, asking responders to explain or elaborate their choices to the main 
questions. In elaborating their selections to the multiple-choice questions, many institutions 
pointed to specific aspects of their GTA PD program as evidence for their statements. From these 
responses we are able to gain insight into how departments currently evaluate their GTA PD 
programs. We conducted basic descriptive analyses on the multiple choice question data and 
thematic analyses on open-ended responses (Braun & Clarke, 2006). Thematic analysis is a 
bottom-up qualitative approach, where themes are data-driven.  

 

 

Table 1: Overview of questions used for analysis.	
# Question (and multiple choice options) 
3. Which of the following activities, related to evaluating GTAs’ teaching, does your program FORMALLY 

include? Mark all that apply.  
• GTAs are observed by a faculty member while teaching in the classroom  
• Student evaluations required by the university or department 
• Student evaluations are gathered specifically for the purpose of evaluating GTAs (in addition to 

or separate from the student evaluations required by the university or department) 
3e. • Other (please explain):  
4. How well does your teaching preparation program prepare new GTAs for their roles in the 

precalculus/calculus sequence? 
Very well               Well                 Adequately                 Poorly                    Very poorly 

4e. • Please elaborate on your answer above. 
5. • Is the department generally satisfied with the effectiveness of the GTA teaching preparation 

programs currently in place?  
5e.  • Yes 

• The programs are adequate, but could be improved (please explain)  
• No (please explain) 

6.  What best characterizes the current status of your GTA teaching preparation programs? Mark all that 
apply.  

• No significant changes are planned 
• Changes have recently been implemented or are currently being implemented 
• Possible changes are being discussed  
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Results 

Analysis of data from Question 3 provides insights into the various ways departments 
evaluate GTA’s teaching. Over 90% of departments with a GTA PD program use 
university/department-required student evaluations to evaluate their GTAs’ teaching, while about 
three-quarters use teaching observations by faculty members and one-quarter use additional 
student evaluations that are specific to GTAs. Note that these percentages do not add up to 100% 
because responders could indicate the use of multiple evaluation methods.  

Questions 4-6 provided information on the evaluation of the departments’ PD programs. 
Findings show that 57% of respondents report that their program prepares graduate students well 
or very well for their roles, 66% of departments are satisfied with their programs, and there are 
no changes underway at 63% of the schools. This indicates that roughly 40% of graduate degree 
granting mathematics departments in the U.S. are less than happy with the current state of their 
GTA PD programs. It is these programs that will be especially in need of good evaluation tools 
as they move forward with changes to their programs.  

Ninety-six respondents provided elaborations for responses to Question 4 (regarding how 
well the GTA PD program prepares GTAs). Thematic analysis revealed 11 themes in these 
responses related to what departments use to evaluate their programs. These themes are named 
and described in Table 2, along with their frequencies. Each department’s response was coded 
with as many themes as were present and appropriate.  
 

Table 2: Description of themes from open-ended responses and their frequencies. 
Theme Description Frequency 

Student evaluations Department or university student evaluations used as data to rate GTA PD. 7 

Prevented from 
teaching 

GTAs are prevented from teaching if they are not already determined to be 
prepared. This may be based on performance in teaching a lower level 
class, being a recitation leader, through an interview, or through practice 
teaching.  

6 

Compared to others The GTA PD program is evaluated in comparison to other departments in 
the same university or other university, the program is  

4 

Common Exams GTAs’ students’ performance on common exams is used as data to rate 
GTA PD. 

4 

Student Grades GTAs’ students’ course grades (or pass/fail rates) are used as data to rate 
GTA PD. 

4 

Observations GTAs are observed teaching or leading recitation and these observations 
are used as data to rate GTA PD. 

3 

Complaints The amount of complaints about the GTA is used as data to rate GTA PD. 2 
Teaching Award GTAs’ receiving Department or University teaching awards is used as 

data to rate GTA PD. 
2 

Other This included alumni surveys, listening to the advice experienced GTAs 
give to new GTAs, reviews from faculty, retention of students, and student 
performance in subsequent courses.   

4 

Too vague Response included an evaluation of the program with no reference to data, 
with answers such as “could be improved” or “is a well oiled machine.” 

48 

Description of 
program only 

The response included a description of the program without mention of 
evaluation or other kinds of data.  

28 

 
As shown in Table 2, 76 of the 96 responses were coded as being either a description of the 

program without information about evaluation, or an indication of evaluation but with no 
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description of the data related to the evaluation. This finding suggests that either program 
evaluation is not a prominent part of these programs, or the design of the survey question did not 
provide us access to this information, or both. This indicates that further investigation is 
necessary to obtain richer and more definitive answers to this question. Of the remaining 
responses, the most often used data were student evaluations, followed by student performance 
on common exams, student grades, comparison to other known programs, teaching observations, 
teaching awards, and complaints. Four responses involved “other” data, including alumni 
surveys, listening to advice experienced GTAs give to new GTAs, faculty reviews, student 
retention, and student performance in subsequent courses.   

Discussion and Next Steps 

Our findings indicate that although the majority of mathematics departments run a PD 
program for their GTAs, evaluation of these efforts is limited. This is not especially surprising 
given that it would be somewhat unusual for most mathematics faculty to possess the specialized 
knowledge and skills needed to engage in program and other types of evaluation. This points to a 
significant need for our field if we wish to leverage GTA PD to improve the teaching and 
learning of undergraduates and increase enrollment and retention rates in STEM majors. Of 
course, this situation is not unique to GTA PD programs and other researchers have noted the 
unique skill set required for this work: “Institutional and departmental policies affect everyone, 
yet most investigators researching undergraduate STEM teaching practice lack the tools and 
expertise to document institutional change” (AAAS, 2013, p. 47).  

In addition, the above analysis shows that a primary means of evaluation of graduate students 
as teachers and of their professional development is student evaluations. An abundance of 
research indicates issues with using student evaluations as an evaluative tool (Basow, 1995; 
Centra & Gaubatz, 2000; Krautmann, & Sander, 1999). Influences on student evaluations are 
diverse and include gender, perceived enthusiasm and other factors. Therefore, it is problematic 
that student evaluation data is the primary source used to evaluate novice instructors. Relying 
exclusively on such data may provide incomplete and/or inaccurate information that, in turn, 
may provide inaccurate information about the GTA PD program’s impact on the effectiveness of 
the instruction being provided to undergraduate students.  

The results presented here reveal a number of additional measures that mathematics 
departments are or could use to evaluate GTA’s teaching and GTA PD. These include measures 
of student performance, such as course grades, grades on common exams, and grades in 
subsequent courses, as well as more direct measures of teaching performance, such as 
observations and teaching awards. This finding is an initial insight into what approaches are 
being pursued in the particular context of a mathematics departments and as such, this 
information suggests practices to leverage when encouraging and supporting change in other 
departments. Our planned interview and case study investigations can augment these findings 
and provide additional insights into what mathematics faculty see as relevant and meaningful 
ways of examining programs and what they take as evidence of the effectiveness of those 
programs.  
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An Explicit Method for Teaching Generalization to  

Pre-Service Teachers Using Computer Programming 

Cynthia L Stenger     Janet T Jenkins     James A Jerkins     Jessica E Stovall 

University of North Alabama 

As colleagues in a Mathematics/Computer Science department, we found that many of our 
undergraduates were not able to participate successfully in the full range of STEM course 
offerings. In response to this need, we developed a strategy for explicit instruction in 
mathematical generalization. Our instructional design is grounded in a theory of mathematical 
learning that uses computer programming to induce students to build the mental frameworks 
needed for understanding a math concept. The design includes writing mini programs to explore 
a mathematical concept, finding general expressions in the code, making conjectures about the 
relationships among general expressions, and writing logical arguments for the conjectures. We 
share results from a study of 18 undergraduate math/secondary education majors. Our results 
indicate most pre-service teachers showed improvement in their level of abstraction over the 
concept of direct variation. 

Key words: Generalization, Computer programming, Pre-Service teachers 

Introduction 

Abstraction and generalization are critical skills for navigation through the computer science 
and mathematics curriculum. Any effort to improve instruction should take into consideration 
how students learn. It is widely believed that teaching proof writing as a solitary activity may not 
provide students the building blocks to become proficient in reasoning about mathematical 
concepts.  Stylianides claims that the four essential components of ‘reasoning-and-proving‘ are 
‘identifying patterns, making conjectures, providing non-proof arguments and providing proofs‘ 
(Stylianides, 2008). Jenkins, et al., developed an explicit approach to teaching abstraction and 
generalization that considers the mental processes by which abstract concepts are acquired and 
utilized (2012). In developing the  instructional treatment, close attention was paid to the theory 
of learning called APOS theory (Dubinsky, 1984). APOS is an acronym that stands for Action, 
Process, Object, and Schema. Each level denotes a cognitive classification of the learner's 
conception. APOS theory is an outgrowth of Piaget's theory of Reflective Abstraction (Piaget, 
1971). As a constructivist theory, the basic tenet of APOS theory is that an individual's 
understanding of a mathematical topic develops through reflecting on problems and their 
solutions in a social context and constructing or reconstructing certain mental structures, then 
organizing these mental structures into schemas to use in dealing with problem situations. 
Specifically, in APOS theory, the process of reflective abstraction is the key to cognitive 
construction of logico-mathematical concepts (Dubinsky & McDonald, 2001, Beth & Piaget, 
1966).  

Programming as a Vehicle for Building Abstraction in the Mind of the Learner 
Researchers in APOS theory have long employed computer programming as a means to teach 

undergraduate mathematics. In numerous studies, spanning several countries, and applied to a 
spectrum of mathematical topics, APOS theory has been applied to the use of computer 
experiences to encourage the construction of mental processes that lead to mathematical concepts 
(Asiala et al., 1998, Weller et al., 2008). The computer treatments have consistently yielded an 
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increase in likelihood that students acquired the desired concepts. It is a commonly held belief 
among this substantial group of researchers that computer constructions are an intermediary 
between concrete objects and abstract entities (Dubinksy, 1997, Asiala et al., 1998). 

Instructional Treatment: Building Mental Structures with Computer Programming 
Applying this theoretical framework, an instructional treatment was developed using 

computer programs to push students to build the mental frameworks for abstraction and 
generalization. This instructional treatment consists of four stages as shown in Figure 1. In the 
first stage essential characteristics (ESS) of a problem are identified. Next, mini programs 
(PROG) are written to explore the essential characteristics. General expressions (GEN) are found 
in the programs. Participants are taught to write these generalizations as mathematical 
statements. Further exploration with computer programs (PROG) leads to more generalizations, 
and general expressions (GEN) are collected as  participants conjecture about relationships 
between concepts. Participants are taught to write convincing arguments (CA) for some of the 
conjectures, using the general expressions (GEN). 

 

 
Figure 1. The four stages of the instructional treatment 

Methodology 

The participants were 18 undergraduate math/secondary education majors who were enrolled 
in a mathematical methods class. At this regional state university preservice teachers earn a 
bachelor of science in education and, in addition, complete all of the coursework for a 
mathematics major.  This course is offered the fall semester before their internship.   

Procedure Description 
The instruction took place over a three day period.  Each class session was 75 minutes. The 

format for the lessons included writing mini-programs using Python to explore concepts and 
make conjectures about relationships among concepts. For example, participants were asked to 
produce a table with columns consisting of distance, rate and time, then insert additional columns 
to show what happens when the rate is doubled while time is unchanged. From program output, 
they observe that distance doubled as rate doubled. They were taught to find the general 
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expression for this relationship in their code and then to write it in mathematical language. After 
sufficient time exploring the relationship between increasing rate and resulting distance, they 
were led to make conjectures about relationships between distance, rate and time, in general. For 
example, they might conjecture that when the rate was multiplied by k, then the resulting 
distance was k times the original distance or “If r2=kr1, then d2=kd1.“ This was followed by 
instruction constructing convincing arguments for some of the conjectures.  The proof writing 
activity was designed to push students to progress to the next level of cognition by affording 
them the opportunity to apply their conceptual knowledge in a different setting. 

Data Collection/Analysis 
All participants were pre-tested and post-tested to determine their level of abstraction for the 

concept being explored. Throughout the lessons, response sheets were also collected. This 
allowed the conceptual knowledge to be evaluated at multiple points to determine how mental 
frameworks were being built. Based on this data, each participant was assigned scores 
representing their level of abstraction over the concept before and after each lesson. 

  APOS analysis was used to assign level of abstraction demonstrated by a participant. Scores 
ranged from 0 to 3 representing No abstraction, Action, Process, or Object. Each entry was 
scored by at least three trained data analysts with a rubric developed for that particular concept 
and based on responses elicited on the pre- and post-tests and the response worksheets. 
Triangulated scores were tested for inter-rater reliability using Randolph’s Kappa and assigned to 
each participant for each lesson, before and after instruction. 

Results 

Table 1 lists the item text associated with each scored response on the pre-test, response 
sheet, and post-test. Table 2 shows student scores for responses on the pre-test, participant 
response sheets, and post-test. Participant U0065 was not viable because they did not participate 
on the second day of the study. Twelve of the eighteen participants improved at least one level of 
abstraction in the direct variation lesson. 

 

Response Item Item Text 
Pre-test 2,3 What happens to distance when time is fixed and you triple the rate? 

Write a convincing argument. 
Computer 3,4 What happens to distance when time is fixed and you double the rate? 

Write a convincing argument. 
Math 7,8 What happens to distance when time is fixed and rate is cut in half? 

Write a convincing argument. 
Math 9,10 What happens to the distance when time is fixed and rate decreases? 

Write a convincing argument. 
Post-test 2,3 What happens to distance when time is fixed and you triple the rate? 

Write a convincing argument. 
 

Table 1. Question text on pre-test, response sheet, and post-test 
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Participant 
Code 

Pre-test 
2,3 

Computer 
3,4 

Math 
 7,8 

Math 
9,10 

Post-test 
2,3 

Change 

U0018 1 1 3 3 3 2 
U0064 0 1 3 3 2 2 
U0065 0 1 N/A N/A 1 1 
U0066 0 1 3 3 3 3 
U0067 1 1 3 3 3 2 
U0068 1 1 3 3 3 2 
U0069 2 1 3 3 2 0 
U0070 1 1 3 3 2 1 
U0071 1 1 3 3 1 0 
U0033 0 0 2 3 0 0 
U0038 0 0 3 3 2 2 
U0041 0 0 2 3 2 2 
U0042 1 1 2 3 3 2 
U0045 0 0 2 3 2 2 
U0047 0 1 2 3 2 2 
U0048 0 0 2 3 3 3 
U0049 0 1 2 3 2 2 
U0051 2 1 2 3 2 0 

 

Table 2. Scored participant responses on pre-test, response sheet, and post-test 

The following snips from participant U0068 are representative of how the students‘ 
convincing arguments  improved over the course of the instruction.   

 
Figure 2. Pretest for participant U0068 

In the pretest, participant U0068 was able to recall the correct formulas to express the 
relationship between distance, rate and time.  They had a correct “intuition” concerning the 
result, “distance gets larger also” (Figure 2). After the computer programming instruction, 
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participant U0068 could state the effect of the increase specifically, rather than saying “the 
distance gets larger”.  When asked to give a general expression for the relationship, they 
referenced their computer code. In addition, they wrote a description of the output of the code 
and described the relationship in terms of the columns of data produced as output (Figure 3). The 
mathematics portion of the lesson taught students to find general expressions in their code and 
write them in mathematical notation or symbology. 

 
Figure 3. Intermediate work after the computer programming instruction for participant U0068 

 
Figure 4. Post test participant U0068 

 
In the post-test, participant U0068 gave a convincing argument that used general expressions 

to express the relationship between distance, rate and time (Figure 4). 

Conclusion 

In this study we have described an explicit method for teaching generalization. We have 
reported results from a pre-service teachers in a mathematical methods course. We have shown 
that most participants’ level of abstraction or ability to apply generalizations for direct variation 
increased. This is a strong indication that generalization can be taught explicitly. It suggests that 
further research into computer programming as an effective tool for teaching mathematical 
thinking is warranted. 
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The Use of NCTM Articles as Reading Assignments to Motivate Prospective 
Elementary Teacher Engagement in Mathematics Courses 

Krista Strand    Eva Thanheiser 
        California State University, Chico                Portland State University    

 
In this study, we examine the use of assigning articles published in NCTM’s practitioner journals 
as readings in mathematics content courses for prospective elementary teachers (PTs). In 
particular, we study the articles’ roles in motivating PTs to engage in their content courses. As a 
conceptual foundation, we characterize NCTM articles as having potential to (1) increase PTs’ 
“buy-in” of pedagogical approaches used in content courses, (2) challenge PTs’ unproductive 
beliefs about mathematics, and (3) address mathematics content via children’s thinking. We plan 
to analyze an existing dataset of PTs’ online typed responses to assigned NCTM articles to 
identify whether and how their responses reflect increased motivation to engage in their content 
courses. We anticipate that our results will lead to an increased understanding of PTs’ actual 
experiences related to the assigned article readings. 
 
Key words: Prospective elementary teachers, subject matter knowledge, student motivation 
 

Elementary teachers must have deep subject matter knowledge (Hill, et al., 2008) in order to 
teach mathematics well (Ball, 1990; Conference Board of the Mathematical Sciences, 2001; 
Kilpatrick, Swafford, & Findell, 2001; Ma, 1999). Thus it is of critical importance that PTs 
engage fully in their preparatory mathematics content courses in order to maximize their 
learning. This is particularly true in light of the fact that prospective elementary teachers (PTs) in 
the U.S. typically enter their content courses with limited subject matter knowledge (Ball, 1990; 
Ma 1999; Thanheiser, 2009; Thanheiser et al., 2014). And yet, it has been shown that PTs do not 
enter their content courses motivated and ready to learn (Kurz & Kokic, 2011; Moyer & 
Husman, 2006; Philipp et al., 2007; Thanheiser, 2009; Thanheiser et al., 2013). 

Accordingly, mathematics teacher educators have developed pedagogical techniques and 
interventions that work to motivate PTs to engage in their content courses (Philipp et al., 2007; 
Thanheiser, 2009; Thanheiser et al., 2013; Thanheiser & Jansen, 2016). A recent example of one 
such intervention is the use of one-on-one content-based interviews that instructors can 
implement with their PT students (Thanheiser et al., 2013). Thanheiser and her colleagues 
showed that interviews can motivate PTs to learn by changing their beliefs about mathematics, 
and by increasing their awareness of their own unpreparedness to teach mathematics.  

In this study, we investigate ways in which having PTs read and reflect on articles from 
NCTM’s practitioner journals (e.g., Teaching Children Mathematics and Mathematics Teaching 
in the Middle School) might also motivate PTs to learn mathematics, according to the 
perspectives of the PTs themselves. As instructors of mathematics content courses for PTs, we 
find these reading assignments to be indispensable. Prior to this study, though, we know of no 
research specifically examining the use of NCTM articles in PT content courses and how such 
article assignments might support PTs in engaging in their content courses, promoting their 
development of subject matter knowledge for teaching mathematics. Our work addresses this, 
and moreover, our work illuminates PTs’ own experiences and reactions to NCTM articles.  

 
Conceptual Framework: Three Types of NCTM Articles to Motivate PTs’ Learning 
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Below, we introduce three types of NCTM articles according to how we, as instructors of PT 
content courses, believe the articles boost PTs’ motivation to learn mathematics. Further, we 
point to previous research literature to support these notions. Note that our discussion of each 
type of article is not intended to imply that every NCTM article can be categorized as being only 
one type. In other words, we see these three article types are interconnected, and indeed, many 
articles are two or three types simultaneously.  

 
Type 1: Potential to increase PTs’ “buy-in” of our pedagogical approaches 

In our content courses for PTs, we strive to develop a collaborative, discussion-heavy 
learning environment that is built upon PTs’ own ideas (Thanheiser, Browning, Moss, Watanabe, 
& Garza-Kling, 2010), and that fosters an orientation towards mathematics as a sense-making 
and problem-solving activity (Lampert, 2001). We do so not only to model for PTs how we hope 
they will someday conduct their own classrooms, but also because we believe this type of 
environment is necessary for PTs’ own learning of mathematics. However, such an environment 
can differ drastically from the types of environments PTs experienced as K-12 students 
(Beswick, 2005; Comiti & Ball, 1996). For example, we ask PTs to share their thinking often in 
class, yet one study recently found that 85% of PTs had little to no experience being asked to 
share their thinking during any previous mathematics class prior to taking their first PT content 
course (Thanheiser & Jansen, 2016).  

Because PTs hold preconceived notions about the teaching and learning of mathematics 
based on their own prior experiences as learners (Anderson, White, & Sullivan, 2005; 
Charalambous, Philippou, & Kyriakides, 2008), they are often skeptical about the unfamiliar 
style of teaching they are experiencing in their content courses. We believe NCTM articles that 
discuss the potential effectiveness of certain pedagogical approaches can help PTs make the 
transition to participating in class in ways that are new to them.  

An example of this type of article is “Techniques for Small Group Discourse” (Kilic, et al., 
2010). The authors open this article with a brief discussion of the importance of having children 
engage in discourse in a mathematics class. Then, the authors present two scenarios of teachers 
engaging elementary students in discourse, and they examine how the teachers’ facilitation of 
student discourse promoted students’ reasoning about the content. Although the intended 
audience of this article is practicing elementary teachers, we believe that having our PT students 
read about a classroom of children who deepened their understanding of a mathematical concept 
through dialogue might motivate them to similarly engage in dialogue during their content 
courses. We believe articles like this one can help PTs understand the rationale behind the 
teaching methods that we use in class, potentially decreasing their skepticism and increasing 
their willingness to engage with them.  

 
Type 2: Potential to challenge PTs’ beliefs about mathematics 

A second type of article serves to challenge unproductive beliefs that PTs commonly have 
about mathematics (Philipp et al., 2007). For example, many PTs believe that mathematics 
consists entirely set of procedures or rules to be memorized (e.g., Ball, 1990; Thanheiser, 2009). 
Such PTs might not see the value in understanding why the procedures make sense, or that there 
is more than one correct way to solve a problem, thus potentially shutting down their motivation 
to learn the content, that they believe they already know, more deeply. Articles that push against 
PTs’ commonly-held beliefs about mathematics might help them be more open to learning.  

An example of this type of article is “Multicultural mathematics and alternative algorithms” 
(Philipp, 1996). This article opens with a child’s invented algorithm for long division, 
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introducing the idea that there is more than one way to solve a mathematics problem and that 
even young children can invent effective mathematical procedures. Then, the article presents and 
discusses examples of algorithms for multi-digit computation used around the world. None of the 
algorithms are the same as the standard algorithms traditionally taught in the United States. We 
believe that having our PT students read this article might help them recognize and re-think their 
beliefs centered on the idea that mathematics consists of one fixed set of procedures developed 
by somebody else. Additionally, this article might help challenge PTs’ belief that the procedure 
that they are most familiar with is the only one, is used by everyone worldwide, and is the 
easiest. Our intention is that articles of this type help PTs think through beliefs that might restrict 
their motivation to learn mathematics that is new to them. 

 
Type 3: Potential to address mathematics content via children’s thinking 

Prior research has pointed to the fact that PTs’ analysis of children’s mathematical thinking 
can be a motivator for PTs’ own learning of content. For example, the use of artifacts of 
children’s thinking (e.g., videos of children doing mathematics, or children’s written work) has 
been linked to gains in PTs’ mathematical understanding (Jacobs,)Lamb,)&)Philipp,)2010).)Our 
use of NCTM articles that discuss the mathematical details of children’s ideas and strategies 
follows directly from this work. We believe that PTs are motivated to understand the 
mathematics more deeply themselves when they are confronted with artifacts of real children’s 
mathematical thinking (e.g., via an article discussing a child’s invented algorithm for long 
division). 

An example of this type of article is “Tuheen’s thinking about place value” (Wickett, 2009). 
This short article gives an account of a third-grader, Tuheen, who suggests that the regrouped 
“1”s in the multi-digit addition problem 59 + 67 be written as “10” and “100” instead of “1”s, to 
show their true value. The author then discusses how Tuheen’s insight seemed to help strengthen 
his peers’ understandings of place value in multi-digit addition. Because many PTs do not know 
the true value of the regrouped “1”s when they enter their content courses themselves 
(Thanheiser, 2009), we assign this article with the intention of helping them deepen their own 
understanding of place value and see that children can and do make sense of mathematics and 
come up with their own algorithms. As PTs work to follow the account of Tuheen’s 
mathematical reasoning in the article, we believe they strengthen their own mathematical 
reasoning as well. 

 
Research Questions 

 
The above potential benefits of assigning NCTM articles are derived from our perceptions as 

teacher educators and may or may not be actualized, according to the perspectives and 
experiences of our students. And so we wonder whether there is evidence within PTs’ written 
reactions to articles to support that they are, in fact, serving to motivate PTs’ learning of 
mathematics. Further, we wonder what PTs’ article responses tell us about the ways in which the 
ideas in the articles support their learning of mathematics. Therefore, in this study, we 
specifically ask the questions: 

(1) Do PTs experience increased motivation to engage with the course material in 
 mathematics content courses as a result of reading NCTM articles, according to PTs’ 
 responses to the articles? 

(2) If so, how do PTs experience increased motivation to engage with the course material 
 in mathematics content courses by reading NCTM articles, according to their responses? 
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Methods 

 
Participants 

Participants in this study were 42 PTs enrolled in the first course in a sequence of three 
quarter-long mathematics content courses for undergraduate PTs at a large, urban state university 
in the Pacific Northwest of the United States. The content of the course focused on whole 
numbers and operations. Thirteen of the participants were enrolled in the course in the Summer, 
and the class met for 140 minutes every weekday for three weeks (equivalent to four credits in 
one quarter). Twenty-nine of the participants were enrolled in the course in the Fall, and the class 
met for 110 minutes twice per week for ten weeks, which is also equivalent to four credits in one 
quarter.  

 
Data Collection 

As part of the homework assignments for the course, students were asked to read NCTM 
articles and respond online via a discussion forum in Desire2Learn (a course platform similar to 
Blackboard). Specifically, students were asked to: (1) type and post their initial summary and 
reaction to the article, and then (2) respond to at least one other person’s post. There was no 
specific requirement for post lengths, yet the students were asked to make their responses 
substantive enough to convince the instructor that they read the article. 

The dataset for the analyses below consists of all students’ first summary/reaction discussion 
forum posts for each of three articles (one article representative of each type introduced above). 
Specifically the three articles are: “Techniques for Small Group Discourse” (Kilic et al., 2010, 
representative of a Type 1 article); Beliefs About Mathematics for “Multicultural Mathematics 
and Alternative Algorithms (Philipp, 1996, representative of a Type 2 article); and Content via 
Children’s Thinking “Tuheen’s Thinking About Place Value” (Wickett, 2009, representative of a 
Type 3 article). 

 
Data Analysis Plan 

This study is ongoing. At the time of this preliminary report, all data has been collected and 
analyses are in beginning stages, according to the plan outlined below. 

In our first research question, we wonder whether the intended reasons for assigning NCTM 
articles appear within PTs’ reactions to the articles. For example, for a Type 1 article, we ask, “Is 
there evidence to suggest that PTs actually experience increased buy-in to our pedagogical 
approaches, in response to reading this article?” Accordingly, all PTs’ initial responses to each of 
three articles (one representative of each type) will be coded “yes” or “no”, according to whether 
they made a statement relating to the type of the article. The percentage of “yes” and “no” 
responses will be reported. Further, if a response is coded “yes,” the section(s) of the PTs’ 
response that addressed the purpose of the article will be pulled out for analysis pertaining to the 
second research question. Figure 1 shows sample excerpts from our dataset that would be coded 
“yes” for each type of article. 

 
Type of Article Sample “Yes” Excerpt from a PTs’ Response 
Type 1: Potential to 
increase PTs’ “buy-
in” of our 

“While the article primarily addresses the teacher's role in small-group 
facilitation, it provided me with an opportunity to reflect on my own 
experiences of working in small groups. The math classes that I have 
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pedagogical 
approaches 
 
 
Type 2: Potential to 
challenge PTs’ 
beliefs about 
mathematics 
 
 
 
Type 3: Potential to 
address 
mathematics 
content via 
children’s thinking 

taken in high school were primarily lecture format, so working and 
collaborating with my peers is a new experience. Although I was tentative 
at first, I enjoy the collaborative atmosphere.” 
 
“Before reading the authors final comments I was thinking the alternative 
methods introduced in the article seemed much harder than the methods I 
was taught as a youngster but then the author recognized the fact that 
“people have the tendency to believe that the algorithm they use is easiest, 
regardless of what it is." I was shaking my head yes and then revisited the 
alternative methods with a more open mind.” 
 
“Wow! I never would have thought to do math that way, how very 
interesting. I think that that is a good way to do math in the beginning to 
show them what it means to carry and that the number (lets say 1) is 
actually a ten or hundred when carried over to that column.” 

Figure 1. Sample PT responses that will be coded “yes” as evidence of the PT experiencing 
increased motivation, for each type of article. 

 
In our second research question, we wonder how each type of article might motivate PTs to 

learn mathematical content, according to their own perspectives (as opposed to our own notions 
about how this might happen). For example, for a Type 1 article, we ask “In what ways (if any) 
do PTs’ responses suggest they are experiencing increased buy-in to our pedagogical 
approaches?” Here our goal will be to identify patterns in PTs’ open-ended responses to articles, 
and so we will use thematic analysis (Braun & Clarke, 2006) on the marked, relevant sections 
identified in our analyses for the first research question. Specifically, we will identify themes that 
illuminate the PTs’ perspectives on how an article’s intended purpose connects to their own 
motivation to learn. In this way, our use of thematic analysis will be focused on developing a 
deeper understanding of PTs’ perspectives pertaining to themes, using a narrow lens. This is in 
contrast to a more broad application of thematic analysis that would seek to capture all themes 
within the entirety of the PTs’ responses.  

 
Discussion Questions for the RUME 2017 Audience 

 
Because this is a preliminary report, we encourage feedback from the RUME 2017 audience 

to help shape the future directions of our work, as well as clarifying the community-wide 
implications of our findings. We specifically plan to pose the following questions to inspire 
discussion: 

1) In our report, we introduce three types of NCTM articles according to the way in which 
they motivate PTs’ learning of mathematics content. What other “types” of NCTM articles might 
we consider including in future research? 

2) For teachers of elementary mathematics content courses for PTs: What implications (if 
any) do the themes within our PTs’ responses have with respect to your own teaching? 
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Analysis of Teachers’ Conceptions of Variation 

Gabriel Tarr 
Arizona State University  

 

April Strom 
Scottsdale Community College 

The CCSSM emphasize statistical concepts for grades 6-12. A key factor in thinking statistically 
is to reason about variation and variability. This paper will present the analysis of survey 
questions and tasks given to in-service middle school teachers. The paper will attempt to answer 
the following question: “To what extent do middle school math teachers consider variation and 
variability when thinking about statistics and reasoning through statistical tasks?” 
 
Key words: Statistics, Professional Development, Teacher Education 
 

Organizations such as the American Statistical Association [ASA] (GAISE, 2005) and 
researchers (Gal, 2003; Gould, 2004; Davidian & Louis, 2012) have discussed the need for and 
importance of citizens’ statistical literacy. Since 2010, many states across the United States have 
adopted the Common Core State Standards for Mathematics [CCSSM] (National Governors 
Association, 2010). These math standards explicitly contain statistics1 standards for each grade 
band starting with the sixth grade. This emphasis on statistics in CCSSM is much greater than in 
previous standards (Tran, Teuscher, Dingman, & Reys, 2014). As a result, math teachers in the 
middle grades must now attend to statistical concepts as well as solely mathematical concepts. 

However, peoples’ prior experiences with statistics in formal educational settings are usually 
limited to ideas of center where ideas of variation are not emphasized until later grades, if at all 
(Pereira-Mendoza, 1986; Shaughnessy and Pfankuch, 2002; Noll & Shaughnessy, 2012). In 
order for teachers to teach statistics in a manner their students might find useful, the teachers 
themselves must first have productive beliefs, meanings, and ways of thinking about statistics. 
These productive meanings, beliefs, and ways of thinking about statistics must, by necessity, 
include productive ideas about variation and variability (Garfield & Ben-Zvi, 2005).  

In this paper the researcher will answer the following question: To what extent do middle 
school math teachers consider variation and variability when thinking about statistics and 
reasoning through statistical tasks? This paper will include a preliminary analysis on the beliefs 
and conceptions that middle school math teachers participating in a professional development 
program hold about ideas of variation and variability. The beliefs and conceptions will be 
analyzed through the use of open-ended survey questions, and free-response statistical content 
questions. 
 

Literature Review 
 

Salisbury (1996) discusses variability and variation in data as the differences among people, 
among environments, and among things. Cobb and Moore (1997) describe statistics as a 
methodological discipline that arises from the omnipresence of variability.  According to the 
GAISE (2005) framework, statistical thinking “must deal with this omnipresence of variability; 
statistical problem solving and decision making depend on understanding, explaining, and 
quantifying the variability in the data” (p. 6). Though the CCSSM (National Governors 
Association, 2010) does not formally define statistics, there is an implicit theme of variability 
                                                
1 Statistics used in this paper will mean the discipline of statistics, unless otherwise stated. 
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that is essential to this idea of statistics. The first 6th grade statistics standard in the CCSSM is for 
students to develop an understanding of statistical variability. A person who understands 
statistical variability will be able to recognize that statistical questions anticipate variability in 
data and considers its role in the answers (National Governors Association, 2010). 

Several researchers have studied students’ and teachers’ conceptions of statistics as they 
relate to variability and variation (Shaughnessy et al, 1999; Torok & Watson, 2000; Saldanha & 
Thompson, 2002; Liu, 2005; Noll & Shaughnessy, 2012). For example, Saldanha and Thompson 
(2002), Liu (2005), and Noll and Shaughnessy (2012) discussed productive meanings for 
individuals to possess about sampling that involved individuals being able to envision variability 
of sample attributes between outcomes from repeatedly sampling from a population. Thus, the 
first 6th grade statistics standard is a large part of the foundation for a much more sophisticated 
statistical concept. 
 

Methodology and Framework 
 

The data collected for this study were gathered through the efforts of a large-scale 
professional development and research program. This program focused on middle school 
teachers in a Southwestern state in the United States. Each teacher in the program was asked to 
participate in professional development activities for two years. The project focused on 
promoting the mathematical and pedagogical development of its participants.  

At the beginning of the second year, the researcher gave two assessment instruments to 50 
teachers prior to formal professional development on statistical ideas. The first instrument was a 
set of mathematical tasks, both multiple choice and free-response, that related to statistical 
content the teachers were expected to teach in middle school (grades 6-8). The second instrument 
was an open-ended beliefs survey with seven questions about statistics and statistics teaching.  

The researcher performed an initial examination of the teachers’ survey responses by 
conducting several passes through the data. During each pass, the researcher examined the 
response for each question from each teacher before moving on to the responses for subsequent 
questions. The researcher created themes in teacher responses while using the lens of the GAISE 
(2005) framework in conjunction with CCSSM (2010) for statistics. Using this lens, the 
researcher examined the two survey questions and two content tasks where teachers had the most 
opportunity to consider variability as they thought about statistics and reasoned through 
statistical tasks. 
 
Questions and Task Description 

The focus of this paper is on the analysis of two of the beliefs survey questions and two of 
the tasks. The researcher analyzed the following two questions. Q1: Briefly give a definition for 
statistics. What do you take this to mean? What comes to mind when you see or hear the word 
statistics? Q2: To you, what are the differences, if any, between statistics and mathematics? 
What are the similarities, if any, between statistics and mathematics? 

In addition to these survey questions, two tasks were analyzed: The Sampling Task and The 
Calorie Intake Task. The researcher designed The Sampling Task (Figure 1) to determine what 
teachers believed to be important aspects of sampling, as well as to determine which aspects of 
sampling that teachers would give evidence of noticing in their arguments for or against one of 
the choices. 
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Figure 1: The Sampling Task 

Each of the choices in The Sampling Task has a designed strength and weakness pertaining 
to sampling methodology. Chi’s method is the only sampling method that includes random 
sampling. However, the number of classes in the school are not given in the prompt, thus the size 
of Chi’s sample may be too inadequate to accept her conclusions. Kendra’s method is the only 
sampling method that accounts for gender2 in the sample. However, Kendra’s sample may not be 
representative of the students at the school due to the existence or composition of certain sports. 
Diego’s method has the potential for having the largest sample. However, Diego’s sample, while 
large, may not be representative of the population at the school due to how he picked the classes. 
From the prompt, the teacher had to determine that Diego’s method is not a census.  

The histogram presented in The Caloric Intake Task (Figure 2) depicts a collection of calorie 
(kcal) counts.  

 
Figure 2: Histogram from The Caloric Intake Task 

                                                
2 Assuming gender as being dichotomous. 
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Using the histogram in Figure 2, the teachers were tasked with describing the data, developing 
questions to ask their students about the data, and explaining the statistical concepts underlying 
these questions. The researcher designed this task to determine what teachers believed to be 
important enough aspects of a distribution of data to ask their students. The researcher wanted to 
examine the ideas and language relating to the data’s shape, center, and variability that the 
teachers would (or would not) use in posing questions to their hypothetical students.  
 

Preliminary Results and Discussion 
 

The new standards unambiguously state variability as a necessary condition for statistical 
thinking. However, the preliminary data from the teachers in this study suggest that teachers 
rarely consider the notion of variability when thinking about statistics or engaging in statistical 
tasks. In the beliefs survey, only one of the 50 teachers responded to Q1 with anything pertaining 
to variability.  

An important difference between statistics and mathematics is that people who do statistics 
are focused on the variability of data. Thus, Q2 is a natural question to probe teachers’ thinking 
about variability. Several teachers responded to the question with statements about utility, 
subjectivity, or practicality of statistics when related to mathematics. Several teachers also 
responded with the notion of statistics as a subset of mathematics. None of the teachers 
responded to Q2 by mentioning anything about variability being a key difference between the 
two, not even the teacher who had mentioned variability in her response to Q1. 

Q1 and Q2 provided the best opportunity for teachers to discuss variability’s role in statistics 
in the survey format. With only 1% of the total responses mentioning variability, the teachers 
seem to indicate that they do not consider variability when thinking about statistics. To 
strengthen this argument, analysis of the statistical tasks is presented below.  

The Sampling Task and The Caloric Intake Task provided the teachers with opportunities to 
reason about statistics both personally and pedagogically. Of the 44 respondents to The Sampling 
Task, 31 selected only Deigo’s method, 12 selected only Chi’s method, and one selected 
Kendra’s method or Diego’s method. None of the teachers selected only Kendra’s method, in 
fact, the teachers overwhelmingly selected against Kendra’s method. As Table 1 shows, many 
teachers picked out the potential for sampling bias in Kendra’s method as a weakness. None of 
the teachers (including the lone teacher who picked Diego and Kendra) mentioned the designed 
strength of Kendra’s method. 

 
Table 1: Teacher Responses to Kendra's Method 

 
 

The variability in middle school students’ heights due to gender3 is familiar to middle school 
teachers. However, based on the responses, it seems to have gone unnoticed by the teachers that 

                                                
3The height differences due to gender in middle school are obvious, but these claims can be corroborated by The 
Center for Disease Control. http://www.cdc.gov/nchs/data/series/sr_11/sr11_252.pdf 

Sample of 
Teacher 

Responses to 
Kendra's 
Method

Kendra's method will 
undoubtedly be 

skewed because of 
clubs and especially 

sports.

Kendra is only 
athletes which 
could be biased 
to tall people.

Kendra's only 
samples a certain 

demographic and is 
not representative of 

"normal"

Kendra or Diego because their samples 
would be random vs biased. You must 
take into account not only the sample 
space but the direction the question at 
hand is leading you to a conclusion.
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Kendra deliberately accounted for gender in her sampling. If some teachers did notice it, 
accounting for gender did not seem to be important enough for the teachers to give comment. 
Given this context that is near to the teachers, the researcher speculates that teachers who attend 
to the necessity of variability for statistics would have had no problem mentioning this strength 
of Kendra’s design, even if the teacher did not choose Kendra’s method. 

The Caloric Intake Task was more open-ended than The Sampling Task. As stated 
previously, it was designed to allow the teachers to share what they felt might be salient 
statistical concepts for their students. A surface-level analysis revealed that 19 of the 31 teachers 
responded to the task with language or calculations that were related to variability. A deeper 
analysis of the teacher responses showed that only four of the 31 teachers asked meaningful 
questions about variability. Of these four teachers, two asked questions of their students about 
why the caloric intake between students could potentially vary. The other two teachers gave 
examples of how the caloric intake could potentially vary due to students’ socioeconomic 
statuses, students’ athlete statuses, and students’ health statuses (Table 2).  

 
Table 2: Teacher Responses to The Caloric Intake Task 

 
Based on the fact that the variability response rate for Q1 and Q2 was so low, it is safe to assume 
that the four teachers are atypical of the teachers in the program at-large. Most of the teachers do 
not seem to consider variability when thinking about statistics or reasoning through statistical 
tasks. 
 
Future Work 

Teachers responded to Q1 and The Caloric Intake Task with language that relates to 
variability. However, the teachers’ responses to all four assessment items do not indicate that 
they are considering how variability influences statistical thinking. In the future, the researcher 
plans to 1) collect task-based interview data to assess the meanings that teachers have when they 
use variability language and 2) interact with teachers during lesson-planning activities to focus 
their attention on attending to variability while planning tasks and activities for their students. 
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Sample of Variability 
Language Responses

"Range of intake, mean, 
median, mode, MAD..."

"Students are between 
1800 and 3699 calories 

which is a range of 1899 
calories."

"What's the mean? 
What's the range?"

"I would ask my students 
about the spread and 

shape of the data as well 
as the skew."

 

Meaningful Variability 
Responses

"Why do you think the 
data varies?"

"What was the variation 
of the number of calories 

consumed?"

"Which groups of 
students might be in 
different categories? 
(athletes, poor who 

wouldn't get dinner at 
home, etc"

"There is a large range is 
calorie intake. I wonder 
how many students play 
sports - this could affect 

the needed calorie intake.
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Implementation of Pre and Post Class Readings in Calculus 
 

       Salam Turki                      Houssein El Turkey 
      Rhode Island College         University of New Haven      

Active learning practices highly depend on students’ preparation for class in advance. However, 
reading Calculus can be a challenging task to students. We address this concern by assigning 
targeted pre-class readings and reading quizzes in two Calculus II classes. To study the 
effectiveness of these, we also provided them as post-class readings in two other classes. We 
report on our implementation and we discuss students’ feedback about the readings and quizzes.  

Key words: pre and post class readings, reading quizzes, exit quizzes, Calculus 

Introduction 
In recent years, Flipped Classroom and Inquiry-Based Learning pedagogies have emerged as 

methods of active learning. These active learning practices highly depend on students’ 
preparation for class in advance. To prepare for class, professors often ask their students to read 
the textbook before they come to class. However, most faculty report that students rarely do this 
(Felder & Brent, 1996). We believe that this concern is even more evident in mathematics 
education. Reading mathematics texts before the class can be a challenging task to students 
especially in introductory classes such as Calculus. In this proposal we attempt to address this 
issue by implementing active learning practices (Prince, 2004) in four classes of Calculus II. 

 Our study is divided into two themes: students in two sections had access to short typed 
targeted notes before class combined with reading quizzes at the beginning of the class period. In 
two other sections students had access to the same notes after the class and the same reading 
quizzes were given to them as exit quizzes at the end of the class. After presenting a literature 
review, we describe the methods of this study. In particular, we describe the structure of these 
classes, the nature of the readings and quizzes, and the collected data. We report preliminary 
quantitative and qualitative results on students’ usage of textbooks and these notes. We provide 
some of their feedback about the pre/post class readings and the respective reading/exit quizzes. 

 
Literature Review 

Many science education articles discuss reading assignments and reading quizzes. Hodges, 
Anderson, Carpenter, Cui, Gierasch, Leupen, and Wagner (2015) discussed different formats of 
reading quizzes in different STEM areas. We found in (Heiner, Banet, & Wieman, 2014) an 
implementation of targeted pre-reading assignments with an associated online quiz in two 
science classes, physics and biology. In an introductory physics course, Henderson and 
Rosenthal (2006) used reading questions instead of reading quizzes where students posed 
questions on the assigned readings to the instructor via email before class.   

On the other hand, there have been numerous research articles demonstrating the difficulties 
students have with reading mathematics texts. For example, Shepherd, Selden and Selden (2009) 
believe that “many, perhaps most, first-year university students do not read large parts of their 
mathematics textbooks effectively, that is, they cannot work straightforward tasks based on their 
reading. Whether this is because they cannot read effectively, or choose not to do so, seems not 
to have been established” (p. 1). Shepherd (2010) also states that “the textbooks for many first-
year university courses, such as college algebra, precalculus, and calculus seem to be written 
with the assumption that they will be read thoroughly and precisely” (p. 3).  She also refers to a 
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brief survey (JMM presentation, Exner & Shepherd, 2008) of Calculus I students where they 
found that few read the textbook at all. The authors of this presentation (as cited in Shepherd, 
2010)  provide a typical student comment: “When I think there is a formula I need, I’ll go back 
and look if there is a formula, otherwise… there is very little chance that I’m going to read any 
of it. ” 

 In addition, we refer the reader to Weinberg, Wiesner, Benesh, and Boester’s study (2012) in 
which they surveyed 1156 undergraduate students in introductory mathematics classes about 
their textbook usage. Students reported that they used the examples instead of the expository 
text. Weinberg et al. results show that “instructors may play a role in students’ textbook use. 
When students perceive that they are asked to use their textbook, they report that they are more 
likely to do so…Although the conclusions that can be drawn from these results are limited, they 
suggest that instructors may be able to increase students’ use of their textbooks by asking their 
students to use their textbooks” (p. 23). 

The aforementioned student’s comment from (Exner & Shepherd, 2008) and Weinberg et 
al.’s results (2012) probably describe the attitude of the majority of Calculus students towards 
their Calculus textbooks. This motivated us to provide students with targeted summarized typed 
notes that can serve as a tangible resource for students’ learning of Calculus concepts. By going 
through a literature search, we have found little evidence on the usage of targeted reading 
assignments in Calculus courses. In this preliminary report, we discuss the implementation of pre 
and post class targeted readings in Calculus classes. We also report on using quizzes that served 
as both “reading” (beginning of class) and “exit” (end of class) quizzes. Preliminary results from 
an end of the semester survey are presented in which we address the questions: How much time 
do students spend on pre-class readings; how often do they use post class readings? How do they 
perceive these readings? How do they perceive reading and exit quizzes? 
 

Study Design 
The study was conducted in four sections (Sections 2, 8 am; 4, 10.50 am; 6, 4.30 pm; 8, 8 

am) of Calculus II classes at a comprehensive Northeastern university that has emphasis on 
sciences and engineering. At this institution, Calculus II covers integral Calculus and Series. The 
classes had a total of 90 students where a total of 69 students consented to participate in the study 
(26 females and 43 males). The majority of them were Engineering and Forensic Sciences 
majors. The classes met in Spring 2016 semester, three times a week for one hour and fifteen 
minutes.  

To answer the questions above, we designed the study to have two sections (4 & 6) with pre-
class readings where students took a quiz on new concepts and techniques at the beginning of the 
class period. Two other sections (2 & 8) had access to the same readings after the material was 
discussed in class and the same quizzes were taken as exit quizzes at the end of the class.  

The readings were targeted in the sense that they were brief and prepared (typed) by the 
instructors. A typical note is a 1 page (at most 1.5 pages) long that has a short discussion about a 
concept followed by two or three examples. Fig. 1 is a sample note on Integration by Parts. We 
omit the second part of this note that included the two examples ∫ 𝒙𝒆𝒙𝒅𝒙 and ∫ 𝒙𝒍𝒏𝒙 𝒅𝒙 
followed by a brief generalization to any power of x. We designed the quizzes to be very similar 
to the examples in the readings that included any new formulas and multiple steps to guide the 
student’s answers. In Fig. 2 we see a sample quiz question on Integration by Parts. It is worth 
noting that the quizzes constituted only 5 % of the final grade and hence did not have a huge 
impact on students’ final grade.  
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Figure 1: A sample note 

 

 
Figure 2: A sample quiz 

The collected data for our study include two surveys, the first was given in the second week 
of classes and the second was given in the last week of classes. Our data also include the 
reading/exit quizzes, an early quiz on the first day of classes and a retention quiz at the end of the 
semester. The grades for these two quizzes were not counted towards students’ grades but the 
students were not informed of this till after the quizzes were taken. For this report, we only 
present data from the two surveys.  
 

Preliminary Results 
In the early survey we asked students about their study habits and, in particular, how often 

they read the textbook prior to the next class. We found that about 65 % of the students who took 
the survey reported that they never or seldom read the textbook before coming to class, about 22 
% of them said they read the textbook about half the time, and about 13 % said they read it 
usually or always. This shows that most students did not spend time outside the classroom to 
reinforce the learning of the concepts that were discussed in class before they come to the next 
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class period. These results served as a motivation for assigning pre-class readings or providing 
targeted readings for an after-class reinforcement of concepts. 

We now present some preliminary results from the end-of-semester survey. We analyzed two 
questions from the survey. In sections 4 and 6, we asked the students: How much time (on 
average) did you spend on each pre-class reading assignment while in sections 2 and 8, we asked 
the students: Did you use the typed notes when you worked on your homework or studied for 
tests (did not use them, sometimes, frequently, all the time). In all sections, students were asked 
to rate the usefulness/effectiveness of the typed notes. In sections 4 and 6, 59 % of students spent 
between 20 and 40 minutes, 16 % spent more than 40 minutes, while 25 % of students spent less 
than 20 minutes on the typed notes.  The survey analysis showed that 69 % of students in these 
two sections found the notes either effective or very effective. In sections 2 and 8, 76 % of 
students either used them sometimes or frequently when they worked on homework assignments 
or studied for tests and 68 % of students found them either effective or very effective.  

In the following, we support these positive students’ perceptions by providing some of their 
feedback on the notes and the quizzes. Even though the quizzes constituted only 5 % of the final 
grade, they had a relatively high impact on students’ pre-class reading efforts in sections 4 & 6, 
and on students’ attention span in sections 2 & 8. We will support this claim via students’ 
qualitative data from the end-of-semester survey. 

We start with comments from students in sections 4 and 6 who had pre-class readings. We 
refer to students from these sections as S-number. Student S1 reported: 

The notes and quizzes constantly forced us to actively learn outside of class which I 
thought was very effective.  

Student S2 found that: 
The typed notes and the quizzes are great additions to the class is probably why this 
class has not been as stressful as previous math courses. 

Student S3 pinpointed the main purpose of having pre-class readings: 
The typed notes and quizzes made us have an understanding of the topic before class 
but left room for further understanding during class discussions. 

Student S4 had a concern about the grades when s/he said: 
The notes are helpful but don’t give the same understanding like doing it in class 
does which effects the grades since we do the quizzes in the beginning.  

Student S5 commented: 
The typed notes were very helpful because they helped me have some understanding 
of the material before it was taught to me. There were only a few that were hard to 
understand but then the lecture was able to help me get a better grasp of the material. 
The quizzes were also very helpful because they pushed me to actually read the 
notes.  

We also provide some feedback from students who had access to the typed notes after class 
and we present their feedback on the exit quizzes. We refer to students from these sections as T-
number. The main theme of students’ feedback was that the typed notes were helpful in doing 
the homework and that the quizzes kept the students’ attention at a high level. For instance, 
student T1 said: 

The provided typed notes were a great help in doing the HW. They should of 
however, been uploaded before class instead of after. The quizzes were good to make 
sure that you are actually understanding the lesson that day. 

Student T2’s feedback was:  
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The typed notes helped with the typed homework and the quizzes helped reinforce 
what I learned that day.  

Student T3 found that: 
The notes, quizzes, & the assigned typed HW helped me comprehend the content 
even more than what I had expected. 

While Student T4 commented: 
I liked the typed notes, but for the last few classes of the semester the typed notes did 
not cover everything we did in class. I like the way the quizzes are (right after the 
lesson)….I think that quizzes sometimes took away from the lecture when we could 
have used that time to finish the lecture.  

Student T5 gave the following comment: 
Typed notes: I find it hard to understand math written out on a piece of paper. 
Quizzes: a nice grade booster and opportunity to show what I learned. 

Discussion/Future Research 
Our preliminary data analysis shows that the majority of the students reported that the typed 

notes and quizzes were helpful and conducive to learning. Some students went even further and 
recommended some changes. For example, Student T1, from a post-reading section with a final 
C+ grade in the course, expressed her/his preference to having access to the typed notes before 
class rather than after. Her/his feedback basically encapsulates instructors’ hope of increased 
exposure to concepts outside the classroom. It is indeed our goal to assign these readings before 
class in every course, but for the purpose of this study, this was not the case in Spring 2016.  

As pointed out by some students, there were a few notes that were technical and harder to 
read. We definitely agree and we will surely modify these notes as we implement these readings 
in the future. However, we do not plan to increase their size as we want to intentionally keep 
them short and concise. The purpose of the notes is not to replace the classroom mini-lectures or 
discussions, and consequently they will not cover everything that is discussed in class.  

To address student T4’s concern about the time taken by the quizzes (typically about 5 
minutes), we looked into other alternatives such as online quizzes but we believe that in class 
quizzes give a better hands-on learning experience for students. We also claim that they provide 
a better assessment method of students’ reading efforts and attention span.  

For future research we hope to have a more in depth analysis of our data. In particular, we 
would like to have: 

• A comparative analysis of the grades on quizzes and/or exams of the 4 sections through 
the lens of the targeted notes’ usage, 

• A study of the effect of these notes on students’ content retention using the retention quiz,  
• A study of the effect of pre-class readings on the classroom environment as reported by 

the instructors’ observations, and 
• An exploration of the shortcomings of this study such as the different meeting times and 

lack of instructions on how to read mathematics.  
 

Preliminary Report Questions 
1. Do the different meeting times of classes impact students’ learning and performance?  
2. What does existing research suggest for instructions to read mathematics?  
3. What is the correlation between students’ GPA and their motivation to read mathematics 

textbooks/notes? 
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Graduate students teach many first year undergraduate mathematics courses, such as College 
Algebra and Calculus. In this report, we focus on the opportunities to learn to teach that 
graduate student teaching assistants (GTAs) construct from reflecting on their teaching 
experiences. Research in professional development suggests that although reflection is 
absolutely essential to improving one’s teaching, teachers have the greatest opportunity to learn 
from their teaching when they can mobilize their interpretations of teaching to inform specific 
and nuanced future actions. Yet, there are few studies addressing the ways in which GTAs 
develop opportunities to learn from reflection. In this case study, we examine how two graduate 
students developed the ability to link observations of student work to hypotheses about student 
thinking and then connect these hypotheses about student thinking to future teaching actions. 
These reflections were generated as a part of a professional development program for GTAs.  

Key words: Post-Secondary Professional Development, Graduate Teaching Assistants, Student 
Work, Student Thinking, Teaching Actions 

Providing and studying professional development programs for teachers has become a norm 
in K-12 education. Since instruction is the primary responsibility of K-12 teachers, the need for 
professional development is commonly accepted. In higher education, the need for professional 
development is gaining acceptance.  While the primary function of colleges and universities is to 
provide students with an education, the instructors and professors who teach the classes often 
have responsibilities that extend beyond instruction. This is especially true at research 
universities, where a professor’s appointment is often split between teaching and research. In a 
similar way, a graduate student’s responsibilities are often split between the two. While it may be 
true that many graduate students are training to become researchers, their secondary role as an 
instructor is important. It is often the case that graduate students are the primary instructor of a 
course for the first time as a graduate teaching assistant (GTA), which is an assignment that 
mathematics departments should not take lightly. As providers of education, one of our primary 
goals should be to help our teachers provide high quality instruction. It is for this reason that we 
believe it is necessary and important to study not only how to provide professional development 
to graduate students, but also the impact that professional development has on their development 
as teachers and their future teaching actions. 

Purpose and Relationship to Research Literature 

While there are many important differences between teaching in K-12 and higher education 
(Speer, King, & Howell, 2015), there is also much that we can take from K-12 professional 
development when designing and studying professional development programs for GTAs. One 
thing that research has shown is that an instructor has more opportunities to learn when they plan 
future teaching actions by reflecting on previous instructional experience (Thompson, 1984). In 
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the K-12 literature, studies have shown these opportunities to learn are impacted by both the 
clarity of the teacher’s reflections on the nature of student’s understandings and the amount of 
time available for the teacher to construct a response to student thinking (Horn, Kane, & Wilson, 
2015). If the model from K-12 holds, then one would expect that graduate teaching assistants’ 
opportunities to learn will also be more meaningful when they are given time to reflect. 

However, providing time for reflection alone is not enough. The other important variable in 
the process is the clarity with which the teacher has the ability to reflect. While clarity could be 
measured in various ways, one potential means of measuring the clarity with which a teacher 
reflects is by studying the arguments the teacher makes. Since our study involved analyzing 
several reflective essays on teaching in which the GTAs made arguments to explain student 
thinking and propose future teaching actions, this measurement seemed best suited to our 
purposes. Toulmin (1958) developed an argumentation model for legal arguments using the 
components of grounds, claims, and warrants. In this model, grounds are the evidence underlying 
a claim and a warrant justifies the relationship between the grounds and the claim. More 
recently, Toulmin’s model has been applied to other fields, including mathematics education 
(Inglis et al., 2007).  

In Lai, Smith, Wakefield, Miller, St. Goar, Groothius, Wells (2016), a modified version of 
Toulmin’s model was used to analyze the connections GTAs made between what they observed 
their students doing and their future plans for teaching. Lai et al. performed a qualitative analysis 
of 16 final papers written by mathematics GTAs and developed a coding scheme that categorized 
papers as low connectivity, medium connectivity, high connectivity with low coherence, and 
high connectivity. The researchers concluded that even when GTAs are teaching the same 
course, participating in the same professional development, and completing the same task, the 
clarity of their reflections on the nature of student thinking varies widely. Further, there is a wide 
variation in the GTAs apparent ability to connect student thinking to future actions. However, in 
this previous study, no attempt was made to look at the growth GTAs experienced. For example, 
while the authors found examples of GTAs with high connectivity in their final papers, there was 
no indication of what growth may have occurred over the course of the professional development 
program. An important question that resulted from this is whether or not these cases of high 
connectivity are representative cases of individuals who entered the professional development 
program with these reflective skills. 

The purpose of this intrinsic case study (Stake, 1995) is to better understand the growth 
experienced by two mathematics GTAs over the course of their involvement in a professional 
development seminar. These two GTAs were selected because they have been identified as 
strong teachers and pedagogical leaders in the department. At this point in the research, growth 
will be generally defined as increase in coherence over time. The central question that is guiding 
our inquiry is: How did the GTAs grow over the course of the professional development 
seminar? We decompose the central question as follows: 

1. How might the opportunities to learn afforded over the course of the professional 
development seminar help the GTAs to make changes in their teaching? 

2. How might the GTAs’ ability to clearly reflect on the nature of student thinking change 
over the course of the professional development seminar? 

Our intention is to use Lai et al.’s research methods on a set of papers collected from GTAs 
over the course of an entire semester of professional development. Conducting this type of 
longitudinal case study will allow us to examine the growth of the GTAs, as opposed to just 
examining the final paper. Although the context of this case study makes it hard to generalize, 
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this analysis will help identify what GTA growth looks like and provide one possible measure by 
which professional development programs for GTAs could be evaluated. 

Theoretical Frameworks 

This paper utilizes the coding framework discussed in Lai et al. (2016), which examines the 
connections between student data, student thinking, hypothesis, and future teaching actions. Data 
is defined to be the written student work collected by the instructor with the addition of any 
memory-recalled communication as observed by the instructor and recorded in their writing. 
After collecting data, the instructor interprets this data in the form of student thinking. That is, 
student thinking is the instructor’s expression of how he or she believes the data should be 
interpreted as a reflection of the student’s work. Instructors may hypothesize likely reasons for a 
student to think in the way in which the instructor has argued. This hypothesis depends upon the 
underlying origin of student thinking. Finally, an instructor may plan a future teaching action 
based upon any or all of the previous elements. These four elements, and the connections 
between them, form the framework used to analyze GTA work. 

Figure 1. Model for GTA arguments 
Using this framework, a GTA’s work may be coded by looking for the presence or absence 

of any of the four elements and the connections between them. When looking at connections, 
coding captures not just the presence or absence of a connection but also the plausibility of a 
connection. Using this technique, a work may be categorized as having low connectivity if 
explicit reference to two or more of the four elements was missing, or the connections between 
these elements are not present. On the other hand, a work is said to have high connectivity if the 
GTA clearly articulates all four elements and makes explicit links between these elements. The 
tag low coherence is added when the four elements are articulated, but weak, implausible, or 
implicit links are present. A final category of medium connectivity is marked by the presence of 
at least three of the four elements, and attempted links between all of the components. A visual 
representation of these various types of connectivity is included in Figure 2. 

Data and Methods 

Using this framework, we plan to study the growth that we observed in the works of two 
particularly strong GTAs over the course of the fall 2015 semester when they were enrolled in 
the department’s pedagogy seminar. At the university in the study, every graduate student who is 
assigned to be the primary instructor of a course for the first time is required to enroll in a 
seminar titled “Teaching and Learning Mathematics at the Post Secondary Level.” This seminar 
meets for two hours a week in the fall semester and one hour a week in the spring semester. To 
help develop their ability to reflect, the graduate students in the course read educational 
literature, including articles ranging from Erlwanger’s (1973) discussion of Benny to expository 
articles like Tsay and Hauk’s (2013) explanation of constructivism. 

While enrolled in the seminar, the graduate students enrolled in the course are primary 
instructors for their own mathematics course (either intermediate or college algebra). The typical 
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enrollment in these courses is between 34 and 40 students. Graduate students are the sole 
instructor of record and, for most, this is their first experience teaching. Their experience 
teaching together with the articles they read provide the backbone of weekly discussions in 
which graduate students are given the opportunity to reflect on their own teaching, utilizing the 
vocabulary of mathematics education. 

 

Figure 2. Categories of connectivity of GTA arguments 
The data for this study, which has already been collected, includes three assignments 

completed by the GTAs throughout the semester course. All three assignments asked the GTAs 
to write papers in which they analyze student performance on a quiz or exam question and 
provide both an interpretation of what went wrong for a student or a group of students and 
evidence supporting their interpretation. GTAs were also asked to form a hypothesis about what 
underlying experiences and beliefs may have contributed to this performance and ultimately 
develop an “intervention” to try and help the student overcome these experiences and beliefs in 
order to move into a more productive way of handling this type of problem. Data from 16 GTAs 
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was collected and analyzed using the above-mentioned argumentation framework. The results of 
the final paper were previously analyzed and reported in Lai et al. (2016). This purpose of this 
paper is to discuss the growth observed in two GTAs who have been identified by the math 
department as particularly strong teachers. By comparing their three papers to each other, this 
study will allow us to analyze how these GTA’s teaching may or may not have changed 
throughout the semester. In other words, while Lai et al. (2016) looked broadly at the work of all 
GTAs on a single assignment with the purpose of characterizing opportunities to learn, this study 
will look narrowly at the work of two GTAs across multiple assignments, so as to understand 
better how these opportunities to learn were utilized. 

Significance 

Even though providing professional development for GTAs is a rather new phenomenon, 
exemplary models of GTA professional development programs do exist (Bressoud, Mesa, & 
Rasmussen, 2015) and some studies of GTA professional development have been conducted 
(Hauk et al., 2009; Kung 2010; Kung & Speer, 2009; Speer, Gutmann, & Murphy, 2005). Yet, 
there is much that we have to learn. Ellis (2014) suggested that one means of better 
understanding how to prepare post-secondary mathematics instructors is to look at methods 
employed in the K-12 environment and use those methods to study the post-secondary 
environment. This study takes that approach by focusing on the clarity of reflections, as 
suggested by the K-12 literature. Also, this work provides an opportunity for further testing and 
refining of the framework proposed by Lai et al. (2016). Since this work is in its early stages, we 
believe that a case study is the right methodological approach. In order for researchers to better 
study GTA training, researchers need to better understand what is happening to the individuals in 
GTA training programs. Since the two subjects of this study were identified by as being 
particularly strong teachers, it would be useful to understand what this means and whether or not 
the framework suggested by Lai et al. (2016) identifies any features of their strength. 

Questions for the Audience 

To refine our ideas, we pose the following questions to our audience: 
1. Are their areas of our framework that you think would be hard for you to utilize in 

analysis of GTAs in your program? 
2. Is there something missing from our framework that would add a significant contribution 

to our understanding of the reflective process a GTA uses? 
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Factors Influencing Instructor Use of Student Ideas in the Multivariable Calculus 
Classroom 

 
 Aaron Wangberg Tisha Hooks Brian Fisher Jason Samuels Elizabeth Gire 
 Winona State U. Winona State U. Lubbock Christian U. CUNY – BMCC Oregon State U. 

Despite overwhelming evidence of the effectiveness of student engagement in instruction, 
practicing mathematics instructors often use instructor-centric practices even if they value student 
engagement. Answering a call by Henderson and Dancy (2007) to study the implementations of 
researched-based curriculum in the classroom, this paper looks at the change in practices and 
values of instructors utilizing active-engagement activities in multivariable calculus classes. This 
curriculum incorporates context and multiple representations, and we look for evidence that 
addresses whether these features facilitate instructor use of student ideas in instruction. 

Key words: Curriculum adoption, Student-centered Instruction 

Despite an abundance of research highlighting the benefits of actively engaging students in the 
classroom, many practicing undergraduate mathematics instructors still utilize lecture and a host 
of non-student-centric practices. This often occurs even if instructors value student engagement. 

We examine how two features of a research-based curriculum – contextualized problems and 
an emphasis on multiple representations (MR) – may or may not support instructors in attending 
to and using student ideas in instruction. In this study, we look at two guiding questions: 

x What features of instructional materials support instructors in attending to and 
incorporating student ideas in instruction?  

x Do contextualized problems and an emphasis on MR support instructors in valuing student 
contributions and incorporating them in their instruction? 

 
Theoretical Framework  

Activity theory (Engeström, 1987; Cole, 1996) notes that many factors influence change in any 
new activity. Instructors adopting a new curriculum have to navigate many new factors with the 
existing factors in the classroom. This might involve new roles of both students and instructors in 
the classroom, new agreements about how these populations interact and new rules for each of the 
new groups. In particular, instructors adopting a student-centered curriculum have to re-evaluate 
their expectations for how students and the instructor contribute toward the course. Instructors 
often have to settle into new roles while still being familiar with their prior roles. 

There is reason to believe that context and MR might support an increase in the use of student 
ideas.  For context, students may find contextualized problems more relevant to their interests and 
be more engaged with the task than for more abstract problems.  Additionally, students can 
contribute conceptual and intuitive knowledge connected to the problem context.  The use of MR 
could increase the possibility of finding multiple solution paths.  Different groups can use different 
representations, providing opportunities for students to identify and discuss the connections and 
differences between them. 

The instructional materials in this study incorporate context and MR so that students are able 
to touch, point at, and work with mathematical objects and explore properties even before these 
concepts have been introduced formally by the instructor. The contextualized activities present 
students with a meaningful scenario, effectively changing how they interact with math concepts: 
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Instead of asking how the mathematics they’ve learned is related to the real world, they’re instead 
solving real-world problems and learning how the mathematics they discovered is connected to 
multivariable calculus. Lastly, the use of MR allows students to choose which way they want to 
solve a problem. They may choose to use a familiar representation, even if it is not the best choice 
for that problem. Natural questions exploring the connections between representations arise when 
their peers present similar or contradictory solutions using a different representation. 

 
Methods 

Instructional Context 
Raising Calculus to the Surface (RC), an NSF (DUE-1246094) project funded in 2013, utilizes 

small group activities and open-ended questions designed to help students discover important 
multivariable calculus concepts prior formal introduction by their instructor. The Raising Calculus 
materials highlight four main features: physical manipulatives, open-ended prompts, contextual-
ized problem situations, and an emphasis on MR.  We focus on the relationship between the 
instructor’s attention and use of student ideas in instruction and (1) how much they value the 
contextualized nature of the problems and (2) the extent to which they emphasized the use of MR. 

Instructors rarely approached the RC project because the materials utilized inquiry. To 
facilitate adoption, instructors could modify the activities and choose which activities to 
incorporate into their course (Henderson and Dancy, 2007).  All 11 activities utilized MR; Nine 
made meaningful use of context. 

Data 
Data for this paper comes from 16 of the 38 instructors who used the RC materials during one 

or two terms of the 2014-2015 academic year. The chosen 16 instructors completed anonymous 
open-response pre/post surveys. The paired surveys focused on the instructor’s practices as well 
as their attitudes and beliefs about student learning in multivariable calculus. The pre-survey was 
completed prior to a professional development workshop in Summer 2014, and the post-survey 
was completed after each term of using the materials. Instructors completing the post-survey were 
shown their pre-survey responses, thus helping them identify and address changes in their course. 

Categorization Process 
The first two authors independently read and identified over 160 categories contained in all 23 

instructor’s survey responses. After comparing notes, the authors revised the categories, 
independently re-categorized instructor responses then met again and collapsed categories into 
four main themes.  These themes were the instructor’s instructional method, their use of students’ 
ideas, their value and use of MR, and their value of context.  We now describe how instructors 
were classified within each theme. 

Instructor’s use of instructional methods. No one question asked about their specific 
practices, but instructors often reported their instructional practices on the pre-survey or changes 
to their typical practices on the post-survey questions. An instructor was categorized as Lecture 
if they made no mention of having students engaged in Small Group Skill Activities, open-ended 
Small Group activities, or Inquiry Activities.  Instructors could be categorized under the last three 
categories even if they still utilized lecture as the primary instructional method. 

Instructor’s use of students’ ideas. Pre-survey questions asked instructors to describe the 
contributions an average student made to their classroom under the ideal setting (and to describe 
the actual contributions, if it differed from the ideal). A paired post-survey question allowed 
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instructors to describe any changes in the contribution of the average student to the course. The 
post-survey also asked if (and how) students were more likely to explore their ideas with each 
other than in the instructor’s previous course.  

Instructors use student ideas in courses in a multitude of ways, making any one-dimensional 
representation of that data difficult. Nevertheless, subcategories chosen progress from no use of 
student ideas all the way to expecting or noticing students are contributing new content to the 
course. Responses such as using Think/Pair/Share or activities involving practice of previously 
introduced skills are sub-categorized under Peers, while responses involving group work with 
presentations to the class or whole-class discussion are sub-categorized as Whole Class.   
Instructors are categorized under the Add New Content category if they report their students 
contribute new ideas to the course. 

Instructor’s value and use of multiple representations. Survey questions asked instructors 
about the role various representations played in their course (pre-survey) and how this role changed 
after using the materials in the course (post-survey). Instructors often reported representations 
played a minimal role or a significant role in their course on the pre-survey, and frequently 
indicated it increased on the post-survey. The category Low indicates the instructor primarily 
emphasized symbolic and/or visual (height) features of graphs. The High category indicates the 
instructor utilized many representations, including contour plots, throughout the course.  In the 
graphs that follow, pre-survey data points are marked to the left of the Low and High categories; 
the vector points toward the right of Low or High if the instructor noted that their use increased. 
The final category (Connecting Representations) indicates the instructor noted they value that 
students are making connections between different representations. 

Instructor’s Value of Context. No survey questions asked about context, yet many instructors 
mentioned their use and value of context or units increased on the post-survey question focused 
on MR1. For this category, Low indicates an instructor pays attention to units and quantities. High 
indicates an instructor is describing how context helps students understand mathematical concepts. 
Several instructors are categorized as No Context, indicating that their surveys contained no 
references to the value of context. 

Limitations and Representation of the Data 
The categories listed above contain multiple factors and dimensions; we have deliberately 

collapsed and ordered the data to assist us in visualizing changes contained within the data.  
Although the data is not ordinal, we present the data using graphs and vectors. Each of the 16 
instructors are represented by a vector, with the tail (round circle) and tip (arrow) representing data 
from the pre-survey and post-survey, respectively. An instructor using the materials for two terms 
has a multi-segmented arrow. All sub-categories described in the previous section are included on 
the graphs, although not every sub-category is labeled. Small perturbations were added to the data 
points to keep nearby data points from overlapping. 

 

                                                 
1 Context can be an important representation of a mathematical problem, but the survey 
questions directed instructors toward contour plots, graphs, symbolic, and verbal representations 
of functions. 
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Data Analysis 

More Inquiry-Like Instructional Methods Corresponds to Increased Use of Students’ Ideas 
Figure 1 compares the change in the instructor’s use of student ideas to their change in 

instructional methods. The data shows instructors utilizing RC materials incorporated open-ended 
small group activities into their course, although only 8 of the 16 instructors (those in group A) 
described using them in ways which let students discover concepts prior to formal introduction. 
Six instructors in group B changed from using primarily lecture-based practices where students 
engaged in instructor-led questions to using practices in which students shared their results with 
the whole class. One instructor in this group noted that he “liked the interactive atmosphere that 
took place in the classroom. There was a lot of student-led activity, including making conjectures, 
measurements, etc. that lead to sometimes heated debates about concepts.”. He further stated that 
“using the surfaces made [him] re-think what [he] emphasize[d] in the course as an instructor.” 
Although he wasn’t expecting students to contribute new ideas as a result of adopting the materials, 
he used the experience to reflect upon his teaching practices. 

 

 
Figure 1: Instructor’s value of context compared to their value of MR  
 
These results are not surprising, as the RC materials include small group activities and use 

open-ended questions. Instructors could change and modify the activities, and those which landed 
outside Group A often indicated their changes made the materials more clear or less confusing for 
their students. Earlier work (Wangberg et al., 2016) suggests such modifications can make the 
activities easier to implement but could also unintentionally limit the conversations within the 
small groups. In the most extreme case, an instructor (just below C) typically taught his course 
using small group practice activities with whole-class discussion.  He used the RC open-ended 
activities in small groups for one term, but modified the materials in the subsequent term so that 
his students could use them to practice previously learned concepts. Henderson and Dancy suggest 
that providing instructors with the freedom to modify materials can improve adoption. Instructors 
sometimes modified materials in order to align them with their more familiar instructional 
practices. Never the less, instructors tended to increase the use of student ideas as they incorporated 
open-ended activities into their course. 

Valuing Multiple Representations Corresponds to Valuing Problem Context 
Figure 2 compares changes in the instructor’s value of context to their reported value and use 

of MR. It suggests instructors using RC materials report increased use of context or representations 
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in their course, with 11 of the 16 instructors increasing one or both categories. We note four 
instructors never mentioned the value of context on their surveys2. 

Valuing Multiple Representations Corresponds to Increase in the Use of Student Ideas 
Figure 3 compares changes in the instructor’s use of student ideas in the classroom to the 

change in the instructor’s value and use of MR3. Nine of the 16 instructors reported an increase in 
the use of student ideas, and six of these nine reported that the use or value of MR increased in 
their course. Two other instructors reported they had previously expected students to contribute 
ideas in the form of new content to the course.  

 

Figure 2: Instructor’s value of context 
compared to their value of MR 

Figure 3: Instructor’s expectation of student 
engagement and value of MR 

 
Conclusion and Implications 

Instructors rarely approached the RC project because the materials utilize inquiry, yet half of 
the instructors increased the use of student contributions in their course.  While instructors could 
modify the materials to eliminate features like open-ended questions, which promote discussion, 
or utilize the activities after introducing the mathematical ideas, we note that is was much more 
difficult, given the nature of the activities, for instructors to remove the context from the activities 
or to limit an activity to a single representation of a function. 

This paper investigates the connection between the instructor’s use of student ideas in a course 
and the use of a research-based curriculum carefully incorporating MR in context-rich activities. 
Overall, we see increases in the use of students’ ideas, the degree to which instructors value and 
use contextualized problems, and the degree to which instructors value and use MR.  These 
corresponding increases support a hypothesized relationship between these aspects of instruction.  
Curriculum developers might consider incorporating contextualized problems and emphasize MR 
to support instructors in using and valuing student contributions in class. 
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Knowledge About Student Understanding of Eigentheory: Information Gained from 
Multiple Choice Extended Assessment 

 
 Kevin Watson Megan Wawro Michelle Zandieh  Sarah Kerrigan 
 Virginia Tech Virginia Tech Arizona State University Virginia Tech 

Eigentheory is a conceptually complex idea whose application is widespread in mathematics and 
beyond. Herein we describe the development and use of an extended multiple choice assessment 
that gives us further insight into the ways students think about and understand eigenvectors, 
eigenvalues, and their related concepts. 

Key words: linear algebra, eigenvector, eigenvalue, student understanding, assessment 

The purpose of this preliminary report is to share results regarding student understanding of 
eigentheory that were gained from a multiple choice extended assessment instrument. We chose 
to focus on eigentheory because (a) it is a conceptually complex idea that builds from and relies 
upon student understanding of multiple key ideas in mathematics, and (b) its application is 
widespread in mathematics and beyond. Our aim to create an assessment instrument that captures 
nuances of students’ conceptual understanding of eigentheory exists in tandem with our pursuit 
to frame what it might mean to have a deep understanding of eigentheory. As such, in this report 
we offer results both about student thinking and about possible affordances and constraints of 
various assessment instrument question formats.  

 
Background and Literature 

 
 Research into people’s understanding of eigenvectors and eigenvalues has had several 
different focuses, such as identifying the various processes and objects students need to 
understand in eigentheory (Stewart & Thomas, 2006; Thomas & Stewart, 2011), studying how 
mathematicians use gesture, time and motion to describe the concepts of eigenvector and 
eigenvalue (Sinclair & Gol Tabaghi, 2010), examining how dynamic geometry software can 
encourage students to think geometrically about eigentheory (Gol Tabaghi & Sinclair, 2013), and 
investigating the use of modeling problems and APOS theory to teach students the concepts of 
eigenvectors and eigenvalues (Salgado & Trigueros, 2015). Our current research into students’ 
understanding of eigenvectors and eigenvalues has been influenced by the above work, but we 
endeavor to extend this growing body of knowledge in two ways. First, we hope to share further 
insights into how students think about and understand eigenvectors and eigenvalues that has not 
been reported on previously. Second, we are working towards the development of a framework 
for student understanding of eigentheory that ties together the work others have done in this area 
of research. We further discuss this framework within the next section.  

Theoretical Framework 
 

There exists a small collection of previous research into students’ understanding of 
eigentheory towards developing a theoretical framework for what it means to have a deep 
understanding of eigenvectors and eigenvalues (Salgado & Trigueros, 2015; Thomas & Stewart, 
2011). Although this research has merit, specifically pointing out the processes, objects, and 
coordinations necessary for understanding eigentheory, we feel there is more to understanding 
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eigenvectors and eigenvalues than is conveyed therein. Our framework for student understanding 
of eigentheory aims to include the following ideas: (a) A distinction between the equations 𝐴𝐴𝒙𝒙 =
𝜆𝜆𝒙𝒙 and (𝐴𝐴 − 𝜆𝜆𝜆𝜆)𝒙𝒙 = 𝟎𝟎 and how these constitute two different ways to think about eigenvectors 
and eigenvalues; (b) the importance of eigenspaces, diagonalization, and their connection to the 
concepts of eigenvectors and eigenvalues; (c) how the concepts of eigentheory can be thought of 
within different modes of thinking (Sierpinska, 2000), modes of description (Hillel, 2000), or 
contexts (Zandieh, 2000); and (d) the various processes (e.g., matrix multiplication, scalar 
multiplication), entities (e.g., matrices, vectors), and theorems (e.g., invertible matrix theorem) 
needed to understand eigentheory and the calculations involved therein. While this framework is 
still under development, it informed our decisions about the creation and refinement of the 
assessment instrument, and, cyclically, the results of the assessment continue to inform the 
development of the framework. We describe the assessment more fully in the following section. 

 
Methods 

 
In this section, we describe the development and format of our multiple-choice extended 

(MCE) assessment instrument. We then describe the data collection and participants for the 
portion of the study presented in this proposal, followed by a description of our analysis.  
 
Instrument Development  
 The MCE assessment instrument for eigentheory development grows from our prior work in 
student understanding of span and linear independence (Zandieh, Plaxco, Wawro, Rasmussen, 
Milbourne, & Czeranko, 2015) in which we developed the MCE-style question format. During 
this development, we considered literature on conceptually oriented assessment instruments in 
undergraduate mathematics and physics (Bradshaw, Izsak, Templin, J. & Jacobson, 2013; 
Carlson, Oehrtman, & Engelke, 2010; Epstein, 2013; Hestenes, Wells, & Swackhamer, 1992; 
Wilcox & Pollock, 2014). Questions written in a MCE style begin with a multiple-choice 
element and then prompt students to justify their answer by selecting all statements that could 
support their choice, a format based on a concept inventory in Upper-division Electrostatics 
created by Wilcox and Pollock (2014).  

To develop the assessment instrument questions, we compiled a database of questions about 
eigenvectors, eigenvalues, and related concepts from literature on student understanding of 
eigenvectors and eigenvalues, online resources for clicker and classroom voting on linear algebra 
(Cline & Zullo, 2016), and previous linear algebra homework assignments, exams, and interview 
protocols used by research team members (e.g., Henderson, Rasmussen, Sweeney, Wawro, & 
Zandieh, 2010). The most promising questions that collectively addressed various aspects of our 
working framework were edited into the MCE format. The instrument has been administered in 
student interviews and as written homework twice and subsequently refined. This current 
proposal relies on a third administration of the assessment, described in further detail below.  
 
Data Collection 

In this proposal we present data from written assessments collected from three linear algebra 
classes taught by the same instructor at a large, research-intensive public university in the mid-
Atlantic United States. Each class worked on one version of the MCE assessment for 20-25 
minutes during the last day of class. All three versions consisted of the same six multiple choice 
question elements, with varying justification sections. Class 1 received a version in which 
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students indicated if each of six given justifications were true and relevant, true but not relevant, 
or false (see Figure 1a). Class 2 received a version in which students only selected justification 
choices that were true and relevant (see Figure 1b). Lastly, Class 3 received an open-ended 
version in which they wrote their own justification for their choice. 
 

The matrix 𝐴𝐴 = �−2 4
2 5� has 𝜆𝜆 = 6 as one of its eigenvalues. Which of the 

following vectors is an eigenvector of 𝐴𝐴 with corresponding eigenvalue 
𝜆𝜆 = 6?  

(a) 𝒙𝒙 = � 4
−1�   (b)    𝒙𝒙 = �12� 

  

Because …  (indicate if the choice is true and relevant, true but not 
relevant, or false)  
  

True & 
relevant 

True not 
relevant 

False Statement 

   (i) This vector 𝒙𝒙 makes 𝐴𝐴𝒙𝒙 = 6𝒙𝒙 a 
true statement. 

   (ii) This vector 𝒙𝒙 is the only vector in 
ℝ2 for which 𝐴𝐴𝒙𝒙 = 6𝒙𝒙. 

   (iii) This vector 𝒙𝒙 makes (𝐴𝐴 − 6𝜆𝜆)𝒙𝒙 =
𝟎𝟎 a true statement 

   
(iv) Subtracting 6 from the diagonal of 

𝐴𝐴 yields this vector 𝒙𝒙 as a column 
vector of the resulting matrix. 

   
(v) The vector 𝐴𝐴𝒙𝒙 is 6 times the 

magnitude and in the same 
direction as this vector 𝒙𝒙. 

   (vi) The matrix 𝐴𝐴 also has 𝜆𝜆 = −3 as 
an eigenvalue. 

 

The matrix 𝐴𝐴 = �−2 4
2 5� has 𝜆𝜆 = 6 as one of its eigenvalues. Which 

of the following vectors is an eigenvector of 𝐴𝐴 with corresponding 
eigenvalue 𝜆𝜆 = 6? 

(a) 𝒙𝒙 = � 4
−1�   (b)    𝒙𝒙 = �12� 

 

Because …  (select ALL that could justify your choice)  
 
 
 
(i) This vector 𝒙𝒙 makes 𝐴𝐴𝒙𝒙 = 6𝒙𝒙 a true statement. 

 
(ii) This vector 𝒙𝒙 is the only vector in ℝ2 for which 𝐴𝐴𝒙𝒙 = 6𝒙𝒙. 

 
(iii) This vector 𝒙𝒙 makes (𝐴𝐴 − 6𝜆𝜆)𝒙𝒙 = 𝟎𝟎 a true statement 

 
(iv) Subtracting 6 from the diagonal of 𝐴𝐴 yields this vector 𝒙𝒙 as a 

column vector of the resulting matrix. 
 

(v) The vector 𝐴𝐴𝒙𝒙 is 6 times the magnitude and in the same 
direction as this vector 𝒙𝒙. 
 

(vi) The matrix 𝐴𝐴 also has 𝜆𝜆 = −3 as an eigenvalue. 
 

(a)      (b) 
Figure 1. Comparison of (a) Class 1 MCE and (b) Class 2 MCE.  

 
Analysis 

After each class’s written assessments were digitally scanned and grouped by question, 
spread sheets were designed to enter the data from Class 1 and Class 2. From the spreadsheets, 
the research group examined trends within each class before looking for trends across formats. 
Some basic percentages were calculated for the justification choices for Classes 1 and 2, as well 
as students’ multiple-choice answers for all three classes. 

 
  

2. Suppose the vector 𝒙𝒙 ∈ ℝ𝟐𝟐, in the two-dimensional sketch below, is an eigenvector of a 2x2 matrix 𝑀𝑀 with real-
valued eigenvalues. Which of the vectors 𝒖𝒖,𝒗𝒗 or 𝒘𝒘 illustrated below could be the result of the product 𝑀𝑀𝒙𝒙? 

   
(a)     𝒖𝒖  (b)     𝒗𝒗  (c)     𝒘𝒘   
(d)     Not enough information is given to know a possible result of the product 𝑀𝑀𝒙𝒙  

  
3.  Suppose 𝐴𝐴 is a 𝑛𝑛 × 𝑛𝑛 matrix, and 𝒚𝒚 and 𝒛𝒛 are linearly independent eigenvectors of 𝐴𝐴 with corresponding eigenvalue 2. Let 𝒗𝒗 = 5𝒚𝒚 + 5𝒛𝒛.   

Is 𝒗𝒗 an eigenvector of 𝐴𝐴? 
  

(a) Yes, 𝒗𝒗 is an eigenvector of 𝐴𝐴 with eigenvalue 2. 
(b) Yes, 𝒗𝒗 is an eigenvector of 𝐴𝐴 with eigenvalue 5. 
(c) No, 𝒗𝒗 is not an eigenvector of 𝐴𝐴. 

Figure 2. Multiple Choice Stem to Questions 2-3 of the Eigentheory MCE. 
 
The open-ended data was analyzed through multiple iterations of open coding. First, each 

team member individually summarized the key aspects of each student’s justification process. 
Next, the team came together to develop a coding scheme for the student work to be used in the 
second iteration of coding. Each team member then individually coded the student responses 
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with the new coding scheme before collectively determining a set of codes for each student. 
Lastly, the larger themes from the finalized coding were identified by examining common 
patterns across multiple students’ solutions and justifications. 

The focus then shifted to an analysis of identifying patterns in how students selected or 
supported their work in their justification for each question and what insight each format 
provided us about the students’ reasoning. Currently the research team is focusing on the first 
three questions from the assessment (see Figures 1 and 2), with plans to analyze all six later. 

 
Results 

Table 1 shows the general performance of the three classes on the multiple-choice portion of 
the three questions. We make a few observations. First, classes performed similarly on all three 
questions, so comparing students’ justifications across the three classes is reasonable. Second, 
Question 1 and Question 2 may seem somewhat uninformative because a majority of the students 
chose the correct answer. However, in the results and discussion to follow, we share how the 
MCE gives more information about student thinking through the justification portion of each 
question. Third, linear combinations of eigenvectors with the same eigenvalue, in other words, 
elements of an eigenspace, is a difficult topic. For sake of space, we focus on the student 
understanding we discover through the justifications of Question 1 in this proposal. 
 
Table 1 
Class Percentages for Answers Chosen on the Multiple Choice Portion 

  Class 1 
Judgment MCE 
(27 Students) 

Class 2 
Original MCE 
(29 Students) 

Class 3 
Open-Ended 
(28 Students) 

Question 1 Choice (a) 14.8 24.1 7.1 
Choice (b) 81.5 75.9 92.9 
No Answer 3.7 0.0 0.0 

Question 2 Choice (a) 0.0 0.0 0.0 
Choice (b) 0.0 6.9 0.0 
Choice (c) 92.6 82.8 96.4 
Choice (d) 3.7 10.3 3.6 
No Answer 3.7 0.0 0.0 

Question 3 Choice (a) 25.9 48.3 21.4 
Choice (b) 3.7 6.9 21.4 
Choice (c) 55.6 31.0 53.6 
No Answer 14.8 13.8 3.6 

NOTE: Correct answers are shaded. 

 
Evidence of a Distinction Between the Equations  𝑨𝑨𝒙𝒙 = 𝝀𝝀𝒙𝒙 and (𝑨𝑨 − 𝝀𝝀𝝀𝝀)𝒙𝒙 = 𝟎𝟎 
 Justification choices (i) and (iii) on Question 1 (see Figure 1) could be seen as the same 
statement (to an expert), with a rearrangement of the terms within the equations and an important 
use of the identity matrix. One might expect that students who selected choice (i) would also 
select choice (iii), and vice versa. However, four of the 27 students in Class 2 who selected 
justification choice (iii) did not select justification choice (i), and of the 26 students in Class 1 
who said justification choice (i) was true and relevant, three said that justification choice (iii) was 
true but not relevant. Furthermore, 24 of the 28 students in Class 3, when writing down their 
justification, focused on some form of only one equation (10 used 𝐴𝐴𝒙𝒙 = 𝜆𝜆𝒙𝒙, and 14 used 
(𝐴𝐴 − 𝜆𝜆𝜆𝜆)𝒙𝒙 = 𝟎𝟎), as opposed to the remaining 4 who wrote or used both equations. This gives us 
evidence that there are two distinct ways to think about eigenvectors and eigenvalues, 
encapsulated within the two equations, as we had conjectured in our framework development.  
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Geometric Reasoning on Question 1 
 Although all 27 students of Class 1 and 28 of the 29 students in Class 2 indicated that at least 
one of the symbolic justification choices (i) and (iii) were true and relevant, only 12 of the 27 
students in Class 1 and 14 of the 29 students in Class 2 indicated that the geometric justification 
choice (v) was true and relevant. With only the Original MCE, we cannot know why the other 15 
students in Class 2 did not select justification choice (v). However, with the MCE given to Class 
1, we get more information, as 9 of the 15 students said this choice was true but not relevant, and 
5 said this choice was false. We feel this either indicates that students tend to think about 
eigenvectors and eigenvalues symbolically more than they do geometrically, or that students see 
symbolic justifications as more acceptable to their teacher or the larger mathematics community. 
This is further corroborated by the data from Class 3, where none of the 28 students gave any 
geometric argument when justifying their answer.  
 
Open-Ended Results 
 Results from the open-ended data consisted of identifying common strategies in students’ 
justifications and possible refinements to the MCE justification choices based on these. From the 
open coding, two main strategies emerged in how the students approached the problem, namely 
based on the equation the student chose to focus on, as mentioned above in the section on the 
𝐴𝐴𝒙𝒙 = 𝜆𝜆𝒙𝒙 or (𝐴𝐴 − 𝜆𝜆𝜆𝜆)𝒙𝒙 = 𝟎𝟎 equations. Within these two larger strategies, several sub-strategies 
presented themselves in student work. For example, of the 10 students that used the 𝐴𝐴𝒙𝒙 = 𝜆𝜆𝒙𝒙 
approach, 8 also used a “plugging in” strategy to find the eigenvector, by simply multiplying 
each vector choice by the given matrix, and seeing which satisfied the 𝐴𝐴𝒙𝒙 = 𝜆𝜆𝒙𝒙 equation.  We 
classified this approach as the “Eigenvector Definition Check” (EDC) approach. 

These classified student solution strategies are also being considered in future refinement to 
the MCE justification choices. For example, 16 of the students used some form of solving a 
system of equations in their justification work; however, currently there is no justification choice 
that deals with this idea. Additionally, in previous work on the MCE, we had identified a 
solution strategy wherein students calculated the coefficient matrix [𝐴𝐴 − 6𝜆𝜆] and concluded 
incorrectly that a resulting column vector from the matrix was an eigenvector. Justification 
choice (iv) was added to the MCE to capture this solution method. However, disconcertingly, 
only two students in Class 3 wrote down this strategy, whereas in Class 1, 10 students selected 
(iv) as true and relevant and three students selected it as true and not relevant, and in Class 2, six 
of the 29 students selected it as true and relevant. Thus, further modification of this justification 
is needed to only tempt students who think of this strategy as the only way to find eigenvectors. 

 
Discussion 

 One might posit we would learn more about student understanding of eigentheory through 
open-ended questions than other forms of written assessment. However, we have shown how the 
MCE format can provide rich information regarding how students think about and understand 
eigenvector and eigenvalue problems; in particular, we can gain more information about the 
aspects and contexts of eigentheory students see as connected and relevant in justifying their 
solutions. As we pursue research in this area, we ask for feedback on the following questions: 

1. What nuances of student understanding of eigentheory do we learn from the various 
MCE formats, and which format do you think would be most promising in future use? 

2. With the MCE data, what ideas for analysis (statistical tests or otherwise) do you believe 
would be useful and informative? 

20th Annual Conference on Research in Undergraduate Mathematics Education 149120th Annual Conference on Research in Undergraduate Mathematics Education 1491



References 

Bradshaw, L., Izsak, A., Templin, J., & Jacobson, E. (2013). Diagnosing teachers’ 
understandings of rational numbers: Building a multidimensional test within the 
diagnostic classification framework. Educational Measurement: Issues and Practice, 
33(1), 2–14. 

Carlson, M., Oehrtman, M., & Engelke, N. (2010). The precalculus concept assessment: A tool 
for assessing students’ reasoning abilities and understandings. Cognition and Instruction, 
28(2), 113–145. 

Epstein, J. (2013). The calculus concept inventory - Measurement of the effect of teaching 
methodology in mathematics. Notices of the AMS, 60(8), 1018–1026. 

Cline, K., & Zullo, H. (2016). MathQUEST/MathVote.   Retrieved from 
http://mathquest.carroll.edu/ 

Gol Tabaghi, S., & Sinclair, N. (2013). Using dynamic geometry software to explore eigenvectors: 
The emergence of dynamic-synthetic-geometric thinking. Technology, Knowledge and 
Learning, 18(3), 149–164.  

Henderson, F., Rasmussen, C., Sweeney, G., Wawro, M, & Zandieh, M. (2010, February). Symbol 
sense in linear algebra. Paper presented at the Thirteenth Conference on Research in 
Undergraduate Mathematics Education, Raleigh, NC.  

Hillel, J. (2000). Modes of description and the problem of representation in linear algebra. In J.-L. 
Dorier (Ed.), On the teaching of linear algebra (pp. 191–207). Dordrecht, Netherlands: 
Kluwer. 

Salgado, H., & Trigueros, M. (2015). Teaching eigenvalues and eigenvectors using models and 
APOS Theory. The Journal of Mathematical Behavior, 39, 100–120.  

Sierpinska, A. (2000). On some aspects of students' thinking in linear algebra. In J.-L. Dorier (Ed.), 
On the Teaching of Linear Algebra (pp. 209–246). New York, NY: Kluwer Academic 
Publishers. 

Sinclair, N., & Gol Tabaghi, S. (2010). Drawing space: Mathematicians' kinetic conceptions of 
eigenvectors. Educational Studies in Mathematics, 74, 223-240.  

Stewart, S., & Thomas, M. O. J. (2006). Process-object difficulties in Linear Algebra: Eigenvalues 
and eigenvectors. In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.), 
Proceedings 30th Conference of the International Group for the Psychology of 
Mathematics Education (Vol. 5, pp. 185-192). Prague: PME. 

Thomas, M. O. J., & Stewart, S. (2011). Eigenvalues and eigenvectors: Embodied, symbolic and 
formal thinking. Mathematics Education Research Journal, 23(3), 275-296.  

Zandieh, M. (2000). A theoretical framework for analyzing student understanding of the concept 
of derivative. In E. Dubinsky, A. Schoenfeld, & J. Kaput (Eds.), Research in Collegiate 
Mathematics Education IV (pp. 103-127). Providence, RI: American Mathematical 
Society. 

Zandieh, M., Plaxco, D., Wawro, M., Rasmussen, C., Milbourne, H., & Czeranko, K. (2015, 
February). Extending multiple choice format to document student thinking. Paper 
presented at the Eighteenth Conference on Research in Undergraduate Mathematics 
Education, Pittsburgh, PA. 

 

20th Annual Conference on Research in Undergraduate Mathematics Education 149220th Annual Conference on Research in Undergraduate Mathematics Education 1492



Meta-Representational Competence with Linear Algebra in Quantum Mechanics  
 

Megan Wawro 
Virginia Tech 

Kevin Watson 
Virginia Tech 

Warren Christensen 
North Dakota State University 

 
In this report we shared our preliminary analysis of one student’s meta-representational 
competence as he engages in solving a quantum mechanics problem involving linear algebra 
concepts, namely basis, eigenvectors, and eigenvalues. We provide detail on student A25, who 
serves as a paradigmatic example of a student’s power and flexibility in thinking in and using 
different notation systems. This preliminary work lends credence to and inspires our conjecture 
that strong meta-representational competence (MRC) is necessary not only to be fluent and 
proficient in the mathematics involved in solving quantum mechanics problems but also to 
develop a robust understanding of the quantum mechanics content.  
 
Key words: linear algebra, physics, matrix notation, Dirac notation, symbolizing 
 

The National Research Council’s (2012) report, which charges the U.S. to improve its 
undergraduate STEM education, specifically recommends “interdisciplinary studies of cross-
cutting concepts and cognitive processes” (p. 3) in undergraduate STEM courses. It further states 
that “gaps remain in the understanding of student learning in upper division courses” (p. 199), 
and that interdisciplinary studies “could help to increase the coherence of students’ learning 
experience across disciplines … and could facilitate an understanding of how to promote the 
transfer of knowledge from one setting to another” (p. 202). Our work contributes towards this 
national need for basic research by investigating students’ understanding, symbolization, and 
interpretation of eigentheory and related key ideas from linear algebra in quantum physics. 

In this preliminary report, we focus on one student’s reflection on explicit symbolization 
choices he makes while solving quantum mechanics problems that involve linear algebra. In 
particular, we inspect data of one student solving an expectation value problem and his reasons 
for how and why he chooses a specific symbol system – either Dirac notation or matrix notation 
– for that particular situation. We align our analysis with the framework of meta-representational 
competence (diSessa, Hammer, Sherin, and Kolpakowski (1991), as well as the delineation of 
structural features of algebraic quantum notations offered by Gire and Price (2015). We 
conjecture that strong meta-representational competence (MRC) is necessary not only to be 
fluent and proficient in the mathematics involved in solving quantum mechanics problems but 
also to develop a robust understanding of the quantum mechanics content.   
 

Background and Theoretical Framework 
 In this section, we give an overview of research conducted on student understanding of 
symbols and representations in mathematics and physics, as well as our theoretical orientation. 
We conclude with a brief introduction to eigentheory in Quantum Mechanics and Dirac notation. 
 
Student Understanding of Symbols and Representations 

The recognition of the importance of students having an understanding of the symbols used 
in mathematics and physics has grown over the past few decades. Arcavi (1994, 2005) coined 
this as “symbol sense,” which includes (a) being “friendly” with symbols, (b) reading through 
symbols, (c) engineering symbolic expressions, (d) understanding different meanings based on 

20th Annual Conference on Research in Undergraduate Mathematics Education 149320th Annual Conference on Research in Undergraduate Mathematics Education 1493



equivalent expressions, (e) choosing which aspects of a mathematical situation to symbolize, (f) 
using symbolic manipulations flexibly, (g) recognizing meaning within symbols at any step in 
the solution process, and (h) sensing the different roles symbols can play in various contexts. 
Many researchers along this vein have examined the ways students learn, make sense of, and use 
mathematical symbols and notations (e.g., Kaput, 1998; Meira, 2002; Van Oers, 2002).  
 Research into students’ competence with symbols, inscriptions, and representations is not 
limited to K-12 studies. For example, Harel and Kaput (2002) describe how mathematical 
notations play a key role in forming conceptual entities in higher mathematics. Additionally, in 
linear algebra research, Hillel (2000) described three modes of description (abstract, algebraic, 
and geometric) of the basic objects and operations in linear algebra and pointed out that “the 
ability to understand how vectors and transformation in one mode are differently represented, 
either within the same mode, or across modes is essential in coping with linear algebra” (p. 199). 
 Extending even further, research into students’ understanding in quantum mechanics has 
looked at how students make sense of and use a novel notation, called Dirac notation (explained 
in the subsequent section). Singh and Marshman (2013) showed that even after graduate level 
instruction in quantum mechanics, students still struggle with Dirac notation, showing 
inconsistencies in its use among contexts and problems. More closely related with this current 
study, Gire and Price (2015) looked at four structural features of three different notation systems 
used in quantum mechanics (Dirac, matrix, and wave function) and how students’ reasoning 
interacts with these features. The features identified by the authors are: (a) individuation, or “the 
degree to which important features are represented as separate and elemental” (p. 5); (b) 
externalization, or “the degree to which elements and features are externalized with markings 
included in the representation” (p. 7); (c) compactness; and (d) symbolic support for 
computation. Using problem-solving interviews with students as insight into these features, Gire 
and Price found that students readily used Dirac notation, and that the structural features vary 
across the different notations as well as among several contexts within quantum mechanics. 

Relatedly, diSessa et al. (1991) importantly discovered that students have a great deal of 
knowledge about what good representations are and are able to critique and refine them, which 
the authors defined as Meta-Representational Competence (MRC). diSessa and Sherin (2000) 
explained that MRC includes inventing and designing new representations, judging and 
comparing the quality of representations, understanding the general and specific functions of 
representations, and quickly learning to use and understand new representations. Furthermore, 
diSessa (2002, 2004) offered a list of critical resources students possess as part of their MRC for 
judging the strength of representations, such as compactness, parsimony, and conventionality. 
Iszák and his colleagues (Iszák, 2003, 2004; Iszák, Çağlayan, & Olive, 2009) extended this 
research by looking at students’ MRC with the creation and critique of algebraic representations, 
and demonstrated students and teachers have criteria for good algebraic representations, though 
the criteria may not align between teacher and student. 
 
Brief Introduction to Eigentheory in Quantum Mechanics and Dirac Notation 

In quantum mechanics, certain physical systems are modeled and made sense of using 
eigentheory. To a physical system we associate a Hilbert space (such as ℂ!), to every possible 
state of the physical system we associate a vector in the Hilbert space, and to every possible 
observable we associate a Hermitian operator (usually given in its matrix form). The only 
possible result of a measurement is an eigenvalue of the operator, and after the measurement the 
system will be found in the corresponding eigenstate.  
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Dirac notation, also known as bra-ket or just ket notation, is a common notational system in 
quantum mechanics. A vector representing a possible state is symbolized with a ket, such as ! . 

Mathematically, kets behave like column vectors, such as ! ≐ !!
!! ,!!!, !! ∈ ℂ, and are usually 

normalized. To each ket is associated a bra, such as ! ≐ !!∗ !!∗ , its complex conjugate 
transpose that behaves like a row vector. The eigenvalue equations for observables are central to 
many calculations. For instance, the eigenvalue equations for !! (the operator measuring the 
intrinsic angular momentum along the !-direction of a spin-½ particle) are !! + = ℏ

! +  and 
!! − = !ℏ! − , where +  and –  represent the orthogonal eigenbasis of !!. Because of the 
orthonormality of eigenbases of Hermitian operators, the inner products yield + + = 1, − − =
1, + − = 0, and − + = 0. An elegant use of Dirac notation involves change of basis; because 
the eigenbasis of one operator is often well known in terms of another, such as along the !-
direction of a spin-½ particle, Dirac notation is seen to make basis change calculations efficient. 
 

Methods 
 

Participants for this study were junior physics majors at a large, public, research-intensive 
university in the Pacific Northwestern United States. They were drawn on a volunteer basis from 
a class of 35 students in a Spin and Quantum Measurements course; this course met for 7 class-
hours per week for three weeks and involved many student-centered activities and discussions. 
Data for this report were collected during individual, semi-structured interviews (Bernard, 1988) 
conducted with 8 students at the end of the course.  

To begin our analysis, we viewed the video and observed how students navigated the 
interview problems, with no set ideas ahead of time of what we would analyze, while keeping in 
mind the overarching research focus of students’ understanding, symbolization, and 
interpretation of eigentheory in quantum physics. We looked for correct, incorrect, and unique 
reasoning approaches. Throughout our viewing, we noticed two students were particularly fluent 
in how they talked about and worked with both matrix and ket notations. This compelled us to 
investigate the literature about student use of symbols and notations, the most relevant of which 
were discussed above. As such, we began an analysis drawing on the work of diSessa and 
colleagues, Iszák and colleagues, and Gire and Price (2015). We reviewed the video data through 
this lens, coding for instances of students mentioning structural features of the mathematics or 
students making explicit meta-commentary on the representations they were using.  

In this preliminary report, we focus on one student: A25, a double major in physics and 
nuclear engineering who had completed two quarters of linear algebra. The purpose for focusing 
on this participant is his demonstrated ability to articulate his thinking. During the interview, he 
demonstrated flexibility in reasoning about the concepts we were probing, and through his 
explanation a great deal of MRC was visible and analyzable. 

 
Preliminary Results 

 
In the beginning of the interview, student A25 volunteered that he sometimes explicitly 

chooses between doing calculations in matrix notation or in Dirac notation:  
I:  So how do you feel like, using eigenvectors and eigenvalues, in spins has been similar to 

and different from how you've experienced those in other classes? 
A25:  Uh, well, it's very similar because you're doing a lot of the same math …the difference 

especially in physics, you're looking at kets. In, in at first I was kind of jarring, like to- to 
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try to do the math in kets. But now, it's kinda- it's kinda easier, there's problems, there 
certain problems…where there's two ways to do them, they're kind of parallel, you can do 
it and you can expand the- the- the state in- in like as a- and expand them as- as kets in a 
different basis, or you can write that state as a- as a, as a vector, in that basis, and you can 
either do the matrix math for the like expectation values for example, you can do the 
matrix math or you can do the ket math, and sometimes it's, I'm finding that I, rather 
expand something in the ket. 

From the transcript we see that A25 was aware that there exist multiple legitimate ways to solve 
the problem, seemingly understanding the various mathematical nuances and implications of his 
notational choices. His brief explanation highlights sentiments that are consistent with Arcavi’s 
characteristics of symbol sense, such as being “friendly” with symbols and using them flexibly. 
We add, however, a metacognitive aspect of symbol sense here, noting that A25 was engaged in 
self-reflection rather than a researcher analyzing A25’s engagement with symbols. 

Because A25 volunteered expectation value problems as a situation in which he could use 
either notation, the interviewer had him work on such a problem right away, even though it was 
prepared to be at the end of the interview: “Consider the state ! = − !

! + ! + ! !! − !!in a spin-
1/2 system. Calculate the expectation value for the measurement of !!.” A25 immediately 
worked on the problem within Dirac notation, saying, “basically to find the expectation value… 
it's like denoted that way [writes ! ]!but really what you're doing is you're taking the, the bra of 
the state, and then you're putting the operator [writes = ! ! ! ] in the middle of the inner 
product…” He continued to explain his work as he went, arriving at the correct answer of 7ℏ 50 
(see Figure 1a). Note that his work in Figure 1a involved the state’s expansion and use of 
eigenvector equations for !! in ket notation. In addition, this notation was first introduced to the 
students during this course; as such, A25 was clearly quick to use and understand this 
representation (a quality of MRC, diSessa & Sherin, 2000).  

After discussing his work and solution, the interviewer asked: “Before you were telling about 
bra-ket versus matrix notation, you brought up an expectation value as an example of like, either 
or both, so can you, now that you had this problem, kinda revisit that?” A25 immediately solved 
the problem completely within matrix notation (see Figure 1b), explaining his steps. For 
instance, in line 1 in Figure 1b, he wrote the complex conjugate transpose of the vector 
representation of the state in the ! basis, the matrix representation of the !! operator in the ! 
basis, and the vector representation of the state in the ! basis. He also stated his process for 
computing the matrix times the column vector before he did the computation, and again in line 2 
he explained “then I do it again, so, um, this time you're gonna get a number out,” meaning he 
anticipated that a row vector times a column vector would be a number. We see this as flexibly 
using symbolic manipulations (Arcavi, 1995) and an anticipation of results.  
 

  
(a)      (b) 

Figure 1. A25’s expectation value problem, in ket notation (a) and matrix notation (b).  
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The interviewer then asked A25 to reflect on his preference between the two notations: 

A25:  Uh...To be honest, I don't really, I don't really know why I prefer this [Figure 1a], I think 
it's just because, um, I like this notation. This- this specific notation [Figure 1a line 1] like 
this to me is like a cleaner way of writing that [Figure 1b line 1] because that- I mean this 
and that [touching lines 1 in both figures] I feel like are your starting points, so you, you 
start here with this nice, like, looking thing [traces his finger under ! ! ! ], or you start 
here with this big array of numbers [puts open hands around Figure 1b], and I prefer this 
[Figure 1a line 1], even though you have to expand this into basically the same amount of 
information [Figure 1a line 2]. And also, the nice thing about, about this [Figure 1a line 
1], is it—actually this is really why it's better—is because you can, you can say ok !! 
works- acts directly on these kets, you can just get rid of the matrix altogether... 

We see his use of “nice looking thing” and “big array of numbers” in comparison to one another 
are an example of compactness. He also compares line 1 in 1(a) and line 2 in 1(b) regarding the 
“amount” of information they convey, which involves reflection on the physical and 
mathematical content expressed in the compared notations. Finally, acting directly on the 
expansion in terms of the eigenstates of the operator allow him to forego the matrix calculation 
entirely, which speaks to A25’s view of compactness, parsimony, and symbolic support for using 
ket notation for this problem.  

When asked about his notation preferences if the basis expansion of a given state vector and 
the operator “didn’t match,” A25 recalled a problem from their last homework that was “actually 
easier…to do the matrix multiplication,” stating “you don't want to have to change these kets 
into different bases all over the place 'cause they're already all written in the same basis and you 
know what the operator is in that basis so you might as well just, do the matrix multiplication.” 
This speaks to his awareness of symbolic support as well as using symbols flexibly. Finally, 
when asked if the notions of basis or eigenvectors/eigenvalues come up more in one notation 
than the other, A25 stated, “certainly…every time you write down a ket you're, you're very 
conscious of what basis you're in. In this one [points to Figure 1(b)] it's just kinda implied…all 
this [is] in the same basis, so you're just, you're just writing out numbers, an arrays of numbers, 
but here [in Figure 1(a)] you're thinking ok, this is the !! operator, this is the ! plus ket, this is 
the ! minus bra…so I think that you're definitely more aware of what basis you're in when you're 
using this, because you have to be.” This explanation is consistent with Gire and Price’s (2015) 
notion of externalization, in that the ket notation allows features of the problem, namely basis, to 
be externalized in a way that the matrix notation did not provide for A25.  

 
Conclusion 

 
In this report we shared our preliminary analysis of one student’s meta-representational 

competence as he engaged in solving a quantum mechanics problem involving linear algebra. 
This is a paradigmatic example of a student’s power and flexibility in thinking in and using 
different notation systems. During our presentation, we will provide additional data and analysis 
on A25 and other students regarding observed MRC during their interviews. We would benefit 
from discussion with the audience regarding the following: (1) what aspects of MRC seem most 
important to success in solving quantum mechanics problems involving linear algebra, and (2) 
how tied to a robust understanding of the quantum mechanics content might MRC be, and how 
could that be explored through analysis? 
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An Investigation of the Development of Partitive Meanings for Division with Fractions: 
What Does It Mean to Split Something into 9/4 Groups?

Matthew B. Weber 
Arizona State University 

Amie Pierone 
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In this paper we describe a study involving twelve preservice elementary teachers who were 
attending a community college. The design and implementation of this study were guided by the 
research question: In what ways do students reason through a sequence of tasks which 
progressively become more abstract, and which challenge primitive intuitions regarding 
partitive division? We highlight students’ ways of thinking involved with division that are not 
easily generalizable, that favor numerical procedures over quantitative reasoning, and which 
are obstacles to the development of more robust meanings for division. 

Keywords: Fraction Division; Partitive Division; Preservice Elementary Teachers 

Discussion of the Literature 

Researchers (Fischbein, Deri, Nello, & Marino, 1985; Harel, Behr, Lesh, & Post, 1994; Rizvi 
& Lawson, 2007; Simon, 1993; Thompson & Saldanha, 2003; Tirosh, 2000) have long 
acknowledged some primitive ways of thinking about partitive and quotitive division. Partitive 
division is when a÷b is interpreted as the amount of the quantity referenced by a per one unit of 
the quantity referenced by b, given that the quantities are proportionally related. One primitive 
model for partitive division identified by researchers is fair sharing, which is characterized by 
thinking about splitting a into b equal parts. This primitive model requires the divisor to be a 
whole number, and thus the value of the quotient should be less than the value of the dividend; in 
other words, division makes smaller. Quotitive division is when a÷b is interpreted as the number 
of copies of b that make a, which can also be interpreted as the measurement of a in units of b. 
Concerning quotitive division, the primitive model of repeated subtraction requires the divisor to 
be smaller than the dividend. These primitive models for division are rooted in reasoning with 
whole numbers and they continue to influence the reasoning of students and teachers, even after 
they are exposed to more sophisticated models (Fischbein et al., 1985). In particular, these 
primitive models obstruct sensible reasoning pertaining to division involving fractional values. 

In a study of preservice elementary teachers, Simon (1993) noticed that the subjects could 
accurately execute procedures for long division of whole numbers, but that these procedures 
were not well connected to the subjects’ meanings for division. He stated that “their lack of 
conceptual understanding given their algorithmic competence seems to challenge the idea that 
procedural practice eventually leads to understanding (Simon, 1993, p.249).” In a study of 
preservice elementary teachers, Tirosh (2000) investigated the impact of primitive models on 
division involving fractional values. She observed that the subjects heavily relied on procedures, 
such as flip and multiply, instead of relying on meanings for division. She introduced the subjects 
to formal justifications for the flip and multiply algorithm, but these formal arguments were 
based largely on symbolic manipulation of non-contextualized variables, and it was unclear 
whether these justifications would be accessible to elementary students. Rizvi and Lawson 
(2007) noticed that none of the 17 preservice teachers from their study could explain the flip and 
multiply algorithm, nor could any of the subjects initially pose a word problem that required 
division by a fractional value. The researchers attributed these deficiencies to a reliance on the 
primitive fair sharing and repeated subtraction models for division. 
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We have found little research on partitive meanings for division when the divisor is a 
fractional value. A quick survey of textbooks and online resources is likely to reveal that many 
attempts to connect numerical division of fractional values to a meaning for division are based 
on the quotitive division model. However, some researchers and educators (Beckmann, 2011; 
Gregg & Underwood Gregg, 2007; Kribs-Zaleta, 2008; Ott, Snook, & Gibson, 1991) have 
illustrated partitive models for division with fractions, but they do not discuss the development 
of these meanings. This paper reports on a study designed to investigate the development of 
partitive meanings for division with fractions. 

The Partitive Model: 
What Does it Mean to Split Something into 9/4 Groups? 

The design of this study assumed the subjects had existing meanings for fair sharing with 
whole numbers of groups, as well as meanings for fractions as operators. As such, we intended to 
build on these meanings by introducing the subjects to situations that require partitive division 
with whole divisors, followed by situations with non-whole divisors. Let’s consider a learning 
progression that begins with primitive meanings for partitive division with whole divisors, and 
ends with robust meanings that accommodate non-whole divisors. Consider 6 cups of water 
fitting perfectly in 3 equally-sized whole containers. The relative size of one container’s capacity 
to the total amount of water is critical – if 6 cups fit into 3 equally-sized containers, then one 
container holds 1/3 of the 6 cups. This way of thinking forms a meaningful foundation for the 
numerical equivalence of the expressions 6÷3 and 1/3×6. Next, suppose 6 cups of water fit 
perfectly in 9/4 containers. Interpreting 9/4 containers as 9 quarter-containers allows one to 
reason that 1/9 of 6 cups will be in each quarter container with four copies constituting the 
capacity of one whole container (see Figure 1). Thus a whole container’s capacity would be 
4×1/9×6, or 4/9×6 cups. This idea yields a numerical equivalence between 6÷9/4 and 4/9×6. As 
another example, consider a situation where 6 cups of water fit perfectly in 2/3 of a container. 
Thus, 1/3 of the container holds 1/2 of 6 cups, and the whole container holds 3 times as much as 
1/2 of 6 cups (see Figure 2). This way of thinking yields a numerical equivalence between 6÷2/3 
and 3/2×6. The study described in this paper investigates the development of these schemes for 
partitive division involving fractions.

 

Figure 1. 6 cups in 9/4 containers. 

 

Figure 2. 6 cups in 2/3 of a container.

Methodology 

This study focused on twelve elementary education students in a Mathematics for Elementary 
Teachers course at a community college. An instructional unit, focused on the meanings of 
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division, was implemented in the course and spanned three class sessions. Of the five learning 
objectives for this unit, two are the focus of this paper: (1) Use partitive and quotitive meanings 
for division (instead of algorithms) to divide by rational numbers and (2) Make sense of the flip 
and multiply procedure by using the partitive meaning for division. We issued a total of four 
assignments to each of the twelve students in the class. The first assignment preceded any formal 
class discussion on division and the remaining three assignments were given out after each class 
session. Two students, one higher-performing and one lower-performing, were selected to 
participate in videotaped interviews while they worked through the assignments. Leveraging 
Goldin’s (2000) principles, the interviews with these two students were semi-structured and task-
based, with the purpose of investigating their thinking. We asked the other ten students to each 
work on their assignments alone and without resources, to do the tasks from each assignment in 
order, and to clearly present their solutions in writing. The design of this investigation and 
subsequent data analysis were guided by the research question: In what ways do students reason 
through a sequence of tasks which progressively become more abstract, and which challenge 
primitive intuitions regarding partitive division? 

Discussion of the Data 

During this study, the subjects participated in a variety of tasks. In this paper, we narrow our 
discussion to the data from the following three tasks: 

Task 1: Divide 27 gallons of water into 9/4 containers. How much water is in one whole 
container? 
Task 2: Suppose an unknown amount of water is divided into 9/4 containers. What could you 
say about how much water is in one whole container? 
Task 3: Explain why it is that when you divide by a fraction, you can multiply by the 
reciprocal of the fraction instead. In other words, explain the following: 𝑎 ÷ 𝑏

𝑐
= 𝑎 ∙ 𝑐

𝑏
 

We designed these tasks to be successively more abstract. For Task 1, we considered a 
response to be correct if it was 12 gallons of water in one whole container. For Task 2, we 
considered a response to be correct if it was conceptually equivalent to saying 4/9 of the water is 
in one whole container. For Task 3, we considered a response to be correct if it was a 
generalization of valid thinking from Tasks 1 and 2, or some other valid explanation. Table 1 
summarizes our analysis of the subjects’ responses to these three tasks, and it reveals that as the 
tasks become more abstract, the students became less successful overall. We now discuss the 
thinking of the two students who were videotaped. We will refer to them as Adam and Sue. 
 

Table 1. Summary of Results of Tasks 1 through 3. 
 Task 1 Task 2 Task 3 

Number of students with a correct response 8 4 1 
Number of students with an incorrect response 3 5 4 
Number who said “I don’t know” or gave no response 1 3 7 

The Case of Adam 
 Adam was the only student out of the twelve subjects who demonstrated valid reasoning 
during all three tasks. For Task 1, he drew 9/4 containers, then decided to procedurally compute 
27÷9/4 by inverting and multiplying to get 108/9, which he reduced to 12 through procedural 
division. He admitted to using the numerical operation of division because the word divide was 
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in the prompt. Once he calculated that the answer should be 12, he decided to find the amount in 
each quarter-container, by dividing 12 by 4 to get 3. He did not indicate that he could have also 
divided 27 by 9 to get 3. In fact, his calculation of 27×4/9 by first multiplying 27 by 4 is 
indicative that he was operating numerically and not thinking quantitatively about partitioning 
and iterating. He then confirmed that a total of 27 gallons was in the 9/4 containers by saying 
that 12 gallons were in each of the two whole containers and 3 more gallons were in the 
remaining quarter-container (see Figure 3). 

 
Figure 3. Adam’s response to Task 1. 

During the interview, Adam’s language was not consistent. He sometimes referred to each 
quarter-container as a whole container, as well as misspeaking about other referents. However, 
we suspect that his language was simply misrepresenting his valid thinking. Figure 3 also reveals 
that Adam labeled one container as “4/9”, and he said that “4 out of the 9” pieces make one 
whole container. As such, and not surprisingly, for Task 2 he wrote that “4/9 of the whole” 
corresponded to one whole container. For Task 3, Adam demonstrated that he was beginning to 
generalize his thinking. He attempted to explain the algorithm by describing division by 7/2, as 
depicted in Figure 4. When pressed to speak in terms of a, b, and c, Adam responded by 
describing partitive thinking, but then gave a quotitive example. He said “The whole thing is the 
a…and I’m cutting it up to a certain amount of pieces. I don’t know how many… abstract… but 
let’s say it’s one third. And I want to know how many one thirds fit into it [referring to the 
whole].” Ultimately, Adam was unable to generalize the partitive division models that he had 
earlier demonstrated using specific fractional values for the divisor. 

 
Figure 4. Adam uses division by 7/2 to illustrate the invert and multiply procedure. 

The Case of Sue 
 Sue appeared to have no trouble with Task 1. She drew nine contiguous boxes, marked “3” 
on each, indicated that four such boxes made a whole container, and concluded that 12 gallons 
were in one whole container. This is depicted in Figure 5. 
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Figure 5. Sue’s work on Task 1. 

On Task 2, Sue was immediately perturbed. She said she didn’t know what to do, pointing 
out that the amount of water was not provided like it was in Task 1. The researcher asked what 
she would do if the amount of water was 18 cups. She proceeded to answer this question in the 
same way that she did for Task 1. The researcher then asked her to consider what she would do if 
“x cups” were the total amount of water, but she was ultimately unable to respond. Since Sue 
was stumped, the researcher returned to Task 1 and asked her how she knew to put a “3” in each 
box. She explained that she knew the total had to be 27 gallons and that there were nine boxes. 
She mentioned that each of the nine boxes had to have the same amount of water and mentioned 
a guess and check strategy. Two gallons per box was too little (“nine times two is only 18”), but 
nine times three gives the correct 27 gallons. The researcher then asked her why she answered 
that 12 gallons were in one whole container. She said that each box was one fourth of a 
container, so she added the four copies of three gallons to get 12 gallons. The researcher then 
drew nine contiguous boxes, shaded in four of them, and asked Sue how much of the entire 
collection was shaded. Sue promptly answered “four ninths”. The fact that Sue answered “four 
ninths” so quickly in the latter situation indicates that Sue’s meanings for fractions are likely 
limited to the out of model and that she does not have developed meanings for fractions as 
operators. As such, her schemes for solving Task 1 were not generalizable to the point where she 
could sensibly talk about Task 2. For Task 3, Sue did not know how to respond. 

Conclusion 

Primitive ways of thinking about division continue to be pervasive in mathematical thinking. 
This research explored the development of more robust meanings for partitive division, which 
are not thwarted by non-whole divisors. The initial data reveals that underdeveloped meanings 
for fractions are impediments to the maturation of robust meanings for division. For example, 
Sue mentioned “four ninths” when she saw 4 out of 9 boxes shaded, but she did not appear to 
think of four ninths as an operator on the total amount of water. The data also suggests that 
quantitative operations, such as partitioning and iterating, are often neglected in favor of 
procedural approaches to division. This was illustrated by Adam, in Task 1, when he 
procedurally calculated that 12 gallons were in each whole container; yet, there was no 
indication that he partitioned the total amount of water into 9 equal pieces. Additionally, we see 
examples of schemes for division that are not generalizable to more abstract levels of meaning. 
For example, Sue’s guess and check scheme in Task 1 was dependent on knowing the total 
amount of water. It is evident that the development of partitive meanings for division with 
fractions depends on more robust meanings for both fractions and division. Additional research 
is needed to better investigate this claim. 
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We examine the current progress of implementing both corequisite remediation and math 
pathways in the state of Oklahoma. In this paper, we discuss the details of these effort and the 
underlying needs while providing a national perspective about the reforms. We present 
preliminary data from pilot sections of a corequisite College Algebra course and a new math 
pathway for degrees that require significant quantitative literacy but do not require engineering 
calculus. We also present statewide data on student course-taking patterns, degree requirements, 
and existing institutional efforts that will inform state-level decisions. 

Key words: corequisite remediation, mathematics pathways, reform 

Introduction 

The state of Oklahoma is currently in the process of reforming introductory post-secondary 
mathematics options and curriculum across all 27 public higher education institutions with the goal 
of increasing success in college mathematics courses and therefore increasing degree attainment 
across the state. To accomplish these goals the Oklahoma State Regents for Higher Education, the 
governing body for all public higher education institutions in Oklahoma, adopted the Complete 
College America agenda (Complete College America, 2013). The main focus of the state reforms 
are 1) supplementing the current system of remedial courses with a corequisite model and 2) 
creating multiple introductory mathematics pathways better aligned to diverse degree programs.  

Traditionally, to ensure preparation of entering students, colleges assess students using various 
criteria (e.g. SAT scores, ALEKS, etc.) then place them into college courses using these measures. 
Under-prepared students are placed in a remedial course sequence designed to fill in deficiencies 
from secondary mathematics and prepare them for college-level courses. Once a student completes 
the remedial course sequence, they are allowed to take credit-bearing math courses required for a 
degree. However, this remedial system often fails in its ultimate goal. In 2010, Bailey et al found 
that only 31% of community college students referred to a remedial courses sequence in 
mathematics completed it often due to a failure to enroll. Even more troubling, only half of the 
students completing the remedial course sequence enrolled in the gatekeeper college-level course 
passed (2010). Meaning only 15% of students referred to remediation passed the subsequent 
college credit-bearing course, which is significant as 58% of entering students community college 
students enrolled in a remedial mathematics course (Attewell et al., 2006). Overall, 28% of college 
students from two or four-year colleges enroll in remediation (Attewell et al., 2006). Furthermore, 
delaying enrollment in college-level courses in favor of remedial courses has the consequence of 
extending students’ time to degree, meaning both an increased cost and decreased persistence 
toward a degree (Complete College America, 2011).  

Alternatively, in corequisite remediation, underprepared students are placed directly in 
college-level courses with targeted assistance. The aim of the model is to allow under-prepared 
students to earn college credit upon entering while still providing the students with necessary 
perquisite material, thereby eliminating often multiple semesters of remedial courses and enabling 
students to progress to through their degree programs. Corequisite remediation has been successful 
in several pilot programs across the country, which will be briefly discussed in the next section.   
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The second focus of the reforms are creating mathematics pathways beyond the standard 
College Algebra/Calculus sequence. Creating additionally pathways provides students in non-
STEM disciplines basic mathematics courses more relevant to their interests and needs. The 
reforms seek to increase collaboration between math departments, other academic degree 
programs, and employers as to the necessary mathematical knowledge and skills for students in 
their chosen field.  For many, courses in statistics, quantitative literacy, or mathematical modeling 
are more applicable to future collegiate and career needs. The need for increasing such diverse 
mathematical competencies has been highlighted by several reports from professional associations 
including: the Common Vision 2025 report  by the Mathematical Association and America (Saxe, 
2015), the Guidelines for Assessment and Instruction in Statistics Education (GAISE): College 
Report endorsed by the America Statistical Association (Aliaga, 2005), and the Beyond 
Crossroads Report of the American Mathematical Association of Two-Year Colleges (Foley, 
2007). Additionally, by creating clearly defined mathematics pathways at the state level, 
Oklahoma is aiming to increase transferability of mathematics courses between public institutions.  

In this paper, we address the following research questions: 
1. What are the primary national trends and lessons in corequisite remediation and math 

pathways relevant to the goals and structures of the Oklahoma higher education system? 
2. What are the primary obstacles in implementing corequisite remediation and math 

pathways in Oklahoma, and what factors can local and state leaders influence to address 
these challenges? 

A National Perspective of the Reforms 

Several states have either implemented or are in the process of implementing the reforms 
outlined above. We briefly describe progress in two of the states to lead these reform efforts, 
Georgia and Tennessee. 

Currently, Georgia has two pathways: the traditional College Algebra/Calculus pathway and a 
non-algebra pathway which focuses on either quantitative reasoning or modeling. In Fall of 2014, 
Georgia piloted corequisite remediation for both pathways. 67% of the 2919 students in the non-
corequisite sections passed the gateway course. In the corequisite sections, there was a total 1,132 
students 64% of whom passed. Comparably, only 21% of students referred to remedial education 
in 2010 passed their gateway course within two years (Complete College America, 2015). 

Beginning in Fall of 2014, Tennessee conducted a pilot corequisite program for an introductory 
statistics courses with 1,019 students at 9 different campuses. Tennessee saw similar results to 
Georgia, 63.3% of students assessed as being underprepared pass introductory statistics whereas 
under the previous remediation model only 12.3% had pass the introductory statistics course.  

Similar results can been see in other states (Complete College America, 2016). We will 
continue to examine the progress and challenges of the reforms across the country and how their 
efforts can inform the reforms in Oklahoma. 

Progress in Oklahoma 

Corequisite Remediation 
In fall of 2015, Oklahoma State University began piloting corequisite courses. The ALKES 

test is used to assess entering student college readiness. Normally, to place into College Algebra a 
score of 45 out of 100 is required. OSU ran three pilot sections consisting of 87 students scoring 
between 30 and 44 on the ALEKS test. The students in the corequisite sections attended class five 
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days a week. Three days were dedicated to regular instruction, similar to the standard three-hour 
College Algebra class. During the other two days, an undergraduate learning assistant engaged 
students in active learning sessions designed by an experienced course coordinator to improve 
students’ prerequisite knowledge. Students in the corequisite sections completed the same 
homework and took the same exams as students in regular College Algebra sections. Table 1 shows 
the percentage of the students in these courses earning a D and F, or withdrawing (D/F/W rate).   

Table 1  
Data from pilot sections. 

 Enrollment Proportion of first-
generation students 

Overall D/F/W 
rate 

First-generation 
D/F/W rate 

All sections 820 20.7% 31.6% 35.9% 
Regular sections 733 18.8% 31.2% 37.0% 
Pilot sections 87 36.8% 34.5% 31.3% 

While the D/F/W rate overall for the pilot corequisite sections was slightly higher than for 
regular sections, the D/F/W rate for first generation was significantly lower. Traditionally only a 
small fraction of students enrolling in remedial courses succeed in that course, continue to College 
Algebra, and further succeed in College Algebra. Equally important is student persistence to and 
success in subsequent mathematics or statistics courses which is shown in Figure 1.  

Figure 1. Corequisite students’ grades in subsequent mathematics or statistics courses.  

With regard to the state wide reforms, we have collected surveys from all public institutions in 
the state on their implementation of corequisite courses. We are in the process of analyzing this 
data, which will provide a useful baseline for comparison as the state reforms unfold.  
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Math Pathways 
Oklahoma State University has also created a course Mathematical Functions and Their Uses 

(MATH 1483) which is being offered as an alternative to College Algebra for many business, 
social science, health, and agriculture degrees that do not require an engineering calculus course. 
The course emphasizes quantitative reasoning by modeling data with a calculator and/or excel and 
serves as an equally successful preparation for Business Calculus as College Algebra. The D/F/W 
rates are typically 15% and 25% for the fall and spring respectively.  As degree requirements shift 
away from college algebra, we are in the process of analyzing D/F/W rates from subsequent 
gateway courses. Moreover, the shift to functions has led to an increased success in College 
Algebra. Additionally, in Fall 2016, the university began piloting a corequisite section of the 
functions course allowing traditionally underprepared students another pathway to earn college 
credit upon entering.  

Statewide, we collected detailed information on the mathematics requirements for every major 
at 26 of the 27 state public institutions (we are still seeking information from the last institution) 
and complete statewide data for student enrollment and success in math courses by major. The aim 
is to better understand the current math pathway options available and clusters of majors that might 
benefit from shifts to new math pathways. As we continue our data analysis, we will be conducting 
interviews with individuals involved in the reforms in Oklahoma and individuals involved in the 
national reforms to better understand the data and process. 

Discussion Questions 

During our presentation, we will present a more complete analysis of the data described in this 
proposal with implications for state-level reform decisions. We seek a discussion on the primary 
challenges to a successful implementation of corequisite remediation and math pathways at-scale 
and productive theoretical perspectives on institutional and systemic change to guide ongoing 
research and evaluation.  
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The long-term aim of this study is to develop a conceptual framework outlining the concepts 
necessary for college students to be able to successfully complete fundamental tasks of 
elementary algebra.  This paper is a preliminary report of one part of this research, which 
focuses on instructor perceptions of what concepts are fundamental to successful completion of 
elementary algebra tasks.  The framework presented here is the result of an action research 
project conducted by five college instructors in the U.S. who teach elementary algebra.  
 

Keywords: Elementary algebra, conceptual understanding, algebra concepts, tertiary education. 
 

Elementary algebra and other developmental courses have consistently been shown to be 
barriers to student degree progress and completion in the U.S..  There is evidence that only as 
few as 20% of students who are placed into developmental mathematics ever successfully 
complete a credit-bearing math course (see e.g. (Bailey, Jeong, & Cho, 2010).  At the same time, 
elementary algebra has higher enrollments than any other mathematics courses at U.S. 
community colleges (Blair, Kirkman, & Maxwell, 2010).   

Significant research has been done in the primary and secondary context to explore which 
types of student thinking lead to more successful or less successful outcomes in student algebraic 
problem-solving, but little research has been conducted with students enrolled in elementary 
algebra courses in the tertiary context, despite the fact that there is significant evidence to 
suggest that mathematics learning is likely somewhat different in this context (Mesa, Wladis, & 
Watkins, 2014).  One approach to investigate this setting is to conduct participatory action 
research in the tertiary context in order to explore how instructor experiences, including cyclical 
investigations of their own practice, can shed light on some ways that tertiary students learn 
elementary algebra concepts, and on which types of student understandings are important for 
successful completion of elementary algebra tasks.   

Conceptualizations of algebra and fundamental algebraic concepts 
There are a number of different conceptualizations of algebra that have been explored in the 

research literature.  Usiskin (1988) laid out four conceptualizations of algebra: generalized 
arithmetic; the set of all procedures used for solving certain types of problems; a study of 
relationships among quantities; and a study of structure.  Kaput (1995) in contrast identified five 
conceptualizations of algebra, the first four of which mirror somewhat closely those of Usiskin:  
generalization and formalization; syntactically-guided manipulations; the study of functions, 
relations, and joint variation; the study of structure; and a modeling language.   

A number of different important algebraic concepts have been studied previously, typically 
in the primary or secondary context.  A complete review of the literature is not possible due to 
space constraints, but we outline here briefly some of the major categories of research on algebra 
that are relevant to elementary algebra in the tertiary context and cite one or two key references 
for each: 

x Variables and symbolic representation (Dubinsky, 1991; Kuchemann, 1978; Sfard, 1991)  
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x Functions and covariation (Blanton & Kaput, 2005; Carlson, Jacobs, Coe, Larsen, & Hsu, 
2002; Goldenberg, Lewis, & O'Keefe, 1992) 

x Equivalence (Kieran, Boileau, Tanguay, & Drijvers, 2013; Knuth, Stephens, McNeil, & 
Alibali, 2006)   

x Algebraic structure sense (Hoch, 2003; Hoch & Dreyfus, 2006; Linchevski & Livneh, 1999)  

For an excellent and systematic review of historical developments in the conceptualization, 
teaching, and learning of algebra, see (Kieran, 2007).  Some researchers have developed 
frameworks for organizing algebra as a subject, typically in the primary and secondary context 
(see e.g. (Nathan & Koedinger, 2000; Sfard & Linchevski, 1994).  In addition, various national 
standards regarding the teaching of algebra exist, such as the Mathematical Association of 
America college algebra standards (Mathematical Association of America, 2011), the National 
Council of Teachers of Mathematics Standards (National Council of Teachers of Mathematics 
(NCTM), 2000), and the American Mathematical Association of Two-Year Colleges Beyond 
Crossroads standards (Wood, Bragg, Mahler, & Blair, 2006).  However, while these standards 
stress the importance of conceptual understanding, their detailed explication of what students 
should learn tends to focus on computational tasks (e.g. being able to perform function 
composition) rather than on the specific conceptual ways of thinking that underpin those tasks 
(e.g. having a process view of function).   

Teacher beliefs and expertise 
The relationship between teacher beliefs and practice is complex; for example, teachers do 

not always employ teaching practices that strongly reflect their professed beliefs about how 
students learn.  However, despite this complexity, there is significant research suggesting that 
teacher beliefs are often strongly related to the teaching practices that teachers implement in the 
classroom, and therefore are also related to student beliefs and learning experiences (see e.g. 
(Fang, 1996; Maggioni & Parkinson, 2008).  So understanding teacher beliefs is one critical 
component of understanding instructor practice and its impact on student learning.   

On the other hand, teacher expertise also has the potential to benefit the research community 
by contributing important information about what teachers have learned while teaching; this 
knowledge can then be used by researchers to generate and test new theories about how students 
learn and about what is effective in the classroom.  As Schulman (1987) explains, “One of the 
more important tasks for the research community is to work with practitioners to develop 
codified representations of the practical pedagogical wisdom of able teachers” (p. 11).  

This study uses a teacher-as-researcher interpretation of action research, as originally 
coined by Stenhouse (1975) and later expanded conceptually by Elliot (1991) and then Cochran-
Smith and Lytle (1993; 2009).  In this framework, teacher-practitioners investigate research 
questions not only to improve their own practice, but also to add to a larger body of knowledge 
than can be implemented by other teachers in similar contexts.  This is a more inclusive view that 
includes practitioner experiences as a valid foundation for knowledge production. 

Theoretical Framework 
This study uses Vygotsky’s (1986) theory of concept formation as a framework for 

investigating student understandings in elementary algebra.  According to Vygotsky, algebraic 
symbols, graphs and other representations of mathematical objects and concepts mediate two 
interconnected processes:  1) the development of a mathematical concept in the individual; and 
2) the individual’s interaction with an external mathematical world where these representations 
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are rigorously codified.  Learners begin to use these representations before they have “full” 
understanding of their meaning, and it is through this experimentation and attempts at 
communication with “more knowledgeable” others over time that they internalize more formal 
and correct meanings for the objects that the representations symbolize.     

Methodology 
Five elementary algebra instructors collaborated on this action research project, some of 

whom are also active educational researchers.  The group included faculty with doctorates in 
both mathematics and mathematics education, who have taught at the high school, community 
college, and university levels.  Faculty came from varied backgrounds, and included both men 
and women, several different racial/ethnic, national, and immigrant backgrounds, and reflected a 
variety of different teaching styles.   

Conceptual Framework 
This study used the Action Research Spiral Framework (Kemmis & Wilkinson, 1998) to 

guide the process of collaborative exploration into student thinking about elementary algebra 
concepts.  This framework outlines a cyclical practice in which practitioners cycle through the 
following steps repeatedly in a spiral: 1) plan; 2) act and observe; 3) reflect; 4) revised plan, etc.  

First each instructor independently created a list of concepts that they saw as fundamental to 
elementary algebra.  After all instructors had created their own list, all lists were combined.  
Then a series of discussions ensued, during which various topics and sub-topics on the original 
master list were combined, rephrased, removed, added, and otherwise revised.  Instructors used 
the framework to inform the creation of assessments and classroom activities, used these in their 
classes, and then used their experiences to inform revisions in a cyclical process over four 
separate semesters.   

In deciding on what concepts to explore, instructors were asked to think not just about the 
current elementary algebra course that they were teaching, but about tertiary elementary algebra 
in general, including variations in what might be included on the syllabus at different colleges.  
The syllabi of elementary algebra courses at a number of different colleges in the U.S. were 
consulted to give instructors an idea of the range. Several framing questions were used both 
during initial independent selection of topics and the subsequent discussions: 

x What concepts would we want students to still understand a year after they have 
completed an elementary algebra course? 

x What fundamental algebra ideas are necessary for future mathematics courses (e.g. 
college algebra, pre-calculus, calculus)? 

x What fundamental ideas are of significant value in other liberal arts math courses (e.g. 
statistics), or necessary in order to be able to apply algebraic thinking in “real” life (e.g. 
financial calculations, risk calculations)? 

x For which particular concepts might you conclude that students had missed the “whole 
point” of elementary algebra if they were to finish the course without understanding them?   

Results 
In the process of identifying a conceptual framework for elementary algebra, the group first 

identified a list of four broad types of tasks that they felt all successful elementary algebra 
students should be able to complete, whatever the differences across elementary algebra 
curricula (see Table 1).  Then, using these tasks as an initial frame, the group developed a list of 
concepts that, based on their cyclical experience interacting with students in elementary algebra 
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classes, they felt to be fundamental in order for students to successfully complete these tasks (see 
Table 2 for a partial reporting of that framework).     

 
Table 1.  Fundamental Elementary Algebra Tasks 

1. Expressing and correctly interpreting relationships, patterns, and properties in expression or equation form, 
through correct use of algebraic symbols 

2. Simplifying expressions by replacing them with equivalent expressions 
3. Solving an equation/inequality or system of equations and correctly interpreting the solution set 
4. Relating an equation, or properties of an equation, to a graph, and vice versa 

This list of tasks was not intended by the instructors to include all of those that might be relevant to any elementary 
algebra class given in any context. 
 

The instructors theorized that the fundamental elementary algebra tasks in Table 1 could only 
be completed if students understand the following concepts in the Framework given in Table 2.   
 

Table 2. Elementary Algebra Concept Framework (selected topics presented in detail) 
1. Algebraic Symbolism: Understands how to express relationships and patterns in expression or equation form, 

and can explain in words the pattern or relationship expressed by a given expression or equation 
(The sub-concepts in this concept are not outlined here because of space constraints.)   

2. Algebraic Structure: Recognizes algebraic structure, with respect to the relevant context of a particular 
problem-solving goal 
a. Understands the role of a variable:   

i. That it can take on a wide variety of values;  
ii. That its value can vary or that it can represented a fixed unknown; 

iii. That any expression can be substituted in for a variable; 
iv. That a variable functions as a set of parentheses around whatever is substituted into its place; 
v. That every instance of a variable stands in for the same value; 

vi. That any repeating expression can be replaced by a variable, as long as that variable is defined to take on 
the original value that it replaced.   

vii. That during substitution, the structure of the expression outside the part being replaced remains 
independent of and unchanged by whatever is being substituted into it 

b. Is able to view expressions or equations with respect to a particular context, and in this context identify the 
relevant properties 
(The sub-concepts for 2.b. are not outlined here because of space constraints.)   

3. Properties/Generalizing Arithmetic Operations: Understands the definitions of basic arithmetic operations 
and can use those definitions to describe general patterns and properties (in words and using equations).   
For example, understands basic definitions of addition, subtraction, multiplication, division/fractions, positive 
whole exponents and square roots and can use these definitions to determine when these operations (or 
combinations of these operations) have certain properties.   
(The sub-concepts in this concept are not outlined here because of space constraints.)   

4. Equality/Equivalence: Understands equality/equivalence 
a. Understands what it means for two expressions to be equal 

i. Understands that two expressions are equal if and only if they are equal for all possible (combination of) 
values of (each of) the variable(s) 

ii. Understands that if two expressions are equal, one expression may be substituted for the other in any other 
expression or equation 
1. Understands that simplifying (or otherwise rewriting) expressions is a process by which one 

expression is replaced by another equivalent expression  
b. Understands what it means for two equations to be equivalent 

(The sub-concepts in 4.b.  are not outlined here because of space constraints.)   
5. Equations as Relationships between Variables: Understands equations with two variables as something that 

describes the relationship between two variables, describing how one variable varies with respect to changes in 
the other variable.   
(The sub-concepts in this concept are not outlined here because of space constraints.)   

6. Thinking Graphically: Understands how one and two-dimensional graphs describe the relationship depicted in 
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a particular equation or inequality and vice versa, and can describe how different operations will impact a graph.   
(The sub-concepts in this concept are not outlined here because of space constraints.)   
In a cyclical process of experimentation, instructors developed assignments and assessment 

questions intended to either 1) assess the extent to which students understood one or more 
concepts listed on the framework; or 2) confront students with tasks that would require them to 
directly engage with a common misconception or a type of productive struggle that might better 
reveal their current understandings related to one of the concepts on the framework, or how they 
use those understandings to complete specific elementary algebra tasks.   

An example of one question in the first category is below: 
Assume that ܽ ് 0.  Dale simplifies the expression ܽଷܽିଶ and gets the correct expression ܽ.  Which of the 
following must be true?  There may be more than one correct answer—select ALL that are true. 

a. ܽଷܽିଶ ൌ ܽ 
b. If Dale lets ܽ ൌ 10 in both the expressions ܽଷܽିଶ and ܽ, he will get two different answers. 
c. Dale can substitute ܽ for ܽଷܽିଶ anywhere it appears.   
d. If Dale lets ܽ ൌ 20 in both expressions, he will get the same value for each expression.   
e. Dale needs to know the value of ܽ before he can say whether ܽଷܽିଶ and ܽ are equal. 
This question was designed to test the extent to which students understand the items listed 

under 4.a. in the framework in Figure 2.  Based on the answers that students gave, instructors 
could then engage with students about their understanding of specific components of item 4.a. in 
order to better understand what those are and how they relate to one another.  Based on 
conversations with students as a result of this question, the framework was revised: The first 
framework draft contained only item 4.a.ii.1; after repeated cycles of the research process the 
additional items under 4.a. were added and structured hierarchically.   

An example of a task that falls into the second category is the following question, which one 
of the instructors used for an in-class activity: 
Suppose there is a new algebraic operation called the bow tie, defined this way:        ⋈ ܽ ൌ ଵ

௔ െ ܽଶ 
Use this definition to rewrite the following expressions (no need to simplify afterwards!) so that they no longer 
contain a bow tie symbol: 

a) ⋈ ሺെ2ሻ 
b) ⋈ ሺݔଶሻ  
c) ⋈ ቀଵ௬ቁ  

Instructors expected students to make the following mistakes somewhat frequently:  	
⋈ ሺെ2ሻ ൌ ଵ

ିଶ െ 2ଶ, ⋈ ሺݔଶሻ ൌ ଵ
௫మ െ ⋈ ,ଶݔ ቀଵ௬ቁ ൌ

ଵ
	௬	 െ ቀଵ௬ቁ

ଶ
.  The expectation was that students 

who made these mistakes did so through oversight—for example, they might forget to write both 
negative signs when substituting in െ2 for െܽଶ.  However, in one-on-one discussions with 
students, it became clear that many students did not forget to write the negative sign in this case; 
rather, they believed that because the െ2 already had a negative sign, that this negative sign took 
the place of the one that was already in the expression ଵ௔ െ ܽଶ.  This led to a revision of 
Framework item 2.a. to include sub-item vii.   

Discussion and Plans for Next Steps 
This framework reflects only the experience of one group of elementary algebra instructors at 

the college level and may not reflect the experiences of all tertiary elementary algebra 
instructors.  This is also just one step of data collection in our larger goal of developing a 
conceptual framework for elementary algebra at the college level.  Another ongoing study that is 
a part of this larger project is an extensive literature review synthesis whose goal is to develop a 
comprehensive research-based conceptual framework for elementary algebra that is based on 
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existing literature from primary and secondary settings.  The next step will then be to compare 
that framework to the instructor-generated framework in order to identify areas where they 
overlap and where they do not.  Areas where the frameworks differ will then be used as a starting 
point for future research projects investigating how the algebraic understandings and learning 
processes of tertiary students in elementary algebra may differ from the experiences of primary 
and secondary students learning similar content.   
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Abstract: Students who have persisted in mathematics coursework long enough to be present 
in calculus or who enter mathematics at the level of calculus would be expected have more 
robust notions concerning their career choices than those who enter developmental 
mathematics. In the current work, we give a preliminary comparison of data generated by a 
career decision making survey administered to students in a developmental mathematics 
course and to students in a first semester calculus course at a large research university during 
the fall 2015 semester. We consider some initial results for students who switch majors after a 
semester of mathematics coursework. 
 
Keywords: Career Choices, Persistence, Calculus, Developmental Mathematics 
 

Introduction 
 

Students at most institutions of higher education will begin their studies with a mathematics 
course of some kind, and students who choose science, technology, engineering and 
mathematics (STEM) careers usually take mathematics courses during their first term. In 
addition, STEM intending students will typically eventually take calculus. These students have 
a variety of motivating factors for their choice of major and their career goals. During their 
mathematics course experiences, they may or may not make changes to their plans. In the 
current work, we present a preliminary study of career and major choices of students in 
developmental mathematics courses and first term calculus and provide some initial data from 
a study of how those intentions change over the course of a semester in those classes. 
 

Theoretical Perspective 
 

In this project, we surveyed students about a number of factors related to career exploration 
and career identity theory as part of a larger project to build models of developmental 
mathematics and calculus students who have declared a STEM major and career intentions. 
This work builds on early work on self-identity situated in disciplines (Marcia, 1966; Nosek, 
Banaji & Greenwald, 2002; Du, 2006; Hazari, Sadler & Sonnert, 2013) as well as some 
affective factors such as anxiety (Alexander & Martray, 1989) and personality constructs 
identified by the Big Five Inventory (John, Naumann & Soto 2008). This effort explores 
relationships between mathematics anxiety, personality, coursework and both persistence and 
identity. The data generated from a collection of five surveys is used to analyze when and why 
developmental mathematics and calculus students change majors. In this preliminary report we 
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summarize the results from one of these surveys. 
 

Methodology 
 

In the fall semester of 2015 a series of surveys were administered to a cohort of students 
enrolled in both types of courses (developmental and calculus) to assess their anxiety levels, 
personality traits and career decision-making strategies. The survey consisted of a series of 
Likert-response questions combined with open answer questions intended to assess a student’s 
methodology and reasons for choosing a major and career. This data and student demographic 
information were analyzed in an effort to begin to identify differences between the responses 
of these two groups. Identifying patterns in responses will help us begin to develop profiles of 
students in each cohort, but particularly in developmental mathematics, who will be successful 
in STEM majors. The survey was given in the second week of class and again in the final week 
of the semester. There were 458 calculus students and 80 developmental mathematics students 
who completed both pre- and post-surveys. Both surveys asked students about their thoughts 
on changing majors, therefore we have data about intentions to change majors both before and 
after a semester of mathematics coursework. 

 
Results 

 
Demographic data for each population are presented (Table 1). Developmental mathematics 

students were primarily female, non STEM intending. Calculus I students were more mostly 
male and STEM intending. We asked students their reasons for selecting a major and about the 
attractiveness of their field in a pre- and post-survey by providing the following two open-
ended questions: “What seems attractive about your current major or career goals?” and “How 
did you come to decide on your current major?” Responses (pre and post) to these questions 
from both the developmental mathematics and calculus groups were coded for themes by two 
members of the research team. Codes were compared until there was total agreement among 
the researchers and each response was assigned up to three codes. Surprisingly, we do not note 
changes on these two statements from a pre and post comparison for both developmental 
mathematics and calculus groups. Even more unexpected, the summarized responses to the 
questions (Figure 1) show a parallel between factors influencing both groups of students. The 
majority of students chose their major based on personal interest and future career expectation. 
Many students also indicated that they were influenced by some external factors such as family 
and friends when making their decisions. 

 
Table 1. Demographic information for Developmental Mathematics and Calculus I groups. 

 Developmental Mathematics Calculus I Groups 
 STEM Non-STEM Total STEM Non-STEM Total 
Female 8 50 58 102 48 150 
Male 10 12 22 283 25 308 
Total 18 62 80 385 73 458 

 
In addition to the open ended questions that were coded, students were asked eight 
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additional questions to be rated on a Likert scale. The questions are given in Table 2 and student 
response rates are given in Figure 2. We observe that most students in the two groups are 
confident in choosing their major, feel satisfaction with their selected major and are seriously 
committed to their current occupation. These characteristics of decision-making are consistent 
with the reasons for choosing their major. Moreover, the response rates for each category in 
the Likert scale are remarkably similar for both groups, indicating that student thinking about 
major and career choices is similar for both developmental mathematics students and calculus 
level students. This result contradicts the intuitive notion that students at the calculus level 
would have different reasoning about their career and major choices than those not ready for 
college level mathematics. 
 
Figure 1. Student responses to open ended questions about factors affecting choice of major 
and attractiveness of major or career goals. 

 
 
Table 2. Likert-scale questions asked in career decision making survey. 

Q1 I had difficulty choosing a college major and a future career path. 
Q2 I feel good about my current position with respect to my major. 

Q3 Most parents have plans for their children, things they'd like them to do or go into. 
My parents have plans like that for me. 

Q4 My parents feel good about what I'm doing now. 
Q5 I would be willing to change my current plans if something better came along. 
Q6 I see my occupation as being important to me in my life. 
Q7 My family's opinion was very important in helping me choose my current major. 
Q8 If my family were supportive, I would be likely to change my major. 

 
Comparisons between pre- and post-survey responses, however, within the groups as well 

as between groups show that a substantially higher percentage of developmental mathematics 
students are deciding to change their major (18.12%) after a semester in a mathematics course 
than those in calculus (12.81%). We designate these students as “switchers” (Bressoud, Carlson, 
Pearson, Rasmussen, 2012). In addition, we asked students if they planned to change their 
major both at the beginning of the semester and at the end of the semester. At the beginning of 
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the semester, 13.92% of developmental mathematics students indicated they planned to change 
majors, while 25.32% indicated that they planned to at the end of the semester. For calculus 
students, 21.27% planned to change majors at the beginning of the semester while 19.74% 
indicated they planned to change at the end of the semester. 

 
Figure 2. Characteristics of career decision making processes  

 
Students from the both courses who indicated an intent to change majors at the beginning 

of the term described different reasons for doing so (Table 3). Developmental mathematics 
students experienced a significantly lower level of confidence coming into the course, affecting 
their decision to switch, but few calculus students stated such a reason. On the other hand, the 
critical reason for change for calculus students at the beginning of the term was a loss of interest 
in their current major. Both groups of students also indicated their new major would be more 
interesting and be a better fit for their talents.  
  
Table 3. Reasons for change-population indicating major change intention during pre-survey.  

Statements Developmental 
Mathematics Calculus 

I don't find my current major very interesting anymore 35.00% 26.67% 
I found another major that is more interesting 30.00% 47.78% 

I found another major that better fits my talents 35.00% 30.00% 
My current major really wasn't what I expected 25.00% 22.22% 

I just don't feel I belong when I am  
with other students in my major 15.00% 16.67% 

My current department does not seem interested in me 10.00% 4.44% 
I am not sure I can be successful in my current major 50.00% 16.67% 
 
Specifically, examining the reasons for changing majors at the end of the term for both 

groups, we discovered a similar but more prominent pattern along with one exception (Table 
4). A decrease in confidence appeared as an equally important reason for switchers in the 
calculus population (as well as in developmental mathematics). More importantly, some of the 
reasons that are not emphasized by students in the pre-semester survey results became critical 
for switchers in the calculus group at the end of the semester.  
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Table 4. Reasons for change-population indicating major change intention during post-survey.  

Statements Developmental 
Mathematics Calculus 

I don't find my current major very interesting anymore 30.77% 19.57% 
I found another major that is more interesting 23.08% 47.83% 

I found another major that better fits my talents 23.08% 56.52% 
My current major really wasn't what I expected 30.77% 41.30% 

I just don't feel I belong when I am  
with other students in my major 0.00% 17.39% 

My current department does not seem interested in me 7.69% 8.70% 
I am not sure I can be successful in my current major 46.15% 45.65% 

Considering students in both groups by gender and by major (STEM or non-STEM), we 
found that in developmental mathematics courses there is an increase in number of students 
changing their major in all categories from the beginning to the end of the semester: male, 
female, STEM intending and non-STEM intending. The increase is greater for females (~+14%) 
than for males (~+5.5%) and greater for non-STEM intending (~+12%) than for STEM 
intending (~+5.5%). Conversely, for the calculus population, there was an increase in the 
number of non-STEM intending and female switchers, while the numbers of STEM intending 
(~-2%) and male (~-4%) switchers decreased. Rates for female and non-STEM intending 
students switching increased by approximately 2.5% and 4% respectively. 
 

Conclusions 
 

Despite the fact that there are several parallel patterns and no pre- and post-test differences 
in students’ reasons for choosing their major, beliefs towards the attractiveness of their major, 
and the characteristics of how they chose their major between students in the developmental 
mathematics and calculus courses, we discovered differences in the reasons for switching 
between the course populations as well as differences in the switch rate between gender and 
the classification of STEM intention.  

By comparing the overall rate of students’ changes in their majors, we found that there are 
more students from the developmental mathematics courses changing their majors. This may 
be a preliminary indication that students who are taking the developmental mathematics course 
are comparatively more negative affected by mathematical experiences. In addition, the 
developmental course delivery format is significantly different than the calculus course 
delivery. The effect of the format of the course on the specific factors measured in this study 
has not yet been investigated. Losing interest and confidence are the two most critical 
explanations for changing their major in both groups, especially for the switchers. On the other 
hand, the developmental mathematics course and calculus courses perform similarly in keeping 
STEM intending students, since the decline in STEM intending students are significantly lower 
than the decline in non-STEM; the Calculus courses are doing comparatively good job 
retaining STEM intending students. This could inform the instruction in both courses so that 
we can retain more and increase the number of students who pursue a STEM degree.
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What Constitutes a Proof? 
Complementary Voices of a Mathematician and a Mathematics Educator in a Co-Taught 

Undergraduate Course on Mathematical Proof and Proving 
Orit Zaslavsky* and Jason Cooper** 

*New York University; **Weizmann Institute of Science 

The work reported in this paper is part of a study aimed at characterizing the processes and 
identifying the ways in which different kinds of expertise (mathematics vs. mathematics 
education) unfolded in the planning and teaching of an undergraduate course on Mathematical 
Proof and Proving (MPP), which was co-taught by a professor of mathematics and a professor 
of mathematics education. More specifically, the study aimed at unpacking the affordances and 
drawbacks of this collaboration. The collected data includes all 13 videotaped lessons in the 
2012 semester, the second time the course was taught. The content of the course consisted of 
topics that were familiar/accessible to the students, e.g., high school level algebra, geometry, 
and basic number theory. In this paper we focus on how the views held by each instructor 
regarding what constitutes an acceptable proof and how it should be presented, are reflected 
in his/her teaching.  

Key words: Mathematical Proof and Proving; Undergraduate Course; Problem-based Learning; 
Community of Practice 

Introduction 
The study reported herein was carried out in the context of an undergraduate course on 

Mathematical Proof and Proving (MPP)1 that was designed in collaboration between 
mathematicians and mathematics educators, and was co-taught by a professor of mathematics 
(Jim) and a professor of mathematics education (Olga)2. A small portion of the study appeared 
in Zaslavsky, Sabouri, & Thoms (2013). The present paper is a preliminary report on work in 
progress - a qualitative analysis of the actual teaching of both instructors, viewed through a 
variety of lenses and guiding questions. The overarching goal of our study is to characterize 
the processes and to identify the ways in which the different kinds of expertise (mathematics 
vs. mathematics education) unfolded in the actual planning and teaching of the MPP course; in 
particular, we are looking for instances that could help understand how each expertise 
contributed to the course and complemented the other. In terms of student learning, the course 
was assessed by a special evaluation team. Their report indicated a gain in students’ 
understanding of the notion of proof and their ability to prove. Thus, for the purpose of the 
study reported herein, we do not address questions regarding student learning; rather, we look 
at the teaching of both instructors and the interactions between them as they taught. 

The MPP Course 
Two assumptions led to initiating this MPP course: 1. Mathematical proof and proving are 

fundamental to mathematics; and 2. Many undergraduate students struggle with the notion of 
formal proof and the activity of mathematically proving (e.g., Harel and Sowder, 2007).  

The notion of proof is often incorporated in mathematical content courses, and typically 
does not constitute the focal topic of a single undergraduate course. There are many transitional 
courses in mathematics, most of which combine learning about proof with learning unfamiliar 
fundamental topics in mathematics. Consequently, the cognitive load on students is high and 
they encounter more difficulty than necessary, since they need to deal with many issues 
                                                 

1 This material is based upon work supported by the National Science Foundation under 
Grant No. 1044809. 

2 The names in this paper are pseudonyms. 
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concurrently: advanced mathematical ideas as well as proof and proving. The intention of the 
MPP course was to build on students' existing mathematical knowledge, and to draw on 
learning activities that involve familiar topics such as high school level algebra and geometry 
and basic number theory (e.g., familiar properties of integers such as divisibility).  

The challenge of attending to students’ learning difficulties, and at the same time 
maintaining an appropriate level of sound mathematics, led to a collaboration between 
mathematicians and mathematics educators. Moreover, the MPP course was designed and co-
taught by two instructors – a full professor of mathematics and a full professor of mathematics 
education. The goal of this collaboration was to capitalize on each of the instructors’ expertise. 
The mathematics educator brought her expertise on teaching mathematics, and in particular the 
teaching of proof and proving. She also brought expertise on students’ difficulties in learning 
to prove. The mathematician brought his expertise in the discipline of mathematics and the 
knowledge and understanding of MPP that students will need for successful participation in 
more advanced undergraduate mathematics content courses. This collaboration was grounded 
in a mutual respect for each other’s role and potential contribution, and on the recognition that 
the instructors had much to learn from each other.  

While sharing the same concerns and long-term goals for the course, each instructor 
brought a different perspective on how students should be learning MPP and on how to attend 
to their difficulties. From the outset it became clear that although the structure and syllabus of 
the course were pre-determined in full agreement between the two instructors, each instructor 
had his/her own views and interpretations, and that the joint efforts to produce an MPP course 
to address the above concerns would require ongoing dialogue and reflection. The challenge 
was to bridge the different perspectives and use them as a springboard to enhance the course. 

Conceptual Framework 
The following perspectives on learning and teaching guided the design of the MPP course: 

1. Students' interactions and classroom discourse contribute to learning [to prove] (Yackel, 
Rasmussen, and King, 2000; Zaslavsky and Shir, 2005; Smith, Nicholas, Yoo, and Oehler, 
2009); 2. Tasks play a significant role in learning (Henningsen and Stein, 1997); 3. Uncertainty 
could promote the need to prove (Dewey, 1933; Fischbein, 1987; Harel and Sowder, 2007, 
2009; Zaslavsky, 2005; Zaslavsky et al, 2012); 4. Class discussions and activities should 
address students’ anticipated/manifested preconceptions and difficulties (Harel and Sowder, 
2007, 2009; Weber, 2001; Reid, 2002; Buchbinder and Zaslavsky, 2009).  

The decision to design and co-teach the course collaboratively, assigning two full 
professors as the MPP course instructors, is in a way a response to issues raised by Harel and 
Sowder (2009). Their study indicates that while mathematicians who teach undergraduate 
courses in mathematics have a broad and deep mathematical knowledge/understanding, many 
are not necessarily fully aware of students’ difficulties in learning to prove, or of effective ways 
to scaffold their learning. In addition to the instructors, three mathematicians were involved in 
the design of the course, two doctoral students served as TAs and one served as a research 
assistant. The team members varied with respect to their expertise and experience, as well as 
their roles, which is one of the characteristics that Roth (1998) considers essential for a 
community. Theories of communities of practices provide us with tools for analyzing the 
various kinds of learning of the members of the community as well as the contribution of each 
member to the shared goals of the community (Rogoff, 1990; Roth, 1998; Lave & Wenger, 
1991). These theories consider knowledge as developing socially within communities of 
practice. 

An integral characteristic of our community of practice is associated with the notion of 
reflective practice (Dewey, 1933; Schön, 1983). The notions of reflection on-action and 
reflection in-action have been recognized as effective components that can contribute to the 
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growth of teachers’ knowledge about their practice. In our study, reflection was a key issue for 
the development of the instructors’ awareness and understandings related to teaching and 
learning to prove. 

Data Sources and Analysis 
The data for the large scale study consists of video-tapes and field notes of all the classes 

in the semester (13 sessions), audio-records and field notes of weekly meetings held a day after 
each class, and email conversations between the team members. In addition, students’ written 
homework and TA’s comments and grades were scanned and documented.  

The methodology employed in the analysis followed a qualitative research paradigm in 
which the researcher is part of the community under investigation. It borrows from Strauss and 
Corbin’s (1998) Grounded Theory, according to which the researcher’s perspective crystallizes 
as the evidence, documents, and pieces of information accumulate in an inductive process from 
which a theory emerges. The researcher acts as a reflective practitioner (Schön, 1983) whose 
ongoing reflectiveness and interpretativeness are essential components (Erickson, 1986). In our 
case, the researchers were members of the community of practice that they investigated. 

For the purpose of this paper, we identified excerpts that reflected the instructors’ views on 
what constitutes an acceptable proof, and analyzed how these views were exhibited.    

Views on what is an acceptable proof 
One of the main goals of the MPP course was to establish what constitutes an acceptable 

proof and how to produce and present a proof that is acceptable. At this point we restrict the 
discussion to what the instructors considered acceptable in the context of the course (we 
acknowledge that for different communities, the requirements of a proof could vary; e.g., 
mathematicians who present their proofs to colleagues, experts in the field, may not be 
expected to go into much detail from one step to another, as it is clear that the presenter as well 
as the audience can easily follow and fill in the gaps).  

While Jim repeatedly insisted on the need to explicitly state the Given and the RTP 
(Required to Prove), Olga insisted on the need to back each step in the proof with a valid 
explanation for the inference that is made. Jim explained his stance mainly as a helpful strategy 
for constructing a proof, when this is not straightforward for the student. Olga supported her 
stance mainly from a metacognitive perspective. She distinguished between the way we think, 
e.g., in a draft version of a proof, and the way the proof should be presented formally. 

 
How to Present It? 

We illustrate the above views through an excerpt from the 6th session (of 13), that aimed at 
implementing the equivalence between a claim and its contrapositive for proving.    

Figure 1. A student’s proof of the contrapositive 
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Olga began the lesson with a review of some homework assignments, which included the 
following: "Prove that for any rational number 𝑛, if 𝑛5 − 6𝑛4 + 27 < 0, then 𝑛 ≤ 10." Most 
of the students had proven the equivalent contrapositive claim, i.e.: "if 𝑛 > 10, then 𝑛5 −
6𝑛4 + 27 ≥ 0. " The episode begins as a student is writing her proof on the board, explaining 
her reasoning as she goes. Her proof, as presented on the board, is shown in Figure 1. 

Student:  So if we know that n is greater than 10 and this number [expression] can be 
written... Since 6 is less than n, because we know that n is greater than 10, then 
we can say that... and then if we subtract ... we know that that would be a positive 
number. [writes on the board].. if we add 27 it would be greater than 0 also. 

Olga:  [turning to the class] What do you say? I see a lot of nodding. You agree with 
the proof? With the arguments, building the proof? How about the presentation? 

Jim:  I want to write that last line. She said it verbally without writing.  
Olga:  Ya, there are a few problems.  
Jim:  Just write the last line you said. 
[Student adds the following line at the end: "𝑛5 − 6𝑛4 + 27 > 0"] 
 
In Olga’s feedback to the student she says:  

"This maybe makes it clearer, but still in order to present the proof very logically, 
it's important to write how we move…. in terms of presentation of the proof, it's 
still lacking. We look at it, it's not clear what follows from what and why. This 
was said orally. But the proof has to stand alone in writing. So all these missing 
parts should be written... Everything you write you have to account for…". 

To make her point, Olga asks: "is 𝑛5 always larger than 𝑛4?”; this question pushed the 
students to realize that this holds only because of the Given, that is, because we know that 𝑛 >
10." She uses this as an example of a missing justification in the proof. 

Olga distinguishes between the way we think about a proof and the way we present it, as 
follows:  

"… we often think in less organized ways, but once you write a proof, we really 
want to make it flow…. So this, I think, is a good example of the slight difference 
between how we think and how the proof in the end has to look…" 

In a different lesson, following Jim’s emphasis on the need to clearly state the Given and 
the RTP, Olga says:  

"… It's more than writing what's given and what you have to prove. It's also 
accounting in each line you write, what is the status of what you wrote. Is it 
given, is it a known fact that you bring from some other place, which is fine. You 
have to annotate and write where it comes from, how you got to there... We need 
these words to make sense of what the status of each line is. … It's also a means 
of communication, but it's also a means of sort of control of what you're doing." 

 
Interestingly, Jim was less worried about accountability for each line of the proof. He was 

more concerned with stating and using the Given and the RTP to come up with a valid proof. 
He repeatedly made utterances like the following: 

"…What's missing here completely is what's given and what do you have to 
prove. One thing I told you in the very first lecture is to do what? Write the Given 
and write RTP. …So notice here that this line is the implication, is assuming this 
is what's given and this is your conclusion.... This is a mistake that is commonly 
made because people confuse what is given and what you need to prove. If the 
people who wrote this proof started by GIVEN... then there will be no confusion 
of what should the last line be, verifying this.... When you cannot organize your 
thoughts... and tell me what's given, and what do you have to find, then there is 
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a serious issue…." 
In response to an impasse a student expressed regarding a claim he could not think of a way 

to prove, Jim said:  
"… You construct the proof by playing. ok? ... You just start to play... How do 
you play intellectually? You take the object that is not recognizable to you and 
you start to play with this object. … You work with the "required to prove" to 
make it look more and more like the given. That should be your strategy. That's 
the only strategy that you have. There is no other strategy to follow. Ok? You 
should always think of playing with what you have to prove …". 

 
The status of examples 

Much has been written about the roles and status of examples for proving (e.g., Buchbinder 
& Zaslavsky, 2009; Ellis et al., 2013). Views vary from reluctance to rely on examples for 
proving to acknowledging the merits of example use for proving, particular the use of generic 
examples in proving (Leron & Zaslavsky, 2013).  

Both Jim and Olga frequently used examples in their teaching of how to prove. Moreover, 
they accepted some proofs that relied on examples, as demonstrated in Figure 2 - a proof 
provided by one of the students. 

 

 
 
 
 
This proof can be seen as a generic proof, as each numerical case represents a general case. 

Both instructors accepted it as a valid proof, but Jim criticized its form of presentation, saying: 
"It's a badly written proof, but it is a proof. " 

Concluding Remarks 
This preliminary report captures some of the views that were expressed throughout the 

MPP course by the instructors regarding what a proof should consist of and how it should be 
presented. It highlights common views as well as differences in emphases between the two 
instructors, and suggests reasons for these differences. What we have presented is work-in-
progress. In the oral presentation of our work we will provide a deeper and more comprehensive 
analysis, and will discuss implications of our findings for teacher preparation.   

 
  

Figure 2. A student’s proof by cases, with numerical examples 
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 STUDENTS’ THINKING IN AN INQUIRY-BASED LINEAR ALGEBRA COURSE  
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This evaluation study compared the mathematical thinking of undergraduate students (as they 
responded to class work and interview prompts) who participated in an inquiry-based linear 
algebra course to a comparison group of students who participated in a traditional course.  

Keywords: Linear Algebra, Inquiry-Based-Learning 

 The research literature shows that in traditional linear algebra classrooms students often 
memorize algorithmic methods that “work” even when not properly understood.  Students 
develop understandings of matrix algebra and solving systems of linear equations using the 
Gaussian elimination, yet have problems with the more abstract notions of spanning set, linear 
independence and linear transformation (Stewart & Thomas, 2007).  In the language of 
Sierpinska’s modes of thinking (2000), the student dependent upon reducing a matrix to echelon 
form to determine whether vectors are linearly independent are thinking in arithmetic mode, 
whereas a student who is able to think more generally about objects in a system, by applying a 
definition or theorem when appropriate, is thinking in structural mode.   
 In this poster session we will share results from an evaluation study conducted in a large 
public research university, that examined how an inquiry-based linear algebra course supported 
the development of student mathematical reasoning from actions in the embodied world to 
formal structural thinking (See Figure1).  Our framework, used to guide analysis of student 
work/interview responses, is adapted from Stewart & Thomas (2009, 2010), incorporates three 
mathematical worlds (embodied, symbolic and formal) and depicts a progression in the 
development of mathematical thinking (Tall, 2004). 
 
 Embodied world/Synthetic 

Geometric Thinking 
Symbolic World/ 
Arithmetic Thinking 

Formal World/ Structural 
Thinking 

Action Adds multiples of two given 
vectors in R2 or R3 to visually 
determine whether a third is a 
linear combination of the 
given vectors. 

Tests if a set of vectors is LI 
by constructing a matrix with 
the vectors as columns and 
row reducing it. 

 

Process Generalizes this visualization 
process to two arbitrary 
vectors v1, v2, v3 in R2 or R3. 

Thinks about the action above 
without actually carrying it 
out.  

 

Object Operates on this visualization 
of LI vectors (eg. 
Transforming them via 
reflection, rotation, etc) 

Understands process as above 
and can operate on the 
resulting matrix (eg. knows 
that if matrix has a pivot in 
every column the original set 
of vectors is LI. 

Shows set of given vectors 
is LI by definition by 
considering the vectors 
space that the vectors are in 
(eg. Gives a dimensional 
argument) 

Figure 1. Framework of Progression of Mathematical Thinking (with Linear Algebra examples) 
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The Influences of a Teacher’s Mathematical Meaning of  
Constant Rate of Change on His Classroom Practices 

 
Sinem Bas Ader                                Marilyn P. Carlson 

        Istanbul Aydin University                    Arizona State University 

We investigated how a teacher’s meaning of constant rate of change influenced his teaching 
practices. Findings revealed that a teacher with a strong mathematical meaning of constant rate 
of change was able to provide conceptually coherent explanations and pose questions that are 
based in his understanding of constant rate of change and his models of students’ thinking.  

Key words: Teacher Knowledge, Rate of Change, Teacher Questioning, Decentering 

Introduction and Theoretical Framework 

Many researchers have identified links between a teacher’s mathematical knowledge and her 
teaching practice (Ball, Thames, & Phelps, 2008). However, few researchers have characterized 
how a teacher’s meaning of a specific mathematical idea is expressed when teaching.  

Steffe and Thompson (2000) described decentering in the context of teacher-student 
interactions as the mental actions involved in building a model of students’ mathematical 
thinking. The teacher is acting in a decentered way when she adjusts her explanations and 
questions, based on her model of a student’s thinking.  

An individual’s meaning for constant rate of change (CROC) might be a calculation for the 
slope of a line, without realizing that CROC describes how two quantities change together. An 
individual possessing a more robust meaning of CROC sees x and y changing together with the 
restriction that: i) the ratio of the changes in the two quantities remains constant (e.g., m = Δy

Δx
) 

and ii) the changes in the two quantities are related by a constant multiple (e.g., Δy = mΔx ).  
 

Select Results  

In the below excerpt the teacher is discussing the meaning of the statement Δd = 6Δt with a 
student. The teacher began by prompting the student to explain the statement. The student 
responded by saying that the change in y is always 6 (lines 1 and 3). The teacher then poses a 
question (line 4) that is rooted in his meaning of CROC and his assessment of his student’s 
expressed meaning. This short except reveals how the teacher’s strong meaning for CROC 
enabled him to react productively (lines 4, 6, 8) to the thinking the student expressed. We claim 
that the teacher’s ability to decenter was possible because of his strong meaning for CROC.  

 

 1 Student: As the values of x and y change together the change in y is always 6.  
 2 Teacher: Say that again?  
 3 Student: Basically, this whole thing with 6.  
 4 Teacher: Is it?  What if the change in t is ½? Then, what would the change in d be? 6? Or, what?  
 5 Student: Then it would be!½ times 6.   
 6 Teacher: Yeah but then that says that the change in d is 3, which isn't 6.  
 7 Student: So it's something times 6?   
 8 Teacher: What's that something?  
 9 Student: The change in t times 6? 
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Supporting Math Emporium Students' Learning Through Short Instructional 
Opportunities 

 
Andrea Alt 

Bowling Green State University 
 
This study focuses on the concept of including traditional math classroom experiences in a math 
emporium course. The aim of the study is to gain an insight into the opinions of students about 
which emporium structure they prefer as well as which they believe they can be more successful 
in. Also, this study will analyze emporium students’ academic success in both scenarios. To 
accomplish these goals, two sections of Algebra II in the math emporium were offered the option 
to attend short instructional opportunities led by the instructor. 
 
Key Words: Math Emporium, Classroom Research, Student Opinions, Algebra 2 
 

A math emporium is a self-paced math course that is completed with the aid of an 
instructional software package, which includes computational exercises, videos, practice 
exercises, and online quizzes (Twigg, 2011). Students work on math problems and ask for help 
when needed. Virginia Tech pioneered the first math emporium and studies have shown positive 
effects in terms of attendance, pass rates, and performance on end-of-course exams (Taylor, 
2008; Twigg, 2011). In general, math emporiums follow the Virginia Tech model with three 
major places of variation; attendance, weekly traditional meetings, and size of facility (Twigg, 
2011). The idea of having weekly traditional classroom meetings is not one that all schools 
adopt. As previously stated Virginia Tech does not offer traditional classroom meetings, while 
other schools, such as the University of Idaho, have weekly focus meetings (The Polya, 2016). 
This study focuses on the differences between a fully computer based instruction emporium and 
an emporium offering traditional classroom experiences. The U.S. Department of Education 
reported that there are advantages for blended learning and that “it was the additional 
opportunities for collaboration that produced the observed learning advantages” (U.S. 2010). An 
emporium that offers traditional classroom experiences is a type of blended learning and this 
study may be able to further support the claim that blended learning gives students an advantage.  

The purpose of this study is to gain an insight into the opinions of emporium students at a 
public university in the Midwest as to which emporium structure they prefer, as well as which 
they believe they can be more successful in. In addition, this study will analyze the emporium 
students’ academic success when they become involved in traditional classroom experiences, 
called short instructional opportunities, versus those who continue to use the fully computer 
based emporium system. The research questions for this study are: 

1. What is the nature of students’ perspectives of the benefits of incorporating short 
instructional opportunities into their emporium experiences? 
2. How does attendance at the short instructional opportunities change over the course of the 
study? 
3. What differences, if any, in student achievement were there between and among students 
who participated in short instructional opportunities and their peers? 
Although the study is in the data collection stage, preliminary analysis suggests that at least 

sixty percent of students reported that having the opportunity to attend the hear the course 
material in a short instructional opportunity would aid in their success in the emporium.  
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Mathematics Affirmations 
 

Geillan Aly 
Hillyer College, University of Hartford 

This poster reports on an action research project set in a developmental mathematics classroom 
in a community college. Students at the beginning of the semester expressed mathematics anxiety 
and did not believe they could succeed in the course. To help support students’ learning, the 
instructor and students co-created a list of ten statements that became the prevailing philosophy 
in the class. These statements helped students alter their view of their own mathematics learning.  

Key words: Developmental mathematics, student beliefs, mathematics anxiety 

The first day teaching a developmental mathematics course, I distributed a self-efficacy 
survey and questionnaire to give me insight into my students’ previous experiences learning 
mathematics and the challenges they foresaw which could affect their success. Several students 
discussed their responses personally and that based on their prior experiences, they did not 
believe they even had the capability to succeed in my class. Several mentioned mathematics 
anxiety. It was clear that if I wanted to help these students see themselves as mathematical 
beings (Nasir, 2002), I would have to find a creative solution to alter their perspective on their 
potential for success. These conversations had a sense of urgency; my impression was that their 
negative self-talk needed to be addressed before students would be open to learning mathematics.  

Inspired by The Definite Dozen (Duncan-Andrade, 2010), my students and I co-created a list 
of ten Math Affirmations to increase students’ self-efficacy (Bandura, 2008; Zientek, Yetkiner 
Ozel, Fong, & Griffin, 2013), reduce their anxiety (Dowker, Sarkar, & Looi, 2016), and develop 
a growth mindset (Dweck, 2006). The Affirmations included statements such as “I am capable of 
learning and doing math,” “Hard work is often mistaken for luck or natural ability,” and 
“Success comes from not being afraid to ask questions,” and were recited every day. The norms 
of the course centered on reinforcing the Affirmations so that they were not an empty set of 
statements read aloud, but the foundation for the pedagogical structure of the course. 

When the Affirmations were initially presented, many students felt optimistic that the 
Affirmations would help them be successful in this class. One student wrote, “I believe that Math 
Affirmations will help me to sharpen my math skills and also help me a be a confident student” 
Another supported this sentiment; “I think they [the Affirmations] can all benefit us in many 
ways”. One student supported reading the Affirmations only once per week. Overall, student 
feedback at the beginning of the semester and during mid-semester feedback indicated a belief in 
the potential of the Affirmations to help improve students’ mathematics performance or attitude. 

These students were successful compared to other developmental mathematics classes, (Bahr, 
2010; Bonham & Boylan, 2011; Boylan & Nolting, 2011; Waycaster, 2001). Twenty-nine 
students enrolled in the course. Eighty one percent of the students completed the course by 
taking the final exam; 57% passed the common final exam. Students were also highly satisfied 
with the course with 95% of students stating they would recommend the course and instructor to 
others and felt the instructor motivated them to do their best.  

The Math Affirmations could be introduced to reduce any trepidation students may have 
about their ability to succeed. Future research will explore whether the Affirmations reduce 
anxiety, increase self-efficacy, and how they may contribute to student success. 
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DEVELOPING AND TESTING A KNOWLEDGE SCALE AROUND THE NATURE OF 
MATHEMATICAL MODELING 

Reuben S. Asempapa 
Penn State Harrisburg 

This study explored efforts to design and empirically test measure teachers’ knowledge of the 
nature of mathematical modeling. The author begins by reviewing the literature on teachers’ 
content knowledge and mathematical modeling, noting the effect of content knowledge on 
teachers’ professional competence. Next, the author discusses the items used on the 
questionnaire to represent knowledge of the nature of mathematical modeling. Results from 
reliability, factor analysis, and scaling work with the items showed teachers’ knowledge of the 
nature of mathematical modeling was unidimensional. The construct indicated by factor analysis 
formed psychometrically acceptable scale for measuring teachers’ knowledge of the nature of 
mathematical modeling. 

Key words: [modeling, mathematical knowledge for teaching, teacher knowledge, and teacher 
education] 

Mathematical modeling strongly influences what mathematics students learn and how 
they learn it. Likewise, mathematical modeling has gained increased focus in standards and 
assessments for school mathematics—both nationally and internationally (NGA & Center, 2010; 
OECD, 2003). Consequently, there is much emphasis on the need to address the skills and 
understanding of mathematical modeling in school mathematics (Blum & Borromeo Ferri, 2009; 
NCTM, 2000; NGA & Center, 2010). However, most teachers have misconceptions about 
mathematical modeling and the modeling process (Gould, 2013) and lack knowledge about the 
nature of mathematical modeling (Blum & Borromeo Ferri, 2009). Therefore, this study 
investigated teachers’ professional knowledge about the nature of mathematical modeling.    

Significance and Related Literature 
Ball, Thames, and Phelps (2008) emphasized the importance of teacher’s content 

knowledge and explained that teachers of mathematics need certain knowledge domains to teach 
mathematics effectively. The practice of mathematical modeling is consistent with the Common 
Core standard: model with mathematics, and echoes the effective teaching practices and 
productive dispositions as explained in NCTM’s principles to action (NCTM, 2014). Therefore, 
teachers’ knowledge of the nature of mathematical modeling is worth investigating.  

Methodology and Results 
To achieve this, the author developed a Mathematical Modeling Knowledge Scale 

(MMKS) and pilot tested it with 71 practicing teachers of mathematics. The MMKS comprised 
12 true or false items and an open-ended question. The scale development phases included item 
writing, experts’ reviews, cognitive interviews, item analysis, and factor analysis. The overall 
internal consistency reliability of the MMKS for this sample was .80, indicating a relatively good 
reliable scale. Analysis on the open-ended item revealed that most teachers in this sample have 
misconceptions about the phrases mathematical modeling and modeling process. 

Conclusion and Implications 
 Overall, the psychometric properties of the MMKS show promise in mathematics 
education research. The MMKS has the potential to benefit teacher education on mathematical 
modeling education. Results from this study and other published materials indicate a need for 
mathematical modeling education with both practicing and pre-service teachers of mathematics.  
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Exploratory Activities with Dynamic Geometry Environment in Axiomatic Geometry 
 

Younggon Bae 
Michigan State University 

In this study, I designed and implemented an instructional sequence of exploratory activities 
using a Dynamic Geometry Environment (DGE) in an axiomatic geometry course. The tasks in 
the sequence aimed at providing students with opportunities to encounter cognitive conflicts 
between their prior knowledge on Euclidean geometry and new observations on non-Euclidean 
geometry. However, some did not appear, some did appear and students recognized them, but 
could not resolve or just passed by. The conflict between what I intended in designing tasks and 
what I found in student responses seems to result from several aspects of design and 
implementation of the tasks.  

Key words: Dynamic Geometry Environment, Axiomatic Geometry, Non-Euclidean Geometry 

Researchers have addressed that exploration on non-Euclidean geometry can foster students’ 
development of axiomatic reasoning by providing with informal experience of resolving 
cognitive conflicts toward their prior knowledge of Euclidean geometry (e.g., Hollebrands, 
Conner, & Smith, 2010). The purpose of the study is to investigate an effect of students’ 
interactions with a Dynamic Geometry Environment (DGE) on developing axiomatic reasoning 
in terms of how they manipulate the geometric construction given in the DGE and how the 
corresponding responses from the DGE affect students’ discussions. 

I designed and implemented an instructional sequence of exploratory activities using 
Geometry Explorer (GEX) in an axiomatic geometry course at a large public university. For each 
of the tasks in the sequence, the students were asked to record their exploration using a screen-
casting software. This form of data can capture the students’ verbalized observations and 
arguments in the discussion synchronized with the visual representation. I analyzed the data to 
determine overall student performance and success or failure in the task design. The last activity 
of the sequence was coded to describe student use of GEX with analytic framework for student 
use of drag feature in relation to theories of variation (Leung, 2008). 

In this study, I found several issues that resulted in success or failure of the task design as 
follows; (1) understanding of valid and robust geometric construction in DGE; (2) limitations of 
mathematical models in DGE; (3) concurrent multiple conflicts; (4) limitations of task design; 
(5) lack of strategic use of drag feature of DGE. The early experience of exploration brought into 
the issues on validity and robustness of geometric constructions in GEX. It embarked on 
discussing what it means to generalize figures by dragging activities in DGE and what they are 
expected to produce in the following investigations. On the other hands, the task designs in the 
activities have limitations in facilitating student’s productive use of drag feature of GEX that 
resulted from several aspects involved in the design and implementation of the tasks. The 
spherical model of GEX constrained the students’ wandering dragging across the entire surface 
of the sphere so that they could not successfully recognize the conflicts as planned in task design. 
Also, the geometric constructions given in the tasks was not robust enough to allow student to 
involve in guided dragging to find a particular example, the counter example of the exterior 
angle theorem in spherical geometry. The analysis on the students’ use of drag feature indicated 
that the task design for exploratory activities need to take into consideration appropriate 
intervention to support developing systematic dragging strategies. 

20th Annual Conference on Research in Undergraduate Mathematics Education 154020th Annual Conference on Research in Undergraduate Mathematics Education 1540



References 

Hollebrands, K. F., Conner, A., & Smith, R. C. (2010). The nature of arguments provided by 
college geometry students with access to technology while solving problems. Journal for 
Research in Mathematics Education, 41(4), 324–350. 

Leung, A. (2008). Dragging in a dynamic geometry environment through the lens of variation. 
International Journal of Computers for Mathematical Learning, 13, 135–157. 
https://doi.org/10.1007/s10758-008-9130-x 

  

20th Annual Conference on Research in Undergraduate Mathematics Education 154120th Annual Conference on Research in Undergraduate Mathematics Education 1541



 
STEM Major Mindset Changes During Their First Undergraduate Mathematics 

Course 
 

Laura Beene     Rebecca Dibbs 
Texas A&M-Commerce            Texas A&M-Commerce 

One of the reasons for the exodus in STEM majors is students’ experiences in their first 
undergraduate mathematics course, usually introductory calculus. However, students with a 
growth mindset are more likely to persist past these initial courses. Although there is 
evidence that curricula like CLEAR calculus promoted gains in students’ growth mindset, it 
is unclear how this curriculum compares to traditionally. The purpose of this quasi-
experimental study was to investigate to what extent students enroll in CLEAR calculus 
become more growth mindset orientated than those that are enrolled in traditionally taught 
courses. The Patterns of Adaptive Learning Scale was used to measure the mindset of 
students in pre-calculus, calculus I, and calculus II. The analysis of the pilot data indicated 
CLEAR calculus students experience a small positive shift towards a growth mindset, while 
students in traditionally taught courses have a significantly more fixed mindset by the end of 
the semester. 

Keywords: Calculus, mindset, transition to college 

The initial transition course for STEM majors is calculus; most students who take this 
gateway course overestimate their preparation for the experience (Bressoud, Carlson, Mesa, 
& Rasmussen, 2013).  One potential challenge in the post-No Child Left Behind era in the 
United States is that although students believe they are well prepared, the emphasis on 
standardized testing has placed a significant amount of emphasis on surface learning. This 
focus on surface learning leaves students unready to make connections between concepts in 
their initial undergraduate mathematics courses (Gueudet, 2008; Selden, 2005; Selden & 
Selden, 2002).One possible solution to help students transition smoothly to undergraduate 
mathematics is the use of formative assessments such as exit tickets; such assignments show 
promise in helping students to perceive their instructor as more approachable and caring 
about their success (Black & Wiliam 1998, 2009; Dibbs & Patterson, 2014). 

However, the number formative assessments completed are a far stronger predictor of 
students’ success than their weight in the course grade would indicate (Dibbs, 2015). One 
possible explanation for this effect was that students who completed more post-labs had 
different mindsets about learning mathematics than those that did not. Mindsets play a 
significant role in the overall success of calculus students.  Dweck (2006) defines mindset in 
two different ways: fixed mindset and growth mindset. Students classified under the fixed 
mindset, if not immediately successful in introductory calculus often leave the STEM field. 
However, growth mindset students can persist and succeed, even after failures as severe as 
failing a course (Dweck, 2006). The hypothesis for this study was:There is no significant 
difference in the mindset changes between students enrolled in CLEAR Calculus and students 
enrolled in traditional calculus. 

Participants were recruited from STEM majors enrolled in first-semester calculus 
(150 students enrolled) or second-semester calculus (100 students enrolled) courses at a 
rural Hispanic-serving research university in the South during the Fall 2016 semester. A 
modified version of the Patterns of Adaptive Learning Scale (PALS) was used to assess 
students’ mindset. Data was analyzed via ANOVA and Tukey tests.  
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Building a Cognitive Model for Symmetry:  How Well Does an Existing Framework Fit? 
 

Anna Marie Bergman    Ben Wallek 
            Portland State University             Portland State University 

 
Symmetry has been found to be a rich and natural context for developing group theory (Larsen, 
2009), yet the existing literature offers little insight on the complex cognitive processes in this 
domain.  This poster will describe an attempt to use a pre-existing cognitive model of a student’s 
understanding of symmetry, to help analyze the data from a recent teaching experiment aimed at 
exploring the development of one undergraduate student’s understanding of symmetry.  We 
share the ways in which the existing model accurately describes the student’s cognitive 
processes associated with symmetry and also the places in which the model fell short in 
capturing the complexity of the student’s thinking.   
 
Keywords: Symmetry, Abstract Algebra, Cognitive Model, Teaching Experiment 

 
Abstract algebra is an essential part of undergraduate mathematical learning and yet this 

subject is also known for its high level of difficulty at the collegiate level.  Larsen has found the 
context of geometric symmetry proves to provide a ‘rich and natural context for developing the 
concepts of group theory’ (2009, p. 136), since the ideas of symmetry and equivalence are 
fundamental concepts in group theory (Burn, 1996).  A recent teaching experiment (Steffe & 
Thompson, 2000) was conducted to identify a student’s cognitive processes related to symmetry 
as they develop a mathematically robust definition of symmetry.  This experiment explored how 
one undergraduate student, Birdie, developed an understanding of symmetry over a series of 5 
task-based interviews.  The student worked through the Measuring Symmetry Task (Larsen & 
Bartlo, 2009), which is designed to build on the student’s aesthetic sense and intuition to help the 
development of formal ideas of symmetry.  Asiala et al. (1998) offer a framework ‘useful for 
understanding the mental constructions made by students learning about permutations and 
symmetries’ (1998, p. 13), which utilizes the APOS perspective (Breidenbach, Dubinsky, 
Hawks, & Nichols, 1992).  This framework includes a genetic decomposition of an individual’s 
understanding of symmetries.  While the authors admit it is a ‘very simple genetic 
decomposition’ (1998, p. 18), they still found it to be very useful describing student conceptions 
of symmetry; when considering only rotation and reflection symmetries of fairly simple 
geometric objects. 

In an initial attempt to use the APOS framework for symmetries as offered by Asiala et al. 
(1998) to describe Birdie’s developing understanding of symmetry, we have found that it is fairly 
easy to illustrate that very often in the interviews Birdie is working with a “process” conception 
as described by Asiala et al., “A process conception of symmetry might be indicated by the 
subject’s ability to imagine performing the symmetry without actually doing it.” (1998, p. 18).  
However during our experiment, we also found that Birdie was able to articulate multiple 
processes for finding/identifying symmetries, some of which were mathematically accurate and 
some of which were not.  For example she offered 2 distinct versions of what she called “line 
symmetry” one as a true reflection and the other as an iterative deformation of the figure based 
on Birdie’s ability to fold, where Birdie performed both of these processes mentally.  In this 
poster we challenge the ability of a simple genetic decomposition to accurately capture the 
complex ideas students associate with symmetry, especially in contexts when students are 
encouraged to rely on their intuition and aesthetic sense. 
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Student Understanding of the Product Layer of the Integral in Volume Problems 
 

Krista Kay Bresock 
West Virginia University 

Vicki Sealey 
West Virginia University 

 
Research has shown that students have difficulties attending to the underlying product and 
summation structure of the integral when solving application problems. This study examines 
student conceptions of the product layer when solving volume problems. Participants were 
second-semester calculus students enrolled in a large, public university. Task-based interviews 
consisted of students working through and discussing volume problems. Preliminary results 
show that a majority of students’ volume integral setups are highly formulaic and linked to 
memorized patterns and methods seen in class, as opposed to having a true understanding of the 
underlying structure of the problem. We plan to conduct more interviews of this type with 
additional volume problems and investigate other aspects such as visualization and gesture. 

Key words: Calculus, definite integral, solid of revolution, volume 

Some of the first types of definite integral application problems that students encounter are 
volume problems. Previous research has found that when solving definite integral application 
problems, students often rely on formulas, patterns, and previously encountered methods for 
setting up integrals (Yeatts & Hundhausen, 1992; Grundmeier, Hansen, & Sousa, 2006; Huang, 
2010). Other studies have shown that students have very little idea of the dissecting, summing, 
and limiting processes involved in integration (Orton, 1983; Sealey, 2006, 2014; Jones, 2015). 
The goal of this study is to explore and analyze how students conceptualize volume of solid of 
revolution problems, and in particular, how they attend to the product layer (integrand and 
differential) during integral setup. 

Our research is built on the foundation of the constructivist learning theory (Piaget, 1970), 
and the framework guiding our analysis of student understanding of definite integral concepts is 
based on Sealey’s (2014) integral framework. We will also be discussing student’s responses 
using Vinner’s (1997) conceptual framework that describes and analyzes mathematical behaviors 
of students as conceptual/analytical or pseudo-conceptual/pseudo-analytical.  

Clinical interviews were conducted with four students who were enrolled in second-semester 
calculus during Summer 2016. The video-taped interviews involved the participants working 
through three routine volume problems and talking aloud about their thought processes and 
problem-solving strategies. The interviewer asked several questions throughout the interview in 
order to determine if the students could unpack their methods to explain why they worked. The 
videos were transcribed and data analysis is ongoing.  

Preliminary data analysis suggests that students have a very superficial understanding of 
integral volume problems. After some probing, it becomes clear that participants’ responses are 
based on memorized formulas and not linked to the underlying structure of the definite integral. 
Almost all of the participants exhibited a strong connection between the axis of rotation and the 
variable of integration, but could not explain that connection. 

In future studies, we plan to create volume problems that better expose the inconsistencies 
between students’ integral setup and their conceptual understanding of integration, and develop 
activities that discourage students’ pseudo-actions and foster more meaningful learning. Other 
avenues we would like to explore are how students use their visualizations when solving volume 
problems, and how gesture is incorporated into their understanding of these types of problems. 
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Mathematics Education as a Research Field: Reflections from ICME-13 
 

Stacy Brown 
California State Polytechnic 

University, Pomona 

Hortensia Soto 
University of Northern 

Colorado 

Spencer Bagley 
University of Northern 

Colorado 
 
Abstract: In an effort to broaden knowledge within the United States, the National Council of 
Teachers of Mathematics, with support from the National Science Foundation, funded multiple 
scholars’ participation in the 13th International Congress of Mathematics Education. Working in 
NCTM theme groups these scholars met, discussed, and provided reports to various American 
educational organizations, so as to bring back findings related to a variety of ICME Topic Study 
Groups. The purpose of this poster is share findings from the “Mathematics Education as a 
Research Field” NCTM theme group. 
 

For several decades mathematics education has been referred to as a rapidly expanding 
field of scholarly inquiry (Sierpinska & Kilpatrick, 1997; Artigue, 1999; Schoenfeld, 2000; 
English & Kirshner, 2015). Evidence of this growth can be seen in the significant increase in 
scholarly journals focused on mathematics education research and in the increasing number of 
areas of scholarly inquiry. As areas of inquiry have grown so has the diversity of the theories and 
research methods employed. With increasing diversity comes both opportunity and challenge. 
New theories, methods, and areas of inquiry offer not only opportunities to pursue novel 
phenomena but also the promise of fresh perspectives on persistent problems. However, 
diversification can also hinder communication and understanding among researchers – a point 
prophetically made in Thompson’s (1982) article, Were lions to speak, we wouldn’t understand.  

To foster professional community among American researchers during this rapidly 
expanding period of growth, it is important (perhaps more than ever before) to seek out and 
understand diverse perspectives. Indeed, there is a need not to only to seek out those whose work 
and professional lives differ from our own but also to seek out and understand the ways in which 
our work is understood by others. It was with these aims in mind that a cadre of American 
scholars was sent to the 13th International Congress of Mathematics Education (ICME 13) by the 
National Council of Teachers of Mathematics (NCTM), with funding from the National Science 
Foundation. The purpose of this poster is share findings from the reports of those scholars, who 
as part of the NCTM envoy participated in the “Mathematics Education as a Research Field” 
NCTM theme group: Hortensia Soto (group leader), Spencer Bagley, Stacy Brown, Jinfa Cai, 
Molly Keaton, Debra Junk, Robert Ronau, and Brandy Wiegers. Specifically, the poster will 
share questions and insights from a variety of ICME 13 topic study groups and do so with a 
focus on understanding distinct perspectives, new horizons, and shared domains of inquiry that 
may inform research on undergraduate mathematics education. 
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Connecting Reading Comprehension Research and College Mathematics Instruction 
 

Melanie Butler 
Mount St. Mary’s University 

 
The poster will have three parts. The first is a literature review of reading comprehension 
research. Connections will be drawn between different research studies that apply to college 
mathematics instruction. In addition, common themes from research will be used to motivate the 
need for reading comprehension instruction in college mathematics. The second part will give 
results of a new research study involving interviews about reading comprehension strategies and 
instruction with interdisciplinary faculty from several institutions. The third part will describe 
proposed methodology of future research on reading comprehension in college mathematics 
instruction. It is hoped that during the poster session, participants will have a chance to 
brainstorm about possible future directions and methodologies for research in this area. 
 
Keywords: reading in mathematics, clinical interviews 
 

Faculty comment that students don’t use the textbook. Students complain that the textbook 
wasn’t useful. Courses have shifted from pure lecture to flipped classrooms, the Moore method, 
and other student-centered, constructivist approaches. In addition, there are more online courses. 
Often people don’t know how to read newspapers or other articles that contain technical 
information and evaluate the accuracy. What is the missing piece that weaves through all of this? 
The ability to read and comprehend mathematics. 

Several years ago I was given the opportunity to teach a freshman symposium course, taught 
by instructors from different disciplines, but with a focus on reading and writing. Instructors for 
the course undergo intensive summer training. I soon realized that the techniques from faculty 
across campus would be valuable when modified for my mathematics courses, and I began to 
research reading comprehension literature. 

The first part of this poster will be an overview of reading research literature on literacy, on 
content area literacy, on disciplinary literacy, and on teaching reading in mathematics. 
Unfortunately, there are not a lot of resources for teaching reading in mathematics at the college 
level. Taking advantage of the poster format, this section will draw connections between 
different reading comprehension research studies that pertain to college mathematics instruction. 
Through this literature review, the need for college mathematics reading instruction will also be 
illustrated. 

Due to the need for increased study of reading comprehension in college mathematics 
instruction, a new exploratory research study was completed that included open-ended, clinical 
interviews with ten faculty from mathematics, foreign language, philosophy, education, English, 
history, theology, and K-12. The second part of the poster will give details on the interpretive 
analysis of the interviews. 

There is a need for additional research on this subject. A research study is planned, and the 
third part of the poster will give details on the proposed methodology of this study. It is hoped 
that participants during the poster session will have the opportunity to discuss future directions 
and methodologies for this research. 

20th Annual Conference on Research in Undergraduate Mathematics Education 155020th Annual Conference on Research in Undergraduate Mathematics Education 1550



Diagrams for the Reasoning and Proof of Amortization Formula 
 

Kuo-Liang Chang Hazel McKenna Thomas Mgonja 
Utah Valley University Utah Valley University Utah Valley University 

 
Many liberal arts or humanities students who are required to take quantitative reasoning in 
college have mathematics anxiety. One cause is a lack of symbolic skills for reasoning. Learning 
style theories suggest that different people learn in different ways. This study constructs a 
diagrammatic reasoning model for the concept of amortization to help students learn 
quantitative reasoning. The model also connects the basic concepts to the proof of the mortgage 
payment formula. 
Key words: Diagrammatic Reasoning, Quantitative Reasoning, Amortization, Proof, non-STEM 
 

Many non-STEM major students (e.g., liberal arts and humanities) have negative attitudes 
towards and fear college mathematics classes such as quantitative reasoning (Henrich, 2011). 
This math anxiety is due in part to a lack of skills in symbolic and propositional calculations or 
manipulations of mathematics (Ashcraft, 2002; Hembree, 1990). The question that must be asked 
is, “Are there other alternative ways to help the students learn quantitative reasoning and 
appreciate mathematics?”. 

Learning style theories suggest that different people learn in different ways (Coffield et al., 
2004; Pashler et al., 2009). In particular, diagrammatic reasoning has been tested as an 
alternative method for mathematical inference and proof (Jamnik, 2001; Kulpa, 2009). Diagrams 
allow richer properties and relations among elements in presenting mathematical structures and 
their meanings. They may significantly reduce the encoding process and make it easier for 
students to understanding and reason.  

The purpose of the study is to construct a diagrammatic model for helping non-STEM major 
students perceive and process mathematical information visually while improving their math 
attitudes, and, consequently, become more effective at performing quantitative reasoning. In 
addition, we hope to assess the potential of the diagrammatic model in quantitative reasoning and 
in facilitating symbolic manipulations and proof.  

We chose the concept of amortization for model construction because (1) it is introduced in 
the quantitative reasoning course, which is required of most liberal arts and humanities students, 
and (2) it involves the idea of complicated exponential growth (compounding process) and 
algebraic reasoning (symbolic manipulations on the mortgage payment formula ! = !×!(!!!)!

(!!!)!!! ). 
We constructed two diagrammatic maps, the quantitative map and the operational map (See 
Figures below). 
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A Discussion of The Use of Excel in Statistics Teaching and the Role of Technology in 
Improving Teaching and Learning Statistics with a Special Focus on the ‘knitr’ R-package. 

 
Sher B. Chhetri  

Florida Atlantic University 
 
We cannot imagine teaching statistics today without using some form of technology. Teaching 
statistics courses in the past was very challenging due to time consumption in calculation. The 
computation is now done by computer and other software packages but the challenge now is that 
understanding the results and staying mistrustful to the results. In this discussion, we will discuss 
how we have been teaching introductory statistics courses with or without computer and provide 
some typical examples in excel spreadsheet. On the other hand, due to the recent development of 
the power of computing, we present a dynamic documentation of computational outputs from a 
statistical programming language using R markdown (included in the package “knitr”) which is 
a simple formatting syntax for authoring HTML, PDF, and MS Word documents. Hence the main 
goal of this presentation is to give an outline of the method used in the past, its challenges as 
mentioned by Christine Duller (2008) and a demonstration of an R package which recently 
brought a great attention to the teachers of statistics and researchers. The usefulness of the 
package will be presented using some data analysis and graphs using R programming language. 
Since R Markdown supports dozens of static and dynamic output formats including HTML, Pdf, 
MS Word, Beamer, HTML slides, Tufte-style handouts, books, dashboards, shiny applications, 
scientific articles, websites, and more, it is more popular to the researcher, teacher of statistics 
and collaborators. 
Key words: Teaching and Learning Statistics, Excel spreadsheet, “knitr” package, R Markdown 
 
Literature Review  
After we had an access of excel spreadsheet for teaching statistics classes, a number of research 
work have been published about teaching statistics. Christie, D. (2004) mentioned in his paper 
about “Resampling with excel-teaching statistics”. Similarly Doane, D. (2004) talked about 
“Using Simulation to Teach Distributions”. In (2008), Christie D. raised some issues on his 
paper “Teaching Statistics with Excel: A Big Challenge for Students and Lecturers”.  We can 
find many institutions use excels spread sheet for teaching and learning statistics in classroom.  
 
After the development of the programming language R in 1993 and the availability of personal 
computer and other technologies, the programming language R (an open source) and many other 
programming languages have been widely used. The package “knitr” is an engine for dynamic 
report generation with R. It is a package in the statistical programming language R that enables 
integration of R code into LaTeX, LyX, HTML, Markdown, AsciiDoc, and re-structured 
text documents. We can see the popularity of R markdown and its usefulness for statistic 
teaching and research. Markdown is a lightweight markup language with plain text formatting 
syntax designed so that it can be converted to HTML and many other formats using a tool by the 
same name. Markdown is often used to format readme files, for writing messages in online 
discussion forums, and to create rich text using a plain text editor. 
 
In this discussion, we attempt to address the usefulness of excel spreadsheet in teaching and 
learning statistics and also will discuss the latest development and show how efficient it is to use 
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the package R Markdown for teaching and research. The main goal of this discussion is to 
provide high school and college introductory statistics instructors with a scenario of teaching 
statistics using excel and the recent development of the power of computing.  
We have the following research question for this study:  

1. What is the targeted group of people who use excel sheet for teaching and learning 
statistics? 

2. What is the label of statistics and computation knowledge we need for using the 
programming language R and the package “knitr”? 

3. What is the cost and availability of the programming language and computers etc.? 
 
Theoretical Framework and Methodology 
We will briefly discuss the heavy use of excel in teaching and research in different disciplines. 
Further, we discuss the statistical software R and its usefulness in teaching and learning statistics 
courses.  
 
Results of the Research  
We compare the usefulness of teaching statistics using excel for one group of audience and also 
look at the effectiveness and popularity of the statistical programming language R with a special 
focus on the package “knitr”.   
 
Discussion and Conclusions  
Even though the use of excel in teaching in the past was very effective, due to its capacity and 
challenge for special data, statistical programming language R is more popular. Especially, for 
research and teaching statistics courses, it looks like people are more tending to use R.  
Since R Markdown supports dozens of static and dynamic output formats including HTML, Pdf, 
MS Word, Beamer, HTML slides, Tufte-style handouts, books, dashboards, shiny applications, 
scientific articles, websites, and more, it is more popular to the researcher, teacher of statistics 
and collaborators.  
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To Factorize or Not To Factorize: Novice Teachers’ Struggles 
 

Hyungmi Cho, Miyeong Na, Oh Nam Kwon 
Seoul National University 

Focusing on the unique factorization domain (UFD) in college mathematics and polynomial 
factorization in school mathematics, this study examined how teachers’ factorization concepts 
occur in the teaching context. We conducted semi-structured interviews with eight novice teachers. 
The result of this study can serve as a resource for teacher educators when teaching UFD in 
abstract algebra in the future. 

Key words: Mathematical Knowledge for Teaching, Polynomial Factorization 

What role does college mathematics knowledge play as teacher knowledge for teaching 
mathematics? To answer this question, much research has been devoted to mathematics teacher 
knowledge (see e.g. Ball, Hill & Bass, 2005; Evens & Ball 2009; Buchholtz et al., 2013). However, 
there is a lack of specific research on how college mathematical knowledge contribute to teaching 
school mathematics. With regard to the concepts that intersect between college mathematics and 
school mathematics, we focus on the concept of UFD in college mathematics and polynomial 
factorization in school mathematics. The purpose of this study is to examine how teachers are 
utilizing their college mathematics knowledge in the context of school mathematics.  

  
Eight novice teachers were selected as our research participants because we considered 

teachers with the most recent college mathematics knowledge to be the most suitable participants 
for understanding how related college mathematics concepts are being used to understand school 
mathematics concepts. Using middle school-level polynomial factorization task, we conducted 
semi-structured interviews. All interviews were transcribed. The teachers’ answers were 
categorized and analyzed focusing on teacher knowledge emerged in terms of Mathematical 
Knowledge for Teaching framework (Ball, Thames, & Phelps, 2008). In order to ensure the 
validity of the analysis, three researchers crosschecked the categories of teacher interviews. The 
task was: If a middle school student has asked you to what extent he or she needs to factorize the 
polynomial 2𝑥2 + 4𝑥 − 6, how would you answer? 

 
This study shows that teachers who knew about polynomial factorization in college-level 

explicitly did not just follow the knowledge to teach polynomial factorization in school context. 
Teachers who had proper common content knowledge (CCK) sometimes modified to suit the level 
of secondary school mathematics, but recognized how they are treating number factors in 
explaining polynomial factorization in school context. Based on the results, we identified that 
horizon content knowledge (HCK) plays significant roles to understand secondary school 
mathematics from advanced viewpoint. The other teachers who did not show the proper common 
content knowledge did not consistently and concretely explain the basis for their explanation. So, 
this study implies that especially HCK and CCK should be emphasized in order to connect between 
college-level mathematics knowledge and school-level mathematics knowledge in preservice 
teacher education. 

 
This work was supported by the Ministry of Education of the Republic of Korea and the National 
Research Foundation of Korea (NRF-2016S1A3A2925401). 
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Upper-division Physics Student Thinking Regarding Non-Cartesian Coordinate 
Systems 

 
Brian Farlow1, Marlene Vega2, Michael Loverude2, Warren Christensen1 

 
1North Dakota State University, 2California State University - Fullerton 

As part of a larger effort to develop a research-based math methods curriculum for 
undergraduate physics students, results from a case study probing student thinking on plane 
and spherical polar coordinates are presented. Using a resources framework, a think-aloud 
protocol was used to elicit student thinking regarding non-Cartesian coordinates. Findings are 
consistent with previously published literature regarding student thinking on coordinate 
systems. Mark, a senior physics major, despite initially clearly identifying and defining the 
radial and polar unit vectors on a diagnostic 2-dimensional problem, made inconsistent 
assertions when asked to apply those definitions in three dimensions using spherical 
coordinates. Additionally, we will address content issues concerning the definition of 
displacement and position vectors in Cartesian and Non-Cartesian coordinate systems. 

Key words: Coordinate systems, Non-Cartesian, Resources, Interviews, Physics 

Using non-Cartesian coordinate systems continues to be difficult for undergraduate physics 
students (Paoletti et al. 2013, Montiel et al. 2009) even in the upper division where application 
of the concept is of significant importance (Sayre and Wittmann 2008). As part of a larger 
effort of PER in the upper division (Caballero et al. 2015, Loverude and Ambrose 2015) our 
collaboration has begun to develop a research-based curriculum for a mathematical methods 
course for undergraduate physics majors. This paper discusses a portion of that effort by 
investigating student thinking regarding non-Cartesian coordinates systems, specifically plane 
and spherical polar coordinate position vectors.  

The polar coordinate system, both planar and spherical, is commonly used in a number of 
upper-division physics courses, including mechanics and electrodynamics (Griffiths 1999, 
Fowles and Cassiday 1999). Students are initially taught how to convert from the more familiar 
Cartesian coordinate system into polar coordinates while the expectation for most upper-
division courses is that students can think in and use non-Cartesian coordinates fluently; not 
simply translate. Issues arise as students attempt to map Cartesian thinking into non-Cartesian 
coordinate systems (Hinrichs 2010). The research presented here analyzes students’ in-the-
moment thinking using a Resources theoretical framework in an attempt to understand a 
student’s underlying reasoning with respect to non-Cartesian coordinate systems. The nuanced 
nature of students’ reasoning during our interviews informs the use of a Resources Framework, 
wherein we attempt to identify the kinds of resources students appear to be using as they 
proceed through the interview. 

For this poster, we present a case study of one student, Mark, who initially demonstrates 
outstanding understanding of unit vectors and their definitions in non-Cartesian coordinates; 
i.e., that r̂  points in the direction of increasing radius. However, he has a self-described “moral 
dilemma” when deciding whether or not to include φ̂  and/or θ̂  terms in spherical position 
vectors where only a r̂  term was needed. The content details of position vectors versus 
displacement vectors in three dimensions are not trivial and will be discussed alongside student 
data and analysis. 
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The Mathematics Attitudes and Perceptions Survey: New Data and Alignment with Other 
Recent Findings  

 
 Warren Code Wes Maciejewski 
 University of British Columbia San José State University 

Student attitudes about and perceptions of mathematics influence their success and learning, and 
have been of interest for many years in mathematics education. The Mathematics Attitudes and 
Perceptions Survey is a short, validated Likert-scale instrument that measures confidence, interest, 
relation of mathematics to the real world, persistence in problem solving, growth mindset, use of 
sense-making behaviours, and the extent of other novice attitudes towards mathematics. In this 
poster, we share the complete instrument and its categories, a brief summary of the development 
process and resulting model statistics, as well as scores across different populations measured so 
far (3 institutions, variety of courses). The student responses include new data since the 
publication of the instrument as well as additional analysis of groups, in particular a comparison 
of attitudes between genders that matches with recent results relating STEM persistence to 
attitudes and beliefs (Ellis et al., 2016; Wang et al., 2016). 

Key words: student attitudes, student perceptions, student beliefs, survey tool 

Motivation and Development 
 

Development of the Mathematics Attitudes and Perceptions Survey (MAPS) was prompted by 
interest in matching up results regarding student attitudes in mathematics to those captured via 
similar surveys “scored” relative to expert consensus views in physics (Adams et al., 2006), 
chemistry (Barbera et al., 2008), biology (Semsar et al., 2011), earth sciences (Jolley et al., 2012), 
and computer science (Dorn & Tew, 2015). These contain many similar statements and share 
aspects of development (Adams & Wieman, 2011), though for MAPS the quantitative aspects 
followed more conventional instrument development in terms of factor analysis and model fitting. 

The survey consists of 31 Likert-scale statements scored based on alignment with expert views 
and reported behaviours involving mathematics. The instrument was designed iteratively with 
interviews of faculty and students, rounds of responses from multiple populations of students 
leading to factor analysis and model confirmation. Further details and preliminary population 
scores are available in an initial article (Code et al., 2016). 

Results So Far 
 

While our data does not have sufficient detail for comparison in some demographic variables, 
nor for a relation to teaching methods like Sonnert et al. (2015), we have similar findings to the 
recent MAA study of calculus programs, including an overall decrease in such attitudes over a first 
year of a calculus courses, with men overall reporting higher attitudes in most categories including 
confidence in their mathematical ability (Maciejewski, 2016).  The drop in attitudes in introductory 
post-secondary courses and the gender gap are similar to results in other fields with the instruments 
which helped inspire MAPS (Hansen & Birol, 2013; Bates et al., 2011). This convergence of 
results, along with the ease of deployment, suggests the value of MAPS in measuring student 
attitudes and perceptions in mathematics. Our poster will present the full instrument, categories, 
and a variety of data from different populations so far. 
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Online Course Component and Student Performance 

Elizabeth DiScala and Yasmine Akl 
Widener University 

 
Abstract:  A study was conducted in a small, private university in Northeastern United States in 
order to determine if introducing an online component to a first year Calculus course would 
influence student learning.  An online component was presented in two sections of the calculus 
courses while two sections were taught using the traditional format. Preliminary data suggest a 
positive correlation between the online component and improved student performance in the 
course. 

Keywords: online learning, calculus 

Online education is rapidly growing in colleges and universities.  According to Allen and 
Seaman (2013), thirty two percent of students in higher education in the United States are taking 
online courses, which equates to approximately 6.7 million students taking at least one online 
course each year.  The college student population is becoming increasingly diverse and different 
learning options are necessary to meet the demands of these students.  

This poster reports on a study at a small, private university in the Northeastern United 
States. Prior to the intervention, there were very little opportunities for students to participate in 
online learning.   There has been recent interest from the administration to remain competitive 
with other institutions by offering online mathematics courses.  The request was to transition 
some mathematics courses to an online format.  In order to address this concern, we incorporated 
an online component to two sections of a first semester Calculus course, a course which was has 
traditionally been taught without an online component. The remaining two sections of the course 
were taught in the traditional format without an online component. The research question guiding 
this study is: Does an online component increase student performance rates in a first year 
calculus class? 

 The study began in the Fall semester of 2016, and will continue in the Spring of 2016.  
Students in the online sections participated in weekly discussion questions through a forum using 
critical thinking skills to review the course material.  The other sections were given the same 
questions, but discussed in a face to face setting during the fourth hour of the course.  Themes 
from the student discussion have been grouped and coded for analysis.  Questions from exams 
and the final were selected to compare results from each section.  Student surveys are being 
distributed at the end of the semester to gather feedback on their experiences.  Formal data 
analysis will take place in the Spring of 2016, but preliminary results indicate a positive 
correlation between the online component and student performance in the course.  The results of 
the study will be used to implement changes in other courses that will be moved to an online 
format.  
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JITAR Online Modules to Improve Math Preparation of Engineering Students 
 

 Alina N. Duca              Hatice Ozturk   Dianne Raubenheimer 
         NC State University         NC State University      Meredith College 

Engineering educators are challenged with students at greatly varying mathematical skill levels 
while needing to quickly bring all students up to the same mathematical mastery level at 
appropriate points during a semester. To address this problem our team designed a teaching e-
tool in WeBWorK called Just-In-Time Assessment and Review (JITAR) to be delivered as an on-
line system consisting of a series of individualized mathematics modules inserted within 
engineering courses at strategic points in the semester, prior to students needing those math 
skills. JITAR assesses the mathematical competency level of the individual student and provides 
formative individualized learning opportunities in time for the students to be successful in 
applying the necessary mathematics to the new engineering material. The new type of WeBWorK 
assignment was designed to support the desired presentation and flow of the module integrating 
assessment and e-learning assistance by offering a customized learning path to students. This 
project is currently funded by National Science Foundation. 

Key words: Engineering Education, On-line Assessment, Just-In-Time, JITAR.   

There are several factors that influence student retention and success in engineering, the 
most important being mathematical competency, but there is well documented knowledge gap in 
the preparation of engineering undergraduates. Engineering programs typically enforce 
prerequisites to guarantee a certain level of mathematics proficiency before the students enroll in 
engineering classes. Due to several factors this sequence is not completely effective at preparing 
engineering students so engineering educators are challenged with students at greatly varying 
mathematical skill levels, while needing to quickly bring all students up to the same 
mathematical mastery level at appropriate points during a semester. While the traditional model 
of integrating engineering applications into the mathematics courses and later reviewing those 
concepts in engineering courses has benefited the math preparation of the engineering students, it 
does not completely address the mathematical knowledge gap of engineering students due to its 
"one size fits all" approach to the problem (Manseur, Leta, & Manseur, 2010). 

To address this problem, mathematics and engineering instructors designed a teaching e-
tool called Just-In-Time Assessment and Review (JITAR) delivered as an on-line system through 
WeBWorK consisting of a series of individualized mathematics modules, to be inserted within 
engineering courses at strategic points in the semester. JITAR assesses the mathematical 
competency level of the individual student and provides formative individualized learning 
opportunities in time for the students to be successful in applying the necessary mathematics to 
the new engineering material. The structure of the modules relies heavily on the fact that the 
assessment and review content needs to be generated based on individual student’s performance.  

The first JITAR module has been developed for Complex Numbers and Complex 
Functions and implemented in Linear Systems for Biomedical Engineers course in the 
Biomedical Engineering curriculum. The module is an application in WeBWorK that allows any 
course instructor to import and adopt easily. In this poster, we will present results from the 
implementation of JITAR modules (Ozturk, Duca, & Raubenheimer, 2015). 
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A Framework for Characterizing a Teacher’s Decentering Tendencies 
 

Ashley Duncan                    Sinem Bas Ader              Marilyn Carlson 
Arizona State University      Istanbul Aydin University  Arizona State University 

This poster presents a framework for characterizing teachers’ decentering during teacher-
student interactions when teaching. Analysis of video data of a graduate teaching assistant’s 
(GTA’s) precalculus class generated six levels of teacher-student interactions. These levels will 
be described and illustrated with excerpts from this video analysis. 

Key words: Precalculus, Graduate Teaching Assistants, Decentering 

Mathematics education policy documents (e.g., NCTM, 2000) have emphasized the 
importance of teachers’ focusing on and using student thinking to inform their interactions with 
students.  In our work to support teachers to consider student thinking when teaching, we 
leveraged Steffe and Thompson’s (2000) description of decentering—the manner by which an 
individual adjusts (or does not adjust) his or her actions to understand another individual’s 
thinking. In our group’s early work Carlson, Bowling, Moore, and Ortiz (2007) identified five 
levels of decentering when analyzing teacher-teacher interactions when participating in a 
professional learning community. 

We coded video data collected in a GTA’s precalculus classroom using research based 
instructional materials (Carlson, Oehrtman & Moore, 2016) designed to engage students in 
constructing deep meanings of the course’s key ideas. Our early coding using Carlson et al’s 
(2007) framework resulted in our extending the framework to include a teacher’s focus on 
students’ answers and thinking when teaching. These levels are described (Table 1) and will be 
illustrated in the context of the GTA introducing his precalculus students to the ideas of constant 
rate of change from a quantitative reasoning perspective.  

 
Decentering Levels   Description 

0 Appears interested in student’s answers but not in student’s thinking. 
1 Takes actions to move students to her/his thinking or perspective without 

trying to understand or build on the expressed thinking and/or 
perspectives of students. 

2 Appears interested in understanding the thinking and/or perspectives of 
students but actions do not appear to be based on these expressions. 

3 Appears interested in understanding the expressed thinking and/or 
perspectives of students but takes actions to move students to her/his 
thinking or perspective. 

4 Appears to have insight into the expressed thinking and/or perspectives 
of students and makes general moves based on the students’ expressions. 

5 Takes action to understand the thinking of others (probes), appears to 
understand the expressed thinking and/or perspective of students and 
takes actions that builds on and respects the rationality of these 
expressions.  

Table 1. Characterization of Teacher Decentering Levels (adaption from (Carlson et al., 
2007)  
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 SOME LOGICAL ISSUES IN RUME 

Viviane Durand-Guerrier, University of Montpellier (France) 

In this communication, we will present various arguments supporting the claim that it is 
worthwhile taking in account logical issues in research in undergraduate mathematics 
education. We will provide arguments relying on research on student’s difficulties and their links 
with teachers’ practices on the one hand; on relevance for researchers on the other hand.  

Key words: logical analysis of language - syntax and semantics – truth versus validity  

We have shown (Durand-Guerrier 2003) that predicate calculus, with concepts such as 
variable, open sentence, quantifiers, logical connectors, logical validity, truth in an interpretation, 
syntax and semantic, is a relevant epistemological reference for mathematics education. We 
present two sides of these logical issues in RUME: on teaching and learning, and on research.   

Students’difficuties and links with teachers’practises 
Undergraduates’ difficulties concerning logical matters in mathematics are well documented 

in the research literature (Chellougui 2009; Dubinsky & Yparaki 2000; Durand-Guerrier et al. 
2012; Epp 2003; Roh 2010). We hypothesize that they are linked with some teachers’ practices. 
We will provide two examples of such links. 

1) While the logical formalism could appear as a mean of conceptual clarification (Quine 
1950), it appears for many fresh university students as an unbearable obstacle (Chellougui 2009), 
and many students are unable to unpack the logic of mathematical statements (Selden and Selden 
1995). On another side, some ordinary teacher’s practices tend to reinforce these difficulties by 
neglecting the logical side of students’ mathematical difficulties (Durand-Guerrier 2003, 2008).  

2) A main concern in undergraduate education is to develop competencies in proof and 
proving as a clue contribution to mathematical conceptualization. However, for many students, 
the requirement for proof is seen as a formal demand of teachers. In Durand-Guerrier (2008) we 
claimed that this could be related to the lack of a clear distinction between truth in an 
interpretation and logical validity. Durand-Guerrier and Arsac (2005) evidenced that while 
expert use semantic controls to check the validity of a proof it is not the case for undergraduates 

Logical analysis as a tool for research in mathematics education 
We claim that logical issues are also valuable for RUME. In our work we use logical tools to 
enrich and deepen the a priori analysis of didactical situation on the one hand, the a posteriori 
analysis of students’ productions on the other hand (Durand-Guerrier 2013). We use logical 
analysis of mathematical statements to enlighten ambiguities likely to create difficulties that are 
reinforced in case of plurilinguism (Durand-Guerrier et al. 2016), and Copi’s natural deduction 
as a tool to identify steps in a proof that could be a priori problematic (Durand-Guerrier 2008).  

Conclusion  
Although logical issues concern all the levels in the curriculum, it is clear that they become more 
crucial at university where logic and mathematics are closely intertwined in mathematics 
activities, including proof and proving. We will give examples in this communication showing 
that taking in consideration logical issues in research design for RUME appears to be fruitful.   
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A Comparison of Faculty Expectations and Student Perceptions of Engagement  
in a Calculus I Class 

 
Belinda P. Edwards 

Kennesaw State University 

This poster describes and includes a discussion of the learning benefits and gains that students, 
enrolled in a Calculus I course, and their instructor reported as a result of participating in an 
active learning environment.  The alignment between what the instructor valued and what 67 
students experienced as they engaged in Calculus I activities was assessed using a survey.  The 
results indicate a positive relationship between perceived importance and reported frequency of 
engagement, which resulted in benefits and student learning. Opportunities for improvement 
outcomes were found and can serve to support strategies that improve teaching and learning in 
Calculus I. 

Key words: Calculus I, Engagement, Learner-centered Instruction 

Learner-centered teaching is an instructional approach to teaching that is increasingly being 
encouraged in undergraduate gateway mathematics courses such, as Precalculus and Calculus I. 
Research (e.g., Fritschner, 2000; Kogan & Laursen, 2013) suggests that students learn best when 
they are engaged with active learning tasks that promote student thinking and lead to deeper 
mathematics understanding. Learner-centered teaching reflects several instructional approaches 
including, but not limited to, actively engaging students in group-worthy tasks, peer-learning, 
problem-solving, and engagement that includes student effort outside the classroom that will 
contribute to their academic success. While learner-centered instructional strategies have many 
reported benefits, research also indicates that it is not easily accomplished and there is often a 
mismatch between instructor and student expectations (Brophy, 2004). The congruence between 
what instructors value and what students report doing in their Calculus I actively learning 
environment is critical to understanding the value instructors place on instructional practices 
intended to support student learning and understanding of Calculus I concepts. 

The question that guided this study was: What benefits and gains do students enrolled in a 
Calculus I LC course and their instructor report as a result of participating in a LC teaching 
environment? Student and instructor reported benefits and gains were assessed using a modified 
Class-Level Survey of Student Engagement (CLASSE) survey. The purpose of the study was to 
use the results to identify effective Calculus I instructional practices that are beneficial in 
promoting student success in Calculus I.  

A quadrant analysis was used to analyze the data and give meaning to the relationship 
between perceived importance and benefits of Calculus activities by the instructor and reported 
frequency of occurrence and learning benefits of those activities by students. The findings 
indicate a high degree of congruence associated with the completion of in-class higher-order 
thinking tasks, student effort, and participation in in-class group worthy activities/tasks.  Areas 
for further consideration include student engagement with the instructor (i.e., meeting with the 
instructor during office hours to review problem solutions) and outside-classroom activities	(i.e., 
participating in a study group or pre-reading/problem solving). The results of the study can be 
used to shape/transform Calculus I teaching and learning experiences, and inform the design of 
faculty development activities. 
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Calculus Students’ Meanings for Average Rate of Change 
Wyatt A. Ehlke Sayonita Ghosh Hajra 

Hamline University Hamline University 

This study considers calculus students’ conceptualization of average rate of change at a private 
liberal arts college in the Midwest. Researchers have indicated that undergraduate students do 
not develop productive meanings for average rate of change. In order to explore undergraduate 
students’ meanings for average rate of change further, we conducted clinical interviews with 10 
undergraduate students on a four-item test. Participants were undergraduate students taking 
Calculus 1 at the time of the study. Interviews were conducted towards the end of the semester to 
ensure students have learned average rate of change. Qualitative techniques were used to 
analyze data. We will present and interpret data highlighting the techniques used by the students 
during the tasks. We will conclude with implications from our findings and questions for future 
research. 

Keywords: Average rate of change, calculus, mathematical meanings, undergraduate students 

Mathematics students in the United States are underperforming when compared to other 
major world powers (Hanushek, 2010). As Byerley, Hatfield and Thompson (2012) discuss in a 
recent study, the underlying understandings of math concepts that students develop while 
studying at our schools and universities are an explanation for the gap in performance. By 
studying the understandings behind a major concept, we can draw conclusions about the quality 
of education that brings the students to this point. A previous study by Carlson, Jacobs, Coe, 
Larsen and Hsu (2002) showed that Calculus students have difficulties with problems that 
require an understanding of average rate of change. 

10 undergraduate students from a Calculus 1 course from a private liberal arts college 
participated in this study. Interviews were conducted towards the end of the semester to ensure 
students have learned average rate of change. The interviews were task-based clinical interviews 
(Clement, 2000) and were videotaped. Participants were given a four-item test, two of which 
were the same that were used by Yoon, Byerley and Thompson (2015), consisting of questions 
that examined their meanings for average rate of change. Interviews were conducted in a one-on-
one environment. Each interview was transcribed and written work was digitized. 

We used open and axial coding techniques (Clement, 2000; Strauss & Corbin, 1998) and 
conceptual analyses (Thompson, 2008) to analyze data. Each researcher analyzed student’s 
responses individually by noting each student’s responses for working with average rate of 
change tasks. Then, we met to discuss our observations, looking for common patterns among the 
students’ techniques for specific tasks. We created codes to identify these patterns we observed. 
Codes were revised and changed in the process to capture the similarities or differences in 
techniques we observed both within similar tasks and across varying tasks.  

We found some students interpreted average rate of change as the difference of function 
values only. We also found students conceived average rate of change as the arithmetic mean of 
rates. We will discuss students’ meanings for average rate of change in detail in the poster 
presentation and will present questions for future research.  
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Empowered Women In RUME: What Have We Been Up To? 

For the past three years we have run a seminar for 60 – 75 women in RUME the day before the 
annual conference called MPWR: Mentoring and Partnerships for Women in RUME. 
Participants included graduate students, post-doctoral fellows, faculty, and researchers outside 
of academic positions. In this poster, we provide a window into these seminars, specifically 
addressing the motivation for the seminar, the structure of the seminar, topics discussed in the 
seminar, research related to the efficacy and transferability of MPWR, and the future of MPWR. 
Our hope with this poster is to both share what we have been doing and get feedback from the 
community for what more can be done. 

Jess Ellis Stacy Musgrave Kathleen Melhuish Eva Thanheiser Megan Wawro 
Colorado State 

University 
Cal Poly 
Pomona 

Texas State 
University 

Portland State 
University 

Virginia Tech 

 

Key Words: Mentoring, Women, Support 

The disproportionately low number of women in STEM fields in academia at all stages of a 
career is well documented (Hill, Corbett, & St. Rose, 2010), as is the role of mentoring, both 
vertically and laterally, in bringing (and keeping) more women in these positions (Beede et al., 
2011). However, mentoring is underutilized (Preston, 2004). As female mathematicians whose 
expertise is in research in undergraduate mathematics education (RUME), we identified a need in 
our community for increased support and mentorship. Prior to 2014 (when this seminar began) 
there was no formal mentoring structure for women specifically, or RUME participants in 
general. Some women were getting mentoring because of their personal or academic networks, 
but this was not equitably accessible, especially for women coming from universities with no 
other RUME researchers, or for women coming into RUME from mathematics or non-
undergraduate mathematics education. We need to ensure that support exists for all women at all 
career stages in their academic development. The MPWR seminar, which stands for Mentoring 
and Partnerships for Women in RUME, was created to address this need, and, based on 
participant feedback, is succeeding in doing so.  

In this poster we describe the MPWR seminar, including motivations for this ongoing seminar, a 
description of past seminars, and our vision for future MPWR seminars. We also address the 
beginning stages of researching what aspects of MPWR are most effective and why, with an eye 
towards what aspects of MPWR could be adapted by other organizations.   
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Designing and Developing Likert Items That Capture Mathematical Problem Solving 
 

James A. Mendoza Epperson(1)          Kathryn Rhoads(1)          R. Cavender Campbell(1) 

(1)The University of Texas at Arlington 
 

The Mathematical Problem Solving Item Development Project is designing and developing 
Likert items that capture students’ capacity in mathematical problem solving (MPS). The project, 
now in year two, continues to refine items that capture aspects of MPS. The refinement process 
included piloting items on over 1000 students in College Algebra and Calculus, hour-long think-
aloud interviews with 26 students, and review by experts. The goal of this poster presentation is 
to provide information about the item development and design and gather feedback and 
suggestions on further design and development.  
 
Key words: mathematical problem solving, mathematics assessment, gateway courses 
 

Research has identified key prerequisite procedural knowledge and conceptual knowledge 
linked to foundational preparation for gateway mathematics courses (e.g. Carlson, Oehrtman, & 
Engelke, 2010); however, there is limited research on connections between foundational MPS 
capacity and success in gateway mathematics courses (Schoenfeld, 2013). The Mathematical 
Problem Solving Item Development Project aims toward eventually developing an instrument 
that provides a profile of an undergraduates’ MPS capacity. 

 
Research Questions 

 
This project has created and tested over 100 Likert items linked to research-based aspects of 

MPS such as sense-making, justifying, representing and connecting, and looking-back 
(Epperson, Rhoads, & Campbell, 2016). Discussion with RUME attendees will assist us in 
determining future item development as well as in identifying any issues in research design and 
methods. This will help us address the questions: (1) What design issues need to be resolved to 
create items intended to minimize the effects of domain knowledge while bringing MPS capacity 
to the forefront in measurement? (2) To what extent can Likert items linked to research-based 
MPS behaviors capture undergraduates’ MPS capacity? 

 
Discussion 

 
The refinement process has been informed by results from pre- and post-tests consisting of 

five open-ended problems and 25-30 associated items to over 1000 students over three semesters 
of College Algebra and Calculus at a large urban university in the Southwest, analysis of 26 
hour-long think-aloud student interviews, and expert review. This poster will provide details on 
item development and refinement as well as the methods used in item analysis. 
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Reducing Abstraction in the Group Concept Inventory
 

Joshua B. Fagan 
Texas State University 

Kathleen M. Melhuish 
Texas State University

 
In this poster we report on results from the Group Concept Inventory (GCI), a conceptual 
assessment for introductory group theory students. Over 400 students from thirty institutions took 
the inventory. We use the framework of reducing abstraction (Hazzan, 1999) to situate student 
responses. We found that students frequently reduced abstraction (in a multitude of ways) when 
dealing with fundamental concepts in group theory. 
 
Keywords: Abstract algebra, Reducing abstraction, Concept inventory 
 

Abstract algebra is often one of the earliest courses where students “cop[e] with the 
difficult notions of mathematical abstraction and formal proof” (Weber & Larsen, 2008, p. 139). 
Hazzan (1999) introduced the framework of reducing abstraction in an effort to “describe the 
mental processes of undergraduate students as they solve problems in abstract algebra” (p. 71). 
She introduced three ways students cope with abstraction; by (1) retreating to familiar 
mathematical structures, (2) using canonical procedures, or (3) adopting a local perspective.  

We used this framework to situate students’ responses to an inventory designed to 
measure conceptual knowledge in an introductory undergraduate group theory course (Melhuish, 
2015). We report on the frequency of responses from 432 students spanning thirty United States 
institutions. We pair these results with discussion of the role of abstraction level. 
 

Sample Results 
 

1. Let 𝑖𝑖 = √−1.  Consider the homomorphism 𝜙𝜙(𝑛𝑛) = 𝑖𝑖𝑛𝑛, that maps ℤ under addition to the 
set 𝐻𝐻 = {1,−1, 𝑖𝑖,−𝑖𝑖} (a subgroup of ℂ under multiplication).  What is the kernel of this 
homomorphism? 

Table 1 
Distribution of Responses for Question 1 
Response Frequency (n=432) 
a. {1} 120 
b. {4} 41 
c. multiples of 4 223 
d. empty set 48 

 
In this prompt, students are asked to reason about the kernel of an unfamiliar 

homomorphism. Most students chose the correct answer of ‘multiples of 4,’ exhibiting an 
adequate understanding of the concept.  From follow-up interviews we found that students who 
selected the response of {1} often relied on an incomplete process of first identifying the identity 
in the co-domain group. For students who chose {4}, they were most often adopting a local 
perspective in recognizing an element in the kernel, not all elements of the kernel.  Finally, 
students who opted for the empty set typically did so because 0 was not an option, which to them 
was a familiar identity for {ℤ, +}. 
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Engaging in Abstract Algebra through Game Play: Group Theory Card Game Groups

Patrick Galarza

 Teachers College at Columbia University

In this presentation, I discuss the viability of a mathematical game as a learning tool for abstract

algebra—specifically, the groups of order four. Throughout 2016, I designed and tested variants

of  my group theory card game,  Groups,  among individuals ranging from no post-secondary

mathematics experience to current or prior graduate level mathematics study. Here, I review the

design choices and challenges central to working in a game space drawing heavily on abstract

algebra,  and assess  alterations  to  the game's  mechanics  influenced by my interactions  with

players. 

Keywords: Abstract Algebra, Group Theory, Educational Game 

Salen and Zimmerman (2004) define a game as a “system in which players engage in an

artificial conflict, defined by rules, that results in a quantifiable outcome” (p. 80); this definition

is often argued to hold natural parallels to that of mathematical exploration, and a wealth of

individuals have already begun designing and utilizing games for mathematical learning both

inside and outside of the classroom (Ke, 2008; Kebritchi,  Hirumi & Bai, 2010; McCue, 2011;

Wijers, Jonker & Drijvers, 2010). However, the majority of  these games target adolescents at the

elementary and secondary level. In the literature on  instruction in abstract algebra, Weber and

Larsen (2008) advocate building a strong  informal knowledge base for student reflection, and

later introducing students to the corresponding  formal mathematical concepts (p. 147). In this

regard,  Weber  and  Larsen's  approach  via  mathematical  reinvention  lends  itself  to  exploring

groups and group theory through a game-based lens as a means of preempting formal content

treatment. Hoping to evoke a similar sense of reinvention, I detail the ongoing development—

design, testing, and critical review—of my group theory card game, Groups. 

Methods

Participants played several video-recorded rounds of  Groups  in pairs, in a novice-novice,

novice-expert,  or expert-expert  match,  participated in  a  recorded interview,  and completed a

written questionnaire that facilitated a transition to formal mathematical thinking. Preliminary

data shows participants had a strong understanding of inverses and identities within groups, but

required further clarification on associativity and closure.

Significance

Game-based approaches  to  mathematics  instruction are  an innovation worth exploring  in

undergraduate mathematics education, and can align with reinvention approaches. Refinement of

Groups may  lead  to  a  classroom-viable  group  theory  learning  tool  that  could  extend  the

accessibility and appeal of abstract algebra—and university-level mathematics, in general—to a

broader audience, including secondary-level students. From the data, I plan to further explore the

following: (i) the utility of Groups for new group theory learners; (ii) the utility of Groups for

current or prior group theory learners; and (iii) how to improve Groups for all students. 
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Research on Concept-based Instruction of Calculus  
Xuefen Gao 

Mathematics Department, Zhejiang Sci-Tech University, China                 

Abstract: This study, involving 254 college-level calculus students and 3 teachers, 
investigated the misunderstanding of concepts in calculus and designed concept-based 
instruction to help students understand concepts. Multiple achievement measures were used 
to determine the degree to which students from different instructional environments had 
mastered the concepts and the procedures. The midterm examination and the final 
examination results showed that the students enrolled in the concept-based learning 
environment scored higher than the students enrolled in the traditional learning environment 
and the investigation at the end of the semester showed that most of students like the 
concept-based learning environment. 
Key words: Concept-based Instruction, Misunderstandings, Teaching design 
 

In the context of mass higher education, the ability of college freshmen is generally in a 
lower level than before. Many college students can do simple works on calculus, but they 
cannot understand the idea behind the concept, and as a result, usually have fuzzy 
understanding of the relationship between concepts. Therefore, to find the cognitive 
difficulties of the students on the concepts of calculus and to design the concept instruction 
are the keys to the reform of the teaching on Calculus. 

This research presented a study on calculus course in three freshmen classes by carrying 
out the teaching design and teaching experiment. Research methods such as design research, 
questionnaires, interviews and classroom observation were adopted. There were 3 teachers 
and 254 students participated in the practice. Based on the findings of this study, the 
following conclusions could be drawn: 

Firstly, college students’ concept image of the fundamental concepts of calculus was 
one-sided, and some even wrong. Some students couldn’t define the limit by correct words. 
Most of the students usually thought of the slope of the tangent when seeing the derivative, 
rather than the rate of change. There was confusion in the understanding of the geometrical 
meaning of differential and linear approximation.  Some students know that the definite 
integral can express the area, but they can’t make sure the area of what region; some students 
did not know which amount was sliced when they calculated the integral. 

Secondly, we constructed principles on concept instruction in calculus as follows: (1) 
Concepts were introduced and demonstrated in a genetic way. (2) To help students 
understand the concepts by means of geometric or intuitive examples. (3) Paying attention to 
the elaboration of the relations of the concept between them. The results of teaching 
experiment showed that the students enrolled in the concept-based learning environment 
scored higher (M=34.42) than the students enrolled in the traditional learning environment 
(M=30.27) on the 40 point Conceptual Understanding Subscale and the students enrolled in 
the concept-based learning environment scored significantly higher (M=48.68) than the 
students enrolled in the traditional learning environment (M=42.65) on the 60 point 
Procedural Skill Subscale in the examination. 
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Equity Issues That (May) Arise in Active Learning Classrooms 

Jessica Gehrtz Richard Sampera Jess Ellis 
Colorado State University 

There is an overwhelming amount of evidence that the incorporation of active learning in the 
classroom benefits all students and can be especially beneficial for women and underrepresented 
populations. However, our work is not finished when it becomes an integral part of teaching and 
learning across the nation. Classroom settings that foster group interaction and collaboration 
may result in an environment that is even more undermining to underrepresented populations. In 
this poster we illustrate these potential issues that arose in an abstract algebra course.  

Key Words: Equity, Abstract Algebra, Inquiry Oriented Learning 

Research clearly indicates that active learning is beneficial for students in undergraduate 
mathematics courses, especially for students from traditionally underrepresented populations 
(Freeman et al, 2014; Laursen, Hassi, Kogan, & Weston, 2014). There are a number of evidence-
based reasons that active learning classes may support a more equitable classroom. For instance, 
active learning classes often center around “low floor, high ceiling” tasks which allow for 
multiple entry points and for students to share their thinking (rather than only correct answers).  
This provides opportunities for students to see each other struggle and emphasizes the process of 
learning as well as allowing for a “broadened notion of competence” (Esmonde, 2009). In this 
poster we present on an Inquiry Oriented Abstract Algebra (IOAA) class that employed these 
strategies. In addition, the instructor was conscientious concerning equity issues and took active 
measures to create a classroom in which all students were valued contributors. Despite this, the 
teacher, a participant observer (TA), and an additional observer became acutely aware of 
differences in the class relating to participation and the nature of the contributions. In the poster, 
we use observer field notes and reflections to identify and describe issues related to equity that 
arose in the IOAA class, and consult video of the class for triangulation. We then consider 
reasons why such issues arose despite the active learning environment and conscientious 
teaching. Specifically we consider two questions: (1) Were there aspects of this execution of 
active learning that can account for the equity issues, such as shorter class periods, the teacher’s 
lack of experience with this material, the specific students, etc., or (2) Are there more general 
aspects of active learning classes that expose equity issues that may not be exposed by lecture? 
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Conceptual Understanding of Differential Calculus: A Comparative Study 

The research community shares a concern for students’ conceptual understanding of calculus 
and commonly advocates for student-centered approaches as a way to promote it. In this study, 
we investigated the effect of different instructional approaches on 151 undergraduate students’ 
conceptual understanding of differential calculus in context-specific, natural settings. We 
collected data on the pre- and posttest of the Calculus Concept Inventory in three classes. In one 
class, most of the time was dedicated to conceptually oriented problem solving, another class 
implemented practice problems for students, and the third class was a traditional lecture class. 
The results showed that there was no difference in students’ conceptual understanding of 
differential calculus controlling for their initial understanding. Thus, our findings do not support 
the research that advocates for student-centered instruction suggesting that the approaches’ 
implementation and contextual differences may be sources of variation in their effectiveness.  

Key words: Calculus, Conceptual Understanding, Active Learning, Instruction, Concept 
Inventory 

Mastery of calculus, a desired and necessary student learning outcome (Sofronas et al., 
2011), needs to include not only mastery of procedures but mastery of concepts, as well (Zerr, 
2010). Multiple attempts have been made to identify instructional approaches that lead to greater 
conceptual understanding of STEM disciplines (Freeman et al., 2014; Prince, 2004) and 
specifically of calculus (Laursen, Hassi, Kogan, & Weston, 2014; Rasmussen, Kwon, Allen, 
Marrongelle, & Burtch, 2006), typically advocating for student-centered instruction. However, 
those calculus studies either used measures with limited evidence of validity and reliability or 
aggregated data across classrooms, potentially different in instruction implementation or 
contextual factors. With our ex post facto study, we aimed to overcome these limitations and 
investigate students’ conceptual understanding of differential calculus (measured by a validated 
instrument) in three calculus classes with distinct instructional approaches taking contextual 
factors into account.  
 

Literature Review 

The education research community has been working on identifying instructional approaches 
effective for students’ learning and specifically for their conceptual understanding of content for 
a long time (Prince, 2004). Many researchers have advocated for student-centered instruction as 
an effective one, typically contrasting it with the teacher-centered instruction. For example, in 
physics, one of the largest studies was conducted by Hake (1998) where he compared student 
conceptual understanding in interactive engagement classes and traditional classes. The results of 
that study suggested that students in the former classes had higher conceptual understanding than 
students in the latter.  

In undergraduate mathematics, several studies exist that explored the influence of student-
centered instruction - specifically inquiry-based learning (IBL) - on student conceptual 
understanding. One of such studies is a study of Laursen et al. (2014) where learning gains of 
students in IBL mathematics classes were compared to those of students in non-IBL mathematics 
classes. The results showed that students’ cognitive gains in understanding and thinking, among 
others, were greater in IBL classes than in non-IBL. However, the measurement of learning gains 
in this study is important to note. The learning gains were self-reported by students, i.e., the 
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gains were students’ subjective perceptions of their learning. Perceived learning, though it has its 
advantages, might not always be an accurate estimation of actual learning.  

Another relevant study was conducted by Rasmussen et al. (2006) where students conceptual 
understanding of differential equations was explored in IBL and  traditional classes. The results 
also supported the effectiveness of IBL. However, several notes need to be made about the 
measurement of conceptual understanding in this study, as well. First, the validity evidence for 
the instrument used was limited (Kwon, Allen, & Rasmussen, 2005). Second, the measure was 
administered only as a posttest assessment (without a pretest) and only to volunteers after the 
final exam.  

Both studies also used data that were aggregated across classrooms. While data aggregation 
has its pros in terms of increasing sample sizes and, therefore, increasing the power of statistical 
comparisons, it may have cons, as well. Our main concern is that by considering students from 
different classes as one sample, important class-level differences may be overlooked. These 
differences, may contribute to differences in learning outcomes between classes. Examples of 
such class-level differences may include different quality of teaching of different instructors or 
different implementation of the same teaching approach.  

Due to the limitations of the studies of Laursen et al. (2014) and Rasmussen et al. (2006) 
discussed above, we decided to explore the effects of student-centered instruction on student 
conceptual understanding using a validated content instrument, administered during class time at 
the beginning and end of the semester. We specifically focused on differential calculus as (1) it is 
one of the fundamental college mathematics courses, and (2) the content measure for this 
material was already developed and validated. We also decided to consider each class 
individually to explore the effects of instructional approaches holistically. In this study, we 
examined two different student-centered instruction types and one traditional instruction type. 
The decision to study two different student-centered instruction types instead of one is consistent 
with the suggestions drawn from the meta-analysis of Freeman et al. (2014). This meta-analysis 
encouraged further research to focus on “second-generation research,” which compares courses 
that differ in active learning implementation, rather than on “first-generation research,” which 
compares active learning courses with traditional ones. The three studied classes are described in 
the next section.  

 
Methods 

Context 
Course. The study was conducted in the three course sections of Calculus I, the first course in 

the calculus sequence. This mainstream course has the traditional material on limits, derivatives, 
the integral, and culminates in the fundamental theorem of calculus. All three sections met twice 
a week for a lecture with a professor (1 hour and 50 minutes each) and once a week for a 
recitation with a graduate teaching assistant (50 minutes). The study was conducted during the 
same academic year with the data collection in the first two classes done in the fall semester and 
in the third class in the spring semester.  

Lectures. The lecture portion of the first class was taught in an active learning classroom with 
most of the class time dedicated to conceptually oriented problem solving (COPS) and whole 
class discussion (the COPS class).  The ALT classroom has 8 round tables with 9 seats at each 
table (a total room capacity is 72). The room also contains flat screen displays (one per table), 
and whiteboards that cover the walls. In the COPS class, class periods typically started with 
resolving any questions or problems that students encountered doing homework or that remained 
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from the last class period. The professor would ask students to write their concerns on a 
whiteboard, and then have a whole class discussion to address the concerns. Then, the professor 
would lecture for a short period of time (10-20 minutes), followed by student active work that 
would take the majority of the class time. The active work typically included student group work 
on worksheets that consisted of conceptually oriented problem sets. The groups were self-
selected and included 4-5 students each. The students were also encouraged to work on 
whiteboards to show their solutions. During this part of the class, the professor and 
undergraduate learning assistants walked around the classroom and talked to students to monitor 
their progress and answer or pose questions. If a common question or misconception arose, the 
professor would often address it via a whole-class discussion. To wrap up the active work, the 
professor would ask students to do a gallery walk and/or would hold a whole class discussion. At 
the end of the class, students typically turned in their completed worksheets.  

The lecture portion of the second class was taught in a traditional lecture hall and 
implemented practice problems (PP) during lectures (the PP class). Similar to the COPS class, 
this class also started with the professor answering student questions. Then, the professor would 
present new material and work through an example problem. Next, students were asked to solve 
a similar problem in groups (i.e., their neighbors) or individually, as they preferred. During this 
part of the class, the professor and learning assistants circulated around the classroom to monitor 
student progress and answer questions. After most students finished, the professor would write 
down the solution suggested by the students and then discuss it with the whole class.  

The lecture portion of the third class was also taught in a lecture hall but utilized primarily 
direct instruction (DI), the DI class. This professor prepared handwritten notes of the material 
(typically, proofs) and projected them on the screen in class. He/she would talk through the 
projected notes and then show an example problem on the board. This professor also 
incorporated graded quizzes in class which usually consisted of true-false questions (typically 
conceptual) to check student understanding of the material. Answers to the quizzes were 
discussed during the following lecture. In this class, no group work was utilized.  

Recitations. Recitations for the COPS and DI classes were taught by the same teaching 
assistant in a primarily lecture style. This teaching assistant would typically answer student 
questions, if any, conduct quizzes if required by the professor, and then explain the material and 
show solutions for example problems. Recitations for the PP class were taught in an active style 
with most of the class time dedicated to answering students’ questions, addressing their 
concerns, and clarifying misconceptions. 
Participants 

The three professors who participated in the study were experienced mathematics faculty 
members with similar goals for Calculus I classes. All of them aimed for students to have a 
mastery of both concepts and procedures by the end of the course. In addition, all of them 
wanted students to be actively involved in class and ask questions. The teaching assistants – 
recitation instructors – were both graduate students studying mathematics. The recitation 
instructor for the PP class was an experienced teaching assistant; the recitation instructor for the 
COPS and DI classes was a new teaching assistant at the university where the study was 
conducted, though he/she had teaching experience at a different institution.   

A total of 151 undergraduate students participated in the study (49 in the COPS class, 64 in 
the PP class, and 38 in the DI class). The students were enrolled in the Calculus I course at a 
large, suburban public university located on the east coast of the U.S. Student demographic 
information is presented in Table 1. In the COPS class, most participants were sophomores; in  
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Table 1 
Sample Demographic Information 

Characteristic 
COPS (N=49) PP (N=64) DI (N=38) Overall (N=151) 

Frequency % Frequency % Frequency % Frequency % 
Student classification 

- Freshman 
- Sophomore 
- Junior 
- Senior 

N=47 
14 
21 
5 
7 

 
29.8% 
44.7% 
10.6% 
14.9% 

N=63 
43 
11 
5 
4 

 
68.3% 
17.5% 
7.9% 
6.3% 

N=37 
16 
14 
6 
1 

 
43.2% 
37.8% 
16.2% 
2.7% 

N=147 
73 
46 
16 
12 

 
49.7% 
31.3% 
10.9% 
8.2% 

GPA 
- 3.5 or better 
- 3.0 up to 3.5 
- 2.5 up to 3.0 
- 2.0 up to 2.5 

N=46 
15 
17 
11 
3 

 
32.6% 
37.0% 
23.9% 
6.5% 

N=56 
22 
23 
9 
2 

 
39.3% 
41.1% 
16.1% 
3.6% 

N=35 
6 

10 
11 
8 

 
17.1% 
28.6% 
31.4% 
22.9% 

N=137 
43 
50 
31 
13 

 
31.4% 
36.5% 
22.6% 
9.5% 

Gender 
- Male 
- Female 

N=45 
23 
22 

 
51.1% 
48.9% 

N=63 
40 
23 

 
63.5% 
36.5% 

N=37 
25 
12 

 
67.6% 
32.4% 

N=145 
88 
57 

 
60.7% 
39.3% 

Race/Ethnicity 
- White 
- African-

American 
- Hispanic 
- Asian 
- American Indian 

or Pacific 
Islander 

- Other/Mixed 

N=44 
23 
2 
 

4 
13 
0 
 
 

2 

 
52.3% 
4.5% 

 
9.1% 
29.5% 

0% 
 
 

4.5% 

N=62 
33 
4 
 

4 
16 
0 
 
 

5 

 
53.2% 
6.5% 

 
6.5% 

25.8% 
0% 

 
 

8.1% 

N=37 
18 
7 
 

2 
7 
1 
 
 

2 

 
48.6% 
18.9% 

 
5.4% 

18.9% 
2.7% 

 
 

5.4% 

N=143 
74 
13 

 
10 
36 
1 
 
 

9 

 
51.7% 
9.1% 

 
7.0% 

25.2% 
0.7% 

 
 

6.3% 
Age M=20.33 (SD=3.46); 

N=45 
M=19.02 (SD=2.06); 

N=61 
M=20.11 (SD=3.04); 

N=37 
M=19.71 (SD=2.87); 

N=143 
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the PP class, the majority were freshman; in the DI class, freshman and sophomore students were 
enrolled in about the same proportion. Students’ GPAs (self-reported) in all classes varied 
greatly. In terms of gender, in the COPS class, about a half of students were male, while in the 
PP and DI classes, the majority of students were male. Students also varied in race and ethnicity. 
In all classes, about a half of students were White and about a quarter were Asian. Notably, the 
DI class had more African-American students than the other two classes. Lastly, in the PP class, 
students were, on average, 19 years old; in the COPS and DI classes, they were, on average, 20 
years old.  
Procedure  

The Calculus Concept Inventory (CCI; Epstein, 2007), a measure of conceptual 
understanding of differential calculus, was administered in all three classes at the beginning and 
end of the semester during recitations. Additionally, at the end of the semester, students were 
also asked to complete a demographic form. Students received a small amount of  extra credit for 
participating in the study. They also received their individual scores on the inventory. The 
instructors received only class average scores. After the semester was over, the instructors also 
participated in interviews, during which they were asked mainly about their teaching practices in 
the classes in question and their teaching philosophies.  

 
Results 

Data Exploration 
We computed descriptive statistics of CCI scores for each class measured at each point of 

time (the beginning and end of the semester). The averages and standard deviations are presented 
in Table 2. First, we were interested in whether students in each class showed growth over time. 
To answer this research question, we conducted three dependent samples t-tests with a 
Bonferroni correction (α=0.017). The results revealed a significant effect of Time for the PP 
class, t(63)=3.303, p=0.002, but not for the COPS class, t(48)=2.165, p=0.035, or for the DI 
class, t(37)=2.371, p=0.023.  

Next, we wanted to know if students in the three classes differed in their conceptual 
understanding on the pre- and posttest. To answer this research question, we conducted two 
ANOVA tests with a Bonferroni correction (α=0.025). The results showed a significant effect of 
Class for both the pretest (F(2,148)=5.466, p=0.005) and the posttest (F(2,148)=5.700, p=0.004). 
Multiple comparisons – Tukey HSD tests – revealed a significant difference between the PP and 
COPS classes (p=0.013 for the pretest; p=0.012 for the posttest) and between the PP and DI 
classes on the pretest only (p=0.017). 
 
Table 2 
Descriptive Statistics for CCI 
 Mean (SD) 

COPS (N=49) PP (N=64) DI (N=38) Total (N=151) 
Pretest 6.43 (3.03) 8.06 (3.18) 6.37 (2.56) 7.11 (3.08) 
Posttest 7.33 (3.60) 9.28 (3.77) 7.37 (3.11) 8.17 (3.66) 
 
Differences in Conceptual Understanding between Classes over Time 

To determine whether there was a difference in student conceptual understanding of 
differential calculus between classes over time, we conducted a mixed design ANOVA with 
Time as a within subjects factor and Class as a between subjects factor (see Figure 1). The results 
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indicated a main effect of Time (F(1,148)=19.160, p=0.000), i.e., students’ conceptual 
understanding, averaged across classes, was higher at the end of the semester (M=7.11; 
SD=3.08) than at the beginning (M=8.17; SD=3.66). The results also showed a main effect of 
Class (F(2,148)=6.811, p=0.001). Multiple comparisons – Tukey HSD tests – revealed that 
students in the PP class had significantly higher conceptual understanding, averaged across time, 
than students in the COPS (p=0.005) or DI (p=0.009) classes. No interaction effect between 
Time and Class was found (F(2,148)=0.187, p=0.830). Thus, the changes in students’ conceptual 
understanding in all three classes were not significantly different from each other.  

 

 
Figure 1. Pretest and posttest means for each class 

 
Differences in Conceptual Understanding at the End of the Semester Controlling for Initial 
Understanding 

To determine whether students differed in their conceptual understanding of differential 
calculus at the end of the semester controlling for their initial understanding, we conducted an 
ANCOVA test (see Figure 2). The results showed no difference between the classes in students’ 
conceptual understanding at the end of the semester controlling for their initial understanding, 
F(2,147)=1.065, p=0.347. The adjusted means were as follows: 7.837 (SE=0.398) for the COPS 
class, 8.561 (SE=0.353) for the PP class, and 7.924 (SE=0.452) for the DI class. 
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Figure 2. Adjusted posttest means for each class 

 

Discussion 

Our findings suggest that students’ conceptual understanding of differential calculus is 
independent from the type of instruction when (1) conceptual understanding is measured by a 
validated, content instrument, and (2) the study is context-specific, i.e., when each class is 
considered individually instead of averaging across multiple classes. These nuances may explain 
why our results appeared to be different from the results of Laursen et al. (2014) and Rasmussen 
et al. (2006). In other words, implementation characteristics of a particular approach by a 
particular instructor in a particular course offering may lead to different levels of conceptual 
understanding and, therefore, need to be taken into account.  

Among advantages of the study, we consider its ex post facto design, as no intervention was 
made. We aimed to explore the effects of teaching approaches in the most natural environment 
possible, and, therefore, chose to investigate the effects of the approaches typical to the 
instructors. Thus, this design provides a comprehensive picture of instruction implementation, 
where all elements of the instructional approaches are considered together. At the same time, a 
comprehensive picture of instruction has the disadvantage of making those elements with the 
most influence on the outcome challenging to identify. Therefore, future research should explore 
more context specific variations in approaches’ implementation to determine potential 
commonalities between the effective ones. Another disadvantage of our ex post facto, context-
specific design is a possibility for confounding variables to occur, as no control over the 
approaches is used. For example, the direct instruction in the recitations of the COPS class may 
have cancelled out the effect of conceptually oriented problem solving in the lecture periods. 
Finally, our study design substantially limits the generalizability of the findings.  
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Variations of College Algebra Instructors’ Presentations of the Mathematics:  
The Case of Solving Quadratic Inequalities 

 
Claire Gibbons 

Oregon State University 

The mathematical content presented during instruction has been shown to have an effect on student 
achievement. To investigate the content presented by instructors during College Algebra 
instruction, the Mathematical Quality of Instruction (MQI) observation protocol was applied to 
video recordings featuring instructors’ presentations of examples of solving quadratic 
inequalities. Wide variation was observed in the solution methods chosen by instructors and in the 
rationale provided for choosing a particular procedure. This poster summarizes the variation in 
the mathematics that was observed and the ability of the MQI protocol to capture this variation.   

Key words: College Algebra, Instructional Activities and Practices, Classroom Observations 

College Algebra is cited as one of the most failed courses at universities across the country 
(MAA, 2007). It is difficult to pinpoint the particular causes for high failure rates in College 
Algebra, but the literature provides some insight into the relationship between teaching and 
student understanding: researchers agree that quality of the content offered during instruction is 
linked to student success (Porter, 2002), and how mathematical content is presented has an effect 
on student understanding and comprehension (Seidel & Shavelson, 2007; Weinberg, Wiesner, & 
Fukawa-Connelly, 2014).  

Informed by previous observations of wide variation in the mathematics offered during 
College Algebra instruction (Beisiegel, Gibbons, & Paul, 2016), a study was designed to further 
investigate the qualities of the mathematics presented by College Algebra instructors. The 
purpose of the study was to identify what variation in the mathematics occurred in the lessons 
and how well the Mathematical Quality of Instruction (MQI, Learning Mathematics for Teaching 
Project, 2011) observation protocol captured this variation. Four College Algebra instructors’ 
lessons at a large university were recorded regularly throughout the duration of the course. To 
focus on the mathematical content offered during instruction, video clips were chosen from the 
set of recordings that featured instructors’ presentations mathematical examples. In particular, 
lesson clips containing teachers’ presentations of solving quadratic inequalities were selected to 
allow for comparison between the mathematical content offered during instruction.  

The MQI protocol was used as a lens and framework for observing the selected video 
lessons. This instrument was selected because of its attention to the interactions between the 
instructor and the content. In particular, one of the MQI dimensions, Richness of the 
Mathematics, is well-suited to capture the mathematics offered during a lesson. This dimension 
includes codes such as Explanations, Linking Between Representations, and Mathematical 
Sense-Making. Two researchers viewed and scored the selected College Algebra video clips 
using the Richness of the Mathematics dimension of the MQI.  

Wide variation in the mathematics was observed. First, most instructors presented only one 
solution method, showing either the graphing method or the table/number line procedure; this 
was well-captured by the MQI. Second, the instructors differed in their decision of when to 
convert the inequality to an equality, and this decision affected their choice of solution method; 
the MQI did not attend to this variation. These findings, along with examples of the procedures 
observed for solving quadratic inequalities, will be presented in the final poster.   
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Investigating Prospective Teachers’ Meanings of Covariation Before and After Calculus 
Coursework 

 
Roser Giné 

Lesley University 
 

This study seeks to uncover prospective teachers’ construction of mathematical meanings 
after engaging in a two semester calculus sequence. The research question for this work is: How 
might the learning of calculus impact prospective teachers’ mathematical meanings of functions, 
and in particular, prospective teachers’ meanings of covariation? The purpose of this study is to 
understand whether, and if so, how, the study of calculus is useful for prospective teachers, and 
to place a lens on meanings that students develop on covariation, a concept that permeates the 
secondary school mathematics curriculum.  

Because not all secondary school teachers will teach calculus or more advanced 
mathematics, the importance of success in calculus remains a question for students. Even when it 
is accepted that calculus may be useful, learning more advanced mathematics continues to be 
questioned, especially as the undergraduate mathematics courses increase in levels of 
abstraction. At the teaching university where this study takes place, this is a relevant issue 
because students who major in mathematics will become middle or high school teachers. This 
study may contribute to our understanding of the need of calculus as prerequisite knowledge for 
teaching.  
 The courses in which this study takes place include Calculus 1 and 2. The site of this 
study is a small private university with a primary goal of training prospective teachers at the 
undergraduate and graduate levels. Students who enroll in the calculus sequence are 
undergraduate double majors in mathematics and in education. Because I teach both courses as 
well as the mathematics methods courses for middle and high school teaching, I have a unique 
opportunity to get to know students well as they form mathematical meanings and acquire 
pedagogical content knowledge in mathematics.  

  
Research Design and Theory 

 
The study is taking place in two calculus courses during the 2016-17 academic year 

(Calculus 1, Fall 2016; Calculus II, Spring 2017). The first stage of the project involves 
participants’ completion of an assessment that measures meanings students form with respect to 
specific mathematics concepts related to covariation. Items in this instrument were developed by 
Dr. Patrick Thompson (2016) and his research team through Project Aspire (Mathematical 
Meanings for Teaching secondary mathematics). This instrument has been designed to assess 
pre-service and current teachers’ mathematical meanings for teaching secondary mathematics. 

The second part of the project consists of administering the same assessment tool at the 
end of Calculus I to understand whether there have been any changes in students’ meanings. At 
this time, I will interview students to check my interpretations of their written work and to allow 
students to elaborate on their responses. Students will also be asked to reflect on any changes in 
their responses on the two completed assessments. Students who continue to Calculus II will 
revisit this assessment at the end of the semester in Spring 2017, as the research cycle is 
repeated.  Theoretical lenses used to guide this work include theory of meanings (Thompson, 
Carlson et al., 2014), as well as the concept of backward transfer of mathematical meanings that 
may be productive for teaching (Hohensee, 2014). 
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Improving Undergraduate STEM Education Through 
Adjunct Mathematics Instructor Resources and Support (IUSE-AMIRS) 

 
Amir H. Golnabi, Eileen Murray and Zareen G. Rahman 

Department of Mathematical Sciences, Montclair State University 

The Improving Undergraduate STEM Education Through Adjunct Mathematics Instructor 
Resources and Support (IUSE-AMIRS) project aims to measure the impact of course 
coordination and support on adjunct mathematics instructors’ knowledge, instructional 
practices, and job satisfaction. In this project, we use the organization and coordination of 
Precalculus with the goals of 1) implementing best practices for learning and instruction, 2) 
improving instructor knowledge, and 3) creating a professional learning community. As a part of 
this project we measure the impact of Precalculus course coordination and adjunct support on 
student achievement, leading to student retention in STEM majors. We believe our initiative can 
be implemented in other departments and institutions that have a similar need for adjunct 
instructors in math courses with multiple sections. 

Key words: [Adjunct, Precalculus, Course Coordination, Professional Learning Community] 

Students’ persistence in continuing to pursue STEM degrees is heavily influenced by their 
classroom experiences, especially in the first year mathematics courses (Hutcheson, Pampaka, & 
Williams 2011; Pampaka, Williams, Hutcheson, Davis, & Wake, 2012). In this regard, the 
quality of pedagogy can make a big difference in the retention of STEM students beyond 
beginning mathematics. There is a growing body of research aimed at graduate teaching 
assistants touting benefits of targeted professional development (PD) (DeLong & Winter, 2001), 
but much needs to be done with respect to the growing population of adjunct instructors (Austin 
& Sorcinelli, 2013). 

To better address this challenge at our institution, we have developed the project Improving 
Undergraduate STEM Education Through Adjunct Mathematics Instructor Resources and 
Support (IUSE-AMIRS). Through this project, inaugurated in summer 2016, we are creating a 
model for implementing best practices for learning and instruction through adjunct instructor 
development and support. We have incorporated instructor supports backed by research and 
provided course coordination of Precalculus to begin a departmental transformation that will 
ultimately support students in this early mathematics course. Our course coordination includes 
having a course coordinator, two dedicated Precalculus tutors, and a common pacing guide, 
syllabus, assessments and rubrics for all instructors. In addition, we provided a summer 
workshop for Precalculus adjunct faculty and tutors, during which the participants received a 
comprehensive training on our recently adapted curriculum. This workshop was part of a larger 
PD effort that has continued throughout the semester through online weekly meetings. These 
meetings form the foundation of a professional learning community (PLC) aimed to provide 
content and instructional support for the instructors. Adjunct faculty highly regard such supports 
as they help improve teaching and integrate adjuncts into their institutions (Lyons & Burnstad, 
2007; Bowers, 2013). To better understand the impact of these supports, we have been collecting 
a wide range of data from both adjuncts and students including instructor and student surveys, 
instructor interviews and classroom observations. We are measuring the effects of IUSE-AMIRS 
on Precalculus instruction and instructors since we strongly believe they will positively impact 
student achievement, thus leading to increased retention in STEM majors. 
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Quantitative Learning Centers: What We Know Now and Where We Go from Here 
 

Melissa Haire 
University of Connecticut 

 
Given the recent national and international events the need for developing students’ quantitative 
literacy (QL) has taken center stage in the mathematics education community. We are interested 
in investigating the existing support structures and the impact they have on the development of 
QL. The purpose of this study is to investigate the literature on quantitative learning centers at 
institutions of higher education. This poster will discuss the themes that emerged from a 
qualitative analysis of these works, highlighting what we currently understand and identifying 
opportunities for growth. 
 
Key words: quantitative learning centers, quantitative literacy, literature review 
 

A desire for quantitative literacy (QL) in college graduates has caused institutions of higher 
education (IHE) to form quantitative course requirements for their students. These requirements 
are intended to develop QL, “the ability to adequately use elementary mathematical tools to 
interpret and manipulate quantitative data and ideas that arise in an individual’s private, civic, 
and work life” (Gillman, 2011). This ability is desired across fields, not just in the sciences, and 
employers search for candidates who have these reasoning skills. Out of a need for student 
support, quantitative learning centers (QLCs) have been founded at IHEs across the country. The 
centers seek to provide support for students enrolled in classes with a quantitative focus through 
a variety of programs, including drop in tutoring (Black, 2016), scheduled one-on-one tutoring 
(Mayes, 2016), and review sessions (Grant, 2016). Their ability to effectively support students 
and their impact on quantitative literacy is something that has not been broadly assessed. The 
purpose of the study presented in this poster is to investigate the literature on QLCs at IHEs in 
order to synthesize what we currently understand and identify opportunities for growth. 

 
Methods 

 
In order to address our purpose, a literature review was conducted. The literature included in 

the review were accessed through ERIC, PsychInfo, and Google Scholar using the keywords 
“learning center,” “mathematics,” “undergraduate,” “help-seeking,” and “peer-tutoring,” as well 
as variations on the term learning center, such as “support center” and “help center”. Works that 
focused on undergraduate student use of a help center for mathematical support were included. A 
content analysis was performed on the resulting literature to identify emerging themes.  

 
Findings 

 
This poster will elaborate on the results of the analysis.  Most of the literature focuses on help 

seeking behaviors of students, an individual center’s effectiveness in meeting its’ objectives, or 
some combination thereof. The following themes emerged: 1) the academic need of students 
attending the QLCs (Xu, Hartman, Uribe, & Mencke, 2001), 2) the discipline of the students 
attending the QLCs, and 3) the center as a physical space for students to work together 
(Solomon, Croft, & Lawson, 2010). Opportunities for growth will also be discussed. 
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Characterizing Normative Metacognitive Activity During  
Problem Solving in Undergraduate Classroom Communities 

 
Emilie Hancock 

University of Northern Colorado 
 
Mathematical problem-solving research studies abound, and a significant portion express the 
role of metacognition as an underlying component of the problem-solving process. 
Unfortunately, much of the research on metacognition in mathematics does not describe 
the explicit role metacognition plays during the problem-solving process. Moreover, 
metacognitive interventions are typically disconnected from natural mathematical activity and 
discourse within a classroom community. The purpose of this qualitative study is to characterize 
sociomathematical metacognitive norms within an introductory number theory course intended 
for pre-service teachers. Utilizing Vygotsky’s conception of language-based, mediated action 
and activity theory as an analytic framework, this study aims to test the use of these methods to 
investigate “real-time” metacognition with explicit focus on the broader classroom community. 
Attention is paid to the dynamic relationship between the teacher and students. 
 
Key words: Activity Theory, Metacognition, Problem Solving, Sociomathematical Norms 
 

There has been increased focus to develop problem-solving skills and related ‘habits of 
mind’ (e.g., CBMS, 2012; MAA CUPM, 2015). Metacognition is one such habit of mind (Costa 
& Kallick, 2000), and problem-solving frameworks identify metacognition as a core component 
of the problem-solving process (e.g., Carlson & Bloom, 2005; Schoenfeld, 1985). Although 
problem-solving frameworks have been heavily studied, research does “not yet offer a theory of 
problem solving” (Schoenfeld, 2007, p. 539, emphasis added). Particularly, metacognition 
remains undertheorized and under-studied in its application to classroom communities (Carroll, 
2008), especially at the undergraduate level (Dumford, Cogswell, & Miller, 2016). Much of the 
research to date has not described the explicit role metacognition plays during the problem-
solving process (Carlson & Bloom, 2005). A shift of focus to a process view of “real-time” 
metacognition necessitates an investigation “in the context of natural purposeful activity” 
(Neisser, 1976, p. 7). Specifically, there is limited research documenting the normative 
metacognitive behaviors during problem solving of classroom communities. Understanding how 
metacognition manifests itself in such an environment could help to develop techniques to foster 
metacognition as normative behavior within the mathematics classroom.  

As such, this research aims to address the following research question: How do 
sociomathematical metacognitive norms during problem solving develop in an undergraduate 
mathematics community of practice? Vygotsky’s (1978, 1986) social constructivism is adopted 
as the theoretical lens and Ernest’s (2010) model of sign appropriation/use is incorporated to 
highlight the reflexive nature between individual and collective. Activity Theory (Engeström, 
1987; Leont’ev, 1979) is utilized as a framework to investigate these interactions, as it provides 
concrete language to describe broader social factors potentially influencing metacognitive norms. 
To test the feasibility of activity theory, I conducted a qualitative pilot study in a number theory 
course designed for pre-service teachers. This poster will present analysis, results, and an 
evaluation of methodological tools. The pilot study also informed data collection and analysis for 
my dissertation study. Modifications and initial results of this current study will also be shared.  
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Research in Courses before Calculus Through the Lens of Social Justice 
 

Shandy Hauk 
WestEd 

Allison Toney 
U. North Carolina Wilmington  

April Brown 
U. Mary Hardin Baylor 

Katie Salguero 
WestEd 

The terms equity, diversity, inclusion, and social justice have entered the research lexicon. This 
theoretically-focused poster presents some recent policy efforts to generate a shared meaning for 
“social justice” in mathematics education and offers a theoretical framework for making sense 
of (and making sense with) intercultural interactions as an essential component of rigorous 
research. The poster includes illustrations for how to use these tools for thinking through and 
talking about research. To anchor discussion, we focus on research on teaching and learning in 
the courses before calculus (e.g., algebra, mathematics for pre-service elementary teachers). 

Keywords: Social justice, Research in undergraduate mathematics education 

This year two organizations, TODOS: Mathematics for All and the National Council of 
Supervisors of Mathematics (NCSM), issued a position paper, Mathematics Education Through 
the Lens of Social Justice: Acknowledgement, Actions, and Accountability. In it, social justice 
includes “fair and equitable teaching practices, high expectations for all students, access to rich, 
rigorous, and relevant mathematics, and strong family/community relationships to promote 
positive mathematics learning and achievement.” Underlying all of these is an understanding of 
how power, privilege, and oppression contribute to and maintain an inequitable learning system.  

As people trained in research in undergraduate mathematics education, we know that our 
work is about more than identifying a problem and solving it. As citizens of a first-world country 
in the 21st century, we are keenly aware of societal injustice. And, as a community, we have an 
opportunity to guide how social justice issues are explored and addressed in collegiate 
mathematics education research. The opportunity has been there for a while (e.g., Aguirre & 
Civil, 2016; Adiredja, Alexander, & Andrews-Larson, 2016; D’Ambrosio et al., 2013; Davis, 
Hauk, & Latiolais, 2010; Gutiérrez, 2013; Nasir, 2016).  

According to the TODOS-NCSM position paper, three conditions are necessary to establish 
just and equitable mathematical education for all learners: (1) acknowledge that an unjust social 
system exists, (2) take actions to eliminate inequities and to establish effective policies, 
procedures, and practices that ensure just and equitable learning opportunities for all, and (3) be 
eager for accountability so changes are made and sustained. How do we increase researcher 
capacity to do these three things? We must address our own needs – as researchers – for 
language, concepts, and awareness-building. This will support us in the inevitable struggle to 
gain and use pertinent understandings related to social justice. The poster offers key ideas and 
examples from intercultural development (Bennett, 1993; 2004). 

 Questions driving poster conversation: What is the role of social justice in research in 
collegiate mathematics education? When we conduct research in the U.S. we make decisions 
about who participants are – what would be different if decisions in the projects we are in the 
midst of or just finished had included overt and repeated attention to the three tenets? How might 
research be framed to provide evidence that supports action to eliminate an inequity? How do we 
do that? How might the research design or the analysis be different if the results of the work are 
to be held accountable by research peers and judged in a court of stakeholder opinion that values 
equity as much as excellence in mathematics education? What are some of the concepts and 
language from intercultural development that can help us address these questions? 
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Exploring the Content–Specific Mathematical Proving Behavior of Students: Opportunities 
for Extracting and Giving Mathematical Meaning  

 
Sarah Hough 

University of California, Santa Barbara 
Monica Mendoza 

   University of California, Santa Barbara        

Alex	Sacharuk																																																											William Jacob 
University of California, Santa Barbara            University of California, Santa Barbara 

Studies were conducted to explore the efficacy of a non-traditional transition to upper division 
proof course using Freudenthal’s notion of mathematizing as a framework. Classroom video 
data and student work were analyzed using grounded theory methodology. Results indicated that 
students in the non-traditional course developed better understandings of the role of definition 
and counter example in proof through engagement in meaning making activities that fostered 
both the semantic and structural aspects of proof writing. 

Key words: Transition to Proof, Mathematizing, Grounded Theory 

These studies were conducted in a large public research university on the West Coast. 
Participants were 109 undergraduates enrolled in three sections of a transition to upper division 
mathematics course. Thirty six students were enrolled in a pilot course that had students use first-
order languages and their semantics to investigate truth/falsity in a variety of structures as a basis 
for developing mathematical reasoning. Thirty seven students were enrolled in a traditional 
section of the course. The remaining students were enrolled in a revised non-traditional course. 

 
Study 1 

We asked:  What landmark thinking strategies (such as acting upon definitions) occur along 
the way to successful proof at the collegiate level? All spring non-traditional course sessions and 
a sample of five traditional course sessions were observed, audio-taped and transcribed. Student 
work was collected. Data were analyzed using the constant comparative methods of Strauss and 
Corbin (1998). A learning trajectory of the ways in which students’ understanding of the big 
ideas of mathematical proof developed over time was constructed. 

Study 2 

We asked:  How do final exam responses of students in this non-traditional course compare 
to those students who took a traditional proof course? Common exam items were coded 
numerically and qualitatively using the understandings of proof landscape above. Non-traditional 
students did better on constructions of objects using operable definitions (Bills & Tall, 1998).  
 

Study 3 

We asked: In what ways did the revised non-traditional course support the development of 
understanding of proof? Transcripts of classroom activity and student written proofs were 
analyzed. Cases of student proof writing in contexts illustrated ways in which the course allowed 
both formal and natural strategies can be used to engage in meaning making activities (Pinto & 
Tall, 1999). Future research should address how such development can be fostered in a 
traditional setting.  
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Questioning Assumptions about the Measurability of Subdomains of Mathematical 
Knowledge for Teaching (MKT) 

 
Heather Howell Yvonne Lai  Heejoo Suh 

Educational Testing Service University of Nebraska-Lincoln  Michigan State University 

The goals of undergraduate mathematics teacher education include developing teachers’ content 
knowledge and pedagogical content knowledge. As a strategy for conceptualizing and assessing 
these forms of knowledge, researchers have further divided these domains. However, it has 
proven difficult for research groups to create tasks to reliably capture a specific domain without 
involving other domains, leading them to question these subdomains. We argue that tasks’ 
inability to measure subdomains separately is not evidence that tasks or theory are flawed. 
Instead, we propose that assessment tasks are effective in measuring MKT when they represent 
the work of teaching, rather than when they isolate subdomains. To make this argument, we use 
an analysis of teachers’ thinking in response to nine MKT assessment tasks.  Though prior work 
provides evidence that the tasks measure MKT, the tasks cannot be meaningfully parsed into the 
subdomains of multiple established MKT frameworks. 

Key words: Mathematical knowledge for teaching,  pedagogical content knowledge 

A common viewpoint in undergraduate mathematics teacher education is that content 
knowledge is the domain of mathematical knowledge for teaching (MKT) to be taught primarily 
in content courses and pedagogical content knowledge (PCK) is the domain to be taught 
primarily in methods courses. Assessment development efforts have focused on measuring 
content and PCK and theoretically derived sub-components of each separately, with factor 
analyses confirming (or disconfirming) hypothesized subdomains (e.g. Hill, Schilling, & Ball, 
2004; Floden & McCrory, 2007; Herbst & Kosko, 2014; Krauss, Baumert, & Blum, 2008). This 
approach has yielded at best mixed results (Hill, 2016).  

While category theory suggests that factor analysis is a reasonable approach for evaluating 
theoretical subdomains whose purpose is to inform assessment domain sampling (Kaarstein, 
2014), we counter that this need not be the purpose of a theoretical framework. Failure to 
measure subdomains in isolation does not alone imply that assessment tasks or theory are flawed.  

To illustrate this argument, we present an analysis of nine assessment tasks previously shown 
to assess MKT (Howell, Lai, & Phelps, 2016) across five established frameworks for MKT (Ball, 
Thames, and Phelps (2008), KAT, COACTIV, TEDS-M, and MUST). Prior work generated 
knowledge maps for each task specifying the knowledge measured, and verified their accuracy in 
capturing reasoning in response to the tasks. In the present study, the tasks themselves became 
the data; we coded them by subdomains of each of the five specified frameworks. Eight of the 
nine tasks measured multiple subdomains across multiple frameworks, substantiating our 
hypothesis that tasks that measure MKT well overall may simply not be amenable to the 
measurement of isolated subdomains of MKT.   

Implications of this study substantiate concerns in the field of meaningful inconsistency in 
the conceptualization and description of MKT, but may temper critiques of theoretical 
frameworks based on assessments like those studied. A theorized subdomain need not be 
distinctly measureable in isolation from the larger construct to be useful in informing the field’s 
thinking, pushing policy, or as a heuristic for organizing teacher supports. 
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Data Cleaning in Mathematics Education Research: The Overlooked Methodological Step 
 

Aleata Hubbard 
WestEd 

The results of educational research studies are only as accurate as the data used to produce 
them. Drawing on experiences conducting large-scale efficacy studies of classroom-based 
algebra interventions for community college and middle school students, I am developing 
practice-based data cleaning procedures to support scholars in conducting rigorous research. 
The poster identifies common sources of data errors in mathematics education research and 
offers a framework and related data cleaning process designed to address these errors. I seek 
feedback on the framework and discussion around data cleaning techniques used by other 
RUME scholars in their research and in the preparation of future researchers. 

Key words: Research methodology, Efficacy studies, Algebra 

Screening data for potential errors and ensuring anomalies do not influence analyses is an 
essential step of the research cycle (Wilkinson, 1999). Despite the importance of data cleaning in 
rigorous research practice, most methodology courses only give cursory attention to the topic 
(Osborne, 2012). I am developing practice-based data cleaning processes to support scholars in 
implementing rigorous research in classroom settings. Specifically, I ask: (1) What are the 
sources of data errors in educational research studies conducted in authentic mathematics 
learning environments? and (2) How can a data cleaning process be designed to consistently 
produce accurate, reliable, confidential, and timely datasets? 

 
The framework presented in this poster was informed by two large-scale efficacy studies. 

Study A was a three-year, nationwide study involving over 10,000 middle school students and 
180 mathematics teachers. Study B is a two-year, statewide study of community college 
elementary algebra courses. During Study A, a list of data related challenges and their associated 
resolutions was compiled and used to inform the data cleaning process currently used in Study B. 
Four common sources of data errors appeared in both studies: variations in assessment 
administration; participant mobility; multiple participant names; and use of external vendor 
systems. The following data cleaning process was developed to identify and repair these issues: 

1) Create visually distinct instrument forms; indicate administration format in final data sets;  
2) De-identify study data as early as possible in the data collection process; 
3) Compare record counts against participant lists to identify missing and extra records; 
4) Check data files for missing values, missing data columns, and extra data columns; 
5) Check identifier columns for duplicate values; 
6) Transform categorical values into pre-determined standard values; 
7) Flag records with errors; 
8) Establish a review process so data cleaning work can be checked by another person. 

 
The data cleaning process and taxonomy of common data error sources offered here can 

provide a framework for other researchers to evaluate their current data management strategies. 
Furthermore, I hope this work can spark discussion around more comprehensive methodology 
training for future researchers. I also seek feedback on ways to communicate the process and 
information on how others in the RUME community handle data cleaning issues in their work. 
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Calculus Instructor Beliefs Regarding Student Engagement 
Carolyn James 

University of Portland 
 
Student engagement has been identified as a critical element in student learning of 
mathematics, yet most university math classrooms have very little active content (Olson & 
Riordan, 2012). Guided by Schoenfeld’s (2011) framework for instructional decision-
making, this study examines calculus instructor beliefs about, purposes for, and barriers 
against student engagement. Results indicate instructors utilize active learning primarily 
for formative assessment and improving student dispositions with development of 
understanding as a secondary, implicit goal. 
 
Key Words: Active learning, Student Engagement, Teacher Beliefs, Calculus Instruction 
 

The evidence is overwhelming that active approaches to mathematics instruction are 
more effective than traditional lecture (e.g. Bressoud et al., 2013; Freeman et al., 2014; 
Kogan & Laursen, 2014). However, effective instructional changes must be in alignment 
with teacher beliefs (e.g. Henderson, 2011). Schoenfeld’s (2011) framework for 
instructional decision-making served as the theoretical framework to guide this study. 
According to this framework, a teacher’s decisions are based on their goals, orientations 
(which include beliefs), and resources. In order to enact instructional change, it is necessary 
to build upon existing teacher beliefs regarding student engagement. Research questions 
include: 

1) How do calculus instructors view student engagement in their classes?  
2) What is the purpose of student engagement?  
3) What are some of the barriers for student engagement? How are they overcome? 

This study is the first stage of a multi-stage project aimed at shifting departmental 
culture toward more active mathematics instruction. In this study, four calculus instructors 
at a small (< 8,000) university were interviewed regarding their beliefs about student 
engagement, its purposes, and potential barriers for implementation. The interviews were 
transcribed and analyzed according to Braun and Clark’s (2006) thematic analysis, which 
resulted in a set of themes. Results are summarized for brevity. 

Results from this study indicate that this group of calculus instructors recognized the 
importance of student engagement, and offered many forms of student engagement, such as 
asking and answering questions, and group-work. All instructors recognized the limitations 
of lecture in terms of student engagement, but all saw it as a necessary part of teaching 
mathematics. They also recognized most students’ discomfort while participating in whole-
class relative to participating in small groups and addressed this discomfort. Purposes of 
student engagement included formative assessment, improved student communication, 
improved mathematical dispositions, and improved relationships. Notably, learning was not 
listed as one of the primary purposes; instead it was mentioned implicitly when describing 
how student engagement can be a means for improving test scores, allowing more 
processing time, or creating a more personal connection to the material. If reform efforts 
seek to increase active learning through student engagement, these beliefs will need to be 
addressed. 
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Students’ Strategies When Matching a Function’s Graph with the Graph of its Derivative 
 

      Nathan Jewkes       Amy Dwiggins 
University of Missouri University of Missouri 

 
This study explores a fundamental calculus connection between a function and its derivative by 
examining and categorizing strategies students use when matching a function’s graph with the 
graph of its derivative. Through interviews with four students using multiple choice (MC) tasks, 
we wanted to explore whether common mistakes and students’ strategies when drawing the 
graph of the derivative of an original function are consistent with those found when using 
open-ended tasks.  While tendency to find an equation of the graph in order to differentiate was 
observed, simple replication of the original function was not observed.  
 
Keywords:​  Calculus, Derivative, Graph, Function  
 

Given the graph of a function, there are several strategies students use when asked to draw 
the derivative. One common, correct strategy is to find points of local extrema of the function 
and match those points with the zeros of the derivative. Another correct strategy is to identify 
intervals on which the function is increasing and decreasing and match those intervals with 
places where the derivative is above and below the x-axis, respectively. Students often employ 
inefficient or altogether incorrect strategies.  Some of these strategies include simple replication 
of the original function when asked to draw the derivative (Nemirovsky & Rubin, 1992) and 
students’ tendency to find an equation of the graph of the function before differentiating 
(Ferrini-Mundy & Graham, 1994; Asiala, Cottrill, Dubinsky, & Schwingendorf, 1997). 
However, online assessment programs draw upon MC items to assess student understanding of 
the connections between graphs of functions and their derivatives creating a potentially different 
set of challenges. Our study explores whether common mistakes and strategies students use on 
MC tasks are consistent with those when given open-ended tasks.  

For this study, clinical interviews (Ginsburg, 1997) using MC tasks were conducted with four 
current calculus students at a Midwestern university. Tasks provided students with graphs of 
functions, asked students to choose the correct derivative graphs, and describe their thinking 
about their choice. Student strategies were varied. One student focused on locations of local 
extrema as zeros of the derivative as well as intervals of increasing and decreasing to match 
places where the derivative was above or below the ​x-​ axis. A second student incorrectly 
attempted to use combinations of first and second derivative concepts, while consistently ruling 
out a simple replication option. While the two remaining students wanted to find the function’s 
equation in order to differentiate, they were equally focused on how the end behavior of the 
function determines the end behavior of the derivative graph.  

While some common mistakes and strategies used on these MC tasks were observed, the 
mistake of simply replicating the function was not observed. Common mistakes and strategies 
observed in this study can inform the development and evaluation of MC tasks for assessments. 
For university math departments that depend on MC tasks to assess student understanding of the 
graphical connections between a function and its derivative, using assessment items that reflect 
conceptual connections between functions and their derivatives rather than surface-level 
characteristics is essential to increasing one’s confidence in student understanding.  
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Situational Characteristics Supporting Instructional Change 

Estrella Johnson & Rachel Keller 
Virginia Tech 

 
Instructional practice and decision-making are influenced by a myriad of factors, with both 
individual instructor characteristics (e.g., beliefs about teaching and learning and personal 
experience) and departmental/institutional characteristics (e.g., resources and supports) shaping 
day-to-day teaching practices. However, little is known about which factors are the most 
influential and how those factors influence pedagogy. In this project, in an effort to identify 
commonalities in situational contexts and better understand how these commonalities support 
non-lecture instructional approaches, we look at interviews from fourteen mathematicians who 
volunteered to implement inquiry-oriented instructional materials.   

Key words: instructional practice, contextual factors, departmental influences  

There is a growing body of research indicating that traditional instructional methods (e.g., 
lecture) is both prevalent in undergraduate mathematics education and problematic in terms of 
STEM retention and student outcomes. Lecture is the most frequently reported instructional 
approach in undergraduate mathematics – with about 65% of mathematics faculty reporting 
extensive lecturing in all or most of their courses (Eagan, 2016). Such lecture-based pedagogy 
has been labeled problematic for undergraduate learning, persistence, and success. For instance, 
a meta-analysis by Freeman et al. (2014) found that in undergraduate STEM courses “active 
learning leads to increases in examination performance that would raise average grades by a half 
a letter” (p. 8410), and that students in lecture classes are 1.5 times more likely to fail than those 
in classes where active learning methods are used. The growing tension between the predominant 
instructional practices of mathematics faculty and the growing body of research on the benefits 
of active learning gives rise to the need to better understand the factors that contribute to 
pedagogical decision-making and the factors that influence instructional change.   

In order to understand instructional practice and decisions, Henderson and Dancy (2007) 
made the argument for investigating both individual and situational characteristics. While 
individual characteristics are often the focus of similar research, a recent research report on 
abstract algebra instructors found individual factors, such as years of teaching experience and 
previous experience teaching abstract algebra, failed to predict pedagogical format (Fukawa-
Connelly, Johnson, & Keller, 2016). Thus, here we decided to focus on situational characteristics 
by analyzing interviews from fourteen mathematics instructors who volunteered to implement an 
inquiry-oriented set of instructional materials. By identifying commonalities in departmental 
contexts, specifically for instructors who are actively using non-lecture pedagogies, our aim is to 
better understand how situational characteristics support such teaching practices. Situational 
factors under consideration include: class size, pre-requisite and subsequent courses, content and 
coverage expectations, and support/constraints expressed by colleagues and department chairs. 
Our analysis suggests that support for non-lecture pedagogy can range widely from passive (e.g., 
a department in which there is little oversight on individual courses) to active (e.g., a department 
in which professional development opportunities are widely circulated, department chairs who 
help mitigate negative student evaluations when new instructional approaches are tried).  
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Graphs Display Lengths, Not Locations 
 

Surani Joshua 
Arizona State University 

Students are frequently asked to reason about graphs that they see as geometric shapes, instead 
of representations that show the relationship between two quantities. This study shows an 
instructional intervention, using the theory of multiplicative objects (Saldanha and Thompson, 
1998) that has great potential for orienting students to the quantities involved and their 
relationships, by focusing on how graphs display orthogonal lengths whose magnitudes are 
measures of quantities. 

Key words: Graphs, Magnitudes, Representations, Lengths, Covariation 

Research on students’ understanding of graphs show that students frequently have difficulties 
with interpreting, manipulating and creating graphs (Baker, Cooley, & Trigueros, 2000; Kieran, 
Boileau, & Garançon, 1996). Many studies have suggested instructional sequences to help 
students develop their skills to carry out the aforementioned tasks (Dugdale 1993; Eisenberg & 
Dreyfus, 1994; McDermott, Rosenquist, & vanZee, 1987) but they frequently rely on asking 
students to use mnemonics based on graphical shapes, or “shape thinking”, that has been shown 
to be problematic for students (Moore & Thompson, 2015); moreover, these studies are 
frequently silent on the original causes of the student difficulties that they are seeking to remedy. 

While teaching both Precalculus and calculus at a large southwestern university, I noticed 
that these college-level students had surprising levels of difficulty in reasoning with graphs. We 
frequently drew vertical and horizontal lengths to represent changes in quantities on a graph, but 
I soon realized these lengths were meaningless if the students did not also have an understanding 
of the lengths on a graph that represent total quantities. A graph on rectangular (Cartesian) axes 
expresses the relationship between two quantities (Thompson 1993) by displaying points where a 
point’s perpendicular distance from the y- and x-axis represent paired values of the x- and y-
quantities, respectively. As such, a point on a graph is what Saldanha and Thompson (1998) 
called a multiplicative object. I noticed when students’ interacted with graphs that they saw 
points on a graph as locations instead of representing the values of two lengths, the magnitudes 
(Thompson et al. 2014) of which represented the measurement of two quantities. They must also 
be able to visualize the covariation of these quantities (Carlson 2002) as the graph develops. 

To investigate, I carried out a research project with a single participant, a community college 
student studying nursing in the American southwest. We used dynamic software to investigate 
graphs and their properties by highlighting the vertical and horizontal magnitudes (via directed 
lengths, or vectors) that were paired together in the multiplicative objects that were the points on 
any given graph. I found that these activities provoked surprising responses from my subject 
about the nature of graphs and their utility. We then continued to use these dynamic 
visualizations to investigate transformations of graphs and the student had a significant amount 
of success in justifying answers that earlier she could not explain. 

I feel that this study will be of great interest to math education researchers because the nature 
of graphs and of how students use, create, manipulate, and reason with graphs is central to our 
work. Focusing on this aspect of reconceptualizing graphical shapes to points as ‘locations’ to 
points as ‘paired lengths’ may be a strong starting point for instructional innovation and 
increased student learning. 
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Reasoning About Relative Motion: A Frames of Reference Approach 
 

Surani Joshua 
Arizona State University 

 
In introductory physics classes, student frequently experience difficulties with relative motion 
problems. Previous studies have categorized student difficulties with reference frames, or used 
computer simulations or experiments to create seeming paradoxes that students would need 
frames of reference to resolve; however, these studies failed to define what they meant by a 
“frame of reference” in the mind of a student. In 2016 I carried out a pilot study that used our 
cognitive definition of a conceptualized and coordinate frame of reference (Joshua, Musgrave, 
Hatfield, & Thompson, 2015) as well as quantitative reasoning (Thompson, 1993) to guide an 
instructional intervention and analyze the difficulties the student had with relative motion tasks. 
Both constructs proved to have great explanatory power, as they revealed aspects of the 
student’s thinking that were not commonly explored in previous studies.  Both the results of this 
study and their implications will be the topic of my poster. 

Key words: Relative Motion, Frame of Reference, Velocity, Physics, Quantitative Reasoning. 

It is commonly acknowledged that the reason students struggle with relative motion tasks is 
because they fail to correctly use reference frames. Some studies have focused on categorizing 
student difficulties with reference frames (Bowden et al., 1992; Panse, Ramadas, & Kumar, 
1994). Others have tried interventions based on computer simulation designed to have students 
experience different points of view (Monaghan & Clement, 1999, 2000) or to build experiences 
with seemingly paradoxical conclusions that students would need reference frames to resolve 
(McDermott, 1984; Trowbridge & McDermott, 1980). However, when I looked closely at these 
studies, I could not help but notice that velocity was frequently seen as an aspect of a single 
object. Even though students were asked to find an object’s speed in “a new reference frame”, 
the task was still framed as the object’s velocity instead of the rate of change of distance between 
an object and a reference point with respect to time. Moreover, most of these interventions 
sought to simply build student intuition about velocity as an isolated quantity instead of a 
intensive quantity composed from distance and time.   

To address this gap in the research, I investigated how a single student reasoned about tasks 
involving relative motion. After a clinical interview where I asked the student to work through 
several tasks, I used the theories of quantitative reasoning and conceptualized and coordinated 
frames of reference entail, to analyze the student’s reasoning. Among other results, I found that 
the student was unusually attuned to the necessity of a reference point (though not always sure of 
how to utilize one) but completely unaware of the idea of a directionality of comparison. My 
analysis of the student’s work guided the content of an instructional intervention, followed by a 
chance for the student to rework the original relative motion tasks. He showed great 
improvement in being able to both explain answers he previously thought were correct without 
justification, and to complete some previously blank tasks. He also used his commitment to 
reference point to spontaneously coordinate reference frames. I believe that my data, as well as 
my analysis of the data using my construct of a cognitive frame of reference and quantitative 
reasoning, will be of interest to the math education community as they showcase an area of 
applied mathematics where our students commonly struggle, as well as a potential avenue for 
improved instruction. 
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All The Math You Need:  
An Investigation into the Curricular Boundaries of Mathematical Literacy 

 
Gizem Karaali 

Pomona College 

This project attempts to seek out common threads and analyze discrepancies in the tertiary-level 
mathematical literacy / quantitative literacy curricula proposed by eight different textbooks and 
content-providers. Following the framework developed originally in (Harel 1987) we investigate 
sequencing of content, levels of generality, emphasized applications, introductory material, as 
well as explicitly stated learning outcomes. 

Key words: mathematical literacy, quantitative literacy, textbook analysis. 

Mathematical literacy, and related notions and terminologies (such as numeracy, financial / 
quantitative / statistical literacies), refer to the usefulness of, and ability to use or apply, 
mathematical and quantitative ideas, broadly viewed, in a range of different life contexts [TSG 
23 Call for papers and participants]. In earlier work, researchers have analyzed the overlaps and 
divergences between these specific terms; for a recent overview of related work, see [Karaali et 
al. 2016]. In this project, we seek to clarify the boundaries of these terms using curricular 
materials as a guide, mainly focusing on mathematical literacy as a goal, no matter how a 
specific term is defined or used. In particular we intentionally avoid fixing a definition for these 
terms and focus entirely on delineating the boundaries described by curricular content offered.  

We analyze eight different textbooks and other curricular content aimed for the tertiary-level. 
Following the framework developed originally in [Harel 1987] we investigate sequencing of 
content, levels of generality, emphasized applications, introductory material, as well as explicitly 
stated learning outcomes. 

We summarize our results in the poster using the above framework, using visual and verbal 
descriptions of each dimension (sequencing of content, levels of generality, emphasized 
applications, introductory material, explicitly stated learning outcomes). In particular we note 
that the topics covered do overlap significantly among the texts analyzed, thus offering hope that 
curricular boundaries might be determined even if there may not be consensus on definitions of 
terms like mathematical literacy and quantitative literacy. We also note that curricula and 
textbooks mostly fall into one of two categories that can broadly be described as pragmatic and 
idealistic. 
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Student Beliefs About Mathematics in an Inquiry-Based Introduction to Proof Course 
Shiv Smith Karunakaran 

Washington State University 
Abigail Higgins 

Washington State University 
James Whitbread, Jr.  

Washington State University
 

An “Introduction to Proof” or “Transition to Proof” course is widely offered as an essential 
part of the undergraduate mathematics curriculum at most post-secondary institutions. This 
poster reports on the iterative development of one such course that used an Inquiry-based 
approach to the teaching and learning of mathematical proving and proof. Moreover, the 
changing beliefs of students, about the nature of mathematics and about doing mathematics, in 
this course, are discussed.  

Keywords: Transition to Proof, Inquiry-based learning 
The importance of proof has long been emphasized by numerous mathematics and 

mathematics education organizations, such as the Mathematical Association of America and the 
National Council of Teachers of Mathematics. Apart from the general importance placed on 
proof, the process of proving is also indispensable in the act of doing mathematics. At the higher 
academic levels (graduate and professional mathematics), proving can be considered as the 
definite way in which the truth of a claim is established or realized (Hanna, 2000). 

In the United States of America, most undergraduate students of mathematics first encounter 
the process of proving and the related product of proof in an “Introduction to Proof” or a 
“Transition to Proof” course. Historically, the teaching of proving to students in these courses 
has followed the custom of presenting the statement of the theorem and following it with a 
presentation of the finished proof. However, research suggests that this form of mere 
presentation of proof may not engender understanding of the proving process for the students 
(Raman, 2002) and may instead promote memorization of the proofs without understanding the 
proving process. In an effort to correct this trend and to allow for more opportunities for 
undergraduate students of mathematics to gain understanding into the process of proving, the 
authors designed and implemented an “Introduction to Mathematical Proof” course that was built 
upon principles of inquiry-based mathematical teaching and learning. Other undergraduate 
courses, such as abstract algebra (Larsen & Lockwood, 2013) and linear algebra (Wawro et al., 
2012), taught using these principles seem to have helped students gain insight into the relevant 
mathematical content. 

This poster presents the design, development, and implementation of the various iterations of 
this inquiry-based course in mathematical proving and proof. It will report on the sequencing of 
tasks that may have helped students gain a deeper understanding of different proving strategies, 
such as using the Principle of Mathematical Induction. It will also present data from classroom 
observations and from student interviews about specific features of this course that helped 
students. 

Students self-reported that specific beliefs about doing mathematics and about the nature of 
mathematics evolved during the span of this course. For instance, students modified their stances 
on the following beliefs: 1. There is always exactly one solution to mathematical problems and 
one valid way to solve mathematical problems; and 2. Mathematical proofs or arguments or 
justifications must adhere to a particular format. Observations of students’ work in class and in 
interview settings provided triangulation of these espoused changes in beliefs by the students.  
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Bringing Evidenced-Based Practices to a Large-Scale Precalculus Class: Preliminary Results 
 

Karen Allen Keene 
NCState University 

 

Leslaw Skrzypek 
U of South Florida 

 

Greg Downing 
NCState University 

 

Brooke Kott 
NCState University 

Using evidenced-based practices in a large undergraduate mathematics classroom can be 
challenging but results of recent research on active-learning demand investigation. Preliminary 
results show that students already have self-confidence upon entering the classes, but there is a 
slight gain in perceptions of the value and appreciation of mathematics. Additionally, activities 
and clickers were considered useful and important by some of the students interviewed.  
 
Keywords: Large scale classrooms, precalculus, evidence-based practices 
 

In general, researchers and curriculum developers have developed numerous student-centered 
instructional strategies which has been shown to support conceptual learning gains (Freeman et al, 
2014), diminish the achievement gap (Kogan & Laursen, 2013; Riordan & Noyce, 2001), and 
improve STEM retention rates (Rasmussen, Ellis, & Bressoud, 2013). Our objective was to 
introduce evidence-based active learning practices and conduct a mixed method study to 
understand how these new practices are perceived and affect student outcomes. Outcomes defined 
were students’ attitudes towards mathematics, interest in mathematics, and self-efficacy. Research 
questions were: 1) what are students’ perceptions of the new instructional strategies?  And 2) how 
are students’ self-efficacy and attitudes towards mathematics different after participation in the 
evidence-based practice course compared to a comparison course? 

 
Study Design 

 
The participants in this study were students in two (one treatment and one comparison) large 

classes at a southern university. The content in the courses were the same: precalculus, including 
triangle and unit circle trigonometry, conic sections, and sequence and series. The course included 
lecture and computer labs where homework, quizzes and exams were taken. In the treatment class, 
the instructor introduced the use of real-world videos, team activities, and conceptual clicker 
questions answered in small groups. There were 5 team activities, 3 real-world videos and clicker 
questions in the summer treatment class. None of these were done in the fall control class. 

Data included pre and post surveys of students that asked about their perceptions of themselves 
as mathematical learners, their perceptions of mathematics, and the course itself. Interviews at the 
end of the semester with approximately 20 students were conducted and video recorded. Data 
analysis is ongoing with quantitative methods being used on numerical questions in the surveys 
and qualitative methods used on the open ended questions and interview videos. 

 
Preliminary Results and Conclusion 

 
 Students were already confident in their mathematical skills, but there were advances in their 
value of mathematics. Students were more engaged, positive about the social value, and showed 
mathematical gains from participating in the treatment class. Further research is needed to identify 
connections between the team activities, clickers, and changes in the students. Early results show 
that there may be ways to implement these strategies in a large-scale mathematics classroom. 
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Post-class Reflections and Calibration in Introductory Calculus 

 
Taylor Kline     Rebecca Dibbs 

Texas A&M-Commerce   Texas A&M-Commerce 

One of the reasons for the exodus in STEM majors is students’ experiences in their first 
undergraduate mathematics course, usually introductory calculus. However, students with 
high calibration are more likely to be aware of their deficiencies and seek assistance in time 
for it to be effective. Although there is evidence that students who regularly complete post 
class reflections are more successful than those that do not, it is not known if such 
assignment also improves students’ calibration. The purpose of this correlational study was 
to investigate to what extent students enroll in CLEAR calculus become more growth mindset 
orientated the relationship between post-class reflections, calibration, and achievement in 
introductory calculus.  

Key words: Calculus, calibration, formative assessment, transition to college 

Most undergraduates who take calculus have some prior experience and believe they are 
prepared for the course (Bressoud, Carlson, Mesa, and Rasmussen, 2013). Without 
acknowledging the framework in which undergraduates learned mathematics in secondary 
school, undergraduates are more probable than any time in recent memory to struggle with 
the move to college. These initial struggles leave students more likely than ever to struggle 
with the transition to college and the advanced mathematical thinking needed to be successful 
beyond calculus (Kajander & Louric, 2005; Selden & Selden, 2002; Tall, 2008). One possible 
way to help undergraduates transition to college is the utilization of formative assessments, 
for example, exit tickets; such assignments can help undergraduates to see their professor as 
more caring and increases the probability students will seek help when they are struggling 
(Black and Wiliam 1998, 2009; Dibbs, 2014). However, the number of formative assessments 
finished is a far larger indicator of understudies' course grade than their weight in the course 
grade (Dibbs, 2014). One possible latent variable that could account for this impact was that 
undergraduates who finished more post-labs had better calibration than those that did not. 
The hypotheses for this study were: (1) There is no relationship between students’ calibration 
on tests and achievement in introductory calculus (2) There is no relationship between the 
number of post- class reflection assignments students complete and their calibration on tests 

Participants were recruited from two sections of calculus (n = 60) at a rural Hispanic-
serving research university in the South during the Fall 2016 semester. Students enrolled 
in calculus most commonly major in engineering, physics, computer science, 
mathematics, or secondary mathematics education. At the time of consent, students’ ACT 
scores (SAT scores were converted to ACT equivalents), current GPA, native language, 
gender, and major were collected. Data was collected during the four unit tests of the 
course and the final exam. At the bottom of each question, students had to circle a face on 
an affective Likert scale indicated their confidence in their answer. During analysis, the 
Likert scale was converted to a numerical score, and the difference between student’s 
exam score and Likert score was used to obtain a calibration score for each item. A linear 
regression model was constructed. Based on pilot data, ACT scores, gender, and native 
language were all included in the initial model:  
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Error Detection in an Introductory Proofs Course 
 

Jason Aubrey, Tyler Kloefkorn, and Kyle Pounder 
University of Arizona 

We report on an exploratory quantitative study of students’ error detection skills. Based on the 
research on “proof framework” type errors and models for proof comprehension, we classify 
errors in proofs as internal or external for proof validation. We then test students' ability to 
detect errors of both types and determine if detection is correlated with success in an 
introductory proofs course.  

Key words: proof validation, proof comprehension 

Researchers have shown that students struggle to validate proofs (Selden & Selden, 2003; 
Inglis & Alcock, 2012; Ko & Knuth, 2013; Weber, 2010). It is known that students are 
particularly prone to miss “proof framework” errors (Selden & Selden, 2003; Inglis & Alcock, 
2012). Researchers have also proposed that one component of comprehension is “local” or line-
by-line understanding (Mejia-Ramos et al, 2012). For use in proof validation, we propose a 
classification of errors as external (e.g., proof framework errors) or internal (e.g., local errors). 
Here we take a quantitative approach to studying students’ error detection skills. That is, instead 
of focusing on the complex written and mental processes involved in proof validation, we focus 
on quantifying students’ final judgments about purported proofs. We hypothesize that students 
are more adept at detecting internal errors over external errors and external error detection is 
more predictive of performance in an introductory proofs course than internal error detection. 

 
Method 

In summer 2016, we studied 23 students in a 300-level introductory proofs course 
emphasizing analysis at a large public university. Students were given 12 “proof feedback 
activities,” each consisting of one claim and one purported proof. Depending on the activity, the 
claim was false, the proof had an error, both, or neither. The students’ task was to list any errors 
in the claim or proof. We call an error external if it is global or structural. An internal error is not 
an external error. The activities included a mixture of types of errors.  
 

Results and Conclusions 
 

For each student we recorded identified errors and course grade. The results of a paired 
samples t test (t(22) = 2.16, p = 0.04) confirmed that students were more successful in 
identifying internal errors (M = 35.40, SD = 24.69) than external errors (M = 22.71, SD = 16.23). 
Logistic regression was used to predict the probability that a student would earn a grade of C or 
better. The predictor variables were participants’ rates of success in detecting internal errors and 
in detecting external errors. A test of the full model versus a model with intercept only was 
statistically significant, with the Cox & Snell R2 = 0.32. These results confirm that external error 
detection is more predictive of performance in an introductory proofs course than internal error 
detection. Ability to detect external errors had significant effect (p = 0.049) on success in the 
course. Future work includes an analysis of students' false negatives (i.e., “errors” listed in parts 
of proofs that were correct). 
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An Active Learning Environment in Introductory Analysis

Brynja Kohler and Patrick Seegmiller

December 8, 2016

Abstract

At Utah State University, the course known as ‘Math 4200:Foundations of Analysis’ is a requirement
for all department majors, and, in addition to introducing real analysis, serves as an introduction to
rigorous proof. All too frequently, courses such as these are taught with the typical lecture format: the
instructor enters the classroom to deliver polished explanations of definitions, theorems, and their proofs,
while leaving students to struggle to follow lectures and then struggle further on their own to make sense of
incomprehensible homework problems. This poster includes descriptions of easy-to-implement strategies
that change the classroom to an active learning environment, with ample opportunities for formative
assessment and feedback without overloading the professor with busywork. The strategies include: name
tents, group exercises and quizzes, peer-reviewing of homework, concept quizzes, individual presentations,
and growth mindset reflections. We surveyed students to find their reactions to these class activities and
found positive and helpful implementation hints.

1 Introduction

Here we will share the course specifics, a description of the text and instructor’s experience, the classroom,
students and their demographics. Our course and student population are quite typical of Land-grant research
1 universities, and we have class sizes of 40-45 students typically. The authors have researched various
textbooks and course materials that encourage an active approach to analysis and these will be summarized
and reviewed.

2 Methods

In this section, we will detail the course design and instructional strategies employed.

• Peer-reviews of Homework Using an online course organization system (CANVAS) we set up
homework assignments (5 proofs each) and a peer-review system, so students could read each other’s
work, the instructor’s solutions, and evaluate and comment on the writing.

• Group Work The class has tables so students are students can easily work together in groups. We
assigned groups and changed them monthly. In almost every class meeting, groups were prompted to
discuss and/or write about specific problems. The instructor gathered written work (only 12 groups
reduces the grading load) and provided non-graded formative feedback in the following class meeting.

• Several more simple strategies for an active learning environment.

3 Results

In this final section of the poster, we will summarize comments from students regarding the implementation
of these active learning approaches. Generally, students were enthusiastic about mathematics and their
learning experiences in the class.
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Pre-service Teachers’ Use of Informal Language While Solving a Probabilistic Problem 
 

Victoria Krupnik  Robert Sigley   Muteb Alqahtani 
Rutgers University  Texas State University      SUNY Cortland 

 
This exploratory study investigates pre-service teachers’ (PSTs) collaborative discus-sions to 
solve probabilistic problem. The PSTs synchronously collaborated online using Virtual Math 
Teams with GeoGebra to investigate the fairness of a series of die by using interactive 
simulation to randomly sample from the die with replacement. While discussing their solution in 
the chat panel, the PSTs used informal, non-standard language to describe the distribution of the 
data. In this poster, we present examples of how the PSTs, using informal language, co-
constructed their knowledge of different probabilistic concepts while solving the problem. This 
study contributes one of a series of tasks that were designed to elicit how PSTs build 
understandings of mathematical concepts without formal introductions to these concepts. 

Key words: probability, pre-service teachers, law of large numbers, informal language, statistics 
 

Mathematics is viewed as blending language, symbolism, and representations, and when 
working on problems, students must articulate their language of the connections between their 
symbolism and representations (O’Halloran, 2005). Studies (e.g., Francisco & Maher, 2011) 
have shown that when students engage in open-ended problem solving they tend to use informal, 
non-standard language as they build ideas. While solving problems in an online environment, 
students rely on their language to make those connections and make sense of mathematical ideas.  

A study on PSTs’ informal talk about variation was rich with statistical ideas of spread, 
modal clumps, and distribution chunks (Makar & Confrey, 2005). Makar & Confrey (2005) 
noted that when PSTs used the word range they referred to measure or location. Also, PSTs who 
used spread out would frequently accompany it with the word evenly for the notion of spread. 

In our study, four groups of three PSTs from a large university solved an open-ended 
probability task in a collaborative online environment, VMTwG. The VMTwG integrates a 
multi-user version of GeoGebra, a dynamic geometry environment, with a shared whiteboard and 
a chat panel. The teachers met in VMTwG synchronously and collaborated to solve the 
probability task. In this task, the PSTs were provided with an interactive simulation of six dice 
that are weighted differ-ently. The simulation allows users to choose the number of trials from 1 
to 1,000 rolls and select from three different representations of the data: a fre-quency table, a pie 
chart, and a bar graph to present the outcomes. The PSTs were asked to roll the dice, explore the 
different representation of the outcomes, and discuss in the chat panel the fairness of each die. 

To analyze teachers’ interactions in VMTwG, three researchers openly coded the chat logs 
for informal language referring to empirical and theoretical probabilistic concepts such as 
sampling, law of large numbers, distribution, and randomness. 

Similar to Makar & Confrey’s (2005) findings, PSTs used non-standard language to make 
sense of distributions. PSTs described various distributions as (un)even, well-distributed, bell 
curve, and smallest range. They justified choosing 1,000 trials to discover patterns of the graph 
such as more equal, steady, and more accurate, which we view as an attempt to establish 
connections between theoretical and empirical probability. However, our PSTs used range 
differently, to explain how close the frequency bar graphs were to a uniform graph. Our study 
contributes understanding of the development of PSTs’ knowledge of probability and statistics. It 
also contributes understanding of how non-standard, informal language shapes mathematical 
understanding in collaborative environments. 
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Student Ways of Framing Differential Equations Tasks 
 

George Kuster 
Christopher Newport University 

 In this research presentation I utilize the theoretical perspective Knowledge In Pieces (diSessa, 
1993) to identify the knowledge resources two students utilized while in the process of 
completing various differential equations tasks.  The results provide a fine-grained description of 
the knowledge students consider to be productive with regard to completing various differential 
equations tasks. Further the analysis resulted in the identification of five ways students frame 
differential equations tasks and how these framings are related to the different knowledge 
resources students utilize while completing the various tasks. These framings did not only 
provide insight into the students’ general approaches to completing the task; differences in the 
individual students’ applications of knowledge across the tasks were accounted for by the 
different Framings. The results have direct implications with regard to the teaching of 
differential equations as they inform the ideas students view as productive when completing 
various tasks involving differential equations. 

Keywords: Differential Equations, Knowledge in Pieces, Undergraduate Student Learning 

In a recent review of undergraduate mathematics education literature Rasmussen and Wawro 
(in press) made a call for research on student learning in differential equations. In response to 
this call, I conducted 5 individual, problem-based interviews with each of 8 students.  Two 
students’ complete set of interviews were transcribed and analyzed using methods sharing 
characteristics with the iterative processes of Knowledge Analysis as discussed by Cambell 
(2011).  Through this process I identified regularities in the language, ideas and actions utilized 
by the students across various tasks.  One result of the analysis was the identification of five 
ways of framing differential equations tasks, general approaches to completing the differently 
framed tasks, and sets of resources regularly utilized to complete tasks of a particular framing. 

 
Results  

The five ways students framed the various differential equations tasks identified in this study 
are the differential equation as: a description of the behavior of the quantity of interest, as a 
relationship between values of quantities and the value of the rate of change of the quantity of 
interest, an equation that provides a model, as a relationship between values, and, as a 
relationship between functions. 

In the poster I outline in more detail, the similarities and differences between the different 
framings, the general approaches to the students took with regard to the individual framings, and 
the regularities with regard to student usage of resources within the framings.  
 
Implications 

Based on the analysis of the students learning opportunities may be created by providing 
students with tasks that prompt them to focus on relationships between the variables (and 
functions) in the differential equations, the quantities those variables (and functions) represent, 
and the connections between differential equations and their solutions.   
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Using Evidence to Understand and Support an Educational Reform Movement:  
The Case of Inquiry-Based Learning (IBL) in College Mathematics 

 
Sandra Laursen, Chuck Hayward, and Zachary Haberler  

Ethnography & Evaluation Research, University of Colorado Boulder 

We present a graphic review of a decade of research and evaluation work on inquiry-based 
learning in college mathematics. Featured studies examine student outcomes of IBL instruction, 
processes of change as instructors explore and adopt IBL approaches, and the workings of the 
faculty learning community that has formed to learn and promote IBL ideas.  Collectively, these 
studies highlight the use of evidence to understand instructional practices and change in these 
practices, and to support evidence-based decision-making by instructors and change leaders. 

Key words: inquiry-based learning, faculty change, evidence-based decision-making  

This poster offers a graphics-oriented summary of a decade of research and evaluation 
studies of inquiry-based learning (IBL) in college mathematics. Our group’s foray into this topic 
began with a large, multi-campus research study of student outcomes of inquiry-based learning 
as compared with primarily lecture-based instruction (e.g., Kogan & Laursen, 2014; Laursen et 
al., 2014; Hassi & Laursen, 2015). As IBL practitioners began to share their knowledge and 
experience with other instructors, we evaluated their faculty development activities and used 
these projects as vehicles to study the processes of faculty change (e.g., Hayward, Kogan & 
Laursen, 2016) and to develop better ways to measure such change. We continue to work with 
IBL leaders on IBL professional development and expanding community capacity to deliver 
skillful professional development. Another current study examines the IBL math ecosystem, 
seeking to understand the history, opportunities and challenges for the IBL math community as it 
develops strength as an educational change movement.    

The poster will show the intellectual arc of our research questions and findings over time and 
highlights diverse research methods. The poster will also spark conversation about broader 
themes, such as selecting research methods, balancing scholarly and applied research, or taking a 
long view in developing a research program.    
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EDUCATIONAL POINT OF NEWTON-LIEBNITZ FORMULA 
 

Author: Lin, Qun, Academy of Mathematics and Systems Science, Chinese Academy of Sciences 

Presenting author: Cao, Rongrong, School of mathematics and statistics, Qingdao University 

 

Newton-Liebniz formula has been stated by a figure and proved by an arithmetic theorem 
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Increasing number of 9s, we get the Newton-Liebniz formula: 

Integral of differentials = total change. See Lin’s early book (Jan 1999) or recent paper in 
US-China Education Review A, March 2016, Vol.6, No. 3. 

We discuss in this single page its educational point. 

1. Tolstoy’s view of history in War and Peace: Only by taking infinitesimally small units for 
observation (the differential of history, that is, the individual tendencies of men) and attaining 
to the art of integrating them (that is, finding the sum of these infinitesimals) can we hope to 
arrive at the laws of history. 

2. Economy, collection of merchants, or integral of differentials of merchants, the latter are, 
the individual tendencies of merchants. 

3. More exact examples, e.g.  

 

Increasing number of 9s, we get the circumference and curve length. 

There is a similar conclusion for the area under the curve. 

The authors thank the reviewer’s comments.  

Any questions, please contact with presenting author Cao Rongrong, E-Mail: 
caorrqdu@sina.com. 
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Student reasoning with differentials and derivatives in upper-division physics 

Michael E. Loverude, Department of Physics and Catalyst Center,  
California State University Fullerton, Fullerton, CA 92834. 

Abstract:  Students encounter multiple mathematical representations of change in physics 
courses.  In addition to the complexity of the material, students must navigate mathematical 
notation that can seem arbitrary and can differ from conventions used in mathematics 
coursework.  In this poster we will examine student responses illustrating the challenges of 
mathematical representations of change, drawn from students in upper-division physics 
courses in mathematical methods and thermal physics. 

Description 
This work is part of a collaboration to investigate student learning and application of 

mathematics in the context of upper-division physics courses. Our project seeks to study 
student conceptual understanding in upper-division physics courses, investigate models of 
transfer, and to develop instructional interventions to assist student learning.  Throughout, we 
seek to go beyond procedural skill and calculation and to probe conceptual understanding and 
the development of quantitative reasoning skills whose development is often left implicit. 

As part of the project, we have examined several key ideas that cut across the upper-
division physics curriculum, including vectors, integration, and derivatives.  For this poster, 
we focus on mathematical descriptions of change encountered by students, including 
derivatives and differentials.  Physics and mathematics tend to place different levels of 
emphasis on differentials, and students often struggle to conceptualize the distinctions 
between differentials, derivatives, and a finite difference indicated by a delta. 

In the poster we will show data from a variety of written questions in which students 
reason with change.  In some problems, students performed calculations of various quantities.  
In others they were asked for interpretations of expressions.  For example, in thermal physics: 

 
 The definition of enthalpy can be used to derive the differential expression  

dH = T dS + V dP + m dN.  
 These expressions contain differentials like dH.  What does this mean?  
 What is implied by choosing this notation instead of ΔH?   
  
A second question, posed in the mathematical methods course, was focused on ordinary 

differential equations.  Students were asked to interpret quantities containing differentials: 
 

The law of conservation of momentum give the differential equation (M+m)dv+vPdm=0.  
Interpret the quantities dv and dm.  

 
Student responses suggest a lack of distinction between change quantities.  We will 

present examples of students performing inappropriate manipulations that suggest confusion 
between derivatives and ratios of variables, as well as written explanations. For example:   

 
“dm is a rate that fuel mass is leaving” 
 “differentials imply integration” 
 
Although this work is preliminary, we are particularly interested in presenting this to a 

math education research audience due to the disciplinary differences in use of change 
quantities. 
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An alternate characterisation of Developmental Mathematics students

Wes Maciejewski and Cristina Tortora

San José State University

Developmental – or the antiquated “remedial” – mathematics is a large enterprise in American
colleges. For the California State University (CSU) system roughly one-third of all  students
require developmental mathematics. Placement in these courses in the CSU is determined by a
standardized  test.  Those  who  fail  are  required  to  take  some  campus-specific  variant  of
developmental mathematics. This poster addresses the question, what more can be said about
students enrolled in developmental mathematics programs other than they have failed an exam?
An analysis of survey instrument data will be presented that shows San Jose State University
developmental mathematics students are fundamentally different, undesirably so, than their non-
developmental counterparts on a range of attitudinal, affective, and dispositional measures. 

Key words: developmental math, attitudes towards and perceptions of mathematics

Poster Description

Though developmental students failed an exam to be streamed into their developmental 

courses, this failure may be the symptom and not the cause of their under-performance in 

mathematics. Institutional records at San José State University (SJSU) indicate that 

developmental mathematics students never reach the level of academic achievement of their non-

developmental colleagues, if they ever complete the developmental sequence – a result 

contradicting other studies (eg. (Bahr, 2008)) – putting into question the effectiveness of current 

developmental mathematics education practices at SJSU.   

An online survey was sent in Fall, 2016 to all San Jose State University students enrolled 

in a freshman mathematics course. In addition to general questions about financial concerns of 

the students, the survey comprised two established survey instruments: the Mathematics 

Attitudes and Perceptions Survey (MAPS; Code, et al., 2016) and the Abbreviated Math Anxiety 

Scale (AMAS; Hopko, et al., 2003). The MAPS survey assesses the students on a range of 

factors known to impact academic achievement in mathematics: growth mindset, seeing 

connections between mathematics and the real world, confidence, interest, persistence in 

working with mathematics, sense making, and views of the perspectives on answers. Students' 

MAPS responses are weighed against consensus responses of mathematicians and relative-to-

expert scores are reported for each factor, along with an overall expertise index. The AMAS 

assesses students on their level of mathematics anxiety. The survey reports an overall anxiety 

score, the sum of learning and assessment anxiety. 

On almost all MAPS and AMAS scores, developmental math students scored less-

favourably than their non-developmental counterparts. There are two notable exceptions: i) 

developmental math students scored higher on the “connections to the real world” subscale, and, 

ii) there was no statistically-significant difference between the groups on the interest in 

mathematics subscale. The poster presents these comparisons along with a cluster analysis that 

further characterises sub-groups of developmental math students. 

The results of this study highlights the importance of addressing non-conceptual aspects 

of learning and performing mathematics in developmental mathematics courses. Doing so, we 

argue, is the only way to provide effective developmental mathematics education.
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Student Attitudes, Beliefs, and Experiences Related to Counting Problems 
 

Samantha McGee  Sarah Erickson  Elise Lockwood 
Oregon State University Oregon State University Oregon State University 

 
Mathematics textbooks and mathematics education research articles frame counting 

problems as requiring clever insight and being inherently challenging and especially accessible. 
In this study, we distributed a survey to mathematics students in order to examine student 
attitudes about counting problems and the extent to which these attitudes aligned with 
presentations of counting in the literature. In this poster, we present results from this survey that 
highlight some surprising ways in which the responses did and did not align with the literature.  

 
Key Words: Counting, Student Attitudes, Combinatorics, Discrete Mathematics 
 
Both mathematics textbooks and mathematics education research articles tend to frame 

counting in particular ways. For example, Tucker (2002) says that counting requires logical 
reasoning and clever insights (p. 169), Lockwood (2013) that counting is accessible and has a 
variety of applications, and Martin (2001) claims that “Counting is hard” (p. 1). While some of 
these characterizations are based on evidence with students, there have not been studies that 
measure the extent to which such perspectives about counting align with what students actually 
believe and experience. We think such work is important because it will allow researchers and 
teachers to consider students’ perspectives about counting. Our research question is, “What are 
students’ attitudes, beliefs, and experiences with counting and combinatorial reasoning, and how 
do these affective factors align with how counting is presented in combinatorics education 
literature and textbooks?” We developed a survey that targeted students’ attitudes, beliefs and 
experiences about counting. We collected textbooks and mathematics education research papers, 
and we identified claims about the nature of counting, how counting compares to other 
disciplines, and applications of counting. We categorized these claims and used them to create a 
survey that we sent via a listserv to mathematics majors at a large public university. 

We currently have approximately 40 student responses (some did not answer all questions), 
and the survey will continue to run in the coming months. Due to space we briefly describe just a 
couple of interesting findings that demonstrate the nature of our results. First, we found that 
students did seem to align with many of the statements in the literature. For instance, 95% of 
respondents agreed or strongly agreed that “Solving counting problems requires critical thinking 
skills,” aligning with statements by Tucker (2002) and others. Also, less than 25% agree that 
“Solving counting problems requires prior mathematical knowledge,” which aligns with the 
claims by many researchers that counting is accessible (e.g., Kapur, 1970; Lockwood, 2013).  

There were also some surprising results. For instance, only 20% of respondents agreed or 
strongly agreed with the statement “Solving counting problems is difficult in general.” Given the 
claims by many textbook authors and researchers (e.g., Tucker, 2002; Martin, 2001), we were 
surprised that more students did not seem to think that solving counting problems is difficult. 
Another surprising finding was that only 30% agreed with the statement “Solving counting 
problems requires memorization.” Given our experience with students, we expected more 
students to associate counting with memorization. In our final poster, we will provide a more 
comprehensive report of our results and will paint an overall picture about students’ attitudes, 
beliefs, and experiences with counting problems. 
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Algebra Instruction at Community Colleges:  
An Exploration of its Relationship with Student Success 

 
Vilma Mesa,1 Irene M. Duranczyk,2 Nidhi Kohli,2 April Ström,3 Laura Watkins,4 Angeliki Mali1 

1 University of Michigan, University of Minnesota,3 Scottsdale Community College,  
4Glendale Community College  

We present the research design and data collection strategies for a federally funded project 
(Watkins, Duranczyk, Mesa, Ström, & Kohli, 2016) that investigates the connection between 
instruction and student learning and performance in algebra courses at community colleges. The 
poster focuses on measurement issues we face in identifying the characteristics of mathematics 
instruction and students’ learning gain, specifically we address questions encountered from the 
pilot data collection (six community college faculty and nearly 150 students) that need to be 
resolved prior to data collection. 

Key words: instruction, community colleges, teaching quality research, algebra, observational 
measures 

Although we like to think that teaching influences learning, the truth is that such connection 
has not been established empirically (Hiebert & Grouws, 2006). As a first attempt to establish 
this connection, we investigate the extent to which there is an association between what occurs in 
the classroom and what students learn in a one-semester course of algebra at a community 
college. Whereas there is some research documenting how individual and institutional 
characteristics (e.g., prior achievement, family support, financial aid, learning support and 
tutoring centers, and ratios of full- to part-time instructors) contribute to failure rates and other 
performance measures (Bradburn, 2002; Feldman, 1993), there is little information about the 
fundamental work of teachers in the classroom, and the interactions that occur between 
instructors, students, and the mathematical content. The Mathematics Quality Instruction (MQI) 
protocol a video analysis tool used in P-12 settings (Learning Mathematics for Teaching Project, 
2011) and the Algebra Instruction Protocol (Litke, 2015) have been adapted to measure faculty 
and student interaction at the community college. The Algebra and Precalculus Concepts 
Readiness (APCR) test (Madison, Carlson, Oehrthman, & Tallman, 2015) was used to measure 
student learning. We also collected information on instructors’ mathematical knowledge for 
teaching algebra, and instructor and student beliefs, and attitudes towards the teaching and 
learning of algebra which can also moderate the relationship between instruction and learning. 
Research in the K-12 arena documents that the association between quality of instruction and 
student performance on standardized tests can be moderated by instructors’ knowledge and 
attitudes towards innovative teaching practices, knowledge of algebra for teaching, and their 
beliefs about mathematics, its curriculum, and students’ learning (Hill, Rowan, & Ball, 2005). In 
this project we seek to test such relationships, in a different setting and grade level. The first 
phase, presented in the poster, is the testing of the instruments and initial assessments of the 
measures done with six instructors at three different community colleges in three states, Arizona, 
Michigan, and Minnesota.   
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Bridging the Gaps between Teachers’ and Students’ Perspectives of a Culturally Inclusive 
Classroom 

 
Thomas Mgonja Kuo-Liang Chang 

Utah Valley University Utah Valley University 
 
Creating a culturally inclusive classroom has been suggested to help minority students improve 
their achievement in class. However, evidence shows gaps between teachers and students about 
what a culturally inclusive classroom should be. We propose a framework for investigating the 
differences between teachers’ and students’ beliefs on such a classroom. 
Key words: Minority, Culturally Inclusive Classroom, Mathematics Achievement 
 

Evidence shows that minority students’ mathematics achievement tends to rapidly fall behind 
during fifth to eighth grade (Beaton et al., 1996; Schmidt et al., 1999). In the majority of the 
states in the U.S., there was a 30% to 50% difference in performance between White students 
and the largest minority groups (Hispanic and Black students) at the basic level of mathematics 
on the eighth-grade National Assessment of Educational Progress Exam (Blank & Langesen, 
1999). One possible cause of this disparity in performance is the various forms of discrimination 
minority students experienced in the classroom (Dovidio, 2001; Salvatore & Shelton, 2007).  

A culturally inclusive classroom is a learning space that encourages students, and especially 
teachers, to acknowledge, appreciate, and use diversity as a tool to enhance learning experiences 
(Nieto, 2004; Montgomery 2001). Unfortunately, evidence shows that there are gaps between 
teachers and students on what a culturally inclusive classroom is and how to construct such a 
culturally inclusive classroom (Tyler, Boykin, & Walton, 2006). 

The purpose of this study is to develop an instrument to investigate the differences and their 
extent between teachers’ and students’ beliefs of what a culturally inclusive classroom should be. 
We also intend to investigate how these differences are related to teachers’ and students’ 
ethnicity, age, and gender. We hope to offer more specific recommendations to bridge the gaps 
once we understand the relationship between teachers’ and students’ demographic and their 
culturally inclusivity beliefs.  

From the students’ perspective, it has been suggested that a culturally inclusive classroom 
has no superiority of intelligence based on race or culture, no authentic behavior expectations on 
culturally different minorities, a willingness to accept a different racial reality in 
communications, and validating feelings of minority students in class (Sue et al., 2009). While 
from the teachers’ perspective, a culturally inclusive classroom provides equal attention to all 
students (Gay, 2002), an equal expectation of high achievement for all students (Foster, 1997; 
Kleinfeld, 1975), and an equal opportunity of learning for all students (Oakes, 1990; Banks et al., 
2001). 

Based on these teachers’ and students’ perspectives, we constructed a framework, in tabular 
form, to guide the construction of the instrument. Mathematics contexts are given in each cell to 
help generate a questionnaire specifically for a mathematics class. 

 Attention Expectation Opportunity 
Knowledge Math topics Math topics Math topics 
Behavior Problem solving Problem solving Problem solving 
Communication Questioning & Ans. Questioning & Ans. Questioning & Ans. 
Emotion Positive & Negative Positive & Negative Positive & Negative 
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Mathematical Knowledge for Teaching & Cognitive Demand: A Comparative Case Study 
of Precalculus Examples that Involve Procedures 

Erica R. Miller 
University of Nebraska-Lincoln 

In 2010, Charalambous published an article that examined the relationship between 
mathematical knowledge for teaching (MKT) and task unfolding. As a result of this study, 
Charalambous found evidence to support the claim that there is a positive relationship between a 
teacher’s MKT and the cognitive level of task presentation and enactment. Drawing upon this 
finding, the purpose of this case study is to utilize unfolding and cognitive demand as a lens 
through which to examine mathematical knowledge for teaching at the undergraduate level. 
While MKT has been studied extensively at the K-12 level, there are relatively few studies that 
focus on MKT at the collegiate level. In order to help fill this gap, this case study first identifies 
how Precalculus instructors unfold examples that involve procedures and then examines the 
MKT that is involved in this unfolding. 

Keywords: Mathematical Knowledge for Teaching, Cognitive Demand, Case Study, Precalculus, 
Examples, Procedures 

Mathematical knowledge for teaching (MKT) has been defined as “the mathematical 
knowledge needed to perform the recurrent tasks of teaching mathematics to students” (Ball, 
Thames, & Phelps, 2008, p. 399). At the K-12 level, MKT has been studied extensively, but few 
studies exist at the collegiate level. The purpose of this study is to examine MKT at the collegiate 
level from the perspective of practice while still drawing upon previous research. In particular, 
Charlambous (2010) found that there was a positive relationship between teachers’ MKT and 
task unfolding. Charalambous used the MKT measurement developed by Ball for elementary 
teachers, the Mathematical Task Framework (Stein, Grover, and Henningsen, 1996, p. 469) to 
analyze the unfolding (i.e., selection, preparation, and enactment) of tasks, and the Task Analysis 
Guide (Stein & Smith, 1998) to analyze the cognitive demand. While it would be desirable to 
replicate this study to look for similar results at the collegiate level, no comparable measure of 
MKT exists. However, it is possible to use the Mathematical Task Framework and the Task 
Analysis Guide as lens to help examine what MKT at the collegiate level might look like. 

Instead of examining collegiate MKT at large, this study focuses specifically on Precalculus 
examples that involve procedures. The larger purpose of this study is to contribute to research on 
Precalculus courses (Hastings, 2014; Saxe & Braddy, 2016). Examples were chosen as the 
specific task of teaching of interest because of their centrality to math instruction. Procedural 
knowledge is often characterized as superficial memorization of algorithms and therefore less 
important than conceptual knowledge. However, procedures are an integral part of mathematics 
and there is a need for students to develop deep procedural knowledge (Star, 2005) that is 
connected and requires high-level cognitive demand (Smith & Stein, 1998). This comparative 
case study seeks to answer the following research question: What mathematical knowledge do 
Precalculus instructors draw upon when selecting, presenting, and enacting examples that 
involve procedures? In order to answer this question, the Mathematical Task Framework will be 
used to analyze the unfolding of the examples while the Task Analysis Guide will be used to 
analyze cognitive demand. Finally, similar and different cases (in terms of the cognitive demand) 
will be compared in order to examine the MKT involved in unfolding examples. 
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Coping   with   the   Derivative   of   an   Atypical   Representation   of   a   Common   Function 
Alison   Mirin 

Arizona   State   University 
 

250   calculus   students   were   asked   to   evaluate        when     if      and         if(2)f ′ (x)f = x3 =  x / 2 (x)f = 8  
    Responses   were   coded,   and   eight   students   were   interviewed   about   their   answers.   The   data.x = 2  

provide   insight   into   students’   understandings   of   function,   derivative,   and   graph.  
 
Key   words:    Function,   Derivative,   Graph 
 

250   students   upon   completion   of   a   calculus   course   were   given   the   following   task:   “let          bef  
the   function   defined   by     if      and         if          Evaluate       and   explain(x)f = x3 =  x / 2 (x)f = 8 .x = 2 (2)f ′  
your   answer”.   This   task   was   motivated   by   my   experience   as   a   calculus   teaching   assistant,   in 
which   students   insisted   that   for    ,    ,   the   value   of    must   be   0   due   to   the(x)g = x

cos x 1 (0)g = 0 (0)g′  
constant   rule.   Harel   and   Kaput   (1991)   and   Sfard   (1992)   share   a   similar   anecdote   and   attribute 
students’   incorrect   responses   to   not   viewing   a   function   as   an   object.   By   working   with   a   familiar 
function   with   a   familiar   graph,   students   might   recognize   that   the   function   provided   to   them   is   the 
same   as   the   cubed   function,   and   then   successfully   solve   the   problem.   This   recognition   is,   in 
theory,   available   to   students   who   view   the   derivative   as   no   more   than   the   slope   of   a   tangent   line.  

100   of   the   250   students   were   in   a   reform   calculus   course.   16%   of   the   students   answered 
correctly   (including   students   whose   explanations   were   incoherent   or   inconsistent),   64%   wrote 
that    ,   9%   wrote   “undefined”   or   “does   not   exist”,   and   only   52%   of   the   students   who(2)f ′ = 0  
acknowledged   that       arrived   at   the   correct   answer.   Some   students   wrote   that     if23 = 8 (2)  f ′ = 0  

and        if       .   A   common   way   of   thinking   can   be   summarized   as   “take   thex = 2 (2) 2f ′ = 1 =  x / 2  
derivative   of   each   equation,   and   then   plug   in   2.   The   derivative   of   8   is   0,”   which   was   indicated   in 
students’   responses   to   questions   about   other   piecewise   functions   during   the   interviews.  

All   eight   of   the   students   interviewed   were   enrolled   in   a   reform   calculus   course   that   stressed 
the   meaning   of   derivative   at   a   point   as   rate   of   change   over   a   small   “essentially   linear”   interval 
(Thompson,   Bryerly,   &   Hatfield,   2013).   Only   one   student   correctly   answered   the   question   on   the 
exam,   but   during   the   interview,   she   immediately   changed   her   answer.   The   remaining   7   initially 
claimed   that    .   In   fact,   many   of   the   students   who   graphed    f    correctly   tried   to   explain   why(2)f ′ = 0  
their   initial   answer   made   sense   with   the   graph.   Two   students   claimed   the   graph   of    f    has   the   same 
points   as   the   graph   of       and   is   flat   around    .   Some   students   claimed   that    becausex3 x = 2 (2)f ′ = 0  
the   point   (2,8)   is   separate,   and   there   is   no   rate   of   change   at   a   single   point.   Two   students   stood   out 
in   particular.   By   the   end   of   the   interview,   they   concluded   that    f    has   the   same   graph   as   the   cubed 
function,   but   also   that    is   not   0,   since    f    is   increasing   around    .   However,   they   claimed(2)f ′ x = 2  
they   could   not   find   its   exact   value.   Each   student   said   that   she   could   only   “approximate”    by(2) f ′  
finding       for   small   intervals   around    .      When   asked   “what   do   you   think   you   would   endy dx  d / x = 2  
up   getting?,”   they   could   not   provide   an   answer.   They   both   claimed   that   it   was   illegitimate   to   use 
the   power   rule   on    .x3    

It   was   common   for   students   to   claim   that   they   were   graphing   “two   functions”   and   not   know 
how   to   incorporate   information   about   the   domain.     The   data   collected   reveals   that   many   students 
have   weak   conceptions   of   function,   derivative,   and   graph.   Since   several   of   the   subjects   were 
enrolled   in   the   reform   course,   these   results   have   implications   for   instructional   design   research   in 
the   reform   setting.  
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Speaking with Meaning about Angle Measure and the Sine Function 
 

Stacy Musgrave     Marilyn Carlson 
                           Cal Poly Pomona     Arizona State University 

Researchers have reported on the difficulties K-12 students, pre-service and in-service teachers 
experience in reasoning and communicating about angle, angle measure and trigonometric 
functions. This work extends the existing literature to highlight that even mathematically 
sophisticated individuals (e.g., PhD mathematics students) often struggle to speak with meaning 
about these ideas sans targeted interventions to support them in doing so. We share tasks and 
data from semi-structured clinical interviews conducted with graduate teaching assistants to 
highlight differences in communication about these ideas pre- versus post-intervention. 

Keywords: Graduate teaching assistants, Precalculus, Speaking with meaning 

Researchers have reported on the difficulties K-16 students, pre-service teachers and in-
service teachers experience in reasoning and communicating about angle, angle measure and 
trigonometric functions (Moore, 2013; Moore, 2010; Thompson, 2008). This work extends the 
existing literature to highlight that even mathematically sophisticated individuals (e.g., PhD 
mathematics students) may struggle to speak with meaning about these ideas sans targeted 
interventions to support them in doing so (Clark, Moore & Carlson, 2008).  

We share tasks and associated data from one-hour, semi-structured clinical interviews 
conducted with graduate teaching assistants (GTAs) (Clement, 2000). Research participants were 
mathematics PhD students who had taught (either as lead instructor or recitation leader) at least 
one college-level course at a public, state university in the Southwestern United States. Twenty-
two of the 24 research participants had undergone one or more years of an intervention designed 
to support them in constructing deeper meanings and speaking with meaning about the ideas in 
an undergraduate precalculus class. Their participation in this intervention coincided with 
teaching a precalculus course using research-based curriculum materials that were designed to 
support quantitative and covariational reasoning (Carlson, Oehrtman, & Moore, 2015). The other 
two research participants had no exposure to the intervention or the research-based curriculum 
materials, but rather they underwent the standard university GTA training and taught calculus 
courses (Calculus I or Calculus II, as lead instructor and as recitation leaders).  
There was relative uniformity in response characteristics from participants who had undergone 
the intervention. As such, the data presented will showcase two representatives from that group 
and the two participants sans intervention experience. Our preliminary analyses of the data 
suggest the latter two participants struggled to communicate meaningfully about how certain 
procedures (e.g., measuring an angle using a protractor) work, why formulas (e.g., relating arc 
length, angle measure and radius length) are what they are, and how to think about the sine 
function in a way that works in different contexts (as opposed to thinking of values in a table in 
one context, to having a triangle-based method in another context, and a x,y-coordinate meaning 
in yet another). In contrast, post-intervention participants spoke with relative fluency about 
generating formulas from definitions and applied consistent ways of thinking about the sine 
function to tasks throughout the interview. Excerpts from interview transcripts and written work 
will be shared to demonstrate the above distinctions between the two groups in conceptual versus 
procedural orientation of responses, as well as coherency and consistency in reasoning from task 
to task.  
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Examining Prospective Teachers’ Justifications of Children’s Temperature Stories  
 

Dana Olanoff   Nicole M. Wessman-Enzinger         Jennifer M. Tobias 
Widener University         George Fox University          Illinois State University 

 
Part of the work of mathematics teacher educators (MTEs) are to provide authentic experiences 
to prospective teachers. We showed four temperature story problems involving integers to 
prospective teachers (PTs), and asked them if the stories matched given number sentences. While 
each of the stories were similar to the number sentence, none of them matched exactly. We 
examine the reasons PTs gave for saying that the stories matched the number sentences, and 
discuss implications of their thinking for mathematics content courses for prospective teachers.  
 
Key Words: Prospective Teacher Education, Integers, Mathematical Knowledge for Teaching 
 

In working with prospective teachers (PTs), part of the work of the mathematics teacher 
educator (MTE) is to help them develop the mathematical knowledge that they will need for 
teaching (MKT) (Ball, Thames, & Phelps, 2008). This is true, even if the PTs are taking a course 
primarily focusing on mathematics content, rather than methods for teaching. Research has 
shown that providing PTs with tasks authentic to the work of teaching will help motivate them to 
want to learn the mathematics (Newman, King, & Carmichael, 2007). Thus, as MTEs, we try to 
provide PTs in our mathematics content courses with tasks that will ask them to perform 
activities that they will need to do while teaching. This poster focuses on a task designed around 
using temperature as a context to support the learning of integer operations. 

Part of the MKT that PTs use in their work as teachers is being able to evaluate contextual 
problems that relate to the mathematics that they are teaching. The Common Core State 
Standards for Mathematics (Council of Chief State School Officers & National Governors 
Association, 2010) suggests using contexts for teaching integers which include temperature, 
elevation, credit/debits, and electron charges.  However, studies have shown that students, 
including PTs, have difficulty using negative integers in these contexts (e.g., Whitacre et al., 
2015). This study looks at the ways that PTs’ evaluated temperature problems designed by 
children. 

In this study, we provided opportunities for elementary and middle school PTs (N=100) to 
explore four stories written by fifth graders that were intended to correspond to given integer 
number sentences. We investigated the PTs’ responses to the children’s problems, noting what 
they attended to in order to decide which stories made sense with the given number sentences. 
Each of the four stories contained aspects that were not a perfect fit with the number sentence 
(e.g., changing structure of number sentence, unrealistic situations). However, a majority of the 
PTs in our study indicated that two of the stories matched the number sentences perfectly—
neglecting some important nuances. For example, one problem fits the number sentence 17 – 13, 
although the given problem was 17 + -13. Many of the PTs incorrectly argued that these number 
sentences were equivalent, because when evaluating a subtraction problem, students are often 
taught to “add the opposite.” 

In the poster, we will share the four temperature story problems as well as the data from the 
PTs who said that the story matched the problem. We will discuss the reasons that PTs gave for 
saying that the stories matched the problems, and the implications that this has for teacher 
education, particular in the context of mathematics content courses for prospective teachers. 
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Classroom Participation as a Socialization Agent for Identity shaping 
of Preservice Mathematics Teachers 

 
Janet Omitoyin 

Department of Curriculum and Instruction: Mathematics and Science Education, University of 
Illinois at Chicago 

 
Abstract 
This study explores classroom participation as an agent of socialization for preservice elementary 
mathematics teachers. Each character, the teacher, student and curriculum in the classroom plays 
various roles in the socialization process. However, the teacher plays a major role because s/he is 
responsible for creating the environment where participation is possible. In this work, the analysis 
of data shows the teacher’s teaching method(s), questioning and listening skills, as well as her 
background understanding of the specialized mathematics knowledge needed for teaching and the 
students all help to create such an environment. Also, as students explore mathematics by doing 
through group work, class discussions and individual work, they experience growth in 
mathematics classroom practices that results in change in the mathematics identity of the students. 
  
Key words: Socialization agent, mathematics knowledge for teaching (MKT), and mathematics 
identity. 
 

Setting the Stage 
 

Recent educational reforms have increased the amount of attention paid to the preparation of 
elementary school teachers, particularly in subject areas such as mathematics. Low rankings by 
U.S. students in international comparisons, slow growth on national assessments such as the 
National Assessment of Educational Progress, and high levels of remediation among university 
and college students have helped to signal alarms about the ability of elementary school teachers 
to teach mathematics effectively. Also, research on teacher knowledge has begun to document 
specialized forms of mathematics knowledge that are unique to teaching (Ball, D. L., Hill, H. C., 
& Bass, H., 2005; Hill, Rowan, & Ball, 2005). For students who are products of schools in these 
contexts, and who desire to become teachers, it is important to understand how universities can 
support such students. Inadequate preparation in mathematics at the K-12 level should not 
automatically disqualify these students from the teaching profession. Principled, research-based 
understandings of how to best support students with less than ideal mathematics backgrounds are 
critically important. This study shows how university designed mathematics courses and 
classroom practices affect mathematics identity and socialization of preservice elementary 
mathematics teachers. 

 
Findings 

This poster reports the preliminary findings of classroom participation as a socialization 
agent for identity shaping of preservice mathematics teachers. Quantitative results include 
changes in identity using Martin’s (2000) mathematics socialization and identity frameworks. 
The analysis of field notes, audio and video recordings of the classroom activities of the spring 
semester show consistent changes in participants’ self-confidence, their use of appropriate 
language and a stronger mathematics identity.  
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Investigating Student Learning Through Team-Based Learning Calculus Instruction 
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Iowa State University 
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Alexis Knaub 
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We have a collection of ongoing studies designed to investigate the impact of Team-Based 
Learning (TBL) in calculus instruction on student learning.  The first study involves the 
implementation of TBL in Calculus I and II.  Initial findings suggest that TBL students have larger 
score gains on the Calculus Concept Inventory (CCI) than students receiving traditional 
instruction.  However, there seems to be a gender gap as women tended to have smaller CCI gains 
than men.  The second and third studies investigate the transfer of calculus to major courses, one 
by asking calculus content questions in subsequent major courses and the other through the 
educational setting of first-year student Learning Communities.    

Key words: [Calculus, Team-Based Learning, Instructional Design, RUME] 

We present a collection of studies conducted at Iowa State University on the impact of Team-
Based Learning (TBL) in calculus on student learning.  The project addresses three research 
questions:  (1) Is TBL more effective than traditional instruction in Calculus I and II?, (2) Does 
calculus instruction using TBL promote transfer of calculus knowledge to downstream major 
courses?, and (3) Do calculus enrichment activities in first-year student Learning Communities 
(LCs) promote transfer of calculus knowledge? 

In Fall 2015, three members of our group taught Calculus I in large and small lecture settings 
using Larry Michaelsen’s TBL approach.  This teaching strategy based on a constructivist learning 
theory involves students first engaging with introductory material individually and then at a higher 
level in teams (Hrynchak & Batty, 2012).  The students do preparatory work outside of class using 
reading guides and instructional videos before completing a five question assessment individually 
and then again as a team.  The majority of class time is spent working on application exercises in 
teams.  We collected data to determine the impact of TBL on Calculus Concept Inventory (CCI) 
score gains, midterm exams, final exams, and final grades.  In particular, we calculated individual 
normalized gains for the CCI (Epstein, 2013).  The TBL group had a larger normalized gain than 
the traditional group.  We also looked at individual gains by gender and section size.  Women 
tended to have smaller CCI gains than men.  The students enrolled in the small (under 50 students) 
TBL sections had the highest CCI gains.  The second highest CCI gains were in the large (over 
100 students) TBL sections.  The midterm and final exams were not commonly graded but data 
for Fall 2016 and Spring 2017 will be from uniformly graded exams.  Currently (Fall 2016), we 
are in our second implementation of TBL in Calculus I.  We will implement TBL in Calculus II 
during the 2017-2018 academic year.   

The second component of our project involves assessing students’ retention and facility with 
calculus in downstream math, science, and engineering courses.  Instructors in these courses will 
include a calculus based application problem on exams.  The third component of our project 
involves the first-year student LCs.  During Fall 2016, students completed discipline specific 
calculus projects related to concepts currently discussed in their Calculus I classes.  To assess near 
transfer of calculus to STEM courses, we will administer a discipline specific calculus problem to 
Chemical Engr. and Aerospace Engr. students in Spring 2017.  By transfer, we mean the ability to 
apply knowledge or procedures learned in one context to new contexts, with near transfer occurring 
when the learning situation is similar to the previous learning situation (Mestre, 2002). 
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Analyzing Focus Groups of an Experimental Real Analysis Course: ULTRA 

Ruby Quea William McGuffey 
Rutgers University Columbia University 

As part of a larger study, we analyzed focus groups of students discussing their perceptions of an 
experimental real analysis course. The aim of this course was to teach real analysis to 
prospective and practicing teachers in a way that improved their future teaching. This poster 
analyzes data from four focus group interviews from 20 students after they completed the 
experimental course. The majority of comments from the participants’ comments about the 
course, both in general and in regards to informing their future teaching of secondary 
mathematics, were favorable. We present commonalities in the participants’ responses.  

Keywords: secondary mathematics, focus groups, real analysis, teacher preparation 

Rationale 

Many secondary math teachers are required to complete a substantial number of courses in 
advanced mathematics. The efficacy of advanced mathematics courses for improving future 
teaching has been questioned (Darling-Hammond, 2000; Monk, 1994). In particular, many 
prospective and practicing secondary teachers see little to no value in the advanced mathematics 
courses that they take (e.g., Goulding, Hatch, & Rodd, 2003; Ticknor, 2012; Wasserman et al, 
2015; Zazkis & Leikin, 2010). 

In our current work, we helped develop a real analysis course, ULTRA (Upgrading Learning 
for Teachers in Real Analysis), that aimed to be simultaneously faithful to teaching the content 
of real analysis while also informing teachers’ future pedagogical practice. The rationale for this 
course and sample lessons are described in Wasserman et al. (in press). We implemented this 
course with 32 prospective and in-service teachers in the Spring of 2016; 20 of these teachers 
agreed to participate in a focus group interview on the efficacy of this course and how this course 
can be improved. 

 
Research Questions 

The research question addressed in this proposal is: What were students’ perceptions of this 
innovative real analysis course? To what extent did they find this course relevant to their 
teaching and why? 

Method of Analysis 

We answer these questions by exploring participants’ utterances regarding the efficacy of the 
course in (i) learning real analysis, (ii) learning secondary mathematics, and (iii) teaching 
secondary mathematics, using each participant utterance as the unit of analysis. Analysis is 
ongoing (there were over 1000 participant utterances), but preliminary work demonstrates that (i) 
participants found the real analysis course beneficial to their teaching and (ii) participants could 
describe specific ways that particular modules used in the real analysis course would change or 
improve their practice. We will elaborate on these themes in our poster. 
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Extreme Apprenticeship 
 

Johanna Rämö 
University of Helsinki 
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 Juulia Lahdenperä 
University of Helsinki 

 

Extreme Apprenticeship is a novel, student-centred teaching method that is designed for teaching 
large courses with hundreds of students. It is based on Cognitive Apprenticeship. In this poster, 
we present the Extreme Apprenticeship method and data collected from courses taught with it. 

Key words: Extreme Apprenticeship, Cognitive Apprenticeship, student-centred 

Extreme Apprenticeship (XA) is a student-centred teaching method for organising instruction 
in an effective and scalable manner. The method was originally created for teaching university-
level computer programming (Vihavainen, Paksula, & Luukkainen, 2011), and later employed in 
university mathematics education (Hautala, Romu, Rämö, & Vikberg, 2012; Rämö, Oinonen, & 
Vihavainen, 2016). Its theoretical background is in situated view on learning and Cognitive 
Apprenticeship (Collins et al., 1991). The focus is in supporting students in becoming experts in 
their field by having them participate in activities that resemble those carried out by 
professionals (Hautala et al., 2012; Rämö et al., 2016). 

In XA, teaching consists of weekly tasks given to the students, course material, guidance and 
lectures. For each course, there is a teaching team whose members are the responsible teacher 
and undergraduate/graduate teaching assistants. The key elements are instructional scaffolding 
and continuous bi-directional feedback. Instructional scaffolding is implemented by providing 
constant support in the weekly tasks. The teaching team guides the students in drop-in sessions, 
and the students may spend there as much time as they need to. The members of the teaching 
team lead the student subtly towards the discovery of a solution through a process of questioning 
and listening. They model to the students how mathematicians work and thereby help them in 
gaining the kinds of skills mathematicians need. The drop-in sessions take place in a 
collaborative learning space that is easy to access for the students. 

The tasks have been divided into small and approachable goals, which are then merged 
together as the students start to master a topic. This enables students to tackle tasks they are not 
yet able to complete by themselves. The students receive continuous feedback on their work, and 
at the same time the teachers receive feedback on the progress of the students. Some of the tasks 
are pre-lecture problems, which force the students to read the course material and prepare for the 
lectures. This way, the lectures can be made to support discussion and more active participation 
from the students, and time can be allocated for finding links between the course topics and 
building a broader picture of the subject. 

The regular and close interaction between students and teaching staff guides the students in 
learning approaches and metacognitive skills used by experts (Burton, 2001). Further, it supports 
the students to establish relations within the communities of practice which enhances the 
students’ integration into the community (Lave & Wenger, 1991). 

Alongside the XA method, we present data collected from courses taught with the XA 
method. The data indicates that passing rates and student satisfaction have not dropped even 
though the workload has been significantly increased and the requirement level raised. In 
addition, students complete more coursework than before introducing the method. 
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Hypophora: Why Take the Derivative? (no pause) Because it is the Rate 
 

Kitty L. Roach 
University of Northern Colorado 

 
Abstract: Part of a larger study of the development of teaching among novice college 
mathematics instructors, this report focuses on one participant, Disha, and her use of a 
questioning technique called hypophora. At the beginning of the observations, 25% of her 
questions were hypophora. After video-case based activities during weekly coordination 
meetings her use of hypophora decreased to about 10% of questions. Although Disha rejected 
the idea that her teaching had changed in any way, she acknowledged that she began “breaking 
things into smaller pieces” to help students understand. 
 
Keywords: questions, calculus, hypophora, professional development 
 
 Background. This study examined the teaching of five novice instructors (four graduate 
student Teaching Assistants (TAs) and one Ph.D. graduate) teaching calculus when their weekly 
course coordination meetings included video case-based professional development activities. For 
each instructor, research data gathering included audio and video capture of four class sessions, 
short surveys about practice, and multiple interviews with the researcher. The poster focuses on 
one participant, Disha, and how she used hypophora. Hypophora are questions that speakers pose 
and then immediately answer themselves (e.g., “Why would we want to take the derivative? (no 
pause) So that we can find the critical points for the function.”). Disha, who was in her fifth 
semester teaching, asked an average of 128 questions per class. Most of these (74%) were 
comprehension checks (e.g., “Is that ok?”, “Do you see what I am trying to say?”) The next most 
common question type was hypophora. While it was unusual for students to attempt to answer, in 
at least one instance a student attempted to answer a hypophoric question. Disha did not 
acknowledge the student in any visible way and continued talking, answering it herself. The 
poster will include details about the types and uses of questions noted during instruction. 
 Influence of Video-case Professional Development. Disha was impressed with the 
“wait time” of one of the instructors in a video case and seemed to relate this “wait time” to 
“breaking things into smaller pieces” or scaffolding. Evidence from observation indicated her 
types and uses of questions changed after this case. Disha rejected the idea that her teaching had 
changed, though she did state that during her office hours she would “break things into smaller 
pieces” and wait for an answer when working with students. Kung (2010) observed that TAs 
learned about student thinking through interacting with students, watching them work problems 
and listening to them discuss mathematics, as one would during office hours. The influence of 
the video case may have been indirect: as a moderator of her perception of her own office hour 
experiences, which were in turn a moderator of her classroom practice. After video case activity, 
Disha spent more time exploring incorrect answers with students and asked questions of a greater 
depth. By exploring incorrect answers and asking deeper questions, Disha may have gained 
further insight into student thinking (Ball, 1997; Fennema et al., 1996; Kung & Speer, 2009).  
 Discussion Points at the Poster Session. Can hypophoric questions be valuable and in 
what ways? Is its use related to mathematical discourse? How might language acquisition be 
connected to and supported by a phase of hypophora use? How might the use of hypophoric 
questions can be changed to allow students time to think, process, and respond? 
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Individual and Group Work with Nonstandard Problems  
in an Ordinary Differential Equations Course for Engineering Students   

 

Svitlana Rogovchenko a          Yuriy Rogovchenko a          Stephanie Treffert-Thomas b 
                          a University of Agder, Norway                         b Loughborough University, UK 

We explore understanding of the Existence and Uniqueness Theorems (EUTs) by a group of 
engineering students working on nonstandard problems. Students presented three sets of 
solutions: individual solutions produced in the first tutorial, individual solutions submitted as 
a homework, and solutions submitted after the discussion with peers in small groups during 
the second tutorial. The focus of the study is on the role of individual and group work with 
nonstandard problems. The results show that students gained a deeper understanding of EUTs 
and appreciated the experience. 

Key words: existence and uniqueness theorems, design research, individual work, group work, 
nonstandard problems.  

Description of the Study  

The importance of the subject of ordinary differential equations (ODEs) for engineering 
students is supported by the majority of engineering lecturers (Francis, 1972). It is known that 
students experience difficulties with ODEs and even with the very concept of a differential 
equation (Arslan, 2010). It has been emphasized that it is essential to teach engineering students 
EUTs (Roberts Jr., 1976); an innovative approach in differential equations called the Inquiry 
Oriented Differential Equations (IO-DE) project has been shown to be effective in developing 
students’ more conceptual understandings of ODEs (Rasmussen and Kwon, 2007). However, 
for students, understanding and the correct use of the EUTs remain as serious challenges 
(Raychaudhuri, 2007).  

Nowadays EUTs are among very few theoretical results included in standard ODE 
courses for engineering students. The lecturer in this study devised a set of six nonstandard 
questions to challenge students’ conceptual understanding of the EUTs. The tasks were 
embedded into the course design and used in two tutorials in the final part of the course when 
students had acquired sufficient theoretical knowledge and developed good computational 
skills. Students were requested first to work on the problems individually in the tutorial and at 
home. One week later the students discussed their solutions in small groups and presented 
revised solutions to their peers.  

Research Questions 
1) How can nonstandard questions be used to challenge students, develop analytical skills and 
further conceptual understanding of important concepts and ideas in an ODE course? 
2) To what extent have individual work and group discussions contributed to students’ 
conceptual understanding of the EUTs? 
 

Conclusions 

Lecturers should include more nonstandard questions that they know their students will find 
difficult and may not be able to answer, and do it more often. Our research has shown that 
students valued the experience, were not distressed by it, and gained a deeper understanding of 
the EUTs. 
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A Topological Approach to Formal Limits Supported by Technology:   
What Concept Images do Students Form? 

Tamara Lefcourt Ruby 
Bar Ilan University/Efrata College of Education 

Shulamit Solomon 
Rutgers University/Efrata College of Education 

The formal definition of the limit of a function was taught in a first-year calculus course using 
open intervals and a topological approach. Student understanding was supported with computer-
based visualization tools.  The concept image framework was used to interpret results of a pilot 
study in which data was gathered through concept maps and analyzed using categorical content 
analysis.  Results indicate some bridging between students understanding of formal limits 
presented via open sets and their informal limit conceptions; absolute values inequalities did not 
appear in the students’ concept images. 

Key words: formal definition of the limit, calculus 

The standard formal definition of the limit of a function includes absolute value inequalities, 
which are difficult for students to master (e.g., Almog & Ilany, 2012).  This hinders student 
understanding of the concept (Quesada, Einsporn, & Wiggins, 2008).  In addition, the standard 
formal definition is far removed from the initial intuitive approach to limits (Nagle, 2013). 

Student understanding of the limit has been studied using the concept image framework (e.g., 
Tall & Vinner, 1981) to uncover the cognitive structures that students associate with the limit.  
Results indicate that students have difficulty forming the mental constructs required for full 
understanding (Cottrill, Dubinsky, & Nichols, 1996; Maharaj, 2010; Tall & Vinner, 1981).  

While graphing technologies have been used to support visualization of the formal definition 
of the limit (Cory & Garofalo, 2009; Verzosa, Guzon, & De Las Peñas, 2014), students 
nonetheless have difficulty connecting the graphical presentation to the absolute value 
inequalities in the standard definition (Quesada et al., 2008).   

For functions between general topological spaces the formal limit is defined in terms of open 
sets.  When restricted to 1 , open sets correspond to open intervals.  A rigorous definition of the 
limit using open intervals can replace the standard absolute value formulation; absolute value 
inequalities can be introduced at a later stage as a computational tool.   

Open intervals are more easily understood and visualized than their equivalent absolute value 
counterparts.  The potential benefits of an open interval approach, motivated by David Tall 
(2008), include more effective use of visualization technologies, minimization of the 
algebraic/visual disconnect, and a bridge between the intuitive notion of “close” and its formal 
presentation.  This prompts the research question:  what concept images of the formal limit are 
formed by students when it is defined in terms of open intervals and supported by technology-
based visualization tools?  

The formal definition of the limit of a function was taught in a first-year calculus course 
using the outlined approach. Preliminary data was collected from students in the course through 
structured concept maps (Ritchart & Perkins, 2008) and analyzed using categorical content 
analysis (Shkedi, 2005; Strauss & Corbin, 1990) to uncover students’ concept images.   Results 
indicate some bridging between formal limits presented via open sets and informal limit 
conceptions; absolute values were not part of students’ concept images as revealed by the 
concept maps.  A full study including clinical interviews is in progress.  An intriguing question 
arises: are absolute value inequalities a necessary component of a complete image of the formal 
definition of the limit? 
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Leveraging Research to Support Students’ Quantitative and Co-variational Reasoning in 
an Online Environment 

Grant Sander, Dr. Marilyn P. Carlson 
Arizona State University 

 
Quantitative and Co-variational reasoning have been shown to be important facets of a student’s 
mathematical learning. We are proposing an online workbook as a tool for supporting students in 
reasoning quantitatively and co-variationally. In this poster, we will briefly present a section on 
understanding graphs as representing the co-variation of two quantities’ values.	

Key words: Online learning, Quantitative reasoning, Graphing   

Introduction and Theoretical Framework 

 Thompson (1990) has described quantitative reasoning to be the analysis of a situation into 
quantities and relationships between quantities, and Saldanha & Thompson (1998) and Carlson et. 
al. (2002) have described co-variational reasoning to be attending to how two varying quantities 
change together. Researchers have found that students’ ability to reason quantitatively and co-
variationally is crucial for them to write formulas and draw graphs to represent how quantities vary 
together (Moore & Carlson, 2012). However, there has been little research on how modern 
technology can be leveraged to support students in: reasoning quantitatively and co-variationally, 
and making connections between different representations of a situation. 
 

Mathematical Meanings and the Workbook 

 Thompson & Carlson (2017) have proposed that for students to use variables in meaningful 
ways, they must be able to reason about variables as representing the varying values of quantities. 
If a student reasons about variables as representing the varying values of quantities, she is in a 
position to reason about formulas as representing the value of one quantity in terms of another, i.e. 
a formula describes how the two quantities are related and vary together. Another form of 
representing how two quantities are related and vary together is the use of graphs. 
 As described by Thompson & Carlson (2017), students should reason about a point on a 
graph as representing the simultaneous values of two quantities at some moment in their co-
variation. If one imagines two quantities varying together while tracing the point that represents 
their simultaneous values, a graph emerges that represents their co-variation (Moore & Thompson, 
2015, in press). 
 To support students in reasoning in the 
aforementioned ways, and making connections 
between mathematical representations, we have 
developed online workbook content that contains text, 
interactive questions, videos, and animated applets. In 
this poster presentation, we will share select pieces of 
the online workbook. The image below is a snapshot 
of one of the animated applets portraying a tub being 
filled with water, while representing the volume of 
added water and the total volume of water with 
variables, and graphically. 
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Problem Posing and Developmental Mathematics Students 
 

Steven Silber 
University of Delaware 

Engaging in mathematical problem posing activities can have positive effects on students’ 
mathematical thinking and can advance students’ understanding of mathematical concepts. 
Knowing how underprepared undergraduate students pose problems informs the use of problem-
posing activities for helping these students advance their understanding of mathematics as they 
transition to college-level mathematics courses. Forty-five undergraduate students enrolled in a 
developmental mathematics course participated in a written problem-posing assessment to 
describe what underprepared undergraduate students’ problem posing looks like. Students’ 
written responses were assessed for whether the response was a mathematical question, whether 
the responses were solvable, and the connections between each response a student provided. 
Results of the assessment indicate students at all levels of course performance posed solvable 
mathematical problems and commonly posed problems by changing the objective for each problem 
created. 

Key words: Problem Posing, Undergraduate Students, Developmental Math, Exploratory Analysis 

Posing mathematical problems is an important mathematical activity, playing a foundational 
role in mathematical problem solving (Polya, 2009), mathematical exploration (Cifarelli & Cai, 
2005), and in people’s everyday interactions (Kilpatrick, 1987). Engaging in mathematical 
problem-posing activities can have a positive effect on students’ mathematical thinking, such as 
advancing students’ skills at analyzing mathematical problems (English, 1997) and advancing 
conceptual understanding of operations on fractions (Toluk-Ucar, 2009). As knowledge of 
mathematics is a mediating factor while posing problems (Silver, Mamonda-Downs, Leung, & 
Kenney, 1996; Kontorovich, Koichu, Leiken, & Berman, 2012), undergraduate students who are 
underprepared for college mathematics stand to benefit from participating in problem-posing 
activities. Engaging these students in problem-posing activities could provide these students an 
opportunity to advance their mathematical thinking. 

Forty-five students enrolled in an undergraduate developmental mathematics course 
participated in a written problem-posing assessment to investigate what undergraduate 
developmental mathematics students’ problem posing looks like. Participants were given thirty 
minutes to pose three responses each for four problem-posing tasks, consisting of varying 
amounts of given information. Participants written responses were analyzed to determine if a 
response was a mathematical question, if the mathematical question solvable, and the 
connectedness between responses written for each task. Additionally, participants’ final course 
grades were obtained to examine for differences in problem posing performance based upon 
level of course performance. 

Analysis of students’ written responses revealed that undergraduate developmental students 
at all levels of course performance posed solvable mathematical problems, and students were 
more likely to pose problems by changing the objective of a previous problem or changing the 
situational context of another problem than they were to pose problems by varying numerical 
quantities in each posing situation. These findings suggest that problem-posing activities are an 
accessible venue for undergraduate developmental mathematics students at all levels of 
achievement to engage in mathematical thinking. 
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Students’ Ways of Thinking About Transformational Geometry 
 
                                      Natasha Speer 
                                 University of Maine 

         Jennifer Dunham 
       University of Maine 

Eric Pandiscio 
University of Maine 

    Shandy Hauk 
    WestEd 

Eric Hsu 
San Francisco State University 

 
As part of a proof-of-concept project, we created multi-media activities and instructor support 
materials for secondary mathematics teacher preparation. One focal topic was transformational 
geometry. Data collection included undergraduate and secondary school students responding to 
tasks in surveys and in interviews. Despite its prominence in the Common Core State Standards 
for Mathematics, little is known about how students think about ideas in transformational 
geometry or about how they engage with items used on assessments for this topic. The poster 
reports findings on student thinking and invites discussion to inform future work.  
 
Keywords: Transformational geometry, Teacher preparation 
 

Using tasks based on sample CCSSM assessment items, we gathered data from 
undergraduate and secondary school student via written surveys and interviews to inform 
answers to the question: What productive and unproductive ways of thinking do students exhibit 
when working on transformational geometry tasks involving translation, reflection, rotation and 
dilation? Findings are based on data from 137 written surveys and 12 task-based clinical 
interviews containing multiple-choice and free response questions modeled after sample CCSSM 
items. During interviews, to gain insights into student thinking, participants were asked to carry 
out all transformations described in each of the answer options. In addition to coding responses 
for correctness, constant comparative analysis was used to identify ways students thought 
productively and unproductively as they completed the tasks.  

Students were successful in selecting the correct sequence of transformations in the multiple-
choice question. However, further examination revealed that many who correctly performed the 
transformation sequence given in the correct answer choice struggled with the transformations 
described in the other answer choices. This suggests that having students work all answers of a 
multiple-choice item may be valuable to teachers as a part of formative assessment of students.  

We documented unproductive ways of thinking that confirm some noted by others (e.g., 
Portnoy, Grundmeier, & Graham, 2006; Thaqi & Gimenez, 2012; Yanik, 2011) and augment the 
set. These include thinking: order of transformations does not matter (and they can be done in the 
“easiest” order), a reflection “over” the x-axis means the image must remain above the x-axis (a 
horizontal shift), absence of a stated rotation direction implies a clockwise rotation, and dilation 
refers only to a shrinking in size. Some students also did not draw intermediate steps in a 
transformation sequence. On the other hand, many students demonstrated productive ways of 
thinking, such as performing transformations point-by-point (though this was only productive if 
students applied the rigid motion to each point correctly) and creating rectangles between points 
and the origin to help when performing rotations about the origin.  

We seek advice from RUME poster session attendees to identify implications for practice 
and formulate future directions for research. We also hope to solicit focal topic ideas for 
development of additional activities for pre-service secondary teacher development as well as 
gather input from college instructors, department chairs, and other stakeholders.  
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Linear Algebra Laboratory: Transitioning Between three Worlds of Mathematical Thinking 
 
    Sepideh Stewart                      Jonathan Troup                 Han Do           Mark Camardo 
University of Oklahoma         University of Oklahoma       University of Oklahoma 
 
The aim of this study is to investigate students’ transition between the three worlds of mathematical 
thinking and the challenges that they face in making these transitions. We anticipate that by 
creating more opportunities to move between the worlds we will encourage students to think in 
multiple modes of thinking and hence gain richer conceptual understanding. 

Key words: three worlds, linear algebra, transition  

Linear algebra is a core subject for mathematics students and is required for many STEM majors.  
Research on linear algebra has revealed that many students struggle to grasp the more theoretical 
aspects of linear algebra which are unavoidable features of the course. Linear algebra is made out 
of many languages and representations. Instructors and text books often move between these 
languages and modes naturally and rapidly, not allowing students time to discuss and interpret 
their validities. They assume that students will pick up their understandings along the way, but the 
linguistic and epistemological studies show how these assumptions are rather deceiving. As 
Dreyfus (1991, p. 32) declares “One needs the possibility to switch from one representation to 
another one, whenever the other one is more efficient for the next step one wants to take… 
Teaching and learning this process of switching is not easy because the structure is a very complex 
one.”  We hypothesize that most students do not have the cognitive structure to perform the switch 
that is available to the expert.   

In order to examine the nature of the switch between the representations in linear algebra, we 
employed Tall’s (2013) three-world model of conceptual embodiment, operational symbolism, and 
axiomatic formalism.  In Tall’s view, the embodied world involves mental images, perceptions, 
and thought experiments; the symbolic world involves calculation and algebraic manipulations; 
the formal world involves mathematical definitions, theories and proofs. 

The aim of this study is to investigate students’ transition between the three worlds of 
mathematical thinking and the challenges that they face in making these transitions. As part of the 
design of this study we have created a set of linear algebra tasks that are specifically crafted to 
move learners between the worlds. In particular we will examine where students get “stuck” and 
which direction would be more challenging for students (e.g., embodied to symbolic or symbolic 
to embodied, etc.). The data will be generated from students’ laboratory work. Students will also 
write a reflection on each lab, specifically describing their thought processes using the 3-world 
model theory. They need to particularly emphasize if the task helped them to move between the 
worlds and if yes, how. We will integrate Geogebra, into our teaching materials (slides, applets, 
etc.) to demonstrate a variety of concepts, and into our lab worksheets to create a geometrically 
rich environment that will have a significant effect on understanding linear algebra concepts that 
are difficult to access otherwise. Our working hypothesize is that by creating more opportunities 
to move between the worlds we will encourage students to think in multiple modes of thinking and 
hence gain richer conceptual understanding.  
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Schema as a Theoretical Framework in Advanced Mathematical Thinking 
 

Ashley Berger                                           Sepideh Stewart 
University of Oklahoma                             University of Oklahoma 

 
In this talk we present a theoretical framework based on Skemp’s idea of schema. According to 
Skemp, concepts are embedded in a hierarchical structure of other concepts, these levels in the 
structure being classifications of concepts. As the concepts are paired together, relations between 
them as well as classifications are also possible. The complexity of this hierarchical structure 
comes from the fact that these classifications of concepts and relations are not unique, giving way 
to multiple hierarchical structures, which can be interrelated. When components of these 
conceptual structures come together to make a structure that would not be realized by only looking 
at the individual components, the resulting structure is called a schema.   

Key words: schema, Topology, understanding  

Teaching and learning of advanced mathematics topics are often challenging.  The aim of this 
study is to create a theoretical framework based on the notion of Schema, in order to investigate 
undergraduate students’ difficulties in Topology.  

Skemp (1987) gives a detailed definition of schema in his chapter, “The Idea of a Schema”. 
He describes a system where concepts are embedded in a hierarchical structure of other concepts, 
these levels in the structure being classifications of concepts. For example, a train can be classified 
as a mode of transportation and can contribute to one’s concept of transportation. There are not 
only single concepts, but when we pair concepts together, we can have a relation between them, 
for which a classification is also possible. We can also look at transformations of concepts, which 
can be combined to make other transformations. What makes this hierarchical structure of 
concepts, relations, and transformations so deep and complex is the fact that these classifications 
are not unique, giving way to multiple hierarchical structures, which can be interrelated. When 
components of these conceptual structures come together to make a structure that would not be 
realized by only looking at the individual components, we call this resulting structure a schema. 
Skemp (1987) claims that a schema integrates existing knowledge, serves as a tool for future 
learning, and makes understanding possible. Without a suitable schema in position, students will 
have difficulty in understanding or making sense of new concepts. The proposed framework will 
promote schematic learning and seek to identify whether the presence or absence of a certain 
schema will have an effect in understanding new knowledge in Topology. Skemp (1987) used 
Topology for the reason that “the relevant schema can be quickly built up, whereas most 
mathematical ones take longer.” (p. 30)  

Piaget and Garcia’s (1989) triad framework gives a starting point in developing a suitable 
schema in Topology:  
 

Intra Stage: Working purely within a definition of a topology; basic examples 
Inter Stage: Connecting definition with previously knowledge 
Trans Stage: Coherent structure (e.g. Skemp’s understanding); Viewing a topology   
                      as how open sets are defined for a topological space 
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Beyond the Exam Score: Gauging Conceptual Understanding from Final Exams in 
Calculus II 

 
Kristen Amman Ciera Street 

      University of Michigan                                     The College of William and Mary 

Instructors often want to evaluate their students’ degrees of conceptual understanding in their 

mathematics courses, but are typically limited to course assignments and exams. In this research 

we ask: To what extent can mathematics instructors recognize conceptual understanding of their 

students based on final exam responses? During a summer REU program we examined 

pre-existing exams along with other course materials to address this question. We developed 

codes for student responses that were guided by Anderson and Krathwohl (2001), Mejia-Ramos 

et al. (2011), Thurston (1994), and the APOS framework. Student responses more clearly and 

often demonstrated lower level understanding than deeper, conceptual knowledge because few 

problems called for explanations or justifications. The goal of this research was to improve the 

effectiveness of assessments in evaluating conceptual understanding. In future exams, we suggest 

that prompting students to display behaviors typical of varying levels of understanding with  

justification would make evaluations more accurate.  

 Keywords:​  Conceptual understanding, Calculus, Exams 

Instructors want their students to have a “conceptual understanding” of the topics in their 
mathematics courses, but do not always know how to find evidence for this. Undergraduate Math 
Education Researchers have found evidence in in-depth interviews with students, classroom 
observations, and student responses on tasks created specifically for an educational study. 
However, an instructor is typically limited to information that can be conveyed through written 
work such as homework and exams. Thus, we asked: 1. How can we use information about the 
problem-solving behaviors that students demonstrate when solving final exam problems to make 
inferences about their degrees of conceptual understanding? 2. How can we create new 
instructional tools that would provide more evidence for conceptual understanding? We coded 
responses from 40 final exams randomly selected from four Calculus II sections taught in Fall 
2015 at a large, land-grant university. The construction of our codes was guided by the 
frameworks of Krathwohl (2002), Mejia-Ramos et al. (2012), Thurston (1998), and Dubinsky & 
McDonald (2001), and an in-depth analysis of first-year calculus. After two rounds of revision, 
the final codes ordered from lower to higher conceptual understanding were: Execute 
Computations, Recognize Definitions, Represent Visually, Recognize and Apply Procedure, 
Recognize Details, Generate Examples, and Analyze Relationships. Success on the exam was 
largely determined by performance on low-level tasks. Students most often struggled with 
higher-level behaviors based on error proportions and frequency. Compared to students with 
lower levels of understanding, the lack of justification in student work made differentiating 
between medium and higher levels more difficult. Finally, we often coded only one or two 
behaviors per question, which emphasized the exam’s lack of opportunity to demonstrate 
higher-level understanding. In future exams, designing problems that require varying types of 
justification, or prompt students to display specific behaviors would make coding more accurate. 
We would like to expand upon this research to create assignments designed to build conceptual 
understanding of specific calculus concepts through tasks increasing in conceptual complexity.  
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Categorizing Teachers’ Beliefs About Statistics Through Cluster Analysis 
 

Gabriel Tarr 
Arizona State University 

 
The CCSSM emphasize statistical concepts for grades 6-12. The paper will attempt to answer the 
following question: How do middle school mathematics teachers in a professional development 
program differ from each other with regard to how they view statistics? 
 
Key words: Statistics Education, Statistics 
 

The emphasis on teaching statistics standards in The Common Core State Standards for 
Mathematics (National Governors Association, 2010) is much greater than in previous standards 
(Tran, Teuscher, Dingman, & Reys, 2014). Since beliefs and conceptions influence how teachers 
teach (Thompson, 1992), it is important to attend to the beliefs that teachers possess about 
statistics to study how these teachers would teach statistics. In this paper, the researcher will 
answer the following question: How do middle school mathematics teachers in a professional 
development program differ from each other with regard to how they view statistics? This paper 
will include analysis on teachers’ responses for seven open-ended survey items about their 
beliefs on statistics. 
 

Methodology 
 

Instruments for assessing statistical beliefs and attitudes tend to be Likert-scaled items with 
no room for the respondents to elaborate on their answer choices (Gal & Ginsburg, 1994; Gal, 
2003). The researcher designed this survey to be open-ended, so that teachers would have the 
freedom to answer the items as they wished.  

The following is the list of the survey items that were given to a population of 50 in-service 
middle school teachers in the beginning of their second year in a two-year professional 
development project: a) Briefly give a definition for statistics. What do you take this to mean? 
What comes to mind when you see or hear the word statistics? b) How would you describe your 
personal background in statistics? c) To you, what are the differences, if any, between statistics 
and mathematics? What are the similarities, if any, between statistics and mathematics? d) I am 
looking forward to statistics content in year two because: e) I am not looking forward to statistics 
content in year two because. f) I see statistics being useful to my students because. g) I see 
statistics as not being useful to my students because. 

The teacher response data were not ordinal or interval scale in nature, so the researcher used 
partitioning around the medoid clustering which does not depend on Euclidean distance 
(Kaufman & Rousseeuw, 1987). The researcher determined the number of clusters by choosing 
the value for the number of clusters, 𝑘(≤ 6), that would maximize the silhouette distance 
(Charrad, Ghazzali, Boiteau, & Niknafs, 2014).  
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Student Understanding of Elements of Multivariable Calculus 
 

 John R. Thompson Benjamin P. Schermerhorn J. Caleb Speirs  
 University of Maine  University of Maine University of Maine 

We present preliminary findings from written, post-instruction surveys to gauge student 
understanding of various elements of multivariable calculus. The content addressed includes 
contour plots, partial derivatives, representations of gradients and slopes, construction of 
volume difference integrals.  

Key words: Multivariable Calculus, Difficulties 

While student understanding of single-variable calculus has received a great deal of attention 
in the literature, overall few studies have been done on multivariable calculus topics. This area 
has rich research potential, including characterization of the student understanding landscape as 
well as how students generalize various concepts such as domain and range (Dorko & Weber, 
2014) and integrals (Jones & Dorko, 2015) from single- to multivariable calculus. We present 
preliminary findings from written, post-instruction surveys to gauge student understanding of 
various elements of multivariable calculus.  

Methods 

The written questions discussed here were administered in a survey administered at the end 
of multivariable calculus classes, typically as part of the final exam. Results come from multiple 
institutions, with variations in class size and instructional approach. Our findings have not sorted 
among these variables, and thus are described qualitatively.  

The content addressed includes partial derivatives; representations of gradients, slopes, and 
contours; and volume integrals. The surveys were developed as part of the Raising Calculus to 
the Surface project (Wangberg & Johnson, 2013), which seeks to build a stronger geometric 
understanding of multivariable calculus using a pedagogically modern approach. Results on 
student concept images of one-dimensional integration pre-instruction have been reported 
previously (Fisher et al., 2016). 

Results 

Here we summarize the most significant findings. Basic computational tasks (partial 
derivatives, gradients, directional derivatives) yield low success rates, primarily due to what 
appear to be executive or arbitrary errors (Orton, 1983). A question asking for an estimate of a 
function value along the direction of the gradient vector demonstrates significant 
misinterpretation of the graphical representation: students interpret the magnitude of the gradient 
vector according to the grid spacing. Students are successful interpreting the general meaning of 
a partial derivative, consistent with prior findings in physics (Thompson et al., 2006). However, 
results from a subsequent question asking for the meaning of an equation for the numerical value 
of a partial derivative at a particular point suggest that application of the general meaning is not 
straightforward. Finally, very few students in this sample are able to set up an integral for the 
volume enclosed between two surfaces; despite many different approaches to the integral, the 
most common error is the determination of the correct limits.  
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Designing a Richer Flipped Classroom Calculus Experience 
Mathew Voigt 

San Diego State University 
Helge Fredriksen 

University of Agder 

The study presented here is an illustrative example of an action based research project, which 
was focused on broadening student partition in the flipped classroom experience in order to 
address issues of equity and social justice in the calculus curriculum. While flipped classrooms 
have gained recent notoriety within the literature, they rarely incorporate or addresses other 
critical perspectives. Our study highlights how using design principles such as realistic 
mathematics education (RME) and culturally responsive pedagogy can effectively target the 
hidden curriculum and shape the norms and classroom discourse features (Sfard, 2008).  

Keywords: Flipped, Realistic Mathematics Education, Culturally Responsive, Calculus 

In this action based research, we designed and implemented a two-week classroom 
teaching experiment for calculus students covering topics in trigonometry and vectors. Based on 
the current best practices in flipped classroom (Bagley, 2015) we created three different types of 
instructional videos (expository, inquisitive and illustrative) and used the design principles of 
RME to create the paired classroom activities (Gravemeijer & Doorman, 1999). The expository 
videos introduced the mathematical topic, provided an overview of the content, and made 
connections to prior mathematical topics. The inquisitive videos provided a single mathematical 
problem that was discussed in length, giving probing questions and possible solution paths, but 
did not present a final solution to the problem. The problem presented in the inquisitive videos 
was then the focus for the classroom discussion. The illustrative videos were designed to show 
procedural techniques and operations to solve particular problems.  

  The study took place with 27 students enrolled in a first years course in Mathematics at 
a Northern Norwegian University. This unique setting provided the opportunity to include design 
elements to support students with varying degrees of fluency in English, a challenge that is faced 
by many educators in the United States (Mosqueda & Maldonado, 2013). We draw on several 
curriculum constructs (formal, observed and hidden) to frame the complete life cycle of this 
classroom teaching experiment (Stein, M.K., Remillard, J.T., & Smith, 2007). We highlight how 
our unique role as both the designer of the materials and the teacher of the content allowed for us 
to use a critical lens to address and shape the underlying norms and beliefs in the classroom 
through the hidden curriculum (Yackel & Rasmussen, 2003). 

 For example, we were compelled by culturally responsive pedagogy and RME such that 
our goal was to have students critically analyze the world they live in, and attend to how 
mathematics is used within that realm (Aguirre, 2009). We designed the curriculum in this way 
such that example problems were based in the local context of the town (e.g. using vectors to 
describe the movement from the local airport to the university) and at a national level (e.g. 
modeling wolf population zones in Norway). We also wanted students to use mathematics to 
engage with 21st century issues so we designed a curriculum unit around modeling historical 
temperature data in Norway to make arguments for climate change. We analyzed features of the 
mathematical discourse that were made salient within the curriculum (Sfard, 2008) as well as 
using interview data, to showcase the impact the inquisitive videos may have had on fostering 
commognitive conflict related to the mathematical topic. Finally, we provide some 
recommendations, insights and further areas of research based on the outcomes measured in this 
study. 
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Putting on the Uniform: Coordination within the Calculus Curriculum 
1Matthew Voigt, 1Shawn Firouzian & the Progress through Calculus team* 

1San Diego State University 
The study presented here examines the types and relative frequency of uniform course 
components (exams, textbooks, etc.) currently in place in the Precalculus through single variable 
calculus sequence at graduate universities and how those components are effected by the 
presence of department factors such as regular course meetings, instructor type, and the 
presence of a course coordinator. Our results indicate that while the total number of uniform 
course components decline throughout the Precalculus through single variable calculus 
sequence, its effect is mitigated by the presence of a course coordinator and regular course 
meetings. In addition, student success is significantly related to the presence of both a course 
coordinator and regular course meetings.  

In this current study, we provide a comprehensive report regarding the coordinated 
course structures in place to support university students in introductory mathematics sequences 
across the country – both in terms of uniform course elements and departmental factors. 
Bressoud, Mesa and Rasmussen (2015), during their initial study examining the characteristics of 
successful programs in college calculus identified that a “system of coordination” such as having 
a course coordinator or uniform exams in a calculus programs resulted in a powerful net effect 
promoting student success. While that study’s design did not allow for documenting the 
frequency of such options across the country, the Progress through Calculus (PtC) project does, 
including precalculus and the entire single-variable calculus sequence. 

During phase 1 of the PtC project, a national census survey was distributed to all 330 
American mathematics departments that offer a graduate degree in mathematics and closed with 
a 68% response rate. The survey asked for details (including enrollment data, delivery format, 
etc.) of all courses in the mainstream Precalculus to Calculus 2 (P2C2) sequence. Mainstream 
refers to any course in this sequence that is part of student preparation for higher-level 
mathematics courses. Using the survey data collected from 265 institutions, we identified factors 
that quantified uniformity and coordination within and across the P2C2 sequences. In this 
presentation, we focus on coordination within a courses. 

Our descriptive results showcase that the only uniform course elements held by a 
majority of courses in the P2C2 sequence are textbooks and course topics. While still relatively 
common we observed less uniformity with regards to graded elements (Final Exam, Midterms, 
and Grading) and even less with regards to course materials (handouts, videos, and graphing 
calculators).  We note that besides the exception of gateway exams, the prevalence of uniform 
elements decreases between preparation for calculus and calculus 1, and again between calculus 
1 and calculus 2. However, this decline in the total number of uniform elements is not significant 
when controlling for the frequency of course meetings and the presence of a course coordinator.  

In addition to presenting the relative frequency of the uniform course components, we 
also note that regular meetings and instructor type (tenured faculty) were significant predictors 
for student success, as measured through DFW rates. These finding suggests that having an 
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organized structural system in place increases the overall uniform experience for students 
regardless of the prescribed uniform components. 
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Who is teaching the Precalculus Through Single-Variable Calculus Sequence and How are 
they Teaching it? 

1Kristen Vroom, 1Dana Kirin, & the Progress through Calculus team* 
1Portland State University 

 
It is well documented that the precalculus through single-variable calculus sequence (P2C2) acts 
as a barrier for many STEM intending students. Students often cite poor instruction as a primary 
reason for switching out of STEM programs (PCAST, 2012; Seymour & Hewitt, 1997), which 
leads to questions about what instructors and instruction look like across the country. This 
poster presents findings from national census survey data collected as part of a larger study, 
Progress through Calculus (PtC). In particular, we answer: (1) What types of instructors are 
currently teaching courses in the P2C2 sequence and how prevalent are they nationally? (2) 
What relationship exists (if any) between instructor type and primary instructional format? 

Key words: Instructors, Instructional Practices, Precalculus, Calculus 

Sample Results 
To address the first question, we consider the types of instructors participants identified as 

frequently teaching courses within the P2C2 sequence. 205 institutions provided detailed course 
information on instructors of 894 mainstream courses. At these institutions, full-time faculty 
frequently taught 67.3% of the courses within the P2C2 sequence; tenured and tenured-track 
faculty frequently taught 60.4% of the courses; part-time teaching faculty, visiting faculty, or 
postdoctoral researchers frequently taught 42.5% of the courses; and graduate teaching 
assistants/associates (GTAs) frequently taught 29.1% of the courses. Note that these percentages 
do not add up to 100%, because more than one type of instructor might frequently teach any 
given course. 

Our second question considers the relationship between instructor type and primary 
instructional format. Participants identified the primary instructional format for the regular 
class meetings of each course. The following results are based on the four categories of 
instructors identified above and four categories of instructional format: lecture, lecture 
incorporating some active learning, minimal lecture with mainly active learning techniques, or 
lecture plus computer based instruction. 200 institutions provided information about the 
instructional format for 881 courses. Of these, 66% were identified as being taught using mostly 
lecture, 16% used some active learning in tandem with lecture, 2.5% of courses were taught 
using mostly active learning, and 3.6% of these courses used computer-based instruction 
alongside lecture. This trend is consistent across instructor type. While all instructor types 
utilized lecture most often for their courses, when conditioning on instructor type, proportionally 
GTAs employ lecture less often in their courses than other instructor types. For example, 57.5% 
of the courses GTAs frequently taught were lecture based while part-time teaching faculty, 
visiting faculty, or postdoctoral researchers utilized lecture in 71.1% of their courses. 

Along with the results reported here, we will present a more detailed description of instructor 
type and instructional formats for all courses, including findings using similar analysis separated 
by course type (e.g., Precalculus, Calculus 1) and highest mathematics degree awarded. 

                                                
* The Project through Calculus PI team consists of Linda Braddy, David Bressoud, Jessica Ellis, Sean Larsen, Estrella 
Johnson, and Chris Rasmussen. Graduate students include Naneh Apkarian, Dana Kirin, Kristen Vroom, and Jessica 
Gehrtz. 
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The Effects of Graphing Calculator on Learning Introductory Statistics 

Wei Wei   Katherine Johnson 

Metropolitan State University  Metropolitan State University  

Abstract: Graphing calculators have been used for teaching introductory statistics for decades. 
They helped students to obtain accurate statistical analysis results. However, heavily relying on 
graphing calculators may hinder students’ understanding of certain statistical concepts such as 
the normal distribution and p-value. In this study, we focused on the effects of using a graphing 
calculator on students’ conceptual understanding of normal distribution and p-value, and their 
performance of calculating normal probabilities and conducting a hypothesis test. 
 

Methods 

This study included four sections of an introductory statistics course from two instructors. 
Each instructor taught one section with the use of graphing calculator and another section 
without graphing calculator. The goal was to test if the average grade was significantly higher 
from the graphing calculator section (referred to as TI section) than that from the section without 
using graphing calculator (referred to as non-TI section).  

Two quizzes and three final exam questions were included in this study. Quiz one contained 
one multiple choice question of the conceptual understanding of standard normal transformation, 
and one calculation question covering the normal probabilities. Quiz two contained one multiple 
choice question of the conceptual understanding of p-value, and a short answer question covering 
a hypothesis test of difference in proportions. The three final exam questions were used to test on 
retention, including two multiple choice questions of the concepts of standard normal 
transformation and p-value, and a calculation question of hypothesis testing of a single mean. 
Each quiz was given to both the TI section and non-TI section at the same time.  

Mantel-Haenszel analyses were used to analyze the multiple choice questions and 2 by 2 
ANOVAs with two independent factors, instructor (instructor one and instructor two) and the use 
of calculator (TI and non-TI), were used to analyze short answer questions. 

 
Results 

The Mantel-Haenszel analysis for quiz one multiple choice question showed that the 
proportion of correctness was significantly higher for the TI section than that for the non-TI 
section when testing on the conceptual understanding of standard normal transformation. The 
Mantel-Haenszel analysis for quiz two multiple choice question showed that there was no 
significant difference in proportions of correctness between the TI and non-TI sections when 
testing on the conceptual understanding of p-value. The 2 by 2 ANOVA of quiz one calculation 
question showed that the average score was significantly higher for the TI section than that for 
the non-TI section when students did the calculation of normal probabilities. The 2 by 2 ANOVA 
of quiz two short answer question showed that the average score was also significantly higher for 
the TI section than that for the non-TI section on performing hypothesis testing. All of the 
Mantel-Haenszel analyses and 2 by 2 ANOVAs of the final exam questions did not show 
significant differences between the TI and non-TI sections for retaining the knowledge of 
standard normal transformation, normal probability calculations, p-value and hypothesis testing. 
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Exploring Conceptions of Mathematics: A Comparison of Drawings and Attitudinal Scales  
 

Ben Wescoatt  
Valdosta State University 

This study explores beliefs about doing math held by pre-service teachers. Pre-service teachers 
in a mathematics content course drew pictures of a person doing math. Additionally, modified 
Fennema-Sherman Mathematics Attitude Scales (FSMAS) (Ren, Green, & Smith, 2016) were 
administered to the students. The drawings were analyzed using a framework developed from the 
Farland-Smith (2012) rubric. In addition to exploring beliefs about doing math held by the 
students as evidenced by the drawings, the study considers the validity of the drawing 
methodology through a comparison to the FSMAS results. 

Key words: Mathematical beliefs, Pre-service teachers, Drawing methodology 

Teachers play a key role in helping students form perceptions about mathematics and what it 
means to do math. A teacher’s beliefs can influence the mathematical experiences they have with 
their students and so can influence the conceptions about math that the students form (Mewborn 
& Cross, 2007). As teachers can have such impact on the impressions about mathematics held by 
future generations, and as these impressions may dissuade students away from mathematical 
disciplines, understanding teachers’ conceptions of mathematics is an important area of study. 
The focus of this current study is to better understand pre-service elementary and middle school 
teachers’ conceptions of doing mathematics. That is, when someone thinks about “doing 
mathematics,” what comes to mind? It could be that very specific applications are imagined or 
that feelings or emotions are evoked.  

To better understand this question, two types of data were collected from 49 students in a 
capstone mathematics content course for pre-service teachers at a regional university in the 
southeastern United States. In one data collection phase, participants responded to the prompt, 
“In the box below, draw a picture of a person doing math. Place as much detail into the drawing 
as you can.” Participants then used several sentences to explain their drawing. In the other data 
collection phase, students completed a version of the Fennema-Sherman Mathematics Attitude 
Scales (FSMAS) as modified and validated, for use with lower primary teachers, by Ren, Green, 
and Smith (2016). The scales used by Ren, Green, and Smith were Confidence, Effectance 
Motivation, and Anxiety. The collection phases were spaced one week apart. 

A framework developed by Wescoatt (2016) will be used to explore the drawings. The 
framework is a refinement of a rubric developed by Farland-Smith (2012) and modified by 
Bachman, Berezay, and Tripp (2016). To explore the “doing” of math, each drawing will be 
analyzed for elements of Action (what is being done), Mathematics (mathematical elements such 
as symbols), Appearance (the person’s physical appearance), Location (a description of 
surrounding elements), and Affect. Each image will be assigned a score from 1 to 7 for the 
Affect category, with 1 representing an extremely negative image and 7 representing an 
extremely positive image. The written explanations will be used to verify interpretations. 

One of the drawbacks of the framework is that it has not been completely validated. As a 
participant draws his or her image, the possibility exists that he or she is merely drawing an 
image of stereotypical elements that are not reflective of his or her actual beliefs. In an attempt to 
begin rectifying this shortcoming, a comparison between the participants’ FSMAS results and 
the Affect scores from the drawings will be explored. 
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Developing, Implementing, and Researching the Use of Projects Incorporating Primary 
Historical Sources in Undergraduate Mathematics 
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Mathematics faculty and education researchers increasingly recognize the value of the history of 
mathematics as a support to student learning.  There is an expanding body of literature in this 
area which includes direct calls for the use of primary historical sources in teaching 
mathematics.  The current lack of classroom-ready materials poses an obstacle to the 
incorporation of history into the mathematics classroom. Transforming Instruction in 
Undergraduate Mathematics via Primary History Sources (TRIUMPHS) is a seven-institution 
collaboration that will design, implement, test, and publish curricular materials based on primary 
historical sources, train approximately 70 faculty and graduate students on their development or 
implementation, and conduct and evaluation-with-research study.  We present an overview of the 
project, including activities and research to date. 

Key words: Primary Sources, History of Mathematics, Meta-discursive Rules, Case Study 

Introduction  

In addition to the general benefits of inquiry-based learning, particular advantages incorporating 
primary sources include providing context and direction to the subject matter, honing students’ 
verbal and deductive skills through reading the work of some of the greatest minds in history, 
and the invigoration of undergraduate mathematics courses by identifying the problems and 
pioneering solutions that have since been subsumed into standard curricular topics.  By working 
collaboratively to develop Primary Source Projects (PSPs) while training faculty across the 
country in their use, TRIUMPHS will ensure these materials are robustly adaptable to a wide 
variety of institutional settings, while simultaneously developing an ongoing professional 
community of mathematics faculty.   Additionally, our evaluation-with-research study will 
directly contribute to a greater understanding of (a) how student perceptions of the nature of 
mathematics evolve, (b) the potential of particular PSPs to promote student learning of meta-
discursive rules in mathematics, and (c) how to support faculty in developing and implementing 
this research-based, active learning approach in undergraduate STEM education.   
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Online STEM and Mathematics Course-Taking: Retention and Access 

Claire Wladis 
Borough of Manhattan Community College and the Graduate Center, City University of New York 

Alyse C. Hachey and Katherine Conway 
Borough of Manhattan Community College at the City University of New York 

Using survey data and interviews from a large urban university system, this study explores factors 
that impact student decisions to take math classes online.  The results suggest that access to online 
math courses likely impacts student course taking patterns, with significantly more students taking 
a different course if their desired math course is not offered online, compared to non-math courses.   

Keywords: Online learning, student characteristics, access. 

In 2013, over 40 million college students took online classes worldwide; by 2017, that number is 
expected to triple (Atkins, 2013).  Online courses are often thought to provide access to education, 
particularly for student parents, and students who work, but little research has been conducted to 
explore how the availability of online courses impact student course-taking patterns (Jaggars, 2011). 
Research question: When online sections of a particular course are not offered, do students take 
the same course face-to-face, and does this differ for math classes? 
Methodology: This research used a sample of students who enrolled in online or comparable face-
to-face courses at one of the two- or four-year colleges at the City University of New York (CUNY) 
from 2004 to 2017.  These results focus on survey results for those students enrolled in spring 2016, 
for a total sample size of 14,689.  In addition, 49 interviews were conducted.  Student responses to 
survey and interview questions were coded using grounded theory (Glaser & Strauss, 1967).  For 
student responses to survey questions related to their enrollment, z-scores were calculated.   
Results: What factors impact student decisions to enroll in online math classes?  In interviews, 
students expressed different perceptions explaining whether and why they preferred to take math 
classes online or face-to-face.  Many students specifically felt that it was better to take math classes 
face-to-face: “Some courses can be done online... The complicated courses, you have to be there—
like math—to ask questions directly.  Like math—you can't miss a day, and you really need a face-
to-face course for something like that… something where you have to read and remember and take a 
test, you know that's okay for [an] online course.” 

But other students had the opposite opinion, feeling that math was particularly well-suited to 
online learning:  “[I took] math [online] as opposed to English, where I can truly benefit from class 
discussion. Math is what it is. So I figured that would be a good course to take [online].” 

Even more striking, almost half of all students in an online math course would have taken a 
different course if that course had not been offered online; this is significantly higher compared to 
students who took other subjects online (see Table 1).     
  all math   
different course 37% 46% *** 
* p<0.05, ** p<0.01, *** p<0.001; Significance calculated using two-tailed  z-test for proportions 
Table 1:  Student reports of alternative course selection if the course had not been offered online

Students who took math classes online often needed them to complete a specific degree, so if 
the class had not been offered online, this could have been a barrier to degree completion. 
“[If the computer math class had not been offered online that semester], I don't know—[I would 
have taken] any other math—calculus or algebra—online.  [If I had not been able to take an online 
math class that semester,] I wouldn't be able to finish my college during the fall.”   
Limitations: CUNY’s highly diverse, urban population of low-income, foreign-born, and first-
generation students may not be generalizable to other less-diverse college populations.   
Conclusion: These results suggest that students take different courses if the math class that they are 
interested in is not offered online.  Delaying developmental math and progressing more slowly 
through course sequences are both associated with college dropout (Attewell, Heil, & Reisel, 2012; 
Fike & Fike, 2012).  Because of these patterns, colleges should be cautious about restricting access 
to online math courses or offering insufficient math course sections online to meet student demand.  
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Service-Learning and a Shift in Beliefs about Mathematical Problem Solving  
 

Ekaterina Yurasovskaya 
Seattle University 

During academic service-learning experiment, students in an experimental Precalculus class 
regularly tutored basic algebra to middle-schoolers. At the end of the quarter, student-tutors 
demonstrated academic improvement and a shift in beliefs about importance of conceptual 
understanding in problem solving. These manifested benefits can motivate mathematics 
departments to implement service-learning as part of academic curriculum. 

Key words: Precalculus, service-learning, beliefs, social justice in mathematics education 

Academic service-learning combines coursework and community service: students gain 
or enhance subject knowledge by participating in structured outreach (Hadlock, 2013). Prior 
studies on math and service-learning showed gains in tutors’ subject knowledge, decrease in 
mistakes (Yurasovskaya, 2016), and reduction of math anxiety (Henrich & Lee, 2011).  

Beliefs about mathematics influence student learning (Leder, Pehkonen & Torner, 2002). 
Our research explores impact of academic service-learning on student beliefs about 
mathematical problem solving. This work is motivated by the need to improve Calculus 
preparation and retention (Bressoud, Mesa & Rasmussen, 2015), and the necessity for more 
research on the effect of service-learning on mathematics education. 

Our study explores two research questions: Will students who engage in tutoring algebra 
pre-requisites to middle-school students demonstrate a significant shift in beliefs about 
mathematical problem solving? Will students-tutors demonstrate significant improvement in 
course performance? Following a pseudo-experimental setup of McKnight, Magid, Murphy, 
and McKnight (2000), control and experimental sections are randomly chosen for the 
experiment. For theoretical background, we refer to the work of McLeod (1989) on the 
impact of beliefs on student performance in mathematics. 
 

Methodology 
Our study takes place in a Precalculus class at an urban Catholic university: twenty 

university students tutor algebra to middle-school kids 2-3 hours per week for the duration of 
the quarter. Control section receives traditional course instruction. At the start and the end of 
the quarter, students in both sections take a diagnostic test to establish a baseline, and fill out 
a survey composed of Indiana Mathematics Belief Scales (Kloosterman & Stage, 1992). 
Exam performance and the shift in attitudes and beliefs are analyzed at the end of the quarter.  
 

Results 
Experimental class showed a shift in the average score for the question group 

“Understanding concepts is important in mathematics”, from 22.23 to 24 with t-value 1.78  
and p=0.1, along with a change in standard deviation: from 4.07 to 1.8  in pre vs post scores.  
Control section did not show any statistically significant shift in any of the belief groups. 
Experimental section made a significant shift on individual items measuring importance of 
computational skills and of conceptual understanding why a given numerical answer is 
correct. Initially, experimental section showed lower averages on the diagnostic and exam 
one: 59% vs 76% in the control section. By exam two and the final, the difference in averages 
was no longer statistically significant (74% experimental to 76% control). 

Positive results of our research can serve to provide departments of mathematics with 
incentives to implement outreach and service learning as part of academic curriculum.  

20th Annual Conference on Research in Undergraduate Mathematics Education 169820th Annual Conference on Research in Undergraduate Mathematics Education 1698



References 

Bressoud, D., Mesa, V., & Rasmussen, C. (2015) Insights and Recommendations from the 
MAA National Study of College Calculus. Washington, DC: Mathematics Association 
of America. 

Hadlock, C. (2013) Service-learning in the Mathematical Sciences. PRIMUS: Problems, 
Resources, and Issues in Mathematics Undergraduate Studies, 23(6), 500-506 

Henrich, A. & Lee, K. (2011). Reducing Math Anxiety: Findings from Incorporating Service 
Learning into a Quantitative Reasoning Course at Seattle University. Numeracy, 4(2), 
9.   

Kloosterman, P., &  Stage, F.K. (1992). Measuring Beliefs About Mathematical Problem 
Solving. School Science and Mathematics, 92(3), 109-115 

Leder, C., Pehkonen, E., Torner, G. (Ed) (2002) Beliefs: a Hidden Variable in Mathematics 
Education? New York, NY: Kluwer Academic Publishers 

McKnight, C., Magid, A., Murphy, T.J., & McKnight, M. (2000). Mathematics Education 
Research: A Guide for the Research Mathematician. Providence, RI: American 
Mathematical Society. 

McLeod, D. B. (1989) Beliefs, Attitudes, and Emotions: New Views of Affect in 
Mathematics Education. In  McLeod, D. & Adams, V. (Eds), Affect and Mathematical 
Problem Solving.(pp. 245-258) New York, NY: Springer 

Yurasovskaya, E. (2016). Service-Learning in a Precalculus Class: Tutoring Improves the 
Course Performance of the Tutor. In (Eds.) T. Fukawa-Connelly, N. Infante, M. 
Wawro, and S. Brown, Proceedings of the 19th Annual Conference on Research in 
Undergraduate Mathematics Education, (pp. 496-505) Pittsburgh, Pennsylvania. 

 

20th Annual Conference on Research in Undergraduate Mathematics Education 169920th Annual Conference on Research in Undergraduate Mathematics Education 1699



Interpretive Reading of Mathematical Propositions for Proving: A Case Study of a 
Mathematician Modeling Reading to Students During Joint Proof Production. 

  
 Anna Zarkh 

University of California Berkeley 
 
Successful proof production in advanced mathematics relies on meaningful apprehension of 
the to-be-proved proposition, yet we know that this is a challenge for many students. This 
study examines the ways in which a mathematician-instructor, addressing this issue, models 
the practice of interpretive reading of mathematical propositions to a pair of students in the 
context of joint proof-production in a Real Analysis course. Taking a social practice 
perspective on reading and adopting Sfard’s commognitive framework as a theoretical lens, I 
identify three aspects of the discursive work the expert engages with to demonstrate 
processes of active meaning-making to students: (1) re-reading of text with grammatical 
shifts, (2) posing comprehension monitoring questions, and (3) narrative enactment of text.  
 
Keywords: Reading; Proof Production; Expert-Novice Interaction; Real Analysis. 
 

Many students have difficulties understanding to-be-proved propositions (Selden & 
Selden, 1995). A key challenge is that relevant information is not readily available in the text, 
and thus interpretive work is required to make propositions sensible for proving (Weber, 
Brophy, & Lin, 2008). Not enough is known about the processes by which successful proof 
writers read propositions with understanding, or how such practices can be taught.       

Theoretical Framework. This study relies on two central assumptions. First, I posit that 
reading of advanced mathematical text is a social practice (Rasmussen, Zandieh, King, & 
Teppo, 2005). Second, following Sfard (2008), I consider mathematical meaning to be 
constituted by the discursive work within which text is embedded.  

 
A Study of a Mathematician Modeling Reading; Methods, Results and Implications.  

Methods. Data for the present study are taken from a larger video corpus collected to 
investigate the teaching practices of a highly experienced mathematician-instructor of a Real 
Analysis course. This paper focuses on a single classroom event in which the instructor 
performs interpretive-reading while assisting a pair of undergraduate students in constructing 
a proof to a statement about uniform convergence during a review session. The focal episode 
was analyzed using micro-ethnographic techniques (Erickson, 1992). A stimulated-recall 
interview with the instructor served as an additional data source to inform analysis.  

Results. Three aspects of the instructor’s demonstrative reading emerged as important 
meaning-making devices: (1) repetitive re-reading of text with shifts in the grammatical 
structure of the natural language within which signifiers are embedded (e.g. “it’s a sequence 
that is bounded” “they’re all bounded”); (2) posing of rhetorical, comprehension-monitoring 
questions (e.g. “And what do we know about it?”); and (3) narrative enactment of text using 
multi-modal symbolic devices (e.g. “Here are the fns ((draws overlapping curves on the 
board)) ... and they converge to something down here”). In a stimulated recall interview the 
mathematician-instructor described his performance as “forcing them to read slowly in order 
to learn to breakdown the sentences. So they begin to understand what's in the question”. 

Implications. This case study sheds light on the complexity involved in enacting 
mathematical meaning from text, and can thus contribute to our understanding of the 
difficulties students experience. The analysis can also help position the practice of 
interpretive reading, tacitly assumed in current models of proof production (Weber & Alcock, 
2004), as an explicit goal of instruction in advanced mathematics courses.  
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Mathitude: Precalculus Concept Knowledge and Mathematical Attitudes in Precalculus 
and Calculus I 

 
Oyuki Aispuro, Jerica Bañares, Grant Dolmat, Todd CadwalladerOlsker, Sissi Li 

California State University, Fullerton 

The concept knowledge and attitudes and perceptions about mathematics of students in 
precalculus and calculus were measured using the Precalculus Concept Assessment (PCA) and 
Mathematical Attitudes and Perception Survey (MAPS). We found significant differences in these 
measures among several subgroups, and found correlations between these measures and student 
success. 

Key words: Concept Knowledge, Perceptions, Attitudes, Calculus 

There is a pattern of students citing calculus as a major factor in their decision to leave 
STEM majors (Rasmussen and Ellis, 2013). Industry and government leaders are calling for 
colleges and universities to understand and address this problem as it has implications in the 
hindrance of our nation’s economy and intellectual power. In this study we have explored 
students’ conceptual knowledge and mathematical attitudes in precalculus and calculus, using 
two instruments. First, the Precalculus Concept Assessment (PCA) instrument can assess student 
learning, effectiveness of curricular treatment, and determine student readiness (Carlson, 
Oehrtman & Engelke., 2010). Second, Mathematics Attitudes and Perceptions Survey (MAPS) 
instrument can provide information about how well student beliefs of mathematics align with 
expert beliefs (Code, Merchant, Maciejewski, Thomas & Lo, 2016). Concept knowledge and 
expert-like attitudes and perceptions about mathematics are both critical components of 
mathematical expertise. By studying these components, we can help students to reach higher 
levels of expertise. 

Students enrolled in Precalculus and Calculus I during Spring 2015, Fall 2015, and 
Spring 2016 were invited to participate in the two surveys described above at the beginning of 
the semester prior to any instruction or opportunity to attend SI. Both surveys were administered 
online. After the 15 week semester was nearly over, students were asked to complete the same 
two surveys again. The matched data set used in this study included N = 181 participants which 
are all students who provided complete data for both pre and post surveys. 
 We found several interesting results from our study. First, when we examined concept 
knowledge as measured by the PCA, we found that although Calculus students began the 
semester with a higher score on the PCA than precalculus students (as expected), at the end of 
the semester, the precalculus students had caught up to the calculus students, whereas the 
calculus students PCA scores improved only slightly. Second, we examined the MAPS scores of 
different subgroups of students. We found that male students were significantly more likely than 
female students to agree with expert beliefs on mathematics’ relation to the real world; and that 
students who attended a peer-led supplemental instruction (SI) program were more likely to 
improve their confidence throughout the semester. We also found a weak but statistically 
significant relationship between PCA scores and agreement with expert opinions on the MAPS 
instrument, especially with the MAPS subscores of Confidence and Exploration in Problem 
Solving. Finally, both the post-semester PCA and MAPS scores are positively correlated with 
higher grades. 
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